USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is a North American grass that exhibits vast genetic diversity across its geographic range. In the Northeast, switchgrass was restricted to a narrow zone adjacent to the coastal salt marsh, but current populations inhabit inland road verges raising questions about t...
Generation of Neo Octaploid Switchgrass
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) exists as multiple cytotypes with octaploid and tetraploid populations occupying distinct, overlapping ranges. These cytotypes tend to show differences in adaptation, yield potential, and other characters, but the specific result of whole genome duplication is not ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Shiyu; Kaeppler, Shawn M.; Vogel, Kenneth P.
Switchgrass is undergoing development as a dedicated cellulosic bioenergy crop. Fermentation of lignocellulosic biomass to ethanol in a bioenergy system or to volatile fatty acids in a livestock production system is strongly and negatively influenced by lignification of cell walls. This study detects specific loci that exhibit selection signatures across switchgrass breeding populations that differ in in vitro dry matter digestibility (IVDMD), ethanol yield, and lignin concentration. Allele frequency changes in candidate genes were used to detect loci under selection. Out of the 183 polymorphisms identified in the four candidate genes, twenty-five loci in the intron regions and four locimore » in coding regions were found to display a selection signature. All loci in the coding regions are synonymous substitutions. Selection in both directions were observed on polymorphisms that appeared to be under selection. Genetic diversity and linkage disequilibrium within the candidate genes were low. The recurrent divergent selection caused excessive moderate allele frequencies in the cycle 3 reduced lignin population as compared to the base population. As a result, this study provides valuable insight on genetic changes occurring in short-term selection in the polyploid populations, and discovered potential markers for breeding switchgrass with improved biomass quality.« less
Chen, Shiyu; Kaeppler, Shawn M.; Vogel, Kenneth P.; ...
2016-11-28
Switchgrass is undergoing development as a dedicated cellulosic bioenergy crop. Fermentation of lignocellulosic biomass to ethanol in a bioenergy system or to volatile fatty acids in a livestock production system is strongly and negatively influenced by lignification of cell walls. This study detects specific loci that exhibit selection signatures across switchgrass breeding populations that differ in in vitro dry matter digestibility (IVDMD), ethanol yield, and lignin concentration. Allele frequency changes in candidate genes were used to detect loci under selection. Out of the 183 polymorphisms identified in the four candidate genes, twenty-five loci in the intron regions and four locimore » in coding regions were found to display a selection signature. All loci in the coding regions are synonymous substitutions. Selection in both directions were observed on polymorphisms that appeared to be under selection. Genetic diversity and linkage disequilibrium within the candidate genes were low. The recurrent divergent selection caused excessive moderate allele frequencies in the cycle 3 reduced lignin population as compared to the base population. As a result, this study provides valuable insight on genetic changes occurring in short-term selection in the polyploid populations, and discovered potential markers for breeding switchgrass with improved biomass quality.« less
Zhang, Yu; Yan, Haidong; Jiang, Xiaomei; Wang, Xiaoli; Huang, Linkai; Xu, Bin; Zhang, Xinquan; Zhang, Lexin
2016-01-01
To evaluate genetic variation, population structure, and the extent of linkage disequilibrium (LD), 134 switchgrass ( Panicum virgatum L.) samples were analyzed with 51 markers, including 16 ISSRs, 20 SCoTs, and 15 EST-SSRs. In this study, a high level of genetic variation was observed in the switchgrass samples and they had an average Nei's gene diversity index (H) of 0.311. A total of 793 bands were obtained, of which 708 (89.28 %) were polymorphic. Using a parameter marker index (MI), the efficiency of the three types of markers (ISSR, SCoT, and EST-SSR) in the study were compared and we found that SCoT had a higher marker efficiency than the other two markers. The 134 switchgrass samples could be divided into two sub-populations based on STRUCTURE, UPGMA clustering, and principal coordinate analyses (PCA), and upland and lowland ecotypes could be separated by UPGMA clustering and PCA analyses. Linkage disequilibrium analysis revealed an average r 2 of 0.035 across all 51 markers, indicating a trend of higher LD in sub-population 2 than that in sub-population 1 ( P < 0.01). The population structure revealed in this study will guide the design of future association studies using these switchgrass samples.
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is a polyploid, perennial grass species that is native to North America, and is being developed as a future biofuels feedstock crop. Switchgrass is present primarily in two ecotypes: a northern upland ecotype composed of tetraploid and octoploid accessions, and a so...
Ramstein, Guillaume P.; Evans, Joseph; Kaeppler, Shawn M.; Mitchell, Robert B.; Vogel, Kenneth P.; Buell, C. Robin; Casler, Michael D.
2016-01-01
Switchgrass is a relatively high-yielding and environmentally sustainable biomass crop, but further genetic gains in biomass yield must be achieved to make it an economically viable bioenergy feedstock. Genomic selection (GS) is an attractive technology to generate rapid genetic gains in switchgrass, and meet the goals of a substantial displacement of petroleum use with biofuels in the near future. In this study, we empirically assessed prediction procedures for genomic selection in two different populations, consisting of 137 and 110 half-sib families of switchgrass, tested in two locations in the United States for three agronomic traits: dry matter yield, plant height, and heading date. Marker data were produced for the families’ parents by exome capture sequencing, generating up to 141,030 polymorphic markers with available genomic-location and annotation information. We evaluated prediction procedures that varied not only by learning schemes and prediction models, but also by the way the data were preprocessed to account for redundancy in marker information. More complex genomic prediction procedures were generally not significantly more accurate than the simplest procedure, likely due to limited population sizes. Nevertheless, a highly significant gain in prediction accuracy was achieved by transforming the marker data through a marker correlation matrix. Our results suggest that marker-data transformations and, more generally, the account of linkage disequilibrium among markers, offer valuable opportunities for improving prediction procedures in GS. Some of the achieved prediction accuracies should motivate implementation of GS in switchgrass breeding programs. PMID:26869619
Loman, Zachary G.; Riffell, Samuel K.; Miller, Darrin A.; Martin, James A.; Vilella, Francisco
2013-01-01
Within young pine (Pinus spp.) plantations, coarse woody debris (CWD) and green trees are important habitat structures that may be impacted by the production of biofuel feedstock. Therefore, we compared site preparation procedures associated with switchgrass (Panicum virgatum L.) intercropping to determine effects on CWD and green trees in stands (n = 24) site-prepared for intercropping, with switchgrass only, or pine plantation in Mississippi, USA. Following site preparation, CWD dispersal or volume did not differ between intercropped and control stands. Intercropped stands had significantly fewer retained trees and snags. Switchgrass monocultures had no retained trees or piles and significantly fewer pieces and less volume of CWD than the other treatments. Our results suggest switchgrass intercropping may provide similar habitat quality to traditional pine plantations for wildlife species using these areas in the year following disturbance, but may provide a less suitable habitat for species that require snags. However, the relationship between snag reduction and wildlife population response in an intercropped setting is not clear and should be further investigated. Regardless, if retaining snags is a desired outcome, site preparation for switchgrass should be restricted to the interbed area where it will be cultivated as opposed to extensive debris removal from the entire site.
Transcriptome Profiling of Rust Resistance in Switchgrass Using RNA-Seq Analysis
Serba, Desalegn D.; Uppalapati, Srinivasa Rao; Mukherjee, Shreyartha; ...
2015-03-16
Switchgrass rust caused by Puccinia emaculata is a major limiting factor for switchgrass (Panicum virgatum L.) production, especially in monoculture. Natural populations of switchgrass displayed diverse reactions to P. emaculata when evaluated in an Ardmore, OK, field. In order to identify the differentially expressed genes during the rust infection process and the mechanisms of switchgrass rust resistance, transcriptome analysis using RNA-Seq was conducted in two pseudo-F 1 parents ('PV281' and 'NFGA472'), and three moderately resistant and three susceptible progenies selected from a three-generation, four-founder switchgrass population (K5 x A4) x (AP13 x VS16). On average, 23.5 million reads per samplemore » (leaf tissue was collected at 0, 24, and 60 h post-inoculation (hpi)) were obtained from paired-end (2 x 100 bp) sequencing on the Illumina HiSeq2000 platform. Furthermore, mapping of the RNA-Seq reads to the switchgrass reference genome (AP13 ver. 1.1 assembly) constructed a total of 84,209 transcripts from 98,007 gene loci among all of the samples. Further analysis revealed that host defense- related genes, including the nucleotide binding site-leucinerich repeat domain containing disease resistance gene analogs, play an important role in resistance to rust infection. Rust-induced gene (RIG) transcripts inherited across generations were identified. The rust-resistant gene transcripts can be a valuable resource for developing molecular markers for rust resistance. Finally we identified the rust-resistant genotypes and gene transcripts which can expedite rust-resistant cultivar development in switchgrass.« less
Transcriptome Profiling of Rust Resistance in Switchgrass Using RNA-Seq Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serba, Desalegn D.; Uppalapati, Srinivasa Rao; Mukherjee, Shreyartha
Switchgrass rust caused by Puccinia emaculata is a major limiting factor for switchgrass (Panicum virgatum L.) production, especially in monoculture. Natural populations of switchgrass displayed diverse reactions to P. emaculata when evaluated in an Ardmore, OK, field. In order to identify the differentially expressed genes during the rust infection process and the mechanisms of switchgrass rust resistance, transcriptome analysis using RNA-Seq was conducted in two pseudo-F 1 parents ('PV281' and 'NFGA472'), and three moderately resistant and three susceptible progenies selected from a three-generation, four-founder switchgrass population (K5 x A4) x (AP13 x VS16). On average, 23.5 million reads per samplemore » (leaf tissue was collected at 0, 24, and 60 h post-inoculation (hpi)) were obtained from paired-end (2 x 100 bp) sequencing on the Illumina HiSeq2000 platform. Furthermore, mapping of the RNA-Seq reads to the switchgrass reference genome (AP13 ver. 1.1 assembly) constructed a total of 84,209 transcripts from 98,007 gene loci among all of the samples. Further analysis revealed that host defense- related genes, including the nucleotide binding site-leucinerich repeat domain containing disease resistance gene analogs, play an important role in resistance to rust infection. Rust-induced gene (RIG) transcripts inherited across generations were identified. The rust-resistant gene transcripts can be a valuable resource for developing molecular markers for rust resistance. Finally we identified the rust-resistant genotypes and gene transcripts which can expedite rust-resistant cultivar development in switchgrass.« less
Short-term bird response to harvesting switchgrass for biomass in Iowa
Murray, L.D.; Best, Louis B.
2003-01-01
The Conservation Reserve Program (CRP) provides habitat for grassland birds, but as contracts expire, some CRP fields might be returned to rowcrop production. One alternative to returning CRP fields to rowcrops is to produce switchgrass (Panicum virgatum) for use as a biomass fuel. Because the biomass is harvested during the fall and winter, breeding birds would not be directly affected by mowing the fields bur might be influenced by changes in vegetation structure resulting from the harvest. We evaluated bird abundances and nest success in totally harvested, partially harvested (alternating cut and uncut strips), and nonharvested CRP switchgrass fields in southern Iowa, USA, in 1999 and 2000. Species richness did not differ among harvest treatments. Abundances of most species (16 of 18) were not affected by the harvesting of switchgrass fields, and strip width did not affect bird numbers in strip-harvested fields. Grasshopper sparrows (Ammodramus savannarum) were more abundant in harvested portions of fields, and more sedge wrens (Cistothorus platensis) were recorded in nonharvested areas. The residual vegetation in nonharvested areas provided nest cover for species that begin nesting early in the season (e.g., northern harrier [Circus cyaneus] and ring-necked pheasant [Phasianus colchicus]). Nest success rates of grasshopper sparrows and common yellowthroats (Geothlypis trichas) were similar to those reported by other studies in switchgrass fields and might be sufficient to maintain stable populations. In general, switchgrass biomass fields create breeding habitat for some grassland birds, and a mixture of harvested and nonharvested fields would be more beneficial to grassland birds than totally harvesting or partially harvesting all switchgrass fields.
Ramstein, Guillaume P.; Evans, Joseph; Kaeppler, Shawn M.; ...
2016-02-11
Switchgrass is a relatively high-yielding and environmentally sustainable biomass crop, but further genetic gains in biomass yield must be achieved to make it an economically viable bioenergy feedstock. Genomic selection (GS) is an attractive technology to generate rapid genetic gains in switchgrass, and meet the goals of a substantial displacement of petroleum use with biofuels in the near future. In this study, we empirically assessed prediction procedures for genomic selection in two different populations, consisting of 137 and 110 half-sib families of switchgrass, tested in two locations in the United States for three agronomic traits: dry matter yield, plant height,more » and heading date. Marker data were produced for the families’ parents by exome capture sequencing, generating up to 141,030 polymorphic markers with available genomic-location and annotation information. We evaluated prediction procedures that varied not only by learning schemes and prediction models, but also by the way the data were preprocessed to account for redundancy in marker information. More complex genomic prediction procedures were generally not significantly more accurate than the simplest procedure, likely due to limited population sizes. Nevertheless, a highly significant gain in prediction accuracy was achieved by transforming the marker data through a marker correlation matrix. Our results suggest that marker-data transformations and, more generally, the account of linkage disequilibrium among markers, offer valuable opportunities for improving prediction procedures in GS. Furthermore, some of the achieved prediction accuracies should motivate implementation of GS in switchgrass breeding programs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramstein, Guillaume P.; Evans, Joseph; Kaeppler, Shawn M.
Switchgrass is a relatively high-yielding and environmentally sustainable biomass crop, but further genetic gains in biomass yield must be achieved to make it an economically viable bioenergy feedstock. Genomic selection (GS) is an attractive technology to generate rapid genetic gains in switchgrass, and meet the goals of a substantial displacement of petroleum use with biofuels in the near future. In this study, we empirically assessed prediction procedures for genomic selection in two different populations, consisting of 137 and 110 half-sib families of switchgrass, tested in two locations in the United States for three agronomic traits: dry matter yield, plant height,more » and heading date. Marker data were produced for the families’ parents by exome capture sequencing, generating up to 141,030 polymorphic markers with available genomic-location and annotation information. We evaluated prediction procedures that varied not only by learning schemes and prediction models, but also by the way the data were preprocessed to account for redundancy in marker information. More complex genomic prediction procedures were generally not significantly more accurate than the simplest procedure, likely due to limited population sizes. Nevertheless, a highly significant gain in prediction accuracy was achieved by transforming the marker data through a marker correlation matrix. Our results suggest that marker-data transformations and, more generally, the account of linkage disequilibrium among markers, offer valuable opportunities for improving prediction procedures in GS. Furthermore, some of the achieved prediction accuracies should motivate implementation of GS in switchgrass breeding programs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Malay C.; Brummer, E. Charles; Kaeppler, Shawn
Switchgrass (Panicum virgatum L.) is a C4 grass with high biomass yield potential and a model species for bioenergy feedstock development. Understanding the genetic basis of quantitative traits is essential to facilitate genome-enabled breeding programs. The nested association mapping (NAM) analysis combines the best features of both bi-parental and association analyses and can provide high power and high resolution in QTL detection and will ensure significant improvements in biomass yield and quality. To develop a NAM population of switchgrass, 15 highly diverse genotypes with specific characteristics were selected from a diversity panel and crossed to a recurrent parent, AP13, amore » genotype selected for whole genome sequencing and parent of a mapping population. Ten genotypes from each of the 15 F1 families were then chain crossed. Progenies form each family were randomly selected to develop the NAM population. The switchgrass NAM population consists of a total of 2000 genotypes from 15 families. All the progenies, founder parents, F1 parents (n=2350) were evaluated in replicated field trials at Ardmore, OK and Knoxville, TN. Phenotypic data on plant height, tillering ability, regrowth, flowering time, and biomass yield were collected. Dried biomass samples were also analyzed using prediction equations of NIRS at the Noble Foundation and for lignin content, S/G ratio, and sugar release characteristics at the NREL. Genomic shotgun sequencing of 15 switchgrass NAM founder parental genomes at JGI produced 28-66 Gb high-quality sequence data. Alignment of these sequences with the reference genome, AP13 (v3.0), revealed that up to 99% of the genomic sequences mapped to the reference genome. A total of 2,149 individuals from NAM populations were sequenced by exome capture and two sets of 15 SNP matrices (one for each family) were generated. QTL associated with important traits have been identified and verified in breeding populations. The QTL detected and their associated markers can be used in molecular breeding programs to facilitate development of improved switchgrass cultivars for biofuel production.« less
Gu, Yingxin; Wylie, Bruce K.; Howard, Daniel M.
2015-01-01
Switchgrass is being evaluated as a potential feedstock source for cellulosic biofuels and is being cultivated in several regions of the United States. The recent availability of switchgrass land cover maps derived from the National Agricultural Statistics Service cropland data layer for the conterminous United States provides an opportunity to assess the environmental conditions of switchgrass over large areas and across different geographic locations. The main goal of this study is to develop a data-driven multiple regression switchgrass productivity model and identify the optimal climate and environment conditions for the highly productive switchgrass in the Great Plains (GP). Environmental and climate variables used in the study include elevation, soil organic carbon, available water capacity, climate, and seasonal weather. Satellite-derived growing season averaged Normalized Difference Vegetation Index (GSN) was used as a proxy for switchgrass productivity. Multiple regression analyses indicate that there are strong correlations between site environmental variables and switchgrass productivity (r = 0.95). Sufficient precipitation and suitable temperature during the growing season (i.e., not too hot or too cold) are favorable for switchgrass growth. Elevation and soil characteristics (e.g., soil available water capacity) are also an important factor impacting switchgrass productivity. An anticipated switchgrass biomass productivity map for the entire GP based on site environmental and climate conditions and switchgrass productivity model was generated. Highly productive switchgrass areas are mainly located in the eastern part of the GP. Results from this study can help land managers and biofuel plant investors better understand the general environmental and climate conditions influencing switchgrass growth and make optimal land use decisions regarding switchgrass development in the GP.
Cell Wall Composition and Underlying QTL in an F1 Pseudo-Testcross Population of Switchgrass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serba, Desalegn D.; Sykes, Robert W.; Gjersing, Erica L.
Natural genetic variation for reduced recalcitrance can be used to improve switchgrass for biofuel production. A full-sib switchgrass mapping population developed by crossing a lowland genotype, AP13, and upland genotype, VS16, was evaluated at three locations (Ardmore and Burneyville, OK and Watkinsville, GA). Biomass harvested after senescence in 2009 and 2010 was evaluated at the National Renewable Energy Laboratory (NREL) for sugar release using enzymatic hydrolysis and for lignin content and syringyl/guaiacyl lignin monomer (S/G) ratio using pyrolysis molecular beam mass spectrometry (py-MBMS). Glucose and xylose release ranged from 120 to 313 and 123 to 263 mg g -1, respectively,more » while lignin content ranged from 19 to 27% of the dry biomass. Statistically significant differences were observed among the genotypes and the environments for the cell wall composition traits. Regression analysis showed that a unit increase in lignin content reduced total sugar release by an average of 10 mg g -1. Quantitative trait loci (QTL) analysis detected 9 genomic regions underlying sugar release and 14 for lignin content. The phenotypic variation explained by the individual QTL identified for sugar release ranged from 4.5 to 9.4 and for lignin content from 3.8 to 11.1%. Mapping of the QTL regions to the switchgrass genome sequence (v1.1) found that some of the QTL colocalized with genes involved in carbohydrate processing and metabolism, plant development, defense systems, and transcription factors. Finally, the markers associated with QTL can be implemented in breeding programs to efficiently develop improved switchgrass cultivars for biofuel production.« less
Cell Wall Composition and Underlying QTL in an F1 Pseudo-Testcross Population of Switchgrass
Serba, Desalegn D.; Sykes, Robert W.; Gjersing, Erica L.; ...
2016-04-23
Natural genetic variation for reduced recalcitrance can be used to improve switchgrass for biofuel production. A full-sib switchgrass mapping population developed by crossing a lowland genotype, AP13, and upland genotype, VS16, was evaluated at three locations (Ardmore and Burneyville, OK and Watkinsville, GA). Biomass harvested after senescence in 2009 and 2010 was evaluated at the National Renewable Energy Laboratory (NREL) for sugar release using enzymatic hydrolysis and for lignin content and syringyl/guaiacyl lignin monomer (S/G) ratio using pyrolysis molecular beam mass spectrometry (py-MBMS). Glucose and xylose release ranged from 120 to 313 and 123 to 263 mg g -1, respectively,more » while lignin content ranged from 19 to 27% of the dry biomass. Statistically significant differences were observed among the genotypes and the environments for the cell wall composition traits. Regression analysis showed that a unit increase in lignin content reduced total sugar release by an average of 10 mg g -1. Quantitative trait loci (QTL) analysis detected 9 genomic regions underlying sugar release and 14 for lignin content. The phenotypic variation explained by the individual QTL identified for sugar release ranged from 4.5 to 9.4 and for lignin content from 3.8 to 11.1%. Mapping of the QTL regions to the switchgrass genome sequence (v1.1) found that some of the QTL colocalized with genes involved in carbohydrate processing and metabolism, plant development, defense systems, and transcription factors. Finally, the markers associated with QTL can be implemented in breeding programs to efficiently develop improved switchgrass cultivars for biofuel production.« less
Bahri, Bochra A; Daverdin, Guillaume; Xu, Xiangyang; Cheng, Jan-Fang; Barry, Kerrie W; Brummer, E Charles; Devos, Katrien M
2018-06-14
Advances in genomic technologies have expanded our ability to accurately and exhaustively detect natural genomic variants that can be applied in crop improvement and to increase our knowledge of plant evolution and adaptation. Switchgrass (Panicum virgatum L.), an allotetraploid (2n = 4× = 36) perennial C4 grass (Poaceae family) native to North America and a feedstock crop for cellulosic biofuel production, has a large potential for genetic improvement due to its high genotypic and phenotypic variation. In this study, we analyzed single nucleotide polymorphism (SNP) variation in 372 switchgrass genotypes belonging to 36 accessions for 12 genes putatively involved in biomass production to investigate signatures of selection that could have led to ecotype differentiation and to population adaptation to geographic zones. A total of 11,682 SNPs were mined from ~ 15 Gb of sequence data, out of which 251 SNPs were retained after filtering. Population structure analysis largely grouped upland accessions into one subpopulation and lowland accessions into two additional subpopulations. The most frequent SNPs were in homozygous state within accessions. Sixty percent of the exonic SNPs were non-synonymous and, of these, 45% led to non-conservative amino acid changes. The non-conservative SNPs were largely in linkage disequilibrium with one haplotype being predominantly present in upland accessions while the other haplotype was commonly present in lowland accessions. Tajima's test of neutrality indicated that PHYB, a gene involved in photoperiod response, was under positive selection in the switchgrass population. PHYB carried a SNP leading to a non-conservative amino acid change in the PAS domain, a region that acts as a sensor for light and oxygen in signal transduction. Several non-conservative SNPs in genes potentially involved in plant architecture and adaptation have been identified and led to population structure and genetic differentiation of ecotypes in switchgrass. We suggest here that PHYB is a key gene involved in switchgrass natural selection. Further analyses are needed to determine whether any of the non-conservative SNPs identified play a role in the differential adaptation of upland and lowland switchgrass.
Xu, Bin; Sathitsuksanoh, Noppadon; Tang, Yuhong; Udvardi, Michael K; Zhang, Ji-Yi; Shen, Zhengxing; Balota, Maria; Harich, Kim; Zhang, Percival Y-H; Zhao, Bingyu
2012-01-01
Switchgrass (Panicum virgatum L.) is a prime candidate crop for biofuel feedstock production in the United States. As it is a self-incompatible polyploid perennial species, breeding elite and stable switchgrass cultivars with traditional breeding methods is very challenging. Translational genomics may contribute significantly to the genetic improvement of switchgrass, especially for the incorporation of elite traits that are absent in natural switchgrass populations. In this study, we constitutively expressed an Arabidopsis NAC transcriptional factor gene, LONG VEGETATIVE PHASE ONE (AtLOV1), in switchgrass. Overexpression of AtLOV1 in switchgrass caused the plants to have a smaller leaf angle by changing the morphology and organization of epidermal cells in the leaf collar region. Also, overexpression of AtLOV1 altered the lignin content and the monolignol composition of cell walls, and caused delayed flowering time. Global gene-expression analysis of the transgenic plants revealed an array of responding genes with predicted functions in plant development, cell wall biosynthesis, and flowering. To our knowledge, this is the first report of a single ectopically expressed transcription factor altering the leaf angle, cell wall composition, and flowering time of switchgrass, therefore demonstrating the potential advantage of translational genomics for the genetic improvement of this crop.
Quantitative trait loci mapping for flowering time in a switchgrass pseudo-F2 population
USDA-ARS?s Scientific Manuscript database
Flowering is an important developmental event in switchgrass (Panicum virgatum) because the onset of flowering causes the cessation of vegetative growth and biomass accumulation. The objective of this study was to generate a linkage map using single nucleotide polymorphism (SNP) markers to identify ...
USDA-ARS?s Scientific Manuscript database
Switchgrass is undergoing development as a dedicated cellulosic bioenergy crop. Fermentation of lignocellulosic biomass to ethanol in a bioenergy system, or to volatile fatty acids in a livestock production system, is strongly and negatively influenced by lignification of cell walls. This study dete...
30 years of progress toward increased biomass yield of switchgrass and big bluestem
USDA-ARS?s Scientific Manuscript database
Breeding to improved biomass production of switchgrass and big bluestem for conversion to bioenergy began in 1992. The purpose of this study was (1) to develop a platform for uniform regional testing of cultivars and experimental populations for these species and (2) to estimate the gains made by br...
Genetic parameters and prediction of breeding values in switchgrass bred for bioenergy
USDA-ARS?s Scientific Manuscript database
Estimating genetic parameters is an essential step in breeding by recurrent selection to maximize genetic gains over time. This study evaluated the effects of selection on genetic variation across two successive cycles (C1 and C2) of a ‘Summer’x‘Kanlow’ switchgrass (Panicum virgatum L.) population. ...
2012-01-01
Figure 2. Effect of compost HAs at different concentrations on the number of germinated seeds of Shawnee switchgrass expressed as percentages of...and C/P20%) on the early growth of these switchgrass species. 2. Experimental 2.1. Germination N. 60 seeds of each switchgrass species were...the germination process. In this experiment, n. 60 seeds of each switchgrass species were previously soaked in distilled water for 12 h, successively
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfrum, Edward J; Scagline-Mellor, Steffany; Griggs, Thomas
Switchgrass (Panicum virgatum L.) and giant miscanthus (Miscanthus x giganteus Greef & Deuter ex Hodkinson & Renvoize) are productive on marginal lands in the eastern USA, but their productivity and composition have not been compared on mine lands. Our objectives were to compare biomass production, composition, and theoretical ethanol yield (TEY) and production (TEP) of these grasses on a reclaimed mined site. Following 25 years of herbaceous cover, vegetation was killed and plots of switchgrass cultivars Kanlow and BoMaster and miscanthus lines Illinois and MBX-002 were planted in five replications. Annual switchgrass and miscanthus yields averaged 5.8 and 8.9 Mgmore » dry matter ha-1, respectively, during 2011 to 2015. Cell wall carbohydrate composition was analyzed via near-infrared reflectance spectroscopy with models based on switchgrass or mixed herbaceous samples including switchgrass and miscanthus. Concentrations were higher for glucan and lower for xylan in miscanthus than in switchgrass but TEY did not differ (453 and 450 L Mg-1, respectively). In response to biomass production, total ethanol production was greater for miscanthus than for switchgrass (5594 vs 3699 L ha-1), did not differ between Kanlow and BoMaster switchgrass (3880 and 3517 L ha-1, respectively), and was higher for MBX-002 than for Illinois miscanthus (6496 vs 4692 L ha-1). Relative to the mixed feedstocks model, the switchgrass model slightly underpredicted glucan and slightly overpredicted xylan concentrations. Estimated TEY was slightly lower from the switchgrass model but both models distinguished genotype, year, and interaction effects similarly. Biomass productivity and TEP were similar to those from agricultural sites with marginal soils.« less
Evans, Joseph; Crisovan, Emily; Barry, Kerrie; ...
2015-10-01
Panicum virgatum L. (switchgrass) is a polyploid, perennial grass species that is native to North America, and is being developed as a future biofuel feedstock crop. Switchgrass is present primarily in two ecotypes: a northern upland ecotype, composed of tetraploid and octoploid accessions, and a southern lowland ecotype, composed of primarily tetraploid accessions. We employed high-coverage exome capture sequencing (~2.4 Tb) to genotype 537 individuals from 45 upland and 21 lowland populations. From these data, we identified ~27 million single-nucleotide polymorphisms (SNPs), of which 1 590 653 high-confidence SNPs were used in downstream analyses of diversity within and between themore » populations. From the 66 populations, we identified five primary population groups within the upland and lowland ecotypes, a result that was further supported through genetic distance analysis. We identified conserved, ecotype-restricted, non-synonymous SNPs that are predicted to affect the protein function of CONSTANS (CO) and EARLY HEADING DATE 1 (EHD1), key genes involved in flowering, which may contribute to the phenotypic differences between the two ecotypes. We also identified, relative to the near-reference Kanlow population, 17 228 genes present in more copies than in the reference genome (up-CNVs), 112 630 genes present in fewer copies than in the reference genome (down-CNVs) and 14 430 presence/absence variants (PAVs), affecting a total of 9979 genes, including two upland-specific CNV clusters. In total, 45 719 genes were affected by an SNP, CNV, or PAV across the panel, providing a firm foundation to identify functional variation associated with phenotypic traits of interest for biofuel feedstock production.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Joseph; Crisovan, Emily; Barry, Kerrie
Panicum virgatum L. (switchgrass) is a polyploid, perennial grass species that is native to North America, and is being developed as a future biofuel feedstock crop. Switchgrass is present primarily in two ecotypes: a northern upland ecotype, composed of tetraploid and octoploid accessions, and a southern lowland ecotype, composed of primarily tetraploid accessions. We employed high-coverage exome capture sequencing (~2.4 Tb) to genotype 537 individuals from 45 upland and 21 lowland populations. From these data, we identified ~27 million single-nucleotide polymorphisms (SNPs), of which 1 590 653 high-confidence SNPs were used in downstream analyses of diversity within and between themore » populations. From the 66 populations, we identified five primary population groups within the upland and lowland ecotypes, a result that was further supported through genetic distance analysis. We identified conserved, ecotype-restricted, non-synonymous SNPs that are predicted to affect the protein function of CONSTANS (CO) and EARLY HEADING DATE 1 (EHD1), key genes involved in flowering, which may contribute to the phenotypic differences between the two ecotypes. We also identified, relative to the near-reference Kanlow population, 17 228 genes present in more copies than in the reference genome (up-CNVs), 112 630 genes present in fewer copies than in the reference genome (down-CNVs) and 14 430 presence/absence variants (PAVs), affecting a total of 9979 genes, including two upland-specific CNV clusters. In total, 45 719 genes were affected by an SNP, CNV, or PAV across the panel, providing a firm foundation to identify functional variation associated with phenotypic traits of interest for biofuel feedstock production.« less
ASSESSING OF HERBIVOROUS AND BENEFICIAL INSECTS ON SWITCHGRASS IN UKRAINE.
Stefanovska, T; Kucherovska, S; Pisdlisnyuk, V
2014-01-01
A perennial switchgrass, (Panicum virgatum L.), (C4) that is native to North America has good potential for biomass production because of its wide geographic distribution and adaptability to diverse environmental conditions. Insects can significantly impact the yield and quality of biofuel crops. If switchgrass are to be grown on marginally arable land or in monoculture, it are likely to be plagued with herbivore pests and plant diseases at a rate that exceeds what would be expected if the plants were not stressed in this manner. This biofuel crop has been under evaluation for commercial growing in Ukraine for eight years. However, insect diversity and the potential impact of pests on biomass production of this feedstock have not been accessed yet. The objective of our study, started in 2011, is a survey of switch grass insects by trophic groups and determine species that have pest status at two sites in the Central part of Ukraine (Kiev and Poltava regions). In Poltava site we investigated the effect of nine varieties of switchgrass (lowland and upland) to insects' diversity. We assessed changes over time in the densities of major insects' trophic groups, identifying potential pests and natural enemies. Obtained results indicates that different life stages of herbivorous insects from Hymenoptera, Homoptera, Diptera and Coleoptera orders were present on switchgrass during the growing season. Our study results suggests that choice of variety has an impact on trophic groups' structure and number of insects from different orders on swicthgrass. Herbivores and beneficial insects were the only groups that showed significant differences across sampling dates. The highest population of herbivores insects we recorded on 'Alamo' variety for studied years, although herbivore diversity tended to increase on 'Shelter', 'Alamo' and 'Cave-in-Rock' during 2012 and 2013. 'Dacotah', 'Nebraska', 'Sunburst', 'Forestburg' and 'Carthage' showed the highest level of beneficial insects during our study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarath, Gautam
This grant funded work was undertaken to develop fundamental biological knowledge of the factors affecting the complex plant trait “fitness” in switchgrass (Panicum virgatum L.), a plant being developed as a biomass crop. Using a diverse range of latitudinally-adapted switchgrass plants, genomic, molecular and physiological studies were performed to track a number of different aspects of plant genetics and physiology over the course of the growing season. Work was performed on both genetically unrelated and genetically related plants. Plants were established in the field from seedlings raised in a greenhouse, or from clones present in other field nurseries. Field grownmore » plants were used as the source of all tissues. The three objectives of this proposal were:(1) Transcript Profiling, Metabolomics, and C and N Partitioning and Recycling in Crowns and Rhizomes of Switchgrass over two growing seasons; (2) Gene Profiling During Regreening and Dormancy of Bulked Segregants; (3) Extent of Linkage Disequilibrium in Populations for Adaptation and Fitness Traits Being Developed for Central and Northern USA, that Show Significant Heterosis. Objective 1 results: Plants were labeled using 13CO2 (a stable isotope) using an acrylic chamber constructed specifically for this purpose. Plants became labeled with 13C and label decayed in aerial tissues over the course of the growing season. Varying amounts of 13C were recovered in the rhizomes. These data are being analyzed. Plants were also labeled with 15N-urea. Plants absorbed significant amounts of label that was remobilized to the growing shoots. N-dynamics would suggest that a portion of the 15N absorbed into the crowns and rhizomes is sequestered below ground. Variable amounts of 15N were translocated from the shoots to the roots over the course of the growing season. Polar metabolites extracted from a diverse array of rhizomes were analyzed using GCMS. Data indicated that there was a significant shift in metabolite pools over the course of the growing season, and differences in the levels of specific metabolites could be linked to the progression of dormancy. Several metabolites that accumulate in dormant rhizomes were identified. Some of these metabolites could be potentially linked to winter-survival of switchgrass. Extensive high-throughput sequencing was conducted on crown and rhizome samples collected from field grown plants. Initial work was performed on a Roche 454 system. All later work was performed on an Illumina sequencing-by-synthesis system. Some of these datasets have been published as peer-reviewed papers, other data are currently being analyzed and being readied for publication. Objective 2 results: Genetically related but phenotypically divergent plants from an octaploid switchgrass population were grown in a replicated field nursery. Rhizomes were harvested at four different times over the course of the growing season from plants with high winter survival and those with lower winter survival. RNA-Seq was performed on harvested materials. Initial analysis suggests that plants with lowered winter survival experience a greater level of cellular stress in dormant tissues. This aspect of plant function is being probed in greater depth. Objective 3 results: A total of 592 individual clones with three clonal replications in a randomized complete block design from each of five populations used in Objective 1 studies were rated for heading date in 2012 and 2014, green-up day of year in 2013, anthesis date in 2012, and yield in 2012, they were also subjected to NIR spectroscopy to derive cell wall composition estimates based on prior NIR calibrations. Plants were genotyped via a genotyping by sequencing (GBS) approach from reduced representation libraries constructed with adaptors that identified each individual. Libraries generated with the restriction enzyme PstI and called SNPs using Samtools after alignment to version 1.1 of the switchgrass genome sequence. A total of approximately 40,000 SNPs were found. These were then further filtered to eliminate markers with a minor allele frequency of < 0.05. The results of population analysis using STRUCTURE with expected population sizes or cluster numbers (K), clearly shows the hybrid composition of the KxS population and discriminated easily between upland (Summer) and lowland (Kanlow) populations. Under an assumption of 5 distinct populations there were detectable differences in allele frequencies between subpopulations within the three Kanlow populations particularly with respect to Kanlow EM and Kanlow base. We detected 110 SNPs with an allele frequency difference of ≥ 0.2 between Kanlow EM and Kanlow base populations, while 120 SNPs showed an allele frequency difference of ≥ 0.15 between Kanlow N1 and Kanlow base populations. These data are being readied for publication.« less
USDA-ARS?s Scientific Manuscript database
Switchgrass is a potential bioenergy crop that could promote soil C sequestration in some environments. We compared four switchgrass cultivars on a well-drained Alfisol to test for differences in biomass, C, and N dynamics during the fourth growing season. There was no difference (P >0.05) among cul...
USDA-ARS?s Scientific Manuscript database
A switchgrass (Panicum virgatum L.) consensus map was developed that combined data from two mapping populations and integrated recombination data from both parents of this largely obligate outcrossing species. The consensus map consisted of 1,321 loci and spanned 2,122 cM. An analysis of the distri...
Switchgrass Genetics: Status, Future Directions, and Implications for Simulations
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is a C4 polymorphic species with two ploidy levels, two major and numerous minor ecotypes adapted to different plant hardiness zones and ecoregions in its range. Switchgrasses are determinate, photoperiod sensitive, and require short days to induce flowering. Photo...
Co-processing of agricultural plastic waste and switchgrass via tail gas reactive pyrolysis
USDA-ARS?s Scientific Manuscript database
Mixtures of agricultural plastic waste in the form of polyethylene hay bale covers (PE) (4-37%) and switchgrass were investigated using the US Department of Agriculture’s tail gas reactive pyrolysis (TGRP) at different temperatures (400-570 deg C). TGRP of switchgrass and plastic mixtures significan...
Surface and ultrastructural characterization of raw and pretreated switchgrass.
Donohoe, Bryon S; Vinzant, Todd B; Elander, Richard T; Pallapolu, Venkata Ramesh; Lee, Y Y; Garlock, Rebecca J; Balan, Venkatesh; Dale, Bruce E; Kim, Youngmi; Mosier, Nathan S; Ladisch, Michael R; Falls, Matthew; Holtzapple, Mark T; Sierra-Ramirez, Rocio; Shi, Jian; Ebrik, Mirvat A; Redmond, Tim; Yang, Bin; Wyman, Charles E; Hames, Bonnie; Thomas, Steve; Warner, Ryan E
2011-12-01
The US Department of Energy-funded Biomass Refining CAFI (Consortium for Applied Fundamentals and Innovation) project has developed leading pretreatment technologies for application to switchgrass and has evaluated their effectiveness in recovering sugars from the coupled operations of pretreatment and enzymatic hydrolysis. Key chemical and physical characteristics have been determined for pretreated switchgrass samples. Several analytical microscopy approaches utilizing instruments in the Biomass Surface Characterization Laboratory (BSCL) at the National Renewable Energy Laboratory (NREL) have been applied to untreated and CAFI-pretreated switchgrass samples. The results of this work have shown that each of the CAFI pretreatment approaches on switchgrass result in different structural impacts at the plant tissue, cellular, and cell wall levels. Some of these structural changes can be related to changes in chemical composition upon pretreatment. There are also apparently different structural mechanisms that are responsible for achieving the highest enzymatic hydrolysis sugar yields. Copyright © 2011. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Greene, Ethan Jacob
Switchgrass (Panicum virgatum L.) is a cellulosic feedstock for alternative energy production that could grow well between planted pines (Pinus spp.). Southeastern planted pine occupies 15.8 million hectares and thus, switchgrass intercropping could affect biodiversity if broadly implemented. Therefore, I evaluated effects of intercropping switchgrass in loblolly pine (P. taeda L.) plantations on plant community diversity, plant biomass production, and white-tailed deer (Odocoileus virginianus Zimmerman) nutritional carrying capacity. In a randomized complete block design, I assigned three treatments (switchgrass intercropped, switchgrass monoculture, and a "control" of traditional pine management) to 4 replicates of 10-ha experimental units in Kemper County, Mississippi during 2014-2015. I detected 246 different plant species. Switchgrass intercropping reduced plant species richness and diversity but maintained evenness. I observed reduced forb and high-use deer forage biomass but only in intercropped alleys (interbeds). Soil micronutrient interactions affected forage protein of deer plants. White-tailed deer nutritional carrying capacity remained unaffected.
Silicon cantilever functionalization for cellulose-specific chemical force imaging of switchgrass
Lee, Ida; Evans, Barbara R.; Foston, Marcus B.; ...
2015-05-08
A method for direct functionalization of silicon and silicon nitride cantilevers with bifunctional silanes was tested with model surfaces to determine adhesive forces for different hydrogen-bonding chemistries. Application for biomass surface characterization was tested by mapping switchgrass and isolated switchgrass cellulose in topographic and force-volume mode using a cellulose-specific cantilever.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chien-Yuan; Donohoe, Bryon S.; Ahuja, Neha
Switchgrass (Panicum virgatum), a robust perennial C4-type grass, has been evaluated and designated as a model bioenergy crop by the U.S. DOE and USDA. Conventional breeding of switchgrass biomass is difficult because it displays self-incompatible hindrance. Therefore, direct genetic modifications of switchgrass have been considered the more effective approach to tailor switchgrass with traits of interest. Successful transformations have demonstrated increased biomass yields, reduction in the recalcitrance of cell walls and enhanced saccharification efficiency. Several tissue culture protocols have been previously described to produce transgenic switchgrass lines using different nutrient-based media, co-cultivation approaches, and antibiotic strengths for selection. After evaluatingmore » the published protocols, we consolidated these approaches and optimized the process to develop a more efficient protocol for producing transgenic switchgrass. First, seed sterilization was optimized, which led to a 20% increase in yield of induced calluses. Second, we have selected a N 6 macronutrient/B 5 micronutrient (NB)-based medium for callus induction from mature seeds of the Alamo cultivar, and chose a Murashige and Skoog-based medium to regenerate both Type I and Type II calluses. Third, Agrobacterium-mediated transformation was adopted that resulted in 50-100% positive regenerated transformants after three rounds (2 weeks/round) of selection with antibiotic. Genomic DNA PCR, RT-PCR, Southern blot, visualization of the red fluorescent protein and histochemical β-glucuronidase (GUS) staining were conducted to confirm the positive switchgrass transformants. The optimized methods developed here provide an improved strategy to promote the production and selection of callus and generation of transgenic switchgrass lines. The process for switchgrass transformation has been evaluated and consolidated to devise an improved approach for transgenic switchgrass production. With the optimization of seed sterilization, callus induction, and regeneration steps, a reliable and effective protocol is established to facilitate switchgrass engineering.« less
Lin, Chien-Yuan; Donohoe, Bryon S.; Ahuja, Neha; ...
2017-12-19
Switchgrass (Panicum virgatum), a robust perennial C4-type grass, has been evaluated and designated as a model bioenergy crop by the U.S. DOE and USDA. Conventional breeding of switchgrass biomass is difficult because it displays self-incompatible hindrance. Therefore, direct genetic modifications of switchgrass have been considered the more effective approach to tailor switchgrass with traits of interest. Successful transformations have demonstrated increased biomass yields, reduction in the recalcitrance of cell walls and enhanced saccharification efficiency. Several tissue culture protocols have been previously described to produce transgenic switchgrass lines using different nutrient-based media, co-cultivation approaches, and antibiotic strengths for selection. After evaluatingmore » the published protocols, we consolidated these approaches and optimized the process to develop a more efficient protocol for producing transgenic switchgrass. First, seed sterilization was optimized, which led to a 20% increase in yield of induced calluses. Second, we have selected a N 6 macronutrient/B 5 micronutrient (NB)-based medium for callus induction from mature seeds of the Alamo cultivar, and chose a Murashige and Skoog-based medium to regenerate both Type I and Type II calluses. Third, Agrobacterium-mediated transformation was adopted that resulted in 50-100% positive regenerated transformants after three rounds (2 weeks/round) of selection with antibiotic. Genomic DNA PCR, RT-PCR, Southern blot, visualization of the red fluorescent protein and histochemical β-glucuronidase (GUS) staining were conducted to confirm the positive switchgrass transformants. The optimized methods developed here provide an improved strategy to promote the production and selection of callus and generation of transgenic switchgrass lines. The process for switchgrass transformation has been evaluated and consolidated to devise an improved approach for transgenic switchgrass production. With the optimization of seed sterilization, callus induction, and regeneration steps, a reliable and effective protocol is established to facilitate switchgrass engineering.« less
Bouton, Joseph H; Wood, Donald T
2012-11-27
A switchgrass cultivar designated EG1101 is disclosed. Also disclosed are seeds of switchgrass cultivar EG1101, plants of switchgrass EG1101, plant parts of switchgrass cultivar EG1101 and methods for producing a switchgrass plant produced by crossing switchgrass cultivar EG1101 with itself or with another switchgrass variety. Methods are also described for producing a switchgrass plant containing in its genetic material one or more transgenes and to the transgenic switchgrass plants and plant parts produced by those methods. Switchgrass cultivars or breeding cultivars and plant parts derived from switchgrass variety EG1101, methods for producing other switchgrass cultivars, lines or plant parts derived from switchgrass cultivar EG1101 and the switchgrass plants, varieties, and their parts derived from use of those methods are described herein. Hybrid switchgrass seeds, plants and plant parts produced by crossing the cultivar EG1101 with another switchgrass cultivar are also described.
Bouton, Joseph H; Wood, Donald T
2012-11-20
A switchgrass cultivar designated EG1102 is disclosed. The invention relates to the seeds of switchgrass cultivar EG1102, to the plants of switchgrass EG1102, to plant parts of switchgrass cultivar EG1102 and to methods for producing a switchgrass plant produced by crossing switchgrass cultivar EG1102 with itself or with another switchgrass variety. The invention also relates to methods for producing a switchgrass plant containing in its genetic material one or more transgenes and to the transgenic switchgrass plants and plant parts produced by those methods. This invention also relates to switchgrass cultivars or breeding cultivars and plant parts derived from switchgrass variety EG1102, to methods for producing other switchgrass cultivars, lines or plant parts derived from switchgrass cultivar EG1102 and to the switchgrass plants, varieties, and their parts derived from use of those methods. The invention further relates to hybrid switchgrass seeds, plants and plant parts produced by crossing the cultivar EG1102 with another switchgrass cultivar.
Early competitive effects on growth of loblolly pine grown in co-culture with switchgrass
Kurt J. Krapfl; Scott D. Roberts; Randall J. Rosseau; Jeff A. Hatten
2015-01-01
This study: (1) examined competitive interactions between switchgrass and loblolly pine grown in co-culture, and (2) assessed early growth rates of loblolly pine as affected by differing switchgrass competition treatments. Co-cultures were established and monitored on two Upper Coastal Plain sites for 2 years. The Pontotoc site has a history of agricultural use with...
Genotypic diversity effects on biomass production in native perennial bioenergy cropping systems
Morris, Geoffrey P.; Hu, Zhenbin; Grabowski, Paul P.; ...
2015-10-03
The perennial grass species that are being developed as biomass feedstock crops harbor extensive genotypic diversity, but the effects of this diversity on biomass production are not well understood. We investigated the effects of genotypic diversity in switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) on perennial biomass cropping systems in two experiments conducted over 2008–2014 at a 5.4-ha fertile field site in northeastern Illinois, USA. We varied levels of switchgrass and big bluestem genotypic diversity using various local and nonlocal cultivars – under low or high species diversity, with or without nitrogen inputs – and quantified establishment, biomass yield,more » and biomass composition. In one experiment (‘agronomic trial’), we compared three switchgrass cultivars in monoculture to a switchgrass cultivar mixture and three different species mixtures, with or without N fertilization. In another experiment (‘diversity gradient’), we varied diversity levels in switchgrass and big bluestem (1, 2, 4, or 6 cultivars per plot), with one or two species per plot. In both experiments, cultivar mixtures produced yields equivalent to or greater than the best cultivars. In the agronomic trial, the three switchgrass mixture showed the highest production overall, though not significantly different than best cultivar monoculture. In the diversity gradient, genotypic mixtures had one-third higher biomass production than the average monoculture, and none of the monocultures were significantly higher yielding than the average mixture. Year-to-year variation in yields was lowest in the three-cultivar switchgrass mixtures and Cave-In-Rock (the southern Illinois cultivar) and also reduced in the mixture of switchgrass and big bluestem relative to the species monocultures. The effects of genotypic diversity on biomass composition were modest relative to the differences among species and genotypes. Our findings suggest that local genotypes can be included in biomass cropping systems without compromising yields and that genotypic mixtures could help provide high, stable yields of high-quality biomass feedstocks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adkins, Jaron; Jastrow, Julie D.; Morris, Geoffrey P.
Switchgrass (Panicum virgatum L), a cellulosic biofuel feedstock, may promote soil C 21 accumulation compared to annual cropping systems by increasing the amount and retention of 22 root-derived soil C inputs. The aim of this study was to assess how different switchgrass 23 cultivars impact soil C inputs and retention, whether these impacts vary with depth, and whether 24 specific root length (SRL) explains these impacts. We collected soil to a depth of 30 cm from six 25 switchgrass cultivars with root systems ranging from high to low SRL. The cultivars (C4 species) 26 were grown for 27 months onmore » soils previously dominated by C3 plants, allowing us to use the 27 natural difference in 13C isotopic signatures between C3 soils and C4 plants to quantify 28 switchgrass-derived C accumulation. The soil was fractionated into coarse particulate organic 29 matter (CPOM), fine particulate organic matter (FPOM), silt, and clay-sized fractions. We 30 measured total C and plant-derived C in all soil fractions across all depths. The study led to two main results: (1) bulk soil C concentrations beneath switchgrass cultivars varied by 40% in the 0-32 10 cm soil depth and by 70% in the 10-20 cm soil depth, and cultivars with high bulk soil C 33 concentrations tended to have relatively high C concentrations in the mineral soil fractions and 34 relatively low C concentrations in the POM fractions; (2) there were significant differences in 35 switchgrass-derived soil C between cultivars at the 0-10 cm depth, where soil C inputs ranged 36 from 1.2 to 3.2 mg C g-1 dry soil. There was also evidence of a positive correlation between SRL 37 and switchgrass-derived C inputs when one outlier data point was removed. These results 38 indicate that switchgrass cultivars differentially impact mechanisms contributing to soil C accumulation.« less
Genotypic diversity effects on biomass production in native perennial bioenergy cropping systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, Geoffrey P.; Hu, Zhenbin; Grabowski, Paul P.
The perennial grass species that are being developed as biomass feedstock crops harbor extensive genotypic diversity, but the effects of this diversity on biomass production are not well understood. We investigated the effects of genotypic diversity in switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) on perennial biomass cropping systems in two experiments conducted over 2008–2014 at a 5.4-ha fertile field site in northeastern Illinois, USA. We varied levels of switchgrass and big bluestem genotypic diversity using various local and nonlocal cultivars – under low or high species diversity, with or without nitrogen inputs – and quantified establishment, biomass yield,more » and biomass composition. In one experiment (‘agronomic trial’), we compared three switchgrass cultivars in monoculture to a switchgrass cultivar mixture and three different species mixtures, with or without N fertilization. In another experiment (‘diversity gradient’), we varied diversity levels in switchgrass and big bluestem (1, 2, 4, or 6 cultivars per plot), with one or two species per plot. In both experiments, cultivar mixtures produced yields equivalent to or greater than the best cultivars. In the agronomic trial, the three switchgrass mixture showed the highest production overall, though not significantly different than best cultivar monoculture. In the diversity gradient, genotypic mixtures had one-third higher biomass production than the average monoculture, and none of the monocultures were significantly higher yielding than the average mixture. Year-to-year variation in yields was lowest in the three-cultivar switchgrass mixtures and Cave-In-Rock (the southern Illinois cultivar) and also reduced in the mixture of switchgrass and big bluestem relative to the species monocultures. The effects of genotypic diversity on biomass composition were modest relative to the differences among species and genotypes. Our findings suggest that local genotypes can be included in biomass cropping systems without compromising yields and that genotypic mixtures could help provide high, stable yields of high-quality biomass feedstocks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verbeke, Tobin J.; Garcia, Gabriela M.; Elkins, James G.
High solids loading fermentations are necessary for the industrialization of lignocellulosic ethanol. To date, only a few studies have investigated the effect of solids loadings on microorganisms of interest for consolidated bioprocessing (CBP). Here, the effect that various switchgrass loadings have on Clostridium thermocellum solubilization and bioconversion are investigated. C. thermocellum was grown for ten days on 10, 25 or 50 g/L switchgrass or Avicel at equivalent glucan loadings. Avicel was completely consumed at all loadings, but total cellulose solubilization decreased from 63% to 37% as switchgrass loadings increased from 10 g/L to 50 g/L. Washed, spent switchgrass could bemore » additionally hydrolyzed and fermented in second-round fermentations suggesting access to fermentable substrates was not the limiting factor at higher feedstock loadings. Fermentations of Avicel or cellobiose using culture medium supplemented with 50% spent fermentation broth identified that compounds present in the samples collected from the 25 or 50 g/L switchgrass loadings were the most inhibitory to continued fermentation. Finally, recalcitrance alone cannot fully account for differences in solubilization and end-production formation between switchgrass and Avicel at increased substrate loadings. Effort to decouple metabolic inhibition from inhibition of hydrolysis suggest that C. thermocellum’s hydrolytic machinery is more vulnerable to inhibition from switchgrass-derived inhibitors than is the bacterium’s metabolism.« less
Verbeke, Tobin J.; Garcia, Gabriela M.; Elkins, James G.
2017-11-30
High solids loading fermentations are necessary for the industrialization of lignocellulosic ethanol. To date, only a few studies have investigated the effect of solids loadings on microorganisms of interest for consolidated bioprocessing (CBP). Here, the effect that various switchgrass loadings have on Clostridium thermocellum solubilization and bioconversion are investigated. C. thermocellum was grown for ten days on 10, 25 or 50 g/L switchgrass or Avicel at equivalent glucan loadings. Avicel was completely consumed at all loadings, but total cellulose solubilization decreased from 63% to 37% as switchgrass loadings increased from 10 g/L to 50 g/L. Washed, spent switchgrass could bemore » additionally hydrolyzed and fermented in second-round fermentations suggesting access to fermentable substrates was not the limiting factor at higher feedstock loadings. Fermentations of Avicel or cellobiose using culture medium supplemented with 50% spent fermentation broth identified that compounds present in the samples collected from the 25 or 50 g/L switchgrass loadings were the most inhibitory to continued fermentation. Finally, recalcitrance alone cannot fully account for differences in solubilization and end-production formation between switchgrass and Avicel at increased substrate loadings. Effort to decouple metabolic inhibition from inhibition of hydrolysis suggest that C. thermocellum’s hydrolytic machinery is more vulnerable to inhibition from switchgrass-derived inhibitors than is the bacterium’s metabolism.« less
Hosseinaei, Omid; Harper, David P; Bozell, Joseph J; Rials, Timothy G
2017-07-01
Lignin/lignin blends were used to improve fiber spinning, stabilization rates, and properties of lignin-based carbon fibers. Organosolv lignin from Alamo switchgrass ( Panicum virgatum ) and yellow poplar ( Liriodendron tulipifera ) were used as blends for making lignin-based carbon fibers. Different ratios of yellow poplar:switchgrass lignin blends were prepared (50:50, 75:25, and 85:15 w/w ). Chemical composition and thermal properties of lignin samples were determined. Thermal properties of lignins were analyzed using thermogravimetric analysis and differential scanning calorimetry. Thermal analysis confirmed switchgrass and yellow poplar lignin form miscible blends, as a single glass transition was observed. Lignin fibers were produced via melt-spinning by twin-screw extrusion. Lignin fibers were thermostabilized at different rates and subsequently carbonized. Spinnability of switchgrass lignin markedly improved by blending with yellow poplar lignin. On the other hand, switchgrass lignin significantly improved thermostabilization performance of yellow poplar fibers, preventing fusion of fibers during fast stabilization and improving mechanical properties of fibers. These results suggest a route towards a 100% renewable carbon fiber with significant decrease in production time and improved mechanical performance.
Hosseinaei, Omid; Bozell, Joseph J.; Rials, Timothy G.
2017-01-01
Lignin/lignin blends were used to improve fiber spinning, stabilization rates, and properties of lignin-based carbon fibers. Organosolv lignin from Alamo switchgrass (Panicum virgatum) and yellow poplar (Liriodendron tulipifera) were used as blends for making lignin-based carbon fibers. Different ratios of yellow poplar:switchgrass lignin blends were prepared (50:50, 75:25, and 85:15 w/w). Chemical composition and thermal properties of lignin samples were determined. Thermal properties of lignins were analyzed using thermogravimetric analysis and differential scanning calorimetry. Thermal analysis confirmed switchgrass and yellow poplar lignin form miscible blends, as a single glass transition was observed. Lignin fibers were produced via melt-spinning by twin-screw extrusion. Lignin fibers were thermostabilized at different rates and subsequently carbonized. Spinnability of switchgrass lignin markedly improved by blending with yellow poplar lignin. On the other hand, switchgrass lignin significantly improved thermostabilization performance of yellow poplar fibers, preventing fusion of fibers during fast stabilization and improving mechanical properties of fibers. These results suggest a route towards a 100% renewable carbon fiber with significant decrease in production time and improved mechanical performance. PMID:28671571
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, Kevin; Buell, Robin; Zhao, Bingyu
Switchgrass (Panicum virgatum) is a warm-season C4 grass that is a target lignocellulosic biofuel species for use in the United States due to its local adaption capabilities and high biomass accumulation. Two ecotypes of switchgrass have been described. Members of the lowland ecotype are taller, have narrower leaf blades and generate more biomass compared to individuals from the upland ecotype. Additionally, lowland plants are generally found in the southern United States while upland switchgrass is more typically present in the northern United States. These differences are important as it is envisioned that switchgrass for biofuel production will typically be grownmore » on marginal lands in the northern United States to supplement and diversify farmers' traditional crop incomes. While lowland switchgrass is more productive, it has poor winter survivability in northern latitudes where upland switchgrass is expected to be grown for biofuel use. Abiotic stresses likely to be encountered by switchgrass include drought and salinity. Despite initially being described as preferring wetter environments, members of the lowland ecotype have been characterized as being more drought tolerant than plants of the upland ecotype. Nonetheless, direct trials have indicated that variation for drought tolerance exists in both ecotypes, but prior to this project, only a relatively small number of switchgrass lines had been tested for drought responses. Similarly, switchgrass cultivars have not been widely tested for salt tolerance, but a few studies have shown that even mild salt stress can inhibit growth. The effects of drought and salt stress on plant growth are complex. Both drought and salinity affect the osmotic potential of plant cells and negatively affect plant growth due to reduced water potential and reduced photosynthesis that results from lower stomatal conductance of CO 2. Plants respond to drought and salt stress by activating genes that directly attempt to reduce the stress (e.g., transmembrane pumps that partition Na +) and mitigate the effects of the stress (e.g., synthesis of osmoprotectant metabolites and stress-related signaling compounds). Prior to the start of this project, no gene expression analysis had been performed on switchgrass under conditions of drought or salt stress, and therefore, relevant gene networks responding to drought and salt stress were unknown in switchgrass. In this project, we performed drought, salt and alkali-salt screens on 49 switchgrass cultivars (Liu et al 2014; Liu et al 2015; Hu et al 2015; Kim et al 2016). These experiments demonstrated that a wide range of variation exists within switchgrass for drought, salt and alkali-salt tolerance and that, while the lowland ecotype of switchgrass is often considered more tolerant of abiotic stresses, there are some upland switchgrass lines that are also very tolerant of drought, salt and alkali-salt stress. We also conducted drought and salt time course experiments with Alamo and Dacotah. We have identified modules of coexpressed genes that differentiate Alamo and Dacotah drought responses. We are continuing to analyze these results and plan to submit manuscripts describing this work in early 2017. In an effort to show how drought- and salt-related gene modules could be dissected, we generated transgenic switchgrass overexpressing either PvGTγ-1 or ZmDREB2. Increased expression of PvGTγ-1 does confer increased salt tolerance, and we were able to identify genes that are induced and suppressed by PvGTγ-1. Overexpression of ZmDREB2 increases drought tolerance in switchgrass. Analysis of the PvGTγ-1 and ZmDREB2 overexpression work is ongoing, and we plan to prepare manuscripts about these experiments for submission in early 2017.« less
Proteogenomic Analysis of a Thermophilic Bacterial Consortium Adapted to Deconstruct Switchgrass
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'haeseleer, Patrik; Gladden, John M.; Allgaier, Martin
2013-07-19
Thermophilic bacteria are a potential source of enzymes for the deconstruction of lignocellulosic biomass. However, the complement of proteins used to deconstruct biomass and the specific roles of different microbial groups in thermophilic biomass deconstruction are not well-explored. Here we report on the metagenomic and proteogenomic analyses of a compost-derived bacterial consortium adapted to switchgrass at elevated temperature with high levels of glycoside hydrolase activities. Near-complete genomes were reconstructed for the most abundant populations, which included composite genomes for populations closely related to sequenced strains of Thermus thermophilus and Rhodothermus marinus, and for novel populations that are related to thermophilicmore » Paenibacilli and an uncultivated subdivision of the littlestudied Gemmatimonadetes phylum. Partial genomes were also reconstructed for a number of lower abundance thermophilic Chloroflexi populations. Identification of genes for lignocellulose processing and metabolic reconstructions suggested Rhodothermus, Paenibacillus and Gemmatimonadetes as key groups for deconstructing biomass, and Thermus as a group that may primarily metabolize low molecular weight compounds. Mass spectrometry-based proteomic analysis of the consortium was used to identify .3000 proteins in fractionated samples from the cultures, and confirmed the importance of Paenibacillus and Gemmatimonadetes to biomass deconstruction. These studies also indicate that there are unexplored proteins with important roles in bacterial lignocellulose deconstruction.« less
Liang, Yi; Meggo, Richard; Hu, Dingfei; Schnoor, Jerald L.; Mattes, Timothy E.
2015-01-01
Polychlorinated biphenyls (PCBs) pose potential risks to human and environmental health because they are carcinogenic, persistent and bioaccumulative. In this study we investigated bacterial communities in soil microcosms spiked with PCB 52, 77 and 153. Switchgrass (Panicum virgatum) was employed to improve overall PCB removal and redox cycling (i.e. sequential periods of flooding followed by periods of no flooding) was performed in an effort to promote PCB dechlorination. Lesser chlorinated PCB transformation products were detected in all microcosms, indicating the occurrence of PCB dechlorination. Terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis showed that PCB spiking, switchgrass planting and redox cycling affected the microbial community structure. Putative organohalide-respiring Chloroflexi populations, which were not found in unflooded microcosms, were enriched after two weeks of flooding in the redox-cycled microcosms. Sequences classified as Geobacter sp. were detected in all microcosms, and were most abundant in the switchgrass-planted microcosm spiked with PCB congeners. The presence of possible organohalide-respiring bacteria in these soil microcosms suggests they play a role in PCB dechlorination therein. PMID:25820643
Liang, Yi; Meggo, Richard; Hu, Dingfei; Schnoor, Jerald L; Mattes, Timothy E
2015-08-01
Polychlorinated biphenyls (PCBs) pose potential risks to human and environmental health because they are carcinogenic, persistent, and bioaccumulative. In this study, we investigated bacterial communities in soil microcosms spiked with PCB 52, 77, and 153. Switchgrass (Panicum virgatum) was employed to improve overall PCB removal, and redox cycling (i.e., sequential periods of flooding followed by periods of no flooding) was performed in an effort to promote PCB dechlorination. Lesser chlorinated PCB transformation products were detected in all microcosms, indicating the occurrence of PCB dechlorination. Terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis showed that PCB spiking, switchgrass planting, and redox cycling affected the microbial community structure. Putative organohalide-respiring Chloroflexi populations, which were not found in unflooded microcosms, were enriched after 2 weeks of flooding in the redox-cycled microcosms. Sequences classified as Geobacter sp. were detected in all microcosms and were most abundant in the switchgrass-planted microcosm spiked with PCB congeners. The presence of possible organohalide-respiring bacteria in these soil microcosms suggests that they play a role in PCB dechlorination therein.
Cybulska, Iwona; Brudecki, Grzegorz; Rosentrater, Kurt; Julson, James L; Lei, Hanwu
2012-08-01
Lignin extracted from prairie cordgrass, switchgrass, and corn stover (using ethyl acetate-ethanol-water organosolv pretreatment) was analyzed and characterized using several methods. These methods included analysis of purity (by determination of Klason lignin, carbohydrate, and ash contents), solubility (with several organic solvents), phenolic group analysis (ultraviolet ionization difference spectra, and nitrobenzene oxidation), and general functional group analysis (by (1)H NMR). Results showed that all the examined lignin samples were relatively pure (contained over 50% Klason lignin, less than 5% carbohydrate contamination, and less than 3% ash), but switchgrass-derived lignin was observed to be the purest. All the lignins were found to contain high amounts of phenolic groups, while switchgrass-derived lignin was the most phenolic, according to the ionization difference spectra. Nitrobenzene oxidation revealed that all the lignin samples contained available guaiacyl units in high amounts. Copyright © 2012 Elsevier Ltd. All rights reserved.
Genomic diversity in switchgrass (Panicum virgatum): from the continental scale to a dune landscape
Morris, Geoffrey P.; Grabowski, Paul; Borevitz, Justin O.
2011-01-01
Connecting broad-scale patterns of genetic variation and population structure to genetic diversity on a landscape is a key step towards understanding historical processes of migration and adaptation. New genomic approaches can be used to increase the resolution of phylogeographic studies while reducing locus sampling effects and circumventing ascertainment bias. Here, we use a novel approach based on high-throughput sequencing to characterize genetic diversity in complete chloroplast genomes and >10,000 nuclear loci in switchgrass, across a continental and landscape scale. Switchgrass is a North American tallgrass species, which is widely used in conservation and perennial biomass production, and shows strong ecotypic adaptation and population structure across the continental range. We sequenced 40.9 billion base pairs from 24 individuals from across the species’ range and 20 individuals from the Indiana Dunes. Analysis of plastome sequence revealed 203 variable SNP sites that define eight haplogroups, which are differentiated by 4 to 127 SNPs and confirmed by patterns of indel variation. These include three deeply divergent haplogroups, which correspond to the previously described lowland-upland ecotypic split and a novel upland haplogroup split that dates to the mid-Pleistoscene. Most of the plastome haplogroup diversity present in the northern switchgrass range, including in the Indiana Dunes, originated in the mid- or upper-Pleistocene prior to the most recent postglacial recolonization. Furthermore, a recently colonized landscape feature (~150 ya) in the Indiana Dunes contains several deeply divergent upland haplogroups. Nuclear markers also support a deep lowland-upland split, followed by limited gene flow, and show extensive gene flow in the local population of the Indiana Dunes. PMID:22060816
NASA Astrophysics Data System (ADS)
Chescheir, G. M.; Birgand, F.; Allen, E.; Bennett, E.; Carter, T.; Dobbs, N.; Muwamba, A.; Amatya, D. M.; Youssef, M.; Nettles, J. E.
2016-12-01
The use of marginal land for cellulosic biofuel crop production is an attractive solution to preserve agricultural land for food production. The space available between rows of young loblolly pine (Pinus taeda) trees offers enough light to support growth of biofuel crops for several years. A five year field study was conducted to assess the hydrology and water quality impacts of switchgrass (Panicum virgatum) intercropping with pine trees in watersheds of the southeastern US. Paired-watershed studies were replicated in Mississippi and Alabama on upland sites, and in North Carolina on a flat lowland site. In each state, the impact of switchgrass intercropping was assessed from differences in water and nutrient yields from contiguous 20-40 ha watersheds established as: conventional young pine plantation, switchgrass intercropped in young pine plantation, switchgrass only, and mid-rotation mature pine plantation. A total of 14 watersheds were equipped with continuous flow monitoring stations, flow proportional water samplers, groundwater wells, soil moisture sensors and weather stations. Data collection continued through a two year pre-treatment period, a one year treatment period when field operations were conducted to establish switchgrass, and a two year post-treatment period when the established switchgrass was fertilized and harvested annually. Our results showed that significant increases in total suspended solids (TSS) and nitrogen (N) loading occurred during the treatment periods at the upland sites in MS and AL. During the post treatment periods, TSS and N loading decreased to levels near those observed in pretreatment. At the lowland site, only nitrogen loading was increased during the treatment period. Concentrations of TSS at the lowland site were two orders of magnitude lower than those observed at the upland sites and were not significantly affected by the treatment. Inherent flow variability between watersheds within sites made detection of subtle differences in hydrology and water quality difficult to detect. Increases in N loading were not significant in response to annual fertilization of switchgrass. Our results suggest that intercropping switchgrass in managed pine forests does not significantly change the typically benign hydrology and water quality of the managed forests.
DEVELOPMENT OF A POPULATION BALANCE MODEL TO SIMULATE FRACTIONATION OF GROUND SWITCHGRASS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naimi, L.J.; Bi, X.T.; Lau, A.K.
The population balance model represents a time-dependent formulation of mass conservation for a ground biomass that flows through a set of sieves. The model is suitable for predicting the change in size and distribution of ground biomass while taking into account the flow rate processes of particles through a grinder. This article describes the development and application of this model to a switchgrass grinding operation. The mass conservation formulation of the model contains two parameters: breakage rate and breakage ratio. A laboratory knife mill was modified to act as a batch or flow-through grinder. The ground switchgrass was analyzed overmore » a set of six Tyler sieves with apertures ranging from 5.66 mm (top sieve) to 1 mm (bottom sieve). The breakage rate was estimated from the sieving tests. For estimating the breakage ratio, each of the six fractions was further ground and sieved to 11 fractions on a set of sieves with apertures ranging from 5.66 to 0.25 mm (and pan). These data formed a matrix of values for determining the breakage ratio. Using the two estimated parameters, the transient population balance model was solved numerically. Results indicated that the population balance model generally underpredicted the fractions remaining on sieves with 5.66, 4.00, and 2.83 mm apertures and overpredicted fractions remaining on sieves with 2.00, 1.41, and 1.00 mm apertures. These trends were similar for both the batch and flow-through grinder configurations. The root mean square of residuals (RSE), representing the difference between experimental and simulated mass of fractions, was 0.32 g for batch grinding and 0.1 g for flow-through grinding. The breakage rate exhibited a linear function of the logarithm of particle size, with a regression coefficient of 0.99.« less
Chen, Bo-Ching; Lai, Hung-Yu; Juang, Kai-Wei
2012-06-01
To better understand the ability of switchgrass (Panicum virgatum L.), a perennial grass often relegated to marginal agricultural areas with minimal inputs, to remove cadmium, chromium, and zinc by phytoextraction from contaminated sites, the relationship between plant metal content and biomass yield is expressed in different models to predict the amount of metals switchgrass can extract. These models are reliable in assessing the use of switchgrass for phytoremediation of heavy-metal-contaminated sites. In the present study, linear and exponential decay models are more suitable for presenting the relationship between plant cadmium and dry weight. The maximum extractions of cadmium using switchgrass, as predicted by the linear and exponential decay models, approached 40 and 34 μg pot(-1), respectively. The log normal model was superior in predicting the relationship between plant chromium and dry weight. The predicted maximum extraction of chromium by switchgrass was about 56 μg pot(-1). In addition, the exponential decay and log normal models were better than the linear model in predicting the relationship between plant zinc and dry weight. The maximum extractions of zinc by switchgrass, as predicted by the exponential decay and log normal models, were about 358 and 254 μg pot(-1), respectively. To meet the maximum removal of Cd, Cr, and Zn, one can adopt the optimal timing of harvest as plant Cd, Cr, and Zn approach 450 and 526 mg kg(-1), 266 mg kg(-1), and 3022 and 5000 mg kg(-1), respectively. Due to the well-known agronomic characteristics of cultivation and the high biomass production of switchgrass, it is practicable to use switchgrass for the phytoextraction of heavy metals in situ. Copyright © 2012 Elsevier Inc. All rights reserved.
Gu, Yingxin; Wylie, Bruce K.
2016-01-01
Growing cellulosic feedstock crops (e.g., switchgrass) for biofuel is more environmentally sustainable than corn-based ethanol. Specifically, this practice can reduce soil erosion and water quality impairment from pesticides and fertilizer, improve ecosystem services and sustainability (e.g., serve as carbon sinks), and minimize impacts on global food supplies. The main goal of this study was to identify high-risk marginal croplands that are potentially suitable for growing cellulosic feedstock crops (e.g., switchgrass) in the US Great Plains (GP). Satellite-derived growing season Normalized Difference Vegetation Index, a switchgrass biomass productivity map obtained from a previous study, US Geological Survey (USGS) irrigation and crop masks, and US Department of Agriculture (USDA) crop indemnity maps for the GP were used in this study. Our hypothesis was that croplands with relatively low crop yield but high productivity potential for switchgrass may be suitable for converting to switchgrass. Areas with relatively low crop indemnity (crop indemnity <$2 157 068) were excluded from the suitable areas based on low probability of crop failures. Results show that approximately 650 000 ha of marginal croplands in the GP are potentially suitable for switchgrass development. The total estimated switchgrass biomass productivity gain from these suitable areas is about 5.9 million metric tons. Switchgrass can be cultivated in either lowland or upland regions in the GP depending on the local soil and environmental conditions. This study improves our understanding of ecosystem services and the sustainability of cropland systems in the GP. Results from this study provide useful information to land managers for making informed decisions regarding switchgrass development in the GP.
Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allgaier, M.; Reddy, A.; Park, J. I.
2009-11-15
Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Small-subunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence datamore » from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, {approx}10% were putative cellulases mostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50 C and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.« less
Targeted Discovery of Glycoside Hydrolases from a Switchgrass-Adapted Compost Community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Amitha; Allgaier, Martin; Park, Joshua I.
2011-05-11
Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Smallsubunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence datamore » from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, ,10percent were putative cellulasesmostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50uC and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.« less
Duran, Brianna E. L.; Duncan, David S.; Oates, Lawrence G.; Kucharik, Christopher J.; Jackson, Randall D.
2016-01-01
Nitrogen (N) fertilization can greatly improve plant productivity but needs to be carefully managed to avoid harmful environmental impacts. Nutrient management guidelines aimed at reducing harmful forms of N loss such as nitrous oxide (N2O) emissions and nitrate (NO3-) leaching have been tailored for many cropping systems. The developing bioenergy industry is likely to make use of novel cropping systems, such as polycultures of perennial species, for which we have limited nutrient management experience. We studied how a switchgrass (Panicum virgatum) monoculture, a 5-species native grass mixture and an 18-species restored prairie responded to annual fertilizer applications of 56 kg N ha-1 in a field-scale agronomic trial in south-central Wisconsin over a 2-year period. We observed greater fertilizer-induced N2O emissions and sub-rooting zone NO3- concentrations in the switchgrass monoculture than in either polyculture. Fertilization increased aboveground net primary productivity in the polycultures, but not in the switchgrass monoculture. Switchgrass was generally more productive, while the two polycultures did not differ from each other in productivity or N loss. Our results highlight differences between polycultures and a switchgrass monoculture in responding to N fertilization. PMID:26991790
Antimicrobial and anti-inflammatory activity of switchgrass-derived extractives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labbe, Nicole; Ownley, Bonnie H.; Gwinn, Kimberly D.
Switchgrass is an increasingly important biofuel crop, but knowledge of switchgrass fungal pathogens is not extensive. The purpose of this research was to identify the fungal pathogens that decrease crop yield of switchgrass grown in Tennessee and to investigate a potential sustainable disease management strategy from a value-added by-product of the switchgrass biofuel conversion process. The specific objectives were 1) to identify and characterize prevalent fungal pathogens of switchgrass in Tennessee, 2) assess switchgrass seed produced in the United States for seedborne fungal pathogens, and 3) evaluate switchgrass extractives for antimicrobial activity against plant pathogens.
Zhao, Xiaoling; Liu, Jinhuan; Liu, Jingjing; Yang, Fuyu; Zhu, Wanbin; Yuan, Xufeng; Hu, Yuegao; Cui, Zongjun; Wang, Xiaofen
2017-10-01
Silage processing has a crucial positive impact on the methane yield of anaerobic treated substrates. Changes in the characteristics of switchgrass after ensiling with different additives and their effects on methane production and microbial community changes during anaerobic digestion were investigated. After ensiling (CK), methane yield was increased by 33.59% relative to that of fresh switchgrass (FS). In comparison with the CK treatment, methane production was improved by 17.41%, 13.08% and 8.72% in response to ensiling with LBr+X, LBr and X, respectively. A modified Gompertz model predicted that the optimum treatment was LBr+X, with a potential cumulative methane yield of 178.31mL/g total solids (TS) and a maximum biogas production rate of 44.39mL/g TS·d. Firmicutes and Bacteroidetes were the predominant bacteria in FS and silage switchgrass; however, the switchgrass treated with LBr+X was rich in Synergistetes, which was crucial for methane production. Copyright © 2017. Published by Elsevier Ltd.
Duran, Brianna E. L.; Duncan, David S.; Oates, Lawrence G.; ...
2016-03-18
Nitrogen (N) fertilization can greatly improve plant productivity but needs to be carefully managed to avoid harmful environmental impacts. Nutrient management guidelines aimed at reducing harmful forms of N loss such as nitrous oxide (N 2O) emissions and nitrate (NO 3 -) leaching have been tailored for many cropping systems. The developing bioenergy industry is likely to make use of novel cropping systems, such as polycultures of perennial species, for which we have limited nutrient management experience. We studied how a switchgrass (Panicum virgatum) monoculture, a 5-species native grass mixture and an 18- species restored prairie responded to annual fertilizermore » applications of 56 kg N ha -1 in a fieldscale agronomic trial in south-central Wisconsin over a 2-year period.We observed greater fertilizer-induced N 2O emissions and sub-rooting zone NO 3 - concentrations in the switchgrass monoculture than in either polyculture. Fertilization increased aboveground net primary productivity in the polycultures, but not in the switchgrass monoculture. Switchgrass was generally more productive, while the two polycultures did not differ from each other in productivity or N loss. In conclusion, our results highlight differences between polycultures and a switchgrass monoculture in responding to N fertilization.« less
Switchgrass growth and pine-switchgrass interactions in established intercropping systems
Tian, Shiying; Cacho, Julian F.; Youssef, Mohamed A.; ...
2016-06-22
Intercropping switchgrass ( Panicum virgatum L.) with loblolly pine ( Pinus taeda L.) has been proposed for producing bioenergy feedstock in the southeastern United States. This study investigated switchgrass growth and pine–switchgrass interactions at two established experimental fields (7-year-old Lenoir site and 5-year-old Carteret site) located on the coastal plain of eastern United States. Position effects (edge and center of switchgrass alley in intercropping plots) and treatment effects (intercropping vs. grass-only) on above ground switchgrass growth were evaluated. Interspecific interactions with respect to capturing resources (light, soil water, and nitrogen) were investigated by measuring photosynthetically active radiation (PAR) above grassmore » canopy, soil moisture, and soil mineral nitrogen contents. Switchgrass growth was significantly (P = 0.001) affected by treatments in Lenoir and by position (P < 0.0001) in both study sites. Relative to the center, PAR above grass canopy at edge in both sites was about 48% less during the growing season. Soil water content during the growing season at the edge of grass alley was significantly (P = 0.0001) lower by 23% than at the center in Lenoir, while no significant (P = 0.42) difference was observed in Carteret, in spite of more grass growth at center at both sites. Soil mineral nitrogen content at the center of intercropping plots in Lenoir (no fertilization during 2015) was significantly (P < 0.07) lower than at the edge during the peak of growing season (June, July, and August), but not during early and late parts of growing season (May, September, and November). Position effects on soil water and mineral nitrogen were less evident under conditions with higher external inputs (rainfall and fertilization) and lower plant uptake during nongrowing seasons. Here, results from this study contributed to a better understanding of above- and belowground pine–switchgrass interactions which is necessary to properly manage this new cultivation system for bioenergy production in the southeastern United States.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Holly L.; Alexander, Lisa W.; Mazarei, Mitra
Transgenic switchgrass (Panicum virgatum L.) has been produced for improved cell walls for biofuels. For instance, downregulated caffeic acid 3-O-methyltransferase (COMT) switchgrass produced significantly more biomass and biofuel than the non-transgenic progenitor line. In this present study we sought to further improve biomass characteristics by crossing the downregulated COMT T 1 lines with high-yielding switchgrass accessions in two genetic backgrounds ('Alamo' and 'Kanlow'). Crosses and T 2 progeny analyses were made under greenhouse conditions to assess maternal effects, plant morphology and yield, and cell wall traits. Female parent type influenced morphology, but had no effect on cell wall traits. Tmore » 2 hybrids produced with T 1 COMT-downregulated switchgrass as the female parent were taller, produced more tillers, and produced 63% more biomass compared with those produced using the field selected accession as the female parent. Transgene status (presence or absence of transgene) influenced both growth and cell wall traits. T 2 transgenic hybrids were 7% shorter 80 days after sowing and produced 43% less biomass than non-transgenic null-segregant hybrids. Cell wall-related differences included lower lignin content, reduced syringyl-to-guaiacyl (S/G) lignin monomer ratio, and a 12% increase in total sugar release in the T 2 transgenic hybrids compared to non-transgenic null segregants. This is the first study to evaluate the feasibility of transferring the low-recalcitrance traits associated with a transgenic switchgrass line into high-yielding field varieties in an attempt to improve growth-related traits. Lastly, our results provide insights into the possible improvement of switchgrass productivity via biotechnology paired with plant breeding.« less
Baxter, Holly L.; Alexander, Lisa W.; Mazarei, Mitra; ...
2016-01-21
Transgenic switchgrass (Panicum virgatum L.) has been produced for improved cell walls for biofuels. For instance, downregulated caffeic acid 3-O-methyltransferase (COMT) switchgrass produced significantly more biomass and biofuel than the non-transgenic progenitor line. In this present study we sought to further improve biomass characteristics by crossing the downregulated COMT T 1 lines with high-yielding switchgrass accessions in two genetic backgrounds ('Alamo' and 'Kanlow'). Crosses and T 2 progeny analyses were made under greenhouse conditions to assess maternal effects, plant morphology and yield, and cell wall traits. Female parent type influenced morphology, but had no effect on cell wall traits. Tmore » 2 hybrids produced with T 1 COMT-downregulated switchgrass as the female parent were taller, produced more tillers, and produced 63% more biomass compared with those produced using the field selected accession as the female parent. Transgene status (presence or absence of transgene) influenced both growth and cell wall traits. T 2 transgenic hybrids were 7% shorter 80 days after sowing and produced 43% less biomass than non-transgenic null-segregant hybrids. Cell wall-related differences included lower lignin content, reduced syringyl-to-guaiacyl (S/G) lignin monomer ratio, and a 12% increase in total sugar release in the T 2 transgenic hybrids compared to non-transgenic null segregants. This is the first study to evaluate the feasibility of transferring the low-recalcitrance traits associated with a transgenic switchgrass line into high-yielding field varieties in an attempt to improve growth-related traits. Lastly, our results provide insights into the possible improvement of switchgrass productivity via biotechnology paired with plant breeding.« less
2012-01-01
Background Switchgrass is one of the most promising bioenergy crop candidates for the US. It gives relatively high biomass yield and can grow on marginal lands. However, its yields vary from year to year and from location to location. Thus it is imperative to develop a low input and sustainable switchgrass feedstock production system. One of the most feasible ways to increase biomass yields is to harness benefits of microbial endophytes. Results We demonstrate that one of the most studied plant growth promoting bacterial endophytes, Burkholderia phytofirmans strain PsJN, is able to colonize and significantly promote growth of switchgrass cv. Alamo under in vitro, growth chamber, and greenhouse conditions. In several in vitro experiments, the average fresh weight of PsJN-inoculated plants was approximately 50% higher than non-inoculated plants. When one-month-old seedlings were grown in a growth chamber for 30 days, the PsJN-inoculated Alamo plants had significantly higher shoot and root biomass compared to controls. Biomass yield (dry weight) averaged from five experiments was 54.1% higher in the inoculated treatment compared to non-inoculated control. Similar results were obtained in greenhouse experiments with transplants grown in 4-gallon pots for two months. The inoculated plants exhibited more early tillers and persistent growth vigor with 48.6% higher biomass than controls. We also found that PsJN could significantly promote growth of switchgrass cv. Alamo under sub-optimal conditions. However, PsJN-mediated growth promotion in switchgrass is genotype specific. Conclusions Our results show B. phytofirmans strain PsJN significantly promotes growth of switchgrass cv. Alamo under different conditions, especially in the early growth stages leading to enhanced production of tillers. This phenomenon may benefit switchgrass establishment in the first year. Moreover, PsJN significantly stimulated growth of switchgrass cv. Alamo under sub-optimal conditions, indicating that the use of the beneficial bacterial endophytes may boost switchgrass growth on marginal lands and significantly contribute to the development of a low input and sustainable feedstock production system. PMID:22647367
Life cycle analysis of switchgrass converted via pyrolysis, gasification, and fermentation
USDA-ARS?s Scientific Manuscript database
The US is promoting and developing low carbon fuel sources. Perennial bioenergy crops such as switchgrass (Panicum virgatum L.) are one viable source for low carbon transportation fuels. The objective is to determine the net greenhouse gas (GHG) emissions from different conversion methods (pyrolysi...
Bitra, Venkata S P; Womac, Alvin R; Igathinathane, C; Miu, Petre I; Yang, Yuechuan T; Smith, David R; Chevanan, Nehru; Sokhansanj, Shahab
2009-12-01
Lengthy straw/stalk of biomass may not be directly fed into grinders such as hammer mills and disc refiners. Hence, biomass needs to be preprocessed using coarse grinders like a knife mill to allow for efficient feeding in refiner mills without bridging and choking. Size reduction mechanical energy was directly measured for switchgrass (Panicum virgatum L.), wheat straw (Triticum aestivum L.), and corn stover (Zea mays L.) in an instrumented knife mill. Direct power inputs were determined for different knife mill screen openings from 12.7 to 50.8 mm, rotor speeds between 250 and 500 rpm, and mass feed rates from 1 to 11 kg/min. Overall accuracy of power measurement was calculated to be +/-0.003 kW. Total specific energy (kWh/Mg) was defined as size reduction energy to operate mill with biomass. Effective specific energy was defined as the energy that can be assumed to reach the biomass. The difference is parasitic or no-load energy of mill. Total specific energy for switchgrass, wheat straw, and corn stover chopping increased with knife mill speed, whereas, effective specific energy decreased marginally for switchgrass and increased for wheat straw and corn stover. Total and effective specific energy decreased with an increase in screen size for all the crops studied. Total specific energy decreased with increase in mass feed rate, but effective specific energy increased for switchgrass and wheat straw, and decreased for corn stover at increased feed rate. For knife mill screen size of 25.4 mm and optimum speed of 250 rpm, optimum feed rates were 7.6, 5.8, and 4.5 kg/min for switchgrass, wheat straw, and corn stover, respectively, and the corresponding total specific energies were 7.57, 10.53, and 8.87 kWh/Mg and effective specific energies were 1.27, 1.50, and 0.24 kWh/Mg for switchgrass, wheat straw, and corn stover, respectively. Energy utilization ratios were calculated as 16.8%, 14.3%, and 2.8% for switchgrass, wheat straw, and corn stover, respectively. These data will be useful for preparing the feed material for subsequent fine grinding operations and designing new mills.
Swithchgrass biomass quality as affected by nitrogen rate, harvest time and storage
USDA-ARS?s Scientific Manuscript database
The main purpose of this study was to assess the sustainability of switchgrass biomass quality as affected by storage after harvesting, delaying the harvest time, and applying different rates of nitrogen (N). The present study was conducted at Bristol, South Dakota under switchgrass land previously ...
Switchgrass Compositional Variations Arising from Spatial Distribution and Legume Intercropping
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum) is a high–yielding, second-generation feedstock that can be grown on marginal land with minimal inputs. Due to the high genetic diversity within and among cultivars of this species, there may be a great amount of genotype x environment-induced differences among seconda...
Palik, D J; Snow, A A; Stottlemyer, A L; Miriti, M N; Heaton, E A
2016-01-01
The possibility of increased invasiveness in cultivated varieties of native perennial species is a question of interest in biofuel risk assessment. Competitive success is a key factor in the fitness and invasive potential of perennial plants, and thus the large-scale release of high-yielding biomass cultivars warrants empirical comparisons with local conspecifics in the presence of competitors. We evaluated the performance of non-local cultivars and local wild biotypes of the tallgrass species Panicum virgatum L. (switchgrass) in competition experiments during two growing seasons in Ohio and Iowa. At each location, we measured growth and reproductive traits (plant height, tiller number, flowering time, aboveground biomass, and seed production) of four non-locally sourced cultivars and two locally collected wild biotypes. Plants were grown in common garden experiments under three types of competition, referred to as none, moderate (with Schizachyrium scoparium), and high (with Bromus inermis). In both states, the two "lowland" cultivars grew taller, flowered later, and produced between 2x and 7.5x more biomass and between 3x and 34x more seeds per plant than local wild biotypes, while the other two cultivars were comparable to wild biotypes in these traits. Competition did not affect relative differences among biotypes, with the exception of shoot number, which was more similar among biotypes under high competition. Insights into functional differences between cultivars and wild biotypes are crucial for developing biomass crops while mitigating the potential for invasiveness. Here, two of the four cultivars generally performed better than wild biotypes, indicating that these biotypes may pose more of a risk in terms of their ability to establish vigorous feral populations in new regions outside of their area of origin. Our results support an ongoing assessment of switchgrass cultivars developed for large-scale planting for biofuels.
Palik, D. J.; Snow, A. A.; Stottlemyer, A. L.; Miriti, M. N.; Heaton, E. A.
2016-01-01
The possibility of increased invasiveness in cultivated varieties of native perennial species is a question of interest in biofuel risk assessment. Competitive success is a key factor in the fitness and invasive potential of perennial plants, and thus the large-scale release of high-yielding biomass cultivars warrants empirical comparisons with local conspecifics in the presence of competitors. We evaluated the performance of non-local cultivars and local wild biotypes of the tallgrass species Panicum virgatum L. (switchgrass) in competition experiments during two growing seasons in Ohio and Iowa. At each location, we measured growth and reproductive traits (plant height, tiller number, flowering time, aboveground biomass, and seed production) of four non-locally sourced cultivars and two locally collected wild biotypes. Plants were grown in common garden experiments under three types of competition, referred to as none, moderate (with Schizachyrium scoparium), and high (with Bromus inermis). In both states, the two “lowland” cultivars grew taller, flowered later, and produced between 2x and 7.5x more biomass and between 3x and 34x more seeds per plant than local wild biotypes, while the other two cultivars were comparable to wild biotypes in these traits. Competition did not affect relative differences among biotypes, with the exception of shoot number, which was more similar among biotypes under high competition. Insights into functional differences between cultivars and wild biotypes are crucial for developing biomass crops while mitigating the potential for invasiveness. Here, two of the four cultivars generally performed better than wild biotypes, indicating that these biotypes may pose more of a risk in terms of their ability to establish vigorous feral populations in new regions outside of their area of origin. Our results support an ongoing assessment of switchgrass cultivars developed for large-scale planting for biofuels. PMID:27120201
Bulk density and compaction behavior of knife mill chopped switchgrass,wheat straw, and corn stover
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chevanan, Nehru; Womac, A.R.; Bitra, V.S.P.
2009-08-01
Bulk density of comminuted biomass significantly increased by vibration during handling and transportation, and by normal pressure during storage. Compaction characteristics affecting the bulk density of switchgrass, wheat straw, and corn stover chopped in a knife mill at different operating conditions and using four different classifying screens were studied. Mean loose-filled bulk densities were 67.5 18.4 kg/m3 for switchgrass, 36.1 8.6 kg/m3 for wheat straw, and 52.1 10.8 kg/m3 for corn stover. Mean tapped bulk densities were 81.8 26.2 kg/m3 for switchgrass, 42.8 11.7 kg/m3 for wheat straw, and 58.9 13.4 kg/m3 for corn stover. Percentage changes in compressibility duemore » to variation in particle size obtained from a knife mill ranged from 64.3 to 173.6 for chopped switchgrass, 22.2 51.5 for chopped wheat straw and 42.1 117.7 for chopped corn stover within the tested consolidation pressure range of 5 120 kPa. Pressure and volume relationship of chopped biomass during compression with application of normal pressure can be characterized by the Walker model and Kawakita and Ludde model. Parameter of Walker model was correlated to the compressibility with Pearson correlation coefficient greater than 0.9. Relationship between volume reduction in chopped biomass with respect to number of tappings studied using Sone s model indicated that infinite compressibility was highest for chopped switchgrass followed by chopped wheat straw and corn stover. Degree of difficulty in packing measured using the parameters of Sone s model indicated that the chopped wheat straw particles compacted very rapidly by tapping compared to chopped switchgrass and corn stover. These results are very useful for solving obstacles in handling bulk biomass supply logistics issues for a biorefinery.« less
Chevanan, Nehru; Womac, Alvin R; Bitra, Venkata S P; Igathinathane, C; Yang, Yuechuan T; Miu, Petre I; Sokhansanj, Shahab
2010-01-01
Bulk density of comminuted biomass significantly increased by vibration during handling and transportation, and by normal pressure during storage. Compaction characteristics affecting the bulk density of switchgrass, wheat straw, and corn stover chopped in a knife mill at different operating conditions and using four different classifying screens were studied. Mean loose-filled bulk densities were 67.5+/-18.4 kg/m(3) for switchgrass, 36.1+/-8.6 kg/m(3) for wheat straw, and 52.1+/-10.8 kg/m(3) for corn stover. Mean tapped bulk densities were 81.8+/-26.2 kg/m(3) for switchgrass, 42.8+/-11.7 kg/m(3) for wheat straw, and 58.9+/-13.4 kg/m(3) for corn stover. Percentage changes in compressibility due to variation in particle size obtained from a knife mill ranged from 64.3 to 173.6 for chopped switchgrass, 22.2-51.5 for chopped wheat straw and 42.1-117.7 for chopped corn stover within the tested consolidation pressure range of 5-120 kPa. Pressure and volume relationship of chopped biomass during compression with application of normal pressure can be characterized by the Walker model and Kawakita and Ludde model. Parameter of Walker model was correlated to the compressibility with Pearson correlation coefficient greater than 0.9. Relationship between volume reduction in chopped biomass with respect to number of tappings studied using Sone's model indicated that infinite compressibility was highest for chopped switchgrass followed by chopped wheat straw and corn stover. Degree of difficulty in packing measured using the parameters of Sone's model indicated that the chopped wheat straw particles compacted very rapidly by tapping compared to chopped switchgrass and corn stover. These results are very useful for solving obstacles in handling bulk biomass supply logistics issues for a biorefinery.
Soil carbon inventories under a bioenergy crop (switchgrass): Measurement limitations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garten, C.T. Jr.; Wullschleger, S.D.
Approximately 5 yr after planting, coarse root carbon (C) and soil organic C (SOC) inventories were compared under different types of plant cover at four switchgrass (Panicum virgatum L.) production field trials in the southeastern USA. There was significantly more coarse root C under switchgrass (Alamo variety) and forest cover than tall fescue (Festuca arundinacea Schreb.), corn (Zea mays L.), or native pastures of mixed grasses. Inventories of SOC under switchgrass were not significantly greater than SOC inventories under other plant covers. At some locations the statistical power associated with ANOVA of SOC inventories was low, which raised questions aboutmore » whether differences in SOC could be detected statistically. A minimum detectable difference (MDD) for SOC inventories was calculated. The MDD is the smallest detectable difference between treatment means once the variation, significance level, statistical power, and sample size are specified. The analysis indicated that a difference of {approx}50 mg SOC/cm{sup 2} or 5 Mg SOC/ha, which is {approx}10 to 15% of existing SOC, could be detected with reasonable sample sizes and good statistical power. The smallest difference in SOC inventories that can be detected, and only with exceedingly large sample sizes, is {approx}2 to 3%. These measurement limitations have implications for monitoring and verification of proposals to ameliorate increasing global atmospheric CO{sub 2} concentrations by sequestering C in soils.« less
NASA Astrophysics Data System (ADS)
Krohn, Brian
The US has the ambitious goal of producing 60 billion liters of cellulosic biofuel by 2022. Researchers and US Federal Agencies have identified switchgrass (Panicum virgatum L.) as a potential feedstock for next generation biofuels to help meet this goal because of its excellent agronomic and environmental characteristics. With national policy supporting the development of a switchgrass to bioenergy industry two key questions arise: 1) Under what economic and political conditions will switchgrass enter the landscape? 2) Where on the landscape will switchgrass be cultivated given varying economic and political conditions? The goal of this dissertation is to answer these questions by analyzing the adoption of switchgrass across the upper Midwestern US at a high spatial resolution (30m) under varying economic conditions. In the first chapter, I model switchgrass yields at a high resolution and find considerable variability in switchgrass yields across space, scale, time, and nitrogen management. Then in the second chapter, I use the spatial results from chapter one to challenge the assumption that low-input (unmanaged) switchgrass systems cannot compete economically with high-input (managed) switchgrass systems. Finally, in the third chapter, I evaluate the economic and land quality conditions required for switchgrass to be competitive with a corn/soy rotation. I find that switchgrass can displace low-yielding corn/soy on environmentally sensitive land but, to be competitive, it requires economic support through payments for ecosystem services equal to 360 ha-1. With a total expenditure of 4.3 billion annually for ecosystem services, switchgrass could displace corn/soy on 12.2 million hectares of environmentally sensitive land and increase ethanol production above that from the existing corn by 20 billion liters. Thus, ecosystem services can be an effective means of meeting both bioenergy and environmental goals. Taking the three chapters in aggregate it is apparent that switchgrass faces many challenges before it will be adopted on the landscape and it is unlikely it will be adopted under traditional market pricing. However, switchgrass does have considerable potential to help meet the US's bioenergy and environmental goals through new mechanisms, such as payments for ecosystem services potentially coupled with low-input management systems.
Guan, Cong; Huang, Yan-Hua; Cui, Xin; Liu, Si-Jia; Zhou, Yun-Zhuan; Zhang, Yun-Wei
2018-05-25
Genetic improvement through overexpressing PuP5CS in switchgrass is feasible for enhancing plant salt stress tolerance. Switchgrass (Panicum virgatum L.) has developed into a dedicated bioenergy crop. To improve the biomass production of switchgrass grown on different types of soil, abiotic stress tolerance traits are considered for its genetic improvement. Proline accumulation is a widespread response when plants are subjected to abiotic stresses such as drought, cold and salinity. In plants, P5CS gene encodes the key regulatory enzyme that plays a crucial role in proline biosynthesis. Here, we introduced the PuP5CS gene (from Puccinellia chinampoensis) into switchgrass by Agrobacterium-mediated transformation. Transgenic lines overexpressing the PuP5CS gene showed phenotypic advantages, in leaf width, internode diameter, internode length, tiller numbers and precocious flowering under normal conditions, and the transgenic lines displayed better regenerative capacity in forming more tillers after harvest. Moreover, the PuP5CS gene enhanced the salt tolerance of transgenic switchgrass by altering a wide range of physiological responses. In accordance with the physiological results, histological analysis of cross sections through the leaf blade showed that the areas of bulliform cells and bundle sheath cells were significantly increased in PuP5CS-overexpressing leaves. The expression levels of ROS scavenging-associated genes in transgenic plants were higher than in control plants under salt stress. The results show that genetic improvement through overexpressing PuP5CS in switchgrass is feasible for enhancing plant stress tolerance.
Wang, Jianli; Wu, Zhenying; Shen, Zhongbao; Bai, Zetao; Zhong, Peng; Ma, Lichao; Pan, Duofeng; Zhang, Ruibo; Li, Daoming; Zhang, Hailing; Fu, Chunxiang; Han, Guiqing; Guo, Changhong
2018-01-01
Auxin response factors (ARFs) have been reported to play vital roles during plant growth and development. In order to reveal specific functions related to vegetative organs in grasses, an in-depth study of the ARF gene family was carried out in switchgrass ( Panicum virgatum L.), a warm-season C4 perennial grass that is mostly used as bioenergy and animal feedstock. A total of 47 putative ARF genes ( PvARFs ) were identified in the switchgrass genome (2n = 4x = 36), 42 of which were anchored to the seven pairs of chromosomes and found to be unevenly distributed. Sixteen PvARFs were predicted to be potential targets of small RNAs (microRNA160 and 167). Phylogenetically speaking, PvARFs were divided into seven distinct subgroups based on the phylogeny, exon/intron arrangement, and conserved motif distribution. Moreover, 15 pairs of PvARFs have different temporal-spatial expression profiles in vegetative organs (2nd, 3rd, and 4th internode and leaves), which implies that different PvARFs have specific functions in switchgrass growth and development. In addition, at least 14 pairs of PvARFs respond to naphthylacetic acid (NAA) treatment, which might be helpful for us to study on auxin response in switchgrass. The comprehensive analysis, described here, will facilitate the future functional analysis of ARF genes in grasses.
USDA-ARS?s Scientific Manuscript database
An experiment was conducted at the University of Kentucky Spindletop Farm in Lexington, Kentucky between October and November, 2009 to evaluate the effect of different percentages of alfalfa (Medicago sativa) as mixtures in switchgrass (Panicum virgatus) and bermudagrass (Cynodon dactylon) silages. ...
Karyotype variation is indicative of subgenomic and ecotypic differentiation in switchgrass
USDA-ARS?s Scientific Manuscript database
A cytogenetic study was conducted on a dihaploid individual (2n'='2X'='18) of switchgrass to establish a chromosome karyotype. Size differences, condensation patterns, and arm-length ratios were used as identifying features and fluorescence in-situ hybridization (FISH) assigned 5S and 45S rDNA loci...
Liu, Wusheng; Mazarei, Mitra; Ye, Rongjian; ...
2018-04-24
Genetic engineering of switchgrass (Panicum virgatum L.) for reduced cell wall recalcitrance and improved biofuel production has been a long pursued goal. Up to now, constitutive promoters have been used to direct the expression of cell wall biosynthesis genes toward attaining that goal. While generally sufficient to gauge a transgene's effects in the heterologous host, constitutive overexpression often leads to undesirable plant phenotypic effects. Green tissue-specific promoters from switchgrass are potentially valuable to directly alter cell wall traits exclusively in harvestable aboveground biomass while not changing root phenotypes. We identified and functionally characterized three switchgrass green tissue-specific promoters and assessedmore » marker gene expression patterns and intensity in stably transformed rice (Oryza sativa L.), and then used them to direct the expression of the switchgrass MYB4 (PvMYB4) transcription factor gene in transgenic switchgrass to endow reduced recalcitrance in aboveground biomass. These promoters correspond to photosynthesis-related light-harvesting complex II chlorophyll-a/b binding gene (PvLhcb), phosphoenolpyruvate carboxylase (PvPEPC), and the photosystem II 10 kDa R subunit (PvPsbR). Real-time RT-PCR analysis detected their strong expression in the aboveground tissues including leaf blades, leaf sheaths, internodes, inflorescences, and nodes of switchgrass, which was tightly up-regulated by light. Stable transgenic rice expressing the GUS reporter under the control of each promoter (756-2005 bp in length) further confirmed their strong expression patterns in leaves and stems. With the exception of the serial promoter deletions of PvLhcb, all GUS marker patterns under the control of each 5'-end serial promoter deletion were not different from that conveyed by their respective promoters. All of the shortest promoter fragments (199-275 bp in length) conveyed strong green tissue-specific GUS expression in transgenic rice. PvMYB4 is a master repressor of lignin biosynthesis. The green tissue-specific expression of PvMYB4 via each promoter in transgenic switchgrass led to significant gains in saccharification efficiency, decreased lignin, and decreased S/G lignin ratios. In contrast to constitutive overexpression of PvMYB4, which negatively impacts switchgrass root growth, plant growth was not compromised in green tissue-expressed PvMYB4 switchgrass plants in the current study. Each of the newly described green tissue-specific promoters from switchgrass has utility to change cell wall biosynthesis exclusively in aboveground harvestable biomass without altering root systems. The truncated green tissue promoters are very short and should be useful for targeted expression in a number of monocots to improve shoot traits while restricting gene expression from roots. Green tissue-specific expression of PvMYB4 is an effective strategy for improvement of transgenic feedstocks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wusheng; Mazarei, Mitra; Ye, Rongjian
Genetic engineering of switchgrass (Panicum virgatum L.) for reduced cell wall recalcitrance and improved biofuel production has been a long pursued goal. Up to now, constitutive promoters have been used to direct the expression of cell wall biosynthesis genes toward attaining that goal. While generally sufficient to gauge a transgene's effects in the heterologous host, constitutive overexpression often leads to undesirable plant phenotypic effects. Green tissue-specific promoters from switchgrass are potentially valuable to directly alter cell wall traits exclusively in harvestable aboveground biomass while not changing root phenotypes. We identified and functionally characterized three switchgrass green tissue-specific promoters and assessedmore » marker gene expression patterns and intensity in stably transformed rice (Oryza sativa L.), and then used them to direct the expression of the switchgrass MYB4 (PvMYB4) transcription factor gene in transgenic switchgrass to endow reduced recalcitrance in aboveground biomass. These promoters correspond to photosynthesis-related light-harvesting complex II chlorophyll-a/b binding gene (PvLhcb), phosphoenolpyruvate carboxylase (PvPEPC), and the photosystem II 10 kDa R subunit (PvPsbR). Real-time RT-PCR analysis detected their strong expression in the aboveground tissues including leaf blades, leaf sheaths, internodes, inflorescences, and nodes of switchgrass, which was tightly up-regulated by light. Stable transgenic rice expressing the GUS reporter under the control of each promoter (756-2005 bp in length) further confirmed their strong expression patterns in leaves and stems. With the exception of the serial promoter deletions of PvLhcb, all GUS marker patterns under the control of each 5'-end serial promoter deletion were not different from that conveyed by their respective promoters. All of the shortest promoter fragments (199-275 bp in length) conveyed strong green tissue-specific GUS expression in transgenic rice. PvMYB4 is a master repressor of lignin biosynthesis. The green tissue-specific expression of PvMYB4 via each promoter in transgenic switchgrass led to significant gains in saccharification efficiency, decreased lignin, and decreased S/G lignin ratios. In contrast to constitutive overexpression of PvMYB4, which negatively impacts switchgrass root growth, plant growth was not compromised in green tissue-expressed PvMYB4 switchgrass plants in the current study. Each of the newly described green tissue-specific promoters from switchgrass has utility to change cell wall biosynthesis exclusively in aboveground harvestable biomass without altering root systems. The truncated green tissue promoters are very short and should be useful for targeted expression in a number of monocots to improve shoot traits while restricting gene expression from roots. Green tissue-specific expression of PvMYB4 is an effective strategy for improvement of transgenic feedstocks.« less
The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)
Milano, Elizabeth R.; Lowry, David B.; Juenger, Thomas E.
2016-01-01
The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mapping population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes. PMID:27613751
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woli, Prem; Paz, Joel O.; Baldwin, Brian S.
2012-06-29
High biomass production potential, wide adaptability, low input requirement, and low environmental risk make switchgrass an economically and ecologically viable energy crop.The inherent variablity in switchgrass productivity due to variations in soil and variety could affect the sustainability and eco-friendliness of switchgrass-based ethanol production. This study examined the soil and variety effects on these variables. Three locations in Mississippi were selected based on latitude and potential acreage. Using ALMANAC, switchgrass biomass yields were simulated for several scenarios of soils and varities. The simulated yields were fed to IBSAL to compute energy use and CO2 emissions in various operations in themore » biomass supply From the energy and emissions values, the sustainability and eco-friendliness of ethanol production were determined using net energy value (NEV) and carbon credit balance (CCB) as indicators, respectively. Soil and variety effects on NEV and CCB were analyzed using the Kruskal-Wallis test. Results showed significant differences in NEV and CCB across soils and varieties. Both NEV and CCB increased in the direction of heavier to lighter soils and on the order of north-upland , south-upland, north-lowland, and south-lowland varieties. Only north-upland and south-lowland varieties were significantly significantly different because they were different in both cytotype and ecotype. Gaps between lowland and upland varieties were smaller in a dry year than in a wet year. The NEV and CCB increased in the direction of dry to wet year. From south to north, they decreased for lowland cytotypes but increased for upland cytotypes. Thus, the differences among varieties decreased northwards.« less
USDA-ARS?s Scientific Manuscript database
Genomic selection (GS) is an attractive technology to generate rapid genetic gains, particularly in perennial grass species like switchgrass, where phenotyping generally requires at least two years of field trial. In this study, we empirically assessed prediction procedures for GS in two different p...
Switchgrass for ethanol and lipid production
USDA-ARS?s Scientific Manuscript database
Switchgrass is being developed as a dedicated cellulosic biomass crop by the Agricultural Research Service (ARS). Switchgrass is a native prairie grass with high productivity and favorable agronomic traits. ARS researchers have recently released Liberty switchgrass, which has a 25-78% increase in bi...
ESTABLISHMENT AND EVALUATION OF SWITCHGRASS ON RECLAIMED MINE SOIL [English
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lang, David; Shankle, Brandon; Oswalt, Ernest
Switchgrass (Panicum virgatum L.) is a native warm season perennial grass that has productive potential of up to 20 Mg ha-1 of biomass and it persists for decades when harvested once per year. Switchgrass provides excellent ground cover and soil stabilization once established and contributes to soil sequestration of new carbon. Slow establishment on newly reclaimed soil, however, provides for significant erosive opportunities thereby requiring initial soil stabilization with a cover crop. Several planting options were evaluated on two topsoil substitute soils. The planting options included: 1) an existing stand of bermudagrass (Cynodon dactylon L.) that was killed with glyphosatemore » followed by disking in red oxidized topsoil substitute and prime farmland topsoil respread in 2007, 2) red oxidized topsoil substitute was seeded directly with switchgrass, 3) browntop millet (Panicum ramosum) was established with switchgrass, 4) or switchgrass was established in senescing browntop millet or wheat without tillage. Switchgrass was successfully established into a bermudagrass sod that had been killed with herbicides and disked as well as into a senescing stand of browntop millet or wheat. Significant soil erosion occurred on the disked area in 2008 leading to considerable repair work followed by planting wheat. Disked areas that did not erode had an excellent stand of switchgrass with 23.3 plants m-2 in November, 2008. Eroded areas replanted in April, 2009 into senescing wheat had 46 plants m-2 by July, 2009. The area planted directly into newly respread soil in May, 2009 was eroded severely by a 75 mm thunderstorm and was repaired, disked and replanted to switchgrass and browntop millet. Switchgrass seeded with browntop millet had a sparse switchgrass stand and was replanted to switchgrass in August, 2009. Rainfall volumes from August, 2009 to October, 2009 totaled 750 mm, but new erosion damage in areas successfully planted to switchgrass has been minimal.« less
Soil and variety effects on the energy and carbon balances of switchgrass-derived ethanol
USDA-ARS?s Scientific Manuscript database
This study examined the effects of soil and switchgrass variety on sustainability and eco-friendliness of switchgrass-based ethanol production. Using the Agricultural Land Management Alternatives with Numerical Assessment Criteria (ALMANAC) model, switchgrass biomass yields were simulated for severa...
Associations with flowering time, latitude, and climate in switchgrass
USDA-ARS?s Scientific Manuscript database
Switchgrass is a North American perennial grass and emerging bioenergy feedstock, and increasing biomass yields will improve the economic viability of switchgrass as a bioenergy crop. Flowering time is an important determinant of biomass yields in switchgrass because the majority of biomass accumula...
Switchgrass for forage and bioenergy
USDA-ARS?s Scientific Manuscript database
Switchgrass is a native warm-season grass that has been used for hay, forage, and conservation purposes for decades and switchgrass research in Nebraska has been ongoing since 1936. Recently, switchgrass has been identified as a model perennial grass for bioenergy in the Great Plains and Midwest. Si...
Compatibility of switchgrass as an energy crop in farming systems of the southeastern USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bransby, D.I.; Rodriguez-Kabana, R.; Sladden, S.E.
1993-12-31
The objective of this paper is to examine the compatibility of switchgrass as an energy crop in farming systems in the southeastern USA, relative to other regions. In particular, the issues addressed are (1) competition between switchgrass as an energy crop and existing farm enterprises, based primarily on economic returns, (2) complementarity between switchgrass and existing farm enterprises, and (3) environmental benefits. Because projected economic returns for switchgrass as an energy crop are highest in the Southeast, and returns from forestry and beef pastures (the major existing enterprises) are low, there is a very strong economic incentive in this region.more » In contrast, based on current information, economic viability of switchgrass as an energy crop in other regions appears doubtful. In addition, switchgrass in the southeastern USA would complement forage-livestock production, row crop production and wildlife and would provide several additional environmental benefits. It is concluded that the southeastern USA offers the greatest opportunity for developing switchgrass as an economically viable energy crop.« less
Natural cellulose fibers from switchgrass with tensile properties similar to cotton and linen.
Reddy, Narendra; Yang, Yiqi
2007-08-01
We report the production and characteristics of natural cellulose fibers obtained from the leaves and stems of switchgrass. In this paper, the composition, structure and properties of fibers obtained from the leaves and stem of switchgrass have been studied in comparison to the common natural cellulose fibers, such as cotton, linen and kenaf. The leaves and stems of switchgrass have tensile properties intriguingly similar to that of linen and cotton, respectively. Fibers were obtained from the leaves and stems of switchgrass using a simple alkaline extraction and the structure and properties of the fibers were studied. Fibers obtained from switchgrass leaves have crystallinity of 51%, breaking tenacity of 5.5 g per denier (715 MPa) and breaking elongation of 2.2% whereas the corresponding values for fibers obtained from switchgrass stems are 46%, 2.7 g per denier and 6.8%, respectively. Switchgrass is a relatively easy to grow and high yield biomass crop that can be source to partially substitute the natural and synthetic fibers currently in use. We hope that this research will stimulate interests in using switchgrass as a novel fiber crop in addition to being promoted as a potential source for biofuels. (c) 2007 Wiley Periodicals, Inc.
Production and supply logistics of switchgrass as an energy feedstock
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is a warm-season (C4), perennial grass that is native to the tallgrass ecoregion of North America (Figure 1). Historically, switchgrass has been used for summer forage, hay, ensiling, or in conservation plantings. At the end of the 20th century, switchgrass was de...
USDA-ARS?s Scientific Manuscript database
Transgenic switchgrass (Panicum virgatum L.) has been produced for improved cell walls for biofuels. Downregulated caffeic acid 3-O-methyltransferase (COMT) switchgrass produced significantly more biomass and biofuel than the non-transgenic progenitor line. In the present study we sought to further...
USDA-ARS?s Scientific Manuscript database
Background: Switchgrass (Panicum virgatum L.) is a warm-season perennial grass that can be used as a second generation bioenergy crop. However, foliar fungal pathogens, like switchgrass rust, have the potential to significantly reduce switchgrass biomass yield. Despite its importance as a prominent ...
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum, L.) is a potential renewable source of carbohydrates for use in microbial conversion to biofuels. Xylan comprises approximately 30% of the switchgrass cell wall. To understand the limitations of commercial enzyme mixtures, alkali-extracted, isolated switchgrass xylan w...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, Kelsey L; Rodriguez Jr, Miguel; Thompson, Olivia A
Background: Switchgrass is an abundant and dedicated bioenergy feedstock however its inherent recalcitrance is one of the economic hurdles for producing biofuels. The down-regulation of the caffeic acid O-methyl transferase (COMT) gene in the lignin pathway of switchgrass reduced lignin content and S/G ratio, and the transgenic lines showed improved fermentation yield with S. cerevisiae and C. thermocellum (ATCC 27405) in comparison to the wild-type switchgrass. Results: Here we examine the fermentation potential of the COMT transgenic switchgrass and its wild-type line, with an engineered and evolved Clostridium thermocellum (M1570) strain. The fermentation of the transgenic switchgrass had superior conversionmore » relative to the control line with an increase of 20% and ethanol was the primary metabolite accounting for 90% of the total metabolites measured by HPLC. Conclusions: The down-regulation of the COMT gene in switchgrass reduced recalcitrance and improved microbial bioconversion yield. Moreover, these results showed ethanol as the main fermentation metabolite produced by an engineered and evolved C. thermocellum strain grown on a transgenic switchgrass.« less
The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)
Milano, E. R.; Lowry, D. B.; Juenger, T. E.
2016-09-09
The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mappingmore » population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes.« less
The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milano, E. R.; Lowry, D. B.; Juenger, T. E.
The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mappingmore » population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes.« less
Gill, Upinder S; Uppalapati, Srinivasa R; Nakashima, Jin; Mysore, Kirankumar S
2015-05-08
Switchgrass rust, caused by Puccinia emaculata, is an important disease of switchgrass, a potential biofuel crop in the United States. In severe cases, switchgrass rust has the potential to significantly affect biomass yield. In an effort to identify novel sources of resistance against switchgrass rust, we explored nonhost resistance against P. emaculata by characterizing its interactions with six monocot nonhost plant species. We also studied the genetic variations for resistance among Brachypodium inbred accessions and the involvement of various defense pathways in nonhost resistance of Brachypodium. We characterized P. emaculata interactions with six monocot nonhost species and identified Brachypodium distachyon (Bd21) as a suitable nonhost model to study switchgrass rust. Interestingly, screening of Brachypodium accessions identified natural variations in resistance to switchgrass rust. Brachypodium inbred accessions Bd3-1 and Bd30-1 were identified as most and least resistant to switchgrass rust, respectively, when compared to tested accessions. Transcript profiling of defense-related genes indicated that the genes which were induced in Bd21after P. emaculata inoculation also had higher basal transcript abundance in Bd3-1 when compared to Bd30-1 and Bd21 indicating their potential involvement in nonhost resistance against switchgrass rust. In the present study, we identified Brachypodium as a suitable nonhost model to study switchgrass rust which exhibit type I nonhost resistance. Variations in resistance response were also observed among tested Brachypodium accessions. Brachypodium nonhost resistance against P. emaculata may involve various defense pathways as indicated by transcript profiling of defense related genes. Overall, this study provides a new avenue to utilize novel sources of nonhost resistance in Brachypodium against switchgrass rust.
USDA-ARS?s Scientific Manuscript database
Two experiments were conducted at the University of Kentucky Spindletop Farm in Lexington, Kentucky between October and November, 2009 to evaluate the effect of different percentages of alfalfa (Medicago sativa) as mixtures in switchgrass (Panicum virgatus) and bermudagrass (Cynodon dactylon) silage...
Switchgrass potential on reclaimed surface mines for biofuel production in West Virginia
NASA Astrophysics Data System (ADS)
Marra, Michael A.
The high cost and environmental risks associated with non-renewable energy sources has caused an increased interest in, and development of renewable biofuels. Switchgrass (Panicum virgatum L.), a warm season perennial grass, has been investigated as a source of biofuel feedstock due to its high biomass production on marginal soils, its tolerance of harsh growing conditions, and its ability to provide habitat for wildlife and soil conservation cover. West Virginia contains vast expanses of reclaimed surface mine lands and could potentially benefit from the production of switchgrass as a biofuel feedstock. Furthermore, switchgrass production could satisfy Surface Mining Reclamation and Control Act of 1977 (SMCRA) requirements for reclamation bond release to mine operators. Three separate studies will be discussed in this thesis to determine if switchgrass grown on reclaimed surface mines can produce yields similar to yields from stands grown under normal agronomic conditions and what common surface mining reclamation practices may be most appropriate for growing switchgrass. The first study examined yield production of three commercially-available, upland switchgrass varieties grown on two reclaimed surface mines in production years two, three and four. The Hampshire Hill mine site, which was reclaimed in the late 1990s using top soil and treated municipal sludge, averaged 5,800 kg (ha-yr)-1 of switchgrass compared to 803 kg (ha-yr)-1 at the Hobet 21 site which was reclaimed with crushed, unweathered rock over compacted overburden. Site and variety interacted with Cave-in-Rock as the top performer at the more fertile Hampshire Hill site and Shawnee produced the highest yields at Hobet 21 (7,853 kg ha-1 and 1,086 kg ha-1 averaged across years, respectively). Switchgrass yields increased from 2009 to 2010, but declined from 2010 to 2011. Switchgrass yields from farmlands in this region averaged about 15000 kg (ha-yr)-1 in the research literature, so switchgrass grown on reclaimed lands appears to be about 50% lower. A second study to determine optimal nitrogen and mulch rates for switchgrass establishment began in June 2011 on two newly-reclaimed surface mines. Both sites were seeded at a rate of 11.2 kg pure live seed (PLS) ha-1 of Cave-in-Rock on replicated treatments of 0, 33.6 and 67.0 kg N ha-1, and high and low mulch rates of mulch applied as hydromulch. Switchgrass cover, frequency and yield improved with the addition of any amount of N fertilizer compared to no N application. There was no significant difference in yield associated with high and low levels of N. We also observed that yields were not affected by application of additional mulch. The final study compared a one- and two-harvest system in the fourth year of production at the Hampshire Hill and Hobet 21 sites. There was no increase in yield production utilizing a two-harvest system (2922 kg (ha-yr)-1, averaged across site) compared to a one-harvest system (3029 kg (ha-yr)-1). The data also showed that re-growth collected from July to October in the two-harvest system added negligible yield and that yield collected in July was comparable in one- and two-harvest systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starace, Anne K.; Evans, Robert J.; Lee, David D.
A variety of hardwood, softwood, and herbaceous feedstocks (oak, southern yellow pine mix, loblolly pine, pinyon-juniper mix, and switchgrass) were each torrefied at 200, 250, and 300 °C. Each of the feedstocks was pyrolyzed and the resulting vapors were analyzed with a molecular beam mass spectrometer (py-MBMS). Compositional analysis was used to measure the total lignin content of three of the feedstocks (southern yellow pine, softwood; oak, hardwood; and switchgrass, herbaceous) before and after torrefaction at 300 °C, and large differences in the fraction of lignin lost during torrefaction were found between feedstocks, with oak having the largest decrease inmore » lignin during torrefaction and switchgrass having the least. Finally, it is hypothesized that these differences in the thermal degradation are due to, in part, the different ratios of S, G, and H lignins in the feedstocks. Additionally, the torrefaction of kraft lignin was studied using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA-FTIR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR).« less
Mild pyrolysis of P3HB/Switchgrass blends for the production of bio-oil enriched with crotonic acid
USDA-ARS?s Scientific Manuscript database
The mild pyrolysis of switchgrass/poly-3-hydroxybutyrate (P3HB) blends that mimic P3HB-producing switchgrass lines was studied in a pilot scale fluidized bed reactor with the goal of simultaneously producing crotonic acid and switchgrass-based bio-oil. Factors such as pyrolysis temperature, residenc...
Loman, Zachary G.; Riffell, Samuel K.; Wheat, Bradley R.; Miller, Darrin A.; Martin, James A.; Vilella, Francisco
2014-01-01
Intercropping switchgrass (Panicum virgatum L.) between tree rows within young pine (Pinus spp.) plantations is a potential method to generate lignocellulosic biofuel feedstocks within intensively managed forests. Intensively managed pine supports a diverse avian assemblage potentially affected by establishment and maintenance of an annual biomass feedstock via changes in plant communities, dead wood resources, and habitat structure. We sought to understand how establishing switchgrass on an operational scale affects bird communities within intercropped plantations as compared to typical intensively managed loblolly pine (Pinus taeda L.) forest. We conducted breeding bird point counts using distance sampling for three years (2011–2013) following establishment of intercropped switchgrass stands (6 replicates), traditionally-managed pine plantations, and switchgrass-only plots (0.1 km2 minimum) in Kemper Co., MS. We detected 59 breeding bird species from 11,195 detections. Neotropical migrants and forest-edge associated species were less abundant in intercropped plots than controls the first two years after establishment and more abundant in year three. Short distance migrants and residents were scarce in intercropped and control plots initially, and did not differ between these two treatments in any year. Species associated with pine-grass habitat structure were less abundant initially in intercropped plots, but converged with pine controls in subsequent years. Switchgrass monocultures provided minimal resources for birds. If songbird conservation is a management priority, managers should consider potential reductions of some breeding birds for one to two years following intercropping. It is unclear how these relationships may change outside the breeding season and as stands age.
Utilization of lignocellulosic polysaccharides
NASA Astrophysics Data System (ADS)
Fenske, John James
Lignocellulosic biomass represents a vast supply of fermentable carbohydrates and functional aromatic compounds. Conversion of lignocellulosics to ethanol and other useful products would be of widespread economical and environmental benefit. Better understanding of the behavior of different lignocellulosic feedstocks in fermentation protocols as well as catalytic activities involved in lignocellulosic depolymerization will further enhance the commercial viability of biomass-to-ethanol conversion processes. The relative toxicity of the combined non-xylose components in prehydrolysates derived from three different lignocellulosic biomass feedstocks (poplar, corn stover and switchgrass, or Panicum virgatum L.) was determined using a Pichia stipits fermentation assay. The relative toxicity of the prehydrolysates, in decreasing order, was poplar-derived prehydrolysates > switchgrass-derived prehydrolysates > corn stover-derived prehydrolysates. Ethanol yields averaged 74%, 83% and 88% of control values for poplar, switchgrass and corn stover prehydrolysates, respectively. Volumetric ethanol productivities (g ethanol lsp{-1} hsp{-1}) averaged 32%, 70% and 102% of control values for poplar, switchgrass and corn stover prehydrolysates, respectively. Ethanol productivities correlated closely with acetate concentrations in the prehydrolysates; however, regression lines correlating acetate concentrations and ethanol productivities were found to be feedstock-dependent. Differences in the relative toxicity of xylose-rich prehydrolysates derived from woody and herbaceous feedstocks are likely due to the relative abundance of a variety of inhibitory compounds, e.g. acetate and aromatic compounds. Fourteen aromatic monomers present in prehydrolysates prepared from corn stover, switchgrass, and poplar were tentatively identified by comparison with published mass spectra. The concentrations of the aromatic monomers totaled 112, 141 and 247 mg(l)sp{-1} for corn stover, switchgrass and poplar prehydrolysates, respectively. The woody and herbaceous feedstocks differed in both amount and type of aromatic monomers. The cellulases of Trichoderma reesei are the most widely studied for use in the depolymerization of lignocellulosics. The Trichoderma cellobiohydrolases CBH1 and CBH2 are traditionally categorized as exo-acting cellulases. A simple individual-based model was created to explore the potential effects of native endo activity on substrate-velocity profiles. The model results indicate that an enzyme with a small amount of endo activity will show an apparent substrate inhibition as substrate levels are increased. Actual hydrolysis studies using affinity chromatography-purified CBH2 preparations from three laboratories indicate that CBH2 has native endo activity, while CBH1 does not.
Frazier, Taylor P.; Palmer, Nathan A.; Xie, Fuliang; ...
2016-11-08
Switchgrass ( Panicum virgatum L.) is a warm-season perennial grass that can be used as a second generation bioenergy crop. However, foliar fungal pathogens, like switchgrass rust, have the potential to significantly reduce switchgrass biomass yield. Despite its importance as a prominent bioenergy crop, a genome-wide comprehensive analysis of NB-LRR disease resistance genes has yet to be performed in switchgrass. In this study, we used a homology-based computational approach to identify 1011 potential NB-LRR resistance gene homologs (RGHs) in the switchgrass genome (v 1.1). In addition, we identified 40 RGHs that potentially contain unique domains including major sperm protein domain,more » jacalin-like binding domain, calmodulin-like binding, and thioredoxin. RNA-sequencing analysis of leaf tissue from ‘Alamo’, a rust-resistant switchgrass cultivar, and ‘Dacotah’, a rust-susceptible switchgrass cultivar, identified 2634 high quality variants in the RGHs between the two cultivars. RNA-sequencing data from field-grown cultivar ‘Summer’ plants indicated that the expression of some of these RGHs was developmentally regulated. Our results provide useful insight into the molecular structure, distribution, and expression patterns of members of the NB-LRR gene family in switchgrass. These results also provide a foundation for future work aimed at elucidating the molecular mechanisms underlying disease resistance in this important bioenergy crop.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frazier, Taylor P.; Palmer, Nathan A.; Xie, Fuliang
Switchgrass ( Panicum virgatum L.) is a warm-season perennial grass that can be used as a second generation bioenergy crop. However, foliar fungal pathogens, like switchgrass rust, have the potential to significantly reduce switchgrass biomass yield. Despite its importance as a prominent bioenergy crop, a genome-wide comprehensive analysis of NB-LRR disease resistance genes has yet to be performed in switchgrass. In this study, we used a homology-based computational approach to identify 1011 potential NB-LRR resistance gene homologs (RGHs) in the switchgrass genome (v 1.1). In addition, we identified 40 RGHs that potentially contain unique domains including major sperm protein domain,more » jacalin-like binding domain, calmodulin-like binding, and thioredoxin. RNA-sequencing analysis of leaf tissue from ‘Alamo’, a rust-resistant switchgrass cultivar, and ‘Dacotah’, a rust-susceptible switchgrass cultivar, identified 2634 high quality variants in the RGHs between the two cultivars. RNA-sequencing data from field-grown cultivar ‘Summer’ plants indicated that the expression of some of these RGHs was developmentally regulated. Our results provide useful insight into the molecular structure, distribution, and expression patterns of members of the NB-LRR gene family in switchgrass. These results also provide a foundation for future work aimed at elucidating the molecular mechanisms underlying disease resistance in this important bioenergy crop.« less
NASA Astrophysics Data System (ADS)
Shui, Junfeng; An, Yu; Ma, Yongqing; Ichizen, Nobumasa
2010-10-01
This study investigated allelopathy and its chemical basis in nine switchgrass ( Panicum virgatum L.) accessions. Perennial ryegrass ( Lolium perenne L.) and alfalfa ( Medicago sativa L.) were used as test species. Undiluted aqueous extracts (5 g plant tissue in 50 ml water) from the shoots and roots of most of the switchgrass accessions inhibited the germination and growth of the test species. However, the allelopathic effect of switchgrass declined when extracts were diluted 5- or 50-fold. Seedling growth was more sensitive than seed germination as an indicator of allelopathic effect. Allelopathic effect was related to switchgrass ecotype but not related to ploidy level. Upland accessions displayed stronger allelopathic potential than lowland accessions. The aqueous extract from one switchgrass accession was separated into phenols, organic acids, neutral chemicals, and alkaloids, and then these fractions were bioassayed to test for allelopathic potential. Alkaloids had the strongest allelopathic effect among the four chemical fractions. In summary, the results indicated that switchgrass has allelopathic potential; however, there is not enough evidence to conclude that allelopathic advantage is the main factor that has contributed to the successful establishment of switchgrass on China’s Loess Plateau.
Shui, Junfeng; An, Yu; Ma, Yongqing; Ichizen, Nobumasa
2010-10-01
This study investigated allelopathy and its chemical basis in nine switchgrass (Panicum virgatum L.) accessions. Perennial ryegrass (Lolium perenne L.) and alfalfa (Medicago sativa L.) were used as test species. Undiluted aqueous extracts (5 g plant tissue in 50 ml water) from the shoots and roots of most of the switchgrass accessions inhibited the germination and growth of the test species. However, the allelopathic effect of switchgrass declined when extracts were diluted 5- or 50-fold. Seedling growth was more sensitive than seed germination as an indicator of allelopathic effect. Allelopathic effect was related to switchgrass ecotype but not related to ploidy level. Upland accessions displayed stronger allelopathic potential than lowland accessions. The aqueous extract from one switchgrass accession was separated into phenols, organic acids, neutral chemicals, and alkaloids, and then these fractions were bioassayed to test for allelopathic potential. Alkaloids had the strongest allelopathic effect among the four chemical fractions. In summary, the results indicated that switchgrass has allelopathic potential; however, there is not enough evidence to conclude that allelopathic advantage is the main factor that has contributed to the successful establishment of switchgrass on China's Loess Plateau.
Lai, Liming; Kumar, Sandeep; Mbonimpa, Eric G; Hong, Chang Oh; Owens, Vance N; Neupane, Ram P
2016-04-15
Dissolved organic carbon (DOC) through leaching into the soils is another mechanism of net C loss. It plays an important role in impacting the environment and impacted by soil and crop management practices. However, little is known about the impacts of landscape positions and nitrogen (N) fertilizer rates on DOC leaching in switchgrass (Panicum virgatum L.). This experimental design included three N fertilizer rates [0 (low); 56 (medium); 112 (high) kg N ha(-1)] and three landscape positions (shoulder, backslope and footslope). Daily average DOC contents at backslope were significantly lower than that at shoulder and footslope. The DOC contents from the plots that received medium N rate were also significantly lower than the plots that received low N rates. The interactions of landscape and N rates on DOC contents were different in every year from 2009 to 2014, however, no significant consistent trend of DOC contents was observed over time. Annual average DOC contents from the plots managed with low N rate were higher than those with high N rate. These contents at the footslope were higher than that at the shoulder position. Data show that there is a moderate positive relationship between the total average DOC contents and the total average switchgrass biomass yields. Overall, the DOC contents from leachate in the switchgrass land were significantly influenced by landscape positions and N rates. The N fertilization reduced DOC leaching contents in switchgrass field. The switchgrass could retain soil and environment sustainability to some extent. These findings will assist in understanding the mechanism of changes in DOC contents with various parameters in the natural environment and crop management systems. However, use of long-term data might help to better assess the effects of above factors on DOC leaching contents and loss in the switchgrass field in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kinetics of methane production from the codigestion of switchgrass and Spirulina platensis algae.
El-Mashad, Hamed M
2013-03-01
Anaerobic batch digestion of four feedstocks was conducted at 35 and 50 °C: switchgrass; Spirulina platensis algae; and two mixtures of both switchgrass and S. platensis. Mixture 1 was composed of 87% switchgrass (based on volatile solids) and 13% S. platensis. Mixture 2 was composed of 67% switchgrass and 33% S. platensis. The kinetics of methane production from these feedstocks was studied using four first order models: exponential, Gompertz, Fitzhugh, and Cone. The methane yields after 40days of digestion at 35 °C were 355, 127, 143 and 198 ml/g VS, respectively for S. platensis, switchgrass, and Mixtures 1 and 2, while the yields at 50 °C were 358, 167, 198, and 236 ml/g VS, respectively. Based on Akaike's information criterion, the Cone model best described the experimental data. The Cone model was validated with experimental data collected from the digestion of a third mixture that was composed of 83% switchgrass and 17% S. platensis. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Jennifer B.; Qin, Zhangcai; Mueller, Steffen
The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass. This document discusses the version of CCLUB released September 30, 2014 which includes corn and three cellulosic feedstocks: corn stover, Miscanthus, and switchgrass.
Sulfite (SPORL) pretreatment of switchgrass for enzymatic saccharification
D.S. Zhang; Q. Yang; J.Y. Zhu; X.J. Pan
2013-01-01
SPORL (Sulfite Pretreatment to Overcome Recalcitrance of Lignocellulose) pretreatment was applied to switchgrass and optimized through an experimental design using Response Surface Methodology within the range of temperature (163â197 °C), time (3â37 min), sulfuric acid dosage (0.8â4.2% on switchgrass), and sodium sulfite dosage (0.6â7.4% on switchgrass)....
Gu, Yingxin; Wylie, Bruce K.
2018-01-01
Switchgrass (Panicum virgatum) has been evaluated as one potential source for cellulosic biofuel feedstocks. Planting switchgrass in marginal croplands and waterway buffers can reduce soil erosion, improve water quality, and improve regional ecosystem services (i.e. it serves as a potential carbon sink). In previous studies, we mapped high risk marginal croplands and highly erodible cropland buffers that are potentially suitable for switchgrass development, which would improve ecosystem services and minimally impact food production. In this study, we advance our previous study results and integrate future crop expansion information to develop a switchgrass biofuel potential ensemble map for current and future croplands in eastern Nebraska. The switchgrass biomass productivity and carbon benefits (i.e. NEP: net ecosystem production) for the identified biofuel potential ensemble areas were quantified. The future scenario‐based (‘A1B’) land use and land cover map for 2050, the US Geological Survey crop type and Compound Topographic Index (CTI) maps, and long‐term (1981–2010) averaged annual precipitation data were used to identify future crop expansion regions that are suitable for switchgrass development. Results show that 2528 km2 of future crop expansion regions (~3.6% of the study area) are potentially suitable for switchgrass development. The total estimated biofuel potential ensemble area (including cropland buffers, marginal croplands, and future crop expansion regions) is 4232 km2 (~6% of the study area), potentially producing 3.52 million metric tons of switchgrass biomass per year. Converting biofuel ensemble regions to switchgrass leads to potential carbon sinks (the total NEP for biofuel potential areas is 0.45 million metric tons C) and is environmentally sustainable. Results from this study improve our understanding of environmental conditions and ecosystem services of current and future cropland systems in eastern Nebraska and provide useful information to land managers to make land use decisions regarding switchgrass development.
Campbell, Joshua W; Miller, Darren A; Martin, James A
2016-11-04
Intensively-managed pine ( Pinus spp.) have been shown to support diverse vertebrate communities, but their ability to support invertebrate communities, such as wild bees, has not been well-studied. Recently, researchers have examined intercropping switchgrass ( Panicum virgatum ), a native perennial, within intensively managed loblolly pine ( P. taeda ) plantations as a potential source for cellulosic biofuels. To better understand potential effects of intercropping on bee communities, we investigated visitation of bees within three replicates of four treatments of loblolly pine in Mississippi, U.S.A.: 3-4 year old pine plantations and 9-10 year old pine plantations with and without intercropped switchgrass. We used colored pan traps to capture bees during the growing seasons of 2013 and 2014. We captured 2507 bees comprised of 18 different genera during the two-year study, with Lasioglossum and Ceratina being the most common genera captured. Overall, bee abundances were dependent on plantation age and not presence of intercropping. Our data suggests that switchgrass does not negatively impact or promote bee communities within intensively-managed loblolly pine plantations.
Zhao, Chunqiao; Fan, Xifeng; Hou, Xincun; Zhu, Yi; Yue, Yuesen; Zhang, Shuang; Wu, Juying
2015-01-01
In this study, tassels of Cave-in-Rock (upland) and Alamo (lowland) were removed at or near tassel emergence to explore its effects on biomass production and quality. Tassel-removed (TR) Cave-in-Rock and Alamo both exhibited a significant (P<0.05) increase in plant heights (not including tassel length), tiller number, and aboveground biomass dry weight (10% and 12%, 30% and 13%, 13% and 18%, respectively by variety) compared to a control (CK) treatment. Notably, total sugar yields of TR Cave-in-Rock and Alamo stems increased significantly (P<0.05 or 0.01) by 19% and 19%, 21% and 14%, 52% and 18%, respectively by variety, compared to those of control switchgrass under 3 treatments by direct enzymatic hydrolysis (DEH), enzymatic hydrolysis after 1% NaOH pretreatment (EHAL) and enzymatic hydrolysis after 1% H2SO4 pretreatment (EHAC). These differences were mainly due to significantly (P<0.05 or 0.01) higher cellulose content, lower cellulose crystallinity indexes (CrI) caused by higher arabinose (Ara) substitution in xylans, and lower S/G ratio in lignin. However, the increases of nitrogen (N) and sulphur (S) concentration negatively affects the combustion quality of switchgrass aboveground biomass. This work provides information for increasing biomass production and quality in switchgrass and also facilitates the inhibition of gene dispersal of switchgrass in China. PMID:25849123
Wu, Wentao; Ju, Meiting; Liu, Jinpeng; Liu, Boqun
2016-04-25
Ensilage is a traditional way of preserving fresh biomass. However, in order to apply ensilage to the ethanol biorefinery, two parameters need to be evaluated: quantity and quality changes of the biomass; and its effects on bioconversion process. To study these two aspects, switchgrass harvested on three different time points (Early, mid and late fall) were used as feedstock. The early fall harvested biomass was ensiled at 5 moisture levels ranging from 30% to 70%. Silage of 40% moisture and 3 other raw switchgrass were pretreated with liquid hot water, followed by enzymatic hydrolysis as well as simultaneous saccharification and fermentation. After 21 days storage pH values of all silages decreased below 4.0 and the dry matter losses were less than 2.0%, and structural sugars contents did not change dramatically. Liquid hot water caused more hemicellulose dissolution in the silage than in unensiled switchgrass. However, ensilage also increased the risk of releasing more sugar degradation products; After enzymatic hydrolysis, silage obtained higher total glucose, xylose and galactose yields than raw materials; After simultaneous saccharification and fermentation, ethanol concentration in silage was 12.1 g/L, higher than the unensiled switchgrass (10.3 g/L, 9.7 g/L and 10.6 g/L for early, mid and late fall respectively). Our results suggest that ensilage helps increase pretreatment efficiency and sugar yield, which increases final ethanol production.
AmeriFlux US-AR2 ARM USDA UNL OSU Woodward Switchgrass 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billesbach, Dave; Bradford, James
This is the AmeriFlux version of the carbon flux data for the site US-AR2 ARM USDA UNL OSU Woodward Switchgrass 2. Site Description - The ARM USDA UNL OSU Woodward Switchgrass 2 tower is located on public land owned by the USDA-ARS Southern Plains Range Research Station in Woodward, Oklahoma. The site is on a former wheat field that is in the process of changing to switchgrass. A companion site (ARM USDA UNL OSU Woodward Switchgrass 1) is on a former native prairie. Previous wheat was planted in Fall 2008. In Spring 2009, herbicide was applied to kill the wheatmore » prior to switchgrass planting. Later in the year, the site was sprayed with post-emergence herbicide. In 2010, fertilization occurred before herbicide was sprayed for broadleaf control.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenkel, Philip; Holcomb, Rodney B.
In order for the biofuel industry to meet the RFS benchmarks for biofuels, new feedstock sources and production systems will have to be identified and evaluated. The Southern Plains has the potential to produce over a billion gallons of biofuels from regionally produced alternative crops, agricultural residues, and animal fats. While information on biofuel conversion processes is available, it is difficult for entrepreneurs, community planners and other interested individuals to determine the feasibility of biofuel processes or to match production alternatives with feed stock availability and community infrastructure. This project facilitates the development of biofuel production from these regionally availablemore » feed stocks. Project activities are concentrated in five major areas. The first component focused on demonstrating the supply of biofuel feedstocks. This involves modeling the yield and cost of production of dedicated energy crops at the county level. In 1991 the DOE selected switchgrass as a renewable source to produce transportation fuel after extensive evaluations of many plant species in multiple location (Caddel et al,. 2010). However, data on the yield and cost of production of switchgrass are limited. This deficiency in demonstrating the supply of biofuel feedstocks was addressed by modeling the potential supply and geographic variability of switchgrass yields based on relationship of available switchgrass yields to the yields of other forage crops. This model made it possible to create a database of projected switchgrass yields for five different soil types at the county level. A major advantage of this methodology is that the supply projections can be easily updated as improved varieties of switchgrass are developed and additional yield data becomes available. The modeling techniques are illustrated using the geographic area of Oklahoma. A summary of the regional supply is then provided.« less
Andres Susaeta; Janaki Alavalapati Pankaj Lal; D. Evan Mercer; Douglas Carter
2012-01-01
Abstract The main objective of this study was to assess the economics of alley cropping of loblolly pine (Pinus taeda L.) and switchgrass (Panicum virgatum) in the southern United States. Assuming a price range of switchgrass between $15 and $50 Mg-1 and yield of 12 Mg ha-1 year-1, we investigated the effect of switchgrass production on the optimal forest management...
Fu, Chunxiang; Mielenz, Jonathan R.; Xiao, Xirong; Ge, Yaxin; Hamilton, Choo Y.; Rodriguez, Miguel; Chen, Fang; Foston, Marcus; Ragauskas, Arthur; Bouton, Joseph; Dixon, Richard A.; Wang, Zeng-Yu
2011-01-01
Switchgrass is a leading dedicated bioenergy feedstock in the United States because it is a native, high-yielding, perennial prairie grass with a broad cultivation range and low agronomic input requirements. Biomass conversion research has developed processes for production of ethanol and other biofuels, but they remain costly primarily because of the intrinsic recalcitrance of biomass. We show here that genetic modification of switchgrass can produce phenotypically normal plants that have reduced thermal-chemical (≤180 °C), enzymatic, and microbial recalcitrance. Down-regulation of the switchgrass caffeic acid O-methyltransferase gene decreases lignin content modestly, reduces the syringyl:guaiacyl lignin monomer ratio, improves forage quality, and, most importantly, increases the ethanol yield by up to 38% using conventional biomass fermentation processes. The down-regulated lines require less severe pretreatment and 300–400% lower cellulase dosages for equivalent product yields using simultaneous saccharification and fermentation with yeast. Furthermore, fermentation of diluted acid-pretreated transgenic switchgrass using Clostridium thermocellum with no added enzymes showed better product yields than obtained with unmodified switchgrass. Therefore, this apparent reduction in the recalcitrance of transgenic switchgrass has the potential to lower processing costs for biomass fermentation-derived fuels and chemicals significantly. Alternatively, such modified transgenic switchgrass lines should yield significantly more fermentation chemicals per hectare under identical process conditions. PMID:21321194
Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose
Socha, Aaron M.; Parthasarathi, Ramakrishnan; Shi, Jian; Pattathil, Sivakumar; Whyte, Dorian; Bergeron, Maxime; George, Anthe; Tran, Kim; Stavila, Vitalie; Venkatachalam, Sivasankari; Hahn, Michael G.; Simmons, Blake A.; Singh, Seema
2014-01-01
Ionic liquids (ILs), solvents composed entirely of paired ions, have been used in a variety of process chemistry and renewable energy applications. Imidazolium-based ILs effectively dissolve biomass and represent a remarkable platform for biomass pretreatment. Although efficient, imidazolium cations are expensive and thus limited in their large-scale industrial deployment. To replace imidazolium-based ILs with those derived from renewable sources, we synthesized a series of tertiary amine-based ILs from aromatic aldehydes derived from lignin and hemicellulose, the major by-products of lignocellulosic biofuel production. Compositional analysis of switchgrass pretreated with ILs derived from vanillin, p-anisaldehyde, and furfural confirmed their efficacy. Enzymatic hydrolysis of pretreated switchgrass allowed for direct comparison of sugar yields and lignin removal between biomass-derived ILs and 1-ethyl-3-methylimidazolium acetate. Although the rate of cellulose hydrolysis for switchgrass pretreated with biomass-derived ILs was slightly slower than that of 1-ethyl-3-methylimidazolium acetate, 90–95% glucose and 70–75% xylose yields were obtained for these samples after 72-h incubation. Molecular modeling was used to compare IL solvent parameters with experimentally obtained compositional analysis data. Effective pretreatment of lignocellulose was further investigated by powder X-ray diffraction and glycome profiling of switchgrass cell walls. These studies showed different cellulose structural changes and differences in hemicellulose epitopes between switchgrass pretreatments with the aforementioned ILs. Our concept of deriving ILs from lignocellulosic biomass shows significant potential for the realization of a “closed-loop” process for future lignocellulosic biorefineries and has far-reaching economic impacts for other IL-based process technology currently using ILs synthesized from petroleum sources. PMID:25136131
NASA Astrophysics Data System (ADS)
De Graaff, M. A.; Jastrow, J. D.; Adkins, J.; Johns, A. C.; Morris, G.; Six, J.
2016-12-01
Land-use change for bioenergy production can create greenhouse gas (GHG) emissions through disturbance of soil carbon (C) pools, but native species with extensive root systems may rapidly repay the GHG debt by enhancing soil C sequestration upon land-use change, particularly when grown in diverse mixtures. Here we investigated how root traits and genotypic diversity in switchgrass (Panicum virgatum) impacts yield, nitrogen (N) cycling and soil C stabilization. Owing to extensive within-species variation in root morphology and architecture among the switchgrass cultivars, we hypothesized that increasing cultivar diversity would enhance belowground niche differentiation, thereby increasing N use efficiency, yield, and ultimately soil C stabilization. Our experiment was conducted at the Fermilab National Environmental Research Park, in northeastern Illinois, USA, where we varied the level of switchgrass genotypic diversity using various local and non-local cultivars (1, 2, 4, or 6 cultivars per plot) in a replicated field trial. We found that genotypic mixtures had one-third higher biomass production than the average monoculture, and no monoculture was significantly higher yielding than the average mixture. Further, year-to-year variation in yields was reduced in the mixture of switchgrass relative to the species monocultures. Despite positive impacts of increased intraspecific diversity on biomass production, we found no effect on N use efficiency, or soil C sequestration. However there were differences among cultivars in soil C input and soil C stabilization. These differences were related to specific root length (SRL), where greater SRL was accompanied by more root-derived soil C. Our findings suggest SRL is a root trait that affects soil C input, and that genotypic mixtures could help provide high, stable yields of high-quality biomass feedstocks.
Anthracnose disease of switchgrass caused by the novel fungal species Colletotrichum navitas.
Crouch, Jo Anne; Beirn, Lisa A; Cortese, Laura M; Bonos, Stacy A; Clarke, Bruce B
2009-12-01
In recent years perennial grasses such as the native tallgrass prairie plant Panicum virgatum (switchgrass) have taken on a new role in the North American landscape as a plant-based source of renewable energy. Because switchgrass is a native plant, it has been suggested that disease problems will be minimal, but little research in this area has been conducted. Recently, outbreaks of switchgrass anthracnose disease have been reported from the northeastern United States. Incidences of switchgrass anthracnose are known in North America since 1886 through herbarium specimens and disease reports, but the causal agent of this disease has never been experimentally determined or taxonomically evaluated. In the present work, we evaluate the causal agent of switchgrass anthracnose, a new species we describe as Colletotrichum navitas (navitas=Latin for energy). Multilocus molecular phylogenetics and morphological characters show C. navitas is a novel species in the falcate-spored graminicolous group of the genus Colletotrichum; it is most closely related to the corn anthracnose pathogen Colletotrichum graminicola. We present a formal description and illustrations for C. navitas and provide experimental confirmation that this organism is responsible for switchgrass anthracnose disease.
Microwave pretreatment of switchgrass for bioethanol production
NASA Astrophysics Data System (ADS)
Keshwani, Deepak Radhakrishin
Lignocellulosic materials are promising alternative feedstocks for bioethanol production. These materials include agricultural residues, cellulosic waste such as newsprint and office paper, logging residues, and herbaceous and woody crops. However, the recalcitrant nature of lignocellulosic biomass necessitates a pretreatment step to improve the yield of fermentable sugars. The overall goal of this dissertation is to expand the current state of knowledge on microwave-based pretreatment of lignocellulosic biomass. Existing research on bioenergy and value-added applications of switchgrass is reviewed in Chapter 2. Switchgrass is an herbaceous energy crop native to North America and has high biomass productivity, potentially low requirements for agricultural inputs and positive environmental impacts. Based on results from test plots, yields in excess of 20 Mg/ha have been reported. Environmental benefits associated with switchgrass include the potential for carbon sequestration, nutrient recovery from run-off, soil remediation and provision of habitats for grassland birds. Published research on pretreatment of switchgrass reported glucose yields ranging from 70-90% and xylose yields ranging from 70-100% after hydrolysis and ethanol yields ranging from 72-92% after fermentation. Other potential value-added uses of switchgrass include gasification, bio-oil production, newsprint production and fiber reinforcement in thermoplastic composites. Research on microwave-based pretreatment of switchgrass and coastal bermudagrass is presented in Chapter 3. Pretreatments were carried out by immersing the biomass in dilute chemical reagents and exposing the slurry to microwave radiation at 250 watts for residence times ranging from 5 to 20 minutes. Preliminary experiments identified alkalis as suitable chemical reagents for microwave-based pretreatment. An evaluation of different alkalis identified sodium hydroxide as the most effective alkali reagent. Under optimum pretreatment conditions, 82% glucose and 63% xylose yields were achieved for switchgrass, and 87% glucose and 59% xylose yields were achieved for coastal bermudagrass following enzymatic hydrolysis of the pretreated biomass. The optimum enzyme loadings were 15 FPU/g and 20 CBU/g for switchgrass and 10 FPU/g and 20 CBU/g for coastal bermudagrass. Dielectric properties for dilute sodium hydroxide solutions were measured and compared to solid loss, lignin reduction and reducing sugar levels in hydrolyzates. Results indicate that the dielectric loss tangent of alkali solutions is a potential indicator of the severity of microwave-based pretreatments. Modeling of pretreatment processes can be a valuable tool in process simulations of bioethanol production from lignocellulosic biomass. Chapter 4 discusses three different approaches that were used to model delignification and carbohydrate loss during microwave-based pretreatment of switchgrass: statistical linear regression modeling, kinetic modeling using a time-dependent rate coefficient, and a Mamdani-type fuzzy inference system. The dielectric loss tangent of the alkali reagent and pretreatment time were used as predictors in all models. The statistical linear regression model for delignification gave comparable root mean square error (RMSE) values for training and testing data and predictions were approximately within 1% of experimental values. The kinetic model for delignification and xylan loss gave comparable RMSE values for training and testing data sets and predictions were approximately within 2% of experimental values. The kinetic model for cellulose loss was not as effective and predictions were only within 5-7% of experimental values. The time-dependent rate coefficients of the kinetic models calculated from experimental data were consistent with the heterogeneity (or lack thereof) of individual biomass components. The Mamdani-type fuzzy inference system was shown to be an effective means to model pretreatment processes and gave the most accurate predictions (<3%) for cellulose loss.
Modifying a Cow-Calf Biophysical Simulation Model for Analyses of Alternative Enterprises
NASA Astrophysics Data System (ADS)
Lutes, Jennifer L.
Cow-calf producers in the United States, tasked with providing beef calves for the beef industry, have had a multitude of difficulties to overcome in recent years. Producers in northwest Arkansas were negatively impacted by high hay prices coupled with low beef cattle market prices due to severe drought experienced in portions of 2010, 2011, and 2012. During this time they also faced high grain prices, due to a record low harvest, combined with portions of the corn harvest diverted from human and animal feed to ethanol production. Tight lending policies of this time, reminiscent of the housing market crash in 2008, along with the negative public attention associated with high levels of greenhouse gas emissions associated with beef production, lead to a tough situation for cattle producers faced with increasing input costs, decreased revenue, and lack of access to loans. With these issues in mind, this research aimed to determine if incorporating switchgrass (Panicum virgatum) production on a cow-calf farm could serve to increase net returns, decrease income volatility, lower net greenhouse gas (GHG) emissions without decreasing beef output, and provide a viable source of feedstock for a potential bio-refinery. The study determined that switchgrass is a potential solution to these problems and thus aimed to discover differences in switchgrass supply under different government policies in four northwestern counties in Arkansas to an as-yet, non-existent bio-refinery. It was determined that growing switchgrass on pastureland, once devoted to cow-calf production, is a viable enterprise diversification tool that under the right conditions could be used to improve producer financial and environmental outcomes. However, bioenergy production is slow to gain traction in the US due to adverse market conditions from low fossil fuel prices. Thus, in the US, there are only a few bio-refineries currently online and accepting lignocellulosic biomass, however none of them are close enough to northwest Arkansas to incentivize biomass production in this region. With this in mind, the results from an individual farm with switchgrass were extrapolated to a four county region to determine potential biomass supply for a hypothetical biorefinery. In conjunction with this analysis, two potential policies aimed at increasing biomass supply and lowering carbon emissions, were analyzed for their implications on the financial and environmental wellbeing of farms. It turns out, each of the two policies, the Biomass Crop Assistance Program (BCAP) and a Carbon Offset Program (CO), encourage the production of switchgrass and policy outcomes are most favorable when land of adequate quality is chosen to support higher switchgrass yield. At lower yield levels, the inclusion of switchgrass on pastures leads to less positive environmental outcomes and increased producer income variance.
Effects of Torrefaction Temperature on Pyrolysis Vapor Products of Woody and Herbaceous Feedstocks
Starace, Anne K.; Evans, Robert J.; Lee, David D.; ...
2016-06-17
A variety of hardwood, softwood, and herbaceous feedstocks (oak, southern yellow pine mix, loblolly pine, pinyon-juniper mix, and switchgrass) were each torrefied at 200, 250, and 300 °C. Each of the feedstocks was pyrolyzed and the resulting vapors were analyzed with a molecular beam mass spectrometer (py-MBMS). Compositional analysis was used to measure the total lignin content of three of the feedstocks (southern yellow pine, softwood; oak, hardwood; and switchgrass, herbaceous) before and after torrefaction at 300 °C, and large differences in the fraction of lignin lost during torrefaction were found between feedstocks, with oak having the largest decrease inmore » lignin during torrefaction and switchgrass having the least. Finally, it is hypothesized that these differences in the thermal degradation are due to, in part, the different ratios of S, G, and H lignins in the feedstocks. Additionally, the torrefaction of kraft lignin was studied using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA-FTIR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR).« less
Popp, Michael P.; Searcy, Stephen S.; Sokhansanj, Shahab; ...
2015-03-25
To determine the effects of weather on harvested moisture content (MC) of switchgrass (Panicum virgatum) and energy sorghum (Sorghum bicolor), tracking of harvest progress on individual fields in the Integrated Biomass Supply and Logistics (IBSAL) model was modified to allow: i) rewetting of swathed material in the drying formulae; and ii) field queuing rules based on equipment availability and weather. Estimated crop yield and initial MC by harvest date, as observed in field trials, along with the modeling of different delays between mowing and harvest allowed estimation of harvested MC, annual tonnage processed and associated processing cost differences by cropmore » and location over 10 years. Extending the hours of annual equipment use had minor implications on cost of production. Energy sorghum proved difficult to dry in the field. Its higher yield, leading to shorter supply distance to the plant, may justify harvesting of energy sorghum early in the season with drier weather. Lastly, later harvest for lower-yielding switchgrass offers MC advantages.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popp, Michael P.; Searcy, Stephen S.; Sokhansanj, Shahab
To determine the effects of weather on harvested moisture content (MC) of switchgrass (Panicum virgatum) and energy sorghum (Sorghum bicolor), tracking of harvest progress on individual fields in the Integrated Biomass Supply and Logistics (IBSAL) model was modified to allow: i) rewetting of swathed material in the drying formulae; and ii) field queuing rules based on equipment availability and weather. Estimated crop yield and initial MC by harvest date, as observed in field trials, along with the modeling of different delays between mowing and harvest allowed estimation of harvested MC, annual tonnage processed and associated processing cost differences by cropmore » and location over 10 years. Extending the hours of annual equipment use had minor implications on cost of production. Energy sorghum proved difficult to dry in the field. Its higher yield, leading to shorter supply distance to the plant, may justify harvesting of energy sorghum early in the season with drier weather. Lastly, later harvest for lower-yielding switchgrass offers MC advantages.« less
Nelson, Richard G; Ascough, James C; Langemeier, Michael R
2006-06-01
The primary objectives of this research were to determine SWAT model predicted reductions in four water quality indicators (sediment yield, surface runoff, nitrate nitrogen (NO(3)-N) in surface runoff, and edge-of-field erosion) associated with producing switchgrass (Panicum virgatum) on cropland in the Delaware basin in northeast Kansas, and evaluate switchgrass break-even prices. The magnitude of potential switchgrass water quality payments based on using switchgrass as an alternative energy source was also estimated. SWAT model simulations showed that between 527,000 and 1.27 million metric tons (Mg) of switchgrass could be produced annually across the basin depending upon nitrogen (N) fertilizer application levels (0-224 kg N ha(-1)). The predicted reductions in sediment yield, surface runoff, NO(3)-N in surface runoff, and edge-of-field erosion as a result of switchgrass plantings were 99, 55, 34, and 98%, respectively. The average annual cost per hectare for switchgrass ranged from about 190 US dollars with no N applied to around 345 US dollars at 224 kg N ha(-1) applied. Edge-of-field break-even price per Mg ranged from around 41 US dollars with no N applied to slightly less than 25 US dollars at 224 kg N ha(-1) applied. A majority of the switchgrass produced had an edge-of-field break-even price of 30 Mg(-1) US dollars or less. Savings of at least 50% in each of the four water quality indicators could be attained for an edge-of-field break-even price of 22-27.49 US dollars Mg(-1).
2011-01-01
Background Switchgrass, a C4 species and a warm-season grass native to the prairies of North America, has been targeted for development into an herbaceous biomass fuel crop. Genetic improvement of switchgrass feedstock traits through marker-assisted breeding and biotechnology approaches calls for genomic tools development. Establishment of integrated physical and genetic maps for switchgrass will accelerate mapping of value added traits useful to breeding programs and to isolate important target genes using map based cloning. The reported polyploidy series in switchgrass ranges from diploid (2X = 18) to duodecaploid (12X = 108). Like in other large, repeat-rich plant genomes, this genomic complexity will hinder whole genome sequencing efforts. An extensive physical map providing enough information to resolve the homoeologous genomes would provide the necessary framework for accurate assembly of the switchgrass genome. Results A switchgrass BAC library constructed by partial digestion of nuclear DNA with EcoRI contains 147,456 clones covering the effective genome approximately 10 times based on a genome size of 3.2 Gigabases (~1.6 Gb effective). Restriction digestion and PFGE analysis of 234 randomly chosen BACs indicated that 95% of the clones contained inserts, ranging from 60 to 180 kb with an average of 120 kb. Comparative sequence analysis of two homoeologous genomic regions harboring orthologs of the rice OsBRI1 locus, a low-copy gene encoding a putative protein kinase and associated with biomass, revealed that orthologous clones from homoeologous chromosomes can be unambiguously distinguished from each other and correctly assembled to respective fingerprint contigs. Thus, the data obtained not only provide genomic resources for further analysis of switchgrass genome, but also improve efforts for an accurate genome sequencing strategy. Conclusions The construction of the first switchgrass BAC library and comparative analysis of homoeologous harboring OsBRI1 orthologs present a glimpse into the switchgrass genome structure and complexity. Data obtained demonstrate the feasibility of using HICF fingerprinting to resolve the homoeologous chromosomes of the two distinct genomes in switchgrass, providing a robust and accurate BAC-based physical platform for this species. The genomic resources and sequence data generated will lay the foundation for deciphering the switchgrass genome and lead the way for an accurate genome sequencing strategy. PMID:21767393
Saski, Christopher A; Li, Zhigang; Feltus, Frank A; Luo, Hong
2011-07-18
Switchgrass, a C4 species and a warm-season grass native to the prairies of North America, has been targeted for development into an herbaceous biomass fuel crop. Genetic improvement of switchgrass feedstock traits through marker-assisted breeding and biotechnology approaches calls for genomic tools development. Establishment of integrated physical and genetic maps for switchgrass will accelerate mapping of value added traits useful to breeding programs and to isolate important target genes using map based cloning. The reported polyploidy series in switchgrass ranges from diploid (2X = 18) to duodecaploid (12X = 108). Like in other large, repeat-rich plant genomes, this genomic complexity will hinder whole genome sequencing efforts. An extensive physical map providing enough information to resolve the homoeologous genomes would provide the necessary framework for accurate assembly of the switchgrass genome. A switchgrass BAC library constructed by partial digestion of nuclear DNA with EcoRI contains 147,456 clones covering the effective genome approximately 10 times based on a genome size of 3.2 Gigabases (~1.6 Gb effective). Restriction digestion and PFGE analysis of 234 randomly chosen BACs indicated that 95% of the clones contained inserts, ranging from 60 to 180 kb with an average of 120 kb. Comparative sequence analysis of two homoeologous genomic regions harboring orthologs of the rice OsBRI1 locus, a low-copy gene encoding a putative protein kinase and associated with biomass, revealed that orthologous clones from homoeologous chromosomes can be unambiguously distinguished from each other and correctly assembled to respective fingerprint contigs. Thus, the data obtained not only provide genomic resources for further analysis of switchgrass genome, but also improve efforts for an accurate genome sequencing strategy. The construction of the first switchgrass BAC library and comparative analysis of homoeologous harboring OsBRI1 orthologs present a glimpse into the switchgrass genome structure and complexity. Data obtained demonstrate the feasibility of using HICF fingerprinting to resolve the homoeologous chromosomes of the two distinct genomes in switchgrass, providing a robust and accurate BAC-based physical platform for this species. The genomic resources and sequence data generated will lay the foundation for deciphering the switchgrass genome and lead the way for an accurate genome sequencing strategy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhykerd, Robert; Bierma, Thomas; Jin, Guang
2014-03-31
This project had two parts. Part 1 was an economic and environmental assessment of switchgrass production on high-fertility soil, and included an assessment of the effects of field irrigation with treated municipal wastewater (Studies A,C, and E in Final Agreement). Part 2 was an assessment of methods to enhance anaerobic digestion of switchgrass, and included evaluation of several other potential biomass feedstocks (Studies B and D in Final Agreement). Results from Part 1 demonstrated that switchgrass does not compete economically against a corn and soybean rotation on highly productive soils. All four varieties of switchgrass lost money while corn andmore » soybeans were profitable in all four years of this study. Breakeven prices for the four switchgrass varieties were calculated using production costs. The installation of a center pivot irrigation system had minimal impact on crop production and corn and soybean production remained profitable in the year the irrigator was installed. Because of drought and delays in installing the wastewater treatment plant, the irrigation system was not used until year 4 of this study. Therefore, longer term studies evaluating multiple year studies on the impact of irrigation on switchgrass are warranted. Results from irrigating with treated municipal wastewater showed no negative impact on soil quality. Results from Part 2 demonstrated that anaerobic digestion (AD) of switchgrass could be significantly enhanced using low heat (100oC) and mild caustic pretreatment without fine-grinding. Heat for pretreatment could be available from biogas-based combined heat and power (CHP) systems. In bench-top digesters simulating municipal wastewater treatment AD, methane production of coarse-ground switchgrass increased over 20-fold with pretreatment compared to untreated switchgrass. Bench-top studies simulating dairy-based AD also found high specific methane yield, but even untreated switchgrass digested reasonably well, indicating the value of AD micro-organisms acclimated to lignocellulosic feedstock. Similar results were found for corn stover. However, oak and maple leaves – representing common urban yard waste – were more resistant to digestion even with pretreatment. More pretreatment research is required before yard waste could become a significant feedstock for the low/medium-solids digesters common to municipal wastewater or livestock operations.« less
A model for deploying switchgrass for bioenergy in an intensive agricultural landscape
USDA-ARS?s Scientific Manuscript database
Switchgrass bioenergy research has been conducted in Nebraska since 1990. In that time, significant progress has been made in switchgrass breeding and genetics, molecular genetics, establishment, fertility management, production economics, production energetics, harvest and storage management, ecos...
A Genomics Approach to Deciphering Lignin Biosynthesis in Switchgrass[W
Shen, Hui; Mazarei, Mitra; Hisano, Hiroshi; Escamilla-Trevino, Luis; Fu, Chunxiang; Pu, Yunqiao; Rudis, Mary R.; Tang, Yuhong; Xiao, Xirong; Jackson, Lisa; Li, Guifen; Hernandez, Tim; Chen, Fang; Ragauskas, Arthur J.; Stewart, C. Neal; Wang, Zeng-Yu; Dixon, Richard A.
2013-01-01
It is necessary to overcome recalcitrance of the biomass to saccharification (sugar release) to make switchgrass (Panicum virgatum) economically viable as a feedstock for liquid biofuels. Lignin content correlates negatively with sugar release efficiency in switchgrass, but selecting the right gene candidates for engineering lignin biosynthesis in this tetraploid outcrossing species is not straightforward. To assist this endeavor, we have used an inducible switchgrass cell suspension system for studying lignin biosynthesis in response to exogenous brassinolide. By applying a combination of protein sequence phylogeny with whole-genome microarray analyses of induced cell cultures and developing stem internode sections, we have generated a list of candidate monolignol biosynthetic genes for switchgrass. Several genes that were strongly supported through our bioinformatics analysis as involved in lignin biosynthesis were confirmed by gene silencing studies, in which lignin levels were reduced as a result of targeting a single gene. However, candidate genes encoding enzymes involved in the early steps of the currently accepted monolignol biosynthesis pathway in dicots may have functionally redundant paralogues in switchgrass and therefore require further evaluation. This work provides a blueprint and resources for the systematic genome-wide study of the monolignol pathway in switchgrass, as well as other C4 monocot species. PMID:24285795
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, Kelsey L; Rodriguez, Jr., Miguel; Tschaplinski, Timothy J
2012-01-01
Abstract Background: The inherent recalcitrance of lignocellulosic biomass is one of the major economic hurdles for the production of fuels and chemicals from biomass. Additionally, lignin is recognized as having a negative impact on enzymatic hydrolysis of biomass, and as a result much interest has been placed on modifying the lignin pathway to improve bioconversion of lignocellulosic feedstocks. Results: Previous results showed down-regulation of the caffeic acid 3-O-methyl transferase (COMT) gene in the lignin pathway yielded switchgrass (Panicum virgatum) that was more susceptible to bioconversion after dilute acid pretreatment. Here we examined the response of these plant lines to mildermore » pretreatment conditions with yeast-based SSF, CBP with Clostridium thermocellum, and fermentations with the cellulolytic extreme thermophiles, Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis. Unlike the S. cerevisiae SSF conversions, fermentations of pretreated down-regulated COMT transgenic switchgrass with C. thermocellum showed an apparent inhibition of fermentation not observed in the wild-type switchgrass. This inhibition can be eliminated by hot water extraction of the pretreated biomass which resulted in superior conversion yield with transgenic versus wild-type switchgrass for C. thermocellum, also exceeding the yeast-based SSF yield. Further fermentation evaluation of the transgenic switchgrass indicated differential inhibition for the Caldicellulosiruptor strains, which could not be rectified by additional processing conditions. Gas chromatography-mass spectrometry metabolite profiling was used to examine the fermentation broth to elucidate the relative abundance of lignin derived aromatic compounds. The types and abundance of fermentation-derived lignin constituents varied between C. thermocellum and each of the Caldicellulosiruptor strains. Conclusions: The down-regulation of the COMT gene improves the bioconversion of switchgrass relative to the wild-type regardless of the pretreatment condition or fermentation microorganism. However, bacterial fermentations demonstrated strain-dependent sensitivity to the COMT transgenic biomass, likely due to additional soluble lignin pathway-derived constituents resulting from the COMT gene disruption. Removal of these inhibitory constituents permitted completion of fermentation by C. thermocellum, but not by the Caldicellulosiruptor strains. The reason for this difference needs to be explored further.« less
Extensive genetic diversity present within North American switchgrass germplasm
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is a perennial, native North American grass currently grown for ecological restoration and forage purposes that has potential as a biofuel feedstock crop. Understanding the genetic diversity of switchgrass can provide insight into allelic variants important in devel...
Switchgrass cultivars alter microbial contribution to deep soil C
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is a perennial, cellulosic biofuel feedstock capable of growing under a wide variety of climatic conditions on land marginally suited to cultivated crops. Due to its perennial nature and deep rooting characteristics, switchgrass contributes to soil C sequestration ...
Efficient Methods of Estimating Switchgrass Biomass Supplies
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is being developed as a biofuel feedstock for the United States. Efficient and accurate methods to estimate switchgrass biomass feedstock supply within a production area will be required by biorefineries. Our main objective was to determine the effectiveness of in...
The application of ultrasound in the enzymatic hydrolysis of switchgrass
USDA-ARS?s Scientific Manuscript database
In a series of experiments, untreated and ammonium hydroxide pretreated Klenow lowland variety switchgrasses are converted to reducing sugars using low frequency (20 kHz) ultrasound and commercially-available cellulase enzyme. Results from experiments using untreated and pretreated switchgrasses wit...
Janine M. Albaugha; Jean-Christophe Domeca; Chris A. Maier; Eric B. Sucre; Zakiya H. Leggett; John S. King
2014-01-01
Despite growing interest in using switchgrass (Panicum virgatum L.) as a biofuel, there are limiteddata on the physiology of this species and its effect on stand water use and carbon (C) assimilationwhen grown as a forest intercrop for bioenergy. Therefore, we quantified gas exchange rates of switch-grass within intercropped plots and in pure switchgrass plots during...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodbury, Peter B.; Kemanian, Armen R.; Jacobson, Michael
Replacing row crops with perennial bioenergy crops may reduce nitrogen (N) loading to surface waters. We estimated the benefits, costs, and potential for replacing maize with switchgrass to meet required N loading reduction targets for the Chesapeake Bay (CB) of 26.9 Gg -1. After subtracting the potential reduction in N loading due to improved N fertilizer practices for maize, a further 22.8 Gg reduction is required. Replacing maize with fertilized switchgrass could reduce N loading to the CB by 18 kg ha -1 y -1, meeting 31% of the N reduction target. The break-even price of fertilized switchgrass to providemore » the same profit as maize in the CB is 111 $Mg -1 (oven-dry basis throughout). Growers replacing maize with switchgrass could receive an ecosystem service payment of 148 ha -1 based on the price paid in Maryland for planting a rye cover crop. For our estimated average switchgrass yield of 9.9 Mg ha -1, and the greater N loading reduction of switchgrass compared to a cover crop, this equates to 24 dollars Mg -1. The annual cost of this ecosystem service payment to induce switchgrass planting is 13.29 dollars kg -1 of N. Using the POLYSYS model to account for competition among food, feed, and biomass markets, we found that with the ecosystem service payment for switchgrass of 25 $ Mg -1 added to a farm-gate price of 111 dollars Mg -1, 11% of the N loading reduction target could be met while also producing 1.3 Tg of switchgrass, potentially yielding 420 dam 3 y -1 of ethanol.« less
Woodbury, Peter B.; Kemanian, Armen R.; Jacobson, Michael; ...
2017-02-03
Replacing row crops with perennial bioenergy crops may reduce nitrogen (N) loading to surface waters. We estimated the benefits, costs, and potential for replacing maize with switchgrass to meet required N loading reduction targets for the Chesapeake Bay (CB) of 26.9 Gg -1. After subtracting the potential reduction in N loading due to improved N fertilizer practices for maize, a further 22.8 Gg reduction is required. Replacing maize with fertilized switchgrass could reduce N loading to the CB by 18 kg ha -1 y -1, meeting 31% of the N reduction target. The break-even price of fertilized switchgrass to providemore » the same profit as maize in the CB is 111 $Mg -1 (oven-dry basis throughout). Growers replacing maize with switchgrass could receive an ecosystem service payment of 148 ha -1 based on the price paid in Maryland for planting a rye cover crop. For our estimated average switchgrass yield of 9.9 Mg ha -1, and the greater N loading reduction of switchgrass compared to a cover crop, this equates to 24 dollars Mg -1. The annual cost of this ecosystem service payment to induce switchgrass planting is 13.29 dollars kg -1 of N. Using the POLYSYS model to account for competition among food, feed, and biomass markets, we found that with the ecosystem service payment for switchgrass of 25 $ Mg -1 added to a farm-gate price of 111 dollars Mg -1, 11% of the N loading reduction target could be met while also producing 1.3 Tg of switchgrass, potentially yielding 420 dam 3 y -1 of ethanol.« less
AmeriFlux US-AR1 ARM USDA UNL OSU Woodward Switchgrass 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billesbach, Dave; Bradford, James
This is the AmeriFlux version of the carbon flux data for the site US-AR1 ARM USDA UNL OSU Woodward Switchgrass 1. Site Description - The ARM USDA UNL OSU Woodward Switchgrass 1 tower is located on public land owned by the USDA-ARS Southern Plains Range Research Station in Woodward, Oklahoma. The site is on a former native prairie that is in the process of changing to switchgrass. A second companion site (ARM USDA UNL OSU Woodward Switchgrass 2) is on a former wheat field. In Spring 2009, the former native prairie site was burned, cattle were put on the pasturemore » to graze down emergent grass, and broadleaf herbicide was sprayed. In Summer 2009, the cattle were removed from the pasture, and the site was sprayed with herbicide to kill all grass. In Spring 2010, prior to the planting of switchgrass, final herbicide was sprayed to kill cheat grass and to control broadleaf plants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Jennifer B.; Qin, Zhangcai; Mueller, Steffen
Themore » $$\\underline{C}$$arbon $$\\underline{C}$$alculator for $$\\underline{L}$$and $$\\underline{U}$$se Change from $$\\underline{B}$$iofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass. This document discusses the version of CCLUB released September 30, 2014 which includes corn and three cellulosic feedstocks: corn stover, Miscanthus, and switchgrass.« less
Natural hybrids and gene flow between upland and lowland switchgrass
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is a perennial grass native to the North American tallgrass prairie and savanna habitats and is broadly adapted to the central and eastern USA. Upland and lowland ecotypes represent the two major taxa within switchgrass, which have distinct, but overlapping distribu...
Genetic variation of flowering time and biomass in switchgrass
USDA-ARS?s Scientific Manuscript database
The timing of phase change from juvenile (vegetative) to adult with reproductive competence is a key factor influencing biomass yield of switchgrass. A decline in biomass yield is typically observed in switchgrass immediately following completion of flowering. In temperate regions of the USA, if flo...
Switchgrass ecotypes alter microbial contribution to deep-soil C
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is a C4, perennial grass that is being developed as a bioenergy crop for the United States. While aboveground biomass production is well documented for switchgrass ecotypes (lowland, upland), little is known about the impact of plant belowground productivity on mic...
USDA-ARS?s Scientific Manuscript database
Auto-fluorescent mapping of plant cell walls was used to visualize cellulose and lignin in pristine switchgrass (Panicum virgatum) stems to determine the mechanisms of biomass dissolution during ionic liquid pretreatment. The addition of ground switchgrass to the ionic liquid 1-n-ethyl-3-methylimid...
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.), a native perennial dominant of the prairies of North America, has been targeted as a model herbaceous species for biofeedstock development. A flow-cytometric survey of a core set of 11 primarily upland polyploid switchgrass accessions indicated that there was con...
Genetic control of flowering and biomass in switchgrass
USDA-ARS?s Scientific Manuscript database
Early flowering can negatively affect biomass yield of switchgrass. In temperate regions of the USA, flowering occurs in switchgrass around the time of peak biomass yield (about 5 to 8 weeks prior to killing frost), effectively reducing the length of the growing season. The use of late-flowering swi...
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) has been identified for development into an efficient and environment friendly biomass energy crop. A recent five-year study demonstrated that switchgrass grown for biofuel production produced 540 percent more energy than what is needed to grow, harvest and process...
Transcriptional analysis of flowering time in switchgrass
USDA-ARS?s Scientific Manuscript database
Over the past two decades, switchgrass (Panicum virgatum) has emerged as a viable biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; a longer vegetative stage leads to an increase in overall biomass yield. The goal of this study was to gain insight into the...
Preference by horses for bedding pellets made from switchgrass (Panicum virgatum) straw
USDA-ARS?s Scientific Manuscript database
The bedding system used for stalled horses can impact their health and well-being. This study examined the saponin concentration in switchgrass (Panicum virgatum) straw, and bedding pellets made from switchgrass straw. Further, this study determined the palatability of bedding pellets made from sw...
Transmission of Switchgrass mosaic virus by Graminella aureovitatta
USDA-ARS?s Scientific Manuscript database
Switchgrass mosaic virus (SwMV) was identified in switchgrass (Panicum virgatum) and was proposed as a new marafivirus based on its genome sequence and comparison with its closest relative, Maize rayado fino virus (MRFV), a type member of the genus, Marafivirus. MRFV only infects maize (Zea mays) an...
Switchgrass and pecan biochar amendments to a sandy coastal soil
USDA-ARS?s Scientific Manuscript database
Sandy soils of the wet, warm SE Coastal Plain have poor physical characteristics and low carbon contents. To improve soil properties, we added switchgrass (Panicum virgatum) and non-activated pecan (Carya illinoinensis) biochar. Switchgrass was ground to a fine powder and added to soil at rates of 0...
Switchgrass cultivars alter microbial contribution to deep soil C in Nebraska
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is a C4, perennial grass that is being developed as a bioenergy crop for the United States. While aboveground biomass production is well documented for switchgrass ecotypes (lowland, upland) and cultivars, there has been little focus on the impact of plant belowgro...
Comparative study of switchgrass cultivars using RNA sequencing technology
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is a C4 perennial grass, identified as a promising bioenergy crop. Switchgrass exists in two ecotypes, upland and lowland, which are heterotic, or genetically complementary to each other. The objectives of this study are to assess the potential of SNP markers as a b...
Modeling differential growth in switchgrass cultivars across the Central and Southern Great Plains
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) has been recognized as a potential biofuel crop, because it is adapted to a wide range of environmental and climatic conditions. Zones of adaptation for many switchgrass cultivars are well documented and attributed to local adaptation to the temperature and photope...
Impact of harvest time and switchgrass cultivar on sugar release through enzymatic hydrolysis
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is a native North American prairie grass being developed for bioenergy production in the central and eastern USA. The objective of this study was to identify the impacts harvest time and switchgrass cultivar had on sugar release variables determined through enzymat...
USDA-ARS?s Scientific Manuscript database
Switchgrass is a relatively high-yielding and environmentally sustainable biomass crop, but further genetic gains in biomass yield must be achieved to make it an economically viable bioenergy feedstock. Genomic selection is an attractive technology to generate rapid genetic gains in switchgrass and ...
Switchgrass harvest time management can impact biomass yield and nutrient content
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is a dedicated energy crop native to much of North America. While high-biomass yield is of significant importance for the development of switchgrass as a bioenergy crop, nutrient content in the biomass as it relates to biofuel conversion efficiency is also critical...
Breeding and Selection of New Switchgrass Varieties for Increased Biomass Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taliaferro, C.M.
2003-05-27
Switchgrass breeding and genetics research was conducted from 1992-2002 at the Oklahoma State University as part of the national DOE-Bioenergy Feedstock Development Program (BFDP) effort to develop the species as a bioenergy feedstock crop. The fundamental objective of the program was to implement and conduct a breeding program to increase biomass yield capability in switchgrass and develop cultivars for the central and southern United States. Supporting research objectives included: (1) switchgrass germplasm collection, characterization, and enhancement; (2) elucidation of cytogenetic and breeding behavior; and (3) identification of best breeding procedures.
Liu, Yuan; Wang, Quanzhen; Zhang, Yunwei; Cui, Jian; Chen, Guo; Xie, Bao; Wu, Chunhui; Liu, Haitao
2014-01-01
The effects of salt-alkaline mixed stress on switchgrass were investigated by evaluating seed germination and the proline, malondialdehyde (MDA) and soluble sugar contents in three switchgrass (Panicum virgatum L.) cultivars in order to identify which can be successfully produced on marginal lands affected by salt-alkaline mixed stress. The experimental conditions consisted of four levels of salinity (10, 60, 110 and 160 mM) and four pH levels (7.1, 8.3, 9.5 and 10.7). The effects of salt-alkaline mixed stress with equivalent coupling of the salinity and pH level on the switchgrass were explored via model analyses. Switchgrass was capable of germinating and surviving well in all treatments under low-alkaline pH (pH≤8.3), regardless of the salinity. However, seed germination and seedling growth were sharply reduced at higher pH values in conjunction with salinity. The salinity and pH had synergetic effects on the germination percentage, germination index, plumular length and the soluble sugar and proline contents in switchgrass. However, these two factors exhibited antagonistic effects on the radicular length of switchgrass. The combined effects of salinity and pH and the interactions between them should be considered when evaluating the strength of salt-alkaline mixed stress. PMID:24454834
Improved tissue culture conditions for the emerging C4 model Panicum hallii.
Grant, Joshua N; Burris, Jason N; Stewart, C Neal; Lenaghan, Scott C
2017-04-27
Panicum hallii Vasey (Hall's panicgrass) is a compact, perennial C 4 grass in the family Poaceae, which has potential to enable bioenergy research for switchgrass (Panicum virgatum L.). Unlike P. hallii, switchgrass has a large genome, allopolyploidy, self-incompatibility, a long life cycle, and large stature-all suboptimal traits for rapid genetics research. Herein we improved tissue culture methodologies for two inbred P. hallii populations: FIL2 and HAL2, to enable further development of P. hallii as a model C 4 plant. The optimal seed-derived callus induction medium was determined to be Murashige and Skoog (MS) medium supplemented with 40 mg L -1 L-cysteine, 300 mg L -1 L-proline, 3% sucrose, 1 g L -1 casein hydrolysate, 3 mg L -1 2,4-dichlorophenoxyacetic acid (2,4-D), and 45 μg L -1 6-benzylaminopurine (BAP), which resulted in callus induction of 51 ± 29% for FIL2 and 81 ± 19% for HAL2. The optimal inflorescence-derived callus induction was observed on MP medium (MS medium supplemented with 2 g L -1 L-proline, 3% maltose, 5 mg L -1 2,4-D, and 500 μg L -1 BAP), resulting in callus induction of 100 ± 0.0% for FIL2 and 84 ± 2.4% for HAL2. Shoot regeneration rates of 11.5 ± 0.8 shoots/gram for FIL2 and 11.3 ± 0.6 shoots/gram for HAL2 were achieved using seed-induced callus, whereas shoot regeneration rates of 26.2 ± 2.6 shoots/gram for FIL2 and 29.3 ± 3.6 shoots/gram for HAL2 were achieved from inflorescence-induced callus. Further, cell suspension cultures of P. hallii were established from seed-derived callus, providing faster generation of callus tissue compared with culture using solidified media (1.41-fold increase for FIL2 and 3.00-fold increase for HAL2). Aside from abbreviated tissue culture times from callus induction to plant regeneration for HAL2, we noted no apparent differences between FIL2 and HAL2 populations in tissue culture performance. For both populations, the cell suspension cultures outperformed tissue cultures on solidified media. Using the methods developed in this work, P. hallii callus was induced from seeds immediately after harvest in a shorter time and with higher frequencies than switchgrass. For clonal propagation, P. hallii callus was established from R1 inflorescences, similar to switchgrass, which further strengthens the potential of this plant as a C 4 model for genetic studies. The rapid cycling (seed-to-seed time) and ease of culture, further demonstrate the potential utility of P. hallii as a C 4 model plant.
Plant germination and growth after exposure to iron cyanide complexes.
Kang, Dong-Hee; Hong, Lee Y; Schwab, A Paul; Banks, M Katherine
2008-05-01
Phytoremediation has been proposed for treatment of cyanide-contaminated soil. This study was conducted to identify plants with the highest potential for phytoremediation of iron cyanide contaminated soil. Multiple cultivars of two cyanogenic species, sorghum (Sorghum bicolor) and flax (Linum usitatissimum), and one non-cyanogenic species, switchgrass (Panicum virgatum L), were selected for evaluation. The cultivars were screened by quantifying germination and root elongation. Differences in germination emerged among the cultivars (P < 0.05), but these differences appeared to be unrelated to cyanide concentration. The presence of 1000 mg/kg Prussian blue tended to suppress root growth parameters of flax and switchgrass but did not affect sorghum similarly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chescheir, George M.; Nettles, Jami E,; Youssef, Mohamed
Growing switchgrass (Panicum virgatum L.) as an intercrop in managed loblolly pine (Pinus taeda L.) plantations has emerged as a potential source of bioenergy feedstock. Utilizing land resources between pine trees to produce an energy crop can potentially reduce the demand for land resources used to produce food; however, converting conventionally managed forest land to this new intercropping system constitutes changes in land use and associated management practices, which may affect the environmental and economic sustainability of the land. The overall objective of this project is to evaluate the environmental effects of large-scale forest bioenergy crop production and utilize thesemore » results to optimize cropping systems in a manner that protects the important ecosystem services provided by forests while contributing to the development of a sustainable and economically-viable biomass industry in the southeastern United States. Specific objectives are to: Quantify the hydrology of different energy crop production systems in watershed scale experiments on different landscapes in the southeast. Quantify the nutrient dynamics of energy crop production systems in watershed scale experiments to determine the impact of these systems on water quality. Evaluate the impacts of energy crop production on soil structure, fertility, and organic matter. Evaluate the response of flora and fauna populations and habitat quality to energy crop production systems. Develop watershed and regional scale models to evaluate the environmental sustainability and productivity of energy crop and woody biomass operations. Quantify the production systems in terms of bioenergy crop yield versus the energy and economic costs of production. Develop and evaluate best management practice guidelines to ensure the environmental sustainability of energy crop production systems. Watershed and plot scale studies formed the core of this research platform. Matched-watershed studies were established in North Carolina, Mississippi and Alabama. A plot scale study was also established in North Carolina to more intensive examination of the effects of biomass production on hydrology, soil properties, productivity wildlife habitat, and biodiversity on replicate 0.8 ha plots. Studies were also conducted on selected sites to define and quantify the environmental effects of biomass production on wildlife habitat, biodiversity, soil properties and productivity, and carbon storage and flux. Treatments on the sub-watersheds and plots included potential operational systems ranging from monoculture switchgrass to interplanted switchgrass to conventional managed forests as a controls. The hydrology, water quality, soil property, and productivity data collected in the watershed and plot scale experiments were used to develop process based watershed scale models. Existing models (DRAINMOD and APEX) were modified to more effectively simulate the intercropped systems. More regional scale models (DRAINMOD-INTERCROP) with GIS interface and SWAT) were used to simulate the impacts of intercropping switchgrass in pine plantations on the hydrology and water quality of larger scale watersheds. Results from the watershed and plot scale studies, and the modeling studies were used to develop Best Management Practice (BMP) guidelines to ensure environmentally sustainable bioenergy production in the forestry setting. While the results of the environmental sustainability research for this project have become publically available, many of the planning decisions and operational trial results were not public. Personnel in management, planning, operations, and logistics were interviewed to capture the important economic and operational lessons from internal operational research on approximately 30 full-scale operational tracts. This project produced a very large database documenting the impact of interplanting switchgrass with pine trees on hydrology, water quality, soil quality, and biodiversity. Some environmental impacts were observed in response to additional operations required for interplanting, but these impacts were small and short lived. Given that existing forestry BMPs provide a flexible system that can be adapted to protect water quality and biodiversity in forestry settings, interplanting switchgrass with pine trees can be considered environmentally sustainable. The project also developed models that can simulate switchgrass growth when it is in competition with pine trees as well as the hydrology and nutrient dynamics that result from this interplanted system. The models predicted switchgrass production, water use, and the quality of the water leaving the system over a range of climatological and geographic conditions. These models can be used to guide decisions toward sustainability. The project also documented the limitations of switchgrass production in the forestry setting and the challenges and increased costs arising from this practice. These challenges led to the conclusion that intercropping switchgrass with pine trees is not economically feasible in the current economic climate. Despite the barriers obstructing use of this system at this point in time, economic and technological changes may occur that will make this a feasible system for bioenergy production in the future. The data, models, BMPs and experiences documented in this report and in publications resulting from this project will be highly valuable to those implementing this system.« less
Identification and Characterization of Switchgrass Histone H3 and CENH3 Genes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Jiamin; Frazier, Taylor; Huang, Linkai
Switchgrass is one of the most promising energy crops and only recently has been employed for biofuel production. The draft genome of switchgrass was recently released; however, relatively few switchgrass genes have been functionally characterized. CENH3, the major histone protein found in centromeres, along with canonical H3 and other histones, plays an important role in maintaining genome stability and integrity. Despite their importance, the histone H3 genes of switchgrass have remained largely uninvestigated. In this study, we identified 17 putative switchgrass histone H3 genes in silico. Of these genes, 15 showed strong homology to histone H3 genes including six H3.1more » genes, three H3.3 genes, four H3.3-like genes and two H3.1-like genes. The remaining two genes were found to be homologous to CENH3. RNA-seq data derived from lowland cultivar Alamo and upland cultivar Dacotah allowed us to identify SNPs in the histone H3 genes and compare their differential gene expression. Interestingly, we also found that overexpression of switchgrass histone H3 and CENH3 genes in N. benthamiana could trigger cell death of the transformed plant cells. Localization and deletion analyses of the histone H3 and CENH3 genes revealed that nuclear localization of the N-terminal tail is essential and sufficient for triggering the cell death phenotype. Lastly, our results deliver insight into the mechanisms underlying the histone-triggered cell death phenotype and provide a foundation for further studying the variations of the histone H3 and CENH3 genes in switchgrass.« less
Identification and Characterization of Switchgrass Histone H3 and CENH3 Genes
Miao, Jiamin; Frazier, Taylor; Huang, Linkai; ...
2016-07-12
Switchgrass is one of the most promising energy crops and only recently has been employed for biofuel production. The draft genome of switchgrass was recently released; however, relatively few switchgrass genes have been functionally characterized. CENH3, the major histone protein found in centromeres, along with canonical H3 and other histones, plays an important role in maintaining genome stability and integrity. Despite their importance, the histone H3 genes of switchgrass have remained largely uninvestigated. In this study, we identified 17 putative switchgrass histone H3 genes in silico. Of these genes, 15 showed strong homology to histone H3 genes including six H3.1more » genes, three H3.3 genes, four H3.3-like genes and two H3.1-like genes. The remaining two genes were found to be homologous to CENH3. RNA-seq data derived from lowland cultivar Alamo and upland cultivar Dacotah allowed us to identify SNPs in the histone H3 genes and compare their differential gene expression. Interestingly, we also found that overexpression of switchgrass histone H3 and CENH3 genes in N. benthamiana could trigger cell death of the transformed plant cells. Localization and deletion analyses of the histone H3 and CENH3 genes revealed that nuclear localization of the N-terminal tail is essential and sufficient for triggering the cell death phenotype. Lastly, our results deliver insight into the mechanisms underlying the histone-triggered cell death phenotype and provide a foundation for further studying the variations of the histone H3 and CENH3 genes in switchgrass.« less
Early lignin pathway enzymes and routes to chlorogenic acid in switchgrass (Panicum virgatum L.).
Escamilla-Treviño, Luis L; Shen, Hui; Hernandez, Timothy; Yin, Yanbin; Xu, Ying; Dixon, Richard A
2014-03-01
Studying lignin biosynthesis in Panicum virgatum (switchgrass) has provided a basis for generating plants with reduced lignin content and increased saccharification efficiency. Chlorogenic acid (CGA, caffeoyl quinate) is the major soluble phenolic compound in switchgrass, and the lignin and CGA biosynthetic pathways potentially share intermediates and enzymes. The enzyme hydroxycinnamoyl-CoA: quinate hydroxycinnamoyltransferase (HQT) is responsible for CGA biosynthesis in tobacco, tomato and globe artichoke, but there are no close orthologs of HQT in switchgrass or in other monocotyledonous plants with complete genome sequences. We examined available transcriptomic databases for genes encoding enzymes potentially involved in CGA biosynthesis in switchgrass. The protein products of two hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyltransferase (HCT) genes (PvHCT1a and PvHCT2a), closely related to lignin pathway HCTs from other species, were characterized biochemically and exhibited the expected HCT activity, preferring shikimic acid as acyl acceptor. We also characterized two switchgrass coumaroyl shikimate 3'-hydroxylase (C3'H) enzymes (PvC3'H1 and PvC3'H2); both of these cytochrome P450s had the capacity to hydroxylate 4-coumaroyl shikimate or 4-coumaroyl quinate to generate caffeoyl shikimate or CGA. Another switchgrass hydroxycinnamoyl transferase, PvHCT-Like1, is phylogenetically distant from HCTs or HQTs, but exhibits HQT activity, preferring quinic acid as acyl acceptor, and could therefore function in CGA biosynthesis. The biochemical features of the recombinant enzymes, the presence of the corresponding activities in plant protein extracts, and the expression patterns of the corresponding genes, suggest preferred routes to CGA in switchgrass.
Transcriptional Analysis of Flowering Time in Switchgrass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tornqvist, Carl-Erik; Vaillancourt, Brieanne; Kim, Jeongwoon
Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in switchgrass that would assist in development of cultivars with longer vegetative phases through delayed flowering. RNA sequencing was used to assess genome-wide expression profiles across a developmental series between switchgrass genotypes belonging to the two main ecotypes: upland, typically earlymore » flowering, and lowland, typically late flowering. Leaf blades and tissues enriched for the shoot apical meristem (SAM) were collected in a developmental series from emergence through anthesis for RNA extraction. RNA from samples that flanked the SAM transition stage was sequenced for expression analyses. The analyses revealed differential expression patterns between early- and late-flowering genotypes for known flowering time orthologs. Namely, genes shown to play roles in photoperiod response and the circadian clock in other species were identified as potential candidates for regulating flowering time in the switchgrass genotypes analyzed. Based on their expression patterns, many of the differentially expressed genes could also be classified as putative promoters or repressors of flowering. The candidate genes presented here may be used to guide switchgrass improvement through marker-assisted breeding and/or transgenic or gene editing approaches.Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in switchgrass that would assist in development of cultivars with longer vegetative phases through delayed flowering. RNA sequencing was used to assess genome-wide expression profiles across a developmental series between switchgrass genotypes belonging to the two main ecotypes: upland, typically early flowering, and lowland, typically late flowering. Leaf blades and tissues enriched for the shoot apical meristem (SAM) were collected in a developmental series from emergence through anthesis for RNA extraction. RNA from samples that flanked the SAM transition stage was sequenced for expression analyses. The analyses revealed differential expression patterns between early- and late-flowering genotypes for known flowering time orthologs. Namely, genes shown to play roles in photoperiod response and the circadian clock in other species were identified as potential candidates for regulating flowering time in the switchgrass genotypes analyzed. Based on their expression patterns, many of the differentially expressed genes could also be classified as putative promoters or repressors of flowering. The candidate genes presented here may then be used to guide switchgrass improvement through marker-assisted breeding and/or transgenic or gene editing approaches.« less
Transcriptional Analysis of Flowering Time in Switchgrass
Tornqvist, Carl-Erik; Vaillancourt, Brieanne; Kim, Jeongwoon; ...
2017-04-27
Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in switchgrass that would assist in development of cultivars with longer vegetative phases through delayed flowering. RNA sequencing was used to assess genome-wide expression profiles across a developmental series between switchgrass genotypes belonging to the two main ecotypes: upland, typically earlymore » flowering, and lowland, typically late flowering. Leaf blades and tissues enriched for the shoot apical meristem (SAM) were collected in a developmental series from emergence through anthesis for RNA extraction. RNA from samples that flanked the SAM transition stage was sequenced for expression analyses. The analyses revealed differential expression patterns between early- and late-flowering genotypes for known flowering time orthologs. Namely, genes shown to play roles in photoperiod response and the circadian clock in other species were identified as potential candidates for regulating flowering time in the switchgrass genotypes analyzed. Based on their expression patterns, many of the differentially expressed genes could also be classified as putative promoters or repressors of flowering. The candidate genes presented here may be used to guide switchgrass improvement through marker-assisted breeding and/or transgenic or gene editing approaches.Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in switchgrass that would assist in development of cultivars with longer vegetative phases through delayed flowering. RNA sequencing was used to assess genome-wide expression profiles across a developmental series between switchgrass genotypes belonging to the two main ecotypes: upland, typically early flowering, and lowland, typically late flowering. Leaf blades and tissues enriched for the shoot apical meristem (SAM) were collected in a developmental series from emergence through anthesis for RNA extraction. RNA from samples that flanked the SAM transition stage was sequenced for expression analyses. The analyses revealed differential expression patterns between early- and late-flowering genotypes for known flowering time orthologs. Namely, genes shown to play roles in photoperiod response and the circadian clock in other species were identified as potential candidates for regulating flowering time in the switchgrass genotypes analyzed. Based on their expression patterns, many of the differentially expressed genes could also be classified as putative promoters or repressors of flowering. The candidate genes presented here may then be used to guide switchgrass improvement through marker-assisted breeding and/or transgenic or gene editing approaches.« less
NASA Astrophysics Data System (ADS)
Wu, Y.; Liu, S.
2010-12-01
Biofuels have become important alternative energy resources and their use is likely to expand in the foreseeable future. The expansion of corn-based ethanol production has resulted in a tightening of the global corn supply-and-demand balance. Perennial grasses such as switchgrass (Panicum virgatum) are also being considered as candidates for biofuel feedstocks. Expansion of biofuel production will generate diverse impacts on the economy and environment. How to optimize land use activities to address the need for biofuel production while protecting the environment is still a grand challenge. Unfortunately, little is known about the effects of biofuel-oriented alternative land uses on water quality. Can we produce the same amount or more biofuels by converting some cornfields to switchgrass, for example, while reducing environmental pressure? The objective of this study was to evaluate the potential impacts of land cover change from corn to switchgrass (e.g., on marginal lands) and related management activities on water quality in the Iowa River Basin (drainage area of 32,360 km2) using the Soil and Water Assessment Tool (SWAT). The model was calibrated and validated under baseline conditions using daily streamflow and sediment, and monthly nutrients at Wapello, Iowa (near the outlet of the watershed). The preliminary results show that both the annual average sediment yield and nitrate nitrogen load would decrease when marginal corn areas are converted to switchgrass. However, the magnitude of change depends greatly on the detailed management practices, such as techniques and amount of fertilization, harvesting practices, and residue management.
USDA-ARS?s Scientific Manuscript database
The purpose of this research was to examine above- and belowground responses to nitrogen fertilization in 5-year old “Alamo” switchgrass (Panicum virgatum). A fertilizer experiment included spring and fall sampling of switchgrass grown under annual applications of 0, 67, and 202 kg N ha-1. Nitrogen ...
Impact of harvest time and cultivar on conversion of switchgrass to bio-oils via fast pyrolysis
USDA-ARS?s Scientific Manuscript database
The study of the effects of harvest time on switchgrass (Panicum virgatum L.) biomass and bioenergy production reported herein is the final part complementing two prior studies reporting on the harvest of six switchgrass cultivars grown at three northern United States locations over three years, har...
Genetic Transformation of Switchgrass
NASA Astrophysics Data System (ADS)
Xi, Yajun; Ge, Yaxin; Wang, Zeng-Yu
Switchgrass (Panicum virgatum L.) is a highly productive warm-season C4 species that is being developed into a dedicated biofuel crop. This chapter describes a protocol that allows the generation of transgenic switchgrass plants by Agrobacterium tumefaciens-mediated transformation. Embryogenic calluses induced from caryopses or inflorescences were used as explants for inoculation with A. tumefaciens strain EHA105. Hygromycin phosphotransferase gene (hph) was used as the selectable marker and hygromycin was used as the selection agent. Calluses resistant to hygromycin were obtained after 5-6 weeks of selection. Soil-grown switchgrass plants were regenerated about 6 months after callus induction and Agrobacterium-mediated transformation.
Genetic transformation of switchgrass.
Xi, Yajun; Ge, Yaxin; Wang, Zeng-Yu
2009-01-01
Switchgrass (Panicum virgatum L.) is a highly productive warm-season C4 species that is being developed into a dedicated biofuel crop. This chapter describes a protocol that allows the generation of transgenic switchgrass plants by Agrobacterium tumefaciens-mediated transformation. Embryogenic calluses induced from caryopses or inflorescences were used as explants for inoculation with A. tumefaciens strain EHA105. Hygromycin phosphotransferase gene (hph) was used as the selectable marker and hygromycin was used as the selection agent. Calluses resistant to hygromycin were obtained after 5-6 weeks of selection. Soil-grown switchgrass plants were regenerated about 6 months after callus induction and Agrobacterium-mediated transformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Chuansheng; Nowak, Jerzy; Seiler, John
Switchgrass represents a promising feedstock crop for US energy sustainability. However, its broad utilization for bioenergy requires improvements of biomass yields and stress tolerance. In this DOE funded project, we have been working on harnessing beneficial bacterial endophytes to enhance switchgrass performance and to develop a low input feedstock production system for marginal lands that do not compete with the production of food crops. We have demonstrated that one of most promising plant growth-promoting bacterial endophytes, Burkholderia phytofirmans strain PsJN, is able to colonize roots and significantly promote growth of switchgrass cv. Alamo under in vitro, growth chamber, greenhouse, asmore » well as field conditions. Furthermore, PsJN bacterization improved growth and development of switchgrass seedlings, significantly stimulated plant root and shoot growth, and tiller number in the field, and enhanced biomass accumulation on both poor (p<0.001) and rich (p<0.05) soils, with more effective stimulation of plant growth in low fertility soil. Plant physiology measurements showed that PsJN inoculated Alamo had consistently lower transpiration, lower stomatal conductance, and higher water use efficiency in greenhouse conditions. These physiological changes may significantly contribute to the recorded growth enhancement. PsJN inoculation rapidly results in an increase in photosynthetic rates which contributes to the advanced growth and development. Some evidence suggests that this initial growth advantage decreases with time when resources are not limited such as in greenhouse studies. Additionally, better drought resistance and drought hardening were observed in PsJN inoculated switchgrass. Using the DOE-funded switchgrass EST microarray, in a collaboration with the Genomics Core Facility at the Noble Foundation, we have determined gene expression profile changes in both responsive switchgrass cv. Alamo and non-responsive cv. Cave-in-Rock (CR) following PsJN bacterization. With the MapMan software to analyze microarray data, the number of up- and down-regulated probes was calculated. The number of up-regulated probes in Alamo was 26, 14, 14, and 12% at 0.5, 2, 4 and 8 days after inoculation (DAI) with PsJN, respectively while the corresponding number in CR was 24, 22, 21, and 19%, respectively. In both cultivars, the largest number of up-regulated probes occurred at 0.5 DAI. Noticeable differences throughout the timeframe between Alamo and CR were that the number was dramatically decreased to half (12%) in Alamo but remained high in CR (approximately 20%). The number of down regulated genes demonstrated different trends in Alamo and CR. Alamo had an increasing trend from 9% at 0.5 DAI to 11, 17, and 28% at 2, 4, and 8 DAI, respectively. However, CR had 13% at 0.5 and 2 DAI, and declined to 10% at 4 and 8 DAI. With the aid of MapMan and PageMan, we mapped the response of the ID probes to the observed major gene regulatory network and major biosynthetic pathway changes associated with the beneficial bacterial endophyte infection, colonization, and early growth promotion process. We found significant differences in gene expression patterns between responsive and non-responsive cultivars in many pathways, including redox state regulation, signaling, proteolysis, transcription factors, as well as hormone (SA and JA in particular)-associated pathways. Form microarray data, a total of 50 key genes have been verified using qPCR. Ten of these genes were chosen for further functional study via either overexpression and/or RNAi knockout technologies. These genes were calmodulin-related calcium sensor protein (CAM), glutathione S-transferase (GST), histidine-containing phosphotransfer protein (H-221), 3 different zinc finger proteins (ZF-371, ZF131 and ZF242), EF hand transcription factor (EF-622), peroxidase, cellulose synthase catalytic submit A2 (CESA2), and Aux/IAA family. A total of 8 overexpression and 5 RNAi transgenic plants have been regenerated, and their gene expression levels determined using qPCR. Consequently high, medium and low expression lines were propagated in vitro for gene function study. When adequate numbers of individual transgenic lines were obtained, they were challenged with PsJN to see if PsJN promotes or inhibits growth of transgenic plants. Our results demonstrated that EF-622 overexpression, ZF-371, GST, H-221 and CAM RNAi transgenic lines lost responses to PsJN, i.e. PsJN had no growth promotive effects on these transgenic plants. Further study needs to be done to characterize this loss of responsiveness to PsJN. During this funding period, we have done more work related to this funded project and established collaborations with other institutions and obtained some interesting results, building a foundation for further research projects. For example, we isolated a naturally-occurring bacterium from surface-sterilized switchgrass seeds, identified as a unique Panteoa agglomerans species, and named strain PaKM. PaKM has been proved to be an efficient growth promoter of switchgrass over a broad spectrum of genotypes and has potential in applications with low input and sustainable production systems on marginal lands. In collaboration with Dr. Shuijin Hu (North Carolina State University), we conducted experiments on how endophyte-inoculated switchgrass affects soil N and P availability and the number of AMF in roots. Our preliminary results showed that PsJN increased AMF infection of switchgrass roots, and enhanced soil N availability and soil N mineralization on a low nutrient field. Further study of this phenomenon on different soils, over longer time periods, is needed to assess its potential impact on the productivity and longevity of switchgrass stands.« less
Soil carbon dynamics beneath switchgrass as indicated by stable isotope analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garten, C.T. Jr.; Wullschleger, S.D.
2000-04-01
Surface (0--40 cm) soil organic carbon (SOC) dynamics were studied beneath four switchgrass (Panicum virgatum L.) field trails in the southeastern US. Soil organic carbon was partitioned into particulate organic matter (POM) and mineral-associated organic matter (MOM). Most (75--90%) of the SOC at each study site was affiliated with MOM (<0.053 mm). Changes in stable carbon isotope ratios were used to derive carbon inputs to and losses from POM and MOM at each site. Inventories of existing SOC and new C{sub 4}-derived SOC beneath switchgrass decreased with increasing soil depth. Approximately 5 yr after establishment, 19 to 31% of themore » existing SOC inventories beneath switchgrass had been derived from new C{sub 4}-carbon inputs. Calculated turnover times of POM and MOM ranged from 2.4 to 4.3 yr and 26 to 40 yr, respectively. The turnover time of SOC in the POM fraction increased with decreasing mean annual temperature. A simple, two-compartment model was parameterized to predict the potential for soil carbon sequestration under switchgrass. An example calculation with the model indicated a measurable and verifiable recovery of soil carbon (=12% increase) on degraded lands through one decade of switchgrass production. The potential to sequester carbon through switchgrass cultivation will depend on initial soil carbon inventories, prevailing climate, soil types and site management.« less
Soil carbon dynamics beneath switchgrass as indicated by stable isotope analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garten Jr, Charles T; Wullschleger, Stan D
2000-04-01
Surface (0-40 cm) soil organic carbon (SOC) dynamics were studied beneath four switchgrass (Panicum virgatum L.) field trials in the southeastern United States. Soil organic carbon was partitioned into particulate organic matter (POM) and mineral-associated organic matter (MOM). Most (75-90%) of the SOC at each study site was affiliated with MOM (<0.053 mm). Changes in stable carbon isotope ratios were used to derive carbon inputs to and losses from POM and MOM at each site. Inventories of existing SOC and new C4-derived SOC beneath switchgrass decreased with increasing soil depth. Approximately 5 yr after establishment, 19 to 31% of themore » existing SOC inventories beneath switchgrass had been derived from new C{sub 4}-carbon inputs. Calculated turnover times of POM and MOM ranged from 2.4 to 4.3 yr and 26 to 40 yr, respectively. The turnover time of SOC in the POM fraction increased with decreasing mean annual temperature. A simple, two-compartment model was parameterized to predict the potential for soil carbon sequestration under switchgrass. An example calculation with the model indicated a measurable and verifiable recovery of soil carbon ({approx}12% increase) on degraded lands through one decade of switchgrass production. The potential to sequester carbon through switchgrass cultivation will depend on initial soil carbon inventories, prevailing climate, soil type, and site management.« less
Wu, Yanqi; Taliaferro, Charles M.
2012-10-02
A new cultivar of switchgrass `Cimarron` (SL93 2001-1) having increased biomass yield is provided. The switchgrass comprises all the morphological and physiological properties of the cultivar grown from a seed deposited under American Type Culture Collection (ATCC) No. PTA-10116. The invention also provides seeds, progeny, parts and methods of use of Cimarron, such as for the production of biofuels.
USDA-ARS?s Scientific Manuscript database
The warm-season perennial switchgrass (Panicum virgatum) is a candidate bioenergy crop. To be successful, switchgrass production must be maintained on low-quality landscapes with minimal inputs while facing future climates that are expected to be more extreme and more variable. We propose that ant...
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.), a perennial grass native to much of North America, is undergoing development as a dedicated energy crop. While high-biomass yield is necessary for the development of switchgrass as a bioenergy crop, composition of the biomass and nutrient content as they relate to...
Revealing the transcriptomic complexity of switchgrass by PacBio long-read sequencing.
Zuo, Chunman; Blow, Matthew; Sreedasyam, Avinash; Kuo, Rita C; Ramamoorthy, Govindarajan Kunde; Torres-Jerez, Ivone; Li, Guifen; Wang, Mei; Dilworth, David; Barry, Kerrie; Udvardi, Michael; Schmutz, Jeremy; Tang, Yuhong; Xu, Ying
2018-01-01
Switchgrass ( Panicum virgatum L.) is an important bioenergy crop widely used for lignocellulosic research. While extensive transcriptomic analyses have been conducted on this species using short read-based sequencing techniques, very little has been reliably derived regarding alternatively spliced (AS) transcripts. We present an analysis of transcriptomes of six switchgrass tissue types pooled together, sequenced using Pacific Biosciences (PacBio) single-molecular long-read technology. Our analysis identified 105,419 unique transcripts covering 43,570 known genes and 8795 previously unknown genes. 45,168 are novel transcripts of known genes. A total of 60,096 AS transcripts are identified, 45,628 being novel. We have also predicted 1549 transcripts of genes involved in cell wall construction and remodeling, 639 being novel transcripts of known cell wall genes. Most of the predicted transcripts are validated against Illumina-based short reads. Specifically, 96% of the splice junction sites in all the unique transcripts are validated by at least five Illumina reads. Comparisons between genes derived from our identified transcripts and the current genome annotation revealed that among the gene set predicted by both analyses, 16,640 have different exon-intron structures. Overall, substantial amount of new information is derived from the PacBio RNA data regarding both the transcriptome and the genome of switchgrass.
Spatially-explicit life cycle assessment of sun-to-wheels transportation pathways in the U.S.
Geyer, Roland; Stoms, David; Kallaos, James
2013-01-15
Growth in biofuel production, which is meant to reduce greenhouse gas (GHG) emissions and fossil energy demand, is increasingly seen as a threat to food supply and natural habitats. Using photovoltaics (PV) to directly convert solar radiation into electricity for battery electric vehicles (BEVs) is an alternative to photosynthesis, which suffers from a very low energy conversion efficiency. Assessments need to be spatially explicit, since solar insolation and crop yields vary widely between locations. This paper therefore compares direct land use, life cycle GHG emissions and fossil fuel requirements of five different sun-to-wheels conversion pathways for every county in the contiguous U.S.: Ethanol from corn or switchgrass for internal combustion vehicles (ICVs), electricity from corn or switchgrass for BEVs, and PV electricity for BEVs. Even the most land-use efficient biomass-based pathway (i.e., switchgrass bioelectricity in U.S. counties with hypothetical crop yields of over 24 tonnes/ha) requires 29 times more land than the PV-based alternative in the same locations. PV BEV systems also have the lowest life cycle GHG emissions throughout the U.S. and the lowest fossil fuel inputs, except for locations with hypothetical switchgrass yields of 16 or more tonnes/ha. Including indirect land use effects further strengthens the case for PV.
A Comparison of Microbial Community Structures by Depth and Season Under Switchgrass
NASA Astrophysics Data System (ADS)
Fansler, S. J.; Smith, J. L.; Bolton, H.; Bailey, V. L.
2008-12-01
As part of a multidisciplinary study of C sequestration in switchgrass production systems, the soil microbial community structure was monitored at 6 different depths (reaching 90 cm) in both spring and autumn. Microbial community structure was assessed using ribosomal intergenic spacer analysis (RISA), and primers were used specific to either bacteria or fungi, generating microbial community fingerprints for each taxonomic group. Diverse microbial communities for both groups were detected throughout the soil profile. It is notable that while community structure clearly changed with depth, there was the deepest soil samples still retained relatively diverse communities. Seasonally, differences are clearly evident within plots at the surface. As the plots were replicated, significant differences in the community fingerprints with depth and season are reported.
The WRKY transcription factor family and senescence in switchgrass.
Rinerson, Charles I; Scully, Erin D; Palmer, Nathan A; Donze-Reiner, Teresa; Rabara, Roel C; Tripathi, Prateek; Shen, Qingxi J; Sattler, Scott E; Rohila, Jai S; Sarath, Gautam; Rushton, Paul J
2015-11-09
Early aerial senescence in switchgrass (Panicum virgatum) can significantly limit biomass yields. WRKY transcription factors that can regulate senescence could be used to reprogram senescence and enhance biomass yields. All potential WRKY genes present in the version 1.0 of the switchgrass genome were identified and curated using manual and bioinformatic methods. Expression profiles of WRKY genes in switchgrass flag leaf RNA-Seq datasets were analyzed using clustering and network analyses tools to identify both WRKY and WRKY-associated gene co-expression networks during leaf development and senescence onset. We identified 240 switchgrass WRKY genes including members of the RW5 and RW6 families of resistance proteins. Weighted gene co-expression network analysis of the flag leaf transcriptomes across development readily separated clusters of co-expressed genes into thirteen modules. A visualization highlighted separation of modules associated with the early and senescence-onset phases of flag leaf growth. The senescence-associated module contained 3000 genes including 23 WRKYs. Putative promoter regions of senescence-associated WRKY genes contained several cis-element-like sequences suggestive of responsiveness to both senescence and stress signaling pathways. A phylogenetic comparison of senescence-associated WRKY genes from switchgrass flag leaf with senescence-associated WRKY genes from other plants revealed notable hotspots in Group I, IIb, and IIe of the phylogenetic tree. We have identified and named 240 WRKY genes in the switchgrass genome. Twenty three of these genes show elevated mRNA levels during the onset of flag leaf senescence. Eleven of the WRKY genes were found in hotspots of related senescence-associated genes from multiple species and thus represent promising targets for future switchgrass genetic improvement. Overall, individual WRKY gene expression profiles could be readily linked to developmental stages of flag leaves.
Amna, Amna; Opiyo, Stephen Obol
2018-01-01
Plants have a diverse endophytic microbiome that is functionally important for their growth, development, and health. In this study, the diversity and specificity of culturable endophytic fungal communities were explored in one of the most important biofuel crops, switchgrass plants (Panicum virgatum L.), which have been cultivated on a reclaimed coal-mining site for more than 20 years. The endophytic fungi were isolated from the surface-sterilized shoot (leaf and stem), root, and seed tissues of switchgrass plants and then cultured for identification. A total of 1339 fungal isolates were found and 22 operational taxonomic units (OTUs) were sequence identified by internal transcribed spacer (ITS) primers and grouped into 7 orders and 4 classes. Although a diverse range of endophytic fungi associated with switchgrass were documented, the most abundant class, order, and species were Sordariomycetes, Hypocreales, and Fusarium spp. respectively. About 86% of the isolated endophytic fungi were able to enhance the heights of the shoots; 69% could increase the shoot fresh weights; and 62% could improve the shoot dry weights after being reintroduced back into the switchgrass plants, which illustrated their functional importance. Through the Shannon Diversity Index analysis, we observed a gradation of species diversity, with shoots and roots having the similar values and seeds having a lesser value. It was observed that the switchgrass plants showing better growth performance displayed higher endophytic fungal species diversity and abundance. It was also discovered that the rhizosphere soil organic matter content was positively correlated with the fungal species diversity. All these data demonstrate the functional association of these beneficial endophytic fungi with switchgrass and their great potential in improving the switchgrass growth and biomass to benefit the biofuel industry by reducing chemical inputs and burden to the environment. PMID:29902231
Xia, Ye; Amna, Amna; Opiyo, Stephen Obol
2018-01-01
Plants have a diverse endophytic microbiome that is functionally important for their growth, development, and health. In this study, the diversity and specificity of culturable endophytic fungal communities were explored in one of the most important biofuel crops, switchgrass plants (Panicum virgatum L.), which have been cultivated on a reclaimed coal-mining site for more than 20 years. The endophytic fungi were isolated from the surface-sterilized shoot (leaf and stem), root, and seed tissues of switchgrass plants and then cultured for identification. A total of 1339 fungal isolates were found and 22 operational taxonomic units (OTUs) were sequence identified by internal transcribed spacer (ITS) primers and grouped into 7 orders and 4 classes. Although a diverse range of endophytic fungi associated with switchgrass were documented, the most abundant class, order, and species were Sordariomycetes, Hypocreales, and Fusarium spp. respectively. About 86% of the isolated endophytic fungi were able to enhance the heights of the shoots; 69% could increase the shoot fresh weights; and 62% could improve the shoot dry weights after being reintroduced back into the switchgrass plants, which illustrated their functional importance. Through the Shannon Diversity Index analysis, we observed a gradation of species diversity, with shoots and roots having the similar values and seeds having a lesser value. It was observed that the switchgrass plants showing better growth performance displayed higher endophytic fungal species diversity and abundance. It was also discovered that the rhizosphere soil organic matter content was positively correlated with the fungal species diversity. All these data demonstrate the functional association of these beneficial endophytic fungi with switchgrass and their great potential in improving the switchgrass growth and biomass to benefit the biofuel industry by reducing chemical inputs and burden to the environment.
Evaluation of Switchgrass as a co-firing fuel in the Southeast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Southern Research Institute
2001-11-01
The ''Evaluation of Switchgrass as a Co-Firing Fuel in the Southeast'' is a comprehensive project incorporating the highest yielding variety of switchgrass, unique harvesting methods, detailed parametric evaluations in a state-of-the-art combustion research facility, and a full-scale demonstration in a tangentially-fired Alabama Power Company power boiler. These features were incorporated into the project to reduce the technical and economic risk of yielding a practical renewable energy option for the southeastern US. There are particular incentives for proving the feasibility of switchgrass as a biomass fuel in the southeastern US. Even though agriculture is a predominant industry much of the landmore » in this region is under-utilized, marginal farmland. As a result, some of the poorest counties in the nation are located in this region. The yields of switchgrass are substantially higher in the southeastern US than in other regions. Yield, or productivity, is a critical factor in determining the feasibility of biomass fuel. Yields in small research plots in the region averaged 25.8 Mg/ha (11.5 tons/acre) over the period 1990-1994. Achievable commercial yield in the southeastern US will likely be about 15.7 Mg/ha (7 tons/acre) with currently available varieties. Use of switchgrass as a supplemental fuel for coal-fired utility boilers could create an enormous market for growers. The Southern Company has 23,000 MW of coal-fired capacity in the southeast. If only 1% of this capacity was provided by switchgrass instead of coal, 74,500 ha (184,000 acres) of production would be needed. This would generate 1,288,000 tons of switchgrass which, if valued at $35/ton, would amount to over $45 million.« less
Effects of torrefaction and densification on switchgrass pyrolysis products
Yang, Zixu; Sarkar, Madhura; Kumar, Ajay; ...
2014-12-01
Abstract The pyrolysis behaviors of four types of pretreated switchgrass (torrefied at 230 and 270 °C, densification, and torrefaction at 270 ºC followed by densification) were studied at three temperatures (500, 600, 700 ºC) using a pyroprobe attached to a gas chromatogram mass spectroscopy (Py-GC/MS). The torrefaction of switchgrass improved its oxygen to carbon ratio and energy content. Contents of anhydrous sugars and phenols in pyrolysis products of torrefied switchgrass were higher than those in pyrolysis products of raw switchgrass. As the torrefaction temperature increased from 230 to 270 °C, the contents of anhydrous sugars and phenols in pyrolysis productsmore » increased whereas content of guaiacols decreased. High pyrolysis temperature (600 and 700 °C as compared to 500 °C) enhanced decomposition of lignin and anhydrous sugars, leading to increase in phenols, aromatics and furans. Densification enhanced depolymerization of cellulose and hemicellulose during pyrolysis.« less
Co-firing switchgrass in a 50 MW pulverized coal boiler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ragland, K.W.; Aerts, D.J.; Weiss, C.
1996-12-31
Switchgrass is being co-fired with pulverized coal in a 50 MW wall-fired, radiant boiler at MG&E`s Blount Street generating station. Shredded switchgrass is fed to a hammermill onto a live bottom storage bunker. Twin screw augers move the switchgrass onto a belt conveyor which leads to a rotary air lock valve and through a pressurized pipe to the boiler where it is injected into the furnace at two points between first and second level coal burners. The main objective of the project is to evaluate the boiler performance, slagging behavior, and emissions of the co-fired switchgrass at replacement of ratesmore » of up to 20% by mass (13% by heat input). Initial co-firing tests to examine fuel handling and feeding, combustion behavior, boiler response and emissions are favorable. In November a 100 hour co-fire test is planned.« less
USDA-ARS?s Scientific Manuscript database
The ability of remote sensing-based surface energy balance (SEB) models to track water stress in rain-fed switchgrass has not been explored yet. In this paper, the theoretical framework of crop water stress index (CWSI) was utilized to estimate CWSI in rain-fed switchgrass (Panicum virgatum L.) usin...
Microbial nitrogen cycling response to forest-based bioenergy production.
Minick, Kevan J; Strahm, Brian D; Fox, Thomas R; Sucre, Eric B; Leggett, Zakiya H
2015-12-01
Concern over rising atmospheric CO2 and other greenhouse gases due to fossil fuel combustion has intensified research into carbon-neutral energy production. Approximately 15.8 million ha of pine plantations exist across the southeastern United States, representing a vast land area advantageous for bioenergy production without significant landuse change or diversion of agricultural resources from food production. Furthermore, intercropping of pine with bioenergy grasses could provide annually harvestable, lignocellulosic biomass feedstocks along with production of traditional wood products. Viability of such a system hinges in part on soil nitrogen (N) availability and effects of N competition between pines and grasses on ecosystem productivity. We investigated effects of intercropping loblolly pine (Pinus taeda) with switchgrass (Panicum virgatum) on microbial N cycling processes in the Lower Coastal Plain of North Carolina, USA. Soil samples were collected from bedded rows of pine and interbed space of two treatments, composed of either volunteer native woody and herbaceous vegetation (pine-native) or pure switchgrass (pine-switchgrass) in interbeds. An in vitro 15N pool-dilution technique was employed to quantify gross N transformations at two soil depths (0-5 and 5-15 cm) on four dates in 2012-2013. At the 0-5 cm depth in beds of the pine-switchgrass treatment, gross N mineralization was two to three times higher in November and February compared to the pine-native treatment, resulting in increased NH4(+) availability. Gross and net nitrification were also significantly higher in February in the same pine beds. In interbeds of the pine-switchgrass treatment, gross N mineralization was lower from April to November, but higher in February, potentially reflecting positive effects of switchgrass root-derived C inputs during dormancy on microbial activity. These findings indicate soil N cycling and availability has increased in pine beds of the pine-switchgrass treatment compared to those of the pine-native treatment, potentially alleviating any negative effects of N competition between pine and switchgrass. We expect that reduced soil C in the pine-switchgrass treatment, effects of pine and switchgrass rooting on soil C availability, and plant N demand are major factors influencing soil N transformations. Future research should examine rooting architecture in-intercropped systems and the effects on soil microbial communities and function.
Alteration of S-adenosylhomocysteine levels affects lignin biosynthesis in switchgrass.
Bai, Zetao; Qi, Tianxiong; Liu, Yuchen; Wu, Zhenying; Ma, Lichao; Liu, Wenwen; Cao, Yingping; Bao, Yan; Fu, Chunxiang
2018-04-28
Methionine (Met) synthesized from aspartate is a fundamental amino acid needed to produce S-adenosylmethionine (SAM) that is an important cofactor for the methylation of monolignols. As a competitive inhibitor of SAM-dependent methylation, the effect of S-adenosylhomocysteine (SAH) on lignin biosynthesis, however, is still largely unknown in plants. Expression levels of Cystathionine γ-synthase (PvCGS) and S-adenosylhomocysteine hydrolase1 (PvSAHH1) were downregulated by RNAi technology, respectively, in switchgrass, a dual-purpose forage and biofuel crop. The transgenic switchgrass lines were subjected to studying the impact of SAH on lignin biosynthesis. Our results showed that downregulation of PvCGS in switchgrass altered the accumulation of aspartate-derived and aromatic amino acids, reduced the content of SAH, enhanced lignin biosynthesis, and stunted plant growth. In contrast, downregulation of PvSAHH1 raised SAH levels in switchgrass, impaired the biosynthesis of both guaiacyl and syringyl lignins, and therefore significantly increased saccharification efficiency of cell walls. This work indicates that SAH plays a crucial role in monolignol methylation in switchgrass. Genetic regulation of either PvCGS or PvSAHH1 expression in switchgrass can change intracellular SAH contents and SAM to SAH ratios and therefore affect lignin biosynthesis. Thus, our study suggests that genes involved in Met metabolism are of interest as new valuable targets for cell wall bioengineering in future. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Bingcheng; Deng, Xiping; Zhang, Suiqi; Shan, Lun
2010-10-01
Seedling biomass and allocation, transpiration water use efficiency (TWUE), and species competition between switchgrass ( Panicum virgatum L.) and milkvetch ( Astragalus adsurgens Pall.) were investigated in a pot-cultivated experiment under different levels of water availability. The experiment was conducted using a simple replacement design in which switchgrass and milkvetch were grown in growth chamber with ten seedlings per pot, in three combinations of the two species (0:10, 5:5 and 10:0). Five water treatments included sufficient water supply (HW), gradual soil drying from HW (DHW), moderate water stress (LW), gradual soil drying from LW (DLW), and re-establishment of LW conditions after 12 days of drying from LW (RLW). Water treatments were applied over a 15-day period. Biomass production and its partitioning, and TWUE were determined at the end of the experiment. Species competitive indices (competitive ratio (CR), aggressivity (A) and relative yield total (RYT)) were calculated from the biomass dry weight data for shoots, roots and total biomass. Water stress significantly reduced seedling biomass production but increased root:shoot ratios in both monocultures and mixtures. In the RLW treatment, only switchgrass monocultures displayed compensatory biomass production and TWUE, while both species demonstrated compensatory growth in the mixture. Switchgrass was the dominant species and much more aggressive than milkvetch in the LW treatment, while in the other four treatments milkvetch was the dominant species as measured by the positive value of aggressivity and higher values of CR. The total biomass RYT values of the two species were higher than 1.0, indicating some degree of resource complimentarity. In the two-species mixture, although the biomass production was lower than that of milkvetch in the monoculture, there was better TWUE, especially under low and fluctuating water availability.
Ray, Prasun; Guo, Yingqing; Kolape, Jaydeep; Craven, Kelly D.
2018-01-01
Serendipita vermifera (=Sebacina vermifera; isolate MAFF305830) is a mycorrhizal fungus originally isolated from the roots of an Australian orchid that we have previously shown to be beneficial in enhancing biomass yield and drought tolerance in switchgrass, an important bioenergy crop for cellulosic ethanol production in the United States. However, almost nothing is known about how this root-associated fungus proliferates and grows through the soil matrix. Such information is critical to evaluate the possibility of non-target effects, such as unintended spread to weedy plants growing near a colonized switchgrass plant in a field environment. A microcosm experiment was conducted to study movement of vegetative mycelia of S. vermifera between intentionally inoculated switchgrass (Panicum virgatum L.) and nearby weeds. We constructed size-exclusion microcosms to test three different common weeds, large crabgrass (Digitaria sanguinalis L.), Texas panicum (Panicum texanum L.), and Broadleaf signalgrass (Brachiaria platyphylla L.), all species that typically co-occur in Southern Oklahoma and potentially compete with switchgrass. We report that such colonization of non-target plants by S. vermifera can indeed occur, seemingly via co-mingled root systems. As a consequence of colonization, significant enhancement of growth was noted in signalgrass, while a mild increase (albeit not significant) was evident in crabgrass. Migration of the fungus seems unlikely in root-free bulk soil, as we failed to see transmission when the roots were kept separate. This research is the first documentation of non-targeted colonization of this unique root symbiotic fungus and highlights the need for such assessments prior to deployment of biological organisms in the field. PMID:29375607
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum, L.) is a potential dedicated biomass crop for use in biocatalytic conversion systems to biofuels. Nearly 30% of switchgrass cell wall material is xylan. The complete depolymerization of xylan is desirable both as an additional carbon source for microbial fermentation a...
USDA-ARS?s Scientific Manuscript database
Fast pyrolysis of switchgrass (and resultant biochar) can be used for bio-fuel production, soil amendments for fertilizing crops, binding heavy metals, and sequestering environmental biocarbon. To determine the influence of fast pyrolysis-generated switchgrass biochar on survival of foodborne path...
Production of polyhydroxybutyrate in switchgrass
Somleva, Mariya N.; Snell, Kristi D.; Beaulieu, Julie; Peoples, Oliver P.; Garrison, Bradley; Patterson, Nii
2013-07-16
Transgenic plants, plant material, and plant cells for synthesis of polyhydroxyalkanoates, preferably poly(3-hydroxybutyrate) (also referred to a as PHB) are provided. Preferred plants that can be genetically engineered to produce PHB include plants that do not normally produce storage products such as oils and carbohydrates, and plants that have a C.sub.4 NAD-malic enzyme photosynthetic pathway. Such plants also advantageously produce lignocellulosic biomass that can be converted into biofuels. An exemplary plant that can be genetically engineered to produce PHB and produce lignocellulosic biomass is switchgrass, Panicum virgatum L. A preferred cultivar of switchgrass is Alamo. Other suitable cultivars of switchgrass include but are not limited to Blackwell, Kanlow, Nebraska 28, Pathfinder, Cave-in-Rock, Shelter and Trailblazer.
Luque, Luis; Oudenhoven, Stijn; Westerhof, Roel; van Rossum, Guus; Berruti, Franco; Kersten, Sascha; Rehmann, Lars
2016-01-01
One of the main obstacles in lignocellulosic ethanol production is the necessity of pretreatment and fractionation of the biomass feedstocks to produce sufficiently pure fermentable carbohydrates. In addition, the by-products (hemicellulose and lignin fraction) are of low value, when compared to dried distillers grains (DDG), the main by-product of corn ethanol. Fast pyrolysis is an alternative thermal conversion technology for processing biomass. It has recently been optimized to produce a stream rich in levoglucosan, a fermentable glucose precursor for biofuel production. Additional product streams might be of value to the petrochemical industry. However, biomass heterogeneity is known to impact the composition of pyrolytic product streams, as a complex mixture of aromatic compounds is recovered with the sugars, interfering with subsequent fermentation. The present study investigates the feasibility of fast pyrolysis to produce fermentable pyrolytic glucose from two abundant lignocellulosic biomass sources in Ontario, switchgrass (potential energy crop) and corn cobs (by-product of corn industry). Demineralization of biomass removes catalytic centers and increases the levoglucosan yield during pyrolysis. The ash content of biomass was significantly decreased by 82-90% in corn cobs when demineralized with acetic or nitric acid, respectively. In switchgrass, a reduction of only 50% for both acids could be achieved. Conversely, levoglucosan production increased 9- and 14-fold in corn cobs when rinsed with acetic and nitric acid, respectively, and increased 11-fold in switchgrass regardless of the acid used. After pyrolysis, different configurations for upgrading the pyrolytic sugars were assessed and the presence of potentially inhibitory compounds was approximated at each step as double integral of the UV spectrum signal of an HPLC assay. The results showed that water extraction followed by acid hydrolysis and solvent extraction was the best upgrading strategy. Ethanol yields achieved based on initial cellulose fraction were 27.8% in switchgrass and 27.0% in corn cobs. This study demonstrates that ethanol production from switchgrass and corn cobs is possible following a combined thermochemical and fermentative biorefinery approach, with ethanol yields comparable to results in conventional pretreatments and fermentation processes. The feedstock-independent fermentation ability can easily be assessed with a simple assay.
Advances in biotechnology and genomics of switchgrass
2013-01-01
Switchgrass (Panicum virgatum L.) is a C4 perennial warm season grass indigenous to the North American tallgrass prairie. A number of its natural and agronomic traits, including adaptation to a wide geographical distribution, low nutrient requirements and production costs, high water use efficiency, high biomass potential, ease of harvesting, and potential for carbon storage, make it an attractive dedicated biomass crop for biofuel production. We believe that genetic improvements using biotechnology will be important to realize the potential of the biomass and biofuel-related uses of switchgrass. Tissue culture techniques aimed at rapid propagation of switchgrass and genetic transformation protocols have been developed. Rapid progress in genome sequencing and bioinformatics has provided efficient strategies to identify, tag, clone and manipulate many economically-important genes, including those related to higher biomass, saccharification efficiency, and lignin biosynthesis. Application of the best genetic tools should render improved switchgrass that will be more economically and environmentally sustainable as a lignocellulosic bioenergy feedstock. PMID:23663491
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garten, Charles T.; Brice, Deanne J.; Castro, Hector F.
2011-01-01
Switchgrass (Panicum virgatum) is a perennial, warm-season grass that has been identified as a potential biofuel feedstock over a large part of North America. We examined above- and belowground responses to nitrogen fertilization in “Alamo” switchgrass grown in West Tennessee, USA. The fertilizer study included a spring and fall sampling of 5-year old switchgrass grown under annual applications of 0, 67, and 202 kg N ha -1 (as ammonium nitrate). Fertilization changed switchgrass biomass allocation as indicated by root:shoot ratios. End-of-growing season root:shoot ratios (mean ± SE) declined significantly (P ≤ 0.05) at the highest fertilizer nitrogen treatment (2.16 ±more » 0.08, 2.02 ± 0.18, and 0.88 ± 0.14, respectively, at 0, 67, and 202 kg N ha -1). Fertilization also significantly increased above- and belowground nitrogen concentrations and decreased plant C:N ratios. Data are presented for coarse live roots, fine live roots, coarse dead roots, fine dead roots, and rhizomes. At the end of the growing season, there was more carbon and nitrogen stored in belowground biomass than aboveground biomass. Finally, fertilization impacted switchgrass tissue chemistry and biomass allocation in ways that potentially impact soil carbon cycle processes and soil carbon storage.« less
Switchgrass Cultivar/Ecotype Selection and Management for Biofuels in the Upper Southeast USA
Parrish, David J.; Wolf, Dale D.
2014-01-01
Switchgrass (Panicum virgatum L.), a perennial warm-season grass indigenous to the eastern USA, has potential as a biofuels feedstock. The objective of this study was to investigate the performance of upland and lowland switchgrass cultivars under different environments and management treatments. Four cultivars of switchgrass were evaluated from 2000 to 2001 under two management regimes in plots established in 1992 at eight locations in the upper southeastern USA. Two management treatments included 1) a single annual harvest (in late October to early November) and a single application of 50 kg N/ha/yr and 2) two annual harvests (in midsummer and November) and a split application of 100 kg N/ha/yr. Biomass yields averaged 15 Mg/ha/yr and ranged from 10 to 22 Mg/ha/yr across cultivars, managements, locations, and years. There was no yield advantage in taking two harvests of the lowland cultivars (Alamo and Kanlow). When harvested twice, upland cultivars (Cave-in-Rock and Shelter) provided yields equivalent to the lowland ecotypes. Tiller density was 36% lower in stands cutting only once per year, but the stands appeared vigorous after nine years of such management. Lowland cultivars and a one-cutting management (after the tops have senesced) using low rates of applied N (50 kg/ha) are recommended. PMID:25105170
Switchgrass Cultivar/Ecotype Selection and Management for Biofuels in the Upper Southeast USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemus, Rocky; Parrish, David J.; Wolf, Dale D.
Switchgrass ( Panicum virgatum L.), a perennial warm-season grass indigenous to the eastern USA, has potential as a biofuels feedstock. The objective of this study was to investigate the performance of upland and lowland switchgrass cultivars under different environments and management treatments. Four cultivars of switchgrass were evaluated from 2000 to 2001 under two management regimes in plots established in 1992 at eight locations in the upper southeastern USA. Two management treatments included 1) a single annual harvest (in late October to early November) and a single application of 50 kg N/ha/yr and 2) two annual harvests (in midsummer and November)more » and a split application of 100 kg N/ha/yr. Biomass yields averaged 15 Mg/ha/yr and ranged from 10 to 22 Mg/ha/yr across cultivars, managements, locations, and years. There was no yield advantage in taking two harvests of the lowland cultivars (Alamo and Kanlow). When harvested twice, upland cultivars (Cave-in-Rock and Shelter) provided yields equivalent to the lowland ecotypes. Tiller density was 36% lower in stands cutting only once per year, but the stands appeared vigorous after nine years of such management. Lowland cultivars and a one-cutting management (after the tops have senesced) using low rates of applied N (50 kg/ha) are recommended.« less
Switchgrass Cultivar/Ecotype Selection and Management for Biofuels in the Upper Southeast USA
Lemus, Rocky; Parrish, David J.; Wolf, Dale D.
2014-01-01
Switchgrass ( Panicum virgatum L.), a perennial warm-season grass indigenous to the eastern USA, has potential as a biofuels feedstock. The objective of this study was to investigate the performance of upland and lowland switchgrass cultivars under different environments and management treatments. Four cultivars of switchgrass were evaluated from 2000 to 2001 under two management regimes in plots established in 1992 at eight locations in the upper southeastern USA. Two management treatments included 1) a single annual harvest (in late October to early November) and a single application of 50 kg N/ha/yr and 2) two annual harvests (in midsummer and November)more » and a split application of 100 kg N/ha/yr. Biomass yields averaged 15 Mg/ha/yr and ranged from 10 to 22 Mg/ha/yr across cultivars, managements, locations, and years. There was no yield advantage in taking two harvests of the lowland cultivars (Alamo and Kanlow). When harvested twice, upland cultivars (Cave-in-Rock and Shelter) provided yields equivalent to the lowland ecotypes. Tiller density was 36% lower in stands cutting only once per year, but the stands appeared vigorous after nine years of such management. Lowland cultivars and a one-cutting management (after the tops have senesced) using low rates of applied N (50 kg/ha) are recommended.« less
Schmer, Marty R.; Vogel, Kenneth P.; Varvel, Gary E.; Follett, Ronald F.; Mitchell, Robert B.; Jin, Virginia L.
2014-01-01
Low-carbon biofuel sources are being developed and evaluated in the United States and Europe to partially offset petroleum transport fuels. Current and potential biofuel production systems were evaluated from a long-term continuous no-tillage corn (Zea mays L.) and switchgrass (Panicum virgatum L.) field trial under differing harvest strategies and nitrogen (N) fertilizer intensities to determine overall environmental sustainability. Corn and switchgrass grown for bioenergy resulted in near-term net greenhouse gas (GHG) reductions of −29 to −396 grams of CO2 equivalent emissions per megajoule of ethanol per year as a result of direct soil carbon sequestration and from the adoption of integrated biofuel conversion pathways. Management practices in switchgrass and corn resulted in large variation in petroleum offset potential. Switchgrass, using best management practices produced 3919±117 liters of ethanol per hectare and had 74±2.2 gigajoules of petroleum offsets per hectare which was similar to intensified corn systems (grain and 50% residue harvest under optimal N rates). Co-locating and integrating cellulosic biorefineries with existing dry mill corn grain ethanol facilities improved net energy yields (GJ ha−1) of corn grain ethanol by >70%. A multi-feedstock, landscape approach coupled with an integrated biorefinery would be a viable option to meet growing renewable transportation fuel demands while improving the energy efficiency of first generation biofuels. PMID:24594783
Transgene autoexcision in switchgrass pollen mediated by the Bxb1 recombinase
2014-01-01
Background Switchgrass (Panicum virgatum L.) has a great potential as a platform for the production of biobased plastics, chemicals and energy mainly because of its high biomass yield on marginal land and low agricultural inputs. During the last decade, there has been increased interest in the genetic improvement of this crop through transgenic approaches. Since switchgrass, like most perennial grasses, is exclusively cross pollinating and poorly domesticated, preventing the dispersal of transgenic pollen into the environment is a critical requisite for the commercial deployment of this important biomass crop. In this study, the feasibility of controlling pollen-mediated gene flow in transgenic switchgrass using the large serine site-specific recombinase Bxb1 has been investigated. Results A novel approach utilizing co-transformation of two separate vectors was used to test the functionality of the Bxb1/att recombination system in switchgrass. In addition, two promoters with high pollen-specific activity were identified and thoroughly characterized prior to their introduction into a test vector explicitly designed for both autoexcision and quantitative analyses of recombination events. Our strategy for developmentally programmed precise excision of the recombinase and marker genes in switchgrass pollen resulted in the generation of transgene-excised progeny. The autoexcision efficiencies were in the range of 22-42% depending on the transformation event and assay used. Conclusion The results presented here mark an important milestone towards the establishment of a reliable biocontainment system for switchgrass which will facilitate the development of this crop as a biorefinery feedstock through advanced biotechnological approaches. PMID:25148894
Wang, Quanzhen; Gu, Muyu; Ma, Xiaomin; Zhang, Hongjuan; Wang, Yafang; Cui, Jian; Gao, Wei; Gui, Jing
2015-11-01
Soil pollution with heavy metals is an increasingly serious threat to the environment, food security, and human health. Therefore, it is urgent to develop economic and highly efficient soil restoration technology for environmental improvement; phytoremediation is an option that is safe, has low cost, and is environmentally friendly. However, in selecting hyperaccumulators or tolerant plants, theories and operation technologies for optimal restoration should be satisfied. In this study, the switchgrass growth response and performance of phytoextraction under the coupling effect of Cd and pH were investigated by evaluating seed germination, seedling growth, and the Cd content in the plant to evaluate the potential use of switchgrass as a phytoremediation plant in cadmium contaminated soil. This study conducted three sets of independent experiments with five levels of Cd concentrations, including two orthogonal matrix designs of combining Cd with pH values. The results showed that switchgrass was germinated well under all treatments (Cd concentration of 0-500 μM), but the seedling growth was significantly affected by Cd and pH, as shown by multivariate regression analyses. Hormesis was found during the growth of switchgrass plants exposed to low Cd concentrations under hydroponic conditions, and switchgrass plants were capable of developing with a Cd concentration of 100-175 μM and pH of 4.1-5.9. Mild acidic conditions can enhance the ability of Cd to accumulate in switchgrass. Switchgrass was moderately tolerant to Cd and may be used as a phytoremediation plant for Cd-contaminated soils in the future. Our results also suggest that hormetic effects should be taken into consideration in the phytoremediation of Cd-contaminated soils. We discuss the physiological and biochemical mechanisms contributing to the effective application of the plant for the phytoremediation of Cd-contaminated soils.
NASA Astrophysics Data System (ADS)
VanLoocke, A.; Bernacchi, C. J.; Twine, T. E.; Kucharik, C. J.
2012-12-01
Numerous socio-economic and environmental pressures have driven the need to increase domestic renewable energy production in the Midwest. The primary attempt at addressing this need has been to use maize; however, the leaching of residual nitrate from maize fertilizer into runoff drives the formation of the Gulf of Mexico hypoxic or "Dead" zone which can have significant environmental impacts on the marine ecosystems. As a result of the threat to benthic organisms and fisheries in this region, The Mississippi Basin/Gulf of Mexico Task Force has set in place goals to reduce the size of the hypoxic zone from the current size of ~ 20,000 km2 to < 5000 km2 by the year. It is predicted that annual dissolved inorganic nitrate (DIN) export would have to decrease by 30 to 55% to meet this goal. An alternative option to meet the renewable energy needs while reducing the environmental impacts associated with DIN export is to produce high-yielding, low fertilizer input perennial grasses such as switchgrass and miscanthus. Miscanthus and switchgrass have been shown to greatly reduce nitrate leaching at the plot scale, even during the establishment phase. This reduction in leaching is attributed to the perennial nature and the efficient recycling of nutrients via nutrient translocation. While these feedstocks are able to achieve higher productivity than maize grain with fewer inputs, they require more water, presenting the potential for environmental impacts on regional hydrologic cycle, including reductions in streamflow. The goal of this research is to determine the change in streamflow in the Mississippi-Atchafalaya River Basin (MARB) and the export of nitrogen from fertilizer to the Gulf of Mexico. To address this goal, we adapted a vegetation model capable of simulating the biogeochemistry of current crops as well as miscanthus and switchgrass, the Integrated Biosphere Simulator - agricultural version (Agro-IBIS) and coupled it with a hydrology model capable of simulating streamflow and nitrogen export, the Terrestrial Hydrology Model with Biogeochemistry. Simulations were conducted at varying fertilizer application rates and fraction coverages of miscanthus and switchgrass across the MARB. Data analysis indicated that there were reductions in runoff and streamflow throughout the MARB, with the largest differences occurring in drier portions of the regions. However differences in streamflow were only statistically resolved when miscanthus production was above 25% coverage and switchgrass above 35%. Compared to streamflow, statistically significant reductions in nitrogen export occurred at lower percent coverage, with unfertilized miscanthus having significant reductions at 10% and switchgrass at 25% coverage respectively, however this effect was smaller at higher fertilizer application rates. These results indicate that, given targeted management strategies, there is potential for miscanthus and switchgrass to provide key ecosystem services by reducing the export of DIN, while avoiding hydrologic impacts of reduced streamflow.
Association Mapping of Cell Wall Synthesis Regulatory Genes and Cell Wall Quality in Switchgrass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartley, Laura; Wu, Y.; Zhu, L.
Inefficient conversion of biomass to biofuels is one of the main barriers for biofuel production from such materials. Approximately half of polysaccharides in biomass remain unused by typical biochemical conversion methods. Conversion efficiency is influenced by the composition and structure of cell walls of biomass. Grasses such as wheat, maize, and rice, as well as dedicated perennial bioenergy crops, like switchgrass, make up ~55% of biomass that can be produced in the United States. Grass cell walls have a different composition and patterning compared with dicotyledonous plants, including the well-studied model plant, Arabidopsis. This project identified genetic determinants of cellmore » wall composition in grasses using both naturally occurring genetic variation of switchgrass and gene network reconstruction and functional assays in rice. In addition, the project linked functional data in rice and other species to switchgrass improvement efforts through curation of the most abundant class of regulators in the switchgrass genome. Characterizing natural diversity of switchgrass for variation in cell wall composition and properties, also known as quality, provides an unbiased avenue for identifying biologically viable diversity in switchgrass cell walls. To characterizing natural diversity, this project generated cell wall composition and enzymatic deconstruction data for ~450 genotypes of the Switchgrass Southern Association Collection (SSAC), a diverse collection composed of 36 switchgrass accessions from the southern U.S. distribution of switchgrass. Comparing these data with other measures of cell wall quality for the same samples demonstrated the complementary nature of the diverse characterization platforms now being used for biomass characterization. Association of the composition data with ~3.2K single nucleotide variant markers identified six significant single nucleotide variant markers co-associated with digestibility and another compositional trait. These markers might be used to select switchgrass genotypes with improved composition in breeding programs for biofuel and forage production. Because the SSAC continues to be characterized by collaborators in the bioenergy community, the data generated will be used to identify additional markers in higher resolution genotyping data to approach identifying the genes and alleles that cause natural variation in switchgrass cell wall quality. For example, these markers can be surveyed in the 2100-member Oklahoma Southern and Northern Lowland switchgrass collections that this project also characterized. An orthogonal approach to biodiversity studies, using comparative functional genomics permits systematic querying of how much regulatory information is likely to be transferable from dicots to grasses and use of accumulated functional genomics resources for better-characterized grass species, such as rice, itself a biomass source in global agriculture and in certain regions. The project generated and tested a number of specific hypotheses regarding cell wall transcription factors and enzymes of grasses. To aid identification of cell wall regulators, the project assembled a novel, highdepth and -quality gene association network using a general linearized model scoring system to combine rice gene network data. Using known or putative orthologs of Arabidopsis cell wall biosynthesis genes and regulators, the project pulled from this network a cell wall sub-network that includes 96 transcription factors. Reverse genetics of a co-ortholog of the Arabidopsis MYB61 transcription factor in rice revealed that this regulatory node has evolved the ability to regulate grass-specific cell wall synthesis enzymes. A transcription factor with such activity has not been previously characterized to our knowledge, representing a major conclusion of this work. Changes in gene expression in a protoplast-based assay demonstrated positive or negative roles in cell wall regulation for eleven other transcription factors from the rice gene network. Eight of fifteen (53%) of these have not previously been examined for this function. Some of these may represent novel grass-diverged cell wall regulators, while others are likely to have this function across angiosperms. A parallel effort of this project to expand knowledge of enzymes that have evolved to function in grass cell wall synthesis, revealed that a grass-diverged enzyme in rice, OsAT 5, ferulates monolignols that are naturally incorporated into grass cell walls. This finding opens potential natural selection avenues for improving biomass composition for downstream processing by weak base pretreatment. Thus, this project has significantly expanded knowledge of cell wall synthesis and regulation in rice, information that can be used in reverse genetics and synthetic biology approaches to re-engineer cell walls for improved production of biofuel and high-value products. To lay the foundation for translating these results directly for switchgrass improvement, the project employed a comparative phylogenetic analysis of the major group of cell wall transcription factors that have been found to function in cell wall regulation, the R 2R 3 MYBs. This analysis concluded that known cell wall regulators are largely conserved across switchgrass, rice, maize, poplar, and Arabidopsis. This interpretation is also largely consistent with the gene network analysis described above, though both approaches provide evidence that some co-orthologs of Arabidopsis regulators have diminished or increased in importance based on gene expression patterns. Also, several clades containing dicot cell wall regulators have expanded, consistent with the evolution of new cell wall regulators. This latter result is supported by functional analysis of the R 2R 3 MYB protein SWAM 1 in a collaboration between this project and the DOE-funded group of Dr. S. Hazen at the University of Massachusettes. The curation of the switchgrass genome through this project provides specific targets for future engineering of switchgrass cell wall regulation and may also facilitate identification of regulators that underlie the molecular markers that are genetically linked to differences in cell wall quality. With the goal of spurring further research and technological developments in lignocellulosic biofuel production, this work has been communicated to the bioenergy and cell wall communities though various presentations and publications. To date, three manuscripts have been published, two others are near to publication, three others are in an advanced state, and two to four more are likely to be written based on analyses still in progress. In addition, project participants have presented thirteen posters and talks at regional, national, and international meetings about aspects of this project. In sum, the work supported by this funding has made and communicated significant progress in identifying the genes that grasses use for cell wall synthesis and regulation, information that will be used by project participants and others to improve the efficiency of conversion of lignocellulosic biomass to biofuels.« less
Janine M. Albaugh; Eric B. Sucre; Zakiya H. Leggett; Jean-Christophe Domec; John S. King
2012-01-01
There is growing interest in using switchgrass (Panicum virgatum L.) as a biofuel crop and for its potential to sequester carbon. However, there are limited data on the establishment success of this species when grown as a forest intercrop in coastal plain settings of the U.S. Southeast. Therefore, we studied establishment success of switchgrass...
Morrow, William R; Griffin, W Michael; Matthews, H Scott
2008-05-15
We update a previously presented Linear Programming (LP) methodology for estimating state level costs for reducing CO2 emissions from existing coal-fired power plants by cofiring switchgrass, a biomass energy crop, and coal. This paper presents national level results of applying the methodology to the entire portion of the United States in which switchgrass could be grown without irrigation. We present incremental switchgrass and coal cofiring carbon cost of mitigation curves along with a presentation of regionally specific cofiring economics and policy issues. The results show that cofiring 189 million dry short tons of switchgrass with coal in the existing U.S. coal-fired electricity generation fleet can mitigate approximately 256 million short tons of carbon-dioxide (CO2) per year, representing a 9% reduction of 2005 electricity sector CO2 emissions. Total marginal costs, including capital, labor, feedstock, and transportation, range from $20 to $86/ton CO2 mitigated,with average costs ranging from $20 to $45/ton. If some existing power plants upgrade to boilers designed for combusting switchgrass, an additional 54 million tons of switchgrass can be cofired. In this case, total marginal costs range from $26 to $100/ton CO2 mitigated, with average costs ranging from $20 to $60/ton. Costs for states east of the Mississippi River are largely unaffected by boiler replacement; Atlantic seaboard states represent the lowest cofiring cost of carbon mitigation. The central plains states west of the Mississippi River are most affected by the boiler replacement option and, in general, go from one of the lowest cofiring cost of carbon mitigation regions to the highest. We explain the variation in transportation expenses and highlight regional cost of mitigation variations as transportation overwhelms other cofiring costs.
Zhang, Chao; Peng, Xi; Guo, Xiaofeng; Tang, Gaijuan; Sun, Fengli; Liu, Shudong; Xi, Yajun
2018-01-01
Switchgrass ( Panicum virgatum L.) is a model biofuel plant because of its high biomass, cellulose-richness, easy degradation to ethanol, and the availability of extensive genomic information. However, a little is currently known about the molecular responses of switchgrass plants to dehydration stress, especially multiple dehydration stresses. Studies on the transcriptional profiles of 35-day-old tissue culture plants revealed 741 dehydration memory genes. Gene Ontology and pathway analysis showed that these genes were enriched in phenylpropanoid biosynthesis, starch and sucrose metabolism, and plant hormone signal transduction. Further analysis of specific pathways combined with physiological data suggested that switchgrass improved its dehydration resistance by changing various aspects of its responses to secondary dehydration stress (D2), including the regulation of abscisic acid (ABA) and jasmonic acid (JA) biosynthesis and signal transduction, the biosynthesis of osmolytes (l-proline, stachyose and trehalose), energy metabolism (i.e., metabolic process relating to photosynthetic systems, glycolysis, and the TCA cycle), and lignin biosynthesis. The transcriptional data and chemical substance assays showed that ABA was significantly accumulated during both primary (D1) and secondary (D2) dehydration stresses, whereas JA accumulated during D1 but became significantly less abundant during D2. This suggests the existence of a complicated signaling network of plant hormones in response to repeated dehydration stresses. A homology analysis focusing on switchgrass, maize, and Arabidopsis revealed the conservation and species-specific distribution of dehydration memory genes. The molecular responses of switchgrass plants to successive dehydration stresses have been systematically characterized, revealing a previously unknown transcriptional memory behavior. These results provide new insights into the mechanisms of dehydration stress responses in plants. The genes and pathways identified in this study will be useful for the genetic improvement of switchgrass and other crops.
Reduction of ethanol yield from switchgrass infected with rust caused by Puccinia emaculata
Sykes, Virginia R.; Allen, Fred L.; Mielenz, Jonathan R.; ...
2015-10-16
Switchgrass ( Panicum virgatum) is an important biofuel crop candidate thought to have low disease susceptibility. As switchgrass production becomes more prevalent, monoculture and production fields in close proximity to one another may increase the spread and severity of diseases such as switchgrass rust caused by the pathogen Puccinia emaculata. The objective of this research was to examine the impact of rust on ethanol yield in switchgrass. In 2010 and 2012, naturally infected leaves from field-grown Alamo and Kanlow in Knoxville, TN (2010, 2012) and Crossville, TN (2012) were visually categorized as exhibiting low, medium, or high disease based onmore » the degree of chlorosis and sporulation. P. emaculata was isolated from each disease range to confirm infection. Samples from 2010 were acid/heat pretreated and subjected to two runs of simultaneous saccharification and fermentation (SSF) with Saccharomyces cerevisiae D 5A to measure ethanol yield. Near-infrared spectroscopy (NIRS) was used to estimate ethanol yield for 2012 samples. SSF and NIRS data were analyzed separately using ANOVA. Disease level effects were significant within both models (P < 0.05) and both models explained a large amount of variation in ETOH (SSF: R 2 = 0.99, NIRS: R 2 = 0.99). In the SSF dataset, ethanol was reduced by 35 % in samples exhibiting medium disease symptoms and by 55 % in samples exhibiting high disease symptoms. In the NIRS dataset, estimated ethanol was reduced by 10 % in samples exhibiting medium disease symptoms and by 21 % in samples exhibiting high disease symptoms. Lastly, results indicate that switchgrass rust will likely have a negative impact on ethanol yield in switchgrass grown as a biofuel crop.« less
Reduction of ethanol yield from switchgrass infected with rust caused by Puccinia emaculata
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sykes, Virginia R.; Allen, Fred L.; Mielenz, Jonathan R.
Switchgrass ( Panicum virgatum) is an important biofuel crop candidate thought to have low disease susceptibility. As switchgrass production becomes more prevalent, monoculture and production fields in close proximity to one another may increase the spread and severity of diseases such as switchgrass rust caused by the pathogen Puccinia emaculata. The objective of this research was to examine the impact of rust on ethanol yield in switchgrass. In 2010 and 2012, naturally infected leaves from field-grown Alamo and Kanlow in Knoxville, TN (2010, 2012) and Crossville, TN (2012) were visually categorized as exhibiting low, medium, or high disease based onmore » the degree of chlorosis and sporulation. P. emaculata was isolated from each disease range to confirm infection. Samples from 2010 were acid/heat pretreated and subjected to two runs of simultaneous saccharification and fermentation (SSF) with Saccharomyces cerevisiae D 5A to measure ethanol yield. Near-infrared spectroscopy (NIRS) was used to estimate ethanol yield for 2012 samples. SSF and NIRS data were analyzed separately using ANOVA. Disease level effects were significant within both models (P < 0.05) and both models explained a large amount of variation in ETOH (SSF: R 2 = 0.99, NIRS: R 2 = 0.99). In the SSF dataset, ethanol was reduced by 35 % in samples exhibiting medium disease symptoms and by 55 % in samples exhibiting high disease symptoms. In the NIRS dataset, estimated ethanol was reduced by 10 % in samples exhibiting medium disease symptoms and by 21 % in samples exhibiting high disease symptoms. Lastly, results indicate that switchgrass rust will likely have a negative impact on ethanol yield in switchgrass grown as a biofuel crop.« less
Investigation of Pleurotus ostreatus pretreatment on switchgrass for ethanol production
NASA Astrophysics Data System (ADS)
Slavens, Shelyn Gehle
Fungal pretreatment using the white-rot fungus Pleurotus ostreatus on switchgrass for ethanol production was studied. In a small-scale storage study, small switchgrass bales were inoculated with fungal spawn and automatically watered to maintain moisture. Sampled at 25, 53, and 81 d, the switchgrass composition was determined and liquid hot water (LHW) pretreatment was conducted. Fungal pretreatment significantly decreased the xylan and lignin content; glucan was not significantly affected by fungal loading. The glucan, xylan, and lignin contents significantly decreased with increased fungal pretreatment time. The effects of the fungal pretreatment were not highly evident after the LHW pretreatment, showing only changes based on sampling time. Although other biological activity within the bales increased cellulose degradation, the fungal pretreatment successfully reduced the switchgrass lignin and hemicellulose contents. In a laboratory-scale nutrient supplementation study, copper, manganese, glucose, or water was added to switchgrass to induce production of ligninolytic enzymes by P. ostreatus. After 40 d, ligninolytic enzyme activities and biomass composition were determined and simultaneous saccharification and fermentation (SSF) was conducted to determine ethanol yield. Laccase activity was similar for all supplements and manganese peroxidase (MnP) activity was significantly less in copper-treated samples than in the other fungal-inoculated samples. The fungal pretreatment reduced glucan, xylan, and lignin content, while increasing extractable sugars content. The lowest lignin contents occurred in the water-fungal treated samples and produced the greatest ethanol yields. The greatest lignin contents occurred in the copper-fungal treated samples and produced the lowest ethanol yields. Manganese-fungal and glucose-fungal treated samples had similar, intermediate lignin contents and produced similar, intermediate ethanol yields. Ethanol yields from switchgrass were increased significantly by fungal pretreatment.
NASA Astrophysics Data System (ADS)
Blanc-Betes, E.; Hudiburg, T. W.; Khanna, M.; DeLucia, E. H.
2017-12-01
Reducing dependence on fossil fuels by the 20% by 2022 mandated by the Energy Independence and Security Act would require 35 billion Ga of ethanol and the loss of 9 to 12 Mha of food producing land to biofuel production, challenging our ability to develop a sustainable bioenergy source while meeting the food demands of a growing population. There are currently 8.5 Mha of land enrolled in the Conservation Reserve Program (CRP), a US government funded program to incentivize the retirement of environmentally sensitive cropland out of conventional crop production. About 63% of CRP land area could potentially be converted to energy crops, contributing to biofuel targets without displacing food. With high yields and low fertilization and irrigation requirements, perennial cellulosic crops (e.g. switchgrass and Miscanthus) not only would reduce land requirements by up to 15% compared to prairies or corn-based biofuel, but also serve other conservation goals such as C sequestration in soils, and water and air quality improvement. Here, we use the DayCent biogeochemical model to assess the potential of CRP land conversion to switchgrass or Miscanthus to provide a sustainable source of biofuel, reduce GHG emissions and increase soil organic carbon (SOC) storage in the area of Illinois, which at present contributes to 10% of the biofuel production in the US. Model simulations indicate that the replacement of traditional corn-soy rotation with CRP reduces GHG emissions by 3.3 Mg CO2-eq ha-1 y-1 and increases SOC storage at a rate of 0.5 Mg C ha-1 y-1. Conversion of CRP land to cellulosic perennials would further reduce GHG emissions by 1.1 Mg CO2-eq ha-1 y-1 for switchgrass and 6.2 Mg CO2-eq ha-1 y-1 for Miscanthus, and increase C sequestration in soils (1.7 Tg C for switchgrass and 7.7 Tg C for Miscanthus in 30 years). Cellulosic energy crops would increase average annual yields by approximately 5.6 Mg ha-1 for switchgrass and 13.6 Mg ha-1 for Miscanthus, potentially producing 78 and 188 million Ga of bioethanol annually, respectively. This represents an increase of 5% and 12% in the Illinois annual biofuel production, displacing up to 4% of current fossil fuel consumption in the state of Illinois without detriment for food production.
Grassland bird response to harvesting switchgrass as a biomass energy crop
Roth, A.M.; Sample, D.W.; Ribic, C.A.; Paine, L.; Undersander, D.J.; Bartelt, G.A.
2005-01-01
The combustion of perennial grass biomass to generate electricity may be a promising renewable energy option. Switchgrass (Panicum virgatum) grown as a biofuel has the potential to provide a cash crop for farmers and quality nesting cover for grassland birds. In southwestern Wisconsin (near lat. 42??52???, long. 90??08???), we investigated the impact of an August harvest of switchgrass for bioenergy on community composition and abundance of Wisconsin grassland bird species of management concern. Harvesting the switchgrass in August resulted in changes in vegetation structure and bird species composition the following nesting season. In harvested transects, residual vegetation was shorter and the litter layer was reduced in the year following harvest. Grassland bird species that preferred vegetation of short to moderate height and low to moderate density were found in harvested areas. Unharvested areas provided tall, dense vegetation structure that was especially attractive to tall-grass bird species, such as sedge wren (Cistothorus platensis) and Henslow's sparrow (Ammodramus henslowii). When considering wildlife habitat value in harvest management of switchgrass for biofuel, leaving some fields unharvested each year would be a good compromise, providing some habitat for a larger number of grassland bird species of management concern than if all fields were harvested annually. In areas where most idle grassland habitat present on the landscape is tallgrass, harvest of switchgrass for biofuel has the potential to increase the local diversity of grassland birds.
Armah-Agyeman, Grace; Gyamerah, Michael; Biney, Paul O; Woldesenbet, Selamawit
2016-10-01
Although switchgrass has been developed as a biofuel feedstock and its potential for bioethanol and bio-oil from fast pyrolysis reported in the literature, the use of the seeds of switchgrass as a source of triglycerides for biodiesel production has not been reported. Similarly, the potential for extracting triglycerides from coffeeweed (an invasive plant of no current economic value) needs to be investigated to ascertain its potential economic use for biodiesel production. The results show that coffeeweed and switchgrass seeds contain known triglycerides which are 983 and 1000 g kg(-1) respectively of the fatty acids found in edible vegetable oils such as sunflower, corn and soybean oils. In addition, the triglyceride yields of 53-67 g kg(-1) of the seed samples are in the range of commercial oil-producing seeds such as corn (42 g kg(-1) ). The results also indicate that the two non-edible oils could be used as substitutes for edible oil for biodiesel production. In addition, the use of seeds of switchgrass for non-edible oil production (as a feedstock for the production of biodiesel) further increases the total biofuel yield when switchgrass is cultivated for use as energy feedstock for pyrolysis oil and biodiesel production. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Gu, Yingxin; Wylie, Bruce K.
2015-01-01
Cultivating annual row crops in high topographic relief waterway buffers has negative environmental effects and can be environmentally unsustainable. Growing perennial grasses such as switchgrass (Panicum virgatum L.) for biomass (e.g., cellulosic biofuel feedstocks) instead of annual row crops in these high relief waterway buffers can improve local environmental conditions (e.g., reduce soil erosion and improve water quality through lower use of fertilizers and pesticides) and ecosystem services (e.g., minimize drought and flood impacts on production; improve wildlife habitat, plant vigor, and nitrogen retention due to post-senescence harvest for cellulosic biofuels; and serve as carbon sinks). The main objectives of this study are to: (1) identify cropland areas with high topographic relief (high runoff potentials) and high switchgrass productivity potential in eastern Nebraska that may be suitable for growing switchgrass, and (2) estimate the total switchgrass production gain from the potential biofuel areas. Results indicate that about 140,000 hectares of waterway buffers in eastern Nebraska are suitable for switchgrass development and the total annual estimated switchgrass biomass production for these suitable areas is approximately 1.2 million metric tons. The resulting map delineates high topographic relief croplands and provides useful information to land managers and biofuel plant investors to make optimal land use decisions regarding biofuel crop development and ecosystem service optimization in eastern Nebraska.
Xie, Qi; Liu, Xue; Zhang, Yinbing; Tang, Jinfu; Yin, Dedong; Fan, Bo; Zhu, Lihuang; Han, Liebao; Song, Guilong; Li, Dayong
2017-01-01
Due to its high biomass yield, low environmental impact, and widespread adaptability to poor soils and harsh conditions, switchgrass ( Panicum virgatum L.), a warm-region perennial herbaceous plant, has attracted much attention in recent years. However, little is known about microRNAs (miRNAs) and their functions in this bioenergy grass. Here, we identified and characterized a miRNA gene, Pvi-MIR319a , encoding microRNA319a in switchgrass. Transgenic rice lines generated by overexpressing the Pvi-MIR319a precursor gene exhibited broader leaves and delayed flowering compared with the control. Gene expression analysis indicated at least four putative target genes were downregulated. Additionally, we cloned a putative target gene ( PvPCF5 ) of Pvi-MIR319a from switchgrass. PvPCF5, a TCP transcription factor, is a nuclear-localized protein with transactivation activity and control the development of leaf. Our results suggest that Pvi-MIR319a and its target genes may be used as potential genetic regulators for future switchgrass genetic improvement.
Baxter, Holly L.; Mazarei, Mitra; Fu, Chunxiang; ...
2016-05-18
Modifying plant cell walls by manipulating lignin biosynthesis can improve biofuel yields from lignocellulosic crops. For example, transgenic switchgrass lines with downregulated expression of caffeic acid O-methyltransferase, a lignin biosynthetic enzyme, produce up to 38% more ethanol than controls. The aim of the present study was to understand cell wall lignification over the second and third growing seasons of COMT-downregulated field-grown switchgrass. COMT gene expression, lignification, and cell wall recalcitrance were assayed for two independent transgenic lines at monthly intervals. Switchgrass rust (Puccinia emaculata) incidence was also tracked across the seasons. Trends in lignification over time differed between the 2more » years. In 2012, sampling was initiated in mid-growing season on reproductive-stage plants and there was little variation in the lignin content of all lines (COMT-downregulated and control) over time. COMT-downregulated lines maintained 11-16% less lignin, 33-40% lower S/G (syringyl-to-guaiacyl) ratios, and 15-42% higher sugar release relative to controls for all time points. In 2013, sampling was initiated earlier in the season on elongation-stage plants and the lignin content of all lines steadily increased over time, while sugar release expectedly decreased. S/G ratios increased in non-transgenic control plants as biomass accumulated over the season, while remaining relatively stable across the season in the COMT-downregulated lines. Differences in cell wall chemistry between transgenic and non-transgenic lines were not apparent until plants transitioned to reproductive growth in mid-season, after which the cell walls of COMT-downregulated plants exhibited phenotypes consistent with what was observed in 2012. There were no differences in rust damage between transgenics and controls at any time point. Finally, these results provide relevant fundamental insights into the process of lignification in a maturing field-grown biofuel feedstock with downregulated lignin biosynthesis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Holly L.; Mazarei, Mitra; Fu, Chunxiang
Modifying plant cell walls by manipulating lignin biosynthesis can improve biofuel yields from lignocellulosic crops. For example, transgenic switchgrass lines with downregulated expression of caffeic acid O-methyltransferase, a lignin biosynthetic enzyme, produce up to 38% more ethanol than controls. The aim of the present study was to understand cell wall lignification over the second and third growing seasons of COMT-downregulated field-grown switchgrass. COMT gene expression, lignification, and cell wall recalcitrance were assayed for two independent transgenic lines at monthly intervals. Switchgrass rust (Puccinia emaculata) incidence was also tracked across the seasons. Trends in lignification over time differed between the 2more » years. In 2012, sampling was initiated in mid-growing season on reproductive-stage plants and there was little variation in the lignin content of all lines (COMT-downregulated and control) over time. COMT-downregulated lines maintained 11-16% less lignin, 33-40% lower S/G (syringyl-to-guaiacyl) ratios, and 15-42% higher sugar release relative to controls for all time points. In 2013, sampling was initiated earlier in the season on elongation-stage plants and the lignin content of all lines steadily increased over time, while sugar release expectedly decreased. S/G ratios increased in non-transgenic control plants as biomass accumulated over the season, while remaining relatively stable across the season in the COMT-downregulated lines. Differences in cell wall chemistry between transgenic and non-transgenic lines were not apparent until plants transitioned to reproductive growth in mid-season, after which the cell walls of COMT-downregulated plants exhibited phenotypes consistent with what was observed in 2012. There were no differences in rust damage between transgenics and controls at any time point. Finally, these results provide relevant fundamental insights into the process of lignification in a maturing field-grown biofuel feedstock with downregulated lignin biosynthesis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raz-Yaseef, Naama; Billesbach, Dave P.; Fischer, Marc L.
The Southern Great Plains are characterized by a fine-scale mixture of different land-cover types, predominantly winter-wheat and grazed pasture, with relatively small areas of other crops, native prairie, and switchgrass. Recent droughts and predictions of increased drought in the Southern Great Plains, especially during the summer months, raise concern for these ecosystems. We measured ecosystem carbon and water fluxes with eddy-covariance systems over cultivated cropland for 10 years, and over lightly grazed prairie and new switchgrass fields for 2 years each. Growing-season precipitation showed the strongest control over net carbon uptake for all ecosystems, but with a variable effect: grassesmore » (prairie and switchgrass) needed at least 350 mm of precipitation during the growing season to become net carbon sinks, while crops needed only 100 mm. In summer, high temperatures enhanced evaporation and led to higher likelihood of dry soil conditions. Therefore, summer-growing native prairie species and switchgrass experienced more seasonal droughts than spring-growing crops. For wheat, the net reduction in carbon uptake resulted mostly from a decrease in gross primary production rather than an increase in respiration. Flux measurements suggested that management practices for crops were effective in suppressing evapotranspiration and decomposition (by harvesting and removing secondary growth), and in increasing carbon uptake (by fertilizing and conserving summer soil water). In light of future projections for wetter springs and drier and warmer summers in the Southern Great Plains, our study indicates an increased vulnerability in native ecosystems and summer crops over time.« less
Regional Climate Implications of Large-scale Cultivation of Biofuel Crops
NASA Astrophysics Data System (ADS)
Rowe, C. M.; Oglesby, R. J.; Hays, C. J.; van Etten, A. R.
2008-12-01
Conversion from corn-based ethanol to cellulosic ethanol has the potential to dramatically alter the production of biofuels in the United States and could result in large-scale changes in the agricultural landscape of vast areas of the country. Regions currently dominated by corn production could see widespread planting of switchgrass and other fast-growing, water-efficient sources of cellulose biomass. An often overlooked side effect of these land-cover changes could be a significant alteration of the energy fluxes between the land surface and the atmosphere with profound local, regional, and continental impacts on the climate system. Changes in the surface energy balance result primarily from differences in the seasonality of transpiration from corn versus switchgrass and could be enhanced as a result of a reduced need for irrigation of switchgrass in areas where corn can be produced only under irrigation. Preliminary modeling results using a simple "bucket" land surface model coupled to the WRF mesoscale model have demonstrated increases in summertime average daily maximum temperature of up to 4° C, smaller increases of up to 2° C in nighttime minimum temperatures and reductions in precipitation by up to 25% when corn was changed to switchgrass over the central United States. Improved parameterization of biofuel crops in more sophisticated land surface models will allow us to refine these preliminary estimates and assess the impacts of large-scale conversion to cellulosic biofuel crops, relative to greenhouse gas induced regional climate change.
Cianchetta, Stefano; Bregoli, Luca; Galletti, Stefania
2017-11-01
Giant reed, miscanthus, and switchgrass are considered prominent lignocellulosic feedstocks to obtain fermentable sugars for biofuel production. The bioconversion into sugars requires a delignifying pre-treatment step followed by hydrolysis with cellulase and other accessory enzymes like xylanase, especially in the case of alkali pre-treatments, which retain the hemicellulose fraction. Blends richer in accessory enzymes than commercial mix can be obtained growing fungi on feedstock-based substrates, thus ten selected Trichoderma isolates, including the hypercellulolytic strain Trichoderma reesei Rut-C30, were grown on giant reed, miscanthus, or switchgrass-based substrates. The produced enzymes were used to saccharify the corresponding feedstocks, compared to a commercial enzymatic mix (6 FPU/g). Feedstocks were acid (H 2 SO 4 0.2-2%, w/v) or alkali (NaOH 0.02-0.2%, w/v) pre-treated. A microplate-based approach was chosen for most of the experimental steps due to the large number of samples. The highest bioconversion was generally obtained with Trichoderma harzianum Or4/99 enzymes (78, 89, and 94% final sugar yields at 48 h for giant reed, miscanthus, and switchgrass, respectively), with significant increases compared to the commercial mix, especially with alkaline pre-treatments. The differences in bioconversion yields were only partially caused by xylanases (maximum R 2 = 0.5), indicating a role for other accessory enzymes.
Park, Jong-Jin; Yoo, Chang Geun; Flanagan, Amy; Pu, Yunqiao; Debnath, Smriti; Ge, Yaxin; Ragauskas, Arthur J; Wang, Zeng-Yu
2017-01-01
The development of genome editing technologies offers new prospects in improving bioenergy crops like switchgrass ( Panicum virgatum ). Switchgrass is an outcrossing species with an allotetraploid genome (2 n = 4 x = 36), a complexity which forms an impediment to generating homozygous knock-out plants. Lignin, a major component of the plant cell wall and a contributor to cellulosic feedstock's recalcitrance to decomposition, stands as a barrier to efficient biofuel production by limiting enzyme access to cell wall polymers during the fermentation process. We developed a CRISPR/Cas9 genome editing system in switchgrass to target a key enzyme involved in the early steps of monolignol biosynthesis, 4-Coumarate:coenzyme A ligase (4CL). Three 4CL genes, Pv4CL1 , Pv4CL2, and Pv4CL3 , were identified in switchgrass. Expression analysis revealed that Pv4CL1 transcripts were more abundant in the stem than in the leaf, while Pv4CL2 transcripts were barely detectable and Pv4CL3 was mainly expressed in the leaf. Pv4CL1 was selected as the target for CRISPR/Cas9 editing because of its preferential expression in highly lignified stem tissues. Specific guide RNA was constructed to target Pv4CL1 . After introducing the construct into switchgrass calli, 39 transgenic plants were regenerated. Using two rounds of PCR screening and sequencing, four plants were confirmed to have tetra-allelic mutations simultaneously. The Pv4CL1 knock-out plants had reduced cell wall thickness, an 8-30% reduction in total lignin content, a 7-11% increase in glucose release, and a 23-32% increase in xylose release. This study established a successful CRISPR/Cas9 system in switchgrass with mutation efficiency reaching 10%. The system allows the precise targeting of the selected Pv4CL1 gene to create switchgrass knock-out mutant plants with decreased lignin content and reduced recalcitrance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahrukh, Hassan; Oyedun, Adetoyese Olajire; Kumar, Amit
Here, a process model was developed to determine the net energy ratio (NER) for production of pellets from steam pretreated agricultural residue (AR) and energy crop (i.e. switchgrass in this case). The NER is a ratio of the net energy output to the total net energy input from non-renewable energy sources into a system. Scenarios were developed to measure the effects of temperature and level of steam pretreatment on the NER of steam pretreated AR- and switch grass-based pellets. The NER for the base case at 6 kg h -1 is 1.76 and 1.37 for steam-pretreated AR- and switchgrass-based pellets,more » respectively. The reason behind the difference is that more energy is required to dry switchgrass pellets than AR pellets. The sensitivity analysis for the model shows that the optimum temperature for steam pretreatment is 160 C with 50% pretreatment (half the feedstock is pretreated, while the rest is undergoes regular pelletization). The uncertainty results for NER for steam pretreated AR and switch grass pellets are 1.62 ± 0.10 and 1.42 ± 0.11, respectively.« less
Yao, Lan; Yang, Haitao; Yoo, Chang Geun; ...
2018-02-06
To investigate the interactions between acid pretreated switchgrass lignin and cellobiohydrolase (CBH), three different lignin fractions were isolated from dilute acid pretreated switchgrass by (i) ethanol extraction, followed by (ii) dioxane/H2O extraction, and (iii) cellulase treatment, respectively. Structural properties of each lignin fraction were elucidated by GPC, 13C-NMR, and 2D-HSQC NMR analyses. The adsorptions of CBH to the isolated lignin fractions were also studied by Langmuir adsorption isotherms. Ethanol-extractable lignin fraction, mainly composed of syringyl (S) and guaiacyl (G) units, had the lowest molecular weight, while dioxane/H2O-extracted lignin fraction had the lowest S/G ratio with higher content of p-coumaric acidmore » (pCA) unit. The residual lignin fraction after enzymatic treatment had the highest S/G ratio without hydroxyphenyl (H) unit. Strong associations were found between lignin properties such as lignin composition and S/G ratio and its non-productive enzyme adsorption factors including the maximum adsorption capacity and binding strength.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Lan; Yang, Haitao; Yoo, Chang Geun
To investigate the interactions between acid pretreated switchgrass lignin and cellobiohydrolase (CBH), three different lignin fractions were isolated from dilute acid pretreated switchgrass by (i) ethanol extraction, followed by (ii) dioxane/H2O extraction, and (iii) cellulase treatment, respectively. Structural properties of each lignin fraction were elucidated by GPC, 13C-NMR, and 2D-HSQC NMR analyses. The adsorptions of CBH to the isolated lignin fractions were also studied by Langmuir adsorption isotherms. Ethanol-extractable lignin fraction, mainly composed of syringyl (S) and guaiacyl (G) units, had the lowest molecular weight, while dioxane/H2O-extracted lignin fraction had the lowest S/G ratio with higher content of p-coumaric acidmore » (pCA) unit. The residual lignin fraction after enzymatic treatment had the highest S/G ratio without hydroxyphenyl (H) unit. Strong associations were found between lignin properties such as lignin composition and S/G ratio and its non-productive enzyme adsorption factors including the maximum adsorption capacity and binding strength.« less
Piao, Hailan; Lachman, Medora; Malfatti, Stephanie; Sczyrba, Alexander; Knierim, Bernhard; Auer, Manfred; Tringe, Susannah G; Mackie, Roderick I; Yeoman, Carl J; Hess, Matthias
2014-01-01
The rumen microbial ecosystem is known for its biomass-degrading and methane-producing phenotype. Fermentation of recalcitrant plant material, comprised of a multitude of interwoven fibers, necessitates the synergistic activity of diverse microbial taxonomic groups that inhabit the anaerobic rumen ecosystem. Although interspecies hydrogen (H2) transfer, a process during which bacterially generated H2 is transferred to methanogenic Archaea, has obtained significant attention over the last decades, the temporal variation of the different taxa involved in in situ biomass-degradation, H2 transfer and the methanogenesis process remains to be established. Here we investigated the temporal succession of microbial taxa and its effect on fiber composition during rumen incubation using 16S rRNA amplicon sequencing. Switchgrass filled nylon bags were placed in the rumen of a cannulated cow and collected at nine time points for DNA extraction and 16S pyrotag profiling. The microbial community colonizing the air-dried and non-incubated (0 h) switchgrass was dominated by members of the Bacilli (recruiting 63% of the pyrotag reads). During in situ incubation of the switchgrass, two major shifts in the community composition were observed: Bacilli were replaced within 30 min by members belonging to the Bacteroidia and Clostridia, which recruited 34 and 25% of the 16S rRNA reads generated, respectively. A second significant shift was observed after 16 h of rumen incubation, when members of the Spirochaetes and Fibrobacteria classes became more abundant in the fiber-adherent community. During the first 30 min of rumen incubation ~13% of the switchgrass dry matter was degraded, whereas little biomass degradation appeared to have occurred between 30 min and 4 h after the switchgrass was placed in the rumen. Interestingly, methanogenic members of the Euryarchaeota (i.e., Methanobacteria) increased up to 3-fold during this period of reduced biomass-degradation, with peak abundance just before rates of dry matter degradation increased again. We hypothesize that during this period microbial-mediated fibrolysis was temporarily inhibited until H2 was metabolized into CH4 by methanogens. Collectively, our results demonstrate the importance of inter-species interactions for the biomass-degrading and methane-producing phenotype of the rumen microbiome-both microbially facilitated processes with global significance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Chelsea R.; Millwood, Reginald J.; Tang, Yuhong
Genetic engineering has been effective in altering cell walls for biofuel production in the bioenergy crop, switchgrass (Panicum virgatum). However, regulatory issues arising from gene flow may prevent commercialization of engineered switchgrass in the eastern United States where the species is native. And, depending on its expression level, microRNA156 (miR156) can reduce, delay, or eliminate flowering, which may serve to decrease transgene flow. Here, in this unique field study of transgenic switchgrass that was permitted to flower, two low (T14 and T35) and two medium (T27 and T37) miR156-overexpressing 'Alamo' lines with the transgene under the control of the constitutivemore » maize (Zea mays) ubiquitin 1 promoter, along with nontransgenic control plants, were grown in eastern Tennessee over two seasons.« less
Johnson, Chelsea R.; Millwood, Reginald J.; Tang, Yuhong; ...
2017-11-30
Genetic engineering has been effective in altering cell walls for biofuel production in the bioenergy crop, switchgrass (Panicum virgatum). However, regulatory issues arising from gene flow may prevent commercialization of engineered switchgrass in the eastern United States where the species is native. And, depending on its expression level, microRNA156 (miR156) can reduce, delay, or eliminate flowering, which may serve to decrease transgene flow. Here, in this unique field study of transgenic switchgrass that was permitted to flower, two low (T14 and T35) and two medium (T27 and T37) miR156-overexpressing 'Alamo' lines with the transgene under the control of the constitutivemore » maize (Zea mays) ubiquitin 1 promoter, along with nontransgenic control plants, were grown in eastern Tennessee over two seasons.« less
High Temperature Carbonized Grass as a High Performance Sodium Ion Battery Anode.
Zhang, Fang; Yao, Yonggang; Wan, Jiayu; Henderson, Doug; Zhang, Xiaogang; Hu, Liangbing
2017-01-11
Hard carbon is currently considered the most promising anode candidate for room temperature sodium ion batteries because of its relatively high capacity, low cost, and good scalability. In this work, switchgrass as a biomass example was carbonized under an ultrahigh temperature, 2050 °C, induced by Joule heating to create hard carbon anodes for sodium ion batteries. Switchgrass derived carbon materials intrinsically inherit its three-dimensional porous hierarchical architecture, with an average interlayer spacing of 0.376 nm. The larger interlayer spacing than that of graphite allows for the significant Na ion storage performance. Compared to the sample carbonized under 1000 °C, switchgrass derived carbon at 2050 °C induced an improved initial Coulombic efficiency. Additionally, excellent rate capability and superior cycling performance are demonstrated for the switchgrass derived carbon due to the unique high temperature treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Joon-Hyun; Martinalbo, Ilya
This report summarizes the work and findings of the grant work conducted from January 2009 until September 2011 under the collaboration between Ceres, Inc. and Choren USA, LLC. This DOE-funded project involves a head-to-head comparison of two types of dedicated energy crops in the context of a commercial gasification conversion process. The main goal of the project was to gain a better understanding of the differences in feedstock composition between herbaceous and woody species, and how these differences may impact a commercial gasification process. In this work, switchgrass was employed as a model herbaceous energy crop, and willow as amore » model short-rotation woody crop. Both crops are species native to the U.S. with significant potential to contribute to U.S. goals for renewable liquid fuel production, as outlined in the DOE Billion Ton Update (http://www1.eere.energy.gov/biomass/billion_ton_update.html, 2011). In some areas of the U.S., switching between woody and herbaceous feedstocks or blending of the two may be necessary to keep a large-scale gasifier operating near capacity year round. Based on laboratory tests and process simulations it has been successfully shown that suitable high yielding switchgrass and willow varieties exist that meet the feedstock specifications for large scale entrained flow biomass gasification. This data provides the foundation for better understanding how to use both materials in thermochemical processes. It has been shown that both switchgrass and willow varieties have comparable ranges of higher heating value, BTU content and indistinguishable hydrogen/carbon ratios. Benefits of switchgrass, and other herbaceous feedstocks, include its low moisture content, which reduce energy inputs and costs for drying feedstock. Compared to the typical feedstock currently being used in the Carbo-V® process, switchgrass has a higher ash content, combined with a lower ash melting temperature. Whether or not this may cause inefficiencies in the process, needs to be verified by long term test runs. Currently, there are not sufficient operational test data available for the Carbo-V® process for the utilization of higher ash content feedstocks. The application of currently evolving biomass pretreatment technologies, such as pelletization and torrefaction, will be able to expand the portfolio of biomass varieties and species acceptable in gasification processes. Tests showed that 6 mm diameter pellets of switchgrass were superior to 8 mm diameter pellets produced in a flat dye press, and that torrefaction of switchgrass produced an excellent (but currently costly) feedstock that could be handled, crushed, and combusted in a manner compatible with any coal-fed gasification facility. Ceres will use this information in the development of high yielding, dedicated energy crops specifically tailored for thermochemical conversion. CHOREN will make use of the information for improvement or development of low cost, highly efficient biomass gasification processes that convert a wide variety of biomass feedstocks to fuels, chemicals, heat and power via the production of tar free green syngas on an industrial scale.« less
Wolfe, T; Vasseur, E; DeVries, T J; Bergeron, R
2018-01-01
Cows spend more time lying down when stalls are soft and dry, and bedding plays a key role in the comfort of the lying surface. The first objective of this study (experiment 1) was to compare cow preference for 2 types of alternative deep-bedding materials, switchgrass and switchgrass-lime, using wheat straw on a rubber mat as a control. Nine Holstein lactating cows were submitted in trios to a 3-choice preference test over 14 d (2 d of adaptation, 3 d of restriction to each stall, and 3 d of free access to all 3 stalls). Cows were housed individually in pens containing 3 stalls with different lying surfaces: (1) rubber mat with chopped wheat straw (WS); (2) deep-bedded switchgrass (SG); and (3) deep-bedded switchgrass, water, and lime mixture (SGL). The second objective (experiment 2) was to test, in freestall housing, the effects of these 3 types of bedding on lying behavior, cow cleanliness, and teat end bacterial contamination. Bedding treatments were compared in a 3 × 3 Latin square design using 24 cows split into groups of 8, with bedding materials being switched every 4 wk. Lying behavior was measured with data loggers in both studies. During experiment 1, cows chose to spend more time lying and had more frequent lying bouts on SG (9.4 h/d; 8.2 bouts/d) than on SGL (1.0 h/d; 0.9 bouts/d). They also spent more time standing and stood more frequently in stalls with SG (2.0 h/d; 10.1 bouts/d) than in those with SGL (0.6 h/d; 2.6 bouts/d), and stood longer in stalls with SG than with WS (0.6 h/d). In experiment 2, the total lying time, frequency of lying bouts, and mean lying bout duration were, on average, 9.7 ± 1.03 h/d, 8.2 ± 0.93 bouts/d, and 1.2 ± 0.06 h/bout, respectively, and did not differ between treatments. No treatment effects were found for cow cleanliness scores. Bedding dry matter was highest for SG (74.1%), lowest for SGL (63.5%), and intermediate for WS (68.6%) [standard error of the mean (SEM) = 1.57%]. This may explain the higher teat end count of coliforms for cows on SGL (0.92 log 10 cfu/g) compared with WS (0.13 log 10 cfu/g) (SEM = 0.144 log 10 cfu/g). In conclusion, cows preferred the deep-bedded switchgrass surface over the other 2 surfaces, and deep-bedded switchgrass appears to be a suitable bedding alternative for dairy cows. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ahlswede, B.; Thomas, R. Q.; O'Halloran, T. L.; Rady, J.; LeMoine, J.
2017-12-01
Changes in land-use and land management can have biogeochemical and biophysical effects on local and global climate. While managed ecosystems provide known food and fiber benefits, their influence on climate is less well quantified. In the southeastern United States, there are numerous types of intensely managed ecosystems but pine plantations and switchgrass fields represent two biogeochemical and biophysical extremes; a tall, low albedo forest with trees harvested after multiple decades vs. a short, higher albedo C4 grass field that is harvested annually. Despite the wide spread use of these ecosystems for timber and bioenergy, a quantitative, empirical evaluation of the net influence of these ecosystems on climate is lacking because it requires measuring both the greenhouse gas and energy balance of the ecosystems while controlling for the background weather and soil environment. To address this need, we established a pair of eddy flux towers in these ecosystems that are co-located (1.5 km apart) in Central Virginia and measured the radiative energy, non-radiative energy and carbon fluxes, along with associated biometeorology variables; the paired site has run since April 2016. During the first 1.5 years (two growing seasons), we found strong seasonality in the difference in surface temperature between the two ecosystems. In the growing seasons, both sites had similar surface temperature despite higher net radiation in pine. Following harvest of the switchgrass in September, the switchgrass temperatures increased relative to pine. In the winter, the pine ecosystem was warmer. We evaluate the drivers of these intra-annual dynamics and compare the climate influence of these biophysical differences to the differences in carbon fluxes between the sites using a suite of established climate regulation services metrics. Overall, our results show tradeoffs exist between the biogeochemical and biophysical climate services in managed ecosystems in the southeastern United States and highlight the importance of seasonality when quantifying how land-use and land-cover change influence climate. These data, when combined with earth system models, will help inform our understanding of how land-use and land change decisions in the southeastern United States will influence local, regional, and global climate.
Low-heat, mild alkaline pretreatment of switchgrass for anaerobic digestion.
Jin, Guang; Bierma, Tom; Walker, Paul M
2014-01-01
This study examines the effectiveness of alkaline pretreatment under mild heat conditions (100°C or 212°F) on the anaerobic co-digestion of switchgrass. The effects of alkaline concentration, types of alkaline, heating time and rinsing were evaluated. In addition to batch studies, continuous-feed studies were performed in triplicate to identify potential digester operational problems caused by switchgrass co-digestion while accounting for uncertainty due to digester variability. Few studies have examined anaerobic digestion of switchgrass or the effects of mild heating to enhance alkaline pretreatment prior to biomass digestion. Results indicate that pretreatment can significantly enhance digestion of coarse-ground (≤ 0.78 cm particle size) switchgrass. Energy conversion efficiency as high as 63% was observed, and was comparable or superior to fine-grinding as a pretreatment method. The optimal NaOH concentration was found to be 5.5% (wt/wt alkaline/biomass) with a 91.7% moisture level. No evidence of operational problems such as solids build-up, poor mixing, or floating materials were observed. These results suggest the use of waste heat from a generator could reduce the concentration of alkaline required to adequately pretreat lignocellulosic feedstock prior to anaerobic digestion.
A geospatial suitability model for drought-tolerant switchgrass
NASA Astrophysics Data System (ADS)
Lewis, S. M.; Kelly, M.
2011-12-01
A perennial grass native to the North America, switchgrass (Panicum virgatum) has been targeted by the USDA as a model mass bioenergy crop to replace petroleum energy products and meet policy demands. Although highly water use efficient, as a warm-season crop, switchgrass requires a significant amount of water during the growing season (April -September). However, locations that have highly reliable water availability are also ideal for profitable food crops (e.g. corn and soy growing regions) and food competition is a significant concern in regards to biofuel crops being grown on productive agricultural lands. Drier, marginal lands (lands on which normal agricultural crops are difficult to cultivate) are therefore potentially ideal locations to grow biofuel crops to ensure that food competition is not an issue. Genetics scientists at UC Davis are in the process of developing a modified variety of switchgrass that can withstand extended periods of drought while not substantially affecting overall yield. As this product is being developed, it is important to identify the potential geographical niche for this new drought-tolerant variety of switchgrass. This project introduces a geospatial approach that utilizes both physical and economic variables to identify ideal geographic locations for this innovative crop.
Saint Joseph's University Institute for Environmental Stewardship
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCann, Micahel P.; Springer, Clint J.
Task A: Examination of the physiological, morphological, and reproductive responses of Panicum virgatum (switchgrass) cultivars identified as potential biofuel producing cultivars as well as naturally-occurring varieties of switchgrass to projected changes in climate for the central portion of the United States. This project was a multi-year project set in a field site located at the Konza Prairie Biological Station near Manhattan, KS USA. The major objective of the study was to understand the physiological and growth responses of the important biofuel grass species, Panicum virgatum (switch grass) to simulated changes in precipitation expected for the Central Plains region of themore » United States. Population level adaptation to broad-scale regional climates or within-population variation in genome size of this genetically and phenotypically diverse C4 grass species may influence the responses to future precipitation variability associated with climate change. Therefore, we investigated switchgrass responses to water variability between natural populations collected across latitudinal gradient and populations. P. virgatum plants from natural populations originating from Kansas, Oklahoma, and Texas received frequent, small precipitation events (“ambient’) or infrequent, large precipitation events (‘altered”) to simulate contrasting rainfall variability expected from this region. We measured leaf-level physiology, aboveground biomass varied significantly by population origin but did not differ by genome size. Our results suggest that trait variation in P. virgatum is primarily attributed to population-level adaptation across latitudinal gradient, not genome size, and that neither population-level adaptation nor genome size may be important predictors of P. virgatum responses to future climatic conditions. Based solely on the data presented here, the most important consideration when deciding what varieties of switchgrass to cultivate for biofuel feedstocks under future climate scenarios is local adaptation and not necessarily genome size as has been hypothesized in the literature. Task B: Installation of an extensive green roof system on the Science Center at Saint Joseph's University for research, research-training and educational outreach activities. An experimental green roof system was designed and installed by an outside contractor (Roofmeadows) on the roof of the Science Center at Saint Joseph's University. The roof system includes four test plots, each with a different drainage system, instrumentation to monitor storm water retention, roof deck temperature, heat flux into and out of the building, rain fall, wind speed and direction, relative humidity and heat emission from the roof system. The vegetative roof was planted with 26 species of plants, distributed throughout the roof area, to assess species/variety growth and coverage characteristics, both in terms of the different drain layer systems, and in terms of the different exposures along the north to south axis of the building. Analysis of the drain layer performance, in terms of storm water retention, shows that the aggregate (stone) drainage layer system performed the best, with the moisture management mat system second, and the geotextile drain layer and reservoir sheet layer systems coming in last. This information is of value in the planning and design of vegetative roof systems since the different types of drainage layer systems have different installation costs and different weights. The different drainage layer systems also seem to be having an impact on plant growth and spread with the test plot with the reservoir sheet layer actually having the poorest plant coverage and plant spread of all areas of the roof studied. Plant growth performance analysis is ongoing, but significant differences have been observed in the third growing season ('13) along the north to south axis, with most species doing better towards the northern end of the roof (in terms of percent ground coverage and plant spread and reproduction). Interestingly, plant growth in all four of the test plots was reduced relative to the lower areas of the roof (the lower area was ca. 2 inches lower than the test plots, due to the space needed for sensors under the plots. The lower roof area uses an aggregate drain layer comparable to that in the third test plot), even when accounting for the north to south differences. The reasons for these differences are not clear and studies are underway to examine the impact of wind scour, drainage rates, temperature, and other factors. This information will be of value to planners of extensive vegetative roof systems in the Philadelphia (and broader) region, since plant growth and roof system overall performance is influenced by local climate, making broad generalizations of performance difficult. Task C: Education and community outreach efforts by the IES involving conferences at SJU, presentations by faculty and students off campus, and educational signage. The Institute for Environmental Stewardship hosted three storm water management workshops on the SJU campus in Philadelphia, in collaboration with the Lower Merion Conservancy, a not-for-profit organization located in Montgomery County, PA. These workshops were free and open to the public. The three workshops (held each year in March) drew more than 200 participants total. The presenters included local and state government agencies, not for profit organizations involved in storm water and open space preservation, designers, engineers, planners and others. Feedback was uniformly positive and we plan to continue the workshops for the foreseeable future. Educational signage has been installed at four locations on campus to explain campus infrastructure related to storm water (rain gardens, vegetative roof and green facades), as well as detailed signage installed on the Science Center roof for the vegetative roof system. More than 100 people (from in and outside of SJU) have thus far participated in tours of the roof system. A digital signage system has been installed in the adjacent library and this system provides information about the vegetative roof project and other efforts. A web camera system for the roof has also been installed and the video will be simulcast to the digital signage and with web site (www.sju.edu/ies) in the near future.« less
Predicted avian responses to bioenergy development scenarios in an intensive agricultural landscape
Uden, Daniel R.; Allen, Craig R.; Mitchell, Rob B.; McCoy, Tim D.; Guan, Qingfeng
2015-01-01
Conversion of native prairie to agriculture has increased food and bioenergy production but decreased wildlife habitat. However, enrollment of highly erodible cropland in conservation programs has compensated for some grassland loss. In the future, climate change and production of second-generation perennial biofuel crops could further transform agricultural landscapes and increase or decrease grassland area. Switchgrass (Panicum virgatum) is an alternative biofuel feedstock that may be economically and environmentally superior to maize (Zea mays) grain for ethanol production on marginally productive lands. Switchgrass could benefit farmers economically and increase grassland area, but there is uncertainty as to how conversions between rowcrops, switchgrass monocultures and conservation grasslands might occur and affect wildlife. To explore potential impacts on grassland birds, we developed four agricultural land-use change scenarios for an intensively cultivated landscape, each driven by potential future climatic changes and ensuing irrigation limitations, ethanol demand, commodity prices, and continuation of a conservation program. For each scenario, we calculated changes in area for landcover classes and predicted changes in grassland bird abundances. Overall, birds responded positively to the replacement of rowcrops with switchgrass and negatively to the conversion of conservation grasslands to switchgrass or rowcrops. Landscape context and interactions between climate, crop water use, and irrigation availability could influence future land-use, and subsequently, avian habitat quality and quantity. Switchgrass is likely to provide higher quality avian habitat than rowcrops but lower quality habitat than conservation grasslands, and therefore, may most benefit birds in heavily cultivated, irrigation dependent landscapes under warmer and drier conditions, where economic profitability may also encourage conversions to drought tolerant bioenergy feedstocks.
Wang, Quanzhen; Chen, Guo; Yersaiyiti, Hayixia; Liu, Yuan; Cui, Jian; Wu, Chunhui; Zhang, Yunwei; He, Xueqing
2012-01-01
Switchgrass is a perennial C4 plant with great potential as a bioenergy source and, thus, a high demand for establishment from seed. This research investigated the effects of ultrasound treatment on germination and seedling growth in switchgrass. Using an orthogonal matrix design, conditions for the ultrasound pretreatment in switchgrass seed, including sonication time (factor A), sonication temperature (factor B) and ultrasound output power (factor C), were optimized for germinating and stimulating seedling growth (indicated as plumular and radicular lengths) through modeling analysis. The results indicate that sonication temperature (B) was the most effective factor for germination, whereas output power (C) had the largest effect on seedling growth when ultrasound treatment was used. Combined with the analyses of range, variance and models, the final optimal ultrasonic treatment conditions were sonication for 22.5 min at 39.7°C and at an output power of 348 W, which provided the greatest germination percentage and best seedling growth. For this study, the orthogonal matrix design was an efficient method for optimizing the conditions of ultrasound seed treatment on switchgrass. The electrical conductivity of seed leachates in three experimental groups (control, soaked in water only, and ultrasound treatment) was determined to investigate the effects of ultrasound on seeds and eliminate the effect of water in the ultrasound treatments. The results showed that the electrical conductivity of seed leachates during either ultrasound treatment or water bath treatment was significantly higher than that of the control, and that the ultrasound treatment had positive effects on switchgrass seeds.
Comparative transcriptome profiling of upland (VS16) and lowland (AP13) ecotypes of switchgrass.
Ayyappan, Vasudevan; Saha, Malay C; Thimmapuram, Jyothi; Sripathi, Venkateswara R; Bhide, Ketaki P; Fiedler, Elizabeth; Hayford, Rita K; Kalavacharla, Venu Kal
2017-01-01
Transcriptomes of two switchgrass genotypes representing the upland and lowland ecotypes will be key tools in switchgrass genome annotation and biotic and abiotic stress functional genomics. Switchgrass (Panicum virgatum L.) is an important bioenergy feedstock for cellulosic ethanol production. We report genome-wide transcriptome profiling of two contrasting tetraploid switchgrass genotypes, VS16 and AP13, representing the upland and lowland ecotypes, respectively. A total of 268 million Illumina short reads (50 nt) were generated, of which, 133 million were obtained in AP13 and the rest 135 million in VS16. More than 90% of these reads were mapped to the switchgrass reference genome (V1.1). We identified 6619 and 5369 differentially expressed genes in VS16 and AP13, respectively. Gene ontology and KEGG pathway analysis identified key genes that regulate important pathways including C4 photosynthesis, photorespiration and phenylpropanoid metabolism. A series of genes (33) involved in photosynthetic pathway were up-regulated in AP13 but only two genes showed higher expression in VS16. We identified three dicarboxylate transporter homologs that were highly expressed in AP13. Additionally, genes that mediate drought, heat, and salinity tolerance were also identified. Vesicular transport proteins, syntaxin and signal recognition particles were seen to be up-regulated in VS16. Analyses of selected genes involved in biosynthesis of secondary metabolites, plant-pathogen interaction, membrane transporters, heat, drought and salinity stress responses confirmed significant variation in the relative expression reflected in RNA-Seq data between VS16 and AP13 genotypes. The phenylpropanoid pathway genes identified here are potential targets for biofuel conversion.
Vulnerability of crops and native grasses to summer drying in the U.S. Southern Great Plains
Raz-Yaseef, Naama; Billesbach, Dave P.; Fischer, Marc L.; ...
2015-08-31
The Southern Great Plains are characterized by a fine-scale mixture of different land-cover types, predominantly winter-wheat and grazed pasture, with relatively small areas of other crops, native prairie, and switchgrass. Recent droughts and predictions of increased drought in the Southern Great Plains, especially during the summer months, raise concern for these ecosystems. We measured ecosystem carbon and water fluxes with eddy-covariance systems over cultivated cropland for 10 years, and over lightly grazed prairie and new switchgrass fields for 2 years each. Growing-season precipitation showed the strongest control over net carbon uptake for all ecosystems, but with a variable effect: grassesmore » (prairie and switchgrass) needed at least 350 mm of precipitation during the growing season to become net carbon sinks, while crops needed only 100 mm. In summer, high temperatures enhanced evaporation and led to higher likelihood of dry soil conditions. Therefore, summer-growing native prairie species and switchgrass experienced more seasonal droughts than spring-growing crops. For wheat, the net reduction in carbon uptake resulted mostly from a decrease in gross primary production rather than an increase in respiration. Flux measurements suggested that management practices for crops were effective in suppressing evapotranspiration and decomposition (by harvesting and removing secondary growth), and in increasing carbon uptake (by fertilizing and conserving summer soil water). In light of future projections for wetter springs and drier and warmer summers in the Southern Great Plains, our study indicates an increased vulnerability in native ecosystems and summer crops over time.« less
Responses of switchgrass to precipitation changes: Nonlinear and asymmetric?
USDA-ARS?s Scientific Manuscript database
Background/Question/Methods: Climate changes, including chronic changes in precipitation amounts, will influence plant physiology, biomass and productivity, and soil respiration. However, such precipitation effects on switchgrass, a major bioenergy crop, have not been well investigated. Two preci...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willis, Jonathan D.; Grant, Joshua N.; Mazarei, Mitra
Genetically engineered biofuel crops, such as switchgrass (Panicum virgatum L.), that produce their own cell wall-digesting cellulase enzymes would reduce costs of cellulosic biofuel production. To date, non-bioenergy plant models have been used in nearly all studies assessing the synthesis and activity of plant-produced fungal and bacterial cellulases. One potential source for cellulolytic enzyme genes is herbivorous insects adapted to digest plant cell walls. Here we examine the potential of transgenic switchgrass-produced TcEG1 cellulase from Tribolium castaneum (red flour beetle). This enzyme, when overproduced in Escherichia coli and Saccharomyces cerevisiae, efficiently digests cellulose at optima of 50 °C and pHmore » 12.0. TcEG1 that was produced in green transgenic switchgrass tissue had a range of endoglucanase activity of 0.16–0.05 units (µM glucose release/min/mg) at 50 °C and pH 12.0. TcEG1 activity from air-dried leaves was unchanged from that from green tissue, but when tissue was dried in a desiccant oven (46 °C), specific enzyme activity decreased by 60%. When transgenic biomass was “dropped-in” into an alkaline buffer (pH 12.0) and allowed to incubate at 50 °C, cellobiose release was increased up to 77% over non-transgenic biomass. Saccharification was increased in one transgenic event by 28%, which had a concurrent decrease in lignin content of 9%. Histological analysis revealed an increase in cell wall thickness with no change to cell area or perimeter. Transgenic plants produced more, albeit narrower, tillers with equivalent dry biomass as the control. This work describes the first study in which an insect cellulase has been produced in transgenic plants; in this case, the dedicated bioenergy crop switchgrass. Switchgrass overexpressing the TcEG1 gene appeared to be morphologically similar to its non-transgenic control and produced equivalent dry biomass. Therefore, we propose TcEG1 transgenics could be bred with other transgenic germplasm (e.g., low-lignin lines) to yield new switchgrass with synergistically reduced recalcitrance to biofuel production. In addition, transgenes for other cell wall degrading enzymes may be stacked with TcEG1 in switchgrass to yield complementary cell wall digestion features and complete auto-hydrolysis.« less
Willis, Jonathan D.; Grant, Joshua N.; Mazarei, Mitra; ...
2017-11-30
Genetically engineered biofuel crops, such as switchgrass (Panicum virgatum L.), that produce their own cell wall-digesting cellulase enzymes would reduce costs of cellulosic biofuel production. To date, non-bioenergy plant models have been used in nearly all studies assessing the synthesis and activity of plant-produced fungal and bacterial cellulases. One potential source for cellulolytic enzyme genes is herbivorous insects adapted to digest plant cell walls. Here we examine the potential of transgenic switchgrass-produced TcEG1 cellulase from Tribolium castaneum (red flour beetle). This enzyme, when overproduced in Escherichia coli and Saccharomyces cerevisiae, efficiently digests cellulose at optima of 50 °C and pHmore » 12.0. TcEG1 that was produced in green transgenic switchgrass tissue had a range of endoglucanase activity of 0.16–0.05 units (µM glucose release/min/mg) at 50 °C and pH 12.0. TcEG1 activity from air-dried leaves was unchanged from that from green tissue, but when tissue was dried in a desiccant oven (46 °C), specific enzyme activity decreased by 60%. When transgenic biomass was “dropped-in” into an alkaline buffer (pH 12.0) and allowed to incubate at 50 °C, cellobiose release was increased up to 77% over non-transgenic biomass. Saccharification was increased in one transgenic event by 28%, which had a concurrent decrease in lignin content of 9%. Histological analysis revealed an increase in cell wall thickness with no change to cell area or perimeter. Transgenic plants produced more, albeit narrower, tillers with equivalent dry biomass as the control. This work describes the first study in which an insect cellulase has been produced in transgenic plants; in this case, the dedicated bioenergy crop switchgrass. Switchgrass overexpressing the TcEG1 gene appeared to be morphologically similar to its non-transgenic control and produced equivalent dry biomass. Therefore, we propose TcEG1 transgenics could be bred with other transgenic germplasm (e.g., low-lignin lines) to yield new switchgrass with synergistically reduced recalcitrance to biofuel production. In addition, transgenes for other cell wall degrading enzymes may be stacked with TcEG1 in switchgrass to yield complementary cell wall digestion features and complete auto-hydrolysis.« less
Sodium Hydroxide Pretreatment of Switchgrass for Ethanol Production
USDA-ARS?s Scientific Manuscript database
Lignocellulose-to-ethanol conversion is a promising technology to supplement corn-based ethanol production. However, the recalcitrant structure of lignocellulosic material is a major obstacle to the efficient conversion. To improve the enzymatic digestibility of switchgrass for the fermentable sugar...
Do yield and quality of big bluestem and switchgrass feedstock decline over winter?
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential bioenergy feedstocks for thermochemical platforms. Feedstock storage, fall harvest constraints, and environmental benefits provided by perennials are rationales for developing localized perennial feedstock...
Selecting, Establishing, and Managing Switchgrass (Panicum virgatum) for Biofuels
NASA Astrophysics Data System (ADS)
Parrish, David J.; Fike, John H.
Switchgrass is being widely considered as a feedstock for biofuel production. Much remains to be learned about ideal feedstock characteristics, but switchgrass offers many advantages already and can perhaps be manipulated to offer more. When planning to grow switchgrass, select a cultivar that is well adapted to the location - generally a lowland cultivar for the southern United States and an upland cultivar at higher latitudes. Plant non-dormant seed after soils are well warmed, preferably with no-till methods and always with good weed control. Except for weeds, few pests appear to be widespread; but disease and insect pests could become more important as acreages increase. Fertilization requirements are relatively low, with 50 kg N/ha/year being a good “generic” recommendation where a single harvest is taken after plants have senesced; more will be needed if biomass is harvested while still green. Switchgrass should be harvested no more than twice per year and may generally be expected to produce 12 to ≥20 mg/ha/year across its usual range of distribution. A single harvest may provide for maximum sustainable yields - especially if the harvest is taken after tops die back at the end of the season. Several harvesting technologies are available, but the preferred technology may depend on logistics and economics associated with the local processing point, or biorefinery.
Selecting, establishing, and managing switchgrass (Panicum virgatum) for biofuels.
Parrish, David J; Fike, John H
2009-01-01
Switchgrass is being widely considered as a feedstock for biofuel production. Much remains to be learned about ideal feedstock characteristics, but switchgrass offers many advantages already and can perhaps be manipulated to offer more. When planning to grow switchgrass, select a cultivar that is well adapted to the location - generally a lowland cultivar for the southern United States and an upland cultivar at higher latitudes. Plant non-dormant seed after soils are well warmed, preferably with no-till methods and always with good weed control. Except for weeds, few pests appear to be widespread; but disease and insect pests could become more important as acreages increase. Fertilization requirements are relatively low, with 50 kg N/ha/year being a good "generic" recommendation where a single harvest is taken after plants have senesced; more will be needed if biomass is harvested while still green. Switchgrass should be harvested no more than twice per year and may generally be expected to produce 12 to >or=20 mg/ha/year across its usual range of distribution. A single harvest may provide for maximum sustainable yields - especially if the harvest is taken after tops die back at the end of the season. Several harvesting technologies are available, but the preferred technology may depend on logistics and economics associated with the local processing point, or biorefinery.
Bio-remediation of Pb and Cd polluted soils by switchgrass: A case study in India.
Arora, Kalpana; Sharma, Satyawati; Monti, Andrea
2016-01-01
In the present study bioremediation potential of a high biomass yielding grass, Panicum virgatum (switchgrass), along with plant associated microbes (AM fungi and Azospirillum), was tested against lead and cadmium in pot trials. A pot trial was set up in order to evaluate bioremediation efficiency of P. virgatum in association with PAMs (Plant Associated Microbes). Growth parameters and bioremediation potential of endomycorrhizal fungi (AMF) and Azospirillum against different concentrations of Pb and Cd were compared. AM fungi and Azospirillum increased the root length, branches, surface area, and root and shoot biomass. The soil pH was found towards neutral with AMF and Azospirillum inoculations. The bioconcentration factor (BCF) for Pb (12 mg kg(-1)) and Cd (10 mg kg(-1)) were found to be 0.25 and 0.23 respectively and translocation index (Ti) was 17.8 and 16.7 respectively (approx 45% higher than control). The lower values of BCF and Ti, even at highest concentration of Pb and Cd, revealed the capability of switchgrass of accumulating high concentration of Pb and Cd in the roots, while preventing the translocation of Pb and Cd to aerial biomass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Shujiang; Kline, Keith L; Nair, S. Surendran
A global energy crop productivity model that provides geospatially explicit quantitative details on biomass potential and factors affecting sustainability would be useful, but does not exist now. This study describes a modeling platform capable of meeting many challenges associated with global-scale agro-ecosystem modeling. We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized natural resources datasets, (ii) global field-trial data and crop management practices, (iii) simulation units and management scenarios, (iv) model calibration and validation, (v) high-performance computing (HPC) simulation, and (vi) simulation output processing and analysis. The HPC-Environmental Policy Integrated Climate (HPC-EPIC) model simulatedmore » a perennial bioenergy crop, switchgrass (Panicum virgatum L.), estimating feedstock production potentials and effects across the globe. This modeling platform can assess soil C sequestration, net greenhouse gas (GHG) emissions, nonpoint source pollution (e.g., nutrient and pesticide loss), and energy exchange with the atmosphere. It can be expanded to include additional bioenergy crops (e.g., miscanthus, energy cane, and agave) and food crops under different management scenarios. The platform and switchgrass field-trial dataset are available to support global analysis of biomass feedstock production potential and corresponding metrics of sustainability.« less
Shahrukh, Hassan; Oyedun, Adetoyese Olajire; Kumar, Amit; ...
2016-04-05
Here, a process model was developed to determine the net energy ratio (NER) for production of pellets from steam pretreated agricultural residue (AR) and energy crop (i.e. switchgrass in this case). The NER is a ratio of the net energy output to the total net energy input from non-renewable energy sources into a system. Scenarios were developed to measure the effects of temperature and level of steam pretreatment on the NER of steam pretreated AR- and switch grass-based pellets. The NER for the base case at 6 kg h -1 is 1.76 and 1.37 for steam-pretreated AR- and switchgrass-based pellets,more » respectively. The reason behind the difference is that more energy is required to dry switchgrass pellets than AR pellets. The sensitivity analysis for the model shows that the optimum temperature for steam pretreatment is 160 C with 50% pretreatment (half the feedstock is pretreated, while the rest is undergoes regular pelletization). The uncertainty results for NER for steam pretreated AR and switch grass pellets are 1.62 ± 0.10 and 1.42 ± 0.11, respectively.« less
NASA Astrophysics Data System (ADS)
De Graaff, M.; Morris, G.; Jastrow, J. D.; SIX, J. W.
2013-12-01
Land-use change for bioenergy production can create greenhouse gas (GHG) emissions through disturbance of soil carbon (C) pools, but native species with extensive root systems may rapidly repay the GHG debt, particularly when grown in diverse mixtures, by enhancing soil C sequestration upon land-use change. Native bioenergy candidate species, switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerardii) show extensive within-species variation, and our preliminary data show that increased cultivar diversity can enhance yield. We aim to assess how shifting C3-dominated nonnative perennial grasslands to C4-dominated native perennial grasslands for use as bioenergy feedstock affects soil C stocks, and how within-species diversity in switchgrass and big bluestem affects soil C sequestration rates. Our experiment is conducted at the Fermilab National Environmental Research Park, and compares different approaches for perennial feedstock production ranging across a biodiversity gradient, where diversity is manipulated at both the species- and cultivar level, and nitrogen (N) is applied at two levels (0 and 67 kg/ha). Preliminary results indicate that switchgrass and big bluestem differentially affect soil C sequstration, and that increasing diversity may enhance soil C sequestration rates.
Raman, Babu; Pan, Chongle; Hurst, Gregory B; Rodriguez, Miguel; McKeown, Catherine K; Lankford, Patricia K; Samatova, Nagiza F; Mielenz, Jonathan R
2009-01-01
Economic feasibility and sustainability of lignocellulosic ethanol production requires the development of robust microorganisms that can efficiently degrade and convert plant biomass to ethanol. The anaerobic thermophilic bacterium Clostridium thermocellum is a candidate microorganism as it is capable of hydrolyzing cellulose and fermenting the hydrolysis products to ethanol and other metabolites. C. thermocellum achieves efficient cellulose hydrolysis using multiprotein extracellular enzymatic complexes, termed cellulosomes. In this study, we used quantitative proteomics (multidimensional LC-MS/MS and (15)N-metabolic labeling) to measure relative changes in levels of cellulosomal subunit proteins (per CipA scaffoldin basis) when C. thermocellum ATCC 27405 was grown on a variety of carbon sources [dilute-acid pretreated switchgrass, cellobiose, amorphous cellulose, crystalline cellulose (Avicel) and combinations of crystalline cellulose with pectin or xylan or both]. Cellulosome samples isolated from cultures grown on these carbon sources were compared to (15)N labeled cellulosome samples isolated from crystalline cellulose-grown cultures. In total from all samples, proteomic analysis identified 59 dockerin- and 8 cohesin-module containing components, including 16 previously undetected cellulosomal subunits. Many cellulosomal components showed differential protein abundance in the presence of non-cellulose substrates in the growth medium. Cellulosome samples from amorphous cellulose, cellobiose and pretreated switchgrass-grown cultures displayed the most distinct differences in composition as compared to cellulosome samples from crystalline cellulose-grown cultures. While Glycoside Hydrolase Family 9 enzymes showed increased levels in the presence of crystalline cellulose, and pretreated switchgrass, in particular, GH5 enzymes showed increased levels in response to the presence of cellulose in general, amorphous or crystalline. Overall, the quantitative results suggest a coordinated substrate-specific regulation of cellulosomal subunit composition in C. thermocellum to better suit the organism's needs for growth under different conditions. To date, this study provides the most comprehensive comparison of cellulosomal compositional changes in C. thermocellum in response to different carbon sources. Such studies are vital to engineering a strain that is best suited to grow on specific substrates of interest and provide the building blocks for constructing designer cellulosomes with tailored enzyme composition for industrial ethanol production.
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential bioenergy feedstocks. Feedstock storage limitations, labor constraints for harvest, and environmental benefits provided by perennials are rationales for developing localized perennial feedstock as an alter...
Switchgrass nitrogen response and estimated production costs on diverse sites
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) has been the principal perennial herbaceous crop investigated for bioenergy production in North America given its high production potential, relatively low input requirements, and potential suitability for use on marginal lands. Few large trials have determined swit...
Yimam, Yohannes Tadesse; Ochsner, Tyson E.; Fox, Garey A.
2017-01-01
Switchgrass (Panicum virgatum L.) has attracted attention as a promising second generation biofuel feedstock. Both existing grasslands and marginal croplands have been suggested as targets for conversion to switchgrass, but the resulting production potentials and hydrologic impacts are not clear. The objectives of this study were to model switchgrass production on existing grasslands (scenario-I) and on marginal croplands that have severe to very severe limitations for crop production (scenario-II) and to evaluate the effects on evapotranspiration (ET) and streamflow. The Soil and Water Assessment Tool (SWAT) was applied to the 1063 km2 Skeleton Creek watershed in north-central Oklahoma, a watershed dominated by grasslands (35%) and winter wheat cropland (47%). The simulated average annual yield (2002–2011) for rainfed Alamo switchgrass for both scenarios was 12 Mg ha-1. Yield varied spatially under scenario-I from 6.1 to 15.3 Mg ha-1, while under scenario-II the range was from 8.2 to 13.8 Mg ha-1. Comparison of average annual ET and streamflow between the baseline simulation (existing land use) and scenario-I showed that scenario-I had 5.6% (37 mm) higher average annual ET and 27.7% lower streamflow, representing a 40.7 million m3 yr-1 streamflow reduction. Compared to the baseline, scenario-II had only 0.5% higher ET and 3.2% lower streamflow, but some monthly impacts were larger. In this watershed, the water yield reduction per ton of biomass production (i.e. hydrologic cost-effectiveness ratio) was more than 5X greater under scenario-I than under scenario-II. These results suggest that, from a hydrologic perspective, it may be preferable to convert marginal cropland to switchgrass production rather than converting existing grasslands. PMID:28792541
Yimam, Yohannes Tadesse; Ochsner, Tyson E; Fox, Garey A
2017-01-01
Switchgrass (Panicum virgatum L.) has attracted attention as a promising second generation biofuel feedstock. Both existing grasslands and marginal croplands have been suggested as targets for conversion to switchgrass, but the resulting production potentials and hydrologic impacts are not clear. The objectives of this study were to model switchgrass production on existing grasslands (scenario-I) and on marginal croplands that have severe to very severe limitations for crop production (scenario-II) and to evaluate the effects on evapotranspiration (ET) and streamflow. The Soil and Water Assessment Tool (SWAT) was applied to the 1063 km2 Skeleton Creek watershed in north-central Oklahoma, a watershed dominated by grasslands (35%) and winter wheat cropland (47%). The simulated average annual yield (2002-2011) for rainfed Alamo switchgrass for both scenarios was 12 Mg ha-1. Yield varied spatially under scenario-I from 6.1 to 15.3 Mg ha-1, while under scenario-II the range was from 8.2 to 13.8 Mg ha-1. Comparison of average annual ET and streamflow between the baseline simulation (existing land use) and scenario-I showed that scenario-I had 5.6% (37 mm) higher average annual ET and 27.7% lower streamflow, representing a 40.7 million m3 yr-1 streamflow reduction. Compared to the baseline, scenario-II had only 0.5% higher ET and 3.2% lower streamflow, but some monthly impacts were larger. In this watershed, the water yield reduction per ton of biomass production (i.e. hydrologic cost-effectiveness ratio) was more than 5X greater under scenario-I than under scenario-II. These results suggest that, from a hydrologic perspective, it may be preferable to convert marginal cropland to switchgrass production rather than converting existing grasslands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumagai, Akio; Wu, Long; Iwamoto, Shinichiro
In this study, to reduce the recalcitrance of lignocellulosic biomass for subsequent biological processing, we pretreated energy crop feedstocks with mild steam treatment (ST; 130 and 150 °C for 60 min) and wet disk milling (WDM). We tested two phylogenetically different, but typical energy crop feedstocks: Populus trichocarpa and switchgrass ( Panicum virgatum). WDM after ST facilitated the fibrillation of both types of biomass, resulting in an increase of specific surface area, improved enzymatic saccharification yield, and decrease in cellulose crystallinity. Lastly, after steam treatment at 150 °C followed by 17 cycles of WDM, enzymatic hydrolysis resulted in almost completemore » glucan to glucose conversion in both feedstocks.« less
Kumagai, Akio; Wu, Long; Iwamoto, Shinichiro; ...
2014-12-15
In this study, to reduce the recalcitrance of lignocellulosic biomass for subsequent biological processing, we pretreated energy crop feedstocks with mild steam treatment (ST; 130 and 150 °C for 60 min) and wet disk milling (WDM). We tested two phylogenetically different, but typical energy crop feedstocks: Populus trichocarpa and switchgrass ( Panicum virgatum). WDM after ST facilitated the fibrillation of both types of biomass, resulting in an increase of specific surface area, improved enzymatic saccharification yield, and decrease in cellulose crystallinity. Lastly, after steam treatment at 150 °C followed by 17 cycles of WDM, enzymatic hydrolysis resulted in almost completemore » glucan to glucose conversion in both feedstocks.« less
Loman, Zachary G.; Monroe, Adrian; Riffell, Samuel K.; Miller, Darren A.; Vilella, Francisco; Wheat, Bradley R.; Rush, Scott A.; Martin, James A.
2018-01-01
Switchgrass (Panicum virgatum) intercropping is a novel forest management practice for biomass production intended to generate cellulosic feedstocks within intensively managed loblolly pine‐dominated landscapes. These pine plantations are important for early‐successional bird species, as short rotation times continually maintain early‐successional habitat. We tested the efficacy of using community models compared to individual surrogate species models in understanding influences on nest survival. We analysed nest data to test for differences in habitat use for 14 bird species in plots managed for switchgrass intercropping and controls within loblolly pine (Pinus taeda) plantations in Mississippi, USA.We adapted hierarchical models using hyper‐parameters to incorporate information from both common and rare species to understand community‐level nest survival. This approach incorporates rare species that are often discarded due to low sample sizes, but can inform community‐level demographic parameter estimates. We illustrate use of this approach in generating both species‐level and community‐wide estimates of daily survival rates for songbird nests. We were able to include rare species with low sample size (minimum n = 5) to inform a hyper‐prior, allowing us to estimate effects of covariates on daily survival at the community level, then compare this with a single‐species approach using surrogate species. Using single‐species models, we were unable to generate estimates below a sample size of 21 nests per species.Community model species‐level survival and parameter estimates were similar to those generated by five single‐species models, with improved precision in community model parameters.Covariates of nest placement indicated that switchgrass at the nest site (<4 m) reduced daily nest survival, although intercropping at the forest stand level increased daily nest survival.Synthesis and applications. Community models represent a viable method for estimating community nest survival rates and effects of covariates while incorporating limited data for rarely detected species. Intercropping switchgrass in loblolly pine plantations slightly increased daily nest survival at the research plot scale (0.1 km2), although at a local scale (50 m2) switchgrass negatively influenced nest survival. A likely explanation is intercropping shifted community composition, favouring species with greater disturbance tolerance.
USDA-ARS?s Scientific Manuscript database
Climate changes, including chronic changes in precipitation amounts, will influence plant physiology and growth. However, such precipitation effects on switchgrass, a major bioenergy crop, have not been well investigated. We conducted a two-year precipitation simulation experiment using large pots...
The WRKY transcription factor family and senescence in switchgrass
USDA-ARS?s Scientific Manuscript database
Background: Early aerial senescence in switchgrass (Panicum virgatum) can significantly limit biomass yields. WRKY transcription factors that can regulate senescence could be used to reprogram senescence and enhance biomass yields. Methods: All potential WRKY genes present in the version 1.0 of the...
Evaluation of switchgrass for improved biomass yield on marginal land
USDA-ARS?s Scientific Manuscript database
The national strategy is to produce bioenergy crops on marginal cropland where there will be no competition with food production. The characteristics of switchgrass (Panicum virgatum) make it an excellent candidate for sustainable biomass production on marginal land. However, few studies have evalu...
Genomic prediction for winter survival in lowland switchgrass
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is a North American native perennial warm season grass and a promising cellulosic bioenergy feedstock. It has two ecotypes – lowland and upland. The lowland ecotype has generated considerable interest because of its higher biomass compared to the upland ecotype. How...
Topsoil thickness influences nitrogen management of switchgrass
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is an attractive bioenergy crop option for eroded portions of claypan landscapes where grain crop production is marginally profitable. Topsoil thickness above the claypan or depth to claypan (DTC) can vary widely within fields and little information exists on its im...
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) and guinea grass (Panicum maximum Jacq.) have been proposed as sustainable alternatives to fossil fuels in temperate and tropical environments, respectively; although still requiring non-renewable inputs, notably, fertilizer-nitrogen (N). Furthermore, climate change...
Depolymerization and hydrodeoxygenation of switchgrass lignin with formic acid.
Xu, Weiyin; Miller, Stephen J; Agrawal, Pradeep K; Jones, Christopher W
2012-04-01
Organosolv switchgrass lignin is depolymerized and hydrodeoxygenated with a formic acid hydrogen source, 20 wt % Pt/C catalyst, and ethanol solvent. The combination of formic acid and Pt/C is found to promote production of higher fractions of lower molecular weight compounds in the liquid products. After 4 h of reaction, all of the switchgrass lignin is solubilized and 21 wt % of the biomass is shown to be converted into seven prominent molecular species that are identified and quantified. Reaction time is shown to be an important variable in affecting changes in product distributions and bulk liquid product properties. At 20 h of reaction, the lignin is significantly depolymerized to form liquid products with a 76 % reduction in the weighted average molecular weight. Elemental analysis also shows that the resultant liquid products have a 50 % reduction in O/C and 10 % increase in H/C molar ratios compared to the switchgrass lignin after 20 h. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lu, Xiaoming; Withers, Mitch R; Seifkar, Navid; Field, Randall P; Barrett, Steven R H; Herzog, Howard J
2015-05-01
The objective of this study was to assess the costs, energy consumption and greenhouse gas (GHG) emissions throughout the biomass supply chain for large scale biofuel production. Two types of energy crop were considered, switchgrass and loblolly pine, as representative of herbaceous and woody biomass. A biomass logistics model has been developed to estimate the feedstock supply system from biomass production through transportation. Biomass in the form of woodchip, bale and pellet was investigated with road, railway and waterway transportation options. Our analysis indicated that the farm or forest gate cost is lowest for loblolly pine whole tree woodchip at $39.7/dry tonne and highest for switchgrass round bale at $72.3/dry tonne. Switchgrass farm gate GHG emissions is approximately 146kgCO2e/dry tonne, about 4 times higher than loblolly pine. The optimum biomass transportation mode and delivered form are determined by the tradeoff between fixed and variable costs for feedstock shipment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bertagnolli, Anthony D; Meinhardt, Kelley A; Pannu, Manmeet; Brown, Sally; Strand, Stuart; Fransen, Steven C; Stahl, David A
2015-04-01
Ammonia-oxidizing thaumarcheota (AOA) and ammonia-oxidizing bacteria (AOB) differentially influence soil and atmospheric chemistry, but soil properties that control their distributions are poorly understood. In this study, the ammonia monooxygenase gene (amoA) was used to identify and quantify presumptive AOA and AOB and relate their distributions to soil properties in two experimental fields planted with different varieties of switchgrass (Panicum virgatum), a potential bioenergy feedstock. Differences in ammonia oxidizer diversity were associated primarily with soil properties of the two field sites, with pH displaying significant correlations with both AOA and AOB population structure. Percent nitrogen (%N), carbon to nitrogen ratios (C : N), and pH were also correlated with shifts nitrifier population structure. Nitrosotalea-like and Nitrosospira cluster II populations were more highly represented in acidic soils, whereas populations affiliated with Nitrososphaera and Nitrosospira cluster 3A.1 were relatively more abundant in alkaline soils. AOA were the dominant functional group in all plots based on quantitative polymerase chain reaction and high-throughput sequencing analyses. These data suggest that AOA contribute significantly to nitrification rates in carbon and nitrogen rich soils influenced by perennial grasses. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Afzal, S; Begum, N; Zhao, H; Fang, Z; Lou, L; Cai, Q
2017-08-01
This study aimed to evaluate the effect of five cadmium-tolerant endophytic plant growth-promoting bacteria (PGPB) strains on the biomass and cadmium tolerance, and accumulation of the bioenergy plant switchgrass (Panicum virgatum L.) under cadmium (Cd)-contaminated conditions. Five bacterial strains (Bj05, Le14, Ps14, So02 and Bo03) that could tolerate up to 2000 μmol l -1 CdCl 2 with a high Cd-binding capacity were isolated from plants grown in Cd-contaminated soil. These strains could promote the growth of switchgrass in the presence of 20 μmol l -1 CdCl 2 . Under Cd stress, both the root and shoot length and biomass in two switchgrass cultivars, Alamo and Cave-in-Rock (CIR), increased significantly after treatment with PGPB (P ˂ 0·05). Of the five PGPB strains, Bj05 and Le14 most effectively alleviated the Cd-induced growth inhibition of Alamo plants. Interestingly, the five PGPB strains increased Cd tolerance and decreased the accumulation and translocation factor (TF) of Cd in switchgrass when grown in the presence of 20 μmol l -1 CdCl 2 . The Cd concentrations in roots and shoots of Alamo and CIR plants were significantly reduced (P ˂ 0·05) compared with noninoculated plants. By 16S rRNA sequencing, these PGPB strains were classified as Pseudomonas putida Bj05, Pseudomonas fluorescens Ps14, and Enterobacter spp. Le14, So02 and Bo03. Inoculation with PGPB protects plants from the inhibitory effects of Cd, improves plant growth and decreases Cd concentration. These observations suggest that these strains could be used to promote growth and lower the bioavailability of Cd in switchgrass. These strains are potential candidates for the development of low Cd-accumulating switchgrass, particularly in areas of Cd contamination and pollution, and could be used efficiently for the bioremediation of contaminated soil. © 2017 The Society for Applied Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jong -Jin; Yoo, Chang Geun; Flanagan, Amy
The development of genome editing technologies offers new prospects in improving bioenergy crops like switchgrass (Panicum virgatum). Switchgrass is an outcrossing species with an allotetraploid genome (2n = 4x = 36), a complexity which forms an impediment to generating homozygous knock-out plants. Lignin, a major component of the plant cell wall and a contributor to cellulosic feedstock’s recalcitrance to decomposition, stands as a barrier to efficient biofuel production by limiting enzyme access to cell wall polymers during the fermentation process.
Park, Jong -Jin; Yoo, Chang Geun; Flanagan, Amy; ...
2017-11-30
The development of genome editing technologies offers new prospects in improving bioenergy crops like switchgrass (Panicum virgatum). Switchgrass is an outcrossing species with an allotetraploid genome (2n = 4x = 36), a complexity which forms an impediment to generating homozygous knock-out plants. Lignin, a major component of the plant cell wall and a contributor to cellulosic feedstock’s recalcitrance to decomposition, stands as a barrier to efficient biofuel production by limiting enzyme access to cell wall polymers during the fermentation process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfrum, Edward J.; Nagle, Nicholas J.; Ness, Ryan M.
In this work, we examined the behavior of feedstock blends and the effect of a specific feedstock densification strategy (pelleting) on the release and yield of structural carbohydrates in a laboratory-scale dilute acid pretreatment (PT) and enzymatic hydrolysis (EH) assay. We report overall carbohydrate release and yield from the two-stage PT-EH assay for five single feedstocks (two corn stovers, miscanthus, switchgrass, and hybrid poplar) and three feedstock blends (corn stover-switchgrass, corn stover-switchgrass-miscanthus, and corn stover-switchgrass-hybrid poplar). We first examined the experimental results over time to establish the robustness of the PT-EH assay, which limits the precision of the experimental results.more » The use of two different control samples in the assay enabled us to identify (and correct for) a small bias in the EH portion of the combined assay for some runs. We then examined the effect of variable pretreatment reaction conditions (residence time, acid loading, and reactor temperature) on the conversion of a single feedstock (single-pass corn stover, CS-SP) in order to establish the range of pretreatment reaction conditions likely to provide optimal conversion data. Finally, we applied the assay to the 16 materials (8 feedstocks in 2 formats, loose and pelleted) over a more limited range of pretreatment experimental conditions. The four herbaceous feedstocks behaved similarly, while the hybrid poplar feedstock required higher pretreatment temperatures for optimal results. As expected, the yield data for three blended feedstocks were the average of the yield data for the individual feedstocks. As a result, the pelleting process appears to provide a slightly positive effect on overall total sugar yield.« less
Wolfrum, Edward J.; Nagle, Nicholas J.; Ness, Ryan M.; ...
2017-01-13
In this work, we examined the behavior of feedstock blends and the effect of a specific feedstock densification strategy (pelleting) on the release and yield of structural carbohydrates in a laboratory-scale dilute acid pretreatment (PT) and enzymatic hydrolysis (EH) assay. We report overall carbohydrate release and yield from the two-stage PT-EH assay for five single feedstocks (two corn stovers, miscanthus, switchgrass, and hybrid poplar) and three feedstock blends (corn stover-switchgrass, corn stover-switchgrass-miscanthus, and corn stover-switchgrass-hybrid poplar). We first examined the experimental results over time to establish the robustness of the PT-EH assay, which limits the precision of the experimental results.more » The use of two different control samples in the assay enabled us to identify (and correct for) a small bias in the EH portion of the combined assay for some runs. We then examined the effect of variable pretreatment reaction conditions (residence time, acid loading, and reactor temperature) on the conversion of a single feedstock (single-pass corn stover, CS-SP) in order to establish the range of pretreatment reaction conditions likely to provide optimal conversion data. Finally, we applied the assay to the 16 materials (8 feedstocks in 2 formats, loose and pelleted) over a more limited range of pretreatment experimental conditions. The four herbaceous feedstocks behaved similarly, while the hybrid poplar feedstock required higher pretreatment temperatures for optimal results. As expected, the yield data for three blended feedstocks were the average of the yield data for the individual feedstocks. As a result, the pelleting process appears to provide a slightly positive effect on overall total sugar yield.« less
Using electrical resistance probes for moisture determination in switchgrass windrows
USDA-ARS?s Scientific Manuscript database
Determining moisture levels in windrowed biomass is important for both forage producers and researchers. Energy crops such as switchgrass have been troublesome when using the standard methods set for electrical resistance meters. The objectives of this study were to i) develop the methodologies need...
Seasonal below-ground metabolism in switchgrass
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum) a perennial, polyploid, C4 warm-season grass is one of the foremost herbaceous species being advanced as a source of biomass for biofuel end uses. At the end of every growing season, the aerial tissues senesce, and the below-ground rhizomes become dormant. Future growt...
Determining switchgrass biomass supplies for cellulosic biorefineries
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is being developed into a bioenergy crop for use in temperate regions of the USA. Information on spatial and temporial variation for stands and biomass yield among and within fields in large agroecoregions is not available. A reliable feedstock supply will be essent...
Switchgrass growth and effects on biomass accumulation, moisture content, and nutrient removal
USDA-ARS?s Scientific Manuscript database
Temporal patterns of plant growth, composition, and nutrient removal impact development of models for predicting optimal harvest times of switchgrass (Panicum virgatum L.) for bioenergy. Objectives were to characterize seasonal trends in yield, tissue moisture, ash content, leaf area index (LAI), in...
Detection and characterization of the first North American mastrevirus in Switchgrass
USDA-ARS?s Scientific Manuscript database
Virus infections have the potential to reduce biomass yields in energy crops, including Panicum virgatum (switchgrass). As a first step towards managing virus-induced biomass reductions, deep sequencing was used to identify viruses associated with mosaic symptoms in switch grass, which detected thre...
Ethanol yields and cell wall properties in divergently bred switchgrass genotypes
USDA-ARS?s Scientific Manuscript database
Genetic modification of herbaceous plant cell walls to increase biofuels yields from harvested biomass is a primary bioenergy research goal. The focus of much of this research has been on cell wall lignin concentration. Using switchgrass genotypes developed by divergent breeding for ruminant diges...
Impact of switchgrass harvest time on biomass yield and conversion
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is a perennial grass native to much of North America being developed as a dedicated energy crop for conversion to biofuels. Breeding efforts are focused on producing high-yielding cultivars that can maintain high yield across multiple environments, including poor so...
Grass invasion into switchgrass managed for biomass energy
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum) is a warm-season perennial grass and is the model herbaceous perennial bioenergy feedstock. Although it is indigenous to North American grasslands east of the Rocky Mountains and has been planted for forage and conservation purposes for more than 75 years, there is con...
Nitrogen management of switchgrass and miscanthus on marginal soils
USDA-ARS?s Scientific Manuscript database
Miscanthus × giganteus and switchgrass yield and fertilizer N requirements have been well studied in Europe and parts of the United States, but few reports have investigated their production on eroded claypan soils economically marginal for grain crops. This study was conducted to evaluate yield pot...
Topsoil depth influences switchgrass nitrogen management on claypan soils
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is an attractive forage or bioenergy crop option for eroded portions of claypan landscapes where grain crop production is marginally profitable. Topsoil depth to the claypan can vary widely within fields and little information exists on the impacts of the topsoil de...
Structural analysis of pyrolytic lignins isolated from switchgrass fast pyrolysis oil
USDA-ARS?s Scientific Manuscript database
Structural characterization of lignin extracted from the bio-oil produced by fast pyrolysis of switchgrass (Panicum virgatum) is reported. This new information is important to understanding the utility of lignin as a chemical feedstock in a pyrolysis based biorefinery. Pyrolysis induces a variety of...
Comparing corn stover and switchgrass biochar: characterization and sorption properties
USDA-ARS?s Scientific Manuscript database
A switchgrass biochar (SB) produced by fast pyrolysis and a corn stover biochar (CSB) from a slow pyrolysis process were mechanically milled and characterized. Both of these biochars are very cost-effective and originate as residues from bioenergy production and the corn industry, respectively. Thes...
Threshold Level of Harvested Litter Input for Carbon Sequestration by Bioenergy Crops
NASA Astrophysics Data System (ADS)
Woo, D.; Quijano, J.; Kumar, P.; Chaoka, S.
2013-12-01
Due to the increase in the demands for bioenergy, considerable areas in the Midwestern United States could be converted into croplands for second generation bioenergy, such as the cultivation of miscanthus and switchgrass. Study on the effect of the expansion of these crops on soil carbon and nitrogen dynamics is integral to understanding their long-term environmental impacts. In this study, we focus on a comparative study between miscanthus, swichgrass, and corn-corn-soybean rotation on the below-ground dynamics of carbon and nitrogen. Fate of soil carbon and nitrogen is sensitive to harvest litter treatments and residue quality. Therefore, we attempt to address how different amounts of harvested biomass inputs into the soil impact the evolution of organic carbon and inorganic nitrogen in the subsurface. We use Precision Agricultural Landscape Modeling System, version 5.4.0, to capture biophysical and hydrological components coupled with a multilayer carbon and nitrogen cycle model. We apply the model at daily time scale to the Energy Biosciences Institute study site, located in the University of Illinois Research Farms, in Urbana, Illinois. The atmospheric forcing used to run the model was generated stochastically from parameters obtained from 10 years of atmospheric data recorded at both the study site and Willard Airport. Comparisons of model results against observations of drainage, ammonium and nitrate loads in tile drainage, nitrogen mineralization, nitrification, and litterfall in 2011 reveal the ability of the model to accurately capture the ecohydrology, as well as the carbon and nitrogen dynamics at the study site. The results obtained here highlight that there is a critical return of biomass to the soil when harvested for miscanthus (15% of aboveground biomass), and switchgrass (25%) after which the accumulation of carbon in the soil is significantly enhanced and nitrogen leaching is reduced, unlike corn-corn-soybean rotation. The main factor influencing the accumulation of carbon and reduction of nitrogen is the high carbon to nitrogen ratio in the biomass that is contributed as a litter from miscanthus and switchgrass when harvested. A nitrogen deficient environment in the top soil hinders microbial growth and therefore decomposition. In addition, lack of nitrogen fertilizer for miscanthus enhances even more the accumulation of carbon in the soil. On the other hand, nitrogen uptakes by miscanthus and switchgrass are not considerably affected due to a nitrogen fixation ability for miscanthus and fertilizer application for switchgrass. The simulation results obtained in this study show differences in the soil biogeochemistry induced by the different crops analyzed. We believe these results provide important findings about the impact of bioenergy crops on the carbon and nitrogen cycling in the soil.
NASA Astrophysics Data System (ADS)
Amatya, D. M.; Panda, S.; Chescheir, G. M.; Nettles, J. E.; Appelboom, T.; Skaggs, R. W.
2011-12-01
Vast areas of the land in the Southeastern United States are under pine forests managed primarily for timber and related byproducts. Evapotranspiration (ET) is the major loss in the water balance of this forest ecosystem. A long-term (1988-2008) study to evaluate hydrologic and nutrient balance during a life cycle of a pine stand was just completed. The study used both monitoring and modeling approaches to evaluate hydrologic and water quality effects of silvicultural and water management treatments on three 25 ha experimental watersheds in eastern North Carolina (NC). The research was extended in 2009 to include a dedicated energy crop, switchgrass (Panicum virgatum), by adding an adjacent 25 ha watershed. These multiple watersheds are being used to evaluate the hydrologic and water quality effects of switchgrass alone, young pine with natural understory, and young pine with switchgrass intercropping compared to the control (pine stand with a natural understory). The biofuels study has been further expanded to two other southern states, Alabama (AL) and Mississippi (MS). Each has five small watersheds (< 25 ha size) consisting of the above treatments and an additional woody biomass removal treatment. In this presentation we provide methods for estimating ET for these treatment watersheds in all three states (NC, AL, and MS) using remote sensing based spatial high resolution multispectral satellite imagery data with ground truthing, where possible, together with sensor technology. This technology is making ET parameter estimation a reality for various crops and vegetation surfaces. Slope-based vegetation indices like Normalized Difference Vegetation Index (NDVI) and Green Vegetation Index (GVI) and distance-based vegetation indices like Soil Adjusted Vegetation Index (SAVI) and Perpendicular Vegetation Index (PVI) will be developed using the R and NIR bands, vegetation density, and background soil reflectance as necessary. Landsat and high resolution aerial imageries of vegetation and soils will be used. IDRISI Taiga software will be used for the indices development. The forested vegetation health will be correlated to the leaf chlorophyll content for determining the vegetation health with a subsequent derivation of available plant water for radiation. Models will be developed to correlate the plant and soil available water to different vegetation indices. Correlation models will also be developed to obtain information on climatic parameters like surface air temperature, net radiation, albedo, soil moisture content, and stomatal water availability from Landsat imageries. On-site weather parameters used for the PET estimates will be combined with other vegetation parameters like leaf area index (LAI) obtained using LIDAR data and NAIP orthophotos of different seasons. That will also help detect the upper and understory vegetation. The LIDAR data will be processed to obtain the volume of vegetation to correctly estimate the total ET for each treatment.
Switchgrass Biomass Quality as Affected by Nitrogen Rate, Harvest Time, and Storage
Ibrahim, Mostafa; Hong, Chang Oh.; Singh, Shikha; ...
2017-01-25
The purpose of this study was to assess the changes in switchgrass (Panicum virgatum L.) biomass quality as affected by N rate, harvest time, and storage. This research was conducted near Bristol, SD, in 2010 and 2011. Treatments included three N rates (0, 56, and 112 kg N ha –1) applied annually and each N rate replicated four times. After a killing frost, all of the plots were harvested and baled in large round bales in October 2010 and November 2011. An area of about 30 m 2 from each plot was left unharvested to represent storage of standing switchgrassmore » over the winter and to determine dry matter yields. Switchgrass was analyzed for hemicellulose, cellulose, lignin, mineral elements, N, and C. In the first season, storage of the fall harvested switchgrass bales numerically increased the concentrations of hemicellulose, lignin, and N. In the second season, they increased significantly. Mineral elements significantly increased in both sampling seasons. Delaying harvest until spring decreased lignin, N, and mineral elements concentration, and increased cellulose and hemicellulose concentrations, but also reduced biomass yield. Results from this study suggest that delaying the switchgrass harvest until spring increased the overall feedstock quality for ethanol production, but yield reductions must be considered to determine the overall economic impact of a delayed harvest.« less
Switchgrass Biomass Quality as Affected by Nitrogen Rate, Harvest Time, and Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Mostafa; Hong, Chang Oh.; Singh, Shikha
The purpose of this study was to assess the changes in switchgrass (Panicum virgatum L.) biomass quality as affected by N rate, harvest time, and storage. This research was conducted near Bristol, SD, in 2010 and 2011. Treatments included three N rates (0, 56, and 112 kg N ha –1) applied annually and each N rate replicated four times. After a killing frost, all of the plots were harvested and baled in large round bales in October 2010 and November 2011. An area of about 30 m 2 from each plot was left unharvested to represent storage of standing switchgrassmore » over the winter and to determine dry matter yields. Switchgrass was analyzed for hemicellulose, cellulose, lignin, mineral elements, N, and C. In the first season, storage of the fall harvested switchgrass bales numerically increased the concentrations of hemicellulose, lignin, and N. In the second season, they increased significantly. Mineral elements significantly increased in both sampling seasons. Delaying harvest until spring decreased lignin, N, and mineral elements concentration, and increased cellulose and hemicellulose concentrations, but also reduced biomass yield. Results from this study suggest that delaying the switchgrass harvest until spring increased the overall feedstock quality for ethanol production, but yield reductions must be considered to determine the overall economic impact of a delayed harvest.« less
USDA-ARS?s Scientific Manuscript database
Overcoming biomass recalcitrance to biological conversion has been the focus of enormous research efforts in the cellulosic biofuel area in the past decades. In this study, Alamo switchgrass was genetically transformed to suppress the expression of 4-coumarate-CoA ligase (4CL). The transgenic plants...
Nitrogen and harvest impact on biomass yield of established switchgrass (Panicum virgatum L.)
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) has been identified as the model herbaceous biomass energy crop by the United States Department of Energy as it is capable of being a viable bioenergy feedstock while providing multiple environmental benefits when grown on marginal soil landscapes. Nitrogen (N) fert...
Nitrogen uptake by corn and switchgrass plants in soils of varying depths in Central Missouri
USDA-ARS?s Scientific Manuscript database
Sustainable biomass feedstock production systems involve biomass generation from non-agricultural or marginal lands with minimal external inputs. Switchgrass based alley cropping systems have been proposed as biomass feedstock crop systems in marginal lands. In many areas in the Midwest United State...
First report of Puccinia emaculata on switchgrass (Panicum virgatum L.) in Tennessee
USDA-ARS?s Scientific Manuscript database
In the spring of 2007, switchgrass accessions and cultivars Alamo, Kanlow, SL-93-2001, and NSL 2001-1 (lowland), Blackwell (upland), Grenville, Falcon, and Miami (unknown ploidy levels) were sown at the East Tennessee Research and Extension Center in Knoxville, Tennessee for evaluation and controlle...
N2 fixation of common and hairy vetches when intercropped into switchgrass
USDA-ARS?s Scientific Manuscript database
Interest in alternatives to synthetic nitrogen (N) fertilizer for switchgrass (Panicum virgatum L.) forage and bioenergy production continues to increase, and interseeding legumes into swards may be one such prospect. Common vetch (Vicia sativa L.) occurs naturally throughout the U.S. and has fewer ...
USDA-ARS?s Scientific Manuscript database
Six generations of divergent breeding in switchgrass (Panicum virgatum L.) for forage in vitro digestibility (IVDMD) resulted in significant changes in 20 biomass composition traits. Stepwise multi-regression was used to determine which of the 20 composition traits had largest significant effects on...
Field productivities of Switchgrass for conversion to sugars and ethanol
USDA-ARS?s Scientific Manuscript database
Switchgrass (SG, Panicum virgatum) is a warm season perennial grass being developed as a dedicated bioenergy crop. The Agricultural Research Service has recently released a new cultivar of SG named Liberty, which is a cross between Summer and Kanlow cultivars. In prior studies Liberty grown on 4 sit...
USDA-ARS?s Scientific Manuscript database
The efficiency of two biomass pretreatment technologies, dilute acid hydrolysis and dissolution in an ionic liquid, are compared in terms of delignification, saccharification efficiency and saccharide yields with switchgrass serving as a model bioenergy crop. When subject to ionic liquid pretreatme...
QTL x environment interactions and latitudinal adaptation in switchgrass (Panicum virgatum)
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum) is a polyploid C4 perennial grass that is native to North America and has been championed as a promising biofuel feedstock. It is a common member of most native prairie communities and exhibits extensive phenotypic variability and adaptation across its range, especial...
Water use efficiency by switchgrass compared to a native grass or a native grass alfalfa mixture
USDA-ARS?s Scientific Manuscript database
Development of sustainable cellulosic biofuel systems requires knowing the water use efficiency (WUE) of potential bioenergy crops. Impact of early and late season droughts on WUE and soil water deficits were evaluated in switchgrass (Panicum virgatum L.), western wheatgrass (Pascopyrum smithii (Ry...
USDA-ARS?s Scientific Manuscript database
The objectives of this study were to investigate the effects of the precipitation changes on soil, microbial and root respirations of switchgrass soils, and the relationships between soil respiration and plant growth, soil moisture and temperature. A mesocosm experiment was conducted with five prec...
Topsoil thickness and harvest management influence switchgrass production and profitability
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is an attractive dual use forage and/or biomass crop option for eroded or marginal soils where corn (Zea mays L.) grain production often is not profitable. Topsoil thickness, especially above soils with a claypan, relates to crop productivity and nutrient removal an...
Effects of site preparation for pine forest/switchgrass Intercropping on water quality
A. Muwamba; D. M. Amatya; H. Ssegane; G.M. Chescheir; T. Appelboom; E.W. Tollner; J. E. Nettles; M. A. Youssef; F. Birgand; R. W. Skaggs; S. Tian
2015-01-01
A study was initiated to investigate the sustainability effects of intercropping switchgrass (Panicum virgatum L.) in a loblolly pine (Pinus taeda L.) plantation. This forest-based biofuel system could possibly provide biomass from the perennial energy grass while maintaining the economics and environmental benefits of a forest...
Biomass production and nutrient removal by switchgrass under irrigation
USDA-ARS?s Scientific Manuscript database
Switchgrass has been identified to supply a major portion of U.S. energy needs when used as a fuel. Assessments of the export of essential plant nutrients are needed to determine impacts on soil fertility that will influence fertilizer recommendations since the nutrients contained in the above groun...
USDA-ARS?s Scientific Manuscript database
Highly productive, commercial hybrid poplar plantations are being managed in the Pacific Northwest for high-value timber production at relatively low stocking densities under irrigation. The open understory was used to produce switchgrass (Panicum virgatum) prior to canopy closure. The objectives ...
Hydraulic properties affected by topsoil thickness in switchgrass and corn-soybean cropping systems
USDA-ARS?s Scientific Manuscript database
Loss of productive topsoil by soil erosion over time can reduce the productive capacity of soil and can significantly affect soil hydraulic properties. This study evaluated the effects of reduced topsoil thickness and perennial switchgrass (Panicum virgatum L.) versus corn (Zea mays L.)/soybean [Gly...
Inhibition of microbial biofuel production in drought-stressed switchgrass hydrolysate
Ong, Rebecca Garlock; Higbee, Alan; Bottoms, Scott; ...
2016-11-08
Here, interannual variability in precipitation, particularly drought, can affect lignocellulosic crop biomass yields and composition, and is expected to increase biofuel yield variability. However, the effect of precipitation on downstream fermentation processes has never been directly characterized. In order to investigate the impact of interannual climate variability on biofuel production, corn stover and switchgrass were collected during 3 years with significantly different precipitation profiles, representing a major drought year (2012) and 2 years with average precipitation for the entire season (2010 and 2013). All feedstocks were AFEX (ammonia fiber expansion)-pretreated, enzymatically hydrolyzed, and the hydrolysates separately fermented using xylose-utilizing strainsmore » of Saccharomyces cerevisiae and Zymomonas mobilis. As a result, a chemical genomics approach was also used to evaluate the growth of yeast mutants in the hydrolysates.« less
Conkling, Tara J; Belant, Jerrold L; DeVault, Travis L; Martin, James A
2018-03-08
Growing concerns about climate change, foreign oil dependency, and environmental quality have fostered interest in perennial native grasses (e.g., switchgrass [Panicum virgatum]) for bioenergy production while also maintaining biodiversity and ecosystem function. However, biomass cultivation in marginal landscapes such as airport grasslands may have detrimental effects on aviation safety as well as conservation efforts for grassland birds. In 2011-2013, we investigated effects of vegetation composition and harvest frequency on seasonal species richness and habitat use of grassland birds and modeled relative abundance, aviation risk, and conservation value of birds associated with biomass crops. Avian relative abundance was greater in switchgrass monoculture plots during the winter months, whereas Native Warm-Season Grass (NWSG) mixed species plantings were favored by species during the breeding season. Conversely, treatment differences in aviation risk and conservation value were not biologically significant. Only 2.6% of observations included avian species of high hazard to aircraft, providing support for semi-natural grasslands as a feasible landcover option at civil airports. Additionally, varied harvest frequencies across a mosaic of switchgrass monocultures and NWSG plots allows for biomass production with multiple vegetation structure options for grassland birds to increase seasonal avian biodiversity and habitat use. © 2018 by the Ecological Society of America.
USDA-ARS?s Scientific Manuscript database
Production costs change with harvest date of switchgrass (Panicum virgatum L.) as a result of nutrient recycling and changes in yield of this perennial crop. This study examines the range of cost of production from an early, yield-maximizing harvest date to a late winter harvest date at low moisture...
Fertilizer recommendations for switchgrass: Quantifying economic effects on quality and yield
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is a native, perennial warm season grass that is suited for biomass production for conversion to renewable fuels as well as feed production on marginal soils. Yield responses to macro nutrients of N, P and K, have shown N to be the major driver for capturing yield p...
First report of Tilletia pulcherrima on switchgrass (Panicum virgatum L.) in Texas
USDA-ARS?s Scientific Manuscript database
Switchgrass seed samples of cultivars ‘Blackwell’ and ‘Alamo’ from Bamert Seed Company, Muleshoe, Texas, and grown in Texas were examined microscopically for bunt fungi. Fourteen completely bunted seeds of ‘Blackwell’ and four in ‘Alamo’ were detected in 100 g samples of each. Teliospores were globo...
USDA-ARS?s Scientific Manuscript database
The Regional Feedstock Partnership is a collaborative effort between the Sun Grant Initiative (through Land Grant Universities), the US Department of Energy, and the US Department of Agriculture. One segment of this partnership is the field-scale evaluation of switchgrass (Panicum virgatum L.) in di...
USDA-ARS?s Scientific Manuscript database
Switchgrass and corn are sometimes used as a resource for biofuel production. The effect of production management systems on water infiltration is very critical in claypan landscape to increase production as well as minimize economic and environmental risks. The objective of this study was to evalua...
USDA-ARS?s Scientific Manuscript database
This study attempted to test whether switchgrass aboveground net primary production (ANPP) responds to precipitation (PPT) changes in a double asymmetry pattern as framed by Knapp et al. (2016), and whether it is held true for other ecosystem processes such as soil respiration (SR). Data were colle...
Environmental sustainability of intercropping switchgrass in a loblolly pine forest
George Chescheir; Francois Birgand; Mohamed Youssef; Jami Nettles; Devendra Amatya
2016-01-01
A multi-institutional watershed study has been conducted since 2010 to quantify the environmental sustainability of planting switchgrass (Panicum virgatum L.) between wide rows of loblolly pine (Pinus taeda L.). The hypothesized advantage of this intercropping system is the production of biofuel feedstock to provide additional...
USDA-ARS?s Scientific Manuscript database
Schizaphis graminum (green bug; GB) and Sipha flava yellow sugarcane aphid; YSA) are two cereal aphid species with broad host ranges capable of establishing on sorghum (Sorghum bicolor) and several switchgrass (Panicum virgatum) cultivars. Switchgrass and sorghum are staple renewable bioenergy crops...
Paliza Shrestha; John R. Seiler; Brian D. Strahm; Eric B. Sucre; Zakiya H. Leggett
2015-01-01
This study is part of a larger collaborative effort to determine the overall environmental sustainability of intercropping pine (Pinus taeda L.) and switchgrass (Panicum virgatum L.), both of which are promising feedstock for bioenergy production in the Lower Coastal Plain in North Carolina.
Topsoil thickness effects on corn, soybean, and switchgrass production on claypan soils
USDA-ARS?s Scientific Manuscript database
Diminished topsoil thickness or depth to claypan (DTC) is a major cause of yield and profit depression in corn (Zea mays L.) and to a lesser extent in soybean (Glycine max [L.]) production on claypan soils. Perennial grasses such as switchgrass (Panicum virgatum L.) may be more resilient to reduced ...
Association of proteomics changes with Al-sensitive root zones in switchgrass
USDA-ARS?s Scientific Manuscript database
In this paper, we report on aluminum (Al)-induced root proteomic changes in switchgrass. After growth in a hydroponic culture system supplemented with 400 uM of Al, plants began to show signs of physiological stress such as a reduction in photosynthetic rate. At this time, the basal 2-cmlong root ti...
USDA-ARS?s Scientific Manuscript database
Chopped switchgrass (SG) and chopped bermudagrass (BG) were evaluated as alternatives to pine shavings (PS) for broiler litter over 3 flocks. Twenty-four pens were filled with the 3 litter types. Live performance parameters included mortality, BW, BW gain, feed consumption, and feed conversion. Mort...
Sundaram, Vijay; Muthukumarappan, Kasiviswanathan
2016-05-01
The effects of AFEX™ pretreatment, feedstock moisture content (5,10, and 15 % wb), particle size (screen sizes of 2, 4, and 8 mm), and extrusion temperature (75, 100, and 125 °C) on pellet bulk density, pellet hardness, and sugar recovery from corn stover, prairie cord grass, and switchgrass were investigated. Pellets were produced from untreated and AFEX™ pretreated feedstocks using a laboratory-scale extruder. AFEX™ pretreatment increased subsequent pellet bulk density from 453.0 to 650.6 kg m(-3) for corn stover from 463.2 to 680.1 kg m(-3) for prairie cord grass, and from 433.9 to 627.7 kg m(-3) for switchgrass. Maximum pellet hardness of 2342.8, 2424.3, and 1298.6 N was recorded for AFEX™ pretreated corn stover, prairie cord grass, and switchgrass, respectively. Glucose yields of AFEX™ corn stover pellets, prairie cord grass, and switchgrass pellets varied from 88.9 to 94.9 %, 90.1 to 94.9 %, and 87.0 to 92.9 %, respectively. Glucose and xylose yields of AFEX™ pellets were not affected by the extruder barrel temperature and the hammer mill screen size. The results obtained showed that low temperature and large particle size during the extrusion pelleting process can be employed for AFEX™-treated biomass without compromising sugar yields.
Soil physical and hydrological properties under three biofuel crops in Ohio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonin, Catherine; Lal, Dr. Rattan; Schmitz, Matthias
While biofuel crops are widely studied and compared for their energy and carbon footprints, less is known about their effects on other soil properties, particularly hydrologic characteristics. Soils under three biofuel crops, corn (Zea mays), switchgrass (Panicum virgatum), and willow (Salix spp.), were analyzed seven years after establishment to assess the effects on soil bulk density ({rho}{sub b}), penetration resistance (PR), water-holding capacity, and infiltration characteristics. The PR was the highest under corn, along with the lowest associated water content, while PR was 50-60% lower under switchgrass. In accordance with PR data, surface (0-10 cm) bulk density also tended tomore » be lower under switchgrass. Both water infiltration rates and cumulative infiltration amounts varied widely among and within the three crops. Because the Philip model did not fit the data, results were analyzed using the Kostiakov model instead. Switchgrass plots had an average cumulative infiltration of 69 cm over 3 hours with a constant infiltration rate of 0.28 cm min{sup -1}, compared with 37 cm and 0.11 cm min{sup -1} for corn, and 26 cm and 0.06 cm min{sup -1} for willow, respectively. Results suggest that significant changes in soil physical and hydrologic properties may require more time to develop. Soils under switchgrass may have lower surface bulk density, higher field water capacity, and a more rapid water infiltration rate than those under corn or willow.« less
Mbonimpa, Eric G.; Kumar, Sandeep; Owens, Vance N.; ...
2015-08-24
Switchgrass-derived ethanol has been proposed as an alternative to fossil fuels to improve sustainability of the US energy sector. In this study, life cycle analysis (LCA) was used to estimate the environmental benefits of this fuel. To better define the LCA environmental impacts associated with fertilization rates and farm-landscape topography, results from a controlled experiment were analyzed. Data from switchgrass plots planted in 2008, consistently managed with three nitrogen rates (0, 56, and 112 kg N ha –1), two landscape positions (shoulder and footslope), and harvested annually (starting in 2009, the year after planting) through 2014 were used as inputmore » into the Greenhouse gases, Regulated Emissions and Energy use in transportation (GREET) model. Simulations determined nitrogen (N) rate and landscape impacts on the life cycle energy and emissions from switchgrass ethanol used in a passenger car as ethanol–gasoline blends (10% ethanol:E10, 85% ethanol:E85s). Results indicated that E85s may lead to lower fossil fuels use (58 to 77%), greenhouse gas (GHG) emissions (33 to 82%), and particulate matter (PM2.5) emissions (15 to 54%) in comparison with gasoline. However, volatile organic compounds (VOCs) and other criteria pollutants such as nitrogen oxides (NOx), particulate matter (PM10), and sulfur dioxides (SO x) were higher for E85s than those from gasoline. Nitrogen rate above 56 kg N ha –1 yielded no increased biomass production benefits; but did increase (up to twofold) GHG, VOCs, and criteria pollutants. Lower blend (E10) results were closely similar to those from gasoline. The landscape topography also influenced life cycle impacts. Biomass grown at the footslope of fertilized plots led to higher switchgrass biomass yield, lower GHG, VOCs, and criteria pollutants in comparison with those at the shoulder position. Lastly, results also showed that replacing switchgrass before maximum stand life (10–20 years.) can further reduce the energy and emissions reduction benefits.« less
NASA Astrophysics Data System (ADS)
Chen, Y.; Ale, S.; Rajan, N.
2015-12-01
The semi-arid Texas High Plains (THP) region, where cotton (Gossypium hirsutum L.) is grown in vast acreage, has the potential to grow perennial bioenergy grasses. A change in land use from cotton cropping systems to perennial grasses such as Alamo switchgrass (Panicum virgatum L.) and Miscanthus giganteus (Miscanthus sinensis Anderss. [Poaceae]) can significantly affect regional hydrologic cycle and water quality. Assessing the impacts of this potential land use change on hydrology and water quality enables the environmental assessment of feasibility to grow perennial grasses in this region to meet the U.S. national bioenergy target of 2022. The Agricultural Policy/Environmental eXtender (APEX) model was used in this study to assess the impacts of replacing cotton with switchgrass and Miscanthus on water and nitrogen balances in the upstream subwatershed of the Double Mountain Fork Brazos watershed in the THP, which contains 52% cotton land use. The APEX model was initially calibrated against observed streamflow and crop yield data. Since observed data on nitrogen loads in streamflow was not available for this subwatershed, we calibrated the APEX model against the SWAT-simulated nitrogen loads at the outlet of this subwatershed, which were obtained in a parallel study. The calibrated APEX model was used to simulate the impacts of land use change from cotton to Miscanthus and switchgrass on surface and subsurface water and nitrogen balances. Preliminary results revealed that the average (1994-2009) annual surface runoff decreased by 84% and 66% under the irrigated and dryland switchgrass scenarios compared to the baseline scenarios. Average annual percolation increased by 106% and 57% under the irrigated and dryland switchgrass scenarios relative to the baseline scenarios. Preliminary results also indicated Miscanthus and switchgrass appeared to be superior to cotton in terms of better water conservation and water quality, and minimum crop management requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wuddineh, Wegi A.; Mazarei, Mitra; Zhang, Ji -Yi
High biomass production and wide adaptation has made switchgrass ( Panicum virgatum L.) an important candidate lignocellulosic bioenergy crop. One major limitation of this and other lignocellulosic feedstocks is the recalcitrance of complex carbohydrates to hydrolysis for conversion to biofuels. Lignin is the major contributor to recalcitrance as it limits the accessibility of cell wall carbohydrates to enzymatic breakdown into fermentable sugars. Therefore, genetic manipulation of the lignin biosynthesis pathway is one strategy to reduce recalcitrance. Here, we identified a switchgrass Knotted1 transcription factor, PvKN1, with the aim of genetically engineering switchgrass for reduced biomass recalcitrance for biofuel production. Genemore » expression of the endogenous PvKN1 gene was observed to be highest in young inflorescences and stems. Ectopic overexpression of PvKN1 in switchgrass altered growth, especially in early developmental stages. Transgenic lines had reduced expression of most lignin biosynthetic genes accompanied by a reduction in lignin content suggesting the involvement of PvKN1 in the broad regulation of the lignin biosynthesis pathway. Moreover, the reduced expression of the Gibberellin 20-oxidase (GA20ox) gene in tandem with the increased expression of Gibberellin 2-oxidase (GA2ox) genes in transgenic PvKN1 lines suggest that PvKN1 may exert regulatory effects via modulation of GA signaling. Furthermore, overexpression of PvKN1 altered the expression of cellulose and hemicellulose biosynthetic genes and increased sugar release efficiency in transgenic lines. Our findings demonstrated that switchgrass PvKN1 is a putative ortholog of maize KN1 that is linked to plant lignification and cell wall and development traits as a major regulatory gene. Therefore, targeted overexpression of PvKN1 in bioenergy feedstocks may provide one feasible strategy for reducing biomass recalcitrance and simultaneously improving plant growth characteristics.« less
Wuddineh, Wegi A.; Mazarei, Mitra; Zhang, Ji -Yi; ...
2016-04-28
High biomass production and wide adaptation has made switchgrass ( Panicum virgatum L.) an important candidate lignocellulosic bioenergy crop. One major limitation of this and other lignocellulosic feedstocks is the recalcitrance of complex carbohydrates to hydrolysis for conversion to biofuels. Lignin is the major contributor to recalcitrance as it limits the accessibility of cell wall carbohydrates to enzymatic breakdown into fermentable sugars. Therefore, genetic manipulation of the lignin biosynthesis pathway is one strategy to reduce recalcitrance. Here, we identified a switchgrass Knotted1 transcription factor, PvKN1, with the aim of genetically engineering switchgrass for reduced biomass recalcitrance for biofuel production. Genemore » expression of the endogenous PvKN1 gene was observed to be highest in young inflorescences and stems. Ectopic overexpression of PvKN1 in switchgrass altered growth, especially in early developmental stages. Transgenic lines had reduced expression of most lignin biosynthetic genes accompanied by a reduction in lignin content suggesting the involvement of PvKN1 in the broad regulation of the lignin biosynthesis pathway. Moreover, the reduced expression of the Gibberellin 20-oxidase (GA20ox) gene in tandem with the increased expression of Gibberellin 2-oxidase (GA2ox) genes in transgenic PvKN1 lines suggest that PvKN1 may exert regulatory effects via modulation of GA signaling. Furthermore, overexpression of PvKN1 altered the expression of cellulose and hemicellulose biosynthetic genes and increased sugar release efficiency in transgenic lines. Our findings demonstrated that switchgrass PvKN1 is a putative ortholog of maize KN1 that is linked to plant lignification and cell wall and development traits as a major regulatory gene. Therefore, targeted overexpression of PvKN1 in bioenergy feedstocks may provide one feasible strategy for reducing biomass recalcitrance and simultaneously improving plant growth characteristics.« less
Millwood, Reginald; Nageswara-Rao, Madhugiri; Ye, Rongjian; Terry-Emert, Ellie; Johnson, Chelsea R; Hanson, Micaha; Burris, Jason N; Kwit, Charles; Stewart, C Neal
2017-05-02
Switchgrass is C 4 perennial grass species that is being developed as a cellulosic bioenergy feedstock. It is wind-pollinated and considered to be an obligate outcrosser. Genetic engineering has been used to alter cell walls for more facile bioprocessing and biofuel yield. Gene flow from transgenic cultivars would likely be of regulatory concern. In this study we investigated pollen-mediated gene flow from transgenic to nontransgenic switchgrass in a 3-year field experiment performed in Oliver Springs, Tennessee, U.S.A. using a modified Nelder wheel design. The planted area (0.6 ha) contained sexually compatible pollen source and pollen receptor switchgrass plants. One hundred clonal switchgrass 'Alamo' plants transgenic for an orange-fluorescent protein (OFP) and hygromycin resistance were used as the pollen source; whole plants, including pollen, were orange-fluorescent. To assess pollen movement, pollen traps were placed at 10 m intervals from the pollen-source plot in the four cardinal directions extending to 20 m, 30 m, 30 m, and 100 m to the north, south, west, and east, respectively. To assess pollination rates, nontransgenic 'Alamo 2' switchgrass clones were planted in pairs adjacent to pollen traps. In the eastward direction there was a 98% decrease in OFP pollen grains from 10 to 100 m from the pollen-source plot (Poisson regression, F1,8 = 288.38, P < 0.0001). At the end of the second and third year, 1,820 F 1 seeds were collected from pollen recipient-plots of which 962 (52.9%) germinated and analyzed for their transgenic status. Transgenic progeny production detected in each pollen-recipient plot decreased with increased distance from the edge of the transgenic plot (Poisson regression, F1,15 = 12.98, P < 0.003). The frequency of transgenic progeny detected in the eastward plots (the direction of the prevailing wind) ranged from 79.2% at 10 m to 9.3% at 100 m. In these experiments we found transgenic pollen movement and hybridization rates to be inversely associated with distance. However, these data suggest pollen-mediated gene flow is likely to occur up to, at least, 100 m. This study gives baseline data useful to determine isolation distances and other management practices should transgenic switchgrass be grown commercially in relevant environments.
USDA-ARS?s Scientific Manuscript database
The resource efficiency of biofuel production via biomass pyrolysis is evaluated using exergy as an assessment metric. Three feedstocks, important to various sectors of US agriculture, switchgrass, forest residue and equine waste are considered for conversion to bio-oil (pyrolysis oil) via fast pyro...
Xingyan Huang; Cornelis F. De Hoop; Jiulong Xie; Chung-Yun Hse; Jinqiu Qi; Tingxing Hu
2017-01-01
Lignin samples fractionated from microwave liquefied switchgrass were applied in the preparation of semirigid polyurethane (PU) foams without purification.The objective of this study was to elucidate the influence of lignin in the PU matrix on themorphological, chemical, mechanical, and thermal properties of thePU foams.The scanning electron microscopy (SEM) images...
USDA-ARS?s Scientific Manuscript database
The complete genome sequence of a virus recently detected in switchgrass (Panicum virgatum) was determined and was found to be closely related to Maize rayado fino virus (MRFV), genus Marafivirus, family Tymoviridae. The genomic RNA is 6408 nucleotides long, excluding the poly (A) tail, and encodes...
Economic potential for switchgrass production in the U.S. Northern Plains: A minimum-data analysis
USDA-ARS?s Scientific Manuscript database
There is a demand for timely information to support policy decision making. There is also interest in the potential for alternative crops such as switchgrass to be used for ethanol production and which would have a positive impact on net greenhouse gas emission. This paper uses a new minimum-data mo...
Water quality effects of switchgrass intercropping on pine forest in Coastal North Carolina.
Augustine Muwamba; Devendra Amatya; George M Chescheir; Jamie Nettles; Timothy Appelboom; Herbert Ssegane; Ernest Tollner; Mohamed Youssef; Francois Birgand; R. Wayne Skaggs; Shiying Tian
2017-01-01
Interplanting a cellulosic bioenergy crop (switchgrass, Panicum virgatum L.) between loblolly pine (Pinus taeda L.) rows could potentially provide a sustainable source of bio-feedstock without competing for land currently in food production. The objectives of this study were to: (1) quantify the concentrations and loads of drainage water nitrogen (N) and phosphorus (...
Proteomic responses of switchgrass and prairie cordgrass to senescence
USDA-ARS?s Scientific Manuscript database
Senescence in biofuel grasses is a critical issue because early senescence decreases potential biomass production by limiting aerial growth and development. 2-Dimensional,differential in-gel electrophoresis (2D-DIGE) followed by mass spectrometry of selected protein spots was used to evaluate differ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serate, Jose; Xie, Dan; Pohlmann, Edward
Microbial conversion of lignocellulosic feedstocks into biofuels remains an attractive means to produce sustainable energy. It is essential to produce lignocellulosic hydrolysates in a consistent manner in order to study microbial performance in different feedstock hydrolysates. Because of the potential to introduce microbial contamination from the untreated biomass or at various points during the process, it can be difficult to control sterility during hydrolysate production. In this study, we compared hydrolysates produced from AFEX-pretreated corn stover and switchgrass using two different methods to control contamination: either by autoclaving the pretreated feedstocks prior to enzymatic hydrolysis, or by introducing antibiotics duringmore » the hydrolysis of non-autoclaved feedstocks. We then performed extensive chemical analysis, chemical genomics, and comparative fermentations to evaluate any differences between these two different methods used for producing corn stover and switchgrass hydrolysates. Autoclaving the pretreated feedstocks could eliminate the contamination for a variety of feedstocks, whereas the antibiotic gentamicin was unable to control contamination consistently during hydrolysis. Compared to the addition of gentamicin, autoclaving of biomass before hydrolysis had a minimal effect on mineral concentrations, and showed no significant effect on the two major sugars (glucose and xylose) found in these hydrolysates. However, autoclaving elevated the concentration of some furanic and phenolic compounds. Chemical genomics analyses using Saccharomyces cerevisiae strains indicated a high correlation between the AFEX-pretreated hydrolysates produced using these two methods within the same feedstock, indicating minimal differences between the autoclaving and antibiotic methods. Comparative fermentations with S. cerevisiae and Zymomonas mobilis also showed that autoclaving the AFEX-pretreated feedstocks had no significant effects on microbial performance in these hydrolysates. In conclusion, our results showed that autoclaving the pretreated feedstocks offered advantages over the addition of antibiotics for hydrolysate production. The autoclaving method produced a more consistent quality of hydrolysate.« less
Serate, Jose; Xie, Dan; Pohlmann, Edward; ...
2015-11-14
Microbial conversion of lignocellulosic feedstocks into biofuels remains an attractive means to produce sustainable energy. It is essential to produce lignocellulosic hydrolysates in a consistent manner in order to study microbial performance in different feedstock hydrolysates. Because of the potential to introduce microbial contamination from the untreated biomass or at various points during the process, it can be difficult to control sterility during hydrolysate production. In this study, we compared hydrolysates produced from AFEX-pretreated corn stover and switchgrass using two different methods to control contamination: either by autoclaving the pretreated feedstocks prior to enzymatic hydrolysis, or by introducing antibiotics duringmore » the hydrolysis of non-autoclaved feedstocks. We then performed extensive chemical analysis, chemical genomics, and comparative fermentations to evaluate any differences between these two different methods used for producing corn stover and switchgrass hydrolysates. Autoclaving the pretreated feedstocks could eliminate the contamination for a variety of feedstocks, whereas the antibiotic gentamicin was unable to control contamination consistently during hydrolysis. Compared to the addition of gentamicin, autoclaving of biomass before hydrolysis had a minimal effect on mineral concentrations, and showed no significant effect on the two major sugars (glucose and xylose) found in these hydrolysates. However, autoclaving elevated the concentration of some furanic and phenolic compounds. Chemical genomics analyses using Saccharomyces cerevisiae strains indicated a high correlation between the AFEX-pretreated hydrolysates produced using these two methods within the same feedstock, indicating minimal differences between the autoclaving and antibiotic methods. Comparative fermentations with S. cerevisiae and Zymomonas mobilis also showed that autoclaving the AFEX-pretreated feedstocks had no significant effects on microbial performance in these hydrolysates. In conclusion, our results showed that autoclaving the pretreated feedstocks offered advantages over the addition of antibiotics for hydrolysate production. The autoclaving method produced a more consistent quality of hydrolysate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, Tanmoy; Papa, Gabriella; Wang, Eileen
Delignification as a function of ionic liquid (IL) pretreatment has potential in terms of recovering and converting the fractionated lignin streams to renewable products. Renewable biogenic ionic liquids, or bionic liquids (eg. cholinium lysinate, ([Ch][Lys])), provide opportunities in terms of effective, economic and sustainable lignocellulosic biomass pretreatment. We have evaluated [Ch][Lys] pretreatment in terms of sugar and lignin yields for three different feedstocks: switchgrass, eucalyptus, and pine. Four lignin streams isolated during [Ch][Lys] pretreatment and enzymatic hydrolysis were comprehensively analyzed, tracking their changes in physical-chemical structures. We observed changes in major lignin linkages and lignin aromatics units (p-hydroxyphenyl (H), guaiacylmore » (G), and syringil (S)) that occurred during pretreatment. A compositional analysis of the different process streams and a comprehensive mass balance in conjunction with multiple analytical techniques (Nuclear Magnetic Resonance (NMR), Mass Spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), Gel Permeation Chromatography (GPC)) is presented. Qualitative and quantitative analyses indicates that there are significantly more lignin-carbohydrate interactions for G-rich lignin in pine. The lignin removal and extent of lignin depolymerization for switchgrass and eucalyptus were higher than pine, and follows the order of switchgrass > eucalyptus > pine. The recovered lignin from pretreated liquid contained a lower relative amount of carbohydrate signals than raw biomass, indicating a high degree of dissociation of lignin carbohydrate complex (LCC) linkages for all samples analyzed. The insights gained from this work contribute to better understanding of physiochemical properties of lignin streams generated during [Ch][Lys] pretreatment, offering a starting point for lignin valorization strategies.« less
Farm-level feasibility of bioenergy depends on variations across multiple sectors
NASA Astrophysics Data System (ADS)
Myhre, Mitchell; Barford, Carol
2013-03-01
The potential supply of bioenergy from farm-grown biomass is uncertain due to several poorly understood or volatile factors, including land availability, yield variability, and energy prices. Although biomass production for liquid fuel has received more attention, here we present a case study of biomass production for renewable heat and power in the state of Wisconsin (US), where heating constitutes at least 30% of total energy demand. Using three bioenergy systems (50 kW, 8.8 MW and 50 MW) and Wisconsin farm-level data, we determined the net farm income effect of producing switchgrass (Panicum virgatum) as a feedstock, either for on-farm use (50 kW system) or for sale to an off-farm energy system operator (8.8 and 50 MW systems). In southern counties, where switchgrass yields approach 10 Mg ha-1 yr-1, the main determinants of economic feasibility were the available land area per farm, the ability to utilize bioheat, and opportunity cost assumptions. Switchgrass yield temporal variability was less important. For the state median farm size and switchgrass yield, at least 25% (50 kW system) or 50% (8.8 MW system) bioheat utilization was required to economically offset propane or natural gas heat, respectively, and purchased electricity. Offsetting electricity only (50 MW system) did not generate enough revenue to meet switchgrass production expenses. Although the opportunity cost of small-scale (50 kW) on-farm bioenergy generation was higher, it also held greater opportunity for increasing farm net income, especially by replacing propane-based heat.
Baxter, Holly L.; Poovaiah, Charleson R.; Yee, Kelsey L.; ...
2015-01-07
High biomass yields and minimal agronomic input requirements have made switchgrass, Panicum virgatum L., a leading candidate lignocellulosic bioenergy crop. Large-scale lignocellulosic biofuel production from such crops is limited by the difficulty to deconstruct cell walls into fermentable sugars: the recalcitrance problem. In this study, we assessed the field performance of switchgrass plants overexpressing the switchgrass MYB 4 ( PvMYB4) transcription factor gene. PvMYB 4 transgenic switchgrass can have great lignin reduction, which commensurately increases sugar release and biofuel production. Our results over two growing seasons showed that one transgenic event (out of eight) had important gains in both biofuelmore » (32% more) and biomass (63% more) at the end of the second growing season relative to non-transgenic controls. These gains represent a doubling of biofuel production per hectare, which is the highest gain reported from any field-grown modified feedstock. In contrast to this transgenic event, which had relatively low ectopic overexpression of the transgene, five of the eight transgenic events planted did not survive the first field winter. The dead plants were all high-overexpressing events that performed well in the earlier greenhouse studies. Disease susceptibility was not compromised in any transgenic events over the field experiments. These results demonstrate the power of modifying the expression of an endogenous transcription factor to improve biofuel and biomass simultaneously, and also highlight the importance of field studies for "sorting" transgenic events. In conclusion, further research is needed to develop strategies for fine-tuning temporal-spatial transgene expression in feedstocks to optimize desired phenotypes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Holly L.; Poovaiah, Charleson R.; Yee, Kelsey L.
High biomass yields and minimal agronomic input requirements have made switchgrass, Panicum virgatum L., a leading candidate lignocellulosic bioenergy crop. Large-scale lignocellulosic biofuel production from such crops is limited by the difficulty to deconstruct cell walls into fermentable sugars: the recalcitrance problem. In this study, we assessed the field performance of switchgrass plants overexpressing the switchgrass MYB 4 ( PvMYB4) transcription factor gene. PvMYB 4 transgenic switchgrass can have great lignin reduction, which commensurately increases sugar release and biofuel production. Our results over two growing seasons showed that one transgenic event (out of eight) had important gains in both biofuelmore » (32% more) and biomass (63% more) at the end of the second growing season relative to non-transgenic controls. These gains represent a doubling of biofuel production per hectare, which is the highest gain reported from any field-grown modified feedstock. In contrast to this transgenic event, which had relatively low ectopic overexpression of the transgene, five of the eight transgenic events planted did not survive the first field winter. The dead plants were all high-overexpressing events that performed well in the earlier greenhouse studies. Disease susceptibility was not compromised in any transgenic events over the field experiments. These results demonstrate the power of modifying the expression of an endogenous transcription factor to improve biofuel and biomass simultaneously, and also highlight the importance of field studies for "sorting" transgenic events. In conclusion, further research is needed to develop strategies for fine-tuning temporal-spatial transgene expression in feedstocks to optimize desired phenotypes.« less
Soil nitrogen dynamics in switchgrass seeded to a marginally yielding cropland of South Dakota
USDA-ARS?s Scientific Manuscript database
Soil nitrate (NO3-), nitrate leaching, and nitrous oxide (N2O) emissions for 2009 through 2015 were monitored to explore N dynamics in switchgrass (Panicum virgatum L.) seeded to a marginally yielding cropland. Our findings indicated that N rate impacted soil NO3- (0-5 cm depth) and soil surface N2O...
Devendra Amatya; G.M. Chescheir; J.E. Nettles
2016-01-01
Preliminary results indicate that switchgrass (Panicum virgatum L.), grown as a cellulosic biofuel between managed loblolly pine (Pinus taeda L.) beds on the Atlantic Coastal Plain forests has no significant effect on shallow ground water table and stream outflows. Although management operations (e.g. harvesting, shearing between pine rows, raking, and bedding)...
USDA-ARS?s Scientific Manuscript database
Acetone butanol ethanol (ABE or AB, or solvent) was produced from hydrolyzed corn stover and switchgrass using Clostridium beijerinckii P260. A control experiment using glucose resulted in the production of 21.06 gL**-1 total ABE. In this experiment, an AB yield and productivity of 0.41 and 0.31 g...
Research and Technology Development for Genetic Improvement of Switchgrass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kausch, Albert; Rhodes, Richard
This research adds to the understanding of switchgrass genetics and the increasing of biomass relevant to production of bioenergy. Switchgrass, Panicum virgatum L., and its related species are well known as potential bioenergy crops since the early 1990s. There are global economic, political, US national security and environmental pressures to increase renewable biofuel production and utilization to offset gasoline and diesel fuel use and climate change, especially in the liquid fuel transportation sector. To realize the potential of bioenergy crops, rapid genetic improvement of the most promising perennial grass feedstocks, such as switchgrass, are anticipated by current genomics, association genetics,more » marker assisted breeding, hybrid plant development, advanced tissue culture, conventional genetics and other approaches to increase yield, processability, and regional adaptation. The technical effectiveness and economic feasibility of the methods or techniques investigated are demonstrated by several publications, presentations and patents produced as an outcome and deliverable of this research. This project is of a broad benefit to the public not only through the dissemination of this information but also to the development of new methods which will be applied to future bioenergy crop improvement as well as other crops.« less
Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass.
Gladden, John M; Allgaier, Martin; Miller, Christopher S; Hazen, Terry C; VanderGheynst, Jean S; Hugenholtz, Philip; Simmons, Blake A; Singer, Steven W
2011-08-15
Industrial-scale biofuel production requires robust enzymatic cocktails to produce fermentable sugars from lignocellulosic biomass. Thermophilic bacterial consortia are a potential source of cellulases and hemicellulases adapted to harsher reaction conditions than commercial fungal enzymes. Compost-derived microbial consortia were adapted to switchgrass at 60°C to develop thermophilic biomass-degrading consortia for detailed studies. Microbial community analysis using small-subunit rRNA gene amplicon pyrosequencing and short-read metagenomic sequencing demonstrated that thermophilic adaptation to switchgrass resulted in low-diversity bacterial consortia with a high abundance of bacteria related to thermophilic paenibacilli, Rhodothermus marinus, and Thermus thermophilus. At lower abundance, thermophilic Chloroflexi and an uncultivated lineage of the Gemmatimonadetes phylum were observed. Supernatants isolated from these consortia had high levels of xylanase and endoglucanase activities. Compared to commercial enzyme preparations, the endoglucanase enzymes had a higher thermotolerance and were more stable in the presence of 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), an ionic liquid used for biomass pretreatment. The supernatants were used to saccharify [C2mim][OAc]-pretreated switchgrass at elevated temperatures (up to 80°C), demonstrating that these consortia are an excellent source of enzymes for the development of enzymatic cocktails tailored to more extreme reaction conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parish, Esther S.; Dale, Virginia H.; English, Burton C.
This paper connects the science of sustainability theory with applied aspects of sustainability deployment. A suite of 35 sustainability indicators spanning six environmental, three economic, and three social categories has been proposed for comparing the sustainability of bioenergy production systems across different feedstock types and locations. A recent demonstration-scale switchgrass-to-ethanol production system located in East Tennessee is used to assess the availability of sustainability indicator data and associated measurements for the feedstock production and logistics portions of the biofuel supply chain. Knowledge pertaining to the available indicators is distributed within a hierarchical decision tree framework to generate an assessment ofmore » the overall sustainability of this no-till switchgrass production system relative to two alternative business-as-usual scenarios of unmanaged pasture and tilled corn production. The relative contributions of the social, economic and environmental information are determined for the overall trajectory of this bioenergy system s sustainability under each scenario. Within this East Tennessee context, switchgrass production shows potential for improving environmental and social sustainability trajectories without adverse economic impacts, thereby leading to potential for overall enhancement in sustainability within this local agricultural system. Given the early stages of cellulosic ethanol production, it is currently difficult to determine quantitative values for all 35 sustainability indicators across the entire biofuel supply chain. This case study demonstrates that integration of qualitative sustainability indicator ratings may increase holistic understanding of a bioenergy system in the absence of complete information.« less
Land-use legacies regulate decomposition dynamics following bioenergy crop conversion
Kallenbach, Cynthia M.; Stuart Grandy, A.
2014-07-14
Land-use conversion into bioenergy crop production can alter litter decomposition processes tightly coupled to soil carbon and nutrient dynamics. Yet, litter decomposition has been poorly described in bioenergy production systems, especially following land-use conversion. Predicting decomposition dynamics in postconversion bioenergy production systems is challenging because of the combined influence of land-use legacies with current management and litter quality. To evaluate how land-use legacies interact with current bioenergy crop management to influence litter decomposition in different litter types, we conducted a landscape-scale litterbag decomposition experiment. We proposed land-use legacies regulate decomposition, but their effects are weakened under higher quality litter andmore » when current land use intensifies ecosystem disturbance relative to prior land use. We compared sites left in historical land uses of either agriculture (AG) or Conservation Reserve Program grassland (CRP) to those that were converted to corn or switchgrass bioenergy crop production. Enzyme activities, mass loss, microbial biomass, and changes in litter chemistry were monitored in corn stover and switchgrass litter over 485 days, accompanied by similar soil measurements. Across all measured variables, legacy had the strongest effect (P < 0.05) relative to litter type and current management, where CRP sites maintained higher soil and litter enzyme activities and microbial biomass relative to AG sites. Decomposition responses to conversion depended on legacy but also current management and litter type. Within the CRP sites, conversion into corn increased litter enzymes, microbial biomass, and litter protein and lipid abundances, especially on decomposing corn litter, relative to nonconverted CRP. However, conversion into switchgrass from CRP, a moderate disturbance, often had no effect on switchgrass litter decomposition parameters. Thus, legacies shape the direction and magnitude of decomposition responses to bioenergy crop conversion and therefore should be considered a key influence on litter and soil C cycling under bioenergy crop management.« less
Targeted mutagenesis in tetraploid switchgrass (Panicum virgatum L.) using CRISPR/Cas9.
Liu, Yang; Merrick, Paul; Zhang, Zhengzhi; Ji, Chonghui; Yang, Bing; Fei, Shui-Zhang
2018-02-01
The CRISPR/Cas9 system has become a powerful tool for targeted mutagenesis. Switchgrass (Panicum virgatum L.) is a high yielding perennial grass species that has been designated as a model biomass crop by the U.S. Department of Energy. The self-infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9/sgRNA complex resulting in its restored function. Agrobacterium-mediated stable transformation of embryogenic calli derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of teosinte branched 1(tb1)a and b and phosphoglycerate mutase (PGM). With a single construct containing two sgRNAs targeting different regions of tb1a and tb1b genes, primary transformants (T0) containing CRISPR/Cas9-induced mutations were obtained at frequencies of 95.5% (tb1a) and 11% (tb1b), respectively, with T0 mutants exhibiting increased tiller production. Meanwhile, a mutation frequency of 13.7% was obtained for the PGM gene with a CRISPR/Cas9 construct containing a single sgRNA. Among the PGM T0 mutants, six are heterozygous and one is homozygous for a 1-bp deletion in the target region with no apparent phenotypical alterations. We show that CRISPR/Cas9 system can generate targeted mutagenesis effectively and obtain targeted homozygous mutants in T0 generation in switchgrass, circumventing the need of inbreeding. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Deficiency of cellulase activity measurements for enzyme evaluation.
Pryor, Scott W; Nahar, Nurun
2010-11-01
Switchgrass was used as a model feedstock to determine the influence of pretreatment conditions and biomass quality on enzymatic hydrolysis using different enzyme products. Dilute sulfuric acid and soaking in aqueous ammonia pretreatments were used to produce biomass with varied levels of hemicellulose and lignin sheathing. Pretreated switchgrass solids were tested with simple enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) with three commercial enzyme products: Accellerase 1000 (Genencor), Spezyme CP (Genencor)/Novozyme 188 (Novozymes), and Celluclast/Novozyme 188 (Novozymes). Enzymes were loaded on a common activity basis (FPU/g cellulose and CBU/g cellulose). Despite identical enzyme loadings, glucose yields were significantly different for both acid and alkaline pretreatments but differences diminished as hydrolysis progressed for acid-pretreated biomass. Cellobiose concentrations in Accellerase treatments indicated an initial beta-glucosidase limitation that became less significant over time. SSF experiments showed that differences in glucose and ethanol yields could not be attributed to enzyme product inhibition. Yield discrepancies of glucose or ethanol in acid pretreatment, alkaline pretreatment, and acid pretreatment/SSF were as much as 15%, 19%, and 5%. These results indicate that standardized protocols for measuring enzyme activity may not be adequate for assessing activity using pretreated biomass substrates.
Clay, Sharon A; Krack, Kaitlynn K; Bruggeman, Stephanie A; Papiernik, Sharon; Schumacher, Thomas E
2016-08-02
Biochar, a by-product of pyrolysis made from a wide array of plant biomass when producing biofuels, is a proposed soil amendment to improve soil health. This study measured herbicide sorption and efficacy when soils were treated with low (1% w/w) or high (10% w/w) amounts of biochar manufactured from different feedstocks [maize (Zea mays) stover, switchgrass (Panicum vigatum), and ponderosa pine (Pinus ponderosa)], and treated with different post-processing techniques. Twenty-four hour batch equilibration measured sorption of (14)C-labelled atrazine or 2,4-D to two soil types with and without biochar amendments. Herbicide efficacy was measured with and without biochar using speed of seed germination tests of sensitive species. Biochar amended soils sorbed more herbicide than untreated soils, with major differences due to biochar application rate but minor differences due to biochar type or post-process handling technique. Biochar presence increased the speed of seed germination compared with herbicide alone addition. These data indicate that biochar addition to soil can increase herbicide sorption and reduce efficacy. Evaluation for site-specific biochar applications may be warranted to obtain maximal benefits without compromising other agronomic practices.
Grow them and we will come for the feast
USDA-ARS?s Scientific Manuscript database
Perennial grasses such as switchgrass are likely to become dedicated biomass crops. However, there is limited knowledge on the types of insect pests that could pose a problem if these grasses are cultivated on a large-scale. Recent reports suggest that different classes of insect have the ability ...
A multivalent three-point linkage analysis model of autotetraploids
USDA-ARS?s Scientific Manuscript database
A cytogenetic study was conducted on a dihaploid individual (2n'='2X'='18) of switchgrass to establish a chromosome karyotype. Size differences, condensation patterns, and arm-length ratios were used as identifying features and fluorescence in-situ hybridization (FISH) assigned 5S and 45S rDNA loci...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garten, Jr, C. T.; Smith, Jeffery L.; Tyler, Donald D.
2010-02-15
Switchgrass is a potential bioenergy crop that could promote soil C sequestration in some environments. We compared four cultivars on a well-drained Alfisol to test for differences in biomass, C, and N dynamics during the fourth growing season. There was no difference (P > 0.05) among cultivars and no significant cultivar x time interaction in analyses of dry mass, C stocks, or N stocks in aboveground biomass and surface litter. At the end of the growing season, mean (±SE) aboveground biomass was 2.1±0.13 kg m-2, and surface litter dry mass was approximately 50% of aboveground biomass. Prior to harvest, themore » live root:shoot biomass ratio was 0.76. There was no difference (P > 0.05) among cultivars for total biomass, C, and N stocks belowground. Total belowground biomass (90-cm soil depth) as well as coarse (greater than or equal to 1 mm diameter) and fine (< 1 mm diameter) live root biomass increased from April to October. Dead roots were less than 7% of live root biomass to a depth of 90 cm. Net production of total belowground biomass (505 ±132 g m-2) occurred in the last half of the growing season. The increase in total live belowground biomass (426 ±139 g m-2) was more or less evenly divided among rhizomes, coarse, and fine roots. The N budget for annual switchgrass production was closely balanced with 6.3 g N m-2 removed by harvest of aboveground biomass and 6.7 g N m-2 supplied by fertilization. At the location of our study in west Tennessee, intra-annual changes in biomass, C, and N stocks belowground were of greater importance to crop management for C sequestration than were differences among cultivars.« less
Extended light exposure increases stem digestibility and biomass production of switchgrass
Zhao, Chunqiao; Hou, Xincun; Zhu, Yi; Yue, Yuesen; Wu, Juying
2017-01-01
Switchgrass is a photoperiod-sensitive energy grass suitable for growing in the marginal lands of China. We explored the effects of extended photoperiods of low-irradiance light (7 μmol·m-2·s-1, no effective photosynthesis) on the growth, the biomass dry weight, the biomass allocation, and, especially, the stem digestibility and cell wall characteristics of switchgrass. Two extended photoperiods (i.e., 18 and 24 h) were applied over Alamo. Extended light exposure (18 and 24 h) resulted in delayed heading and higher dry weights of vegetative organs (by 32.87 and 35.94%, respectively) at the expense of reducing the amount of sexual organs (by 40.05 and 50.87%, respectively). Compared to the control group (i.e., natural photoperiod), the yield of hexoses (% dry matter) in the stems after a direct enzymatic hydrolysis (DEH) treatment significantly increased (by 44.02 and 46.10%) for those groups irradiated during 18 and 24 h, respectively. Moreover, the yield of hexoses obtained via enzymatic hydrolysis increased after both basic (1% NaOH) and acid (1% H2SO4) pretreatments for the groups irradiated during 18 and 24 h. Additionally, low-irradiance light extension (LILE) significantly increased the content of non-structural carbohydrates (NSCs) while notably reducing the lignin content and the syringyl to guaiacyl (S/G) ratio. These structural changes were in part responsible for the observed improved stem digestibility. Remarkably, LILE significantly decreased the cellulose crystallinity index (CrI) of switchgrass by significantly increasing both the arabinose substitution degree in xylan and the content of ammonium oxalate-extractable uronic acids, both favoring cellulose digestibility. Despite this LILE technology is not applied to the cultivation of switchgrass on a large scale yet, we believe that the present work is important in that it reveals important relationships between extended day length irradiations and biomass production and quality. Additionally, this study paves the way for improving biomass production and digestibility via genetic modification of day length sensitive transcription factors or key structural genes in switchgrass leaves. PMID:29166649
Extended light exposure increases stem digestibility and biomass production of switchgrass.
Zhao, Chunqiao; Fan, Xifeng; Hou, Xincun; Zhu, Yi; Yue, Yuesen; Wu, Juying
2017-01-01
Switchgrass is a photoperiod-sensitive energy grass suitable for growing in the marginal lands of China. We explored the effects of extended photoperiods of low-irradiance light (7 μmol·m-2·s-1, no effective photosynthesis) on the growth, the biomass dry weight, the biomass allocation, and, especially, the stem digestibility and cell wall characteristics of switchgrass. Two extended photoperiods (i.e., 18 and 24 h) were applied over Alamo. Extended light exposure (18 and 24 h) resulted in delayed heading and higher dry weights of vegetative organs (by 32.87 and 35.94%, respectively) at the expense of reducing the amount of sexual organs (by 40.05 and 50.87%, respectively). Compared to the control group (i.e., natural photoperiod), the yield of hexoses (% dry matter) in the stems after a direct enzymatic hydrolysis (DEH) treatment significantly increased (by 44.02 and 46.10%) for those groups irradiated during 18 and 24 h, respectively. Moreover, the yield of hexoses obtained via enzymatic hydrolysis increased after both basic (1% NaOH) and acid (1% H2SO4) pretreatments for the groups irradiated during 18 and 24 h. Additionally, low-irradiance light extension (LILE) significantly increased the content of non-structural carbohydrates (NSCs) while notably reducing the lignin content and the syringyl to guaiacyl (S/G) ratio. These structural changes were in part responsible for the observed improved stem digestibility. Remarkably, LILE significantly decreased the cellulose crystallinity index (CrI) of switchgrass by significantly increasing both the arabinose substitution degree in xylan and the content of ammonium oxalate-extractable uronic acids, both favoring cellulose digestibility. Despite this LILE technology is not applied to the cultivation of switchgrass on a large scale yet, we believe that the present work is important in that it reveals important relationships between extended day length irradiations and biomass production and quality. Additionally, this study paves the way for improving biomass production and digestibility via genetic modification of day length sensitive transcription factors or key structural genes in switchgrass leaves.
Investigation of enzyme formulation on pretreated switchgrass.
Falls, Matthew; Shi, Jian; Ebrik, Mirvat A; Redmond, Tim; Yang, Bin; Wyman, Charles E; Garlock, Rebecca; Balan, Venkatesh; Dale, Bruce E; Pallapolu, V Ramesh; Lee, Y Y; Kim, Youngmi; Mosier, Nathan S; Ladisch, Michael R; Hames, Bonnie; Thomas, Steve; Donohoe, Bryon S; Vinzant, Todd B; Elander, Richard T; Warner, Ryan E; Sierra-Ramirez, Rocio; Holtzapple, Mark T
2011-12-01
This work studied the benefits of adding different enzyme cocktails (cellulase, xylanase, β-glucosidase) to pretreated switchgrass. Pretreatment methods included ammonia fiber expansion (AFEX), dilute-acid (DA), liquid hot water (LHW), lime, lime+ball-milling, soaking in aqueous ammonia (SAA), and sulfur dioxide (SO(2)). The compositions of the pretreated materials were analyzed and showed a strong correlation between initial xylan composition and the benefits of xylanase addition. Adding xylanase dramatically improved xylan yields for SAA (+8.4%) and AFEX (+6.3%), and showed negligible improvement (0-2%) for the pretreatments with low xylan content (dilute-acid, SO(2)). Xylanase addition also improved overall yields with lime+ball-milling and SO(2) achieving the highest overall yields from pretreated biomass (98.3% and 93.2%, respectively). Lime+ball-milling obtained an enzymatic yield of 92.3kg of sugar digested/kg of protein loaded. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Chaowei; Reddy, Amitha P.; Simmons, Christopher W.
Microbial communities enriched from diverse environments have shown considerable promise for the targeted discovery of microorganisms and enzymes for bioconversion of lignocellulose to liquid fuels. While preservation of microbial communities is important for commercialization and research, few studies have examined storage conditions ideal for preservation. The goal of this study was to evaluate the impact of preservation method on composition of microbial communities enriched on switchgrass before and after storage. The enrichments were completed in a high-solid and aerobic environment at 55 °C. Community composition was examined for each enrichment to determine when a stable community was achieved. Preservation methodsmore » included cryopreservation with the cryoprotective agents DMSO and glycerol, and cryopreservation without cryoprotective agents. Revived communities were examined for their ability to decompose switchgrass under high-solid and thermophilic conditions. High-throughput 16S rRNA gene sequencing of DNA extracted from enrichment samples showed that the majority of the shift in composition of the switchgrass-degrading community occurred during the initial three 2-week enrichments. Shifts in community structure upon storage occurred in all cryopreserved samples. Storage in liquid nitrogen in the absence of cryoprotectant resulted in variable preservation of dominant microorganisms in enriched samples. Cryopreservation with either DMSO or glycerol provided consistent and equivalent preservation of dominant organisms. In conclusion, a stable switchgrass-degrading microbial community was achieved after three 2-week enrichments. Dominant microorganisms were preserved equally well with DMSO and glycerol. DMSO-preserved communities required more incubation time upon revival to achieve pre-storage activity levels during high-solid thermophilic cultivation on switchgrass. Despite shifts in the community with storage, the samples were active upon revival under thermophilic and high-solid conditions. The results suggest that the presence of microorganisms may be more important than their relative abundance in retaining an active microbial community.« less
Awoyemi, Olushola M; Dzantor, E Kudjo
2017-10-01
Increasing support for the use of Coal fly ash (CFA) in agriculture has necessitated a better understanding of the effects of the CFA in various cropping schemes. Experiments were conducted to assess mutagenic response of a mutant strain of Salmonella enterica serovar Typhimurium (TA100) to varying concentrations of CFA-water extracts, determine oxidative stress in switchgrass (Panicum virgatum L.) at varying levels of CFA-soil admixtures, and evaluate mycorrhiza-mediated modulation of oxidative stress responses of CFA-grown switchgrass. The TA100 exposed to 0%, 5%, 10%, 15%, 20% and 25% (w/v) CFA-water extracts elicited significant (p < 0.05) mutagenic responses at 20% and 25% extract levels but not below the 15% level. In greenhouse pot experiment, CFA-soil admixtures at 7.5% and 15% (w/w) significantly (p < 0.05) decreased the activities of superoxide dismutase (SOD) by 19.1% and 28.3% respectively, compared to control soil (0% w/w CFA/soil). Under the same conditions, activities of glutathione peroxidase (GPx) decreased by 75.9% and 66.9%. In contrast to the antioxidant enzyme activities, levels of malondialdehyde (MDA) an indicator of lipid peroxidation increased significantly (p < 0.05) by 30.49% and 38.38%. Inoculation of 7.5% and 15% CFA-soil admixtures with arbuscular mycorrhizal fungi (AMF), Rhizophaga clarus enhanced the activities of both SOD and GPx in the switchgrass, while it significantly (p < 0.05) reduced the levels of MDA. The study demonstrated that incorporation of CFA (at concentrations considered to be non-mutagenic against TA100) as soil amendment produced concentration-dependent oxidative stress responses in switchgrass; however, inoculation of the CFA-soil admixtures with AMF significantly modulated the oxidative stress responses. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iisa, Kristiina
2016-04-06
NREL will work with Participant as a subtier partner under DE-FOA-0000240 titled "Co-Production of Power, Fuels, and Chemicals via Coal/Biomass Mixtures." The goal of the project is to determine the gasification characteristics of switchgrass and lignite mixtures and develop kinetic models. NREL will utilize a pressurized thermogravimetric analyzer to measure the reactivity of chars generated in a pressurized entrained-flow reactor at Participant's facilities and to determine the evolution of gaseous species during pyrolysis of switchgrass-lignite mixtures. Mass spectrometry and Fourier-transform infrared analysis will be used to identify and quantify the gaseous species. The results of the project will aid inmore » defining key reactive properties of mixed coal biomass fuels.« less
Yang, Sung-Jae; Kataeva, Irina; Hamilton-Brehm, Scott D.; Engle, Nancy L.; Tschaplinski, Timothy J.; Doeppke, Crissa; Davis, Mark; Westpheling, Janet; Adams, Michael W. W.
2009-01-01
Very few cultivated microorganisms can degrade lignocellulosic biomass without chemical pretreatment. We show here that “Anaerocellum thermophilum” DSM 6725, an anaerobic bacterium that grows optimally at 75°C, efficiently utilizes various types of untreated plant biomass, as well as crystalline cellulose and xylan. These include hardwoods such as poplar, low-lignin grasses such as napier and Bermuda grasses, and high-lignin grasses such as switchgrass. The organism did not utilize only the soluble fraction of the untreated biomass, since insoluble plant biomass (as well as cellulose and xylan) obtained after washing at 75°C for 18 h also served as a growth substrate. The predominant end products from all growth substrates were hydrogen, acetate, and lactate. Glucose and cellobiose (on crystalline cellulose) and xylose and xylobiose (on xylan) also accumulated in the growth media during growth on the defined substrates but not during growth on the plant biomass. A. thermophilum DSM 6725 grew well on first- and second-spent biomass derived from poplar and switchgrass, where spent biomass is defined as the insoluble growth substrate recovered after the organism has reached late stationary phase. No evidence was found for the direct attachment of A. thermophilum DSM 6725 to the plant biomass. This organism differs from the closely related strain A. thermophilum Z-1320 in its ability to grow on xylose and pectin. Caldicellulosiruptor saccharolyticus DSM 8903 (optimum growth temperature, 70°C), a close relative of A. thermophilum DSM 6725, grew well on switchgrass but not on poplar, indicating a significant difference in the biomass-degrading abilities of these two otherwise very similar organisms. PMID:19465524
Rao, Xiaolan; Lu, Nan; Li, Guifen; Nakashima, Jin; Tang, Yuhong; Dixon, Richard A.
2016-01-01
Almost all C4 plants require the co-ordination of the adjacent and fully differentiated cell types, mesophyll (M) and bundle sheath (BS). The C4 photosynthetic pathway operates through two distinct subtypes based on how malate is decarboxylated in BS cells; through NAD-malic enzyme (NAD-ME) or NADP-malic enzyme (NADP-ME). The diverse or unique cell-specific molecular features of M and BS cells from separate C4 subtypes of independent lineages remain to be determined. We here provide an M/BS cell type-specific transcriptome data set from the monocot NAD-ME subtype switchgrass (Panicum virgatum). A comparative transcriptomics approach was then applied to compare the M/BS mRNA profiles of switchgrass, monocot NADP-ME subtype C4 plants maize and Setaria viridis, and dicot NAD-ME subtype Cleome gynandra. We evaluated the convergence in the transcript abundance of core components in C4 photosynthesis and transcription factors to establish Kranz anatomy, as well as gene distribution of biological functions, in these four independent C4 lineages. We also estimated the divergence between NAD-ME and NADP-ME subtypes of C4 photosynthesis in the two cell types within C4 species, including differences in genes encoding decarboxylating enzymes, aminotransferases, and metabolite transporters, and differences in the cell-specific functional enrichment of RNA regulation and protein biogenesis/homeostasis. We suggest that C4 plants of independent lineages in both monocots and dicots underwent convergent evolution to establish C4 photosynthesis, while distinct C4 subtypes also underwent divergent processes for the optimization of M and BS cell co-ordination. The comprehensive data sets in our study provide a basis for further research on evolution of C4 species. PMID:26896851
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Sung-Jae; Kataeva, Irina; Hamilton-Brehm, Scott
2009-01-01
Very few cultivated microorganisms can degrade lignocellulosic biomass without chemical pretreatment. We show here that 'Anaerocellum thermophilum' DSM 6725, an anaerobic bacterium that grows optimally at 75 C, efficiently utilizes various types of untreated plant biomass, as well as crystalline cellulose and xylan. These include hardwoods such as poplar, low-lignin grasses such as napier and Bermuda grasses, and high-lignin grasses such as switchgrass. The organism did not utilize only the soluble fraction of the untreated biomass, since insoluble plant biomass (as well as cellulose and xylan) obtained after washing at 75 C for 18 h also served as a growthmore » substrate. The predominant end products from all growth substrates were hydrogen, acetate, and lactate. Glucose and cellobiose (on crystalline cellulose) and xylose and xylobiose (on xylan) also accumulated in the growth media during growth on the defined substrates but not during growth on the plant biomass. A. thermophilum DSM 6725 grew well on first- and second-spent biomass derived from poplar and switchgrass, where spent biomass is defined as the insoluble growth substrate recovered after the organism has reached late stationary phase. No evidence was found for the direct attachment of A. thermophilum DSM 6725 to the plant biomass. This organism differs from the closely related strain A. thermophilum Z-1320 in its ability to grow on xylose and pectin. Caldicellulosiruptor saccharolyticus DSM 8903 (optimum growth temperature, 70 C), a close relative of A. thermophilum DSM 6725, grew well on switchgrass but not on poplar, indicating a significant difference in the biomass-degrading abilities of these two otherwise very similar organisms.« less
Jeke, Nicholson N; Hassan, Adenike O; Zvomuya, Francis
2017-03-04
Land spreading of biosolids as a disposal option is expensive and can disperse pathogens and contaminants in the environment. This growth room study examined phytoremediation using switchgrass (Panicum virgatum L.) and cattail (Typha latifolia L.) as an alternative to land spreading of biosolids. Seedlings were transplanted into pots containing 3.9 kg of biosolids (dry wt.). Aboveground biomass (AGB) was harvested either once or twice during each 90-day growth period. Switchgrass AGB yield was greater with two harvests than with one harvest during the first 90-day growth period, whereas cattail yield was not affected by harvest frequency. In the second growth period, harvesting frequency did not affect the yield of either plant species. However, repeated harvesting significantly improved nitrogen (N) and phosphorus (P) uptake by both plants in the first period. Phytoextraction of P was significantly greater for switchgrass (3.9% of initial biosolids P content) than for cattail (2.8%), while plant species did not have a significant effect on N phytoextraction. The trace element accumulation in the AGB of both plant species was negligible. Phytoextraction rates attained in this study suggest that phytoremediation can effectively remove P from biosolids and offers a potentially viable alternative to the disposal of biosolids on agricultural land.
Wang, Hui; Srinivasan, Radhakrishnan; Yu, Fei; Steele, Philip; Li, Qi; Mitchell, Brian; Samala, Aditya
2012-05-01
Bio-oil produced from biomass by fast pyrolysis has the potential to be a valuable substitute for fossil fuels. In a recent work on pinewood, we found that pretreatment alters the structure and chemical composition of biomass, which influence fast pyrolysis. In this study, we evaluated dilute acid, steam explosion, and size reduction pretreatments on sweetgum, switchgrass, and corn stover feedstocks. Bio-oils were produced from untreated and pretreated feedstocks in an auger reactor at 450 °C. The bio-oil's physical properties of pH, water content, acid value, density, and viscosity were measured. The chemical characteristics of the bio-oils were determined by gas chromatography-mass spectrometry. The results showed that bio-oil yield and composition were influenced by the pretreatment method and feedstock type. Bio-oil yields of 52, 33, and 35 wt% were obtained from medium-sized (0.68-1.532 mm) untreated sweetgum, switchgrass, and corn stover, respectively, which were higher than the yields from other sizes. Bio-oil yields of 56, 46, and 51 wt% were obtained from 1% H(2)SO(4)-treated medium-sized sweetgum, switchgrass, and corn stover, respectively, which were higher than the yields from untreated and steam explosion treatments.
NASA Astrophysics Data System (ADS)
Bhattarai, Nishan; Wagle, Pradeep; Gowda, Prasanna H.; Kakani, Vijaya G.
2017-11-01
The ability of remote sensing-based surface energy balance (SEB) models to track water stress in rain-fed switchgrass (Panicum virgatum L.) has not been explored yet. In this paper, the theoretical framework of crop water stress index (CWSI; 0 = extremely wet or no water stress condition and 1 = extremely dry or no transpiration) was utilized to estimate CWSI in rain-fed switchgrass using Landsat-derived evapotranspiration (ET) from five remote sensing based single-source SEB models, namely Surface Energy Balance Algorithm for Land (SEBAL), Mapping ET with Internalized Calibration (METRIC), Surface Energy Balance System (SEBS), Simplified Surface Energy Balance Index (S-SEBI), and Operational Simplified Surface Energy Balance (SSEBop). CWSI estimates from the five SEB models and a simple regression model that used normalized difference vegetation index (NDVI), near-surface temperature difference, and measured soil moisture (SM) as covariates were compared with those derived from eddy covariance measured ET (CWSIEC) for the 32 Landsat image acquisition dates during the 2011 (dry) and 2013 (wet) growing seasons. Results indicate that most SEB models can predict CWSI reasonably well. For example, the root mean square error (RMSE) ranged from 0.14 (SEBAL) to 0.29 (SSEBop) and the coefficient of determination (R2) ranged from 0.25 (SSEBop) to 0.72 (SEBAL), justifying the added complexity in CWSI modeling as compared to results from the simple regression model (R2 = 0.55, RMSE = 0.16). All SEB models underestimated CWSI in the dry year but the estimates from SEBAL and S-SEBI were within 7% of the mean CWSIEC and explained over 60% of variations in CWSIEC. In the wet year, S-SEBI mostly overestimated CWSI (around 28%), while estimates from METRIC, SEBAL, SEBS, and SSEBop were within 8% of the mean CWSIEC. Overall, SEBAL was the most robust model under all conditions followed by METRIC, whose performance was slightly worse and better than SEBAL in dry and wet years, respectively. Underestimation of CWSI under extremely dry soil conditions and the substantial role of SM in the regression model suggest that integration of SM in SEB models could improve their performances under dry conditions. These insights will provide useful guidance on the broader applicability of SEB models for mapping water stresses in switchgrass under varying geographical and meteorological conditions.
Vulnerability of crops and native grasses to summer drying in the U.S. Southern Great Plains
USDA-ARS?s Scientific Manuscript database
The Southern Great Plains are characterized by a fine-scale mixture of different land cover types, predominantly winter-wheat and pasture lands, with relatively small areas of other crops, native prairie, and switchgrass. Recent droughts and predictions of increased drought (especially during the s...
USDA-ARS?s Scientific Manuscript database
As crop and non-crop lands are increasingly becoming converted to biofuel feedstock production, it is of interest to identify potential impacts of annual and perennial feedstocks on soil ecosystem services. Soil samples obtained from 6 regional sets of switchgrass (Panicum virgatum L.) and 3 regiona...
Pallapolu, Venkata Ramesh; Lee, Y Y; Garlock, Rebecca J; Balan, Venkatesh; Dale, Bruce E; Kim, Youngmi; Mosier, Nathan S; Ladisch, Michael R; Falls, Matthew; Holtzapple, Mark T; Sierra-Ramirez, Rocio; Shi, Jian; Ebrik, Mirvat A; Redmond, Tim; Yang, Bin; Wyman, Charles E; Donohoe, Bryon S; Vinzant, Todd B; Elander, Richard T; Hames, Bonnie; Thomas, Steve; Warner, Ryan E
2011-12-01
The objective of this work is to investigate the effects of cellulase loading and β-glucosidase supplementation on enzymatic hydrolysis of pretreated Dacotah switchgrass. To assess the difference among various pretreatment methods, the profiles of sugars and intermediates were determined for differently treated substrates. For all pretreatments, 72 h glucan/xylan digestibilities increased sharply with enzyme loading up to 25mg protein/g-glucan, after which the response varied depending on the pretreatment method. For a fixed level of enzyme loading, dilute sulfuric acid (DA), SO(2), and Lime pretreatments exhibited higher digestibility than the soaking in aqueous ammonia (SAA) and ammonia fiber expansion (AFEX). Supplementation of Novozyme-188 to Spezyme-CP improved the 72 h glucan digestibility only for the SAA treated samples. The effect of β-glucosidase supplementation was discernible only at the early phase of hydrolysis where accumulation of cellobiose and oligomers is significant. Addition of β-glucosidase increased the xylan digestibility of alkaline treated samples due to the β-xylosidase activity present in Novozyme-188. Copyright © 2011 Elsevier Ltd. All rights reserved.
Impacts of variability in cellulosic biomass yields on energy security.
Mullins, Kimberley A; Matthews, H Scott; Griffin, W Michael; Anex, Robert
2014-07-01
The practice of modeling biomass yields on the basis of deterministic point values aggregated over space and time obscures important risks associated with large-scale biofuel use, particularly risks related to drought-induced yield reductions that may become increasingly frequent under a changing climate. Using switchgrass as a case study, this work quantifies the variability in expected yields over time and space through switchgrass growth modeling under historical and simulated future weather. The predicted switchgrass yields across the United States range from about 12 to 19 Mg/ha, and the 80% confidence intervals range from 20 to 60% of the mean. Average yields are predicted to decrease with increased temperatures and weather variability induced by climate change. Feedstock yield variability needs to be a central part of modeling to ensure that policy makers acknowledge risks to energy supplies and develop strategies or contingency plans that mitigate those risks.
Parish, Esther S.; Dale, Virginia H.; English, Burton C.; ...
2016-02-26
This paper connects the science of sustainability theory with applied aspects of sustainability deployment. A suite of 35 sustainability indicators spanning six environmental, three economic, and three social categories has been proposed for comparing the sustainability of bioenergy production systems across different feedstock types and locations. A recent demonstration-scale switchgrass-to-ethanol production system located in East Tennessee is used to assess the availability of sustainability indicator data and associated measurements for the feedstock production and logistics portions of the biofuel supply chain. Knowledge pertaining to the available indicators is distributed within a hierarchical decision tree framework to generate an assessment ofmore » the overall sustainability of this no-till switchgrass production system relative to two alternative business-as-usual scenarios of unmanaged pasture and tilled corn production. The relative contributions of the social, economic and environmental information are determined for the overall trajectory of this bioenergy system s sustainability under each scenario. Within this East Tennessee context, switchgrass production shows potential for improving environmental and social sustainability trajectories without adverse economic impacts, thereby leading to potential for overall enhancement in sustainability within this local agricultural system. Given the early stages of cellulosic ethanol production, it is currently difficult to determine quantitative values for all 35 sustainability indicators across the entire biofuel supply chain. This case study demonstrates that integration of qualitative sustainability indicator ratings may increase holistic understanding of a bioenergy system in the absence of complete information.« less
Ahn, H K; Smith, M C; Kondrad, S L; White, J W
2010-02-01
Anaerobic digestion is a biological method used to convert organic wastes into a stable product for land application with reduced environmental impacts. The biogas produced can be used as an alternative renewable energy source. Dry anaerobic digestion [>15% total solid (TS)] has an advantage over wet digestion (<10% TS) because it allows for the use of a smaller volume of reactor and because it reduces wastewater production. In addition, it produces a fertilizer that is easier to transport. Performance of anaerobic digestion of animal manure-switchgrass mixture was evaluated under dry (15% TS) and thermophilic conditions (55 degrees C). Three different mixtures of animal manure (swine, poultry, and dairy) and switchgrass were digested using batch-operated 1-L reactors. The swine manure test units showed 52.9% volatile solids (VS) removal during the 62-day trial, while dairy and poultry manure test units showed 9.3% and 20.2%, respectively. Over the 62 day digestion, the swine manure test units yielded the highest amount of methane 0.337 L CH4/g VS, while the dairy and poultry manure test units showed very poor methane yield 0.028 L CH4/g VS and 0.002 L CH4/g VS, respectively. Although dairy and poultry manure performed poorly, they may still have high potential as biomass for dry anaerobic digestion if appropriate designs are developed to prevent significant volatile fatty acid (VFA) accumulation and pH drop.
USDA-ARS?s Scientific Manuscript database
NE Trailblazer C-1 (GP-101, PI 672015), NE Trailblazer C0 (GP-100, PI 672014), NE Trailblazer C2 (GP-102, PI 672016), NE Trailblazer C3 (GP-103, PI 672017), NE Trailblazer C4 (GP-104, PI 672018), and NE Trailblazer C5 (GP-105, PI 672019) switchgrass (Panicum virgatum L.) germplasms were released by ...
Life cycle assessment of switchgrass- and corn stover-derived ethanol-fueled automobiles.
Spatari, Sabrina; Zhang, Yimin; MacLean, Heather L
2005-12-15
Utilizing domestically produced cellulose-derived ethanol for the light-duty vehicle fleet can potentially improve the environmental performance and sustainability of the transport and energy sectors of the economy. A life cycle assessment model was developed to examine environmental implications of the production and use of ethanol in automobiles in Ontario, Canada. The results were compared to those of low-sulfur reformulated gasoline (RFG) in a functionally equivalent automobile. Two time frames were evaluated, one near-term (2010), which examines converting a dedicated energy crop (switchgrass) and an agricultural residue (corn stover) to ethanol; and one midterm (2020), which assumes technological improvements in the switchgrass-derived ethanol life cycle. Near-term results show that, compared to a RFG automobile, life cycle greenhouse gas (GHG) emissions are 57% lower for an E85-fueled automobile derived from switchgrass and 65% lower for ethanol from corn stover, on a grams of CO2 equivalent per kilometer basis. Corn stover ethanol exhibits slightly lower life cycle GHG emissions, primarily due to sharing emissions with grain production. Through projected improvements in crop and ethanol yields, results for the mid-term scenario show that GHG emissions could be 25-35% lower than those in 2010 and that, even with anticipated improvements in RFG automobiles, E85 automobiles could still achieve up to 70% lower GHG emissions across the life cycle.
Hui, Dafeng; Yu, Chih-Li; Deng, Qi; Dzantor, E Kudjo; Zhou, Suping; Dennis, Sam; Sauve, Roger; Johnson, Terrance L; Fay, Philip A; Shen, Weijun; Luo, Yiqi
2018-01-01
Climate changes, including chronic changes in precipitation amounts, will influence plant physiology and growth. However, such precipitation effects on switchgrass, a major bioenergy crop, have not been well investigated. We conducted a two-year precipitation simulation experiment using large pots (95 L) in an environmentally controlled greenhouse in Nashville, TN. Five precipitation treatments (ambient precipitation, and -50%, -33%, +33%, and +50% of ambient) were applied in a randomized complete block design with lowland "Alamo" switchgrass plants one year after they were established from tillers. The growing season progression of leaf physiology, tiller number, height, and aboveground biomass were determined each growing season. Precipitation treatments significantly affected leaf physiology, growth, and aboveground biomass. The photosynthetic rates in the wet (+50% and +33%) treatments were significantly enhanced by 15.9% and 8.1%, respectively, than the ambient treatment. Both leaf biomass and plant height were largely increased, resulting in dramatically increases in aboveground biomass by 56.5% and 49.6% in the +50% and +33% treatments, respectively. Compared to the ambient treatment, the drought (-33% and -50%) treatments did not influence leaf physiology, but the -50% treatment significantly reduced leaf biomass by 37.8%, plant height by 16.3%, and aboveground biomass by 38.9%. This study demonstrated that while switchgrass in general is a drought tolerant grass, severe drought significantly reduces Alamo's growth and biomass, and that high precipitation stimulates its photosynthesis and growth.
NASA Astrophysics Data System (ADS)
Dale, V. H.; Parish, E. S.
2016-12-01
Using perennial grasses to produce ethanol can enhance progress toward sustainability. A suite of 35 environmental and socioeconomic sustainability indicators was considered in a holistic sustainability assessment of a five-year switchgrass-to-ethanol production experiment centered on a demonstration-scale biorefinery in Vonore, Tennessee. By combining field measurements, literature review and expert opinion, the team was able to rate 28 of the 35 recommended sustainability indicators. The team combined these ratings within a multi-attribute decision support system tool and used this information to compare the sustainability of producing 2118 hectares of no-till switchgrass relative to two alternative business-as-usual scenarios of unmanaged pasture and tilled corn production. The results suggest that East Tennessee switchgrass production improves environmental quality overall and can be beneficial to the counties surrounding the biorefinery in terms of dollars earned and jobs created. The timing of switchgrass production also provides an opportunity to use inactive equipment and laborers. By incorporating a landscape design approach, the opportunities, constraints and most reasonable paths forward for growing bioenergy feedstock in specific context can be assessed in a way that adapts and improves local practices. Lessons learned from this case study are being incorporated into sustainability assessments of corn stover in Iowa and a variety of bioenergy feedstocks in diverse settings. The overall goal is to develop sound management practices that can address the multiple and sometimes competing demands of stakeholders.
USDA-ARS?s Scientific Manuscript database
Iron modified HZSM-5 catalysts were prepared by partial ion exchange of NH4ZSM-5 with Fe (II) at three different loadings (1.4, 2.8 and 4.2 wt%), and their effectiveness for producing aromatic hydrocarbons from cellulose, cellobiose, lignin and switchgrass by catalytic pyrolysis were screened using ...
Water Use and Quality Footprints of Biofuel Crops in Florida
NASA Astrophysics Data System (ADS)
Shukla, S.; Hendricks, G.; Helsel, Z.; Knowles, J.
2013-12-01
The use of biofuel crops for future energy needs will require considerable amounts of water inputs. Favorable growing conditions for large scale biofuel production exist in the sub-tropical environment of South Florida. However, large-scale land use change associated with biofuel crops is likely to affect the quantity and quality of water within the region. South Florida's surface and ground water resources are already stressed by current allocations. Limited data exists to allocate water for growing the energy crops as well as evaluate the accompanying hydrologic and water quality impacts of large-scale land use changes. A three-year study was conducted to evaluate the water supply and quality impacts of three energy crops: sugarcane, switchgrass, and sweet sorghum (with a winter crop). Six lysimeters were used to collect the data needed to quantify crop evapotranspiration (ETc), and nitrogen (N) and phosphorus (P) levels in groundwater and discharge (drainage and runoff). Each lysimeter (4.85 x 3.65 x 1.35 m) was equipped to measure water input, output, and storage. The irrigation, runoff, and drainage volumes were measured using flow meters. Groundwater samples were collected bi-weekly and drainage/runoff sampling was event based; samples were analyzed for nitrogen (N) and phosphorous (P) species. Data collected over the three years revealed that the average annual ETc was highest for sugarcane (1464 mm) followed by switchgrass and sweet sorghum. Sweet sorghum had the highest total N (TN) concentration (7.6 mg/L) in groundwater and TN load (36 kg/ha) in discharge. However, sweet sorghum had the lowest total P (TP) concentration (1.2 mg/L) in groundwater and TP load (9 kg/ha) in discharge. Water use footprint for ethanol (liter of water used per liter of ethanol produced) was lowest for sugarcane and highest for switchgrass. Switchgrass had the highest P-load footprint for ethanol. No differences were observed for the TN load footprint for ethanol. This is the first study to quantify water use and nutrient load footprint based on measurements in the southeast and perhaps the USA, and will be useful for selecting suitable biofuel crops in Florida and elsewhere with similar environment.
NASA Astrophysics Data System (ADS)
Fischer, M.; Noormets, A.; Domec, J. C.; Rosa, R.; Williamson, J.; Boone, J.; Sucre, E.; Trnka, M.; King, J.
2015-12-01
Intercropping bioenergy grasses within traditional pine silvicultural systems provides an opportunity for economic diversification and regional bioenergy production in a way that complements existing land use systems. Bioenergy intercropping in pine plantations does not compete with food production for land and it is thought will increase ecosystem resource-use efficiencies. As the frequency and intensity of drought is expected to increase with the changing climate, maximizing water use-efficiency of intercropped bioenergy systems will become increasingly important for long-term economic and environmental sustainability. The presented study is focused on evapotranspiration (ET) of an experimental pine-switchgrass intercropping system in the Lower Coastal Plain of North Carolina. We measured ET of two pure switchgrass fields, two pure pine stands and two pine-switchgrass intercropping systems using combined surface renewal (SR) and energy balance (EB) method throughout 2015. SR is based on high-frequency measurement of air temperature at or above canopy. As previously demonstrated, temperature time series are associated with identifiable, repeated patterns called "turbulent coherent structures". These coherent structures are considered to be responsible for most of the turbulent transport. Statistical analysis of the coherent structures in temperature time series allows quantification of sensible heat flux density (H) from the investigated area. Information about H can be combined with measurement of net radiation and soil heat flux density to indirectly obtain ET estimates as a residual of the energy balance equation. Despite the recent progress in the SR method, there is no standard methodology and each method available includes assumptions which require more research. To validate our SR estimates of ET, we used an eddy covariance (EC) system placed temporarily next to the each SR station as a comparative measurement of H. The conference contribution will include: i) evaluation of SR method compared to EC; ii) comparison of different SR calculation procedures including application of various thermocouples sizes and measurement heights; iii) quantification of ET of the three investigated ecosystems; iv) analysis of ET diurnal and seasonal variation with respect to weather conditions.
Yu, Chaowei; Reddy, Amitha P; Simmons, Christopher W; Simmons, Blake A; Singer, Steven W; VanderGheynst, Jean S
2015-01-01
Microbial communities enriched from diverse environments have shown considerable promise for the targeted discovery of microorganisms and enzymes for bioconversion of lignocellulose to liquid fuels. While preservation of microbial communities is important for commercialization and research, few studies have examined storage conditions ideal for preservation. The goal of this study was to evaluate the impact of preservation method on composition of microbial communities enriched on switchgrass before and after storage. The enrichments were completed in a high-solid and aerobic environment at 55 °C. Community composition was examined for each enrichment to determine when a stable community was achieved. Preservation methods included cryopreservation with the cryoprotective agents DMSO and glycerol, and cryopreservation without cryoprotective agents. Revived communities were examined for their ability to decompose switchgrass under high-solid and thermophilic conditions. High-throughput 16S rRNA gene sequencing of DNA extracted from enrichment samples showed that the majority of the shift in composition of the switchgrass-degrading community occurred during the initial three 2-week enrichments. Shifts in community structure upon storage occurred in all cryopreserved samples. Storage in liquid nitrogen in the absence of cryoprotectant resulted in variable preservation of dominant microorganisms in enriched samples. Cryopreservation with either DMSO or glycerol provided consistent and equivalent preservation of dominant organisms. A stable switchgrass-degrading microbial community was achieved after three 2-week enrichments. Dominant microorganisms were preserved equally well with DMSO and glycerol. DMSO-preserved communities required more incubation time upon revival to achieve pre-storage activity levels during high-solid thermophilic cultivation on switchgrass. Despite shifts in the community with storage, the samples were active upon revival under thermophilic and high-solid conditions. The results suggest that the presence of microorganisms may be more important than their relative abundance in retaining an active microbial community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mbonimpa, Eric G.; Kumar, Sandeep; Owens, Vance N.
Switchgrass-derived ethanol has been proposed as an alternative to fossil fuels to improve sustainability of the US energy sector. In this study, life cycle analysis (LCA) was used to estimate the environmental benefits of this fuel. To better define the LCA environmental impacts associated with fertilization rates and farm-landscape topography, results from a controlled experiment were analyzed. Data from switchgrass plots planted in 2008, consistently managed with three nitrogen rates (0, 56, and 112 kg N ha –1), two landscape positions (shoulder and footslope), and harvested annually (starting in 2009, the year after planting) through 2014 were used as inputmore » into the Greenhouse gases, Regulated Emissions and Energy use in transportation (GREET) model. Simulations determined nitrogen (N) rate and landscape impacts on the life cycle energy and emissions from switchgrass ethanol used in a passenger car as ethanol–gasoline blends (10% ethanol:E10, 85% ethanol:E85s). Results indicated that E85s may lead to lower fossil fuels use (58 to 77%), greenhouse gas (GHG) emissions (33 to 82%), and particulate matter (PM2.5) emissions (15 to 54%) in comparison with gasoline. However, volatile organic compounds (VOCs) and other criteria pollutants such as nitrogen oxides (NOx), particulate matter (PM10), and sulfur dioxides (SO x) were higher for E85s than those from gasoline. Nitrogen rate above 56 kg N ha –1 yielded no increased biomass production benefits; but did increase (up to twofold) GHG, VOCs, and criteria pollutants. Lower blend (E10) results were closely similar to those from gasoline. The landscape topography also influenced life cycle impacts. Biomass grown at the footslope of fertilized plots led to higher switchgrass biomass yield, lower GHG, VOCs, and criteria pollutants in comparison with those at the shoulder position. Lastly, results also showed that replacing switchgrass before maximum stand life (10–20 years.) can further reduce the energy and emissions reduction benefits.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Daehwan; Cha, Minseok; Snyder, Elise N.
In this paper, we report that the C. bescii genome does not encode an acetaldehyde/alcohol dehydrogenase or an acetaldehyde dehydrogenase and no ethanol production is detected in this strain. The recent introduction of an NADH-dependent AdhE from C. thermocellum (Fig. 1a) in an ldh mutant of this strain resulted in production of ethanol from un-pretreated switchgrass, but the thermolability of the C. thermocellum AdhE at the optimum growth temperature of C. bescii (78 °C) meant that ethanol was not produced above 65 °C. The adhB and adhE genes from Thermoanaerobacter pseudethanolicus 39E, an anaerobic thermophile that produces ethanol as amore » major fermentation product at 70 °C, were cloned and expressed in an ldh deletion mutant of C. bescii. The engineered strains produced ethanol at 75 °C, near the ethanol boiling point. The AdhB expressing strain produced ethanol (1.4 mM on Avicel, 0.4 mM on switchgrass) as well as acetate (13.0 mM on Avicel, 15.7 mM on switchgrass). The AdhE expressing strain produced more ethanol (2.3 mM on Avicel, 1.6 mM on switchgrass) and reduced levels of acetate (12.3 mM on Avicel, 15.1 mM on switchgrass). These engineered strains produce cellulosic ethanol at the highest temperature of any microorganism to date. In addition, the addition of 40 mM MOPS to the growth medium increased the maximal growth yield of C. bescii by approximately twofold. In conclusion, the utilization of thermostable enzymes will be critical to achieving high temperature CBP in bacteria such as C. bescii. The ability to produce ethanol at 75 °C, near its boiling point, raises the possibility that process optimization could allow in situ product removal of this end product to mitigate ethanol toxicity.« less
Chung, Daehwan; Cha, Minseok; Snyder, Elise N.; ...
2015-10-06
In this paper, we report that the C. bescii genome does not encode an acetaldehyde/alcohol dehydrogenase or an acetaldehyde dehydrogenase and no ethanol production is detected in this strain. The recent introduction of an NADH-dependent AdhE from C. thermocellum (Fig. 1a) in an ldh mutant of this strain resulted in production of ethanol from un-pretreated switchgrass, but the thermolability of the C. thermocellum AdhE at the optimum growth temperature of C. bescii (78 °C) meant that ethanol was not produced above 65 °C. The adhB and adhE genes from Thermoanaerobacter pseudethanolicus 39E, an anaerobic thermophile that produces ethanol as amore » major fermentation product at 70 °C, were cloned and expressed in an ldh deletion mutant of C. bescii. The engineered strains produced ethanol at 75 °C, near the ethanol boiling point. The AdhB expressing strain produced ethanol (1.4 mM on Avicel, 0.4 mM on switchgrass) as well as acetate (13.0 mM on Avicel, 15.7 mM on switchgrass). The AdhE expressing strain produced more ethanol (2.3 mM on Avicel, 1.6 mM on switchgrass) and reduced levels of acetate (12.3 mM on Avicel, 15.1 mM on switchgrass). These engineered strains produce cellulosic ethanol at the highest temperature of any microorganism to date. In addition, the addition of 40 mM MOPS to the growth medium increased the maximal growth yield of C. bescii by approximately twofold. In conclusion, the utilization of thermostable enzymes will be critical to achieving high temperature CBP in bacteria such as C. bescii. The ability to produce ethanol at 75 °C, near its boiling point, raises the possibility that process optimization could allow in situ product removal of this end product to mitigate ethanol toxicity.« less
Yu, Chaowei; Reddy, Amitha P.; Simmons, Christopher W.; ...
2015-12-02
Microbial communities enriched from diverse environments have shown considerable promise for the targeted discovery of microorganisms and enzymes for bioconversion of lignocellulose to liquid fuels. While preservation of microbial communities is important for commercialization and research, few studies have examined storage conditions ideal for preservation. The goal of this study was to evaluate the impact of preservation method on composition of microbial communities enriched on switchgrass before and after storage. The enrichments were completed in a high-solid and aerobic environment at 55 °C. Community composition was examined for each enrichment to determine when a stable community was achieved. Preservation methodsmore » included cryopreservation with the cryoprotective agents DMSO and glycerol, and cryopreservation without cryoprotective agents. Revived communities were examined for their ability to decompose switchgrass under high-solid and thermophilic conditions. High-throughput 16S rRNA gene sequencing of DNA extracted from enrichment samples showed that the majority of the shift in composition of the switchgrass-degrading community occurred during the initial three 2-week enrichments. Shifts in community structure upon storage occurred in all cryopreserved samples. Storage in liquid nitrogen in the absence of cryoprotectant resulted in variable preservation of dominant microorganisms in enriched samples. Cryopreservation with either DMSO or glycerol provided consistent and equivalent preservation of dominant organisms. In conclusion, a stable switchgrass-degrading microbial community was achieved after three 2-week enrichments. Dominant microorganisms were preserved equally well with DMSO and glycerol. DMSO-preserved communities required more incubation time upon revival to achieve pre-storage activity levels during high-solid thermophilic cultivation on switchgrass. Despite shifts in the community with storage, the samples were active upon revival under thermophilic and high-solid conditions. The results suggest that the presence of microorganisms may be more important than their relative abundance in retaining an active microbial community.« less
Switchgrass ubiquitin promoter (PVUBI2) and uses thereof
Stewart, C. Neal; Mann, David George James
2013-12-10
The subject application provides polynucleotides, compositions thereof and methods for regulating gene expression in a plant. Polynucleotides disclosed herein comprise novel sequences for a promoter isolated from Panicum virgatum (switchgrass) that initiates transcription of an operably linked nucleotide sequence. Thus, various embodiments of the invention comprise the nucleotide sequence of SEQ ID NO: 2 or fragments thereof comprising nucleotides 1 to 692 of SEQ ID NO: 2 that are capable of driving the expression of an operably linked nucleic acid sequence.
Breakdown of cell wall nanostructure in dilute acid pretreated biomass.
Pingali, Sai Venkatesh; Urban, Volker S; Heller, William T; McGaughey, Joseph; O'Neill, Hugh; Foston, Marcus; Myles, Dean A; Ragauskas, Arthur; Evans, Barbara R
2010-09-13
The generation of bioethanol from lignocellulosic biomass holds great promise for renewable and clean energy production. A better understanding of the complex mechanisms of lignocellulose breakdown during various pretreatment methods is needed to realize this potential in a cost and energy efficient way. Here we use small-angle neutron scattering (SANS) to characterize morphological changes in switchgrass lignocellulose across molecular to submicrometer length scales resulting from the industrially relevant dilute acid pretreatment method. Our results demonstrate that dilute acid pretreatment increases the cross-sectional radius of the crystalline cellulose fibril. This change is accompanied by removal of hemicellulose and the formation of R(g) ∼ 135 A lignin aggregates. The structural signature of smooth cell wall surfaces is observed at length scales larger than 1000 A, and it remains remarkably invariable during pretreatment. This study elucidates the interplay of the different biomolecular components in the breakdown process of switchgrass by dilute acid pretreatment. The results are important for the development of efficient strategies of biomass to biofuel conversion.
Economic feasibility analysis of conventional and dedicated energy crop production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, R.G.; Langemeier, M.R.; Krehbiel, L.R.
Economic feasibilities (net return per acre) associated with conventional agricultural crop production versus that of dedicated bioenergy crop (herbaceous energy crops) were investigated for northeastern Kansas. Conventional agricultural crops examined were corn, soybeans, wheat, sorghum and alfalfa and dedicated herbaceous energy crops included big bluestem/indiangrass, switchgrass, eastern gamagrass, brome, fescue and cane hay. Costs, prices and government program information from public and private sources were used to project the net return per acre over a six-year period beginning in 1997. Three soil productivity levels (low, average and high), which had a direct effect on the net return per acre, weremore » used to model differences in expected yield. In all three soil productivity cases, big bluestem/indiangrass, switchgrass and brome hay provided a higher net return per acre versus conventional crops grown on both program and non-program acres. Eastern gamagrass, fescue hay and cane hay had returns that were similar or less than returns provided by conventional crops.« less
NASA Astrophysics Data System (ADS)
von Haden, A.; Marin-Spiotta, E.; Jackson, R. D.; Kucharik, C. J.
2016-12-01
A high proportion of carbon lost from terrestrial ecosystems occurs via soil CO2 respiration. Soil respiration is comprised of two contrasting sources: heterotrophic respiration (RH) from the decomposition of organic matter and autotrophic respiration (RA) from plant root metabolism. Since the two sources of soil respiration vary widely in their origin, the controls of each source are also likely to differ. However, the challenge of partitioning soil respiration sources in situ has limited our mechanistic understanding of RH and RA. Our objective was to evaluate the in situ diurnal controls of RH and RA in maize (Zea mays L.) and switchgrass (Panicum virgatum L.) bioenergy cropping systems. We hypothesized that both RH and RA would follow diurnal soil temperature trends, but that RA would also respond to diel patterns of photosynthetically active radiation (PAR). We also expected that diurnal soil respiration patterns would vary significantly within the growing season. We evaluated our hypothesis with six diurnal soil respiration campaigns during the 2015 and 2016 growing seasons at Arlington, WI, USA. RH showed clear oscillating diel trends, typically peaking in the mid-afternoon when near-surface soil temperatures were highest. Diurnal RA patterns were more nuanced than RH, but were generally highest in the late afternoon and showed the most pronounced diel trends during peak growing season in July. RA also tended to spike in concert with PAR, but this effect was much more prominent in maize than switchgrass. Continuing efforts will attempt to quantitatively separate the effects of soil temperature and PAR on RA.
Brentner, Laura B; Mukherji, Sachiyo T; Walsh, Susan A; Schnoor, Jerald L
2010-02-01
Phosphor imager autoradiography is a technique for rapid, sensitive analysis of the localization of xenobiotics in plant tissues. Use of this technique is relatively new to research in the field of plant science, and the potential for enhancing visualization and understanding of plant uptake and transport of xenobiotics remains largely untapped. Phosphor imager autoradiography is used to investigate the uptake and translocation of the explosives 1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene within Populus deltoides x nigra DN34 (poplar) and Panicum vigratum Alamo (switchgrass). In both plant types, TNT and/or TNT-metabolites remain predominantly in root tissues while RDX and/or RDX-metabolites are readily translocated to leaf tissues. Phosphor imager autoradiography is further investigated for use in semi-quantitative analysis of uptake of TNT by switchgrass. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Das, Lalitendu; Liu, Enshi; Saeed, Areej; Williams, David W; Hu, Hongqiang; Li, Chenlin; Ray, Allison E; Shi, Jian
2017-11-01
This study takes combined field trial, lab experiment, and economic analysis approaches to evaluate the potential of industrial hemp in comparison with kenaf, switchgrass and biomass sorghum. Agronomy data suggest that the per hectare yield (5437kg) of industrial hemp stem alone was at a similar level with switchgrass and sorghum; while the hemp plants require reduced inputs. Field trial also showed that ∼1230kg/ha hemp grain can be harvested in addition to stems. Results show a predicted ethanol yield of ∼82gallons/dry ton hemp stems, which is comparable to the other three tested feedstocks. A comparative cost analysis indicates that industrial hemp could generate higher per hectare gross profit than the other crops if both hemp grains and biofuels from hemp stem were counted. These combined evaluation results demonstrate that industrial hemp has great potential to become a promising regional commodity crop for producing both biofuels and value-added products. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhu, Xiaoyan; Li, Xueping; Yao, Qingzhu; Chen, Yuerong
2011-01-01
This paper analyzed the uniqueness and challenges in designing the logistics system for dedicated biomass-to-bioenergy industry, which differs from the other industries, due to the unique features of dedicated biomass (e.g., switchgrass) including its low bulk density, restrictions on harvesting season and frequency, content variation with time and circumambient conditions, weather effects, scattered distribution over a wide geographical area, and so on. To design it, this paper proposed a mixed integer linear programming model. It covered from planting and harvesting switchgrass to delivering to a biorefinery and included the residue handling, concentrating on integrating strategic decisions on the supply chain design and tactical decisions on the annual operation schedules. The present numerical examples verified the model and demonstrated its use in practice. This paper showed that the operations of the logistics system were significantly different for harvesting and non-harvesting seasons, and that under the well-designed biomass logistics system, the mass production with a steady and sufficient supply of biomass can increase the unit profit of bioenergy. The analytical model and practical methodology proposed in this paper will help realize the commercial production in biomass-to-bioenergy industry. Copyright © 2010 Elsevier Ltd. All rights reserved.
Nitrogen fertilization challenges the climate benefit of cellulosic biofuels
Ruan, Leilei; Bhardwaj, Ajay K.; Hamilton, Stephen K.; ...
2016-06-01
Cellulosic biofuels are intended to improve future energy and climate security. Nitrogen (N) fertilizer is commonly recommended to stimulate yields but can increase losses of the greenhouse gas nitrous oxide (N 2O) and other forms of reactive N, including nitrate. We measured soil N2O emissions and nitrate leaching along a switchgrass ( Panicum virgatum) high resolution N-fertilizer gradient for three years post-establishment. Results revealed an exponential increase in annual N2O emissions that each year became stronger (R 2 > 0.9, P < 0.001) and deviated further from the fixed percentage assumed for IPCC Tier 1 emission factors. Concomitantly, switchgrass yieldsmore » became less responsive each year to N fertilizer. Nitrate leaching (and calculated indirect N2O emissions) also increased exponentially in response to N inputs, but neither methane (CH4) uptake nor soil organic carbon changed detectably. Overall, N fertilizer inputs at rates greater than crop need curtailed the climate benefit of ethanol production almost two-fold, from a maximum mitigation capacity of–5.71 ± 0.22 Mg CO 2e ha –1 yr –1 in switchgrass fertilized at 56 kgNha –1 to only –2.97 ± 0.18 MgCO 2e ha –1 yr –1 in switchgrass fertilized at 196 kgNha –1. In conclusion, minimizing N fertilizer use will be an important strategy for fully realizing the climate benefits of cellulosic biofuel production.« less
Analysis on storage off-gas emissions from woody, herbaceous, and torrefied biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumuluru, Jaya Shankar; Lim, C. Jim; Bi, Xiaotao T.
Wood chips, torrefied wood chips, ground switchgrass, and wood pellets were tested for off-gas emissions during storage. Storage canisters with gas-collection ports were used to conduct experiments at room temperature of 20 °C and in a laboratory oven set at 40 °C. Commercially-produced wood pellets yielded the highest carbon monoxide (CO) emissions at both 20 and 40 °C (1600 and 13,000 ppmv), whereas torrefied wood chips emitted the lowest of about <200 and <2000 ppmv. Carbon dioxide (CO₂) emissions from wood pellets were 3000 ppmv and 42,000 ppmv, whereas torrefied wood chips registered at about 2000 and 25,000 ppmv, atmore » 20 and 40 °C at the end of 11 days of storage. CO emission factors (milligrams per kilogram of biomass) calculated were lowest for ground switchgrass and torrefied wood chips (2.68 and 4.86 mg/kg) whereas wood pellets had the highest CO of about 10.60 mg/kg, respectively, at 40 °C after 11 days of storage. In the case of CO₂, wood pellets recorded the lowest value of 55.46 mg/kg, whereas switchgrass recorded the highest value of 318.72 mg/kg. This study concludes that CO emission factor is highest for wood pellets, CO₂ is highest for switchgrass and CH₄ is negligible for all feedstocks except for wood pellets, which is about 0.374 mg/kg at the end of 11-day storage at 40 °C.« less
Analysis on storage off-gas emissions from woody, herbaceous, and torrefied biomass
Tumuluru, Jaya Shankar; Lim, C. Jim; Bi, Xiaotao T.; ...
2015-03-02
Wood chips, torrefied wood chips, ground switchgrass, and wood pellets were tested for off-gas emissions during storage. Storage canisters with gas-collection ports were used to conduct experiments at room temperature of 20 °C and in a laboratory oven set at 40 °C. Commercially-produced wood pellets yielded the highest carbon monoxide (CO) emissions at both 20 and 40 °C (1600 and 13,000 ppmv), whereas torrefied wood chips emitted the lowest of about <200 and <2000 ppmv. Carbon dioxide (CO₂) emissions from wood pellets were 3000 ppmv and 42,000 ppmv, whereas torrefied wood chips registered at about 2000 and 25,000 ppmv, atmore » 20 and 40 °C at the end of 11 days of storage. CO emission factors (milligrams per kilogram of biomass) calculated were lowest for ground switchgrass and torrefied wood chips (2.68 and 4.86 mg/kg) whereas wood pellets had the highest CO of about 10.60 mg/kg, respectively, at 40 °C after 11 days of storage. In the case of CO₂, wood pellets recorded the lowest value of 55.46 mg/kg, whereas switchgrass recorded the highest value of 318.72 mg/kg. This study concludes that CO emission factor is highest for wood pellets, CO₂ is highest for switchgrass and CH₄ is negligible for all feedstocks except for wood pellets, which is about 0.374 mg/kg at the end of 11-day storage at 40 °C.« less
Nitrogen fertilization challenges the climate benefit of cellulosic biofuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruan, Leilei; Bhardwaj, Ajay K.; Hamilton, Stephen K.
Cellulosic biofuels are intended to improve future energy and climate security. Nitrogen (N) fertilizer is commonly recommended to stimulate yields but can increase losses of the greenhouse gas nitrous oxide (N 2O) and other forms of reactive N, including nitrate. We measured soil N2O emissions and nitrate leaching along a switchgrass ( Panicum virgatum) high resolution N-fertilizer gradient for three years post-establishment. Results revealed an exponential increase in annual N2O emissions that each year became stronger (R 2 > 0.9, P < 0.001) and deviated further from the fixed percentage assumed for IPCC Tier 1 emission factors. Concomitantly, switchgrass yieldsmore » became less responsive each year to N fertilizer. Nitrate leaching (and calculated indirect N2O emissions) also increased exponentially in response to N inputs, but neither methane (CH4) uptake nor soil organic carbon changed detectably. Overall, N fertilizer inputs at rates greater than crop need curtailed the climate benefit of ethanol production almost two-fold, from a maximum mitigation capacity of–5.71 ± 0.22 Mg CO 2e ha –1 yr –1 in switchgrass fertilized at 56 kgNha –1 to only –2.97 ± 0.18 MgCO 2e ha –1 yr –1 in switchgrass fertilized at 196 kgNha –1. In conclusion, minimizing N fertilizer use will be an important strategy for fully realizing the climate benefits of cellulosic biofuel production.« less
NASA Astrophysics Data System (ADS)
Bhattarai, M. D.; Secchi, S.; Schoof, J. T.
2015-12-01
The sequestration of carbon constitutes one of major options in agricultural climate change land-based mitigation. We examined the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed. We Used downscaled data from eight atmosphere-ocean general circulation models (AOGCMs) for a simulation period between 2015 and 2099 with three emission pathways reflecting low, medium and high greenhouse gas scenarios. The use of downscaled data, coupled with high resolution land use and soil data, can help policy makers and land managers better understand spatial and temporal impacts of climate change. We consider traditional practices such as no-till corn-soybean rotations and continuous corn and include also switchgrass, a bioenergy crop. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 156,000 MtCO2 of soil organic carbon with a sequestration rate of 2.38 MtCO2 ha-1 yr-1 for the simulated period. Our results also indicate that switchgrass can sequester the equivalent of 282,000 MtCO2 of soil organic carbon with a sequestration rate of 4.4 MtCO2 ha-1 yr-1 for the period. Our finding also suggests that while climate change impacts corn and soybean yields, it does not have a significant effect on switchgrass yields possibly due to carbon fertilization effect on switchgrass yields.
Yu, Chih-Li; Deng, Qi; Dzantor, E. Kudjo; Zhou, Suping; Dennis, Sam; Sauve, Roger; Johnson, Terrance L.; Fay, Philip A.; Shen, Weijun; Luo, Yiqi
2018-01-01
Climate changes, including chronic changes in precipitation amounts, will influence plant physiology and growth. However, such precipitation effects on switchgrass, a major bioenergy crop, have not been well investigated. We conducted a two-year precipitation simulation experiment using large pots (95 L) in an environmentally controlled greenhouse in Nashville, TN. Five precipitation treatments (ambient precipitation, and -50%, -33%, +33%, and +50% of ambient) were applied in a randomized complete block design with lowland "Alamo" switchgrass plants one year after they were established from tillers. The growing season progression of leaf physiology, tiller number, height, and aboveground biomass were determined each growing season. Precipitation treatments significantly affected leaf physiology, growth, and aboveground biomass. The photosynthetic rates in the wet (+50% and +33%) treatments were significantly enhanced by 15.9% and 8.1%, respectively, than the ambient treatment. Both leaf biomass and plant height were largely increased, resulting in dramatically increases in aboveground biomass by 56.5% and 49.6% in the +50% and +33% treatments, respectively. Compared to the ambient treatment, the drought (-33% and -50%) treatments did not influence leaf physiology, but the -50% treatment significantly reduced leaf biomass by 37.8%, plant height by 16.3%, and aboveground biomass by 38.9%. This study demonstrated that while switchgrass in general is a drought tolerant grass, severe drought significantly reduces Alamo’s growth and biomass, and that high precipitation stimulates its photosynthesis and growth. PMID:29420600
Jain, Abhiney; Morlok, Charles K; Henson, J Michael
2013-01-01
The conversion of sustainable energy crops using microbiological fermentation to biofuels and bioproducts typically uses submerged-state processes. Alternatively, solid-state fermentation processes have several advantages when compared to the typical submerged-state processes. This study compares the use of solid-state versus submerged-state fermentation using the mesophilic anaerobic bacterium Clostridium phytofermentans in the conversion of switchgrass to the end products of ethanol, acetate, and hydrogen. A shift in the ratio of metabolic products towards more acetate and hydrogen production than ethanol production was observed when C. phytofermentans was grown under solid-state conditions as compared to submerged-state conditions. Results indicated that the end product concentrations (in millimolar) obtained using solid-state fermentation were higher than using submerged-state fermentation. In contrast, the total fermentation products (in weight of product per weight of carbohydrates consumed) and switchgrass conversion were higher for submerged-state fermentation. The conversion of xylan was greater than glucan conversion under both fermentation conditions. An initial pH of 7 and moisture content of 80 % resulted in maximum end products formation. Scanning electron microscopy study showed the presence of biofilm formed by C. phytofermentans growing on switchgrass under submerged-state fermentation whereas bacterial cells attached to surface and no apparent biofilm was observed when grown under solid-state fermentation. To our knowledge, this is the first study reporting consolidated bioprocessing of a lignocellulosic substrate by a mesophilic anaerobic bacterium under solid-state fermentation conditions.
Genetic Improvement of Switchgrass and Other Herbaceous Plants for Use as Biomass Fuel Feedstock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, K.P.
2001-01-11
It should be highly feasible to genetically modify the feedstock quality of switchgrass and other herbaceous plants using both conventional and molecular breeding techniques. Effectiveness of breeding to modify herbages of switchgrass and other perennial and annual herbaceous species has already been demonstrated. The use of molecular markers and transformation technology will greatly enhance the capability of breeders to modify the plant structure and cell walls of herbaceous plants. It will be necessary to monitor gene flow to remnant wild populations of plants and have strategies available to curtail gene flow if it becomes a potential problem. It also willmore » be necessary to monitor plant survival and long-term productivity as affected by genetic changes that improve forage quality. Information on the conversion processes that will be used and the biomass characteristics that affect conversion efficiency and rate is absolutely essential as well as information on the relative economic value of specific traits. Because most forage or biomass quality characteristics are highly affected by plant maturity, it is suggested that plant material of specific maturity stages be used in research to determining desirable feedstock quality characteristics. Plant material could be collected at various stages of development from an array of environments and storage conditions that could be used in conversion research. The same plant material could be used to develop NIRS calibrations that could be used by breeders in their selection programs and also to develop criteria for a feedstock quality assessment program. Breeding for improved feedstock quality will likely affect the rate of improvement of biomass production per acre. If the same level of resources are used, multi-trait breeding simply reduces the selection pressure and hence the breeding progress that can be made for a single trait unless all the traits are highly correlated. Since desirable feedstock traits are likely to be similar to IVDMD, it is likely that they will not be highly positively correlated with yield. Hence to achieve target yields and improve specific quality traits, it will likely be necessary to increase the resources available to plant breeders. Marker assisted selection will be extremely useful in breeding for quality traits, particularly for traits that can be affected by modifying a few genes. Genetic markers are going to be needed for monitoring gene flow to wild populations. Transformation will be a very useful tool for determining the affects of specific genes on biomass feedstock quality.« less
Estimates of spatial and temporal variation of energy crops biomass yields in the US
NASA Astrophysics Data System (ADS)
Song, Y.; Jain, A. K.; Landuyt, W.; Kheshgi, H. S.
2013-12-01
Perennial grasses, such as switchgrass (Panicum viragatum) and Miscanthus (Miscanthus x giganteus) have been identified for potential use as biomass feedstocks in the US. Current research on perennial grass biomass production has been evaluated on small-scale plots. However, the extent to which this potential can be realized at a landscape-scale will depend on the biophysical potential to grow these grasses with minimum possible amount of land that needs to be diverted from food to fuel production. To assess this potential three questions about the biomass yield for these grasses need to be answered: (1) how the yields for different grasses are varied spatially and temporally across the US; (2) whether the yields are temporally stable or not; and (3) how the spatial and temporal trends in yields of these perennial grasses are controlled by limiting factors, including soil type, water availability, climate, and crop varieties. To answer these questions, the growth processes of the perennial grasses are implemented into a coupled biophysical, physiological and biogeochemical model (ISAM). The model has been applied to quantitatively investigate the spatial and temporal trends in biomass yields for over the period 1980 -2010 in the US. The bioenergy grasses considered in this study include Miscanthus, Cave-in-Rock switchgrass and Alamo switchgrass. The effects of climate, soil and topography on the spatial and temporal trends of biomass yields are quantitatively analyzed using principal component analysis and GIS based geographically weighted regression. The spatial temporal trend results are evaluated further to classify each part of the US into four homogeneous potential yield zones: high and stable yield zone (HS), high but unstable yield zone (HU), low and stable yield zone (LS) and low but unstable yield zone (LU). Our preliminary results indicate that the yields for perennial grasses among different zones are strongly related to the different controlling factors. For example, the yield in HS zone is depended on soil and topography factors. However, the yields in HU zone are more controlled by climate factors, leading to a large uncertainty in yield potential of bioenergy grasses under future climate change.
Biswal, Ajaya K; Tan, Li; Atmodjo, Melani A; DeMartini, Jaclyn; Gelineo-Albersheim, Ivana; Hunt, Kimberly; Black, Ian M; Mohanty, Sushree S; Ryno, David; Wyman, Charles E; Mohnen, Debra
2017-01-01
The effective use of plant biomass for biofuel and bioproduct production requires a comprehensive glycosyl residue composition analysis to understand the different cell wall polysaccharides present in the different biomass sources. Here we compared four methods side-by-side for their ability to measure the neutral and acidic sugar composition of cell walls from herbaceous, grass, and woody model plants and bioenergy feedstocks. Arabidopsis, Populus , rice, and switchgrass leaf cell walls, as well as cell walls from Populus wood, rice stems, and switchgrass tillers, were analyzed by (1) gas chromatography-mass spectrometry (GC-MS) of alditol acetates combined with a total uronic acid assay; (2) carbodiimide reduction of uronic acids followed by GC-MS of alditol acetates; (3) GC-MS of trimethylsilyl (TMS) derivatives; and (4) high-pressure, anion-exchange chromatography (HPAEC). All four methods gave comparable abundance ranking of the seven neutral sugars, and three of the methods were able to quantify unique acidic sugars. The TMS, HPAEC, and carbodiimide methods provided comparable quantitative results for the specific neutral and acidic sugar content of the biomass, with the TMS method providing slightly greater yield of specific acidic sugars and high total sugar yields. The alditol acetate method, while providing comparable information on the major neutral sugars, did not provide the requisite quantitative information on the specific acidic sugars in plant biomass. Thus, the alditol acetate method is the least informative of the four methods. This work provides a side-by-side comparison of the efficacy of four different established glycosyl residue composition analysis methods in the analysis of the glycosyl residue composition of cell walls from both dicot (Arabidopsis and Populus ) and grass (rice and switchgrass) species. Both primary wall-enriched leaf tissues and secondary wall-enriched wood/stem tissues were analyzed for mol% and mass yield of the non-cellulosic sugars. The TMS, HPAEC, and carbodiimide methods were shown to provide comparable quantitative data on the nine neutral and acidic sugars present in all plant cell walls.
Wuddineh, Wegi A.; Mazarei, Mitra; Turner, Geoffry B.; ...
2015-07-20
The APETALA2/ethylene response factor (AP2/ERF) superfamily of transcription factors (TFs) plays essential roles in the regulation of various growth and developmental programs including stress responses. Members of these TFs in other plant species have been implicated to play a role in the regulation of cell wall biosynthesis. Here, we identified a total of 207 AP2/ERF TF genes in the switchgrass genome and grouped into four gene families comprised of 25 AP2-, 121 ERF-, 55 DREB (dehydration responsive element binding)-, and 5 RAV (related to API3/VP) genes, as well as a singleton gene not fitting any of the above families. Themore » ERF and DREB subfamilies comprised seven and four distinct groups, respectively. Analysis of exon/intron structures of switchgrass AP2/ERF genes showed high diversity in the distribution of introns in AP2 genes versus a single or no intron in most genes in the ERF and RAV families. The majority of the subfamilies or groups within it were characterized by the presence of one or more specific conserved protein motifs. In silico functional analysis revealed that many genes in these families might be associated with the regulation of responses to environmental stimuli via transcriptional regulation of the response genes. Moreover, these genes had diverse endogenous expression patterns in switchgrass during seed germination, vegetative growth, flower development, and seed formation. Interestingly, several members of the ERF and DREB families were found to be highly expressed in plant tissues where active lignification occurs. These results provide vital resources to select candidate genes to potentially impart tolerance to environmental stress as well as reduced recalcitrance. Furthermore, overexpression of one of the ERF genes ( PvERF001) in switchgrass was associated with increased biomass yield and sugar release efficiency in transgenic lines, exemplifying the potential of these TFs in the development of lignocellulosic feedstocks with improved biomass characteristics for biofuels.« less
Seepaul, Ramdeo; Macoon, Bisoondat; Reddy, K. Raja; ...
2011-01-01
Cardinal temperatures for plant processes have been used for thermotolerance screening of genotypes, geoclimatic adaptability determination and phenological prediction. Current simulation models for switchgrass (Panicum virgatum L.) utilize single cardinal temperatures across genotypes for both vegetative and reproductive processes although in-tra-specific variation exists among genotypes. An experiment was conducted to estimate the cardinal temperatures for seed germination of 14 diverse switchgrass genotypes and to classify genotypes for temperature tolerance. Stratified seeds of each genotype were germinated at eight constant temperatures from 10 °C to 45 °C under a constant light intensity of 35 μmol m -2s -1 for 12 hdmore » -1. Germination was recorded at 6-h intervals in all treatments. Maximum seed germination (MSG) and germination rate (GR), estimated by fitting Sigmoidal function to germination-time series data, varied among genotypes. Quadratic and bilinear models best described the MSG and GR responses to temperature, respectively. The mean cardinal temperatures, T min, T opt, and T max, were 8.1, 26.6, and 45.1 °C for MSG and 11.1, 33.1, and 46.0 °C for GR, respectively. Cardinal temperatures for MSG and GR; however, varied significantly among genotypes. Genotypes were classified as sensitive (Cave-in-Rock, Dacotah, Expresso, Forestburg, Kanlow, Sunburst, Trailblazer, and Tusca), intermediate (Alamo, Blackwell, Carthage, Shawnee, and Shelter) and tolerant (Summer) to high temperature based on cumulative temperature response index (CTRI) estimated by summing individual response indices estimated from the MSG and GR cardinal temperatures. Similarly, genotypes were also classified as sensitive (Alamo, Blackwell, Carthage, Dacotah, Shawnee, Shelter and Summer), moderately sensitive (Cave-in-rock, Forestburg, Kanlow, Sunburst, and Tusca), moderately tolerant (Trailblazer), and tolerant (Expresso) to low temperatures. The cardinal temperature estimates would be useful to improve switchgrass models for field applications. Additionally, the identified cold- and heat-tolerant genotypes can be selected for niche environments and in switchgrass breeding programs to develop new genotypes for low and high temperature environments.« less
Uden, Daniel R.; Mitchell, Rob B.; Allen, Craig R.; Guan, Qingfeng; McCoy, Tim D.
2013-01-01
To date, cellulosic ethanol production has not been commercialized in the United States. However, government mandates aimed at increasing second-generation biofuel production could spur exploratory development in the cellulosic ethanol industry. We conducted an in-depth analysis of the fuelshed surrounding a starch-based ethanol plant near York, Nebraska that has the potential for cellulosic ethanol production. To assess the feasibility of supplying adequate biomass for year-round cellulosic ethanol production from residual maize (Zea mays) stover and bioenergy switchgrass (Panicum virgatum) within a 40-km road network service area of the existing ethanol plant, we identified ∼14,000 ha of marginally productive cropland within the service area suitable for conversion from annual rowcrops to switchgrass and ∼132,000 ha of maize-enrolled cropland from which maize stover could be collected. Annual maize stover and switchgrass biomass supplies within the 40-km service area could range between 429,000 and 752,000 metric tons (mT). Approximately 140–250 million liters (l) of cellulosic ethanol could be produced, rivaling the current 208 million l annual starch-based ethanol production capacity of the plant. We conclude that sufficient quantities of biomass could be produced from maize stover and switchgrass near the plant to support year-round cellulosic ethanol production at current feedstock yields, sustainable removal rates and bioconversion efficiencies. Modifying existing starch-based ethanol plants in intensive agricultural fuelsheds could increase ethanol output, return marginally productive cropland to perennial vegetation, and remove maize stover from productive cropland to meet feedstock demand.
Switchgrass as a biofuels crop for the upper Southeast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parrish, D.J.; Wolf, D.D.
1993-12-31
Switchgrass (Panicum virgatum) has been identified in DOE-sponsored studies as a widely adapted, productive herbaceous candidate for biofuels cropping. It is a perennial that has been planted using no-till procedures, and it appears to have positive effects on the soils in which it grows. We have been looking at this species as a potential fuelcrop (as well as a valuable forage) for several years. In this presentation, we note several {open_quotes}lessons learned{close_quotes} about switchgrass establishment and management as an energy crop. Data include results from recent plantings in the upper Southeast USA and from cutting management studies. Six varieties ofmore » switchgrass (Alamo, Cave-in-Rock, Kanlow, Shelter, and two breeder`s lines) varied markedly in the success of their no-till establishment at eight locations across the upper Southeast. Better weed control, which was achieved at later planting dates, seemed to be the key. Yields obtained in the establishment stands revealed that two harvests per season are more productive (by 2 to 3 Mg/ha) than one, but the date of first cutting is crucial. First cutting should be from late-June to mid-July. A two-cut system may not be economically advantageous, however. Another cutting-management study detected losses of standing biomass at the end of the growing season. As much as 15% of the above-ground biomass present in early-September was no longer harvestable in early-November. We think this loss results from translocation of dry matter to below-ground parts.« less
Impacts of biofuels production alternatives on water quantity and quality in the Iowa River Basin
Wu, Y.; Liu, S.
2012-01-01
Corn stover as well as perennial grasses like switchgrass (Panicum virgatum) and miscanthus are being considered as candidates for the second generation biofuel feedstocks. However, the challenges to biofuel development are its effects on the environment, especially water quality. This study evaluates the long-term impacts of biofuel production alternatives (e.g., elevated corn stover removal rates and the potential land cover change) on an ecosystem with a focus on biomass production, soil erosion, water quantity and quality, and soil nitrate nitrogen concentration at the watershed scale. The Soil and Water Assessment Tool (SWAT) was modified for setting land cover change scenarios and applied to the Iowa River Basin (a tributary of the Upper Mississippi River Basin). Results show that biomass production can be sustained with an increased stover removal rate as long as the crop demand for nutrients is met with appropriate fertilization. Although a drastic increase (4.7–70.6%) in sediment yield due to erosion and a slight decrease (1.2–3.2%) in water yield were estimated with the stover removal rate ranging between 40% and 100%, the nitrate nitrogen load declined about 6–10.1%. In comparison to growing corn, growing either switchgrass or miscanthus can reduce sediment erosion greatly. However, land cover changes from native grass to switchgrass or miscanthus would lead to a decrease in water yield and an increase in nitrate nitrogen load. In contrast to growing switchgrass, growing miscanthus is more productive in generating biomass, but its higher water demand may reduce water availability in the study area.
Somleva, Maria N; Snell, Kristi D; Beaulieu, Julie J; Peoples, Oliver P; Garrison, Bradley R; Patterson, Nii A
2008-09-01
Polyhydroxyalkanoate bio-based plastics made from renewable resources can reduce petroleum consumption and decrease plastic waste disposal issues as they are inherently biodegradable in soil, compost and marine environments. In this paper, the successful engineering of the biomass crop switchgrass (Panicum virgatum L.) for the synthesis of polyhydroxybutyrate (PHB) is reported. Polymer production was monitored in more than 400 primary transformants grown under in vitro and glasshouse conditions. Plants containing up to 3.72% dry weight of PHB in leaf tissues and 1.23% dry weight of PHB in whole tillers were obtained. Results from the analysis of the polymer distribution at the cellular and whole plant levels are presented, and target areas for the improvement of PHB production are highlighted. Polymer accumulation was also analysed in the T(1) generation obtained from controlled crosses of transgenic plants. This study presents the first successful expression of a functional multigene pathway in switchgrass, and demonstrates that this high-yielding biomass crop is amenable to the complex metabolic engineering strategies necessary to produce high-value biomaterials with lignocellulose-derived biofuels.
Shen, Jiacheng; Igathinathane, C; Yu, Manlu; Pothula, Anand Kumar
2015-06-01
Integral reaction heats of switchgrass, big bluestem, and corn stalks were determined using thermogravimetric analysis/differential scanning calorimetry (TGA/DSC). Iso-conversion differential reaction heats using TGA/DSC pyrolysis and combustion of biomass were not available, despite reports available on heats required and released. A concept of iso-conversion differential reaction heats was used to determine the differential reaction heats of each thermal characteristics segment of these materials. Results showed that the integral reaction heats were endothermic from 30 to 700°C for pyrolysis of switchgrass and big bluestem, but they were exothermic for corn stalks prior to 587°C. However, the integral reaction heats for combustion of the materials followed an endothermic to exothermic transition. The differential reaction heats of switchgrass pyrolysis were predominantly endothermic in the fraction of mass loss (0.0536-0.975), and were exothermic for corn stalks (0.0885-0.850) and big bluestem (0.736-0.919). Study results provided better insight into biomass thermal mechanism. Published by Elsevier Ltd.
Dumitrache, Alexandru; Natzke, Jace; Rodriguez, Jr., Miguel; ...
2016-11-18
Five different types of transgenic ( GAUT4, miRNA, MYB4, COMT and FPGS) Panicum virgatum L. (switchgrass) were grown in a field in Knoxville, Tenn., USA over two consecutive years between 2011 and 2015 in separate experiments. Clonal replicates were established (year-one) and produced much greater biomass during the second year. After each growing season the above ground biomass was analyzed for cell wall sugars and for recalcitrance to enzymatic digestibility, and biofuel using a separate hydrolysis and fermentation (SHF) screen. Here, each transgenic event and control had more glucan, xylan and less ethanol (g/g basis) from the second year ofmore » growth relative to the first year plants. There was no correlation between plant carbohydrate content and biofuel production. In each of cell wall-targeted transgenics, GAUT4, MYB4, COMT and FPGS, the second year of growth resulted in increased carbohydrate abundance (up to 12%) and reduced recalcitrance through higher ethanol yields (up to 21%) over the non-transgenic control plants.« less
Brown, Dan; Shi, Jian; Li, Yebo
2012-11-01
Lignocellulosic biomass feedstocks (switchgrass, corn stover, wheat straw, yard waste, leaves, waste paper, maple, and pine) were evaluated for methane production under liquid anaerobic digestion (L-AD) and solid-state anaerobic digestion (SS-AD). No significant difference in methane yield between L-AD and SS-AD, except for waste paper and pine, were found. However, the volumetric productivity was 2- to 7-fold greater in the SS-AD system compared with the L-AD system, except for paper. Methane yields from corn stover, wheat straw, and switchgrass were 2-5 times higher than those from yard waste, maple, and pine biomass. Waste paper had a methane yield of only 15 L/kg VS caused by souring during SS-AD due to organic overloading. Pine also had very low biogas yield of 17 L/kg VS, indicating the need for pretreatment prior to SS-AD. The findings of this study can guide future studies to improve the efficiency and stability of SS-AD of lignocellulosic biomass. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitrache, Alexandru; Natzke, Jace; Rodriguez, Jr., Miguel
Five different types of transgenic ( GAUT4, miRNA, MYB4, COMT and FPGS) Panicum virgatum L. (switchgrass) were grown in a field in Knoxville, Tenn., USA over two consecutive years between 2011 and 2015 in separate experiments. Clonal replicates were established (year-one) and produced much greater biomass during the second year. After each growing season the above ground biomass was analyzed for cell wall sugars and for recalcitrance to enzymatic digestibility, and biofuel using a separate hydrolysis and fermentation (SHF) screen. Here, each transgenic event and control had more glucan, xylan and less ethanol (g/g basis) from the second year ofmore » growth relative to the first year plants. There was no correlation between plant carbohydrate content and biofuel production. In each of cell wall-targeted transgenics, GAUT4, MYB4, COMT and FPGS, the second year of growth resulted in increased carbohydrate abundance (up to 12%) and reduced recalcitrance through higher ethanol yields (up to 21%) over the non-transgenic control plants.« less
2011-01-01
Background Lignin is a highly abundant biopolymer synthesized by plants as a complex component of plant secondary cell walls. Efforts to utilize lignin-based bioproducts are needed. Results Herein we identify and characterize the composition and pyrolytic deconstruction characteristics of high-lignin feedstocks. Feedstocks displaying the highest levels of lignin were identified as drupe endocarp biomass arising as agricultural waste from horticultural crops. By performing pyrolysis coupled to gas chromatography-mass spectrometry, we characterized lignin-derived deconstruction products from endocarp biomass and compared these with switchgrass. By comparing individual pyrolytic products, we document higher amounts of acetic acid, 1-hydroxy-2-propanone, acetone and furfural in switchgrass compared to endocarp tissue, which is consistent with high holocellulose relative to lignin. By contrast, greater yields of lignin-based pyrolytic products such as phenol, 2-methoxyphenol, 2-methylphenol, 2-methoxy-4-methylphenol and 4-ethyl-2-methoxyphenol arising from drupe endocarp tissue are documented. Conclusions Differences in product yield, thermal decomposition rates and molecular species distribution among the feedstocks illustrate the potential of high-lignin endocarp feedstocks to generate valuable chemicals by thermochemical deconstruction. PMID:22018114
Qin, Zhangcai; Zhuang, Qianlai; Cai, Ximing
2014-06-16
Growing biomass feedstocks from marginal lands is becoming an increasingly attractive choice for producing biofuel as an alternative energy to fossil fuels. Here, we used a biogeochemical model at ecosystem scale to estimate crop productivity and greenhouse gas (GHG) emissions from bioenergy crops grown on marginal lands in the United States. Two broadly tested cellulosic crops, switchgrass, and Miscanthus, were assumed to be grown on the abandoned land and mixed crop–vegetation land with marginal productivity. Production of biomass and biofuel as well as net carbon exchange and nitrous oxide emissions were estimated in a spatially explicit manner. We found that,more » cellulosic crops, especially Miscanthus could produce a considerable amount of biomass, and the effective ethanol yield is high on these marginal lands. For every hectare of marginal land, switchgrass and Miscanthus could produce 1.0–2.3 kl and 2.9–6.9 kl ethanol, respectively, depending on nitrogen fertilization rate and biofuel conversion efficiency. Nationally, both crop systems act as net GHG sources. Switchgrass has high global warming intensity (100–390 g CO 2eq l –1 ethanol), in terms of GHG emissions per unit ethanol produced. Miscanthus, however, emits only 21–36 g CO 2eq to produce every liter of ethanol. To reach the mandated cellulosic ethanol target in the United States, growing Miscanthus on the marginal lands could potentially save land and reduce GHG emissions in comparison to growing switchgrass. Furthermore, the ecosystem modeling is still limited by data availability and model deficiencies, further efforts should be made to classify crop–specific marginal land availability, improve model structure, and better integrate ecosystem modeling into life cycle assessment.« less
Flowability parameters for chopped switchgrass, wheat straw and corn stover
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chevanan, Nehru; Womac, A.R.; Bitra, V.S.P.
2009-02-01
A direct shear cell to measure the shear strength and flow properties of chopped switchgrass, wheat straw, and corn stover was designed, fabricated, and tested. Yield loci (r2=0.99) determined at pre-consolidation pressures of 3.80 kPa and 5.02 kPa indicated that chopped biomass followed Mohr-Coulomb failure. Normal stress significantly affected the displacement required for shear failure, as well as the friction coefficient values for all three chopped biomass types. Displacement at shear failure ranged from 30 to 80 mm, and depended on pre-consolidation pressure, normal stress, and particle size. Friction coefficient was inversely related to normal stress, and was highest formore » chopped corn stover. Also, chopped corn stover exhibited the highest angle of internal friction, unconfined yield strength, major consolidation strength, and cohesive strength, all of which indicated increased challenges in handling chopped corn stover. The measured angle of internal friction and cohesive strength indicated that chopped biomass cannot be handled by gravity alone. The measured angle of internal friction and cohesive strength were 43 and 0.75 kPa for chopped switchgrass; 44 and 0.49 kPa for chopped wheat straw; and 48 and 0.82 kPa for chopped corn stover. Unconfined yield strength and major consolidation strength used for characterization of bulk flow materials and design of hopper dimensions were 3.4 and 10.4 kPa for chopped switchgrass; 2.3 and 9.6 kPa for chopped wheat straw and 4.2 and 11.8 kPa for chopped corn stover. These results are useful for development of efficient handling, storage, and transportation systems for biomass in biorefineries.« less
Aderholt, Matthew; Vogelien, Dale L; Koether, Marina; Greipsson, Sigurdur
2017-05-01
Lead (Pb) contamination in soil represents a threat to human health. Phytoextraction has gained attention as a potential alternative to traditional remediation methods because of lower cost and minimal soil disruption. The North American native switchgrass (Panicum virgatum L.) was targeted due to its ability to produce high biomass and grow across a variety of ecozones. In this study switchgrass was chemically enhanced with applications of the soil-fungicide benomyl, chelates (EDTA and citric acid), and PGR to optimize phytoextraction of Pb and zinc (Zn) from contaminated urban soils in Atlanta, GA. Exogenous application of two plant hormones was compared in multiple concentrations to determine effects on switchgrass growth: indole-3-acetic acid (IAA), and Gibberellic Acid (GA 3 ), and one PGR benzylaminopurine (BAP), The PGR BAP (1.0 μM) was found to generate a 48% increase in biomass compared to Control plants. Chemical application of citric acid, EDTA, benomyl, and BAP were tested separately and in combination in a pot experiment in an environmentally controlled greenhouse to determine the efficacy of phtyoextraction by switchgrass. Soil acidification by citric acid application resulted in highest level of aluminum (Al) and iron (Fe) in plants foliage resulting in severe phytotoxic effects. Total Pb phytoextraction was significantly highest in plants treated with combined chemical application of B + C and B + C + H. Suppression of AMF activities by benomyl application significantly increased concentrations of Al and Fe in roots. Application of benomyl reduced AMF colonization but was also shown to dramatically increase levels of septa fungi infection as compared to Control plants. Copyright © 2017 Elsevier Ltd. All rights reserved.
A simple and reliable multi-gene transformation method for switchgrass.
Ogawa, Yoichi; Shirakawa, Makoto; Koumoto, Yasuko; Honda, Masaho; Asami, Yuki; Kondo, Yasuhiro; Hara-Nishimura, Ikuko
2014-07-01
A simple and reliable Agrobacterium -mediated transformation method was developed for switchgrass. Using this method, many transgenic plants carrying multiple genes-of-interest could be produced without untransformed escape. Switchgrass (Panicum virgatum L.) is a promising biomass crop for bioenergy. To obtain transgenic switchgrass plants carrying a multi-gene trait in a simple manner, an Agrobacterium-mediated transformation method was established by constructing a Gateway-based binary vector, optimizing transformation conditions and developing a novel selection method. A MultiRound Gateway-compatible destination binary vector carrying the bar selectable marker gene, pHKGB110, was constructed to introduce multiple genes of interest in a single transformation. Two reporter gene expression cassettes, GUSPlus and gfp, were constructed independently on two entry vectors and then introduced into a single T-DNA region of pHKGB110 via sequential LR reactions. Agrobacterium tumefaciens EHA101 carrying the resultant binary vector pHKGB112 and caryopsis-derived compact embryogenic calli were used for transformation experiments. Prolonged cocultivation for 7 days followed by cultivation on media containing meropenem improved transformation efficiency without overgrowth of Agrobacterium, which was, however, not inhibited by cefotaxime or Timentin. In addition, untransformed escape shoots were completely eliminated during the rooting stage by direct dipping the putatively transformed shoots into the herbicide Basta solution for a few seconds, designated as the 'herbicide dipping method'. It was also demonstrated that more than 90 % of the bar-positive transformants carried both reporters delivered from pHKGB112. This simple and reliable transformation method, which incorporates a new selection technique and the use of a MultiRound Gateway-based binary vector, would be suitable for producing a large number of transgenic lines carrying multiple genes.
McIsaac, Gregory F; David, Mark B; Mitchell, Corey A
2010-01-01
Biomass crops are being promoted as environmentally favorable alternatives to fossil fuels or ethanol production from maize (Zea mays L.), particularly across the Corn Belt of the United States. However, there are few if any empirical studies on inorganic N leaching losses from perennial grasses that are harvested on an annual basis, nor has there been empirical evaluation of the hydrologic consequences of perennial cropping systems. Here we report on the results of 4 yr of field measurements of soil moisture and inorganic N leaching from a conventional maize-soybean [Glycine max (L.) Merr.] system and two unfertilized perennial grasses harvested in winter for biomass: Miscanthus x giganteus and switchgrass (Panicum virgatum cv. Cave-in-Rock). All crops were grown on fertile Mollisols in east-central Illinois. Inorganic N leaching was measured with ion exchange resin lysimeters placed 50 cm below the soil surface. Maize--soybean nitrate leaching averaged 40.4 kg N ha(-1) yr(-1), whereas switchgrass and Miscanthus had values of 1.4 and 3.0 kg N ha(-1) yr(-1), respectively. Soil moisture monitoring (to a depth of 90 cm) indicated that both perennial grasses dried the soil out earlier in the growing season compared with maize-soybean. Later in the growing season, soil moisture under switchgrass tended to be greater than maize-soybean or Miscanthus, whereas the soil under Miscanthus was consistently drier than under maize--soybean. Water budget calculations indicated that evapotranspiration from Miscanthus was about 104 mm yr(-1) greater than under maize-soybean, which could reduce annual drainage water flows by 32% in central Illinois. Drainage water is a primary source of surface water flows in the region, and the impact ofextensive Miscanthus production on surface water supplies and aquatic ecosystems deserves further investigation.
Translational Genomics for the Improvement of Switchgrass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpita, Nicholas; McCann, Maureen
2014-05-07
Our objectives were to apply bioinformatics and high throughput sequencing technologies to identify and classify the genes involved in cell wall formation in maize and switchgrass. Targets for genetic modification were to be identified and cell wall materials isolated and assayed for enhanced performance in bioprocessing. We annotated and assembled over 750 maize genes into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice, and Arabidopsis sequences revealed differences in gene family structure. In addition, differences in expression between gene family members of Arabidopsis, maize and rice underscored the need for a grass-specific genetic modelmore » for functional analyses. A forward screen of mature leaves of field-grown maize lines by near-infrared spectroscopy yielded several dozen lines with heritable spectroscopic phenotypes, several of which near-infrared (nir) mutants had altered carbohydrate-lignin compositions. Our contributions to the maize genome sequencing effort built on knowledge of copy number variation showing that uneven gene losses between duplicated regions were involved in returning an ancient allotetraploid to a genetically diploid state. For example, although about 25% of all duplicated genes remain genome-wide, all of the cellulose synthase (CesA) homologs were retained. We showed that guaiacyl and syringyl lignin in lignocellulosic cell-wall materials from stems demonstrate a two-fold natural variation in content across a population of maize Intermated B73 x Mo7 (IBM) recombinant inbred lines, a maize Association Panel of 282 inbreds and landraces, and three populations of the maize Nested Association Mapping (NAM) recombinant inbred lines grown in three years. We then defined quantitative trait loci (QTL) for stem lignin content measured using pyrolysis molecular-beam mass spectrometry, and glucose and xylose yield measured using an enzymatic hydrolysis assay. Among five multi-year QTL for lignin abundance, two for 4-vinylphenol abundance, and four for glucose and/or xylose yield, not a single QTL for aromatic abundance and sugar yield was shared. A genome-wide association study (GWAS) for lignin abundance and sugar yield of the 282-member maize Association Panel provided candidate genes in the eleven QTL and showed that many other alleles impacting these traits exist in the broader pool of maize genetic diversity. The maize B73 and Mo17 genotypes exhibited surprisingly large differences in gene expression in developing stem tissues, suggesting certain regulatory elements can significantly enhance activity of biomass synthesis pathways. Candidate genes, identified by GWAS or by differential expression, include genes of cell-wall metabolism, transcription factors associated with vascularization and fiber formation, and components of cellular signaling pathways. Our work provides new insights and strategies beyond modification of lignin to enhance yields of biofuels from genetically tailored biomass.« less
2012-03-01
between disturbed and undisturbed sites, resulting in plant communities dominated by annual species and perennial species or grass/forb and shrub/ tree ...serve as non-habitation site controls. Each archaeological site and adjacent non-site area was then surveyed to provide a floristic species and...native tallgrass prairie species such as Indiangrass (Sorghastrum nutans), big bluestem (Andropogon gerardii), switchgrass (Panicum virgatum), and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Jennifer B.; Qin, Zhangcai; Mueller, Steffen
The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass, and a soy biodiesel pathway. This document discusses the version of CCLUB released September 30, 2017 which includes five ethanol LUC scenarios and four soy biodiesel LUC scenarios.
The Implications of Growing Bioenergy Crops on Water Resources, Carbon and Nitrogen Dynamics
NASA Astrophysics Data System (ADS)
Jain, A. K.; Song, Y.; Kheshgi, H. S.
2016-12-01
What is the potential for the crops Corn, Miscanthus and switchgrass to meet future energy demands in the U.S.A., and would they mitigate climate change by offsetting fossil fuel greenhouse gas (GHG) emissions? The large-scale cultivation of these bioenergy crops itself could also drive climate change through changes in albedo, evapotranspiration (ET), and GHG emissions. Whether these climate effects will mitigate or exacerbate climate change in the short- and long-term is uncertain. This uncertainty stems from our incomplete understanding of the effects of expanded bioenergy crop production on terrestrial water and energy balance, carbon and nitrogen dynamics, and their interactions. This study aims to understand the implications of growing large-scale bioenergy crops on water resources, carbon and nitrogen dynamics in the United States using a data-modeling framework (ISAM) that we developed. Our study indicates that both Miscanthus and Cave-in-Rock switchgrass can attain high and stable yield over parts of the Midwest, however, this high production is attained at the cost of increased soil water loss as compared to current natural vegetation. Alamo switchgrass can attain high and stable yield in the southern US without significant influence on soil water quantity.
Effect of in Vivo Deuteration on Structure of Switchgrass Lignin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Xianzhi; Evans, Barbara R.; Yoo, Chang Geun
Biomass deuteration is an effective engineering method that can be used to provide key insights into understanding of biomass recalcitrance and the complex biomass conversion process. In this study, production of deuterated switchgrass was accomplished by growing the plants in 50% D 2O under hydroponic conditions in a perfusion chamber. Cellulolytic enzyme lignin was isolated from deuterated switchgrass, characterized by Fourier transform infrared (FTIR), gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) and compared with its protiated control sample to determine the effect of in vivo deuteration on the chemical structure of lignin. FTIR results showed that D 2Omore » can be taken up by the roots and transported to the leaves, and deuterium was subsequently incorporated into hydroxyl and alkyl groups in the plant and its lignin through photosynthesis. According to GPC results, deuterated lignin had slightly higher molecular weight, presumably due to isotope effects. 31P and heteronuclear single quantum coherence (HSQC) NMR results revealed that lignin in the deuterated biomass preserved its native physicochemical characteristics. Finally, the conserved characteristics of the deuterated lignin show its great potential applications for structural and dynamic studies of lignocellulose by techniques such as neutron scattering.« less
Wang, Xiaofei; Taylor, Steven; Wang, Yifen
2016-10-01
Pretreatment plays an important role in making the cellulose accessible for enzyme hydrolysis and subsequent conversion because it destroys more or less resistance and recalcitrance of biomass. Radio frequency (RF)-assisted dielectric heating was utilized in the alkaline pretreatment on agricultural residues (corn stover), herbaceous crops (switchgrass), hardwood (sweetgum) and softwood (loblolly pine). Pretreatment was performed at 90 °C with either RF or traditional water bath (WB) heating for 1 h after overnight soaking in NaOH solution (0.2 g NaOH/g Biomass). Pretreated materials were characterized by chemical compositional analysis, enzyme hydrolysis, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The glucan yields of RF-heated four categories of hydrolysates were 89.6, 72.6, 21.7, and 9.9 %. Interestingly, RF heating raised glucan yield on switchgrass and sweetgum but not on corn stover or loblolly pine. The SEM images and FTIR spectra agreed with results of composition analysis and hydrolysis. GC-MS detected some compounds only from RF-heated switchgrass. These compounds were found by other researchers only in high-temperature (150-600 °C) and high-pressure pyrolysis processes.
Effect of in Vivo Deuteration on Structure of Switchgrass Lignin
Meng, Xianzhi; Evans, Barbara R.; Yoo, Chang Geun; ...
2017-07-27
Biomass deuteration is an effective engineering method that can be used to provide key insights into understanding of biomass recalcitrance and the complex biomass conversion process. In this study, production of deuterated switchgrass was accomplished by growing the plants in 50% D 2O under hydroponic conditions in a perfusion chamber. Cellulolytic enzyme lignin was isolated from deuterated switchgrass, characterized by Fourier transform infrared (FTIR), gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) and compared with its protiated control sample to determine the effect of in vivo deuteration on the chemical structure of lignin. FTIR results showed that D 2Omore » can be taken up by the roots and transported to the leaves, and deuterium was subsequently incorporated into hydroxyl and alkyl groups in the plant and its lignin through photosynthesis. According to GPC results, deuterated lignin had slightly higher molecular weight, presumably due to isotope effects. 31P and heteronuclear single quantum coherence (HSQC) NMR results revealed that lignin in the deuterated biomass preserved its native physicochemical characteristics. Finally, the conserved characteristics of the deuterated lignin show its great potential applications for structural and dynamic studies of lignocellulose by techniques such as neutron scattering.« less
Wu, Wei; Rondon, Vanessa; Weeks, Kalvin; Pullammanappallil, Pratap; Ingram, Lonnie O; Shanmugam, K T
2018-03-01
Switchgrass (Alamo) was pretreated with phosphoric acid (0.75 and 1%, w/w) at three temperatures (160, 175 and 190 °C) and time (5, 7.5 and 10 min) using a steam gun. The slurry after pretreatment was liquefied by enzymes and the released sugars were fermented in a simultaneous saccharification and co-fermentation process to ethanol using ethanologenic Escherichia coli strain SL100. Among the three variables in pretreatment, temperature and time were critical in supporting ethanol titer and yield. Enzyme hydrolysis significantly increased the concentration of furans in slurries, apparently due to release of furans bound to the solids. The highest ethanol titer of 21.2 ± 0.3 g/L ethanol obtained at the pretreatment condition of 190-1-7.5 (temperature-acid concentration-time) and 10% solids loading accounted for 190 ± 2.9 g ethanol/kg of raw switch grass. This converts to 61.7 gallons of ethanol per ton of dry switchgrass, a value that is comparable to other published pretreatment conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Production of deuterated switchgrass by hydroponic cultivation
Evans, Barbara R.; Bali, Garima; Foston, Marcus B.; ...
2015-04-21
Deuterium enrichment of biological materials can potential enable expanded experimental use of small angle neutron scattering (SANS) to investigate molecular structural transitions of complex systems such as plant cell walls. Two key advances have been made that facilitate cultivation of switchgrass, an important forage and biofuel crop, for controlled isotopic enrichment: (1) perfusion system with individual chambers and (2) hydroponic growth from tiller cuttings. Plants were grown and maintained for several months with periodic harvest. Photosynthetic activity was monitored by measurement of CO 2 in outflow from the growth chambers. Plant morphology and composition appeared normal compared to matched controlsmore » grown with H 2O. Using this improved method, gram quantities of switchgrass leaves and stems were produced by continuous hydroponic cultivation using growth medium consisting of basal mineral salts in 50% D 2O. Deuterium incorporation was confirmed by detection of the O-D and C-D stretching peaks with FTIR and quantified by 1H- and 2H-NMR. Lastly, this capability to produce deuterated lignocellulosic biomass under controlled conditions will enhance investigation of cell wall structure and its deconstruction by neutron scattering and NMR techniques.« less
Structural Transformation of Isolated Poplar and Switchgrass Lignins from Dilute Acid Pretreatment
Sun, Qining; Pu, Yunqiao; Meng, Xianzhi; ...
2015-08-27
A key step in conversion of cellulosic biomass into sustainable fuels and chemicals is thermochemical pretreatment to reduce plant cell wall recalcitrance. Obtaining an improved understanding of the fundamental chemistry of lignin, the most recalcitrant component of biomass, during pretreatment is critical to the continued development of renewable biofuel production. To examine the intrinsic chemistry of lignin during dilute acid pretreatment (DAP), lignin was isolated from poplar and switchgrass using a cellulolytic enzyme system and then treated under DAP conditions. These results highlight that lignin is subjected to depolymerization reactions within the first 2 min of dilute acid pretreatment andmore » these changes are accompanied by increased generation of aliphatic and phenolic hydroxyl groups of lignin. This is followed by a competing set of depolymerization and repolymerization reactions that lead to a decrease in the content of guaiacyl lignin units and an increase in condensed lignin units as the reaction residence time is extended beyond 5 min. Finally, we showed that a detailed comparison of changes in functional groups and molecular weights of cellulolytic enzyme lignins with different structural parameters, related to the recalcitrant properties of lignin, could be successfully altered during DAP conditions.« less
Potential of potassium hydroxide pretreatment of switchgrass for fermentable sugar production.
Sharma, Rajat; Palled, Vijaykumar; Sharma-Shivappa, Ratna R; Osborne, Jason
2013-02-01
Chemical pretreatment of lignocellulosic biomass has been extensively investigated for sugar generation and subsequent fuel production. Alkaline pretreatment has emerged as one of the popular chemical pretreatment methods, but most attempts thus far have utilized NaOH for the pretreatment process. This study aimed at investigating the potential of potassium hydroxide (KOH) as a viable alternative alkaline reagent for lignocellulosic pretreatment based on its different reactivity patterns compared to NaOH. Performer switchgrass was pretreated at KOH concentrations of 0.5-2% for varying treatment times of 6-48 h, 6-24 h, and 0.25-1 h at 21, 50, and 121 °C, respectively. The pretreatments resulted in the highest percent sugar retention of 99.26% at 0.5%, 21 °C, 12 h while delignification up to 55.4% was observed with 2% KOH, 121 °C, 1 h. Six pretreatment conditions were selected for subsequent enzymatic hydrolysis with Cellic CTec2® for sugar generation. The pretreatment condition of 0.5% KOH, 24 h, 21 °C was determined to be the most effective as it utilized the least amount of KOH while generating 582.4 mg sugar/g raw biomass for a corresponding percent carbohydrate conversion of 91.8%.
Eichorst, Stephanie A; Joshua, Chijioke; Sathitsuksanoh, Noppadon; Singh, Seema; Simmons, Blake A; Singer, Steven W
2014-12-01
Microbial communities that deconstruct plant biomass have broad relevance in biofuel production and global carbon cycling. Biomass pretreatments reduce plant biomass recalcitrance for increased efficiency of enzymatic hydrolysis. We exploited these chemical pretreatments to study how thermophilic bacterial consortia adapt to deconstruct switchgrass (SG) biomass of various compositions. Microbial communities were adapted to untreated, ammonium fiber expansion (AFEX)-pretreated, and ionic-liquid (IL)-pretreated SG under aerobic, thermophilic conditions using green waste compost as the inoculum to study biomass deconstruction by microbial consortia. After microbial cultivation, gravimetric analysis of the residual biomass demonstrated that both AFEX and IL pretreatment enhanced the deconstruction of the SG biomass approximately 2-fold. Two-dimensional nuclear magnetic resonance (2D-NMR) experiments and acetyl bromide-reactive-lignin analysis indicated that polysaccharide hydrolysis was the dominant process occurring during microbial biomass deconstruction, and lignin remaining in the residual biomass was largely unmodified. Small-subunit (SSU) rRNA gene amplicon libraries revealed that although the dominant taxa across these chemical pretreatments were consistently represented by members of the Firmicutes, the Bacteroidetes, and Deinococcus-Thermus, the abundance of selected operational taxonomic units (OTUs) varied, suggesting adaptations to the different substrates. Combining the observations of differences in the community structure and the chemical and physical structure of the biomass, we hypothesize specific roles for individual community members in biomass deconstruction. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Mahadevan, Ravishankar; Adhikari, Sushil; Shakya, Rajdeep; ...
2016-10-27
Torrefaction is a low-temperature process considered as an effective pretreatment technique to improve the grindability of biomass as well as enhance the production of aromatic hydrocarbons from Catalytic Fast Pyrolysis (CFP). For this paper, this study was performed to understand the effect of torrefaction temperature on structural changes in the lignin macromolecule and its subsequent influence on in-situ CFP process. Lignin extracted from southern pine and switchgrass (via organosolv treatment) was torrefied at four different temperatures (150, 175, 200 and 225 °C) in a tubular reactor. Between the two biomass types studied, lignin from pine appeared to have greater thermalmore » stability during torrefaction when compared with switchgrass lignin. The structural changes in lignin as a result of torrefaction were followed by using FTIR spectroscopy, solid state CP/MAS 13C NMR, 31P NMR spectroscopy and it was found that higher torrefaction temperature (200 and 225 °C) caused polycondensation and de-methoxylation of the aromatic units of lignin. Gel permeation chromatography analysis revealed that polycondensation during torrefaction resulted in an increase in the molecular weight and polydispersity of lignin. The torrefied lignin was subsequently used in CFP experiments using H +ZSM-5 catalyst in a micro-reactor (Py-GC/MS) to understand the effect of torrefaction on the product distribution from pyrolysis. It was observed that although the selectivity of benzene-toluene-xylene compounds from CFP of pine improved from 58.3% (torrefaction temp at 150 °C) to 69.0% (torrefaction temp at 225 °C), the severity of torrefaction resulted in a loss of overall aromatic hydrocarbon yield from 11.6% to 4.9% under same conditions. Torrefaction at higher temperatures also increased the yield of carbonaceous residues from 63.9% to 72.8%. Finally, overall, torrefying lignin caused structural transformations in both type of lignins (switchgrass and pine), which is ultimately detrimental to achieving a higher aromatic hydrocarbon yield from CFP.« less
Wu, Yiping; Liu, Shu-Guang; Li, Zhengpeng
2012-01-01
Biofuels are now an important resource in the United States because of the Energy Independence and Security Act of 2007. Both increased corn growth for ethanol production and perennial dedicated energy crop growth for cellulosic feedstocks are potential sources to meet the rising demand for biofuels. However, these measures may cause adverse environmental consequences that are not yet fully understood. This study 1) evaluates the long-term impacts of increased frequency of corn in the crop rotation system on water quantity and quality as well as soil fertility in the James River Basin and 2) identifies potential grasslands for cultivating bioenergy crops (e.g. switchgrass), estimating the water quality impacts. We selected the soil and water assessment tool, a physically based multidisciplinary model, as the modeling approach to simulate a series of biofuel production scenarios involving crop rotation and land cover changes. The model simulations with different crop rotation scenarios indicate that decreases in water yield and soil nitrate nitrogen (NO3-N) concentration along with an increase in NO3-N load to stream water could justify serious concerns regarding increased corn rotations in this basin. Simulations with land cover change scenarios helped us spatially classify the grasslands in terms of biomass productivity and nitrogen loads, and we further derived the relationship of biomass production targets and the resulting nitrogen loads against switchgrass planting acreages. The suggested economically efficient (planting acreage) and environmentally friendly (water quality) planting locations and acreages can be a valuable guide for cultivating switchgrass in this basin. This information, along with the projected environmental costs (i.e. reduced water yield and increased nitrogen load), can contribute to decision support tools for land managers to seek the sustainability of biofuel development in this region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahadevan, Ravishankar; Adhikari, Sushil; Shakya, Rajdeep
Torrefaction is a low-temperature process considered as an effective pretreatment technique to improve the grindability of biomass as well as enhance the production of aromatic hydrocarbons from Catalytic Fast Pyrolysis (CFP). For this paper, this study was performed to understand the effect of torrefaction temperature on structural changes in the lignin macromolecule and its subsequent influence on in-situ CFP process. Lignin extracted from southern pine and switchgrass (via organosolv treatment) was torrefied at four different temperatures (150, 175, 200 and 225 °C) in a tubular reactor. Between the two biomass types studied, lignin from pine appeared to have greater thermalmore » stability during torrefaction when compared with switchgrass lignin. The structural changes in lignin as a result of torrefaction were followed by using FTIR spectroscopy, solid state CP/MAS 13C NMR, 31P NMR spectroscopy and it was found that higher torrefaction temperature (200 and 225 °C) caused polycondensation and de-methoxylation of the aromatic units of lignin. Gel permeation chromatography analysis revealed that polycondensation during torrefaction resulted in an increase in the molecular weight and polydispersity of lignin. The torrefied lignin was subsequently used in CFP experiments using H +ZSM-5 catalyst in a micro-reactor (Py-GC/MS) to understand the effect of torrefaction on the product distribution from pyrolysis. It was observed that although the selectivity of benzene-toluene-xylene compounds from CFP of pine improved from 58.3% (torrefaction temp at 150 °C) to 69.0% (torrefaction temp at 225 °C), the severity of torrefaction resulted in a loss of overall aromatic hydrocarbon yield from 11.6% to 4.9% under same conditions. Torrefaction at higher temperatures also increased the yield of carbonaceous residues from 63.9% to 72.8%. Finally, overall, torrefying lignin caused structural transformations in both type of lignins (switchgrass and pine), which is ultimately detrimental to achieving a higher aromatic hydrocarbon yield from CFP.« less
Sundaram, Vijay; Muthukumarappan, Kasiviswanathan; Gent, Stephen
2017-03-01
Lignocellulosic feedstocks corn stover, prairie cord grass, and switchgrass were subjected to ammonia fiber expansion (AFEX™) pretreatment and densified using extrusion pelleting and ComPAKco densification technique. The effects of AFEX™ pretreatment and densification were studied on the fast pyrolysis product yields. Feedstocks were milled in a hammer mill using three different screen sizes (2, 4, and 8 mm) and were subjected to AFEX™ pretreatment. The untreated and AFEX™-pretreated feedstocks were moisture adjusted at three levels (5, 10, and 15 % wb) and were extruded using a lab-scale single screw extruder. The barrel temperature of the extruder was maintained at 75, 100, and 125 °C. Durability of the extruded pellets made from AFEX™-pretreated corn stover, prairie cord grass, and switchgrass varied from 94.5 to 99.2, 94.3 to 98.7, and 90.1 to 97.5 %, respectively. Results of the thermogravimetric analysis showed the decrease in the decomposition temperature of the all the feedstocks after AFEX™ pretreatment indicating the increase in thermal stability. Loose and densified feedstocks were subjected to fast pyrolysis in a lab-scale reactor, and the yields (bio-oil and bio-char) were measured. Bio-char obtained from the AFEX™-pretreated feedstocks exhibited increased bulk and particle density compared to the untreated feedstocks. The properties of the bio-oil were statistically similar for the untreated, AFEX™-pretreated, and AFEX™-pretreated densified feedstocks. Based on the bio-char and bio-oil yields, the AFEX™-pretreated feedstocks and the densified AFEX™-pretreated feedstocks (pellets and PAKs) exhibited similar behavior. Hence, it can be concluded that densifying the AFEX™-pretreated feedstocks could be a viable option in the biomass-processing depots to reduce the transportation costs and the logistical impediments without affecting the product yields.
Burns, J C; Pond, K R; Fisher, D S; Luginbuhl, J M
1997-05-01
Five maturities of switchgrass hay harvested at 14-d intervals (vegetative through 20% heading) were fed to Hereford steers (297 kg) in a 5 x 5 Latin square. Relationships with switchgrass maturity were negative and quadratic (P < .05) for DMI and cubic (P < .05) for digestible DMI. Declines in apparent digestibilities of DM, ADF, and cellulose were cubic (P < .05), whereas these were quadratic (P < .05) for NDF, hemicellulose, and CP. Whole masticates from the least, mid, and most mature hays showed linear (P < .05) declines in DM concentration and IVDMD with increasing maturity, whereas NDF concentrations increased linearly (P < .05). Mean retention time of gastrointestinal DM increased linearly (P < .01) from 64 to 94 h from the least to the most mature hay, and the associated rate of passage declined linearly (P < .01) from 3.3 to 2.1%/h. Sieving of masticate DM showed a reduced proportion of large particles (> or = 2.8 mm) and an increased proportion of small particles (< or = .5 mm) with advancing forage maturity. More than 94% of the sieved fecal DM passed a 1.0-mm sieve, but particle sizes showed the same relationship with forage maturity as noted for masticate DM. This occurred despite the comminution from the rumination and digestive processes.
Growing C4 perennial grass for bioenergy using a new Agro-BGC ecosystem model
NASA Astrophysics Data System (ADS)
di Vittorio, A. V.; Anderson, R. S.; Miller, N. L.; Running, S. W.
2009-12-01
Accurate, spatially gridded estimates of bioenergy crop yields require 1) biophysically accurate crop growth models and 2) careful parameterization of unavailable inputs to these models. To meet the first requirement we have added the capacity to simulate C4 perennial grass as a bioenergy crop to the Biome-BGC ecosystem model. This new model, hereafter referred to as Agro-BGC, includes enzyme driven C4 photosynthesis, individual live and dead leaf, stem, and root carbon/nitrogen pools, separate senescence and litter fall processes, fruit growth, optional annual seeding, flood irrigation, a growing degree day phenology with a killing frost option, and a disturbance handler that effectively simulates fertilization, harvest, fire, and incremental irrigation. There are four Agro-BGC vegetation parameters that are unavailable for Panicum virgatum (switchgrass), and to meet the second requirement we have optimized the model across multiple calibration sites to obtain representative values for these parameters. We have verified simulated switchgrass yields against observations at three non-calibration sites in IL. Agro-BGC simulates switchgrass growth and yield at harvest very well at a single site. Our results suggest that a multi-site optimization scheme would be adequate for producing regional-scale estimates of bioenergy crop yields on high spatial resolution grids.
Liu, Sijia; Fu, Chunxiang; Gou, Jiqing; Sun, Liang; Huhman, David; Zhang, Yunwei; Wang, Zeng-Yu
2017-01-01
Switchgrass ( Panicum virgatum ) has been developed into a model lignocellulosic bioenergy crop. Downregulation of caffeic acid O -methyltransferase (COMT), a key enzyme in lignin biosynthesis, has been shown to alter lignification and increase biofuel yield in switchgrass. Methylenetetrahydrofolate reductase (MTHFR) mediates C1 metabolism and provides methyl units consumed by COMT. It was predicted that co-silencing of MTHFR and COMT would impact lignification even more than either of the single genes. However, our results showed that strong downregulation of MTHFR in a COMT -deficient background led to altered plant growth and development, but no significant change in lignin content or composition was found when compared with COMT plants. Another unexpected finding was that the double MTHFR/COMT downregulated plants showed a novel lesion-mimic leaf phenotype. Molecular analyses revealed that the lesion-mimic phenotype was caused by the synergistic effect of MTHFR and COMT genes, with MTHFR playing a predominant role. Microarray analysis showed significant induction of genes related to oxidative and defense responses. The results demonstrated the lack of additive effects of MTHFR and COMT on lignification. Furthermore, this research revealed an unexpected role of the two genes in the modulation of lesion-mimic cell death as well as their synergistic effects on agronomic performance.
Liu, Sijia; Fu, Chunxiang; Gou, Jiqing; Sun, Liang; Huhman, David; Zhang, Yunwei; Wang, Zeng-Yu
2017-01-01
Switchgrass (Panicum virgatum) has been developed into a model lignocellulosic bioenergy crop. Downregulation of caffeic acid O-methyltransferase (COMT), a key enzyme in lignin biosynthesis, has been shown to alter lignification and increase biofuel yield in switchgrass. Methylenetetrahydrofolate reductase (MTHFR) mediates C1 metabolism and provides methyl units consumed by COMT. It was predicted that co-silencing of MTHFR and COMT would impact lignification even more than either of the single genes. However, our results showed that strong downregulation of MTHFR in a COMT-deficient background led to altered plant growth and development, but no significant change in lignin content or composition was found when compared with COMT plants. Another unexpected finding was that the double MTHFR/COMT downregulated plants showed a novel lesion-mimic leaf phenotype. Molecular analyses revealed that the lesion-mimic phenotype was caused by the synergistic effect of MTHFR and COMT genes, with MTHFR playing a predominant role. Microarray analysis showed significant induction of genes related to oxidative and defense responses. The results demonstrated the lack of additive effects of MTHFR and COMT on lignification. Furthermore, this research revealed an unexpected role of the two genes in the modulation of lesion-mimic cell death as well as their synergistic effects on agronomic performance. PMID:28676804
Environmental impacts of conversion of cropland to biomass production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, T.H.; Brown, G.F.; Bingham, L.
1996-12-31
A study was initiated to determine the effects of conversion of row crop land to biomass production on runoff quality and quantity. Treatments were: (1) remain in row crop (no-till corn); (2) convert to short rotation woody crop (SRWC) production with sweetgum (Liquidambar styraciflua L.) planted in a 1.5 in by 3 in spacing maintaining complete weed control; (3) convert to SRWC with a tall fescue (Festuca eliator L.) cover crop planted in a 2.4 in strip centered between rows of trees to reduce erosion; and (4) convert to switchgrass (Panicum virgatum L.) as a biomass energy crop. Plots withinmore » a block similar in size (approximately 0.45 ha in block 1 and 0.20 ha in block 2), slope, soils, topographic position, recent land use history, etc. Although switchgrass plots eroded more early in the growing season, erosion was low once it became well established. Conversely, plots where trees were grown with no cover continued to erode throughout the growing season. These results indicate that growing short-rotation intensively cultured hardwoods with complete weed control will provide little erosion relief in agricultural fields, at least during the first growing season. Planting switchgrass for bioenergy production, however, does protect the soil. Nutrient runoff was related to fertilization.« less
Rao, Xiaolan; Shen, Hui; Pattathil, Sivakumar; Hahn, Michael G; Gelineo-Albersheim, Ivana; Mohnen, Debra; Pu, Yunqiao; Ragauskas, Arthur J; Chen, Xin; Chen, Fang; Dixon, Richard A
2017-01-01
Plant cell walls contribute the majority of plant biomass that can be used to produce transportation fuels. However, the complexity and variability in composition and structure of cell walls, particularly the presence of lignin, negatively impacts their deconstruction for bioenergy. Metabolic and genetic changes associated with secondary wall development in the biofuel crop switchgrass ( Panicum virgatum ) have yet to be reported. Our previous studies have established a cell suspension system for switchgrass, in which cell wall lignification can be induced by application of brassinolide (BL). We have now collected cell wall composition and microarray-based transcriptome profiles for BL-induced and non-induced suspension cultures to provide an overview of the dynamic changes in transcriptional reprogramming during BL-induced cell wall modification. From this analysis, we have identified changes in candidate genes involved in cell wall precursor synthesis, cellulose, hemicellulose, and pectin formation and ester-linkage generation. We have also identified a large number of transcription factors with expression correlated with lignin biosynthesis genes, among which are candidates for control of syringyl (S) lignin accumulation. Together, this work provides an overview of the dynamic compositional changes during brassinosteroid-induced cell wall remodeling, and identifies candidate genes for future plant genetic engineering to overcome cell wall recalcitrance.
NASA Astrophysics Data System (ADS)
Singer, E.; Gonzalez, J.; Juenger, T. E.; Woyke, T.
2016-12-01
Growing energy demands and concerns for climate change have urgently pushed forward the timeline for the implementation of biofuel energies. Switchgrass (Panicum virgatum) is a leading biofuel crop in the United States. Bacteria living on and inside leaves and roots affect plant health, hence a plant's genetic control over its microbiota is of great interest to crop breeders and evolutionary biologists. We present a large-scale field experiment to untangle the effects of genotype, environment, soil horizon and harvest treatment practices on prokaryotic and fungal communities associated with leaves and roots of switchgrass. Using V4 16S rRNA and ITS gene as well as metagenome sequencing, we show that host genotype is significant in both, leaves and roots, and varies among sites. Microbiome composition along the rhizosphere also shifts with soil depth. Furthermore, plant harvest significantly changes both, leaf surface and rhizosphere communities, which can be seen a year after the harvest event. Gene function analysis shows that rhizosphere communities are enriched in genes encoding nitrate reduction, carbohydrate transport and metabolism, motility, and sensory and signal transduction proteins relative to leaf surface communities. Our results demonstrate how genotype-environment interactions contribute to the complexity of microbiome assembly in natural environments.
Xu, Jia; Kloepper, Joseph W; Huang, Ping; McInroy, John A; Hu, Chia H
2018-05-01
The aims of this study were to isolate and characterize N 2 -fixing bacteria from giant reed and switchgrass and evaluate their plant growth promotion and nutrient uptake potential for use as biofertilizers. A total of 190 bacteria were obtained from rhizosphere soil and inside stems and roots of giant reed and switchgrass. All the isolates were confirmed to have nitrogenase activity, 96.9% produced auxin, and 85% produced siderophores. Then the top six strains, including Sphingomonas trueperi NNA-14, Sphingomonas trueperi NNA-19, Sphingomonas trueperi NNA-17, Sphingomonas trueperi NNA-20, Psychrobacillus psychrodurans NP-3, and Enterobacter oryzae NXU-38, based on nitrogenase activity, were inoculated on maize and wheat seeds in greenhouse tests to assess their potential benefits to plants. All the selected strains promoted plant growth by increasing at least one plant growth parameter or increasing the nutrient concentration of maize or wheat plants. NNA-14 outperformed others in promoting early growth and nutrient uptake by maize. Specifically, NNA-14 significantly increased root length, surface area, and fine roots of maize by 14%, 12%, and 17%, respectively, and enhanced N, Ca, S, B, Cu, and Zn in maize. NNA-19 and NXU-38 outperformed others in promoting both early growth and nutrient uptake by wheat. Specifically, NNA-19 significantly increased root dry weight and number of root tips of wheat by 25% and 96%, respectively, and enhanced Ca in wheat. NXU-38 significantly increased root length, surface area, and fine roots of wheat by 21%, 13%, and 26%, respectively, and enhanced levels of Ca and Mg in wheat. It is concluded that switchgrass and giant reed are colonized by N 2 -fixing bacteria that have the potential to contribute to plant growth and nutrient uptake by agricultural crops. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
COREMIC: a web-tool to search for a niche associated CORE MICrobiome.
Rodrigues, Richard R; Rodgers, Nyle C; Wu, Xiaowei; Williams, Mark A
2018-01-01
Microbial diversity on earth is extraordinary, and soils alone harbor thousands of species per gram of soil. Understanding how this diversity is sorted and selected into habitat niches is a major focus of ecology and biotechnology, but remains only vaguely understood. A systems-biology approach was used to mine information from databases to show how it can be used to answer questions related to the core microbiome of habitat-microbe relationships. By making use of the burgeoning growth of information from databases, our tool "COREMIC" meets a great need in the search for understanding niche partitioning and habitat-function relationships. The work is unique, furthermore, because it provides a user-friendly statistically robust web-tool (http://coremic2.appspot.com or http://core-mic.com), developed using Google App Engine, to help in the process of database mining to identify the "core microbiome" associated with a given habitat. A case study is presented using data from 31 switchgrass rhizosphere community habitats across a diverse set of soil and sampling environments. The methodology utilizes an outgroup of 28 non-switchgrass (other grasses and forbs) to identify a core switchgrass microbiome. Even across a diverse set of soils (five environments), and conservative statistical criteria (presence in more than 90% samples and FDR q -val <0.05% for Fisher's exact test) a core set of bacteria associated with switchgrass was observed. These included, among others, closely related taxa from Lysobacter spp., Mesorhizobium spp , and Chitinophagaceae . These bacteria have been shown to have functions related to the production of bacterial and fungal antibiotics and plant growth promotion. COREMIC can be used as a hypothesis generating or confirmatory tool that shows great potential for identifying taxa that may be important to the functioning of a habitat (e.g. host plant). The case study, in conclusion, shows that COREMIC can identify key habitat-specific microbes across diverse samples, using currently available databases and a unique freely available software.
COREMIC: a web-tool to search for a niche associated CORE MICrobiome
Rodgers, Nyle C.; Wu, Xiaowei; Williams, Mark A.
2018-01-01
Microbial diversity on earth is extraordinary, and soils alone harbor thousands of species per gram of soil. Understanding how this diversity is sorted and selected into habitat niches is a major focus of ecology and biotechnology, but remains only vaguely understood. A systems-biology approach was used to mine information from databases to show how it can be used to answer questions related to the core microbiome of habitat-microbe relationships. By making use of the burgeoning growth of information from databases, our tool “COREMIC” meets a great need in the search for understanding niche partitioning and habitat-function relationships. The work is unique, furthermore, because it provides a user-friendly statistically robust web-tool (http://coremic2.appspot.com or http://core-mic.com), developed using Google App Engine, to help in the process of database mining to identify the “core microbiome” associated with a given habitat. A case study is presented using data from 31 switchgrass rhizosphere community habitats across a diverse set of soil and sampling environments. The methodology utilizes an outgroup of 28 non-switchgrass (other grasses and forbs) to identify a core switchgrass microbiome. Even across a diverse set of soils (five environments), and conservative statistical criteria (presence in more than 90% samples and FDR q-val <0.05% for Fisher’s exact test) a core set of bacteria associated with switchgrass was observed. These included, among others, closely related taxa from Lysobacter spp., Mesorhizobium spp, and Chitinophagaceae. These bacteria have been shown to have functions related to the production of bacterial and fungal antibiotics and plant growth promotion. COREMIC can be used as a hypothesis generating or confirmatory tool that shows great potential for identifying taxa that may be important to the functioning of a habitat (e.g. host plant). The case study, in conclusion, shows that COREMIC can identify key habitat-specific microbes across diverse samples, using currently available databases and a unique freely available software. PMID:29473009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wuddineh, Wegi A.; Mazarei, Mitra; Turner, Geoffry B.
The APETALA2/ethylene response factor (AP2/ERF) superfamily of transcription factors (TFs) plays essential roles in the regulation of various growth and developmental programs including stress responses. Members of these TFs in other plant species have been implicated to play a role in the regulation of cell wall biosynthesis. Here, we identified a total of 207 AP2/ERF TF genes in the switchgrass genome and grouped into four gene families comprised of 25 AP2-, 121 ERF-, 55 DREB (dehydration responsive element binding)-, and 5 RAV (related to API3/VP) genes, as well as a singleton gene not fitting any of the above families. Themore » ERF and DREB subfamilies comprised seven and four distinct groups, respectively. Analysis of exon/intron structures of switchgrass AP2/ERF genes showed high diversity in the distribution of introns in AP2 genes versus a single or no intron in most genes in the ERF and RAV families. The majority of the subfamilies or groups within it were characterized by the presence of one or more specific conserved protein motifs. In silico functional analysis revealed that many genes in these families might be associated with the regulation of responses to environmental stimuli via transcriptional regulation of the response genes. Moreover, these genes had diverse endogenous expression patterns in switchgrass during seed germination, vegetative growth, flower development, and seed formation. Interestingly, several members of the ERF and DREB families were found to be highly expressed in plant tissues where active lignification occurs. These results provide vital resources to select candidate genes to potentially impart tolerance to environmental stress as well as reduced recalcitrance. Furthermore, overexpression of one of the ERF genes ( PvERF001) in switchgrass was associated with increased biomass yield and sugar release efficiency in transgenic lines, exemplifying the potential of these TFs in the development of lignocellulosic feedstocks with improved biomass characteristics for biofuels.« less
Dickson, Timothy L.; Gross, Katherine L.
2015-09-11
Biodiversity experiments show that increases in plant diversity can lead to greater biomass production, and some researchers suggest that high diversity plantings should be used for bioenergy production. However, many methods used in past biodiversity experiments are impractical for bioenergy plantings. For example, biodiversity experiments often use intensive management such as hand weeding to maintain low diversity plantings and exclude unplanted species, but this would not be done for bioenergy plantings. Also, biodiversity experiments generally use high seeding densities that would be too expensive for bioenergy plantings. Here we report the effects of biodiversity on biomass production from two studiesmore » of more realistic bioenergy crop plantings in southern Michigan, USA. One study involved comparing production between switchgrass (Panicum virgatum) monocultures and species-rich prairie plantings on private farm fields that were managed similarly to bioenergy plantings. The other study was an experiment where switchgrass was planted in monoculture and in combination with increasingly species-rich native prairie mixtures. Overall, we found that bioenergy plantings with higher species richness did not produce more biomass than switchgrass monocultures. The lack of a positive relationship between planted species richness and production in our studies may be due to several factors. Non-planted species (weeds) were not removed from our studies and these non-planted species may have competed with planted species and also prevented realized species richness from equaling planted species richness. Also, we found that low seeding density of individual species limited the biomass production of these individual species. Finally, production in future bioenergy plantings with high species richness may be increased by using a high density of inexpensive seed from switchgrass and other highly productive species, and future efforts to translate the results of biodiversity experiments to bioenergy plantings should consider the role of seeding density.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickson, Timothy L.; Gross, Katherine L.
Biodiversity experiments show that increases in plant diversity can lead to greater biomass production, and some researchers suggest that high diversity plantings should be used for bioenergy production. However, many methods used in past biodiversity experiments are impractical for bioenergy plantings. For example, biodiversity experiments often use intensive management such as hand weeding to maintain low diversity plantings and exclude unplanted species, but this would not be done for bioenergy plantings. Also, biodiversity experiments generally use high seeding densities that would be too expensive for bioenergy plantings. Here we report the effects of biodiversity on biomass production from two studiesmore » of more realistic bioenergy crop plantings in southern Michigan, USA. One study involved comparing production between switchgrass (Panicum virgatum) monocultures and species-rich prairie plantings on private farm fields that were managed similarly to bioenergy plantings. The other study was an experiment where switchgrass was planted in monoculture and in combination with increasingly species-rich native prairie mixtures. Overall, we found that bioenergy plantings with higher species richness did not produce more biomass than switchgrass monocultures. The lack of a positive relationship between planted species richness and production in our studies may be due to several factors. Non-planted species (weeds) were not removed from our studies and these non-planted species may have competed with planted species and also prevented realized species richness from equaling planted species richness. Also, we found that low seeding density of individual species limited the biomass production of these individual species. Finally, production in future bioenergy plantings with high species richness may be increased by using a high density of inexpensive seed from switchgrass and other highly productive species, and future efforts to translate the results of biodiversity experiments to bioenergy plantings should consider the role of seeding density.« less
Poudel, Suresh; Giannone, Richard J; Rodriguez, Miguel; Raman, Babu; Martin, Madhavi Z; Engle, Nancy L; Mielenz, Jonathan R; Nookaew, Intawat; Brown, Steven D; Tschaplinski, Timothy J; Ussery, David; Hettich, Robert L
2017-01-01
Clostridium thermocellum is capable of solubilizing and converting lignocellulosic biomass into ethanol. Although much of the work-to-date has centered on characterizing this microbe's growth on model cellulosic substrates, such as cellobiose, Avicel, or filter paper, it is vitally important to understand its metabolism on more complex, lignocellulosic substrates to identify relevant industrial bottlenecks that could undermine efficient biofuel production. To this end, we have examined a time course progression of C. thermocellum grown on switchgrass to assess the metabolic and protein changes that occur during the conversion of plant biomass to ethanol. The most striking feature of the metabolome was the observed accumulation of long-chain, branched fatty acids over time, implying an adaptive restructuring of C. thermocellum's cellular membrane as the culture progresses. This is undoubtedly a response to the gradual accumulation of lignocellulose-derived inhibitory compounds as the organism deconstructs the switchgrass to access the embedded cellulose. Corroborating the metabolomics data, proteomic analysis revealed a corresponding time-dependent increase in various enzymes, including those involved in the interconversion of branched amino acids valine, leucine, and isoleucine to iso- and anteiso-fatty acid precursors. Additionally, the metabolic accumulation of hemicellulose-derived sugars and sugar alcohols concomitant with increased abundance of enzymes involved in C5 sugar metabolism/pentose phosphate pathway indicates that C. thermocellum shifts glycolytic intermediates to alternate pathways to modulate overall carbon flux in response to C5 sugar metabolites that increase during lignocellulose deconstruction. Integrated omic platforms provided complementary systems biological information that highlight C. thermocellum 's specific response to cytotoxic inhibitors released during the deconstruction and utilization of switchgrass. These additional viewpoints allowed us to fully realize the level to which the organism adapts to an increasingly challenging culture environment-information that will prove critical to C. thermocellum 's industrial efficacy.
Soil and water quality implications of production of herbaceous and woody energy crops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolbert, V.R.; Lindberg, J.E.; Green, T.H.
1997-10-01
Field-scale studies in three physiographic regions of the Tennessee Valley in the Southeastern US are being used to address the environmental effects of producing biomass energy crops on former agricultural lands. Comparison of erosion, surface water quality and quantity, and subsurface movement of water and nutrients from woody crops, switchgrass and agricultural crops began with crop establishment in 1994. Nutrient cycling, soil physical changes, and productivity of the different crops are also being monitored at the three sites.
Impact of different bioenergy crops on N-cycling bacterial and archaeal communities in soil.
Mao, Yuejian; Yannarell, Anthony C; Davis, Sarah C; Mackie, Roderick I
2013-03-01
Biomass production for bioenergy may change soil microbes and influence ecosystem properties. To explore the impact of different bioenergy cropping systems on soil microorganisms, the compositions and quantities of soil microbial communities (16S rRNA gene) and N-cycling functional groups (nifH, bacterial amoA, archaeal amoA and nosZ genes) were assessed under maize, switchgrass and Miscanthus x giganteus at seven sites representing a climate gradient (precipitation and temperature) in Illinois, USA. Overall, the site-to-site variation in community composition surpassed the variation due to plant type, and microbial communities under each crop did not converge on a 'typical' species assemblage. Fewer than 5% of archaeal amoA, bacterial amoA, nifH and nosZ OTUs were significantly different among these crops, but the largest differences observed at each site were found between maize and the two perennial grasses. Quantitative PCR revealed that the abundance of the nifH gene was significantly higher in the perennial grasses than in maize, and we also found significantly higher total N in the perennial grass soils than in maize. Thus, we conclude that cultivation of these perennial grasses, instead of maize, as bioenergy feedstocks can improve soil ecosystem nitrogen sustainability by increasing the population size of N-fixing bacteria. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
Modeling changes in biomass composition during microwave-based alkali pretreatment of switchgrass.
Keshwani, Deepak R; Cheng, Jay J
2010-01-01
This study used two different approaches to model changes in biomass composition during microwave-based pretreatment of switchgrass: kinetic modeling using a time-dependent rate coefficient, and a Mamdani-type fuzzy inference system. In both modeling approaches, the dielectric loss tangent of the alkali reagent and pretreatment time were used as predictors for changes in amounts of lignin, cellulose, and xylan during the pretreatment. Training and testing data sets for development and validation of the models were obtained from pretreatment experiments conducted using 1-3% w/v NaOH (sodium hydroxide) and pretreatment times ranging from 5 to 20 min. The kinetic modeling approach for lignin and xylan gave comparable results for training and testing data sets, and the differences between the predictions and experimental values were within 2%. The kinetic modeling approach for cellulose was not as effective, and the differences were within 5-7%. The time-dependent rate coefficients of the kinetic models estimated from experimental data were consistent with the heterogeneity of individual biomass components. The Mamdani-type fuzzy inference was shown to be an effective approach to model the pretreatment process and yielded predictions with less than 2% deviation from the experimental values for lignin and with less than 3% deviation from the experimental values for cellulose and xylan. The entropies of the fuzzy outputs from the Mamdani-type fuzzy inference system were calculated to quantify the uncertainty associated with the predictions. Results indicate that there is no significant difference between the entropies associated with the predictions for lignin, cellulose, and xylan. It is anticipated that these models could be used in process simulations of bioethanol production from lignocellulosic materials.
Lochner, Adriane; Giannone, Richard J; Keller, Martin; Antranikian, Garabed; Graham, David E; Hettich, Robert L
2011-12-02
Mass spectrometric analysis of Caldicellulosiruptor obsidiansis cultures grown on four different carbon sources identified 65% of the cells' predicted proteins in cell lysates and supernatants. Biological and technical replication together with sophisticated statistical analysis were used to reliably quantify protein abundances and their changes as a function of carbon source. Extracellular, multifunctional glycosidases were significantly more abundant on cellobiose than on the crystalline cellulose substrates Avicel and filter paper, indicating either disaccharide induction or constitutive protein expression. Highly abundant flagellar, chemotaxis, and pilus proteins were detected during growth on insoluble substrates, suggesting motility or specific substrate attachment. The highly abundant extracellular binding protein COB47_0549 together with the COB47_1616 ATPase might comprise the primary ABC-transport system for cellooligosaccharides, while COB47_0096 and COB47_0097 could facilitate monosaccharide uptake. Oligosaccharide degradation can occur either via extracellular hydrolysis by a GH1 β-glycosidase or by intracellular phosphorolysis using two GH94 enzymes. When C. obsidiansis was grown on switchgrass, the abundance of hemicellulases (including GH3, GH5, GH51, and GH67 enzymes) and certain sugar transporters increased significantly. Cultivation on biomass also caused a concerted increase in cytosolic enzymes for xylose and arabinose fermentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Xianzhi; Sun, Qining; Kosa, Matyas
Converting lignocellulosics to simple sugars for second generation bioethanol is complicated due to biomass recalcitrance, and it requires a pretreatment stage prior to enzymatic hydrolysis. In this study, native, pretreated (acid and alkaline) and partially hydrolyzed poplar and switchgrass were characterized by using Simons’ staining for cellulose accessibility, GPC for degree of polymerization (DP), and FTIR for chemical structure of plant cell wall. The susceptibility of the pretreated biomass to enzymatic hydrolysis could not be easily predicted from differences in cellulose DP and accessibility. During hydrolysis, the most significant DP reduction occurred at the very beginning of hydrolysis, and themore » DP began to decrease at a significantly slower rate after this initial period, suggesting an existence of a synergistic action of endo- and exoglucanases that contribute to the occurrence of a “peeling off” mechanism. Cellulose accessibility was found to be increased at the beginning of hydrolysis, after reaching a maximum value then started to decrease. In conclusion, the fresh enzyme restart hydrolysis experiment along with the accessibility data indicated that the factors associated with the nature of enzyme such as irreversible nonspecific binding of cellulases by lignin and steric hindrance of enzymes should be responsible for the gradual slowing down of the reaction rate.« less
Meng, Xianzhi; Sun, Qining; Kosa, Matyas; ...
2016-07-27
Converting lignocellulosics to simple sugars for second generation bioethanol is complicated due to biomass recalcitrance, and it requires a pretreatment stage prior to enzymatic hydrolysis. In this study, native, pretreated (acid and alkaline) and partially hydrolyzed poplar and switchgrass were characterized by using Simons’ staining for cellulose accessibility, GPC for degree of polymerization (DP), and FTIR for chemical structure of plant cell wall. The susceptibility of the pretreated biomass to enzymatic hydrolysis could not be easily predicted from differences in cellulose DP and accessibility. During hydrolysis, the most significant DP reduction occurred at the very beginning of hydrolysis, and themore » DP began to decrease at a significantly slower rate after this initial period, suggesting an existence of a synergistic action of endo- and exoglucanases that contribute to the occurrence of a “peeling off” mechanism. Cellulose accessibility was found to be increased at the beginning of hydrolysis, after reaching a maximum value then started to decrease. In conclusion, the fresh enzyme restart hydrolysis experiment along with the accessibility data indicated that the factors associated with the nature of enzyme such as irreversible nonspecific binding of cellulases by lignin and steric hindrance of enzymes should be responsible for the gradual slowing down of the reaction rate.« less
Costs of Producing Biomass from Riparian Buffer Strips
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turhollow, A.
2000-09-01
Nutrient runoff from poultry litter applied to agricultural fields in the Delmarva Peninsula contributes to high nutrient loadings in Chesapeake Bay. One potential means of ameliorating this problem is the use of riparian buffer strips. Riparian buffer strips intercept overland flows of water, sediments, nutrients, and pollutants; and ground water flows of nutrients and pollutants. Costs are estimated for three biomass systems grown on buffer strips: willow planted at a density of 15,300 trees/ha (6200 trees/acre); poplar planted at a density of 1345 trees/ha (545 trees/acre); and switchgrass. These costs are estimated for five different scenarios: (1) total economic costs,more » where everything is costed [cash costs, noncash costs (e.g., depreciation), land rent, labor]; (2) costs with Conservation Reserve Program (CRP) payments (which pays 50% of establishment costs and an annual land rent); (3) costs with enhanced CRP payments (which pays 95% of establishment costs and an annual payment of approximately 170% of land rent for trees and 150% of land rent for grasses); (4) costs when buffer strips are required, but harvest of biomass is not required [costs borne by biomass are for yield enhancing activities (e.g., fertilization), harvest, and transport]; and (5) costs when buffer strips are required. and harvest of biomass is required to remove nutrients (costs borne by biomass are for yield enhancing activities and transport). CRP regulations would have to change to allow harvest. Delivered costs of willow, poplar, and switchgrass [including transportation costs of $0.38/GJ ($0.40/million Btu) for switchgrass and $0.57/GJ ($0.60/million Btu) for willow and poplar] at 11.2 dry Mg/ha-year (5 dry tons/acre-year) for the five cost scenarios listed above are [$/GJ ($million BIN)]: (1) 3.30-5.45 (3.45-5.75); (2) 2.30-3.80 (2.45-4.00); (3) 1.70-2.45 (1.80-2.60); (4) l-85-3.80 (1.95-4.05); and (5) 0.80-1.50 (0.85-1.60). At yields of 15.7 to 17.9 GJ/ha-year (7 to 8 dry tons/acre-year), lower willow and poplar establishment costs, transportation costs of $0.30 to $0.45/GJ ($0.30-$0.50/million Btu), and lower willow and poplar harvest costs, total economic costs for willow (19-year stand life), poplar, and switchgrass are $2.35 to $2.6O/GJ ($2.50 to $2.75/million Btu). The potential production of biomass from riparian buffer strips in the Delmarva Peninsula ranges from 190,000 to 380,000 Mg (2 10,000 to 420,000 dry tons) per year.« less
Opportunities for Energy Crop Production Based on Subfield Scale Distribution of Profitability
Bonner, Ian J.; Cafferty, Kara G.; Muth, Jr., David J.; ...
2014-10-01
Incorporation of dedicated herbaceous energy crops into row crop landscapes is a promising means to supply an expanding biofuel industry while increasing biomass yields, benefiting soil and water quality, and increasing biodiversity. Despite these positive traits energy crops remain largely unaccepted due to concerns over their practicality and cost of implementation. This paper presents a case study on Hardin County, Iowa to demonstrate how subfield decision making can be used to target candidate areas for conversion to energy crop production. The strategy presented integrates switchgrass (Panicum virgatum L.) into subfield landscape positions where corn (Zea mays L.) grain is modeledmore » to operate at a net economic loss. The results of this analysis show that switchgrass integration has the potential to increase sustainable biomass production from 48 to 99% (depending on the rigor of conservation practices applied to corn stover collection) while also improving field level profitability. Candidate land area is highly sensitive to grain price (0.18 to 0.26 US$ kg-1) and dependent on the acceptable net profit for corn production (ranging from 0 to -1,000 US$ ha-1). This work presents the case that switchgrass can be economically implemented into row crop production landscapes when management decisions are applied at a subfield scale and compete against areas of the field operating at a negative net profit.« less
Johnson, Deayne M; Deocampo, Daniel M; El-Mayas, Hanan; Greipsson, Sigurdur
2015-01-01
The effects of combined chemical application of benomyl, ethylenedianinetetraacetate (EDTA), and iron (Fe) (foliar and root) on lead (Pb) phytoextraction by switchgrass (Panicum virgatum) and corn (Zea mays) was examined. Switchgrass was grown in Pb-contaminated urban topsoil with the following treatments: (C) Control, (B) benomyl, (E) EDTA, (F) foliar-Fe, (BE) benomyl + EDTA, (BF) benomyl + foliar-Fe, (FE) foliar-Fe + EDTA, (BFE) benomyl + foliar-Fe + EDTA. Corn was grown in sand-culture supplemented with Pb (500 mg kg(-1)) with the following treatments: (C) control, (B) benomyl, (E) EDTA, (F) root-Fe, (BE) benomyl + EDTA, (BF) benomyl + root-Fe, (FE) root-iron + EDTA, and, (BFE) benomyl + root-Fe + EDTA. All treatments were replicated three times and pots were arranged in a completely randomized design. Plants were analyzed for element concentration (Fe, Zn, P, and Pb) using either inductively coupled plasma (argon) atomic emission spectroscopy (ICP-AES) or graphite furnace atomic absorption spectrometer. Iron supplementation (foliar and root) affected Pb-translocation in plants. Foliar-Fe treatment increased translocation ratio of Pb (TF-Pb) significantly compared to other treatments with the exception of plants treated with benomyl and BF. Root-Fe treatment in combination with EDTA (FE) increased TF-Pb significantly compared to other treatments. Phytoextraction was improved by the combined chemical application; plants treated with BFE treatment increased Pb-total-phytoextraction by 424% compared to Control plants.
Li, Hongjia; Pattathil, Sivakumar; Foston, Marcus B; Ding, Shi-You; Kumar, Rajeev; Gao, Xiadi; Mittal, Ashutosh; Yarbrough, John M; Himmel, Michael E; Ragauskas, Arthur J; Hahn, Michael G; Wyman, Charles E
2014-01-01
Agave, which is well known for tequila and other liquor production in Mexico, has recently gained attention because of its attractive potential to launch sustainable bioenergy feedstock solutions for semi-arid and arid lands. It was previously found that agave cell walls contain low lignin and relatively diverse non-cellulosic polysaccharides, suggesting unique recalcitrant features when compared to conventional C4 and C3 plants. Here, we report sugar release data from fungal enzymatic hydrolysis of non-pretreated and hydrothermally pretreated biomass that shows agave to be much less recalcitrant to deconstruction than poplar or switchgrass. In fact, non-pretreated agave has a sugar release five to eight times greater than that of poplar wood and switchgrass . Meanwhile, state of the art techniques including glycome profiling, nuclear magnetic resonance (NMR), Simon's Stain, confocal laser scanning microscopy and so forth, were applied to measure interactions of non-cellulosic wall components, cell wall hydrophilicity, and enzyme accessibility to identify key structural features that make agave cell walls less resistant to biological deconstruction when compared to poplar and switchgrass. This study systematically evaluated the recalcitrant features of agave plants towards biofuels applications. The results show that not only does agave present great promise for feeding biorefineries on semi-arid and arid lands, but also show the value of studying agave's low recalcitrance for developments in improving cellulosic energy crops.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jesus, Ederson da C.; Liang, Chao; Quensen, John F.
Because soil microbes drive many of the processes underpinning ecosystem services provided by soils, understanding how cropping systems affect soil microbial communities is important for productive and sustainable management. We characterized and compared soil microbial communities under restored prairie and three potential cellulosic biomass crops (corn, switchgrass, and mixed prairie grasses) in two spatial experimental designs – side-by-side plots where plant communities were in their second year since establishment (i.e., intensive sites) and regionally distributed fields where plant communities had been in place for at least 10 years (i.e., extensive sites). We assessed microbial community structure and composition using lipidmore » analysis, pyrosequencing of rRNA genes (targeting fungi, bacteria, archaea, and lower eukaryotes), and targeted metagenomics of nifH genes. For the more recently established intensive sites, soil type was more important than plant community in determining microbial community structure, while plant community was the more important driver of soil microbial communities for the older extensive sites where microbial communities under corn were clearly differentiated from those under switchgrass and restored prairie. Here, bacterial and fungal biomasses, especially biomass of arbuscular mycorrhizal fungi, were higher under perennial grasses and restored prairie, suggesting a more active carbon pool and greater microbial processing potential, which should be beneficial for plant acquisition and ecosystem retention of carbon, water, and nutrients.« less
Opportunities and roadblocks in utilizing forages and small grains for liquid fuels.
Sarath, Gautam; Mitchell, Robert B; Sattler, Scott E; Funnell, Deanna; Pedersen, Jeffery F; Graybosch, Robert A; Vogel, Kenneth P
2008-05-01
This review focuses on the potential advantages and disadvantages of forages such as switchgrass (Panicum virgatum), and two small grains: sorghum (Sorghum bicolor), and wheat (Triticum aesitvum), as feedstocks for biofuels. It highlights the synergy provided by applying what is known from forage digestibility and wheat and sorghum starch properties studies to the biofuels sector. Opportunities therefore, exist to improve biofuel qualities in these crops via genetics and agronomics. In contrast to cereal crops, switchgrass still retains tremendous exploitable genetic diversity, and can be specifically improved to fit a particular agronomic, management, and conversion platform. Combined with emerging studies on switchgrass genomics, conversion properties and management, the future for genetic modification of this species through conventional and molecular breeding strategies appear to be bright. The presence of brown-midrib mutations in sorghum that alter cell wall composition by reducing lignin and other attributes indicate that sorghum could serve as an important model species for C(4)-grasses. Utilization of the brown-midrib traits could lead to the development of forage and sweet sorghums as novel biomass crops. Additionally, wheat crop residue, and wheat and sorghum with improved starch content and composition represent alternate biofuel sources. However, the use of wheat starch as a biofuel is unlikely but its value as a model to study starch properties on biofuel yields holds significant promise.
Jesus, Ederson da C.; Liang, Chao; Quensen, John F.; ...
2015-06-28
Because soil microbes drive many of the processes underpinning ecosystem services provided by soils, understanding how cropping systems affect soil microbial communities is important for productive and sustainable management. We characterized and compared soil microbial communities under restored prairie and three potential cellulosic biomass crops (corn, switchgrass, and mixed prairie grasses) in two spatial experimental designs – side-by-side plots where plant communities were in their second year since establishment (i.e., intensive sites) and regionally distributed fields where plant communities had been in place for at least 10 years (i.e., extensive sites). We assessed microbial community structure and composition using lipidmore » analysis, pyrosequencing of rRNA genes (targeting fungi, bacteria, archaea, and lower eukaryotes), and targeted metagenomics of nifH genes. For the more recently established intensive sites, soil type was more important than plant community in determining microbial community structure, while plant community was the more important driver of soil microbial communities for the older extensive sites where microbial communities under corn were clearly differentiated from those under switchgrass and restored prairie. Here, bacterial and fungal biomasses, especially biomass of arbuscular mycorrhizal fungi, were higher under perennial grasses and restored prairie, suggesting a more active carbon pool and greater microbial processing potential, which should be beneficial for plant acquisition and ecosystem retention of carbon, water, and nutrients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, John B.; Nassauer, Joan I.; Currie, William S.
Wild bee populations are currently under threat, which has led to recent efforts to increase pollinator habitat in North America. Simultaneously, U.S. federal energy policies are beginning to encourage perennial bioenergy cropping (PBC) systems, which have the potential to support native bees. Our objective was to explore the potentially interactive effects of crop composition, total PBC area, and PBC patches in different landscape configurations. Using a spatially-explicit modeling approach, the Lonsdorf model, we simulated the impacts of three perennial bioenergy crops (PBC: willow, switchgrass, and prairie), three scenarios with different total PBC area (11.7%, 23.5% and 28.8% of agricultural landmore » converted to PBC) and two types of landscape configurations (PBC in clustered landscape patterns that represent realistic future configurations or in dispersed neutral landscape models) on a nest abundance index in an Illinois landscape. Our modeling results suggest that crop composition and PBC area are particularly important for bee nest abundance, whereas landscape configuration is associated with bee nest abundance at the local scale but less so at the regional scale. Moreover, strategies to enhance wild bee habitat should therefore emphasize the crop composition and amount of PBC.« less
Graham, John B.; Nassauer, Joan I.; Currie, William S.; ...
2017-03-25
Wild bee populations are currently under threat, which has led to recent efforts to increase pollinator habitat in North America. Simultaneously, U.S. federal energy policies are beginning to encourage perennial bioenergy cropping (PBC) systems, which have the potential to support native bees. Our objective was to explore the potentially interactive effects of crop composition, total PBC area, and PBC patches in different landscape configurations. Using a spatially-explicit modeling approach, the Lonsdorf model, we simulated the impacts of three perennial bioenergy crops (PBC: willow, switchgrass, and prairie), three scenarios with different total PBC area (11.7%, 23.5% and 28.8% of agricultural landmore » converted to PBC) and two types of landscape configurations (PBC in clustered landscape patterns that represent realistic future configurations or in dispersed neutral landscape models) on a nest abundance index in an Illinois landscape. Our modeling results suggest that crop composition and PBC area are particularly important for bee nest abundance, whereas landscape configuration is associated with bee nest abundance at the local scale but less so at the regional scale. Moreover, strategies to enhance wild bee habitat should therefore emphasize the crop composition and amount of PBC.« less
Fractionation of Organosolv Lignin Using Acetone:Water and Properties of the Obtained Fractions
Sadeghifar, Hasan; Wells, Tyrone; Le, Rosemary Khuu; ...
2016-11-07
In this study, lignin fractions with different molecular weight were prepared using a simple and almost green method from switchgrass and pine organosolv lignin. Different proportions of acetone in water, ranging from 30 to 60%, were used for lignin fractionation. A higher concentration of acetone dissolved higher molecular weight fractions of the lignin. Fractionated organosolv lignin showed different molecular weight and functional groups. Higher molecular weight fractions exhibited more aliphatic and less phenolic OH than lower molecular weight fractions. Lower molecular weight fractions lead to more homogeneous structure compared to samples with a higher molecular weight. In conclusion, all fractionsmore » showed strong antioxidant activity.« less
Zurawski, Jeffrey V.; Khatibi, Piyum A.; Akinosho, Hannah O.; Straub, Christopher T.; Compton, Scott H.; Conway, Jonathan M.; Lee, Laura L.; Ragauskas, Arthur J.; Davison, Brian H.; Adams, Michael W. W.
2017-01-01
ABSTRACT Improving access to the carbohydrate content of lignocellulose is key to reducing recalcitrance for microbial deconstruction and conversion to fuels and chemicals. Caldicellulosiruptor bescii completely solubilizes naked microcrystalline cellulose, yet this transformation is impeded within the context of the plant cell wall by a network of lignin and hemicellulose. Here, the bioavailability of carbohydrates to C. bescii at 70°C was examined for reduced lignin transgenic switchgrass lines COMT3(+) and MYB Trans, their corresponding parental lines (cultivar Alamo) COMT3(−) and MYB wild type (WT), and the natural variant cultivar Cave-in-Rock (CR). Transgenic modification improved carbohydrate solubilization by C. bescii to 15% (2.3-fold) for MYB and to 36% (1.5-fold) for COMT, comparable to the levels achieved for the natural variant, CR (36%). Carbohydrate solubilization was nearly doubled after two consecutive microbial fermentations compared to one microbial step, but it never exceeded 50% overall. Hydrothermal treatment (180°C) prior to microbial steps improved solubilization 3.7-fold for the most recalcitrant line (MYB WT) and increased carbohydrate recovery to nearly 50% for the least recalcitrant lines [COMT3(+) and CR]. Alternating microbial and hydrothermal steps (T→M→T→M) further increased bioavailability, achieving carbohydrate solubilization ranging from 50% for MYB WT to above 70% for COMT3(+) and CR. Incomplete carbohydrate solubilization suggests that cellulose in the highly lignified residue was inaccessible; indeed, residue from the T→M→T→M treatment was primarily glucan and inert materials (lignin and ash). While C. bescii could significantly solubilize the transgenic switchgrass lines and natural variant tested here, additional or alternative strategies (physical, chemical, enzymatic, and/or genetic) are needed to eliminate recalcitrance. IMPORTANCE Key to a microbial process for solubilization of plant biomass is the organism's access to the carbohydrate content of lignocellulose. Economically viable routes will characteristically minimize physical, chemical, and biological pretreatment such that microbial steps contribute to the greatest extent possible. Recently, transgenic versions of plants and trees have been developed with the intention of lowering the barrier to lignocellulose conversion, with particular focus on lignin content and composition. Here, the extremely thermophilic bacterium Caldicellulosiruptor bescii was used to solubilize natural and genetically modified switchgrass lines, with and without the aid of hydrothermal treatment. For lignocellulose conversion, it is clear that the microorganism, plant biomass substrate, and processing steps must all be considered simultaneously to achieve optimal results. Whether switchgrass lines engineered for low lignin or natural variants with desirable properties are used, conversion will depend on microbial access to crystalline cellulose in the plant cell wall. PMID:28625990
Water Quality and Quantity Implications of Biofuel Intercropping at a Regional Scale (Invited)
NASA Astrophysics Data System (ADS)
Christopher, S. F.; Schoenholtz, S. H.; Nettles, J.
2010-12-01
Because of a strong national interest in greater energy independence and concern for the role of fossil fuels in global climate change, the importance of biofuels as an alternative renewable energy source has developed rapidly. The U.S. government has mandated production of 36 billion gallons of renewable fuels by 2022, which compromises 15 % of U.S. liquid transportation fuels. Large-scale production of corn-based ethanol often requires irrigation and is associated with erosion, excess sediment export, and leaching of nitrogen and phosphorus. Production of cellulosic biomass offers a promising alternative to corn-based systems. Although cultivation of switchgrass using standard agricultural practices is one option being considered for production of cellulosic biomass, intercropping cellulosic biofuel crops within managed forests could provide feedstock without primary land use change or the water quality impacts associated with annual crops. Catchlight Energy LLC is examining the feasibility and sustainability of intercropping switchgrass in loblolly pine plantations in the southeastern US. While ongoing research is determining efficient operational techniques, information needed to evaluate the effects of these practices on water resources, such as field-scale evapotranspiration rates, nutrient cycling, and soil erosion rates are being examined in a large watershed study. Three sets of four to five sub-watersheds are fully instrumented and currently collecting calibration data, with forest-based biofuel treatments to be installed in 2011 and 2012. These watershed studies will give us detailed information to understand processes and guide management decisions. However, environmental implications of these systems need to be examined at a regional scale. We used the Soil Water Assessment Tool (SWAT), a physically-based hydrologic model, to examine various scenarios ranging from switchgrass intercropping a small percentage of managed pine forest land to conversion of all managed forested land to switchgrass. The current results are based on early indicators from operational trials, but will be refined as the watershed studies progress. Our results will be essential to public policy makers as they influence and plan for large-scale production of cellulosic biofuels while sustaining water quality and quantity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeAngelis, K.M.; Gladden, J.G.; Allgaier, M.
2010-03-01
Producing cellulosic biofuels from plant material has recently emerged as a key U.S. Department of Energy goal. For this technology to be commercially viable on a large scale, it is critical to make production cost efficient by streamlining both the deconstruction of lignocellulosic biomass and fuel production. Many natural ecosystems efficiently degrade lignocellulosic biomass and harbor enzymes that, when identified, could be used to increase the efficiency of commercial biomass deconstruction. However, ecosystems most likely to yield relevant enzymes, such as tropical rain forest soil in Puerto Rico, are often too complex for enzyme discovery using current metagenomic sequencing technologies.more » One potential strategy to overcome this problem is to selectively cultivate the microbial communities from these complex ecosystems on biomass under defined conditions, generating less complex biomass-degrading microbial populations. To test this premise, we cultivated microbes from Puerto Rican soil or green waste compost under precisely defined conditions in the presence dried ground switchgrass (Panicum virgatum L.) or lignin, respectively, as the sole carbon source. Phylogenetic profiling of the two feedstock-adapted communities using SSU rRNA gene amplicon pyrosequencing or phylogenetic microarray analysis revealed that the adapted communities were significantly simplified compared to the natural communities from which they were derived. Several members of the lignin-adapted and switchgrass-adapted consortia are related to organisms previously characterized as biomass degraders, while others were from less well-characterized phyla. The decrease in complexity of these communities make them good candidates for metagenomic sequencing and will likely enable the reconstruction of a greater number of full length genes, leading to the discovery of novel lignocellulose-degrading enzymes adapted to feedstocks and conditions of interest.« less
Milano, Elizabeth R.; Payne, Courtney E.; Wolfrum, Edward J.; ...
2018-02-03
Biofuels derived from lignocellulosic plant material are an important component of current renewable energy strategies. Improvement efforts in biofuel feedstock crops have been primarily focused on increasing biomass yield with less consideration for tissue quality or composition. Four primary components found in the plant cell wall contribute to the overall quality of plant tissue and conversion characteristics, cellulose and hemicellulose polysaccharides are the primary targets for fuel conversion, while lignin and ash provide structure and defense. We explore the genetic architecture of tissue characteristics using a quantitative trait loci (QTL) mapping approach in Panicum hallii, a model lignocellulosic grass system.more » Diversity in the mapping population was generated by crossing xeric and mesic varietals, comparative to northern upland and southern lowland ecotypes in switchgrass. We use near-infrared spectroscopy with a primary analytical method to create a P. hallii specific calibration model to quickly quantify cell wall components. Ash, lignin, glucan, and xylan comprise 68% of total dry biomass in P. hallii: comparable to other feedstocks. We identified 14 QTL and one epistatic interaction across these four cell wall traits and found almost half of the QTL to localize to a single linkage group. Panicum hallii serves as the genomic model for its close relative and emerging biofuel crop, switchgrass (P. virgatum). We used high throughput phenotyping to map genomic regions that impact natural variation in leaf tissue composition. Understanding the genetic architecture of tissue traits in a tractable model grass system will lead to a better understanding of cell wall structure as well as provide genomic resources for bioenergy crop breeding programs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milano, Elizabeth R.; Payne, Courtney E.; Wolfrum, Edward J.
Biofuels derived from lignocellulosic plant material are an important component of current renewable energy strategies. Improvement efforts in biofuel feedstock crops have been primarily focused on increasing biomass yield with less consideration for tissue quality or composition. Four primary components found in the plant cell wall contribute to the overall quality of plant tissue and conversion characteristics, cellulose and hemicellulose polysaccharides are the primary targets for fuel conversion, while lignin and ash provide structure and defense. We explore the genetic architecture of tissue characteristics using a quantitative trait loci (QTL) mapping approach in Panicum hallii, a model lignocellulosic grass system.more » Diversity in the mapping population was generated by crossing xeric and mesic varietals, comparative to northern upland and southern lowland ecotypes in switchgrass. We use near-infrared spectroscopy with a primary analytical method to create a P. hallii specific calibration model to quickly quantify cell wall components. Ash, lignin, glucan, and xylan comprise 68% of total dry biomass in P. hallii: comparable to other feedstocks. We identified 14 QTL and one epistatic interaction across these four cell wall traits and found almost half of the QTL to localize to a single linkage group. Panicum hallii serves as the genomic model for its close relative and emerging biofuel crop, switchgrass (P. virgatum). We used high throughput phenotyping to map genomic regions that impact natural variation in leaf tissue composition. Understanding the genetic architecture of tissue traits in a tractable model grass system will lead to a better understanding of cell wall structure as well as provide genomic resources for bioenergy crop breeding programs.« less
2011-12-01
Fermentation Jet Fuel-Like Product sugarcane Alcohol Oligomerization Conventional Refinery ProcessesSugar switchgrass Dehydration Pyrolysis Fermentation...PolymerizationOlefins Lignocellulose corn stover forest waste Jet Fuel-Like ProductBio-CrudePyrolysis Hydroprocessing Unclassified Back Up Slides
Oguntimein, Gbekeloluwa B; Rodriguez, Miguel; Dumitrache, Alexandru; Shollenberger, Todd; Decker, Stephen R; Davison, Brian H; Brown, Steven D
2018-02-01
To develop and prototype a high-throughput microplate assay to assess anaerobic microorganisms and lignocellulosic biomasses in a rapid, cost-effective screen for consolidated bioprocessing potential. Clostridium thermocellum parent Δhpt strain deconstructed Avicel to cellobiose, glucose, and generated lactic acid, formic acid, acetic acid and ethanol as fermentation products in titers and ratios similar to larger scale fermentations confirming the suitability of a plate-based method for C. thermocellum growth studies. C. thermocellum strain LL1210, with gene deletions in the key central metabolic pathways, produced higher ethanol titers in the Consolidated Bioprocessing (CBP) plate assay for both Avicel and switchgrass fermentations when compared to the Δhpt strain. A prototype microplate assay system is developed that will facilitate high-throughput bioprospecting for new lignocellulosic biomass types, genetic variants and new microbial strains for bioethanol production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Womac, Alvin; Groothuis, Mitch; Westover, Tyler
2013-09-24
This project evaluates and compares comprehensive feedstock logistics systems (FLS), where a FLS is defined to comprehensively span from biomass material standing in a field to conveyance of a uniform, industrial-milled product into the throat of a biomass conversion facility (BCF). Elements of the bulk-format FLS evaluated in this project include: field-standing switchgrass dry chopped into bulk format on the farm, hauled (either loose or bulk compacted) to storage, stored with confining overburden in a protective facility, reclaimed and conveyed to bulk-format discharge, bulk compacted into an ejector trailer, and conveyed as bulk flow into the BCF. In this FLSmore » evaluation, bulk storage bins served as a controlled and sensored proxy for large commercial stacks protected from moisture with a membrane cover.« less
2014-01-01
Background Agave, which is well known for tequila and other liquor production in Mexico, has recently gained attention because of its attractive potential to launch sustainable bioenergy feedstock solutions for semi-arid and arid lands. It was previously found that agave cell walls contain low lignin and relatively diverse non-cellulosic polysaccharides, suggesting unique recalcitrant features when compared to conventional C4 and C3 plants. Results Here, we report sugar release data from fungal enzymatic hydrolysis of non-pretreated and hydrothermally pretreated biomass that shows agave to be much less recalcitrant to deconstruction than poplar or switchgrass. In fact, non-pretreated agave has a sugar release five to eight times greater than that of poplar wood and switchgrass . Meanwhile, state of the art techniques including glycome profiling, nuclear magnetic resonance (NMR), Simon’s Stain, confocal laser scanning microscopy and so forth, were applied to measure interactions of non-cellulosic wall components, cell wall hydrophilicity, and enzyme accessibility to identify key structural features that make agave cell walls less resistant to biological deconstruction when compared to poplar and switchgrass. Conclusions This study systematically evaluated the recalcitrant features of agave plants towards biofuels applications. The results show that not only does agave present great promise for feeding biorefineries on semi-arid and arid lands, but also show the value of studying agave’s low recalcitrance for developments in improving cellulosic energy crops. PMID:24708685
Precision Gas Sampling (PGS) Validation2011-2014 Final Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, M. S.; Fischer, M. L.; Biraud, S. C.
In this field campaign, we used eddy covariance towers to quantify carbon, water, and energy fluxes from a pasture and a wheat field that were converted to switchgrass. The U.S. Department of Energy is investing in switchgrass as a cellulosic bioenergy crop, but there is little data available that could be used to develop or test land surface model representations of the crop. This campaign was a collaboration between Lawrence Berkeley National Laboratory and the U.S. Department of Agriculture Agricultural Research Service. Unfortunately, in 2011, Oklahoma had one of the most severe droughts on record, and the crop in onemore » of the switchgrass fields experienced almost complete die-off. The crop was replanted, but subsequent drought conditions prevented its establishment. Then, in April 2012, a large tornado demolished the instruments at our site in Woodward, Oklahoma. These two events meant that we have some interesting data on land response to extreme weather; however, we were not able to collect continuous data for annual sums as originally intended. We did observe that, because of the drought, the net ecosystem exchange of CO 2 was much lower in 2011 than in 2010. Concomitantly, sensible heat fluxes increased and latent heat fluxes decreased. These conditions would have large consequences for land surface forcing of convection. Data from all years were submitted to the Atmospheric Radiation Measurement Climate Research Facility Data Archive, and the sites were registered in AmeriFlux.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howe, Daniel T.; Westover, Tyler; Carpenter, Daniel
2015-05-21
Feedstock composition can affect final fuel yields and quality for the fast pyrolysis and hydrotreatment upgrading pathway. However, previous studies have focused on individual unit operations rather than the integrated system. In this study, a suite of six pure lignocellulosic feedstocks (clean pine, whole pine, tulip poplar, hybrid poplar, switchgrass, and corn stover) and two blends (equal weight percentages whole pine/tulip poplar/switchgrass and whole pine/clean pine/hybrid poplar) were prepared and characterized at Idaho National Laboratory. These blends then underwent fast pyrolysis at the National Renewable Energy Laboratory and hydrotreatment at Pacific Northwest National Laboratory. Although some feedstocks showed a highmore » fast pyrolysis bio-oil yield such as tulip poplar at 57%, high yields in the hydrotreater were not always observed. Results showed overall fuel yields of 15% (switchgrass), 18% (corn stover), 23% (tulip poplar, Blend 1, Blend 2), 24% (whole pine, hybrid poplar) and 27% (clean pine). Simulated distillation of the upgraded oils indicated that the gasoline fraction varied from 39% (clean pine) to 51% (corn stover), while the diesel fraction ranged from 40% (corn stover) to 46% (tulip poplar). Little variation was seen in the jet fuel fraction at 11 to 12%. Hydrogen consumption during hydrotreating, a major factor in the economic feasibility of the integrated process, ranged from 0.051 g/g dry feed (tulip poplar) to 0.070 g/g dry feed (clean pine).« less
Optimizing on-farm pretreatment of perennial grasses for fuel ethanol production.
Digman, Matthew F; Shinners, Kevin J; Casler, Michael D; Dien, Bruce S; Hatfield, Ronald D; Jung, Hans-Joachim G; Muck, Richard E; Weimer, Paul J
2010-07-01
Switchgrass (Panicum virgatum L.) and reed canarygrass (Phalaris arundinacea L.) were pretreated under ambient temperature and pressure with sulfuric acid and calcium hydroxide in separate experiments. Chemical loadings from 0 to 100g (kg DM)(-1) and durations of anaerobic storage from 0 to 180days were investigated by way of a central composite design at two moisture contents (40% or 60% w.b.). Pretreated and untreated samples were fermented to ethanol by Saccharomyces cerevisiae D5A in the presence of a commercially available cellulase (Celluclast 1.5L) and beta-glucosidase (Novozyme 188). Xylose levels were also measured following fermentation because xylose is not metabolized by S. cerevisiae. After sulfuric acid pretreatment and anaerobic storage, conversion of cell wall glucose to ethanol for reed canarygrass ranged from 22% to 83% whereas switchgrass conversions ranged from 16% to 46%. Pretreatment duration had a positive effect on conversion but was mitigated with increased chemical loadings. Conversions after calcium hydroxide pretreatment and anaerobic storage ranged from 21% to 55% and 18% to 54% for reed canarygrass and switchgrass, respectively. The efficacy of lime pretreatment was found to be highly dependent on moisture content. Moreover, pretreatment duration was only found to be significant for reed canarygrass. Although significant levels of acetate and lactate were observed in the biomass after storage, S. cerevisiae was not found to be inhibited at a 10% solids loading. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cronin, Keith R.; Runge, Troy M.; Zhang, Xuesong
By modeling the life cycle of fuel pathways for cellulosic ethanol (CE) it can help identify logistical barriers and anticipated impacts for the emerging commercial CE industry. Such models contain high amounts of variability, primarily due to the varying nature of agricultural production but also because of limitations in the availability of data at the local scale, resulting in the typical practice of using average values. In this study, 12 spatially explicit, cradle-to-refinery gate CE pathways were developed that vary by feedstock (corn stover, switchgrass, and Miscanthus), nitrogen application rate (higher, lower), pretreatment method (ammonia fiber expansion [AFEX], dilute acid),more » and co-product treatment method (mass allocation, sub-division), in which feedstock production was modeled at the watershed scale over a nine-county area in Southwestern Michigan. When comparing feedstocks, the model showed that corn stover yielded higher global warming potential (GWP), acidification potential (AP), and eutrophication potential (EP) than the perennial feedstocks of switchgrass and Miscanthus, on an average per area basis. Full life cycle results per MJ of produced ethanol demonstrated more mixed results, with corn stover-derived CE scenarios that use sub-division as a co-product treatment method yielding similarly favorable outcomes as switchgrass- and Miscanthus-derived CE scenarios. Variability was found to be greater between feedstocks than watersheds. Additionally, scenarios using dilute acid pretreatment had more favorable results than those using AFEX pretreatment.« less
Cronin, Keith R.; Runge, Troy M.; Zhang, Xuesong; ...
2016-07-13
By modeling the life cycle of fuel pathways for cellulosic ethanol (CE) it can help identify logistical barriers and anticipated impacts for the emerging commercial CE industry. Such models contain high amounts of variability, primarily due to the varying nature of agricultural production but also because of limitations in the availability of data at the local scale, resulting in the typical practice of using average values. In this study, 12 spatially explicit, cradle-to-refinery gate CE pathways were developed that vary by feedstock (corn stover, switchgrass, and Miscanthus), nitrogen application rate (higher, lower), pretreatment method (ammonia fiber expansion [AFEX], dilute acid),more » and co-product treatment method (mass allocation, sub-division), in which feedstock production was modeled at the watershed scale over a nine-county area in Southwestern Michigan. When comparing feedstocks, the model showed that corn stover yielded higher global warming potential (GWP), acidification potential (AP), and eutrophication potential (EP) than the perennial feedstocks of switchgrass and Miscanthus, on an average per area basis. Full life cycle results per MJ of produced ethanol demonstrated more mixed results, with corn stover-derived CE scenarios that use sub-division as a co-product treatment method yielding similarly favorable outcomes as switchgrass- and Miscanthus-derived CE scenarios. Variability was found to be greater between feedstocks than watersheds. Additionally, scenarios using dilute acid pretreatment had more favorable results than those using AFEX pretreatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, Daniel; Westover, Tyler; Howe, Daniel
Here, we report here on an experimental study to produce refinery-ready fuel blendstocks via catalytic hydrodeoxygenation (upgrading) of pyrolysis oil using several biomass feedstocks and various blends. Blends were tested along with the pure materials to determine the effect of blending on product yields and qualities. Within experimental error, oil yields from fast pyrolysis and upgrading are shown to be linear functions of the blend components. Switchgrass exhibited lower fast pyrolysis and upgrading yields than the woody samples, which included clean pine, oriented strand board (OSB), and a mix of pinon and juniper (PJ). The notable exception was PJ, formore » which the poor upgrading yield of 18% was likely associated with the very high viscosity of the PJ fast pyrolysis oil (947 cp). The highest fast pyrolysis yield (54% dry basis) was obtained from clean pine, while the highest upgrading yield (50%) was obtained from a blend of 80% clean pine and 20% OSB (CP 8OSB 2). For switchgrass, reducing the fast pyrolysis temperature to 450 degrees C resulted in a significant increase to the pyrolysis oil yield and reduced hydrogen consumption during hydrotreating, but did not directly affect the hydrotreating oil yield. The water content of fast pyrolysis oils was also observed to increase linearly with the summed content of potassium and sodium, ranging from 21% for clean pine to 37% for switchgrass. Multiple linear regression models demonstrate that fast pyrolysis is strongly dependent upon the contents lignin and volatile matter as well as the sum of potassium and sodium.« less
Root architecture impacts on root decomposition rates in switchgrass
NASA Astrophysics Data System (ADS)
de Graaff, M.; Schadt, C.; Garten, C. T.; Jastrow, J. D.; Phillips, J.; Wullschleger, S. D.
2010-12-01
Roots strongly contribute to soil organic carbon accrual, but the rate of soil carbon input via root litter decomposition is still uncertain. Root systems are built up of roots with a variety of different diameter size classes, ranging from very fine to very coarse roots. Since fine roots have low C:N ratios and coarse roots have high C:N ratios, root systems are heterogeneous in quality, spanning a range of different C:N ratios. Litter decomposition rates are generally well predicted by litter C:N ratios, thus decomposition of roots may be controlled by the relative abundance of fine versus coarse roots. With this study we asked how root architecture (i.e. the relative abundance of fine versus coarse roots) affects the decomposition of roots systems in the biofuels crop switchgrass (Panicum virgatum L.). To understand how root architecture affects root decomposition rates, we collected roots from eight switchgrass cultivars (Alamo, Kanlow, Carthage, Cave-in-Rock, Forestburg, Southlow, Sunburst, Blackwell), grown at FermiLab (IL), by taking 4.8-cm diameter soil cores from on top of the crown and directly next to the crown of individual plants. Roots were carefully excised from the cores by washing and analyzed for root diameter size class distribution using WinRhizo. Subsequently, root systems of each of the plants (4 replicates per cultivar) were separated in 'fine' (0-0.5 mm), 'medium' (0.5-1 mm) and 'coarse' roots (1-2.5 mm), dried, cut into 0.5 cm (medium and coarse roots) and 2 mm pieces (fine roots), and incubated for 90 days. For each of the cultivars we established five root-treatments: 20g of soil was amended with 0.2g of (1) fine roots, (2) medium roots, (3) coarse roots, (4) a 1:1:1 mixture of fine, medium and coarse roots, and (5) a mixture combining fine, medium and coarse roots in realistic proportions. We measured CO2 respiration at days 1, 3, 7, 15, 30, 60 and 90 during the experiment. The 13C signature of the soil was -26‰, and the 13C signature of plants was -12‰, enabling us to differentiate between root-derived C and native SOM-C respiration. We found that the relative abundance of fine, medium and coarse roots were significantly different among cultivars. Root systems of Alamo, Kanlow and Cave-in-Rock were characterized by a large abundance of coarse-, relative to fine roots, whereas Carthage, Forestburg and Blackwell had a large abundance of fine, relative to coarse roots. Fine roots had a 28% lower C:N ratio than medium and coarse roots. These differences led to different root decomposition rates. We conclude that root architecture should be taken into account when predicting root decomposition rates; enhanced understanding of the mechanisms of root decomposition will improve model predictions of C input to soil organic matter.
Differential priming of soil carbon driven by soil depth and root impacts on carbon availability
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Graaff, Marie-Anne; Jastrow, Julie D.; Gillette, Shay
2013-11-15
Enhanced root-exudate inputs can stimulate decomposition of soil carbon (C) by priming soil microbial activity, but the mechanisms controlling the magnitude and direction of the priming effect remain poorly understood. With this study we evaluated how differences in soil C availability affect the impact of simulated root exudate inputs on priming. We conducted a 60-day laboratory incubation with soils collected (60 cm depth) from under six switchgrass (Panicum virgatum) cultivars. Differences in specific root length (SRL) among cultivars were expected to result in small differences in soil C inputs and thereby create small differences in the availability of recent labilemore » soil C; whereas soil depth was expected to create large overall differences in soil C availability. Soil cores from under each cultivar (roots removed) were divided into depth increments of 0–10, 20–30, and 40–60 cm and incubated with addition of either: (1) water or (2) 13C-labeled synthetic root exudates (0.7 mg C/g soil). We measured CO2 respiration throughout the experiment. The natural difference in 13C signature between C3 soils and C4 plants was used to quantify cultivar-induced differences in soil C availability. Amendment with 13C-labeled synthetic root-exudate enabled evaluation of SOC priming. Our experiment produced three main results: (1) switchgrass cultivars differentially influenced soil C availability across the soil profile; (2) small differences in soil C availability derived from recent root C inputs did not affect the impact of exudate-C additions on priming; but (3) priming was greater in soils from shallow depths (relatively high total soil C and high ratio of labile-to-stable C) compared to soils from deep depths (relatively low total soil C and low ratio of labile-to-stable C). These findings suggest that the magnitude of the priming effect is affected, in part, by the ratio of root exudate C inputs to total soil C and that the impact of changes in exudate inputs on the priming of SOC is regulated differently in surface soil compared to subsoil.« less
Fluid mechanics relevant to flow through pretreatment of cellulosic biomass.
Archambault-Léger, Véronique; Lynd, Lee R
2014-04-01
The present study investigates fluid mechanical properties of cellulosic feedstocks relevant to flow through (FT) pretreatment for biological conversion of cellulosic biomass. The results inform identifying conditions for which FT pretreatment can be implemented in a practical context. Measurements of pressure drop across packed beds, viscous compaction and water absorption are reported for milled and not milled sugarcane bagasse, switchgrass and poplar, and important factors impacting viscous flow are deduced. Using biomass knife-milled to pass through a 2mm sieve, the observed pressure drop was highest for bagasse, intermediate for switchgrass and lowest for poplar. The highest pressure drop was associated with the presence of more fine particles, greater viscous compaction and the degree of water absorption. Using bagasse without particle size reduction, the instability of the reactor during pretreatment above 140kg/m(3) sets an upper bound on the allowable concentration for continuous stable flow. Copyright © 2014. Published by Elsevier Ltd.
Dechlorination of PCBs in the rhizosphere of Switchgrass and Poplar
Meggo, Richard E.; Schnoor, Jerald L.; Hu, Dingfei
2014-01-01
Polychlorinated biphenyl (PCB) congeners (PCB 52, 77, and 153) singly and in mixture were spiked and aged in soil microcosms and subsequently planted with switchgrass (Panicum virgatum) or poplar (Populus deltoids x nigra DN34). The planted reactors showed significantly greater reductions in PCB parent compounds when compared to unplanted systems after 32 weeks. There was evidence of reductive dechlorination in both planted and unplanted systems, but the planted microcosms with fully developed roots and rhizospheres showed greater biotransformation than the unplanted reactors. These dechlorination products accounted for approximately all of the molar mass of parent compound lost. Based on the transformation products, reductive dechlorination pathways are proposed for rhizospheric biotransformation of PCB 52, 77, and 153. This is the first report of rhizosphere biotransformation pathways for reductive dechlorination in marginally aerobic, intermittently flooded soil as evidenced by a mass balance on transformation products. PMID:23603468
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, May M.; Chiu, Yi-Wen
Perennial grass has been proposed as a potential candidate for producing cellulosic biofuel because of its promising productivity and benefits to water quality, and because it is a non-food feedstock. While extensive research focuses on selecting and developing species and conversion technologies, the impact of grass-based biofuel production on water resources remains less clear. As feedstock growth requires water and the type of water consumed may vary considerably from region to region, water use must be characterized with spatial resolution and on a fuel production basis. This report summarizes a study that assesses the impact of biofuel production on watermore » resource use and water quality at county, state, and regional scales by developing a water footprint of biofuel produced from switchgrass and Miscanthus × giganteus via biochemical conversion.« less
Spectroscopy and atomic force microscopy of biomass.
Tetard, L; Passian, A; Farahi, R H; Kalluri, U C; Davison, B H; Thundat, T
2010-05-01
Scanning probe microscopy has emerged as a powerful approach to a broader understanding of the molecular architecture of cell walls, which may shed light on the challenge of efficient cellulosic ethanol production. We have obtained preliminary images of both Populus and switchgrass samples using atomic force microscopy (AFM). The results show distinctive features that are shared by switchgrass and Populus. These features may be attributable to the lignocellulosic cell wall composition, as the collected images exhibit the characteristic macromolecular globule structures attributable to the lignocellulosic systems. Using both AFM and a single case of mode synthesizing atomic force microscopy (MSAFM) to characterize Populus, we obtained images that clearly show the cell wall structure. The results are of importance in providing a better understanding of the characteristic features of both mature cells as well as developing plant cells. In addition, we present spectroscopic investigation of the same samples.
Oguntimein, Gbekeloluwa B.; Rodriguez, Jr., Miguel; Dumitrache, Alexandru; ...
2017-11-09
Here, to develop and prototype a high-throughput microplate assay to assess anaerobic microorganisms and lignocellulosic biomasses in a rapid, cost-effective screen for consolidated bioprocessing potential. Clostridium thermocellum parent Δ hpt strain deconstructed Avicel to cellobiose, glucose, and generated lactic acid, formic acid, acetic acid and ethanol as fermentation products in titers and ratios similar to larger scale fermentations confirming the suitability of a plate-based method for C. thermocellum growth studies. C. thermocellum strain LL1210, with gene deletions in the key central metabolic pathways, produced higher ethanol titers in the Consolidated Bioprocessing (CBP) plate assay for both Avicel and switchgrass fermentationsmore » when compared to the Δ hpt strain. A prototype microplate assay system is developed that will facilitate high-throughput bioprospecting for new lignocellulosic biomass types, genetic variants and new microbial strains for bioethanol production.« less
Study of traits and recalcitrance reduction of field-grown COMT down-regulated switchgrass
Li, Mi; Pu, Yunqiao; Yoo, Chang Geun; ...
2017-01-03
The native recalcitrance of plants hinders the biomass conversion process using current biorefinery techniques. Down-regulation of the caffeic acid O-methyltransferase (COMT) gene in the lignin biosynthesis pathway of switchgrass reduced the thermochemical and biochemical conversion recalcitrance of biomass. Due to potential environmental influences on lignin biosynthesis and deposition, studying the consequences of physicochemical changes in field-grown plants without pretreatment is essential to evaluate the performance of lignin-altered plants. In this study, we determined the chemical composition, cellulose crystallinity and the degree of its polymerization, molecular weight of hemicellulose, and cellulose accessibility of cell walls in order to better understand themore » fundamental features of why biomass is recalcitrant to conversion without pretreatment. The most important is to investigate whether traits and features are stable in the dynamics of field environmental effects over multiple years.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oguntimein, Gbekeloluwa B.; Rodriguez, Jr., Miguel; Dumitrache, Alexandru
Here, to develop and prototype a high-throughput microplate assay to assess anaerobic microorganisms and lignocellulosic biomasses in a rapid, cost-effective screen for consolidated bioprocessing potential. Clostridium thermocellum parent Δ hpt strain deconstructed Avicel to cellobiose, glucose, and generated lactic acid, formic acid, acetic acid and ethanol as fermentation products in titers and ratios similar to larger scale fermentations confirming the suitability of a plate-based method for C. thermocellum growth studies. C. thermocellum strain LL1210, with gene deletions in the key central metabolic pathways, produced higher ethanol titers in the Consolidated Bioprocessing (CBP) plate assay for both Avicel and switchgrass fermentationsmore » when compared to the Δ hpt strain. A prototype microplate assay system is developed that will facilitate high-throughput bioprospecting for new lignocellulosic biomass types, genetic variants and new microbial strains for bioethanol production.« less
Hydrogen production from switchgrass via a hybrid pyrolysis-microbial electrolysis process
Lewis, Alex J.; Ren, Shoujie; Ye, Philip; ...
2015-06-30
A new approach to hydrogen production using a hybrid pyrolysis-microbial electrolysis process is described. The aqueous stream generated during pyrolysis of switchgrass was used as a substrate for hydrogen production in a microbial electrolysis cell, achieving a maximum hydrogen production rate of 4.3 L H2/L-day at a loading of 10 g COD/L-anode-day. Hydrogen yields ranged from 50 3.2% to76 0.5% while anode coulombic efficiency ranged from 54 6.5% to 96 0.21%, respectively. Significant conversion of furfural, organic acids and phenolic molecules was observed under both batch and continuous conditions. The electrical and overall energy efficiency ranged from 149-175% and 48-63%,more » respectively. The results demonstrate the potential of the pyrolysis-microbial electrolysis process as a sustainable and efficient route for production of renewable hydrogen with significant implications for hydrocarbon production from biomass.« less
Hydrologic calibration of paired watersheds using a MOSUM approach
Ssegane, H.; Amatya, D. M.; Muwamba, A.; ...
2015-01-09
Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment) during the calibration (pre-treatment) and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM) to select calibration periods for each control-treatment watershed pair when the regression coefficients for daily water table elevation (WTE) were most stable to reduce regression model uncertainty. The control and treatment watersheds included 1–3 year intensively managedmore » loblolly pine ( Pinus taeda L.) with natural understory, same age loblolly pine intercropped with switchgrass ( Panicum virgatum), 14–15 year thinned loblolly pine with natural understory (control), and switchgrass only. Although monitoring during the calibration period spanned 2009 to 2012, silvicultural operational practices that occurred during this period such as harvesting of existing stand and site preparation for pine and switchgrass establishment may have acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. Results indicated that MOSUM was able to detect significant changes in regression parameters for WTE due to silvicultural operations. This approach also minimized uncertainty of calibration relationships which could otherwise mask marginal treatment effects. All calibration relationships developed using this MOSUM method were quantifiable, strong, and consistent with Nash–Sutcliffe Efficiency (NSE) greater than 0.97 for WTE and NSE greater than 0.92 for daily flow, indicating its applicability for choosing calibration periods of paired watershed studies.« less
Catalytic hydroprocessing of fast pyrolysis oils: Impact of biomass feedstock on process efficiency
Carpenter, Daniel; Westover, Tyler; Howe, Daniel; ...
2016-12-01
Here, we report here on an experimental study to produce refinery-ready fuel blendstocks via catalytic hydrodeoxygenation (upgrading) of pyrolysis oil using several biomass feedstocks and various blends. Blends were tested along with the pure materials to determine the effect of blending on product yields and qualities. Within experimental error, oil yields from fast pyrolysis and upgrading are shown to be linear functions of the blend components. Switchgrass exhibited lower fast pyrolysis and upgrading yields than the woody samples, which included clean pine, oriented strand board (OSB), and a mix of pinon and juniper (PJ). The notable exception was PJ, formore » which the poor upgrading yield of 18% was likely associated with the very high viscosity of the PJ fast pyrolysis oil (947 cp). The highest fast pyrolysis yield (54% dry basis) was obtained from clean pine, while the highest upgrading yield (50%) was obtained from a blend of 80% clean pine and 20% OSB (CP 8OSB 2). For switchgrass, reducing the fast pyrolysis temperature to 450 degrees C resulted in a significant increase to the pyrolysis oil yield and reduced hydrogen consumption during hydrotreating, but did not directly affect the hydrotreating oil yield. The water content of fast pyrolysis oils was also observed to increase linearly with the summed content of potassium and sodium, ranging from 21% for clean pine to 37% for switchgrass. Multiple linear regression models demonstrate that fast pyrolysis is strongly dependent upon the contents lignin and volatile matter as well as the sum of potassium and sodium.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, M.
In assessing the role of biomass in alleviating potential global warming, the absence of information on the sustainability of biomass production on soils of limited agricultural potential is cited as a major constraint to the assessment of the role of biomass. Research on the sustainability of yields, recycling of nutrients, and emphasis on reduced inputs of agricultural chemicals in the production of biomass are among the critical research needs to clarify optimum cropping practice in biomass production. Two field experiments were conducted between 1989 and 1993. One study evaluated biomass production and composition of switchgrass (Panicum virgatum L.) grown alonemore » and with bigflower vetch (Vicia grandiflora L.) and the other assessed biomass productivity and composition of tall fescue (Festuca arundinacea Schreb.) grown alone and with perennial legumes. Switchgrass received 0, 75 or 150 kg ha{sup {minus}1} of N annually as NH{sub 4}NO{sub 3} or was interseeded with vetch. Tall fescue received 0, 75, 150 or 225 kg ha{sup {minus}1} of N annually or was interseeded with alfalfa (Medicago L.) or birdsfoot trefoil (Lotus corniculatus L.). It is hoped that production systems can be designed to produce high yields of biomass with minimal inputs of fertilizer N. Achievement of this goal would reduce the potential for movement of NO{sub 3} and other undesirable N forms outside the biomass production system into the environment. In addition, management systems involving legumes could reduce the cost of biomass production.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeDuc, Stephen D.; Zhang, Xuesong; Clark, Christopher M.
Producing biofuel feedstocks on current agricultural land raises questions of a ‘food-vs.-fuel’ trade-off. The use of current or former Conservation Reserve Program (CRP) land offers an alternative; yet the volumes of ethanol that could be produced and the potential environmental impacts of such a policy are unclear. Here, we applied the Environmental Policy Integrated Climate model to a US Department of Agriculture database of over 200 000 CRP polygons in Iowa, USA, as a case study. We simulated yields and environmental impacts of growing three cellulosic biofuel feedstocks on CRP land: (i) an Alamo-variety switchgrass ( Panicum virgatum L.); (ii)more » a generalized mixture of C4 and C3 grasses; (iii) and no-till corn ( Zea mays L.) with residue removal. We simulated yields, soil erosion, and soil carbon (C) and nitrogen (N) stocks and fluxes. We found that although no-till corn with residue removal produced approximately 2.6–4.4 times more ethanol per area compared to switchgrass and the grass mixture, it also led to 3.9–4.5 times more erosion, 4.4–5.2 times more cumulative N loss, and a 10% reduction in total soil carbon as opposed to a 6–11% increase. Switchgrass resulted in the best environmental outcomes even when expressed on a per liter ethanol basis. Our results suggest planting no-till corn with residue removal should only be done on low slope soils to minimize environmental concerns. Altogether, this analysis provides additional information to policy makers on the potential outcome and effects of producing biofuel feedstocks on current or former conservation lands.« less
Willis, Jonathan D.; Smith, James A.; Mazarei, Mitra; ...
2016-10-26
Switchgrass (Panicum virgatum L.) is a C 4 perennial prairie grass and a dedicated feedstock for lignocellulosic biofuels. Saccharification and biofuel yields are inhibited by the plant cell wall's natural recalcitrance against enzymatic degradation. Plant hemicellulose polysaccharides such as arabinoxylans structurally support and cross-link other cell wall polymers. Grasses predominately have Type II cell walls that are abundant in arabinoxylan, which comprise nearly 25% of aboveground biomass. A primary component of arabinoxylan synthesis is uridine diphosphate (UDP) linked to arabinofuranose (Araf). A family of UDP-arabinopyranose mutase (UAM)/reversible glycosylated polypeptides catalyze the interconversion between UDP-arabinopyranose (UDP-Arap) and UDP-Araf. The expression ofmore » a switchgrass arabinoxylan biosynthesis pathway gene, PvUAM1, was decreased via RNAi to investigate its role in cell wall recalcitrance in the feedstock. PvUAM1 encodes a switchgrass homolog of UDP-arabinose mutase, which converts UDP-Arap to UDP-Araf. Southern blot analysis revealed each transgenic line contained between one to at least seven T-DNA insertions, resulting in some cases, a 95% reduction of native PvUAM1 transcript in stem internodes. Transgenic plants had increased pigmentation in vascular tissues at nodes, but were otherwise similar in morphology to the non-transgenic control. Cell wall-associated arabinose was decreased in leaves and stems by over 50%, but there was an increase in cellulose. In addition, there was a commensurate change in arabinose side chain extension. Cell wall lignin composition was altered with a concurrent increase in lignin content and transcript abundance of lignin biosynthetic genes in mature tillers. Enzymatic saccharification efficiency was unchanged in the transgenic plants relative to the control. Plants with attenuated PvUAM1 transcript had increased cellulose and lignin in cell walls. A decrease in cell wall-associated arabinose was expected, which was likely caused by fewer Araf residues in the arabinoxylan. The decrease in arabinoxylan may cause a compensation response to maintain cell wall integrity by increasing cellulose and lignin biosynthesis. In cases in which increased lignin is desired, e.g., feedstocks for carbon fiber production, downregulated UAM1 coupled with altered expression of other arabinoxylan biosynthesis genes might result in even higher production of lignin in biomass.« less
Switchgrass biochar affects two aridisols.
Ippolito, J A; Novak, J M; Busscher, W J; Ahmedna, M; Rehrah, D; Watts, D W
2012-01-01
The use of biochar has received growing attention because of its ability to improve the physicochemical properties of highly weathered Ultisols and Oxisols, yet very little research has focused on its effects in Aridisols. We investigated the effect of low or high temperature (250 or 500°C) pyrolyzed switchgrass () biochar on two Aridisols. In a pot study, biochar was added at 2% w/w to a Declo loam (Xeric Haplocalcids) or to a Warden very fine sandy loam (Xeric Haplocambids) and incubated at 15% moisture content (by weight) for 127 d; a control (no biochar) was also included. Soils were leached with 1.2 to 1.3 pore volumes of deionized HO on Days 34, 62, 92, and 127, and cumulative leachate Ca, K, Mg, Na, P, Cu, Fe, Mn, Ni, Zn, NO-N, NO-N, and NH-N concentrations were quantified. On termination of the incubation, soils were destructively sampled for extractable Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Zn, NO-N, and NH-N, total C, inorganic C, organic C, and pH. Compared with 250°C, the 500°C pyrolysis temperature resulted in greater biochar surface area, elevated pH, higher ash content, and minimal total surface charge. For both soils, leachate Ca and Mg decreased with the 250°C switchgrass biochar, likely due to binding by biochar's functional group sites. Both biochars caused an increase in leachate K, whereas the 500°C biochar increased leachate P. Both biochars reduced leachate NO-N concentrations compared with the control; however, the 250°C biochar reduced NO-N concentrations to the greatest extent. Easily degradable C, associated with the 250°C biochar's structural make-up, likely stimulated microbial growth, which caused NO-N immobilization. Soil-extractable K, P, and NO-N followed a pattern similar to the leachate observations. Total soil C content increases were linked to an increase in organic C from the biochars. Cumulative results suggest that the use of switchgrass biochar prepared at 250°C could improve environmental quality in calcareous soil systems by reducing nutrient leaching potential. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Computational inference of the structure and regulation of the lignin pathway in Panicum virgatum
Faraji, Mojdeh; Fonseca, Luis L.; Escamilla-Treviño, Luis; ...
2015-09-17
Switchgrass is a prime target for biofuel production from inedible plant parts and has been the subject of numerous investigations in recent years. Yet, one of the main obstacles to effective biofuel production remains to be the major problem of recalcitrance. Recalcitrance emerges in part from the 3-D structure of lignin as a polymer in the secondary cell wall. Lignin limits accessibility of the sugars in the cellulose and hemicellulose polymers to enzymes and ultimately decreases ethanol yield. Monolignols, the building blocks of lignin polymers, are synthesized in the cytosol and translocated to the plant cell wall, where they undergomore » polymerization. The biosynthetic pathway leading to monolignols in switchgrass is not completely known, and difficulties associated with in vivo measurements of these intermediates pose a challenge for a true understanding of the functioning of the pathway. In this study, a systems biological modeling approach is used to address this challenge and to elucidate the structure and regulation of the lignin pathway through a computational characterization of alternate candidate topologies. The analysis is based on experimental data characterizing stem and tiller tissue of four transgenic lines (knock-downs of genes coding for key enzymes in the pathway) as well as wild-type switchgrass plants. These data consist of the observed content and composition of monolignols. The possibility of a G-lignin specific metabolic channel associated with the production and degradation of coniferaldehyde is examined, and the results support previous findings from another plant species. The computational analysis suggests regulatory mechanisms of product inhibition and enzyme competition, which are well known in biochemistry, but so far had not been reported in switchgrass. By including these mechanisms, the pathway model is able to represent all observations. In conclusion, the results show that the presence of the coniferaldehyde channel is necessary and that product inhibition and competition over cinnamoyl-CoA-reductase (CCR1) are essential for matching the model to observed increases in H-lignin levels in 4-coumarate:CoA-ligase (4CL) knockdowns. Moreover, competition for 4-coumarate:CoA-ligase (4CL) is essential for matching the model to observed increases in the pathway metabolites in caffeic acid O-methyltransferase (COMT) knockdowns. As far as possible, the model was validated with independent data.« less