Sample records for switching memory devices

  1. Status and Prospects of ZnO-Based Resistive Switching Memory Devices

    NASA Astrophysics Data System (ADS)

    Simanjuntak, Firman Mangasa; Panda, Debashis; Wei, Kung-Hwa; Tseng, Tseung-Yuen

    2016-08-01

    In the advancement of the semiconductor device technology, ZnO could be a prospective alternative than the other metal oxides for its versatility and huge applications in different aspects. In this review, a thorough overview on ZnO for the application of resistive switching memory (RRAM) devices has been conducted. Various efforts that have been made to investigate and modulate the switching characteristics of ZnO-based switching memory devices are discussed. The use of ZnO layer in different structure, the different types of filament formation, and the different types of switching including complementary switching are reported. By considering the huge interest of transparent devices, this review gives the concrete overview of the present status and prospects of transparent RRAM devices based on ZnO. ZnO-based RRAM can be used for flexible memory devices, which is also covered here. Another challenge in ZnO-based RRAM is that the realization of ultra-thin and low power devices. Nevertheless, ZnO not only offers decent memory properties but also has a unique potential to be used as multifunctional nonvolatile memory devices. The impact of electrode materials, metal doping, stack structures, transparency, and flexibility on resistive switching properties and switching parameters of ZnO-based resistive switching memory devices are briefly compared. This review also covers the different nanostructured-based emerging resistive switching memory devices for low power scalable devices. It may give a valuable insight on developing ZnO-based RRAM and also should encourage researchers to overcome the challenges.

  2. Self-assembled nanostructured resistive switching memory devices fabricated by templated bottom-up growth

    PubMed Central

    Song, Ji-Min; Lee, Jang-Sik

    2016-01-01

    Metal-oxide-based resistive switching memory device has been studied intensively due to its potential to satisfy the requirements of next-generation memory devices. Active research has been done on the materials and device structures of resistive switching memory devices that meet the requirements of high density, fast switching speed, and reliable data storage. In this study, resistive switching memory devices were fabricated with nano-template-assisted bottom up growth. The electrochemical deposition was adopted to achieve the bottom-up growth of nickel nanodot electrodes. Nickel oxide layer was formed by oxygen plasma treatment of nickel nanodots at low temperature. The structures of fabricated nanoscale memory devices were analyzed with scanning electron microscope and atomic force microscope (AFM). The electrical characteristics of the devices were directly measured using conductive AFM. This work demonstrates the fabrication of resistive switching memory devices using self-assembled nanoscale masks and nanomateirals growth from bottom-up electrochemical deposition. PMID:26739122

  3. Titanium oxide nonvolatile memory device and its application

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    In recent years, the semiconductor memory industry has seen an ever-increasing demand for nonvolatile memory (NVM), which is fueled by portable consumer electronic applications like the mobile phone and MP3 player. FLASH memory has been the most widely used nonvolatile memories in these systems, and has successfully kept up with CMOS scaling for many generations. However, as FLASH memory faces major scaling challenges beyond 22nm, non-charge-based nonvolatile memories are widely researched as candidates to replace FLASH. Titanium oxide (TiOx) nonvolatile memory device is considered to be a promising choice due to its controllable nonvolatile memory switching, good scalability, compatibility with CMOS processing and potential for 3D stacking. However, several major issues need to be overcome before TiOx NVM device can be adopted in manufacturing. First, there exists a highly undesirable high-voltage stress initiation process (FORMING) before the device can switch between high and low resistance states repeatedly. By analyzing the conductive behaviors of the memory device before and after FORMING, we propose that FORMING involves breaking down an interfacial layer between its Pt electrode and the TiOx thin film, and that FORMING is not needed if the Pt-TiOx interface can be kept clean during fabrication. An in-situ fabrication process is developed for cross-point TiOx NVM device, which enables in-situ deposition of the critical layers of the memory device and thus achieves clean interfaces between Pt electrodes and TiOx film. Testing results show that FORMING is indeed eliminated for memory devices made with the in-situ fabrication process. It verifies the significance of in-situ deposition without vacuum break in the fabrication of TiOx NVM devices. Switching parameters statistics of TiOx NVM devices are studied and compared for unipolar and bipolar switching modes. RESET mechanisms are found to be different for the two switching modes: unipolar switching can be explained by thermal dissolution model, and bipolar switching by local redox reaction model. Since it is generally agreed that the memory switching of TiOx NVM devices is based on conductive filaments, reusability of these conductive filaments becomes an intriguing issue to determine the memory device's endurance. A 1X3 cross-point test structure is built to investigate whether conductive filaments can be reused after RESET. It is found that the conductive filament is destroyed during unipolar switching, while can be reused during bipolar switching. The result is a good indication that bipolar switching should have better endurance than unipolar switching. Finally a novel application of the two-terminal resistive switching NVM devices is demonstrated. To reduce SRAM leakage power, we propose a nonvolatile SRAM cell with two back-up NVM devices. This novel cell offers nonvolatile storage, thus allowing selected blocks of SRAM to be powered down during operation. There is no area penalty in this approach. Only a slight performance penalty is expected.

  4. Resistive switching characteristics of polymer non-volatile memory devices in a scalable via-hole structure.

    PubMed

    Kim, Tae-Wook; Choi, Hyejung; Oh, Seung-Hwan; Jo, Minseok; Wang, Gunuk; Cho, Byungjin; Kim, Dong-Yu; Hwang, Hyunsang; Lee, Takhee

    2009-01-14

    The resistive switching characteristics of polyfluorene-derivative polymer material in a sub-micron scale via-hole device structure were investigated. The scalable via-hole sub-microstructure was fabricated using an e-beam lithographic technique. The polymer non-volatile memory devices varied in size from 40 x 40 microm(2) to 200 x 200 nm(2). From the scaling of junction size, the memory mechanism can be attributed to the space-charge-limited current with filamentary conduction. Sub-micron scale polymer memory devices showed excellent resistive switching behaviours such as a large ON/OFF ratio (I(ON)/I(OFF) approximately 10(4)), excellent device-to-device switching uniformity, good sweep endurance, and good retention times (more than 10,000 s). The successful operation of sub-micron scale memory devices of our polyfluorene-derivative polymer shows promise to fabricate high-density polymer memory devices.

  5. Multistate storage nonvolatile memory device based on ferroelectricity and resistive switching effects of SrBi2Ta2O9 films

    NASA Astrophysics Data System (ADS)

    Song, Zhiwei; Li, Gang; Xiong, Ying; Cheng, Chuanpin; Zhang, Wanli; Tang, Minghua; Li, Zheng; He, Jiangheng

    2018-05-01

    A memory device with a Pt/SrBi2Ta2O9(SBT)/Pt(111) structure was shown to have excellent combined ferroelectricity and resistive switching properties, leading to higher multistate storage memory capacity in contrast to ferroelectric memory devices. In this device, SBT polycrystalline thin films with significant (115) orientation were fabricated on Pt(111)/Ti/SiO2/Si(100) substrates using CVD (chemical vapor deposition) method. Measurement results of the electric properties exhibit reproducible and reliable ferroelectricity switching behavior and bipolar resistive switching effects (BRS) without an electroforming process. The ON/OFF ratio of the resistive switching was found to be about 103. Switching mechanisms for the low resistance state (LRS) and high resistance state (HRS) currents are likely attributed to the Ohmic and space charge-limited current (SCLC) behavior, respectively. Moreover, the ferroelectricity and resistive switching effects were found to be mutually independent, and the four logic states were obtained by controlling the periodic sweeping voltage. This work holds great promise for nonvolatile multistate memory devices with high capacity and low cost.

  6. Impacts of Co doping on ZnO transparent switching memory device characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simanjuntak, Firman Mangasa; Wei, Kung-Hwa; Prasad, Om Kumar

    2016-05-02

    The resistive switching characteristics of indium tin oxide (ITO)/Zn{sub 1−x}Co{sub x}O/ITO transparent resistive memory devices were investigated. An appropriate amount of cobalt dopant in ZnO resistive layer demonstrated sufficient memory window and switching stability. In contrast, pure ZnO devices demonstrated a poor memory window, and using an excessive dopant concentration led to switching instability. To achieve suitable memory performance, relying only on controlling defect concentrations is insufficient; the grain growth orientation of the resistive layer must also be considered. Stable endurance with an ON/OFF ratio of more than one order of magnitude during 5000 cycles confirmed that the Co-doped ZnOmore » device is a suitable candidate for resistive random access memory application. Additionally, fully transparent devices with a high transmittance of up to 90% at wavelength of 550 nm have been fabricated.« less

  7. Three-terminal resistive switching memory in a transparent vertical-configuration device

    NASA Astrophysics Data System (ADS)

    Ungureanu, Mariana; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E.

    2014-01-01

    The resistive switching phenomenon has attracted much attention recently for memory applications. It describes the reversible change in the resistance of a dielectric between two non-volatile states by the application of electrical pulses. Typical resistive switching memories are two-terminal devices formed by an oxide layer placed between two metal electrodes. Here, we report on the fabrication and operation of a three-terminal resistive switching memory that works as a reconfigurable logic component and offers an increased logic density on chip. The three-terminal memory device we present is transparent and could be further incorporated in transparent computing electronic technologies.

  8. Role of nanorods insertion layer in ZnO-based electrochemical metallization memory cell

    NASA Astrophysics Data System (ADS)

    Mangasa Simanjuntak, Firman; Singh, Pragya; Chandrasekaran, Sridhar; Juanda Lumbantoruan, Franky; Yang, Chih-Chieh; Huang, Chu-Jie; Lin, Chun-Chieh; Tseng, Tseung-Yuen

    2017-12-01

    An engineering nanorod array in a ZnO-based electrochemical metallization device for nonvolatile memory applications was investigated. A hydrothermally synthesized nanorod layer was inserted into a Cu/ZnO/ITO device structure. Another device was fabricated without nanorods for comparison, and this device demonstrated a diode-like behavior with no switching behavior at a low current compliance (CC). The switching became clear only when the CC was increased to 75 mA. The insertion of a nanorods layer induced switching characteristics at a low operation current and improve the endurance and retention performances. The morphology of the nanorods may control the switching characteristics. A forming-free electrochemical metallization memory device having long switching cycles (>104 cycles) with a sufficient memory window (103 times) for data storage application, good switching stability and sufficient retention was successfully fabricated by adjusting the morphology and defect concentration of the inserted nanorod layer. The nanorod layer not only contributed to inducing resistive switching characteristics but also acted as both a switching layer and a cation diffusion control layer.

  9. From dead leaves to sustainable organic resistive switching memory.

    PubMed

    Sun, Bai; Zhu, Shouhui; Mao, Shuangsuo; Zheng, Pingping; Xia, Yudong; Yang, Feng; Lei, Ming; Zhao, Yong

    2018-03-01

    An environmental-friendly, sustainable, pollution-free, biodegradable, flexible and wearable electronic device hold advanced potential applications. Here, an organic resistive switching memory device with Ag/Leaves/Ti/PET structure on a flexible polyethylene terephthalate (PET) substrate was fabricated for the first time. We observed an obvious resistive switching memory characteristic with large switching resistance ratio and stable cycle performance at room temperature. This work demonstrates that leaves, a useless waste, can be properly treated to make useful devices. Furthermore, the as-fabricated devices can be degraded naturally without damage to the environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Impact of electrically formed interfacial layer and improved memory characteristics of IrOx/high-κx/W structures containing AlOx, GdOx, HfOx, and TaOx switching materials.

    PubMed

    Prakash, Amit; Maikap, Siddheswar; Banerjee, Writam; Jana, Debanjan; Lai, Chao-Sung

    2013-09-06

    Improved switching characteristics were obtained from high-κ oxides AlOx, GdOx, HfOx, and TaOx in IrOx/high-κx/W structures because of a layer that formed at the IrOx/high-κx interface under external positive bias. The surface roughness and morphology of the bottom electrode in these devices were observed by atomic force microscopy. Device size was investigated using high-resolution transmission electron microscopy. More than 100 repeatable consecutive switching cycles were observed for positive-formatted memory devices compared with that of the negative-formatted devices (only five unstable cycles) because it contained an electrically formed interfacial layer that controlled 'SET/RESET' current overshoot. This phenomenon was independent of the switching material in the device. The electrically formed oxygen-rich interfacial layer at the IrOx/high-κx interface improved switching in both via-hole and cross-point structures. The switching mechanism was attributed to filamentary conduction and oxygen ion migration. Using the positive-formatted design approach, cross-point memory in an IrOx/AlOx/W structure was fabricated. This cross-point memory exhibited forming-free, uniform switching for >1,000 consecutive dc cycles with a small voltage/current operation of ±2 V/200 μA and high yield of >95% switchable with a large resistance ratio of >100. These properties make this cross-point memory particularly promising for high-density applications. Furthermore, this memory device also showed multilevel capability with a switching current as low as 10 μA and a RESET current of 137 μA, good pulse read endurance of each level (>105 cycles), and data retention of >104 s at a low current compliance of 50 μA at 85°C. Our improvement of the switching characteristics of this resistive memory device will aid in the design of memory stacks for practical applications.

  11. Electrical studies of Ge4Sb1Te5 devices for memory applications

    NASA Astrophysics Data System (ADS)

    Sangeetha, B. G.; Shylashree, N.

    2018-05-01

    In this paper, the Ge4Sb1Te5 thin film device preparation and electrical studies for memory devices were carried out. The device was deposited using vapor-evaporation technique. RESET to SET state switching was shown using current-voltage characterization. The current-voltage characterization shows the switching between SET to RESET state and it was found that it requires a low energy for transition. Switching between amorphous to crystalline nature was studied using resistance-voltage characteristics. The endurance showed the effective use of this composition for memory device.

  12. Hierarchically Self-Assembled Block Copolymer Blends for Templating Hollow Phase-Change Nanostructures with an Extremely Low Switching Current

    DOE PAGES

    Park, Woon Ik; Kim, Jong Min; Jeong, Jae Won; ...

    2015-03-17

    Phase change memory (PCM) is one of the most promising candidates for next-generation nonvolatile memory devices because of its high speed, excellent reliability, and outstanding scalability. But, the high switching current of PCM devices has been a critical hurdle to realize low-power operation. Although one solution is to reduce the switching volume of the memory, the resolution limit of photolithography hinders further miniaturization of device dimensions. Here, we employed unconventional self-assembly geometries obtained from blends of block copolymers (BCPs) to form ring-shaped hollow PCM nanostructures with an ultrasmall contact area between a phase-change material (Ge 2Sb 2Te 5) and amore » heater (TiN) electrode. The high-density (approximately 0.1 terabits per square inch) PCM nanoring arrays showed extremely small switching current of 2-3 mu A. Furthermore, the relatively small reset current of the ring-shaped PCM compared to the pillar-shaped devices is attributed to smaller switching volume, which is well supported by electro-thermal simulation results. Our approach may also be extended to other nonvolatile memory device applications such as resistive switching memory and magnetic storage devices, where the control of nanoscale geometry can significantly affect device performances.« less

  13. Brownmillerite thin films as fast ion conductors for ultimate-performance resistance switching memory.

    PubMed

    Acharya, Susant Kumar; Jo, Janghyun; Raveendra, Nallagatlla Venkata; Dash, Umasankar; Kim, Miyoung; Baik, Hionsuck; Lee, Sangik; Park, Bae Ho; Lee, Jae Sung; Chae, Seung Chul; Hwang, Cheol Seong; Jung, Chang Uk

    2017-07-27

    An oxide-based resistance memory is a leading candidate to replace Si-based flash memory as it meets the emerging specifications for future memory devices. The non-uniformity in the key switching parameters and low endurance in conventional resistance memory devices are preventing its practical application. Here, a novel strategy to overcome the aforementioned challenges has been unveiled by tuning the growth direction of epitaxial brownmillerite SrFeO 2.5 thin films along the SrTiO 3 [111] direction so that the oxygen vacancy channels can connect both the top and bottom electrodes rather directly. The controlled oxygen vacancy channels help reduce the randomness of the conducting filament (CF). The resulting device displayed high endurance over 10 6 cycles, and a short switching time of ∼10 ns. In addition, the device showed very high uniformity in the key switching parameters for device-to-device and within a device. This work demonstrates a feasible example for improving the nanoscale device performance by controlling the atomic structure of a functional oxide layer.

  14. High performance nonvolatile memory devices based on Cu2-xSe nanowires

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Yan; Wu, Yi-Liang; Wang, Wen-Jian; Mao, Dun; Yu, Yong-Qiang; Wang, Li; Xu, Jun; Hu, Ji-Gang; Luo, Lin-Bao

    2013-11-01

    We report on the rational synthesis of one-dimensional Cu2-xSe nanowires (NWs) via a solution method. Electrical analysis of Cu2-xSe NWs based memory device exhibits a stable and reproducible bipolar resistive switching behavior with a low set voltage (0.3-0.6 V), which can enable the device to write and erase data efficiently. Remarkably, the memory device has a record conductance switching ratio of 108, much higher than other devices ever reported. At last, a conducting filaments model is introduced to account for the resistive switching behavior. The totality of this study suggests that the Cu2-xSe NWs are promising building blocks for fabricating high-performance and low-consumption nonvolatile memory devices.

  15. A graphene integrated highly transparent resistive switching memory device

    NASA Astrophysics Data System (ADS)

    Dugu, Sita; Pavunny, Shojan P.; Limbu, Tej B.; Weiner, Brad R.; Morell, Gerardo; Katiyar, Ram S.

    2018-05-01

    We demonstrate the hybrid fabrication process of a graphene integrated highly transparent resistive random-access memory (TRRAM) device. The indium tin oxide (ITO)/Al2O3/graphene nonvolatile memory device possesses a high transmittance of >82% in the visible region (370-700 nm) and exhibits stable and non-symmetrical bipolar switching characteristics with considerably low set and reset voltages (<±1 V). The vertical two-terminal device shows an excellent resistive switching behavior with a high on-off ratio of ˜5 × 103. We also fabricated a ITO/Al2O3/Pt device and studied its switching characteristics for comparison and a better understanding of the ITO/Al2O3/graphene device characteristics. The conduction mechanisms in high and low resistance states were analyzed, and the observed polarity dependent resistive switching is explained based on electro-migration of oxygen ions.

  16. Ultra-low power, highly uniform polymer memory by inserted multilayer graphene electrode

    NASA Astrophysics Data System (ADS)

    Jang, Byung Chul; Seong, Hyejeong; Kim, Jong Yun; Koo, Beom Jun; Kim, Sung Kyu; Yang, Sang Yoon; Gap Im, Sung; Choi, Sung-Yool

    2015-12-01

    Filament type resistive random access memory (RRAM) based on polymer thin films is a promising device for next generation, flexible nonvolatile memory. However, the resistive switching nonuniformity and the high power consumption found in the general filament type RRAM devices present critical issues for practical memory applications. Here, we introduce a novel approach not only to reduce the power consumption but also to improve the resistive switching uniformity in RRAM devices based on poly(1,3,5-trimethyl-3,4,5-trivinyl cyclotrisiloxane) by inserting multilayer graphene (MLG) at the electrode/polymer interface. The resistive switching uniformity was thereby significantly improved, and the power consumption was markedly reduced by 250 times. Furthermore, the inserted MLG film enabled a transition of the resistive switching operation from unipolar resistive switching to bipolar resistive switching and induced self-compliance behavior. The findings of this study can pave the way toward a new area of application for graphene in electronic devices.

  17. Forced Ion Migration for Chalcogenide Phase Change Memory Device

    NASA Technical Reports Server (NTRS)

    Campbell, Kristy A (Inventor)

    2013-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge2Se3/SnTe, and Ge2Se3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more than two data states.

  18. Forced ion migration for chalcogenide phase change memory device

    NASA Technical Reports Server (NTRS)

    Campbell, Kristy A. (Inventor)

    2011-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase change memories. The devices tested included GeTe/SnTe, Ge.sub.2Se.sub.3/SnTe, and Ge.sub.2Se.sub.3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more that two data states.

  19. Forced ion migration for chalcogenide phase change memory device

    NASA Technical Reports Server (NTRS)

    Campbell, Kristy A. (Inventor)

    2012-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge.sub.2Se.sub.3/SnTe, and Ge.sub.2Se.sub.3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more than two data states.

  20. Parasitic resistive switching uncovered from complementary resistive switching in single active-layer oxide memory device

    NASA Astrophysics Data System (ADS)

    Zhu, Lisha; Hu, Wei; Gao, Chao; Guo, Yongcai

    2017-12-01

    This paper reports the reversible transition processes between the bipolar and complementary resistive switching (CRS) characteristics on the binary metal-oxide resistive memory devices of Pt/HfO x /TiN and Pt/TaO x /TiN by applying the appropriate bias voltages. More interestingly, by controlling the amplitude of the negative bias, the parasitic resistive switching effect exhibiting repeatable switching behavior is uncovered from the CRS behavior. The electrical observation of the parasitic resistive switching effect can be explained by the controlled size of the conductive filament. This work confirms the transformation and interrelationship among the bipolar, parasitic, and CRS effects, and thus provides new insight into the understanding of the physical mechanism of the binary metal-oxide resistive switching memory devices.

  1. Signal and noise extraction from analog memory elements for neuromorphic computing.

    PubMed

    Gong, N; Idé, T; Kim, S; Boybat, I; Sebastian, A; Narayanan, V; Ando, T

    2018-05-29

    Dense crossbar arrays of non-volatile memory (NVM) can potentially enable massively parallel and highly energy-efficient neuromorphic computing systems. The key requirements for the NVM elements are continuous (analog-like) conductance tuning capability and switching symmetry with acceptable noise levels. However, most NVM devices show non-linear and asymmetric switching behaviors. Such non-linear behaviors render separation of signal and noise extremely difficult with conventional characterization techniques. In this study, we establish a practical methodology based on Gaussian process regression to address this issue. The methodology is agnostic to switching mechanisms and applicable to various NVM devices. We show tradeoff between switching symmetry and signal-to-noise ratio for HfO 2 -based resistive random access memory. Then, we characterize 1000 phase-change memory devices based on Ge 2 Sb 2 Te 5 and separate total variability into device-to-device variability and inherent randomness from individual devices. These results highlight the usefulness of our methodology to realize ideal NVM devices for neuromorphic computing.

  2. A Strategy to Design High-Density Nanoscale Devices utilizing Vapor Deposition of Metal Halide Perovskite Materials.

    PubMed

    Hwang, Bohee; Lee, Jang-Sik

    2017-08-01

    The demand for high memory density has increased due to increasing needs of information storage, such as big data processing and the Internet of Things. Organic-inorganic perovskite materials that show nonvolatile resistive switching memory properties have potential applications as the resistive switching layer for next-generation memory devices, but, for practical applications, these materials should be utilized in high-density data-storage devices. Here, nanoscale memory devices are fabricated by sequential vapor deposition of organolead halide perovskite (OHP) CH 3 NH 3 PbI 3 layers on wafers perforated with 250 nm via-holes. These devices have bipolar resistive switching properties, and show low-voltage operation, fast switching speed (200 ns), good endurance, and data-retention time >10 5 s. Moreover, the use of sequential vapor deposition is extended to deposit CH 3 NH 3 PbI 3 as the memory element in a cross-point array structure. This method to fabricate high-density memory devices could be used for memory cells that occupy large areas, and to overcome the scaling limit of existing methods; it also presents a way to use OHPs to increase memory storage capacity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Development of Curie point switching for thin film, random access, memory device

    NASA Technical Reports Server (NTRS)

    Lewicki, G. W.; Tchernev, D. I.

    1967-01-01

    Managanese bismuthide films are used in the development of a random access memory device of high packing density and nondestructive readout capability. Memory entry is by Curie point switching using a laser beam. Readout is accomplished by microoptical or micromagnetic scanning.

  4. Resistive switching effect of N-doped MoS2-PVP nanocomposites films for nonvolatile memory devices

    NASA Astrophysics Data System (ADS)

    Wu, Zijin; Wang, Tongtong; Sun, Changqi; Liu, Peitao; Xia, Baorui; Zhang, Jingyan; Liu, Yonggang; Gao, Daqiang

    2017-12-01

    Resistive memory technology is very promising in the field of semiconductor memory devices. According to Liu et al, MoS2-PVP nanocomposite can be used as an active layer material for resistive memory devices due to its bipolar resistive switching behavior. Recent studies have also indicated that the doping of N element can reduce the band gap of MoS2 nanosheets, which is conducive to improving the conductivity of the material. Therefore, in this paper, we prepared N-doped MoS2 nanosheets and then fabricated N-doped MoS2-PVP nanocomposite films by spin coating. Finally, the resistive memory [C. Tan et al., Chem. Soc. Rev. 44, 2615 (2015)], device with ITO/N-doped MoS2-PVP/Pt structure was fabricated. Study on the I-V characteristics shows that the device has excellent resistance switching effect. It is worth mentioning that our device possesses a threshold voltage of 0.75 V, which is much better than 3.5 V reported previously for the undoped counterparts. The above research shows that N-doped MoS2-PVP nanocomposite films can be used as the active layer of resistive switching memory devices, and will make the devices have better performance.

  5. Resistive switching memory devices composed of binary transition metal oxides using sol-gel chemistry.

    PubMed

    Lee, Chanwoo; Kim, Inpyo; Choi, Wonsup; Shin, Hyunjung; Cho, Jinhan

    2009-04-21

    We describe a novel and versatile approach for preparing resistive switching memory devices based on binary transition metal oxides (TMOs). Titanium isopropoxide (TIPP) was spin-coated onto platinum (Pt)-coated silicon substrates using a sol-gel process. The sol-gel-derived layer was converted into a TiO2 film by thermal annealing. A top electrode (Ag electrode) was then coated onto the TiO2 films to complete device fabrication. When an external bias was applied to the devices, a switching phenomenon independent of the voltage polarity (i.e., unipolar switching) was observed at low operating voltages (about 0.6 VRESET and 1.4 VSET). In addition, it was confirmed that the electrical properties (i.e., retention time, cycling test and switching speed) of the sol-gel-derived devices were comparable to those of vacuum deposited devices. This approach can be extended to a variety of binary TMOs such as niobium oxides. The reported approach offers new opportunities for preparing the binary TMO-based resistive switching memory devices allowing a facile solution processing.

  6. Effect of oxide insertion layer on resistance switching properties of copper phthalocyanine

    NASA Astrophysics Data System (ADS)

    Joshi, Nikhil G.; Pandya, Nirav C.; Joshi, U. S.

    2013-02-01

    Organic memory device showing resistance switching properties is a next-generation of the electrical memory unit. We have investigated the bistable resistance switching in current-voltage (I-V) characteristics of organic diode based on copper phthalocyanine (CuPc) film sandwiched between aluminum (Al) electrodes. Pronounced hysteresis in the I-V curves revealed a resistance switching with on-off ratio of the order of 85%. In order to control the charge injection in the CuPc, nanoscale indium oxide buffer layer was inserted to form Al/CuPc/In2O3/Al device. Analysis of I-V measurements revealed space charge limited switching conduction at the Al/CuPc interface. The traps in the organic layer and charge blocking by oxide insertion layer have been used to explain the absence of resistance switching in the oxide buffer layered memory device cell. Present study offer potential applications for CuPc organic semiconductor in low power non volatile resistive switching memory and logic circuits.

  7. Spin-transfer torque switched magnetic tunnel junctions in magnetic random access memory

    NASA Astrophysics Data System (ADS)

    Sun, Jonathan Z.

    2016-10-01

    Spin-transfer torque (or spin-torque, or STT) based magnetic tunnel junction (MTJ) is at the heart of a new generation of magnetism-based solid-state memory, the so-called spin-transfer-torque magnetic random access memory, or STT-MRAM. Over the past decades, STT-based switchable magnetic tunnel junction has seen progress on many fronts, including the discovery of (001) MgO as the most favored tunnel barrier, which together with (bcc) Fe or FeCo alloy are yielding best demonstrated tunnel magneto-resistance (TMR); the development of perpendicularly magnetized ultrathin CoFeB-type of thin films sufficient to support high density memories with junction sizes demonstrated down to 11nm in diameter; and record-low spin-torque switching threshold current, giving best reported switching efficiency over 5 kBT/μA. Here we review the basic device properties focusing on the perpendicularly magnetized MTJs, both in terms of switching efficiency as measured by sub-threshold, quasi-static methods, and of switching speed at super-threshold, forced switching. We focus on device behaviors important for memory applications that are rooted in fundamental device physics, which highlights the trade-off of device parameters for best suitable system integration.

  8. Investigation of resistive switching behaviours in WO3-based RRAM devices

    NASA Astrophysics Data System (ADS)

    Li, Ying-Tao; Long, Shi-Bing; Lü, Hang-Bing; Liu, Qi; Wang, Qin; Wang, Yan; Zhang, Sen; Lian, Wen-Tai; Liu, Su; Liu, Ming

    2011-01-01

    In this paper, a WO3-based resistive random access memory device composed of a thin film of WO3 sandwiched between a copper top and a platinum bottom electrodes is fabricated by electron beam evaporation at room temperature. The reproducible resistive switching, low power consumption, multilevel storage possibility, and good data retention characteristics demonstrate that the Cu/WO3/Pt memory device is very promising for future nonvolatile memory applications. The formation and rupture of localised conductive filaments is suggested to be responsible for the observed resistive switching behaviours.

  9. Application of nanomaterials in two-terminal resistive-switching memory devices

    PubMed Central

    Ouyang, Jianyong

    2010-01-01

    Nanometer materials have been attracting strong attention due to their interesting structure and properties. Many important practical applications have been demonstrated for nanometer materials based on their unique properties. This article provides a review on the fabrication, electrical characterization, and memory application of two-terminal resistive-switching devices using nanomaterials as the active components, including metal and semiconductor nanoparticles (NPs), nanotubes, nanowires, and graphenes. There are mainly two types of device architectures for the two-terminal devices with NPs. One has a triple-layer structure with a metal film sandwiched between two organic semiconductor layers, and the other has a single polymer film blended with NPs. These devices can be electrically switched between two states with significant different resistances, i.e. the ‘ON’ and ‘OFF’ states. These render the devices important application as two-terminal non-volatile memory devices. The electrical behavior of these devices can be affected by the materials in the active layer and the electrodes. Though the mechanism for the electrical switches has been in argument, it is generally believed that the resistive switches are related to charge storage on the NPs. Resistive switches were also observed on crossbars formed by nanotubes, nanowires, and graphene ribbons. The resistive switches are due to nanoelectromechanical behavior of the materials. The Coulombic interaction of transient charges on the nanomaterials affects the configurable gap of the crossbars, which results into significant change in current through the crossbars. These nanoelectromechanical devices can be used as fast-response and high-density memory devices as well. PMID:22110862

  10. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Lee, Chang Bum; Lee, Dongsoo; Lee, Seung Ryul; Chang, Man; Hur, Ji Hyun; Kim, Young-Bae; Kim, Chang-Jung; Seo, David H.; Seo, Sunae; Chung, U.-In; Yoo, In-Kyeong; Kim, Kinam

    2011-08-01

    Numerous candidates attempting to replace Si-based flash memory have failed for a variety of reasons over the years. Oxide-based resistance memory and the related memristor have succeeded in surpassing the specifications for a number of device requirements. However, a material or device structure that satisfies high-density, switching-speed, endurance, retention and most importantly power-consumption criteria has yet to be announced. In this work we demonstrate a TaOx-based asymmetric passive switching device with which we were able to localize resistance switching and satisfy all aforementioned requirements. In particular, the reduction of switching current drastically reduces power consumption and results in extreme cycling endurances of over 1012. Along with the 10 ns switching times, this allows for possible applications to the working-memory space as well. Furthermore, by combining two such devices each with an intrinsic Schottky barrier we eliminate any need for a discrete transistor or diode in solving issues of stray leakage current paths in high-density crossbar arrays.

  11. Nonvolatile Ionic Two-Terminal Memory Device

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.

    1990-01-01

    Conceptual solid-state memory device nonvolatile and erasable and has only two terminals. Proposed device based on two effects: thermal phase transition and reversible intercalation of ions. Transfer of sodium ions between source of ions and electrical switching element increases or decreases electrical conductance of element, turning switch "on" or "off". Used in digital computers and neural-network computers. In neural networks, many small, densely packed switches function as erasable, nonvolatile synaptic elements.

  12. Anatomy of filamentary threshold switching in amorphous niobium oxide.

    PubMed

    Li, Shuai; Liu, Xinjun; Nandi, Sanjoy Kumar; Elliman, Robert Glen

    2018-06-25

    The threshold switching behaviour of Pt/NbOx/TiN devices is investigated as a function device area and NbOx film thickness and shown to reveal important insight into the structure of the self-assembled switching region. The devices exhibit combined selector-memory (1S1R) behavior after an initial voltage-controlled forming process, but exhibit symmetric threshold switching when the RESET and SET currents are kept below a critical value. In this mode, the threshold and hold voltages are independent of the device area and film thickness but the threshold current (power), while independent of device area, decreases with increasing film thickness. These results are shown to be consistent with a structure in which the threshold switching volume is confined, both laterally and vertically, to the region between the residual memory filament and the TiN electrode, and where the memory filament has a core-shell structure comprising a metallic core and a semiconducting shell. The veracity of this structure is demonstrated by comparing experimental results with the predictions of a simple circuit model, and more detailed finite element simulations. These results provide further insight into the structure and operation of NbOx threshold switching devices that have application in emerging memory and neuromorphic computing fields. © 2018 IOP Publishing Ltd.

  13. Low-power resistive random access memory by confining the formation of conducting filaments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yi-Jen; Lee, Si-Chen, E-mail: sclee@ntu.edu.tw; Shen, Tzu-Hsien

    2016-06-15

    Owing to their small physical size and low power consumption, resistive random access memory (RRAM) devices are potential for future memory and logic applications in microelectronics. In this study, a new resistive switching material structure, TiO{sub x}/silver nanoparticles/TiO{sub x}/AlTiO{sub x}, fabricated between the fluorine-doped tin oxide bottom electrode and the indium tin oxide top electrode is demonstrated. The device exhibits excellent memory performances, such as low operation voltage (<±1 V), low operation power, small variation in resistance, reliable data retention, and a large memory window. The current-voltage measurement shows that the conducting mechanism in the device at the high resistancemore » state is via electron hopping between oxygen vacancies in the resistive switching material. When the device is switched to the low resistance state, conducting filaments are formed in the resistive switching material as a result of accumulation of oxygen vacancies. The bottom AlTiO{sub x} layer in the device structure limits the formation of conducting filaments; therefore, the current and power consumption of device operation are significantly reduced.« less

  14. Resistive switching behaviors of Au/pentacene/Si-nanowire arrays/heavily doped n-type Si devices for memory applications

    NASA Astrophysics Data System (ADS)

    Tsao, Hou-Yen; Lin, Yow-Jon

    2014-02-01

    The fabrication of memory devices based on the Au/pentacene/heavily doped n-type Si (n+-Si), Au/pentacene/Si nanowires (SiNWs)/n+-Si, and Au/pentacene/H2O2-treated SiNWs/n+-Si structures and their resistive switching characteristics were reported. A pentacene memory structure using SiNW arrays as charge storage nodes was demonstrated. The Au/pentacene/SiNWs/n+-Si devices show hysteresis behavior. H2O2 treatment may lead to the hysteresis degradation. However, no hysteresis-type current-voltage characteristics were observed for Au/pentacene/n+-Si devices, indicating that the resistive switching characteristic is sensitive to SiNWs and the charge trapping effect originates from SiNWs. The concept of nanowires within the organic layer opens a promising direction for organic memory devices.

  15. Resistive switching characteristics of HfO2-based memory devices on flexible plastics.

    PubMed

    Han, Yong; Cho, Kyoungah; Park, Sukhyung; Kim, Sangsig

    2014-11-01

    In this study, we examine the characteristics of HfO2-based resistive switching random access memory (ReRAM) devices on flexible plastics. The Pt/HfO2/Au ReRAM devices exhibit the unipolar resistive switching behaviors caused by the conducting filaments. From the Auger depth profiles of the HfO2 thin film, it is confirmed that the relatively lower oxygen content in the interface of the bottom electrode is responsible for the resistive switching by oxygen vacancies. And the unipolar resistive switching behaviors are analyzed from the C-V characteristics in which negative and positive capacitances are measured in the low-resistance state and the high-resistance state, respectively. The devices have a high on/off ratio of 10(4) and the excellent retention properties even after a continuous bending test of two thousand cycles. The correlation between the device size and the memory characteristics is investigated as well. A relatively smaller-sized device having a higher on/off ratio operates at a higher voltage than a relatively larger-sized device.

  16. Self-Compliant Bipolar Resistive Switching in SiN-Based Resistive Switching Memory

    PubMed Central

    Kim, Sungjun; Chang, Yao-Feng; Kim, Min-Hwi; Kim, Tae-Hyeon; Kim, Yoon; Park, Byung-Gook

    2017-01-01

    Here, we present evidence of self-compliant and self-rectifying bipolar resistive switching behavior in Ni/SiNx/n+ Si and Ni/SiNx/n++ Si resistive-switching random access memory devices. The Ni/SiNx/n++ Si device’s Si bottom electrode had a higher dopant concentration (As ion > 1019 cm−3) than the Ni/SiNx/n+ Si device; both unipolar and bipolar resistive switching behaviors were observed for the higher dopant concentration device owing to a large current overshoot. Conversely, for the device with the lower dopant concentration (As ion < 1018 cm−3), self-rectification and self-compliance were achieved owing to the series resistance of the Si bottom electrode. PMID:28772819

  17. Write once read many memory device from Tris-8 (-hydroxyquinoline) aluminum and Indium tin oxide nano particles

    NASA Astrophysics Data System (ADS)

    Aneesh, J.; Predeep, P.

    2011-10-01

    Consequent to the fast increase in data storage requirements new materials and device structures are explored in a war footing. Organic memory devices are attracting lot of interest among the researchers and are becoming a hot topic of investigations. This study is an attempt to develop a tri-layer organic memory device using indium tin oxide (ITO) nanoparticles as charge trapping middle layer between tris-8(-hydroxyquinoline)aluminum (Alq3) layers employing spin coating technique. Device switching is studied by applying a current-voltage (I-V) sweep. On increasing the applied bias the device switched from the initial high resistance (OFF) state to a low resistance (ON) state at a switch on voltage of around 4 V. ON/OFF ratio is of the order of 100 at a read voltage of 2 V. The device is found to remain in the low resistance state on further scans, showing the applicability of this device as a write once read many times (WORM) memory.

  18. Evidence of Filamentary Switching in Oxide-based Memory Devices via Weak Programming and Retention Failure Analysis

    NASA Astrophysics Data System (ADS)

    Younis, Adnan; Chu, Dewei; Li, Sean

    2015-09-01

    Further progress in high-performance microelectronic devices relies on the development of novel materials and device architectures. However, the components and designs that are currently in use have reached their physical limits. Intensive research efforts, ranging from device fabrication to performance evaluation, are required to surmount these limitations. In this paper, we demonstrate that the superior bipolar resistive switching characteristics of a CeO2:Gd-based memory device can be manipulated by means of UV radiation, serving as a new degree of freedom. Furthermore, the metal oxide-based (CeO2:Gd) memory device was found to possess electrical and neuromorphic multifunctionalities. To investigate the underlying switching mechanism of the device, its plasticity behaviour was studied by imposing weak programming conditions. In addition, a short-term to long-term memory transition analogous to the forgetting process in the human brain, which is regarded as a key biological synaptic function for information processing and data storage, was realized. Based on a careful examination of the device’s retention behaviour at elevated temperatures, the filamentary nature of switching in such devices can be understood from a new perspective.

  19. Evidence of Filamentary Switching in Oxide-based Memory Devices via Weak Programming and Retention Failure Analysis

    PubMed Central

    Younis, Adnan; Chu, Dewei; Li, Sean

    2015-01-01

    Further progress in high-performance microelectronic devices relies on the development of novel materials and device architectures. However, the components and designs that are currently in use have reached their physical limits. Intensive research efforts, ranging from device fabrication to performance evaluation, are required to surmount these limitations. In this paper, we demonstrate that the superior bipolar resistive switching characteristics of a CeO2:Gd-based memory device can be manipulated by means of UV radiation, serving as a new degree of freedom. Furthermore, the metal oxide-based (CeO2:Gd) memory device was found to possess electrical and neuromorphic multifunctionalities. To investigate the underlying switching mechanism of the device, its plasticity behaviour was studied by imposing weak programming conditions. In addition, a short-term to long-term memory transition analogous to the forgetting process in the human brain, which is regarded as a key biological synaptic function for information processing and data storage, was realized. Based on a careful examination of the device’s retention behaviour at elevated temperatures, the filamentary nature of switching in such devices can be understood from a new perspective. PMID:26324073

  20. An ultrafast programmable electrical tester for enabling time-resolved, sub-nanosecond switching dynamics and programming of nanoscale memory devices.

    PubMed

    Shukla, Krishna Dayal; Saxena, Nishant; Manivannan, Anbarasu

    2017-12-01

    Recent advancements in commercialization of high-speed non-volatile electronic memories including phase change memory (PCM) have shown potential not only for advanced data storage but also for novel computing concepts. However, an in-depth understanding on ultrafast electrical switching dynamics is a key challenge for defining the ultimate speed of nanoscale memory devices that demands for an unconventional electrical setup, specifically capable of handling extremely fast electrical pulses. In the present work, an ultrafast programmable electrical tester (PET) setup has been developed exceptionally for unravelling time-resolved electrical switching dynamics and programming characteristics of nanoscale memory devices at the picosecond (ps) time scale. This setup consists of novel high-frequency contact-boards carefully designed to capture extremely fast switching transient characteristics within 200 ± 25 ps using time-resolved current-voltage measurements. All the instruments in the system are synchronized using LabVIEW, which helps to achieve various programming characteristics such as voltage-dependent transient parameters, read/write operations, and endurance test of memory devices systematically using short voltage pulses having pulse parameters varied from 1 ns rise/fall time and 1.5 ns pulse width (full width half maximum). Furthermore, the setup has successfully demonstrated strikingly one order faster switching characteristics of Ag 5 In 5 Sb 60 Te 30 (AIST) PCM devices within 250 ps. Hence, this novel electrical setup would be immensely helpful for realizing the ultimate speed limits of various high-speed memory technologies for future computing.

  1. An ultrafast programmable electrical tester for enabling time-resolved, sub-nanosecond switching dynamics and programming of nanoscale memory devices

    NASA Astrophysics Data System (ADS)

    Shukla, Krishna Dayal; Saxena, Nishant; Manivannan, Anbarasu

    2017-12-01

    Recent advancements in commercialization of high-speed non-volatile electronic memories including phase change memory (PCM) have shown potential not only for advanced data storage but also for novel computing concepts. However, an in-depth understanding on ultrafast electrical switching dynamics is a key challenge for defining the ultimate speed of nanoscale memory devices that demands for an unconventional electrical setup, specifically capable of handling extremely fast electrical pulses. In the present work, an ultrafast programmable electrical tester (PET) setup has been developed exceptionally for unravelling time-resolved electrical switching dynamics and programming characteristics of nanoscale memory devices at the picosecond (ps) time scale. This setup consists of novel high-frequency contact-boards carefully designed to capture extremely fast switching transient characteristics within 200 ± 25 ps using time-resolved current-voltage measurements. All the instruments in the system are synchronized using LabVIEW, which helps to achieve various programming characteristics such as voltage-dependent transient parameters, read/write operations, and endurance test of memory devices systematically using short voltage pulses having pulse parameters varied from 1 ns rise/fall time and 1.5 ns pulse width (full width half maximum). Furthermore, the setup has successfully demonstrated strikingly one order faster switching characteristics of Ag5In5Sb60Te30 (AIST) PCM devices within 250 ps. Hence, this novel electrical setup would be immensely helpful for realizing the ultimate speed limits of various high-speed memory technologies for future computing.

  2. Role of Al2O3 thin layer on improving the resistive switching properties of Ta5Si3-based conductive bridge random accesses memory device

    NASA Astrophysics Data System (ADS)

    Kumar, Dayanand; Aluguri, Rakesh; Chand, Umesh; Tseng, Tseung-Yuen

    2018-04-01

    Ta5Si3-based conductive bridge random access memory (CBRAM) devices have been investigated to improve their resistive switching characteristics for their application in future nonvolatile memory technology. Changes in the switching characteristics by the addition of a thin Al2O3 layer of different thicknesses at the bottom electrode interface of a Ta5Si3-based CBRAM devices have been studied. The double-layer device with a 1 nm Al2O3 layer has shown improved resistive switching characteristics over the single layer one with a high on/off resistance ratio of 102, high endurance of more than 104 cycles, and good retention for more than 105 s at the temperature of 130 °C. The higher thermal conductivity of Al2O3 over Ta5Si3 has been attributed to the enhanced switching properties of the double-layer devices.

  3. Temperature induced complementary switching in titanium oxide resistive random access memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, D., E-mail: dpanda@nist.edu; Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu 30010, Taiwan; Simanjuntak, F. M.

    2016-07-15

    On the way towards high memory density and computer performance, a considerable development in energy efficiency represents the foremost aspiration in future information technology. Complementary resistive switch consists of two antiserial resistive switching memory (RRAM) elements and allows for the construction of large passive crossbar arrays by solving the sneak path problem in combination with a drastic reduction of the power consumption. Here we present a titanium oxide based complementary RRAM (CRRAM) device with Pt top and TiN bottom electrode. A subsequent post metal annealing at 400°C induces CRRAM. Forming voltage of 4.3 V is required for this device tomore » initiate switching process. The same device also exhibiting bipolar switching at lower compliance current, Ic <50 μA. The CRRAM device have high reliabilities. Formation of intermediate titanium oxi-nitride layer is confirmed from the cross-sectional HRTEM analysis. The origin of complementary switching mechanism have been discussed with AES, HRTEM analysis and schematic diagram. This paper provides valuable data along with analysis on the origin of CRRAM for the application in nanoscale devices.« less

  4. Coexistence of diode-like volatile and multilevel nonvolatile resistive switching in a ZrO2/TiO2 stack structure.

    PubMed

    Li, Yingtao; Yuan, Peng; Fu, Liping; Li, Rongrong; Gao, Xiaoping; Tao, Chunlan

    2015-10-02

    Diode-like volatile resistive switching as well as nonvolatile resistive switching behaviors in a Cu/ZrO₂/TiO₂/Ti stack are investigated. Depending on the current compliance during the electroforming process, either volatile resistive switching or nonvolatile resistive switching is observed. With a lower current compliance (<10 μA), the Cu/ZrO₂/TiO₂/Ti device exhibits diode-like volatile resistive switching with a rectifying ratio over 10(6). The permanent transition from volatile to nonvolatile resistive switching can be obtained by applying a higher current compliance of 100 μA. Furthermore, by using different reset voltages, the Cu/ZrO₂/TiO₂/Ti device exhibits multilevel memory characteristics with high uniformity. The coexistence of nonvolatile multilevel memory and diode-like volatile resistive switching behaviors in the same Cu/ZrO₂/TiO₂/Ti device opens areas of applications in high-density storage, logic circuits, neural networks, and passive crossbar memory selectors.

  5. Ultralow Power Consumption Flexible Biomemristors.

    PubMed

    Kim, Min-Kyu; Lee, Jang-Sik

    2018-03-28

    Low power consumption is the important requirement in memory devices for saving energy. In particular, improved energy efficiency is essential in implantable electronic devices for operation under a limited power supply. Here, we demonstrate the use of κ-carrageenan (κ-car) as the resistive switching layer to achieve memory that has low power consumption. A carboxymethyl (CM) group is introduced to the κ-car to increase its ionic conductivity. Ag was doped in CM:κ-car to improve the resistive switching properties of the devices. Memory devices based on Ag-doped CM:κ-car showed electroforming-free resistive switching. This device exhibited low reset voltage (∼0.05 V), fast switching speed (50 ns), and high on/off ratio (>10 3 ) under low compliance current (10 -5 A). Its power consumption (∼0.35 μW) is much lower than those of the previously reported biomemristors. The resistive switching may be a result of an electrochemical redox process and Ag filament formation in the CM:κ-car under an electric field. This biopolymer memory can also be fabricated on flexible substrate. This study verifies the feasibility of using biopolymers for applications to future implantable and biocompatible nanoelectronics.

  6. Resistive switching effect in the planar structure of all-printed, flexible and rewritable memory device based on advanced 2D nanocomposite of graphene quantum dots and white graphene flakes

    NASA Astrophysics Data System (ADS)

    Muqeet Rehman, Muhammad; Uddin Siddiqui, Ghayas; Kim, Sowon; Choi, Kyung Hyun

    2017-08-01

    Pursuit of the most appropriate materials and fabrication methods is essential for developing a reliable, rewritable and flexible memory device. In this study, we have proposed an advanced 2D nanocomposite of white graphene (hBN) flakes embedded with graphene quantum dots (GQDs) as the functional layer of a flexible memory device owing to their unique electrical, chemical and mechanical properties. Unlike the typical sandwich type structure of a memory device, we developed a cost effective planar structure, to simplify device fabrication and prevent sneak current. The entire device fabrication was carried out using printing technology followed by encapsulation in an atomically thin layer of aluminum oxide (Al2O3) for protection against environmental humidity. The proposed memory device exhibited attractive bipolar switching characteristics of high switching ratio, large electrical endurance and enhanced lifetime, without any crosstalk between adjacent memory cells. The as-fabricated device showed excellent durability for several bending cycles at various bending diameters without any degradation in bistable resistive states. The memory mechanism was deduced to be conductive filamentary; this was validated by illustrating the temperature dependence of bistable resistive states. Our obtained results pave the way for the execution of promising 2D material based next generation flexible and non-volatile memory (NVM) applications.

  7. Direct Observation of Conducting Filaments in Tungsten Oxide Based Transparent Resistive Switching Memory.

    PubMed

    Qian, Kai; Cai, Guofa; Nguyen, Viet Cuong; Chen, Tupei; Lee, Pooi See

    2016-10-05

    Transparent nonvolatile memory has great potential in integrated transparent electronics. Here, we present highly transparent resistive switching memory using stoichiometric WO 3 film produced by cathodic electrodeposition with indium tin oxide electrodes. The memory device demonstrates good optical transmittance, excellent operative uniformity, low operating voltages (+0.25 V/-0.42 V), and long retention time (>10 4 s). Conductive atomic force microscopy, ex situ transmission electron microscopy, and X-ray photoelectron spectroscopy experiments directly confirm that the resistive switching effects occur due to the electric field-induced formation and annihilation of the tungsten-rich conductive channel between two electrodes. Information on the physical and chemical nature of conductive filaments offers insightful design strategies for resistive switching memories with excellent performances. Moreover, we demonstrate the promising applicability of the cathodic electrodeposition method for future resistive memory devices.

  8. A flexible nonvolatile resistive switching memory device based on ZnO film fabricated on a foldable PET substrate.

    PubMed

    Sun, Bai; Zhang, Xuejiao; Zhou, Guangdong; Yu, Tian; Mao, Shuangsuo; Zhu, Shouhui; Zhao, Yong; Xia, Yudong

    2018-06-15

    In this work, a flexible resistive switching memory device based on ZnO film was fabricated using a foldable Polyethylene terephthalate (PET) film as substrate while Ag and Ti acts top and bottom electrode. Our as-prepared device represents an outstanding nonvolatile memory behavior with good "write-read-erase-read" stability at room temperature. Finally, a physical model of Ag conductive filament is constructed to understanding the observed memory characteristics. The work provides a new way for the preparation of flexible memory devices based on ZnO films, and especially provides an experimental basis for the exploration of high-performance and portable nonvolatile resistance random memory (RRAM). Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Resistive switching characteristics of interfacial phase-change memory at elevated temperature

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Kirill V.; Saito, Yuta; Miyata, Noriyuki; Fons, Paul; Kolobov, Alexander V.; Tominaga, Junji

    2018-04-01

    Interfacial phase-change memory (iPCM) devices were fabricated using W and TiN for the bottom and top contacts, respectively, and the effect of operation temperature on the resistive switching was examined over the range between room temperature and 200 °C. It was found that the high-resistance (RESET) state in an iPCM device drops sharply at around 150 °C to a low-resistance (SET) state, which differs by ˜400 Ω from the SET state obtained by electric-field-induced switching. The iPCM device SET state resistance recovered during the cooling process and remained at nearly the same value for the RESET state. These resistance characteristics greatly differ from those of the conventional Ge-Sb-Te (GST) alloy phase-change memory device, underscoring the fundamentally different switching nature of iPCM devices. From the thermal stability measurements of iPCM devices, their optimal temperature operation was concluded to be less than 100 °C.

  10. High-performance flexible resistive memory devices based on Al2O3:GeOx composite

    NASA Astrophysics Data System (ADS)

    Behera, Bhagaban; Maity, Sarmistha; Katiyar, Ajit K.; Das, Samaresh

    2018-05-01

    In this study a resistive switching random access memory device using Al2O3:GeOx composite thin films on flexible substrate is presented. A bipolar switching characteristic was observed for the co-sputter deposited Al2O3:GeOx composite thin films. Al/Al2O3:GeOx/ITO/PET memory device shows excellent ON/OFF ratio (∼104) and endurance (>500 cycles). GeOx nanocrystals embedded in the Al2O3 matrix have been found to play a significant role in enhancing the switching characteristics by facilitating oxygen vacancy formation. Mechanical endurance was retained even after several bending. The conduction mechanism of the device was qualitatively discussed by considering Ohmic and SCLC conduction. This flexible device is a potential candidate for next-generation electronics device.

  11. Ames Lab 101: Ultrafast Magnetic Switching

    ScienceCinema

    Wang; Jigang

    2018-01-01

    Ames Laboratory physicists have found a new way to switch magnetism that is at least 1000 times faster than currently used in magnetic memory technologies. Magnetic switching is used to encode information in hard drives, magnetic random access memory and other computing devices. The discovery potentially opens the door to terahertz and faster memory speeds.

  12. Peroxide induced volatile and non-volatile switching behavior in ZnO-based electrochemical metallization memory cell

    NASA Astrophysics Data System (ADS)

    Mangasa Simanjuntak, Firman; Chandrasekaran, Sridhar; Pattanayak, Bhaskar; Lin, Chun-Chieh; Tseng, Tseung-Yuen

    2017-09-01

    We explore the use of cubic-zinc peroxide (ZnO2) as a switching material for electrochemical metallization memory (ECM) cell. The ZnO2 was synthesized with a simple peroxide surface treatment. Devices made without surface treatment exhibits a high leakage current due to the self-doped nature of the hexagonal-ZnO material. Thus, its switching behavior can only be observed when a very high current compliance is employed. The synthetic ZnO2 layer provides a sufficient resistivity to the Cu/ZnO2/ZnO/ITO devices. The high resistivity of ZnO2 encourages the formation of a conducting bridge to activate the switching behavior at a lower operation current. Volatile and non-volatile switching behaviors with sufficient endurance and an adequate memory window are observed in the surface-treated devices. The room temperature retention of more than 104 s confirms the non-volatility behavior of the devices. In addition, our proposed device structure is able to work at a lower operation current among other reported ZnO-based ECM cells.

  13. Transparent resistive switching memory using aluminum oxide on a flexible substrate

    NASA Astrophysics Data System (ADS)

    Yeom, Seung-Won; Shin, Sang-Chul; Kim, Tan-Young; Ha, Hyeon Jun; Lee, Yun-Hi; Shim, Jae Won; Ju, Byeong-Kwon

    2016-02-01

    Resistive switching memory (ReRAM) has attracted much attention in recent times owing to its fast switching, simple structure, and non-volatility. Flexible and transparent electronic devices have also attracted considerable attention. We therefore fabricated an Al2O3-based ReRAM with transparent indium-zinc-oxide (IZO) electrodes on a flexible substrate. The device transmittance was found to be higher than 80% in the visible region (400-800 nm). Bended states (radius = 10 mm) of the device also did not affect the memory performance because of the flexibility of the two transparent IZO electrodes and the thin Al2O3 layer. The conduction mechanism of the resistive switching of our device was explained by ohmic conduction and a Poole-Frenkel emission model. The conduction mechanism was proved by oxygen vacancies in the Al2O3 layer, as analyzed by x-ray photoelectron spectroscopy analysis. These results encourage the application of ReRAM in flexible and transparent electronic devices.

  14. Unipolar resistive switching behaviors and mechanisms in an annealed Ni/ZrO2/TaN memory device

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Ling; Ho, Tsung-Han; Tseng, Tseung-Yuen

    2015-01-01

    The effects of Ni/ZrO2/TaN resistive switching memory devices without and with a 400 °C annealing process on switching properties are investigated. The devices exhibit unipolar resistive switching behaviors with low set and reset voltages because of a large amount of Ni diffusion with no reaction with ZrO2 after the annealing process, which is confirmed by ToF-SIMS and XPS analyses. A physical model based on a Ni filament is constructed to explain such phenomena. The device that undergoes the 400 °C annealing process exhibits an excellent endurance of more than 1.5  ×  104 cycles. The improvement can be attributed to the enhancement of oxygen ion migration along grain boundaries, which result in less oxygen ion consumption during the reset process. The device also performs good retention up to 105 s at 150 °C. Therefore, it has great potential for high-density nonvolatile memory applications.

  15. Resistive switching characteristics of manganese oxide thin film and nanoparticle assembly hybrid devices

    NASA Astrophysics Data System (ADS)

    Abbas, Haider; Park, Mi Ra; Abbas, Yawar; Hu, Quanli; Kang, Tae Su; Yoon, Tae-Sik; Kang, Chi Jung

    2018-06-01

    Improved resistive switching characteristics are demonstrated in a hybrid device with Pt/Ti/MnO (thin film)/MnO (nanoparticle)/Pt structure. The hybrid devices of MnO thin film and nanoparticle assembly were fabricated. MnO nanoparticles with an average diameter of ∼30 nm were chemically synthesized and assembled as a monolayer on a Pt bottom electrode. A MnO thin film of ∼40 nm thickness was deposited on the nanoparticle assembly to form the hybrid structure. Resistive switching could be induced by the formation and rupture of conducting filaments in the hybrid oxide layers. The hybrid device exhibited very stable unipolar switching with good endurance and retention characteristics. It showed a larger and stable memory window with a uniform distribution of SET and RESET voltages. Moreover, the conduction mechanisms of ohmic conduction, space-charge-limited conduction, Schottky emission, and Poole–Frenkel emission have been investigated as possible conduction mechanisms for the switching of the devices. Using MnO nanoparticles in the thin film and nanoparticle heterostructures enabled the appropriate control of resistive random access memory (RRAM) devices and markedly improved their memory characteristics.

  16. Compact modeling of CRS devices based on ECM cells for memory, logic and neuromorphic applications.

    PubMed

    Linn, E; Menzel, S; Ferch, S; Waser, R

    2013-09-27

    Dynamic physics-based models of resistive switching devices are of great interest for the realization of complex circuits required for memory, logic and neuromorphic applications. Here, we apply such a model of an electrochemical metallization (ECM) cell to complementary resistive switches (CRSs), which are favorable devices to realize ultra-dense passive crossbar arrays. Since a CRS consists of two resistive switching devices, it is straightforward to apply the dynamic ECM model for CRS simulation with MATLAB and SPICE, enabling study of the device behavior in terms of sweep rate and series resistance variations. Furthermore, typical memory access operations as well as basic implication logic operations can be analyzed, revealing requirements for proper spike and level read operations. This basic understanding facilitates applications of massively parallel computing paradigms required for neuromorphic applications.

  17. Migration of interfacial oxygen ions modulated resistive switching in oxide-based memory devices

    NASA Astrophysics Data System (ADS)

    Chen, C.; Gao, S.; Zeng, F.; Tang, G. S.; Li, S. Z.; Song, C.; Fu, H. D.; Pan, F.

    2013-07-01

    Oxides-based resistive switching memory induced by oxygen ions migration is attractive for future nonvolatile memories. Numerous works had focused their attentions on the sandwiched oxide materials for depressing the characteristic variations, but the comprehensive studies of the dependence of electrodes on the migration behavior of oxygen ions are overshadowed. Here, we investigated the interaction of various metals (Ni, Co, Al, Ti, Zr, and Hf) with oxygen atoms at the metal/Ta2O5 interface under electric stress and explored the effect of top electrode on the characteristic variations of Ta2O5-based memory device. It is demonstrated that chemically inert electrodes (Ni and Co) lead to the scattering switching characteristics and destructive gas bubbles, while the highly chemically active metals (Hf and Zr) formed a thick and dense interfacial intermediate oxide layer at the metal/Ta2O5 interface, which also degraded the resistive switching behavior. The relatively chemically active metals (Al and Ti) can absorb oxygen ions from the Ta2O5 film and avoid forming the problematic interfacial layer, which is benefit to the formation of oxygen vacancies composed conduction filaments in Ta2O5 film thus exhibit the minimum variations of switching characteristics. The clarification of oxygen ions migration behavior at the interface can lead further optimization of resistive switching performance in Ta2O5-based memory device and guide the rule of electrode selection for other oxide-based resistive switching memories.

  18. Stochastic switching of TiO2-based memristive devices with identical initial memory states

    PubMed Central

    2014-01-01

    In this work, we show that identical TiO2-based memristive devices that possess the same initial resistive states are only phenomenologically similar as their internal structures may vary significantly, which could render quite dissimilar switching dynamics. We experimentally demonstrated that the resistive switching of practical devices with similar initial states could occur at different programming stimuli cycles. We argue that similar memory states can be transcribed via numerous distinct active core states through the dissimilar reduced TiO2-x filamentary distributions. Our hypothesis was finally verified via simulated results of the memory state evolution, by taking into account dissimilar initial filamentary distribution. PMID:24994953

  19. Comparison of resistive switching characteristics using copper and aluminum electrodes on GeOx/W cross-point memories

    PubMed Central

    2013-01-01

    Comparison of resistive switching memory characteristics using copper (Cu) and aluminum (Al) electrodes on GeOx/W cross-points has been reported under low current compliances (CCs) of 1 nA to 50 μA. The cross-point memory devices are observed by high-resolution transmission electron microscopy (HRTEM). Improved memory characteristics are observed for the Cu/GeOx/W structures as compared to the Al/GeOx/W cross-points owing to AlOx formation at the Al/GeOx interface. The RESET current increases with the increase of the CCs varying from 1 nA to 50 μA for the Cu electrode devices, while the RESET current is high (>1 mA) and independent of CCs varying from 1 nA to 500 μA for the Al electrode devices. An extra formation voltage is needed for the Al/GeOx/W devices, while a low operation voltage of ±2 V is needed for the Cu/GeOx/W cross-point devices. Repeatable bipolar resistive switching characteristics of the Cu/GeOx/W cross-point memory devices are observed with CC varying from 1 nA to 50 μA, and unipolar resistive switching is observed with CC >100 μA. High resistance ratios of 102 to 104 for the bipolar mode (CCs of 1 nA to 50 μA) and approximately 108 for the unipolar mode are obtained for the Cu/GeOx/W cross-points. In addition, repeatable switching cycles and data retention of 103 s are observed under a low current of 1 nA for future low-power, high-density, nonvolatile, nanoscale memory applications. PMID:24305116

  20. Improvement of Bipolar Switching Properties of Gd:SiOx RRAM Devices on Indium Tin Oxide Electrode by Low-Temperature Supercritical CO2 Treatment.

    PubMed

    Chen, Kai-Huang; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Liang, Shu-Ping; Young, Tai-Fa; Syu, Yong-En; Sze, Simon M

    2016-12-01

    Bipolar switching resistance behaviors of the Gd:SiO2 resistive random access memory (RRAM) devices on indium tin oxide electrode by the low-temperature supercritical CO2-treated technology were investigated. For physical and electrical measurement results obtained, the improvement on oxygen qualities, properties of indium tin oxide electrode, and operation current of the Gd:SiO2 RRAM devices were also observed. In addition, the initial metallic filament-forming model analyses and conduction transferred mechanism in switching resistance properties of the RRAM devices were verified and explained. Finally, the electrical reliability and retention properties of the Gd:SiO2 RRAM devices for low-resistance state (LRS)/high-resistance state (HRS) in different switching cycles were also measured for applications in nonvolatile random memory devices.

  1. Low power consumption resistance random access memory with Pt/InOx/TiN structure

    NASA Astrophysics Data System (ADS)

    Yang, Jyun-Bao; Chang, Ting-Chang; Huang, Jheng-Jie; Chen, Yu-Ting; Tseng, Hsueh-Chih; Chu, Ann-Kuo; Sze, Simon M.; Tsai, Ming-Jinn

    2013-09-01

    In this study, the resistance switching characteristics of a resistive random access memory device with Pt/InOx/TiN structure is investigated. Unstable bipolar switching behavior is observed during the initial switching cycle, which then stabilizes after several switching cycles. Analyses indicate that the current conduction mechanism in the resistance state is dominated by Ohmic conduction. The decrease in electrical conductance can be attributed to the reduction of the cross-sectional area of the conduction path. Furthermore, the device exhibits low operation voltage and power consumption.

  2. Filamentary model in resistive switching materials

    NASA Astrophysics Data System (ADS)

    Jasmin, Alladin C.

    2017-12-01

    The need for next generation computer devices is increasing as the demand for efficient data processing increases. The amount of data generated every second also increases which requires large data storage devices. Oxide-based memory devices are being studied to explore new research frontiers thanks to modern advances in nanofabrication. Various oxide materials are studied as active layers for non-volatile memory. This technology has potential application in resistive random-access-memory (ReRAM) and can be easily integrated in CMOS technologies. The long term perspective of this research field is to develop devices which mimic how the brain processes information. To realize such application, a thorough understanding of the charge transport and switching mechanism is important. A new perspective in the multistate resistive switching based on current-induced filament dynamics will be discussed. A simple equivalent circuit of the device gives quantitative information about the nature of the conducting filament at different resistance states.

  3. Resistive Switching of Ta2O5-Based Self-Rectifying Vertical-Type Resistive Switching Memory

    NASA Astrophysics Data System (ADS)

    Ryu, Sungyeon; Kim, Seong Keun; Choi, Byung Joon

    2018-01-01

    To efficiently increase the capacity of resistive switching random-access memory (RRAM) while maintaining the same area, a vertical structure similar to a vertical NAND flash structure is needed. In addition, the sneak-path current through the half-selected neighboring memory cell should be mitigated by integrating a selector device with each RRAM cell. In this study, an integrated vertical-type RRAM cell and selector device was fabricated and characterized. Ta2O5 as the switching layer and TaOxNy as the selector layer were used to preliminarily study the feasibility of such an integrated device. To make the side contact of the bottom electrode with active layers, a thick Al2O3 insulating layer was placed between the Pt bottom electrode and the Ta2O5/TaOxNy stacks. Resistive switching phenomena were observed under relatively low currents (below 10 μA) in this vertical-type RRAM device. The TaOxNy layer acted as a nonlinear resistor with moderate nonlinearity. Its low-resistance-state and high-resistance-state were well retained up to 1000 s.

  4. Robust resistive memory devices using solution-processable metal-coordinated azo aromatics

    NASA Astrophysics Data System (ADS)

    Goswami, Sreetosh; Matula, Adam J.; Rath, Santi P.; Hedström, Svante; Saha, Surajit; Annamalai, Meenakshi; Sengupta, Debabrata; Patra, Abhijeet; Ghosh, Siddhartha; Jani, Hariom; Sarkar, Soumya; Motapothula, Mallikarjuna Rao; Nijhuis, Christian A.; Martin, Jens; Goswami, Sreebrata; Batista, Victor S.; Venkatesan, T.

    2017-12-01

    Non-volatile memories will play a decisive role in the next generation of digital technology. Flash memories are currently the key player in the field, yet they fail to meet the commercial demands of scalability and endurance. Resistive memory devices, and in particular memories based on low-cost, solution-processable and chemically tunable organic materials, are promising alternatives explored by the industry. However, to date, they have been lacking the performance and mechanistic understanding required for commercial translation. Here we report a resistive memory device based on a spin-coated active layer of a transition-metal complex, which shows high reproducibility (~350 devices), fast switching (<=30 ns), excellent endurance (~1012 cycles), stability (>106 s) and scalability (down to ~60 nm2). In situ Raman and ultraviolet-visible spectroscopy alongside spectroelectrochemistry and quantum chemical calculations demonstrate that the redox state of the ligands determines the switching states of the device whereas the counterions control the hysteresis. This insight may accelerate the technological deployment of organic resistive memories.

  5. Hafnia-based resistive switching devices for non-volatile memory applications and effects of gamma irradiation on device performance

    NASA Astrophysics Data System (ADS)

    Arun, N.; Kumar, K. Vinod; Pathak, A. P.; Avasthi, D. K.; Nageswara Rao, S. V. S.

    2018-04-01

    Non-volatile memory (NVM) devices were fabricated as a Metal- Insulator-Metal (MIM) structures by sandwiching Hafnium dioxide (HfO2) thin film in between two metal electrodes. The top and bottom metal electrodes were deposited by using the thermal evaporation, and the oxide layer was deposited by using the RF magnetron sputtering technique. The Resistive Random Access Memory (RRAM) device structures such as Ag/HfO2/Au/Si were fabricated and I-V characteristics for the pristine and gamma-irradiated devices with a dose 24 kGy were measured. Further we have studied the thermal annealing effects, in the range of 100°-400°C in a tubular furnace for the HfO2/Au/Si samples. The X-ray diffraction (XRD), Rutherford Backscattering Spectrometry (RBS), field emission-scanning electron microscopy (FESEM) analysis measurements were performed to determine the thickness, crystallinity and stoichiometry of these films. The electrical characteristics such as resistive switching, endurance, retention time and switching speed were measured by a semiconductor device analyser. The effects of gamma irradiation on the switching properties of these RRAM devices have been studied.

  6. A resistance ratio change phenomenon observed in Al doped ZnO (AZO)/Cu(In1-xGax)Se2/Mo resistive switching memory device

    NASA Astrophysics Data System (ADS)

    Guo, Tao; Sun, Bai; Mao, Shuangsuo; Zhu, Shouhui; Xia, Yudong; Wang, Hongyan; Zhao, Yong; Yu, Zhou

    2018-03-01

    In this work, the Cu(In1-xGax)Se2 (CIGS), Al doped ZnO (AZO) and Mo has been used for constructing a resistive switching device with AZO/CIGS/Mo sandwich structure grown on a transparent glass substrate. The device represents a high-performance memory characteristics under ambient temperature. In particularly, a resistance ratio change phenomenon have been observed in our device for the first time.

  7. Real-time associative memory with photorefractive crystal KNSBN and liquid-crystal optical switches

    NASA Astrophysics Data System (ADS)

    Xu, Haiying; Yuan, Yang Y.; Yu, Youlong; Xu, Kebin; Xu, Yuhuan; Zhu, De-Rui

    1990-05-01

    We present a real-time holographic associative memory implemented with photorefractive KNSBN : Co crystal as memory element and liquid crystal electrooptical switches as reflective thresholding device. The experimental results show that the system has real-time multiple-image storage and recall function.

  8. Carbon nanotube switches for memory, RF communications and sensing applications, and methods of making the same

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B. (Inventor); Wong, Eric W. (Inventor); Baron, Richard L. (Inventor); Epp, Larry (Inventor)

    2008-01-01

    Switches having an in situ grown carbon nanotube as an element thereof, and methods of fabricating such switches. A carbon nanotube is grown in situ in mechanical connection with a conductive substrate, such as a heavily doped silicon wafer or an SOI wafer. The carbon nanotube is electrically connected at one location to a terminal. At another location of the carbon nanotube there is situated a pull electrode that can be used to elecrostatically displace the carbon nanotube so that it selectively makes contact with either the pull electrode or with a contact electrode. Connection to the pull electrode is sufficient to operate the device as a simple switch, while connection to a contact electrode is useful to operate the device in a manner analogous to a relay. In various embodiments, the devices disclosed are useful as at least switches for various signals, multi-state memory, computational devices, and multiplexers.

  9. Influence of Thermal Annealing Treatment on Bipolar Switching Properties of Vanadium Oxide Thin-Film Resistance Random-Access Memory Devices

    NASA Astrophysics Data System (ADS)

    Chen, Kai-Huang; Cheng, Chien-Min; Kao, Ming-Cheng; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Wu, Sean; Su, Feng-Yi

    2017-04-01

    The bipolar switching properties and electrical conduction mechanism of vanadium oxide thin-film resistive random-access memory (RRAM) devices obtained using a rapid thermal annealing (RTA) process have been investigated in high-resistive status/low-resistive status (HRS/LRS) and are discussed herein. In addition, the resistance switching properties and quality improvement of the vanadium oxide thin-film RRAM devices were measured by x-ray diffraction (XRD) analysis, x-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and current-voltage ( I- V) measurements. The activation energy of the hopping conduction mechanism in the devices was investigated based on Arrhenius plots in HRS and LRS. The hopping conduction distance and activation energy barrier were obtained as 12 nm and 45 meV, respectively. The thermal annealing process is recognized as a candidate method for fabrication of thin-film RRAM devices, being compatible with integrated circuit technology for nonvolatile memory devices.

  10. Self-learning ability realized with a resistive switching device based on a Ni-rich nickel oxide thin film

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Chen, T. P.; Liu, Z.; Yu, Y. F.; Yu, Q.; Li, P.; Fung, S.

    2011-12-01

    The resistive switching device based on a Ni-rich nickel oxide thin film exhibits an inherent learning ability of a neural network. The device has the short-term-memory and long-term-memory functions analogous to those of the human brain, depending on the history of its experience of voltage pulsing or sweeping. Neuroplasticity could be realized with the device, as the device can be switched from a high-resistance state to a low-resistance state due to the formation of stable filaments by a series of electrical pulses, resembling the changes such as the growth of new connections and the creation of new neurons in the brain in response to experience.

  11. Semiconductor diode with external field modulation

    DOEpatents

    Nasby, Robert D.

    2000-01-01

    A non-destructive-readout nonvolatile semiconductor diode switching device that may be used as a memory element is disclosed. The diode switching device is formed with a ferroelectric material disposed above a rectifying junction to control the conduction characteristics therein by means of a remanent polarization. The invention may be used for the formation of integrated circuit memories for the storage of information.

  12. Biomolecule nanoparticle-induced nanocomposites with resistive switching nonvolatile memory properties

    NASA Astrophysics Data System (ADS)

    Ko, Yongmin; Ryu, Sook Won; Cho, Jinhan

    2016-04-01

    Resistive switching behavior-based memory devices are considered promising candidates for next-generation data storage because of their simple structure configuration, low power consumption, and rapid operating speed. Here, the resistive switching nonvolatile memory properties of Fe2O3 nanocomposite (NC) films prepared from the thermal calcination of layer-by-layer (LbL) assembled ferritin multilayers were successfully investigated. For this study, negatively charged ferritin nanoparticles were alternately deposited onto the Pt-coated Si substrate with positively charged poly(allylamine hydrochloride) (PAH) by solution-based electrostatic LbL assembly, and the formed multilayers were thermally calcinated to obtain a homogeneous transition metal oxide NC film through the elimination of organic components, including the protein shell of ferritin. The formed memory device exhibits a stable ON/OFF current ratio of approximately 103, with nanosecond switching times under an applied external bias. In addition, these reversible switching properties were kept stable during the repeated cycling tests of above 200 cycles and a test period of approximately 105 s under atmosphere. These solution-based approaches can provide a basis for large-area inorganic nanoparticle-based electric devices through the design of bio-nanomaterials at the molecular level.

  13. Dynamic-load-enabled ultra-low power multiple-state RRAM devices.

    PubMed

    Yang, Xiang; Chen, I-Wei

    2012-01-01

    Bipolar resistance-switching materials allowing intermediate states of wide-varying resistance values hold the potential of drastically reduced power for non-volatile memory. To exploit this potential, we have introduced into a nanometallic resistance-random-access-memory (RRAM) device an asymmetric dynamic load, which can reliably lower switching power by orders of magnitude. The dynamic load is highly resistive during on-switching allowing access to the highly resistive intermediate states; during off-switching the load vanishes to enable switching at low voltage. This approach is entirely scalable and applicable to other bipolar RRAM with intermediate states. The projected power is 12 nW for a 100 × 100 nm(2) device and 500 pW for a 10 × 10 nm(2) device. The dynamic range of the load can be increased to allow power to be further decreased by taking advantage of the exponential decay of wave-function in a newly discovered nanometallic random material, reaching possibly 1 pW for a 10×10 nm(2) nanometallic RRAM device.

  14. Avalanche atomic switching in strain engineered Sb2Te3-GeTe interfacial phase-change memory cells

    NASA Astrophysics Data System (ADS)

    Zhou, Xilin; Behera, Jitendra K.; Lv, Shilong; Wu, Liangcai; Song, Zhitang; Simpson, Robert E.

    2017-09-01

    By confining phase transitions to the nanoscale interface between two different crystals, interfacial phase change memory heterostructures represent the state of the art for energy efficient data storage. We present the effect of strain engineering on the electrical switching performance of the {{Sb}}2{{Te}}3-GeTe superlattice van der Waals devices. Multiple Ge atoms switching through a two-dimensional Te layer reduces the activation barrier for further atoms to switch; an effect that can be enhanced by biaxial strain. The out-of-plane phonon mode of the GeTe crystal remains active in the superlattice heterostructures. The large in-plane biaxial strain imposed by the {{Sb}}2{{Te}}3 layers on the GeTe layers substantially improves the switching speed, reset energy, and cyclability of the superlattice memory devices. Moreover, carefully controlling residual stress in the layers of {{Sb}}2{{Te}}3-GeTe interfacial phase change memories provides a new degree of freedom to design the properties of functional superlattice structures for memory and photonics applications.

  15. Electrical reliability, multilevel data storage and mechanical stability of MoS2-PMMA nanocomposite-based non-volatile memory device

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Snigdha; Sarkar, Pranab Kumar; Prajapat, Manoj; Roy, Asim

    2017-07-01

    Molybdenum disulfide (MoS2) is of great interest for its applicability in various optoelectronic devices. Here we report the resistive switching properties of polymethylmethacrylate embedding MoS2 nano-crystals. The devices are developed on an ITO-coated PET substrate with copper as the top electrode. Systematic evaluation of resistive switching parameters, on the basis of MoS2 content, suggests non-volatile memory characteristics. A decent ON/OFF ratio, high retention time and long endurance of 3  ×  103, 105 s and 105 cycles are respectively recorded in a device with 1 weight percent (wt%) of MoS2. The bending cyclic measurements confirm the flexibility of the memory devices with good electrical reliability as well as mechanical stability. In addition, multilevel storage has been demonstrated by controlling the current compliance and span of voltage sweeping in the memory device.

  16. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations

    NASA Astrophysics Data System (ADS)

    Choi, Shinhyun; Tan, Scott H.; Li, Zefan; Kim, Yunjo; Choi, Chanyeol; Chen, Pai-Yu; Yeon, Hanwool; Yu, Shimeng; Kim, Jeehwan

    2018-01-01

    Although several types of architecture combining memory cells and transistors have been used to demonstrate artificial synaptic arrays, they usually present limited scalability and high power consumption. Transistor-free analog switching devices may overcome these limitations, yet the typical switching process they rely on—formation of filaments in an amorphous medium—is not easily controlled and hence hampers the spatial and temporal reproducibility of the performance. Here, we demonstrate analog resistive switching devices that possess desired characteristics for neuromorphic computing networks with minimal performance variations using a single-crystalline SiGe layer epitaxially grown on Si as a switching medium. Such epitaxial random access memories utilize threading dislocations in SiGe to confine metal filaments in a defined, one-dimensional channel. This confinement results in drastically enhanced switching uniformity and long retention/high endurance with a high analog on/off ratio. Simulations using the MNIST handwritten recognition data set prove that epitaxial random access memories can operate with an online learning accuracy of 95.1%.

  17. Low-cost fabrication and polar-dependent switching uniformity of memory devices using alumina interfacial layer and Ag nanoparticle monolayer

    NASA Astrophysics Data System (ADS)

    Xia, Peng; Li, Luman; Wang, Pengfei; Gan, Ying; Xu, Wei

    2017-11-01

    A facile and low-cost process was developed for fabricating write-once-read-many-times (WORM) Cu/Ag NPs/Alumina/Al memory devices, where the alumina passivation layer formed naturally in air at room temperature, whereas the Ag nanoparticle monolayer was in situ prepared through thermal annealing of a 4.5 nm Ag film in air at 150°C. The devices exhibit irreversible transition from initial high resistance (OFF) state to low resistance (ON) state, with ON/OFF ratio of 107, indicating the introduction of Ag nanoparticle monolayer greatly improves ON/OFF ratio by four orders of magnitude. The uniformity of threshold voltages exhibits a polar-dependent behavior, and a narrow range of threshold voltages of 0.40 V among individual devices was achieved upon the forward voltage. The memory device can be regarded as two switching units connected in series. The uniform alumina interfacial layer and the non-uniform distribution of local electric fields originated from Ag nanoparticles might be responsible for excellent switching uniformity. Since silver ions in active layer can act as fast ion conductor, a plausible mechanism relating to the formation of filaments sequentially among the two switching units connected in series is suggested for the polar-dependent switching behavior. Furthermore, we demonstrate both alumina layer and Ag NPs monolayer play essential roles in improving switching parameters based on comparative experiments.

  18. Electrochromic conductive polymer fuses for hybrid organic/inorganic semiconductor memories

    NASA Astrophysics Data System (ADS)

    Möller, Sven; Forrest, Stephen R.; Perlov, Craig; Jackson, Warren; Taussig, Carl

    2003-12-01

    We demonstrate a nonvolatile, write-once-read-many-times (WORM) memory device employing a hybrid organic/inorganic semiconductor architecture consisting of thin film p-i-n silicon diode on a stainless steel substrate integrated in series with a conductive polymer fuse. The nonlinearity of the silicon diodes enables a passive matrix memory architecture, while the conductive polyethylenedioxythiophene:polystyrene sulfonic acid polymer serves as a reliable switch with fuse-like behavior for data storage. The polymer can be switched at ˜2 μs, resulting in a permanent decrease of conductivity of the memory pixel by up to a factor of 103. The switching mechanism is primarily due to a current and thermally dependent redox reaction in the polymer, limited by the double injection of both holes and electrons. The switched device performance does not degrade after many thousand read cycles in ambient at room temperature. Our results suggest that low cost, organic/inorganic WORM memories are feasible for light weight, high density, robust, and fast archival storage applications.

  19. Controllable Switching Filaments Prepared via Tunable and Well-Defined Single Truncated Conical Nanopore Structures for Fast and Scalable SiOx Memory.

    PubMed

    Kwon, Soonbang; Jang, Seonghoon; Choi, Jae-Wan; Choi, Sanghyeon; Jang, Sukjae; Kim, Tae-Wook; Wang, Gunuk

    2017-12-13

    The controllability of switching conductive filaments is one of the central issues in the development of reliable metal-oxide resistive memory because the random dynamic nature and formation of the filaments pose an obstacle to desirable switching performance. Here, we introduce a simple and novel approach to control and form a single silicon nanocrystal (Si-NC) filament for use in SiO x memory devices. The filament is formed with a confined vertical nanoscale gap by using a well-defined single vertical truncated conical nanopore (StcNP) structure. The physical dimensions of the Si-NC filaments such as number, size, and length, which have a significant influence on the switching properties, can be simply engineered by the breakdown of an Au wire through different StcNP structures. In particular, we demonstrate that the designed SiO x memory junction with a StcNP of pore depth of ∼75 nm and a bottom diameter of ∼10 nm exhibited a switching speed of up to 6 ns for both set and reset process, significantly faster than reported SiO x memory devices. The device also exhibited a high ON-OFF ratio, multistate storage ability, acceptable endurance, and retention stability. The influence of the physical dimensions of the StcNP on the switching features is discussed based on the simulated temperature profiles of the Au wire and the nanogap size generated inside the StcNP structure during electromigration.

  20. Dual operation characteristics of resistance random access memory in indium-gallium-zinc-oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Yang, Jyun-Bao; Chang, Ting-Chang; Huang, Jheng-Jie; Chen, Yu-Chun; Chen, Yu-Ting; Tseng, Hsueh-Chih; Chu, Ann-Kuo; Sze, Simon M.

    2014-04-01

    In this study, indium-gallium-zinc-oxide thin film transistors can be operated either as transistors or resistance random access memory devices. Before the forming process, current-voltage curve transfer characteristics are observed, and resistance switching characteristics are measured after a forming process. These resistance switching characteristics exhibit two behaviors, and are dominated by different mechanisms. The mode 1 resistance switching behavior is due to oxygen vacancies, while mode 2 is dominated by the formation of an oxygen-rich layer. Furthermore, an easy approach is proposed to reduce power consumption when using these resistance random access memory devices with the amorphous indium-gallium-zinc-oxide thin film transistor.

  1. Internal filament modulation in low-dielectric gap design for built-in selector-less resistive switching memory application

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Chen; Lin, Chih-Yang; Huang, Hui-Chun; Kim, Sungjun; Fowler, Burt; Chang, Yao-Feng; Wu, Xiaohan; Xu, Gaobo; Chang, Ting-Chang; Lee, Jack C.

    2018-02-01

    Sneak path current is a severe hindrance for the application of high-density resistive random-access memory (RRAM) array designs. In this work, we demonstrate nonlinear (NL) resistive switching characteristics of a HfO x /SiO x -based stacking structure as a realization for selector-less RRAM devices. The NL characteristic was obtained and designed by optimizing the internal filament location with a low effective dielectric constant in the HfO x /SiO x structure. The stacking HfO x /SiO x -based RRAM device as the one-resistor-only memory cell is applicable without needing an additional selector device to solve the sneak path issue with a switching voltage of ~1 V, which is desirable for low-power operating in built-in nonlinearity crossbar array configurations.

  2. Memristive effects in oxygenated amorphous carbon nanodevices

    NASA Astrophysics Data System (ADS)

    Bachmann, T. A.; Koelmans, W. W.; Jonnalagadda, V. P.; Le Gallo, M.; Santini, C. A.; Sebastian, A.; Eleftheriou, E.; Craciun, M. F.; Wright, C. D.

    2018-01-01

    Computing with resistive-switching (memristive) memory devices has shown much recent progress and offers an attractive route to circumvent the von-Neumann bottleneck, i.e. the separation of processing and memory, which limits the performance of conventional computer architectures. Due to their good scalability and nanosecond switching speeds, carbon-based resistive-switching memory devices could play an important role in this respect. However, devices based on elemental carbon, such as tetrahedral amorphous carbon or ta-C, typically suffer from a low cycling endurance. A material that has proven to be capable of combining the advantages of elemental carbon-based memories with simple fabrication methods and good endurance performance for binary memory applications is oxygenated amorphous carbon, or a-CO x . Here, we examine the memristive capabilities of nanoscale a-CO x devices, in particular their ability to provide the multilevel and accumulation properties that underpin computing type applications. We show the successful operation of nanoscale a-CO x memory cells for both the storage of multilevel states (here 3-level) and for the provision of an arithmetic accumulator. We implement a base-16, or hexadecimal, accumulator and show how such a device can carry out hexadecimal arithmetic and simultaneously store the computed result in the self-same a-CO x cell, all using fast (sub-10 ns) and low-energy (sub-pJ) input pulses.

  3. Forming free and ultralow-power erase operation in atomically crystal TiO2 resistive switching

    NASA Astrophysics Data System (ADS)

    Dai, Yawei; Bao, Wenzhong; Hu, Linfeng; Liu, Chunsen; Yan, Xiao; Chen, Lin; Sun, Qingqing; Ding, Shijin; Zhou, Peng; Zhang, David Wei

    2017-06-01

    Two-dimensional layered materials (2DLMs) have attracted broad interest from fundamental sciences to industrial applications. Their applications in memory devices have been demonstrated, yet much still remains to explore optimal materials and device structure for practical application. In this work, a forming-free, bipolar resistive switching behavior are demonstrated in 2D TiO2-based resistive random access memory (RRAM). Physical adsorption method is adopted to achieve high quality, continuous 2D TiO2 network efficiently. The 2D TiO2 RRAM devices exhibit superior properties such as fast switching capability (20 ns of erase operation) and extremely low erase energy consumption (0.16 fJ). Furthermore, the resistive switching mechanism is attributed to the formation and rupture of oxygen vacancies-based percolation path in 2D TiO2 crystals. Our results pave the way for the implementation of high performance 2DLMs-based RRAM in the next generation non-volatile memory (NVM) application.

  4. Oxygen-ion-migration-modulated bipolar resistive switching and complementary resistive switching in tungsten/indium tin oxide/gold memory device

    NASA Astrophysics Data System (ADS)

    Wu, Xinghui; Zhang, Qiuhui; Cui, Nana; Xu, Weiwei; Wang, Kefu; Jiang, Wei; Xu, Qixing

    2018-06-01

    In this paper, we report our investigation of room-temperature-fabricated tungsten/indium tin oxide/gold (W/ITO/Au) resistive random access memory (RRAM), which exhibits asymmetric bipolar resistive switching (BRS) behavior. The device displays good write/erase endurance and data retention properties. The device shows complementary resistive switching (CRS) characteristics after controlling the compliance current. A WO x layer electrically formed at the W/ITO in the forming process. Mobile oxygen ions within ITO migrate toward the electrode/ITO interface and produce a semiconductor-like layer that acts as a free-carrier barrier. The CRS characteristic here can be elucidated in light of the evolution of an asymmetric free-carrier blocking layer at the electrode/ITO interface.

  5. (Invited) Comprehensive Assessment of Oxide Memristors As Post-CMOS Memory and Logic Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, X.; Mamaluy, D.; Cyr, E. C.

    As CMOS technology approaches the end of its scaling, oxide-based memristors have become one of the leading candidates for post-CMOS memory and logic devices. In orderTo facilitate the understanding of physical switching mechanisms and accelerate experimental development of memristors, we have developed a three-dimensional fully-coupled electrical and thermal transport model, which captures all the important processes that drive memristive switching and is applicable for simulating a wide range of memristors. Moreover, the model is applied to simulate the RESET and SET switching in a 3D filamentary TaOx memristor. Extensive simulations show that the switching dynamics of the bipolar device ismore » determined by thermally-activated field-dominant processes: with Joule heating, the raised temperature enables the movement of oxygen vacancies, and the field drift dominates the overall motion of vacancies. Simulated current-voltage hysteresis and device resistance profiles as a function of time and voltage during RESET and SET switching show good agreement with experimental measurement.« less

  6. (Invited) Comprehensive Assessment of Oxide Memristors As Post-CMOS Memory and Logic Devices

    DOE PAGES

    Gao, X.; Mamaluy, D.; Cyr, E. C.; ...

    2016-05-10

    As CMOS technology approaches the end of its scaling, oxide-based memristors have become one of the leading candidates for post-CMOS memory and logic devices. In orderTo facilitate the understanding of physical switching mechanisms and accelerate experimental development of memristors, we have developed a three-dimensional fully-coupled electrical and thermal transport model, which captures all the important processes that drive memristive switching and is applicable for simulating a wide range of memristors. Moreover, the model is applied to simulate the RESET and SET switching in a 3D filamentary TaOx memristor. Extensive simulations show that the switching dynamics of the bipolar device ismore » determined by thermally-activated field-dominant processes: with Joule heating, the raised temperature enables the movement of oxygen vacancies, and the field drift dominates the overall motion of vacancies. Simulated current-voltage hysteresis and device resistance profiles as a function of time and voltage during RESET and SET switching show good agreement with experimental measurement.« less

  7. Realization of the Switching Mechanism in Resistance Random Access Memory™ Devices: Structural and Electronic Properties Affecting Electron Conductivity in a Hafnium Oxide-Electrode System Through First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Aspera, Susan Meñez; Kasai, Hideaki; Kishi, Hirofumi; Awaya, Nobuyoshi; Ohnishi, Shigeo; Tamai, Yukio

    2013-01-01

    The resistance random access memory (RRAM™) device, with its electrically induced nanoscale resistive switching capacity, has attracted considerable attention as a future nonvolatile memory device. Here, we propose a mechanism of switching based on an oxygen vacancy migration-driven change in the electronic properties of the transition-metal oxide film stimulated by set pulse voltages. We used density functional theory-based calculations to account for the effect of oxygen vacancies and their migration on the electronic properties of HfO2 and Ta/HfO2 systems, thereby providing a complete explanation of the RRAM™ switching mechanism. Furthermore, computational results on the activation energy barrier for oxygen vacancy migration were found to be consistent with the set and reset pulse voltage obtained from experiments. Understanding this mechanism will be beneficial to effectively realizing the materials design in these devices.

  8. Resistive switching characteristics and mechanisms in silicon oxide memory devices

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Wu, Xiaohan; Chen, Yen-Ting; Wang, Yanzhen; Xue, Fei; Lee, Jack C.

    2016-05-01

    Intrinsic unipolar SiOx-based resistance random access memories (ReRAM) characterization, switching mechanisms, and applications have been investigated. Device structures, material compositions, and electrical characteristics are identified that enable ReRAM cells with high ON/OFF ratio, low static power consumption, low switching power, and high readout-margin using complementary metal-oxide semiconductor transistor (CMOS)-compatible SiOx-based materials. These ideas are combined with the use of horizontal and vertical device structure designs, composition optimization, electrical control, and external factors to help understand resistive switching (RS) mechanisms. Measured temperature effects, pulse response, and carrier transport behaviors lead to compact models of RS mechanisms and energy band diagrams in order to aid the development of computer-aided design for ultralarge-v scale integration. This chapter presents a comprehensive investigation of SiOx-based RS characteristics and mechanisms for the post-CMOS device era.

  9. Excellent Resistive Switching Performance of Cu-Se-Based Atomic Switch Using Lanthanide Metal Nanolayer at the Cu-Se/Al2O3 Interface.

    PubMed

    Woo, Hyunsuk; Vishwanath, Sujaya Kumar; Jeon, Sanghun

    2018-03-07

    The next-generation electronic society is dependent on the performance of nonvolatile memory devices, which has been continuously improving. In the last few years, many memory devices have been introduced. However, atomic switches are considered to be a simple and reliable basis for next-generation nonvolatile devices. In general, atomic switch-based resistive switching is controlled by electrochemical metallization. However, excess ion injection from the entire area of the active electrode into the switching layer causes device nonuniformity and degradation of reliability. Here, we propose the fabrication of a high-performance atomic switch based on Cu x -Se 1- x by inserting lanthanide (Ln) metal buffer layers such as neodymium (Nd), samarium (Sm), dysprosium (Dy), or lutetium (Lu) between the active metal layer and the electrolyte. Current-atomic force microscopy results confirm that Cu ions penetrate through the Ln-buffer layer and form thin conductive filaments inside the switching layer. Compared with the Pt/Cu x -Se 1- x /Al 2 O 3 /Pt device, the optimized Pt/Cu x -Se 1- x /Ln/Al 2 O 3 /Pt devices show improvement in the on/off resistance ratio (10 2 -10 7 ), retention (10 years/85 °C), endurance (∼10 000 cycles), and uniform resistance state distribution.

  10. Fabrication of Nano-Crossbar Resistive Switching Memory Based on the Copper-Tantalum Pentoxide-Platinum Device Structure

    NASA Astrophysics Data System (ADS)

    Olga Gneri, Paula; Jardim, Marcos

    Resistive switching memory has been of interest lately not only for its simple metal-insulator-metal (MIM) structure but also for its promising ease of scalability an integration into current CMOS technologies like the Field Programmable Gate Arrays and other non-volatile memory applications. There are several resistive switching MIM combinations but under this scope of research, attention will be paid to the bipolar resistive switching characteristics and fabrication of Tantalum Pentaoxide sandwiched between platinum and copper. By changing the polarity of the voltage bias, this metal-insulator-metal (MIM) device can be switched between a high resistive state (OFF) and low resistive state (ON). The change in states is induced by an electrochemical metallization process, which causes a formation or dissolution of Cu metal filamentary paths in the Tantalum Pentaoxide insulator. There is very little thorough experimental information about the Cu-Ta 2O5-Pt switching characteristics when scaled to nanometer dimensions. In this light, the MIM structure was fabricated in a two-dimensional crossbar format. Also, with the limited available resources, a multi-spacer technique was formulated to localize the active device area in this MIM configuration to less than 20nm. This step is important in understanding the switching characteristics and reliability of this structure when scaled to nanometer dimensions.

  11. Resistive switching and memory effects of AgI thin film

    NASA Astrophysics Data System (ADS)

    Liang, X. F.; Chen, Y.; Shi, L.; Lin, J.; Yin, J.; Liu, Z. G.

    2007-08-01

    A memory device has been fabricated using an AgI film sandwiched between a Pt film and an Ag film with the lateral size of the device scaled down to 300 nm. The AgI film was made by the iodination of the Ag film at room temperature and under ambient pressure. The switching between high- and low-resistance states can be realized by applying voltages of different polarities. The switching can be performed under the application of voltage pulses with a 100 Hz frequency for ~103 times. The switching times are in the order of microseconds and the retention time is about a week. The switching effects are explained as the electrochemical growth and dissolution of Ag in AgI.

  12. The future of memory

    NASA Astrophysics Data System (ADS)

    Marinella, M.

    In the not too distant future, the traditional memory and storage hierarchy of may be replaced by a single Storage Class Memory (SCM) device integrated on or near the logic processor. Traditional magnetic hard drives, NAND flash, DRAM, and higher level caches (L2 and up) will be replaced with a single high performance memory device. The Storage Class Memory paradigm will require high speed (< 100 ns read/write), excellent endurance (> 1012), nonvolatility (retention > 10 years), and low switching energies (< 10 pJ per switch). The International Technology Roadmap for Semiconductors (ITRS) has recently evaluated several potential candidates SCM technologies, including Resistive (or Redox) RAM, Spin Torque Transfer RAM (STT-MRAM), and phase change memory (PCM). All of these devices show potential well beyond that of current flash technologies and research efforts are underway to improve the endurance, write speeds, and scalabilities to be on-par with DRAM. This progress has interesting implications for space electronics: each of these emerging device technologies show excellent resistance to the types of radiation typically found in space applications. Commercially developed, high density storage class memory-based systems may include a memory that is physically radiation hard, and suitable for space applications without major shielding efforts. This paper reviews the Storage Class Memory concept, emerging memory devices, and possible applicability to radiation hardened electronics for space.

  13. TaOx-based resistive switching memories: prospective and challenges

    PubMed Central

    2013-01-01

    Resistive switching memories (RRAMs) are attractive for replacement of conventional flash in the future. Although different switching materials have been reported; however, low-current operated devices (<100 μA) are necessary for productive RRAM applications. Therefore, TaOx is one of the prospective switching materials because of two stable phases of TaO2 and Ta2O5, which can also control the stable low- and high-resistance states. Long program/erase endurance and data retention at high temperature under low-current operation are also reported in published literature. So far, bilayered TaOx with inert electrodes (Pt and/or Ir) or single layer TaOx with semi-reactive electrodes (W and Ti/W or Ta/Pt) is proposed for real RRAM applications. It is found that the memory characteristics at current compliance (CC) of 80 μA is acceptable for real application; however, data are becoming worst at CC of 10 μA. Therefore, it is very challenging to reduce the operation current (few microampere) of the RRAM devices. This study investigates the switching mode, mechanism, and performance of low-current operated TaOx-based devices as compared to other RRAM devices. This topical review will not only help for application of TaOx-based nanoscale RRAM devices but also encourage researcher to overcome the challenges in the future production. PMID:24107610

  14. Bipolar resistive switching in Cu/AlN/Pt nonvolatile memory device

    NASA Astrophysics Data System (ADS)

    Chen, C.; Yang, Y. C.; Zeng, F.; Pan, F.

    2010-08-01

    Highly stable and reproducible bipolar resistive switching effects are reported on Cu/AlN/Pt devices. Memory characteristics including large memory window of 103, long retention time of >106 s and good endurance of >103 were demonstrated. It is concluded that the reset current decreases as compliance current decreases, which provides an approach to suppress power consumption. The dominant conduction mechanisms of low resistance state and high resistance state were verified by Ohmic behavior and trap-controlled space charge limited current, respectively. The memory effect is explained by the model concerning redox reaction mediated formation and rupture of the conducting filament in AlN films.

  15. Charge Carrier Transport Mechanism Based on Stable Low Voltage Organic Bistable Memory Device.

    PubMed

    Ramana, V V; Moodley, M K; Kumar, A B V Kiran; Kannan, V

    2015-05-01

    A solution processed two terminal organic bistable memory device was fabricated utilizing films of polymethyl methacrylate PMMA/ZnO/PMMA on top of ITO coated glass. Electrical characterization of the device structure showed that the two terminal device exhibited favorable switching characteristics with an ON/OFF ratio greater than 1 x 10(4) when the voltage was swept between - 2 V and +3 V. The device maintained its state after removal of the bias voltage. The device did not show degradation after a 1-h retention test at 120 degrees C. The memory functionality was consistent even after fifty cycles of operation. The charge transport switching mechanism is discussed on the basis of carrier transport mechanism and our analysis of the data shows that the charge carrier trans- port mechanism of the device during the writing process can be explained by thermionic emission (TE) and space-charge-limited-current (SCLC) mechanism models while erasing process could be explained by the FN tunneling mechanism. This demonstration provides a class of memory devices with the potential for low-cost, low-power consumption applications, such as a digital memory cell.

  16. Investigating the origins of high multilevel resistive switching in forming free Ti/TiO2-x-based memory devices through experiments and simulations

    NASA Astrophysics Data System (ADS)

    Bousoulas, P.; Giannopoulos, I.; Asenov, P.; Karageorgiou, I.; Tsoukalas, D.

    2017-03-01

    Although multilevel capability is probably the most important property of resistive random access memory (RRAM) technology, it is vulnerable to reliability issues due to the stochastic nature of conducting filament (CF) creation. As a result, the various resistance states cannot be clearly distinguished, which leads to memory capacity failure. In this work, due to the gradual resistance switching pattern of TiO2-x-based RRAM devices, we demonstrate at least six resistance states with distinct memory margin and promising temporal variability. It is shown that the formation of small CFs with high density of oxygen vacancies enhances the uniformity of the switching characteristics in spite of the random nature of the switching effect. Insight into the origin of the gradual resistance modulation mechanisms is gained by the application of a trap-assisted-tunneling model together with numerical simulations of the filament formation physical processes.

  17. A low switching voltage organic-on-inorganic heterojunction memory element utilizing a conductive polymer fuse on a doped silicon substrate

    NASA Astrophysics Data System (ADS)

    Smith, Shawn; Forrest, Stephen R.

    2004-06-01

    We present a simple, nonvolatile, write-once-read-many-times (WORM) memory device utilizing an organic-on-inorganic heterojunction (OI-HJ) diode with a conductive polymer fuse consisting of polyethylene dioxythiophene:polysterene sulfonic acid (PEDOT:PSS) forming one side of the rectifying junction. Current transients are used to change the fuse from a conducting to a nonconducting state to record a logical "1" or "0", while the nonlinearity of the OI-HJ allows for passive matrix memory addressing. The device switches at 2 and 4 V for 50 nm thick PEDOT:PSS films on p-type Si and n-type Si, respectively. This is significantly lower than the switching voltage used in PEDOT:PSS/p-i-n Si memory elements [J. Appl Phys. 94, 7811 (2003)]. The switching results in a permanent reduction of forward-bias current by approximately five orders of magnitude. These results suggest that the OI-HJ structure has potential for use in low-cost passive matrix WORM memories for archival storage applications.

  18. Forming-free resistive switching characteristics of Ag/CeO2/Pt devices with a large memory window

    NASA Astrophysics Data System (ADS)

    Zheng, Hong; Kim, Hyung Jun; Yang, Paul; Park, Jong-Sung; Kim, Dong Wook; Lee, Hyun Ho; Kang, Chi Jung; Yoon, Tae-Sik

    2017-05-01

    Ag/CeO2(∼45 nm)/Pt devices exhibited forming-free bipolar resistive switching with a large memory window (low-resistance-state (LRS)/high-resistance-state (HRS) ratio >106) at a low switching voltage (<±1 ∼ 2 V) in voltage sweep condition. Also, they retained a large memory window (>104) at a pulse operation (±5 V, 50 μs). The high oxygen ionic conductivity of the CeO2 layer as well as the migration of silver facilitated the formation of filament for the transition to LRS at a low voltage without a high voltage forming operation. Also, a certain amount of defects in the CeO2 layer was required for stable HRS with space-charge-limited-conduction, which was confirmed comparing the devices with non-annealed and annealed CeO2 layers.

  19. Improvement of multi-level resistive switching characteristics in solution-processed AlO x -based non-volatile resistive memory using microwave irradiation

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Tae; Cho, Won-Ju

    2018-01-01

    We fabricated a resistive random access memory (ReRAM) device on a Ti/AlO x /Pt structure with solution-processed AlO x switching layer using microwave irradiation (MWI), and demonstrated multi-level cell (MLC) operation. To investigate the effect of MWI power on the MLC characteristics, post-deposition annealing was performed at 600-3000 W after AlO x switching layer deposition, and the MLC operation was compared with as-deposited (as-dep) and conventional thermally annealing (CTA) treated devices. All solution-processed AlO x -based ReRAM devices exhibited bipolar resistive switching (BRS) behavior. We found that these devices have four-resistance states (2 bits) of MLC operation according to the modulation of the high-resistance state (HRSs) through reset voltage control. Particularly, compared to the as-dep and CTA ReRAM devices, the MWI-treated ReRAM devices showed a significant increase in the memory window and stable endurance for multi-level operation. Moreover, as the MWI power increased, excellent MLC characteristics were exhibited because the resistance ratio between each resistance state was increased. In addition, it exhibited reliable retention characteristics without deterioration at 25 °C and 85 °C for 10 000 s. Finally, the relationship between the chemical characteristics of the solution-processed AlO x switching layer and BRS-based multi-level operation according to the annealing method and MWI power was investigated using x-ray photoelectron spectroscopy.

  20. A weak electric field-assisted ultrafast electrical switching dynamics in In3SbTe2 phase-change memory devices

    NASA Astrophysics Data System (ADS)

    Pandey, Shivendra Kumar; Manivannan, Anbarasu

    2017-07-01

    Prefixing a weak electric field (incubation) might enhance the crystallization speed via pre-structural ordering and thereby achieving faster programming of phase change memory (PCM) devices. We employed a weak electric field, equivalent to a constant small voltage (that is incubation voltage, Vi of 0.3 V) to the applied voltage pulse, VA (main pulse) for a systematic understanding of voltage-dependent rapid threshold switching characteristics and crystallization (set) process of In3SbTe2 (IST) PCM devices. Our experimental results on incubation-assisted switching elucidate strikingly one order faster threshold switching, with an extremely small delay time, td of 300 ps, as compared with no incubation voltage (Vi = 0 V) for the same VA. Also, the voltage dependent characteristics of incubation-assisted switching dynamics confirm that the initiation of threshold switching occurs at a lower voltage of 0.82 times of VA. Furthermore, we demonstrate an incubation assisted ultrafast set process of IST device for a low VA of 1.7 V (˜18 % lesser compared to without incubation) within a short pulse-width of 1.5 ns (full width half maximum, FWHM). These findings of ultrafast switching, yet low power set process would immensely be helpful towards designing high speed PCM devices with low power operation.

  1. Sustained Resistive Switching in a Single Cu:7,7,8,8-tetracyanoquinodimethane Nanowire: A Promising Material for Resistive Random Access Memory

    PubMed Central

    Basori, Rabaya; Kumar, Manoranjan; Raychaudhuri, Arup K.

    2016-01-01

    We report a new type of sustained and reversible unipolar resistive switching in a nanowire device made from a single strand of Cu:7,7,8,8-tetracyanoquinodimethane (Cu:TCNQ) nanowire (diameter <100 nm) that shows high ON/OFF ratio (~103), low threshold voltage of switching (~3.5 V) and large cycling endurance (>103). This indicates a promising material for high density resistive random access memory (ReRAM) device integration. Switching is observed in Cu:TCNQ single nanowire devices with two different electrode configuration: symmetric (C-Pt/Cu:TCNQ/C-Pt) and asymmetric (Cu/Cu:TCNQ/C-Pt), where contacts connecting the nanowire play an important role. This report also developed a method of separating out the electrode and material contributions in switching using metal-semiconductor-metal (MSM) device model along with a direct 4-probe resistivity measurement of the nanowire in the OFF as well as ON state. The device model was followed by a phenomenological model of current transport through the nanowire device which shows that lowering of potential barrier at the contacts likely occur due to formation of Cu filaments in the interface between nanowire and contact electrodes. We obtain quantitative agreement of numerically analyzed results with the experimental switching data. PMID:27245099

  2. Amorphous blue phase III polymer scaffold as a sub-millisecond switching electro-optical memory device

    NASA Astrophysics Data System (ADS)

    Gandhi, Sahil Sandesh; Kim, Min Su; Hwang, Jeoung-Yeon; Chien, Liang-Chy

    2017-02-01

    We demonstrate the application of the nanostructured scaffold of BPIII as a resuable EO device that retains the BPIII ordering and sub-millisecond EO switching characteristics, that is, "EO-memory" of the original BPIII even after removal of the cholesteric blue phase liquid crystal (LC) and subsequent refilling with different nematic LCs. We also fabricate scaffolds mimicking the isotropic phase and cubic blue phase I (BPI) to demonstrate the versatility of our material system to nano-engineer EO-memory scaffolds of various structures. We envisage that this work will promote new experimental investigations of the mysterious BPIII and the development of novel device architectures and optically functional nanomaterials.

  3. Switching behavior of resistive change memory using oxide nanowires

    NASA Astrophysics Data System (ADS)

    Aono, Takashige; Sugawa, Kosuke; Shimizu, Tomohiro; Shingubara, Shoso; Takase, Kouichi

    2018-06-01

    Resistive change random access memory (ReRAM), which is expected to be the next-generation nonvolatile memory, often has wide switching voltage distributions due to many kinds of conductive filaments. In this study, we have tried to suppress the distribution through the structural restriction of the filament-forming area using NiO nanowires. The capacitor with Ni metal nanowires whose surface is oxidized showed good switching behaviors with narrow distributions. The knowledge gained from our study will be very helpful in producing practical ReRAM devices.

  4. Transparent and flexible resistive switching memory devices with a very high ON/OFF ratio using gold nanoparticles embedded in a silk protein matrix

    NASA Astrophysics Data System (ADS)

    Gogurla, Narendar; Mondal, Suvra P.; Sinha, Arun K.; Katiyar, Ajit K.; Banerjee, Writam; Kundu, Subhas C.; Ray, Samit K.

    2013-08-01

    The growing demand for biomaterials for electrical and optical devices is motivated by the need to make building blocks for the next generation of printable bio-electronic devices. In this study, transparent and flexible resistive memory devices with a very high ON/OFF ratio incorporating gold nanoparticles into the Bombyx mori silk protein fibroin biopolymer are demonstrated. The novel electronic memory effect is based on filamentary switching, which leads to the occurrence of bistable states with an ON/OFF ratio larger than six orders of magnitude. The mechanism of this process is attributed to the formation of conductive filaments through silk fibroin and gold nanoparticles in the nanocomposite. The proposed hybrid bio-inorganic devices show promise for use in future flexible and transparent nanoelectronic systems.

  5. Organic bistable memory devices based on MoO3 nanoparticle embedded Alq3 structures.

    PubMed

    Abhijith, T; Kumar, T V Arun; Reddy, V S

    2017-03-03

    Organic bistable memory devices were fabricated by embedding a thin layer of molybdenum trioxide (MoO 3 ) between two tris-(8-hydroxyquinoline)aluminum (Alq 3 ) layers. The device exhibited excellent switching characteristics with an ON/OFF current ratio of 1.15 × 10 3 at a read voltage of 1 V. The device showed repeatable write-erase capability and good stability in both the conductance states. These conductance states are non-volatile in nature and can be obtained by applying appropriate voltage pulses. The effect of MoO 3 layer thickness and its location in the Alq 3 matrix on characteristics of the memory device was investigated. The field emission scanning electron microscopy (FE-SEM) images of the MoO 3 layer revealed the presence of isolated nanoparticles. Based on the experimental results, a mechanism has been proposed for explaining the conductance switching of fabricated devices.

  6. Organic bistable memory devices based on MoO3 nanoparticle embedded Alq3 structures

    NASA Astrophysics Data System (ADS)

    Abhijith, T.; Kumar, T. V. Arun; Reddy, V. S.

    2017-03-01

    Organic bistable memory devices were fabricated by embedding a thin layer of molybdenum trioxide (MoO3) between two tris-(8-hydroxyquinoline)aluminum (Alq3) layers. The device exhibited excellent switching characteristics with an ON/OFF current ratio of 1.15 × 103 at a read voltage of 1 V. The device showed repeatable write-erase capability and good stability in both the conductance states. These conductance states are non-volatile in nature and can be obtained by applying appropriate voltage pulses. The effect of MoO3 layer thickness and its location in the Alq3 matrix on characteristics of the memory device was investigated. The field emission scanning electron microscopy (FE-SEM) images of the MoO3 layer revealed the presence of isolated nanoparticles. Based on the experimental results, a mechanism has been proposed for explaining the conductance switching of fabricated devices.

  7. Effect of sputtering atmosphere on the characteristics of ZrOx resistive switching memory

    NASA Astrophysics Data System (ADS)

    He, Pin; Ye, Cong; Wu, Jiaji; Wei, Wei; Wei, Xiaodi; Wang, Hao; Zhang, Rulin; Zhang, Li; Xia, Qing; Wang, Hanbin

    2017-05-01

    A ZrOx switching layer with different oxygen content for TiN/ZrOx/Pt resistive switching (RS) memory was prepared by magnetron sputtering in different atmospheres such as N2/Ar mixture, O2/Ar mixture as well as pure Ar. The morphology, structure and RS characteristics were systemically investigated and it was found that the RS performance is highly dependent on the sputtering atmosphere. For the memory device sputtered in N2/Ar mixture, with 8.06% nitrogen content in the ZrOx switching layer, the highest uniformity with smallest distribution of V set and high resistance states (HRS)/low resistance states (LRS) values were achieved. By analyzing the current conduction mechanisms combined with possible RS mechanisms for three devices, we deduce that for the device with a ZrOx layer sputtered in N2/Ar mixture, oxygen ions (O2-), which are decisive to the disruption/formation of the conductive filament, will gather around the tip of the filament due to the existence of doping nitrogen, and lead to the reduction of O2- migration randomness in the operation process, so that the uniformity of the N-doped ZrOx device can be improved.

  8. Spin transport and spin torque in antiferromagnetic devices

    DOE PAGES

    Zelezny, J.; Wadley, P.; Olejnik, K.; ...

    2018-03-02

    Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, whichmore » could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.« less

  9. Spin transport and spin torque in antiferromagnetic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelezny, J.; Wadley, P.; Olejnik, K.

    Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, whichmore » could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.« less

  10. Spin transport and spin torque in antiferromagnetic devices

    NASA Astrophysics Data System (ADS)

    Železný, J.; Wadley, P.; Olejník, K.; Hoffmann, A.; Ohno, H.

    2018-03-01

    Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets, which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, which could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here, we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum-mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.

  11. Evaluation of switchable organic devices for nonvolatile memory applications

    NASA Astrophysics Data System (ADS)

    Campbell Scott, J.

    2007-03-01

    Many organic electronic devices exhibit switching behavior and have therefore been proposed as the basis for a nonvolatile memory technology. In particular, bistable resistive elements, in which a high or low current state is selected by application of a specific voltage, may be used as the elements of a crosspoint memory array. This architecture places very stringent requirements on the electrical response of the individual devices, in terms of on-state current density, switching and retention times, cycling endurance, rectification and size-scaling. In this talk, I will describe the progress that we and others have made towards satisfying these requirements. In many cases, the mechanisms responsible for conduction and switching are not fully understood. In some devices, it has been shown that current flows in a few highly localized regions. These so-called ``filaments'' are not necessarily metallic bridges between the electrodes, but may be associated with chains of nanoparticles introduced into the organic matrix either deliberately or accidentally. Coulomb blockade effects can then explain the switching behavior observed in some devices. This work was done in collaboration with L. D. Bozano, M. Beinhoff, K. R. Carter, V. R. Deline, B. W. Kean, G. M. McClelland, D. C. Miller, P. M. Rice, J. R. Salem, and S. A. Swanson.

  12. A complementary switching mechanism for organic memory devices to regulate the conductance of binary states

    NASA Astrophysics Data System (ADS)

    Vyas, Giriraj; Dagar, Parveen; Sahu, Satyajit

    2016-06-01

    We have fabricated an organic non-volatile memory device wherein the ON/OFF current ratio has been controlled by varying the concentration of a small organic molecule, 2,3-Dichloro-5,6-dicyano-p-benzoquinone (DDQ), in an insulating matrix of a polymer Poly(4-vinylphenol) (PVP). A maximum ON-OFF ratio of 106 is obtained when the concentration of DDQ is half or 10 wt. % of PVP. In this process, the switching direction for the devices has also been altered, indicating the disparity in conduction mechanism. Conduction due to metal filament formation through the active material and the voltage dependent conformational change of the organic molecule seem to be the motivation behind the gradual change in the switching direction.

  13. Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3.

    PubMed

    Magyari-Köpe, Blanka; Tendulkar, Mihir; Park, Seong-Geon; Lee, Hyung Dong; Nishi, Yoshio

    2011-06-24

    Resistance change random access memory (RRAM) cells, typically built as MIM capacitor structures, consist of insulating layers I sandwiched between metal layers M, where the insulator performs the resistance switching operation. These devices can be electrically switched between two or more stable resistance states at a speed of nanoseconds, with long retention times, high switching endurance, low read voltage, and large switching windows. They are attractive candidates for next-generation non-volatile memory, particularly as a flash successor, as the material properties can be scaled to the nanometer regime. Several resistance switching models have been suggested so far for transition metal oxide based devices, such as charge trapping, conductive filament formation, Schottky barrier modulation, and electrochemical migration of point defects. The underlying fundamental principles of the switching mechanism still lack a detailed understanding, i.e. how to control and modulate the electrical characteristics of devices incorporating defects and impurities, such as oxygen vacancies, metal interstitials, hydrogen, and other metallic atoms acting as dopants. In this paper, state of the art ab initio theoretical methods are employed to understand the effects that filamentary types of stable oxygen vacancy configurations in TiO(2) and NiO have on the electronic conduction. It is shown that strong electronic interactions between metal ions adjacent to oxygen vacancy sites results in the formation of a conductive path and thus can explain the 'ON' site conduction in these materials. Implication of hydrogen doping on electroforming is discussed for Pr(0.7)Ca(0.3)MnO(3) devices based on electrical characterization and FTIR measurements.

  14. Composition-dependent nanoelectronics of amido-phenazines: non-volatile RRAM and WORM memory devices.

    PubMed

    Maiti, Dilip K; Debnath, Sudipto; Nawaz, Sk Masum; Dey, Bapi; Dinda, Enakhi; Roy, Dipanwita; Ray, Sudipta; Mallik, Abhijit; Hussain, Syed A

    2017-10-17

    A metal-free three component cyclization reaction with amidation is devised for direct synthesis of DFT-designed amido-phenazine derivative bearing noncovalent gluing interactions to fabricate organic nanomaterials. Composition-dependent organic nanoelectronics for nonvolatile memory devices are discovered using mixed phenazine-stearic acid (SA) nanomaterials. We discovered simultaneous two different types of nonmagnetic and non-moisture sensitive switching resistance properties of fabricated devices utilizing mixed organic nanomaterials: (a) sample-1(8:SA = 1:3) is initially off, turning on at a threshold, but it does not turn off again with the application of any voltage, and (b) sample-2 (8:SA = 3:1) is initially off, turning on at a sharp threshold and off again by reversing the polarity. No negative differential resistance is observed in either type. These samples have different device implementations: sample-1 is attractive for write-once-read-many-times memory devices, such as novel non-editable database, archival memory, electronic voting, radio frequency identification, sample-2 is useful for resistive-switching random access memory application.

  15. Solution-Processed Wide-Bandgap Organic Semiconductor Nanostructures Arrays for Nonvolatile Organic Field-Effect Transistor Memory.

    PubMed

    Li, Wen; Guo, Fengning; Ling, Haifeng; Liu, Hui; Yi, Mingdong; Zhang, Peng; Wang, Wenjun; Xie, Linghai; Huang, Wei

    2018-01-01

    In this paper, the development of organic field-effect transistor (OFET) memory device based on isolated and ordered nanostructures (NSs) arrays of wide-bandgap (WBG) small-molecule organic semiconductor material [2-(9-(4-(octyloxy)phenyl)-9H-fluoren-2-yl)thiophene]3 (WG 3 ) is reported. The WG 3 NSs are prepared from phase separation by spin-coating blend solutions of WG 3 /trimethylolpropane (TMP), and then introduced as charge storage elements for nonvolatile OFET memory devices. Compared to the OFET memory device with smooth WG 3 film, the device based on WG 3 NSs arrays exhibits significant improvements in memory performance including larger memory window (≈45 V), faster switching speed (≈1 s), stable retention capability (>10 4 s), and reliable switching properties. A quantitative study of the WG 3 NSs morphology reveals that enhanced memory performance is attributed to the improved charge trapping/charge-exciton annihilation efficiency induced by increased contact area between the WG 3 NSs and pentacene layer. This versatile solution-processing approach to preparing WG 3 NSs arrays as charge trapping sites allows for fabrication of high-performance nonvolatile OFET memory devices, which could be applicable to a wide range of WBG organic semiconductor materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Threshold switching in SiGeAsTeN chalcogenide glass prepared by As ion implantation into sputtered SiGeTeN film

    NASA Astrophysics Data System (ADS)

    Liu, Guangyu; Wu, Liangcai; Song, Zhitang; Liu, Yan; Li, Tao; Zhang, Sifan; Song, Sannian; Feng, Songlin

    2017-12-01

    A memory cell composed of a selector device and a storage device is the basic unit of phase change memory. The threshold switching effect, main principle of selectors, is a universal phenomenon in chalcogenide glasses. In this work, we put forward a safe and controllable method to prepare a SiGeAsTeN chalcogenide film by implanting As ions into sputtered SiGeTeN films. For the SiGeAsTeN material, the phase structure maintains the amorphous state, even at high temperature, indicating that no phase transition occurs for this chalcogenide-based material. The electrical test results show that the SiGeAsTeN-based devices exhibit good threshold switching characteristics and the switching voltage decreases with the increasing As content. The decrease in valence alternation pairs, reducing trap state density, may be the physical mechanism for lower switch-on voltage, which makes the SiGeAsTeN material more applicable in selector devices through component optimization.

  17. Multilevel resistance switching effect in Au/La2/3Ba1/3MnO3/Pt heterostructure manipulated by external fields

    NASA Astrophysics Data System (ADS)

    Wen, Jiahong; Zhao, Xiaoyu; Li, Qian; Zhang, Sheng; Wang, Dunhui; Du, Youwei

    2018-04-01

    Multilevel resistance switching (RS) effect has attracted more and more attention due to its promising potential for the increase of storage density in memory devices. In this work, the transport properties are investigated in an Au/La2/3Ba1/3MnO3 (LBMO)/Pt heterostructure. Taking advantage of the strong interplay among the spin, charge, orbital and lattice of LBMO, the Au/LBMO/Pt device can exhibit bipolar RS effect and magnetoresistance effect simultaneously. Under the coaction of electric field and magnetic field, four different resistance states are achieved in this device. These resistance states show excellent repeatability and retentivity and can be switched between any two states, which suggest the potential applications in the multilevel RS memory devices with enhanced storage density.

  18. Improved performance of Ta2O5-x resistive switching memory by Gd-doping: Ultralow power operation, good data retention, and multilevel storage

    NASA Astrophysics Data System (ADS)

    Shi, K. X.; Xu, H. Y.; Wang, Z. Q.; Zhao, X. N.; Liu, W. Z.; Ma, J. G.; Liu, Y. C.

    2017-11-01

    Resistive-switching memory with ultralow-power consumption is very promising technology for next-generation data storage and high-energy-efficiency neurosynaptic chips. Herein, Ta2O5-x-based multilevel memories with ultralow-power consumption and good data retention were achieved by simple Gd-doping. The introduction of a Gd ion, as an oxygen trapper, not only suppresses the generation of oxygen vacancy defects and greatly increases the Ta2O5-x resistance but also increases the oxygen-ion migration barrier. As a result, the memory cells can operate at an ultralow current of 1 μA with the extrapolated retention time of >10 years at 85 °C and the high switching speeds of 10 ns/40 ns for SET/RESET processes. The energy consumption of the device is as low as 60 fJ/bit, which is comparable to emerging ultralow-energy consumption (<100 fJ/bit) memory devices.

  19. Coexistence of unipolar and bipolar resistive switching behaviors in NiFe2O4 thin film devices by doping Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Hao, Aize; Ismail, Muhammad; He, Shuai; Huang, Wenhua; Qin, Ni; Bao, Dinghua

    2018-02-01

    The coexistence of unipolar and bipolar resistive switching (RS) behaviors of Ag-nanoparticles (Ag-NPs) doped NiFe2O4 (NFO) based memory devices was investigated. The switching voltages of required operations in the unipolar mode were smaller than those in the bipolar mode, while ON/OFF resistance levels of both modes were identical. Ag-NPs doped NFO based devices could switch between the unipolar and bipolar modes just by preferring the polarity of RESET voltage. Besides, the necessity of identical compliance current during the SET process of unipolar and bipolar modes provided an additional advantage of simplicity in device operation. Performance characteristics and cycle-to-cycle uniformity (>103 cycles) in unipolar operation were considerably better than those in bipolar mode (>102 cycles) at 25 °C. Moreover, good endurance (>600 cycles) at 200 °C was observed in unipolar mode and excellent nondestructive retention characteristics were obtained on memory cells at 125 °C and 200 °C. On the basis of temperature dependence of resistance at low resistance state, it was believed that physical origin of the RS mechanism involved the formation/rupture of the conducting paths consisting of oxygen vacancies and Ag atoms, considering Joule heating and electrochemical redox reaction effects for the unipolar and bipolar resistive switching behaviors. Our results demonstrate that 0.5% Ag-NPs doped nickel ferrites are promising resistive switching materials for resistive access memory applications.

  20. Analysis of the Bipolar Resistive Switching Behavior of a Biocompatible Glucose Film for Resistive Random Access Memory.

    PubMed

    Park, Sung Pyo; Tak, Young Jun; Kim, Hee Jun; Lee, Jin Hyeok; Yoo, Hyukjoon; Kim, Hyun Jae

    2018-06-01

    Resistive random access memory (RRAM) devices are fabricated through a simple solution process using glucose, which is a natural biomaterial for the switching layer of RRAM. The fabricated glucose-based RRAM device shows nonvolatile bipolar resistive switching behavior, with a switching window of 10 3 . In addition, the endurance and data retention capability of glucose-based RRAM exhibit stable characteristics up to 100 consecutive cycles and 10 4 s under constant voltage stress at 0.3 V. The interface between the top electrode and the glucose film is carefully investigated to demonstrate the bipolar switching mechanism of the glucose-based RRAM device. The glucose based-RRAM is also evaluated on a polyimide film to verify the possibility of a flexible platform. Additionally, a cross-bar array structure with a magnesium electrode is prepared on various substrates to assess the degradability and biocompatibility for the implantable bioelectronic devices, which are harmless and nontoxic to the human body. It is expected that this research can provide meaningful insights for developing the future bioelectronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Bipolar resistive switching in graphene oxide based metal insulator metal structure for non-volatile memory applications

    NASA Astrophysics Data System (ADS)

    Singh, Rakesh; Kumar, Ravi; Kumar, Anil; Kashyap, Rajesh; Kumar, Mukesh; Kumar, Dinesh

    2018-05-01

    Graphene oxide based devices have attracted much attention recently because of their possible application in next generation electronic devices. In this study, bipolar resistive switching characteristics of graphene oxide based metal insulator metal structure were investigated for nonvolatile memories. The graphene oxide was prepared by the conventional Hummer's method and deposited on ITO coated glass by spin-coating technique. The dominant mechanism of resistive switching is the formation and rupture of the conductive filament inside the graphene oxide. The conduction mechanism for low and high resistance states are dominated by two mechanism the ohmic conduction and space charge limited current (SCLC) mechanism, respectively. Atomic Force Microscopy, X-ray diffraction, Cyclic-Voltammetry were conducted to observe the morphology, structure and behavior of the material. The fabricated device with Al/GO/ITO structure exhibited reliable bipolar resistive switching with set & reset voltage of -2.3 V and 3V respectively.

  2. Multiple switching modes and multiple level states in memristive devices

    NASA Astrophysics Data System (ADS)

    Miao, Feng; Yang, J. Joshua; Borghetti, Julien; Strachan, John Paul; Zhang, M.-X.; Goldfarb, Ilan; Medeiros-Ribeiro, Gilberto; Williams, R. Stanley

    2011-03-01

    As one of the most promising technologies for next generation non-volatile memory, metal oxide based memristive devices have demonstrated great advantages on scalability, operating speed and power consumption. Here we report the observation of multiple switching modes and multiple level states in different memristive systems. The multiple switching modes can be obtained by limiting the current during electroforming, and related transport behaviors, including ionic and electronic motions, are characterized. Such observation can be rationalized by a model of two effective switching layers adjacent to the bottom and top electrodes. Multiple level states, corresponding to different composition of the conducting channel, will also be discussed in the context of multiple-level storage for high density, non-volatile memory applications.

  3. Stress-induced reversible and irreversible ferroelectric domain switching

    NASA Astrophysics Data System (ADS)

    Chen, Zibin; Huang, Qianwei; Wang, Feifei; Ringer, Simon P.; Luo, Haosu; Liao, Xiaozhou

    2018-04-01

    Ferroelectric materials have been extensively explored for applications in electronic devices because of their ferroelectric/ferroelastic domain switching behaviour under electric bias or mechanical stress. Recent findings on applying mechanical loading to manipulate reversible logical signals in non-volatile ferroelectric memory devices make ferroelectric materials more attractive to scientists and engineers. However, the dynamical microscopic structural behaviour of ferroelectric domains under stress is not well understood, which limits the applications of ferroelectric/ferroelastic switching in memory devices. Here, the kinetics of reversible and irreversible ferroelectric domain switching induced by mechanical stress in relaxor-based ferroelectrics was explored. In-situ transmission electron microscopy investigation revealed that 90° ferroelastic and 180° ferroelectric domain switching can be induced by low and high mechanical stresses. The nucleation and growth of nanoscale domains overwhelm the defect-induced pinning effect on the stable micro-domain walls. This study provides deep insights for exploring the mechanical kinetics for ferroelectric/ferroelastic domains and a clear pathway to overcome the domain pinning effect of defects in ferroelectrics.

  4. Oxide Structure Dependence of SiO2/SiOx/3C-SiC/n-Type Si Nonvolatile Resistive Memory on Memory Operation Characteristics

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuichiro; Shouji, Masatsugu; Suda, Yoshiyuki

    2012-11-01

    We have investigated the dependence of the oxide layer structure of our previously proposed metal/SiO2/SiOx/3C-SiC/n-Si/metal metal-insulator-semiconductor (MIS) resistive memory device on the memory operation characteristics. The current-voltage (I-V) measurement and X-ray photoemission spectroscopy results suggest that SiOx defect states mainly caused by the oxidation of 3C-SiC at temperatures below 1000 °C are related to the hysteresis memory behavior in the I-V curve. By restricting the SiOx interface region, the number of switching cycles and the on/off current ratio are more enhanced. Compared with a memory device formed by one-step or two-step oxidation of 3C-SiC, a memory device formed by one-step oxidation of Si/3C-SiC exhibits a more restrictive SiOx interface with a more definitive SiO2 layer and higher memory performances for both the endurance switching cycle and on/off current ratio.

  5. Performance of real time associative memory using a photorefractive crystal and liquid crystal electrooptic switches

    NASA Astrophysics Data System (ADS)

    Xu, Haiying; Yuan, Yang; Yu, Youlong; Xu, Kebin; Xu, Yuhuan

    1990-08-01

    This paper presents a real time holographic associative memory implemented with photorefractive KNSBN:Co crystal as the memory element and a liquid crystal electrooptic switch array as the reflective thresholding device. The experiment stores and recalls two images and shows that the system has real-time multiple-image storage and recall functions. An associative memory with a dynamic threshold level to decide the closest match of an incomplete input is proposed.

  6. Printing an ITO-free flexible poly (4-vinylphenol) resistive switching device

    NASA Astrophysics Data System (ADS)

    Ali, Junaid; Rehman, Muhammad Muqeet; Siddiqui, Ghayas Uddin; Aziz, Shahid; Choi, Kyung Hyun

    2018-02-01

    Resistive switching in a sandwich structure of silver (Ag)/Polyvinyl phenol (PVP)/carbon nanotube (CNTs)-silver nanowires (AgNWs) coated on a flexible PET substrate is reported in this work. Densely populated networks of one dimensional nano materials (1DNM), CNTs-AgNWs have been used as the conductive bottom electrode with the prominent features of high flexibility and low sheet resistance of 90 Ω/sq. Thin, yet uniform active layer of PVP was deposited on top of the spin coated 1DNM thin film through state of the art printing technique of electrohydrodynamic atomization (EHDA) with an average thickness of 170 ± 28 nm. Ag dots with an active area of ∼0.1 mm2 were deposited through roll to plate printing system as the top electrodes to complete the device fabrication of flexible memory device. Our memory device exhibited suitable electrical characteristics with OFF/ON ratio of 100:1, retention time of 60 min and electrical endurance for 100 voltage sweeps without any noticeable decay in performance. The resistive switching characteristics at a low current compliance of 3 nA were also evaluated for the application of low power consumption. This memory device is flexible and can sustain more than 100 bending cycles at a bending diameter of 2 cm with stable HRS and LRS values. Our proposed device shows promise to be used as a future potential nonvolatile memory device in flexible electronics.

  7. Voltage-controlled low-energy switching of nanomagnets through Ruderman-Kittel-Kasuya-Yosida interactions for magnetoelectric device applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Bahniman, E-mail: bghosh@utexas.edu; Dey, Rik; Register, Leonard F.

    2016-07-21

    In this article, we consider through simulation low-energy switching of nanomagnets via electrostatically gated inter-magnet Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions on the surface of three-dimensional topological insulators, for possible memory and nonvolatile logic applications. We model the possibility and dynamics of RKKY-based switching of one nanomagnet by coupling to one or more nanomagnets of set orientation. Potential applications to both memory and nonvolatile logic are illustrated. Sub-attojoule switching energies, far below conventional spin transfer torque (STT)-based memories and even below CMOS logic appear possible. Switching times on the order of a few nanoseconds, comparable to times for STT switching, are estimated formore » ferromagnetic nanomagnets, but the approach also appears compatible with the use of antiferromagnets which may allow for faster switching.« less

  8. Light-Gated Memristor with Integrated Logic and Memory Functions.

    PubMed

    Tan, Hongwei; Liu, Gang; Yang, Huali; Yi, Xiaohui; Pan, Liang; Shang, Jie; Long, Shibing; Liu, Ming; Wu, Yihong; Li, Run-Wei

    2017-11-28

    Memristive devices are able to store and process information, which offers several key advantages over the transistor-based architectures. However, most of the two-terminal memristive devices have fixed functions once made and cannot be reconfigured for other situations. Here, we propose and demonstrate a memristive device "memlogic" (memory logic) as a nonvolatile switch of logic operations integrated with memory function in a single light-gated memristor. Based on nonvolatile light-modulated memristive switching behavior, a single memlogic cell is able to achieve optical and electrical mixed basic Boolean logic of reconfigurable "AND", "OR", and "NOT" operations. Furthermore, the single memlogic cell is also capable of functioning as an optical adder and digital-to-analog converter. All the memlogic outputs are memristive for in situ data storage due to the nonvolatile resistive switching and persistent photoconductivity effects. Thus, as a memdevice, the memlogic has potential for not only simplifying the programmable logic circuits but also building memristive multifunctional optoelectronics.

  9. Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices.

    PubMed

    Nukala, Pavan; Lin, Chia-Chun; Composto, Russell; Agarwal, Ritesh

    2016-01-25

    Crystal-amorphous transformation achieved via the melt-quench pathway in phase-change memory involves fundamentally inefficient energy conversion events; and this translates to large switching current densities, responsible for chemical segregation and device degradation. Alternatively, introducing defects in the crystalline phase can engineer carrier localization effects enhancing carrier-lattice coupling; and this can efficiently extract work required to introduce bond distortions necessary for amorphization from input electrical energy. Here, by pre-inducing extended defects and thus carrier localization effects in crystalline GeTe via high-energy ion irradiation, we show tremendous improvement in amorphization current densities (0.13-0.6 MA cm(-2)) compared with the melt-quench strategy (∼50 MA cm(-2)). We show scaling behaviour and good reversibility on these devices, and explore several intermediate resistance states that are accessible during both amorphization and recrystallization pathways. Existence of multiple resistance states, along with ultralow-power switching and scaling capabilities, makes this approach promising in context of low-power memory and neuromorphic computation.

  10. Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices

    PubMed Central

    Nukala, Pavan; Lin, Chia-Chun; Composto, Russell; Agarwal, Ritesh

    2016-01-01

    Crystal–amorphous transformation achieved via the melt-quench pathway in phase-change memory involves fundamentally inefficient energy conversion events; and this translates to large switching current densities, responsible for chemical segregation and device degradation. Alternatively, introducing defects in the crystalline phase can engineer carrier localization effects enhancing carrier–lattice coupling; and this can efficiently extract work required to introduce bond distortions necessary for amorphization from input electrical energy. Here, by pre-inducing extended defects and thus carrier localization effects in crystalline GeTe via high-energy ion irradiation, we show tremendous improvement in amorphization current densities (0.13–0.6 MA cm−2) compared with the melt-quench strategy (∼50 MA cm−2). We show scaling behaviour and good reversibility on these devices, and explore several intermediate resistance states that are accessible during both amorphization and recrystallization pathways. Existence of multiple resistance states, along with ultralow-power switching and scaling capabilities, makes this approach promising in context of low-power memory and neuromorphic computation. PMID:26805748

  11. Sub-10 nm Ta Channel Responsible for Superior Performance of a HfO 2 Memristor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hao; Han, Lili; Lin, Peng

    Memristive devices are promising candidates for the next generation non-volatile memory and neuromorphic computing. It has been widely accepted that the motion of oxygen anions leads to the resistance changes for valence-change-memory (VCM) type of materials. Only very recently it was speculated that metal cations could also play an important role, but no direct physical characterizations have been reported yet. We report a Ta/HfO 2/Pt memristor with fast switching speed, record high endurance (120 billion cycles) and reliable retention. We also programmed the device to 24 discrete resistance levels, and also demonstrated over a million (220) epochs of potentiation andmore » depression, suggesting that our devices can be used for both multi-level non-volatile memory and neuromorphic computing applications. More importantly, we directly observed a sub-10 nm Ta-rich and O-deficient conduction channel within the HfO 2 layer that is responsible for the switching. Our work deepens our understanding of the resistance switching mechanism behind oxide-based memristive devices and paves the way for further device performance optimization for a broad spectrum of applications.« less

  12. Sub-10 nm Ta Channel Responsible for Superior Performance of a HfO 2 Memristor

    DOE PAGES

    Jiang, Hao; Han, Lili; Lin, Peng; ...

    2016-06-23

    Memristive devices are promising candidates for the next generation non-volatile memory and neuromorphic computing. It has been widely accepted that the motion of oxygen anions leads to the resistance changes for valence-change-memory (VCM) type of materials. Only very recently it was speculated that metal cations could also play an important role, but no direct physical characterizations have been reported yet. We report a Ta/HfO 2/Pt memristor with fast switching speed, record high endurance (120 billion cycles) and reliable retention. We also programmed the device to 24 discrete resistance levels, and also demonstrated over a million (220) epochs of potentiation andmore » depression, suggesting that our devices can be used for both multi-level non-volatile memory and neuromorphic computing applications. More importantly, we directly observed a sub-10 nm Ta-rich and O-deficient conduction channel within the HfO 2 layer that is responsible for the switching. Our work deepens our understanding of the resistance switching mechanism behind oxide-based memristive devices and paves the way for further device performance optimization for a broad spectrum of applications.« less

  13. MOSFET analog memory circuit achieves long duration signal storage

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Memory circuit maintains the signal voltage at the output of an analog signal amplifier when the input signal is interrupted or removed. The circuit uses MOSFET /Metal Oxide Semiconductor Field Effect Transistor/ devices as voltage-controlled switches, triggered by an external voltage-sensing device.

  14. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    DOEpatents

    Tour, James M.; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2015-09-08

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the gap region between the first electrical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  15. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    DOEpatents

    Tour, James M; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2013-11-26

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the the gap region between the first electical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  16. Realization of transient memory-loss with NiO-based resistive switching device

    NASA Astrophysics Data System (ADS)

    Hu, S. G.; Liu, Y.; Chen, T. P.; Liu, Z.; Yu, Q.; Deng, L. J.; Yin, Y.; Hosaka, Sumio

    2012-11-01

    A resistive switching device based on a nickel-rich nickel oxide thin film, which exhibits inherent learning and memory-loss abilities, is reported in this work. The conductance of the device gradually increases and finally saturates with the number of voltage pulses (or voltage sweepings), which is analogous to the behavior of the short-term and long-term memory in the human brain. Furthermore, the number of the voltage pulses (or sweeping cycles) required to achieve a given conductance state increases with the interval between two consecutive voltage pulses (or sweeping cycles), which is attributed to the heat diffusion in the material of the conductive filaments formed in the nickel oxide thin film. The phenomenon resembles the behavior of the human brain, i.e., forgetting starts immediately after an impression, a larger interval of the impressions leads to more memory loss, thus the memorization needs more impressions to enhance.

  17. Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory

    NASA Astrophysics Data System (ADS)

    Hwang, Bohee; Gu, Chungwan; Lee, Donghwa; Lee, Jang-Sik

    2017-03-01

    Mixed halide perovskite materials are actively researched for solar cells with high efficiency. Their hysteresis which originates from the movement of defects make perovskite a candidate for resistive switching memory devices. We demonstrate the resistive switching device based on mixed-halide organic-inorganic hybrid perovskite CH3NH3PbI3-xBrx (x = 0, 1, 2, 3). Solvent engineering is used to deposit the homogeneous CH3NH3PbI3-xBrx layer on the indium-tin oxide-coated glass substrates. The memory device based on CH3NH3PbI3-xBrx exhibits write endurance and long retention, which indicate reproducible and reliable memory properties. According to the increase in Br contents in CH3NH3PbI3-xBrx the set electric field required to make the device from low resistance state to high resistance state decreases. This result is in accord with the theoretical calculation of migration barriers, that is the barrier to ionic migration in perovskites is found to be lower for Br- (0.23 eV) than for I- (0.29-0.30 eV). The resistive switching may be the result of halide vacancy defects and formation of conductive filaments under electric field in the mixed perovskite layer. It is observed that enhancement in operating voltage can be achieved by controlling the halide contents in the film.

  18. Comparisons of switching characteristics between Ti/Al2O3/Pt and TiN/Al2O3/Pt RRAM devices with various compliance currents

    NASA Astrophysics Data System (ADS)

    Qi, Yanfei; Zhao, Ce Zhou; Liu, Chenguang; Fang, Yuxiao; He, Jiahuan; Luo, Tian; Yang, Li; Zhao, Chun

    2018-04-01

    In this study, the influence of the Ti and TiN top electrodes on the switching behaviors of the Al2O3/Pt resistive random access memory devices with various compliance currents (CCs, 1-15 mA) has been compared. Based on the similar statistical results of the resistive switching (RS) parameters such as V set/V reset, R HRS/R LRS (measured at 0.10 V) and resistance ratio with various CCs for both devices, the Ti/Al2O3/Pt device differs from the TiN/Al2O3/Pt device mainly in the forming process rather than in the following switching cycles. Apart from the initial isolated state, the Ti/Al2O3/Pt device has the initial intermediate state as well. In addition, its forming voltage is relatively lower. The conduction mechanisms of the ON and OFF state for both devices are demonstrated as ohmic conduction and Frenkel-Poole emission, respectively. Therefore, with the combined modulations of the CCs and the stop voltages, the TiN/Al2O3/Pt device is more stable for nonvolatile memory applications to further improve the RS performance.

  19. Similarity between the response of memristive and memcapacitive circuits subjected to ramped voltage

    NASA Astrophysics Data System (ADS)

    Kanygin, Mikhail A.; Katkov, Mikhail V.; Pershin, Yuriy V.

    2017-07-01

    We report a similar feature in the response of resistor-memristor and capacitor-memcapacitor circuits with threshold-type memory devices driven by triangular waveform voltage. In both cases, the voltage across the memory device is stabilized during the switching of the memory device state. While in the memristive circuit this feature is observed when the applied voltage changes in one direction, the memcapacitive circuit with a ferroelectric memcapacitor demonstrates the voltage stabilization effect at both sweep directions. The discovered behavior of capacitor-memcapacitor circuit is also demonstrated experimentally. We anticipate that our observation can be used in the design of electronic circuits with emergent memory devices as well as in the identification and characterization of memory effects in threshold-type memory devices.

  20. Fully transparent, non-volatile bipolar resistive memory based on flexible copolyimide films

    NASA Astrophysics Data System (ADS)

    Yu, Hwan-Chul; Kim, Moon Young; Hong, Minki; Nam, Kiyong; Choi, Ju-Young; Lee, Kwang-Hun; Baeck, Kyoung Koo; Kim, Kyoung-Kook; Cho, Soohaeng; Chung, Chan-Moon

    2017-01-01

    Partially aliphatic homopolyimides and copolyimides were prepared from rel-(1'R,3S,5'S)-spiro[furan-3(2H),6'-[3]oxabicyclo[3.2.1]octane]-2,2',4',5(4H)-tetrone (DAn), 2,6-diaminoanthracene (AnDA), and 4,4'-oxydianiline (ODA) by varying the molar ratio of AnDA and ODA. We utilized these polyimide films as the resistive switching layer in transparent memory devices. While WORM memory behavior was obtained with the PI-A100-O0-based device (molar feed ratio of DAn : AnDA : ODA = 1 : 1 : 0), the PI-A70-O30-based device (molar feed ratio of DAn : AnDA : ODA = 1 : 0.7 : 0.3) exhibited bipolar resistive switching behavior with stable retention for 104 s. This result implies that the memory properties can be controlled by changing the polyimide composition. The two devices prepared from PI-A100-O0 and PI-A70-O30 showed over 90% transmittance in the visible wavelength range from 400 to 800 nm. The behavior of the memory devices is considered to be governed by trap-controlled, space-charge limited conduction (SCLC) and local filament formation. [Figure not available: see fulltext.

  1. Ovonic type switching in tin selenide thin films

    NASA Technical Reports Server (NTRS)

    Baxter, C. R.; Mclennan, W. D.

    1975-01-01

    Amorphous tin selenide thin films which possess Ovonic type switching properties are fabricated using vacuum deposition techniques. The devices are fabricated in a planar configuration and consist of amorphous tin selenide deposited over silver contacts. Results obtained indicate that Ovonic type memory switching does occur in these films with the energy density required for switching from a high impedance to a low impedance state being dependent on the spacing between the electrodes of the device. There is also a strong implication that the switching is a function of the magnitude of the applied voltage pulse.

  2. Investigation of Hafnium oxide/Copper resistive memory for advanced encryption applications

    NASA Astrophysics Data System (ADS)

    Briggs, Benjamin D.

    The Advanced Encryption Standard (AES) is a widely used encryption algorithm to protect data and communications in today's digital age. Modern AES CMOS implementations require large amounts of dedicated logic and must be tuned for either performance or power consumption. A high throughput, low power, and low die area AES implementation is required in the growing mobile sector. An emerging non-volatile memory device known as resistive memory (ReRAM) is a simple metal-insulator-metal capacitor device structure with the ability to switch between two stable resistance states. Currently, ReRAM is targeted as a non-volatile memory replacement technology to eventually replace flash. Its advantages over flash include ease of fabrication, speed, and lower power consumption. In addition to memory, ReRAM can also be used in advanced logic implementations given its purely resistive behavior. The combination of a new non-volatile memory element ReRAM along with high performance, low power CMOS opens new avenues for logic implementations. This dissertation will cover the design and process implementation of a ReRAM-CMOS hybrid circuit, built using IBM's 10LPe process, for the improvement of hardware AES implementations. Further the device characteristics of ReRAM, specifically the HfO2/Cu memory system, and mechanisms for operation are not fully correlated. Of particular interest to this work is the role of material properties such as the stoichiometry, crystallinity, and doping of the HfO2 layer and their effect on the switching characteristics of resistive memory. Material properties were varied by a combination of atomic layer deposition and reactive sputtering of the HfO2 layer. Several studies will be discussed on how the above mentioned material properties influence switching parameters, and change the underlying physics of device operation.

  3. Highly uniform and reliable resistive switching characteristics of a Ni/WOx/p+-Si memory device

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Hyeon; Kim, Sungjun; Kim, Hyungjin; Kim, Min-Hwi; Bang, Suhyun; Cho, Seongjae; Park, Byung-Gook

    2018-02-01

    In this paper, we investigate the resistive switching behavior of a bipolar resistive random-access memory (RRAM) in a Ni/WOx/p+-Si RRAM with CMOS compatibility. Highly unifrom and reliable bipolar resistive switching characteristics are observed by a DC voltage sweeping and its switching mechanism can be explained by SCLC model. As a result, the possibility of metal-insulator-silicon (MIS) structural WOx-based RRAM's application to Si-based 1D (diode)-1R (RRAM) or 1T (transistor)-1R (RRAM) structure is demonstrated.

  4. Resistive switching mechanism of ZnO/ZrO2-stacked resistive random access memory device annealed at 300 °C by sol-gel method with forming-free operation

    NASA Astrophysics Data System (ADS)

    Jian, Wen-Yi; You, Hsin-Chiang; Wu, Cheng-Yen

    2018-01-01

    In this work, we used a sol-gel process to fabricate a ZnO-ZrO2-stacked resistive switching random access memory (ReRAM) device and investigated its switching mechanism. The Gibbs free energy in ZnO, which is higher than that in ZrO2, facilitates the oxidation and reduction reactions of filaments in the ZnO layer. The current-voltage (I-V) characteristics of the device revealed a forming-free operation because of nonlattice oxygen in the oxide layer. In addition, the device can operate under bipolar or unipolar conditions with a reset voltage of 0 to ±2 V, indicating that in this device, Joule heating dominates at reset and the electric field dominates in the set process. Furthermore, the characteristics reveal why the fabricated device exhibits a greater discrete distribution phenomenon for the set voltage than for the reset voltage. These results will enable the fabrication of future ReRAM devices with double-layer oxide structures with improved characteristics.

  5. Spiers Memorial Lecture. Molecular mechanics and molecular electronics.

    PubMed

    Beckman, Robert; Beverly, Kris; Boukai, Akram; Bunimovich, Yuri; Choi, Jang Wook; DeIonno, Erica; Green, Johnny; Johnston-Halperin, Ezekiel; Luo, Yi; Sheriff, Bonnie; Stoddart, Fraser; Heath, James R

    2006-01-01

    We describe our research into building integrated molecular electronics circuitry for a diverse set of functions, and with a focus on the fundamental scientific issues that surround this project. In particular, we discuss experiments aimed at understanding the function of bistable rotaxane molecular electronic switches by correlating the switching kinetics and ground state thermodynamic properties of those switches in various environments, ranging from the solution phase to a Langmuir monolayer of the switching molecules sandwiched between two electrodes. We discuss various devices, low bit-density memory circuits, and ultra-high density memory circuits that utilize the electrochemical switching characteristics of these molecules in conjunction with novel patterning methods. We also discuss interconnect schemes that are capable of bridging the micrometre to submicrometre length scales of conventional patterning approaches to the near-molecular length scales of the ultra-dense memory circuits. Finally, we discuss some of the challenges associated with fabricated ultra-dense molecular electronic integrated circuits.

  6. Ga-doped indium oxide nanowire phase change random access memory cells

    NASA Astrophysics Data System (ADS)

    Jin, Bo; Lim, Taekyung; Ju, Sanghyun; Latypov, Marat I.; Kim, Hyoung Seop; Meyyappan, M.; Lee, Jeong-Soo

    2014-02-01

    Phase change random access memory (PCRAM) devices are usually constructed using tellurium based compounds, but efforts to seek other materials providing desirable memory characteristics have continued. We have fabricated PCRAM devices using Ga-doped In2O3 nanowires with three different Ga compositions (Ga/(In+Ga) atomic ratio: 2.1%, 11.5% and 13.0%), and investigated their phase switching properties. The nanowires (˜40 nm in diameter) can be repeatedly switched between crystalline and amorphous phases, and Ga concentration-dependent memory switching behavior in the nanowires was observed with ultra-fast set/reset rates of 80 ns/20 ns, which are faster than for other competitive phase change materials. The observations of fast set/reset rates and two distinct states with a difference in resistance of two to three orders of magnitude appear promising for nonvolatile information storage. Moreover, we found that increasing the Ga concentration can reduce the power consumption and resistance drift; however, too high a level of Ga doping may cause difficulty in achieving the phase transition.

  7. All-optical clocked delay flip-flop using a single terahertz optical asymmetric demultiplexer-based switch: a theoretical study.

    PubMed

    Chattopadhyay, Tanay

    2010-10-01

    A flip-flop (FF) is a kind of latch and the simplest form of memory device, which stores various values either temporarily or permanently. Optical FF memories form a fundamental building block for all-optical packet switches in next-generation communication networks. An all-optical clocked delay FF using a single terahertz optical asymmetric demultiplexer-based interferometric switch is proposed and described. Numerical simulation results are also reported.

  8. E-field induced resistive switch in metal/praseodymium calcium manganite interfaces: A model for future nonvolatile memory devices

    NASA Astrophysics Data System (ADS)

    Das, Nilanjan

    Among the various candidates for non-volatile random access memory (RAM), interfacial resistive switch in Ag/Pr0.7Ca0.3 MnO3 (PCMO) configuration has drawn major attention in recent years due to its potential as a high storage density (˜ terabyte) device. However, the diverse nature of the resistive switch in different systems makes the development of a unifying model for its underlying physics very difficult. This dissertation will address both issues, namely, characterization of switches for device applications and development of a system-independent generic model, in detail. In our work, we have studied the properties electric pulse induced interfacial switch in electrode/PCMO system. A very fast speed ("write speed") of 100 ns, threshold ("programming voltage") as low as 2 V (for micro electrodes), and non-volatility ("data retention") of switched states have been achieved. A clear distinction between fast switch and sub-threshold slow quasistatic-dc switch has been made. Results obtained from time-dependence studies and impedance spectroscopy suggest that defect creation/annihilation, such as broken bonds (under very high field at interface, 107V/cm), is likely the mechanism for the sub-micros fast switching. On the other hand, slow accumulative process, such as electromigration of point defects, are responsible for the subthreshold quasi-dc switch. Scanning probe imaging has revealed the nanoscale inhomogeneity of the switched surfaces, essential for observing a resistive switch. Evolution of such structures has been observed under surface pre-training. Device scalability has been tested by creating reversible modification of surface conductivities with atomic force microscopy, thus creating the "nano-switch" (limited to a region of 10--100 nm).

  9. Methods for resistive switching of memristors

    DOEpatents

    Mickel, Patrick R.; James, Conrad D.; Lohn, Andrew; Marinella, Matthew; Hsia, Alexander H.

    2016-05-10

    The present invention is directed generally to resistive random-access memory (RRAM or ReRAM) devices and systems, as well as methods of employing a thermal resistive model to understand and determine switching of such devices. In particular example, the method includes generating a power-resistance measurement for the memristor device and applying an isothermal model to the power-resistance measurement in order to determine one or more parameters of the device (e.g., filament state).

  10. Self-assembled phase-change nanowire for nonvolatile electronic memory

    NASA Astrophysics Data System (ADS)

    Jung, Yeonwoong

    One of the most important subjects in nanosciences is to identify and exploit the relationship between size and structural/physical properties of materials and to explore novel material properties at a small-length scale. Scale-down of materials is not only advantageous in realizing miniaturized devices but nanometer-sized materials often exhibit intriguing physical/chemical properties that greatly differ from their bulk counterparts. This dissertation studies self-assembled phase-change nanowires for future nonvolatile electronic memories, mainly focusing on their size-dependent memory switching properties. Owing to the one-dimensional, unique geometry coupled with the small and tunable sizes, bottom-designed nanowires offer great opportunities in terms for both fundamental science and practical engineering perspectives, which would be difficult to realize in conventional top-down based approaches. We synthesized chalcogenide phase-change nanowires of different compositions and sizes, and studied their electronic memory switching owing to the structural change between crystalline and amorphous phases. In particular, we investigated nanowire size-dependent memory switching parameters, including writing current, power consumption, and data retention times, as well as studying composition-dependent electronic properties. The observed size and composition-dependent switching and recrystallization kinetics are explained based on the heat transport model and heterogeneous nucleation theories, which help to design phase-change materials with better properties. Moreover, we configured unconventional heterostructured phase-change nanowire memories and studied their multiple memory states in single nanowire devices. Finally, by combining in-situ/ex-situ electron microscopy techniques and electrical measurements, we characterized the structural states involved in electrically-driven phase-change in order to understand the atomistic mechanism that governs the electronic memory switching through phase-change.

  11. Critical role of a double-layer configuration in solution-based unipolar resistive switching memories.

    PubMed

    Carlos, Emanuel; Kiazadeh, Asal; Deuermeier, Jonas; Branquinho, Rita; Martins, Rodrigo; Fortunato, Elvira

    2018-08-24

    Lately, resistive switching memories (ReRAM) have been attracting a lot of attention due to their possibilities of fast operation, lower power consumption and simple fabrication process and they can also be scaled to very small dimensions. However, most of these ReRAM are produced by physical methods and nowadays the industry demands more simplicity, typically associated with low cost manufacturing. As such, ReRAMs in this work are developed from a solution-based aluminum oxide (Al 2 O 3 ) using a simple combustion synthesis process. The device performance is optimized by two-stage deposition of the Al 2 O 3 film. The resistive switching properties of the bilayer devices are reproducible with a yield of 100%. The ReRAM devices show unipolar resistive switching behavior with good endurance and retention time up to 10 5 s at 85 °C. The devices can be programmed in a multi-level cell operation mode by application of different reset voltages. Temperature analysis of various resistance states reveals a filamentary nature based on the oxygen vacancies. The optimized film was stacked between ITO and indium zinc oxide, targeting a fully transparent device for applications on transparent system-on-panel technology.

  12. Hf layer thickness dependence of resistive switching characteristics of Ti/Hf/HfO2/Au resistive random access memory device

    NASA Astrophysics Data System (ADS)

    Nakajima, Ryo; Azuma, Atsushi; Yoshida, Hayato; Shimizu, Tomohiro; Ito, Takeshi; Shingubara, Shoso

    2018-06-01

    Resistive random access memory (ReRAM) devices with a HfO2 dielectric layer have been studied extensively owing to the good reproducibility of their SET/RESET switching properties. Furthermore, it was reported that a thin Hf layer next to a HfO2 layer stabilized switching properties because of the oxygen scavenging effect. In this work, we studied the Hf thickness dependence of the resistance switching characteristics of a Ti/Hf/HfO2/Au ReRAM device. It is found that the optimum Hf thickness is approximately 10 nm to obtain good reproducibility of SET/RESET voltages with a small RESET current. However, when the Hf thickness was very small (∼2 nm), the device failed after the first RESET process owing to the very large RESET current. In the case of a very thick Hf layer (∼20 nm), RESET did not occur owing to the formation of a leaky dielectric layer. We observed the occurrence of multiple resistance states in the RESET process of the device with a Hf thickness of 10 nm by increasing the RESET voltage stepwise.

  13. Multi-step resistive switching behavior of Li-doped ZnO resistance random access memory device controlled by compliance current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chun-Cheng; Department of Mathematic and Physical Sciences, R.O.C. Air Force Academy, Kaohsiung 820, Taiwan; Tang, Jian-Fu

    2016-06-28

    The multi-step resistive switching (RS) behavior of a unipolar Pt/Li{sub 0.06}Zn{sub 0.94}O/Pt resistive random access memory (RRAM) device is investigated. It is found that the RRAM device exhibits normal, 2-, 3-, and 4-step RESET behaviors under different compliance currents. The transport mechanism within the device is investigated by means of current-voltage curves, in-situ transmission electron microscopy, and electrochemical impedance spectroscopy. It is shown that the ion transport mechanism is dominated by Ohmic behavior under low electric fields and the Poole-Frenkel emission effect (normal RS behavior) or Li{sup +} ion diffusion (2-, 3-, and 4-step RESET behaviors) under high electric fields.

  14. Nanoscale memory elements based on the superconductor-ferromagnet proximity effect and spin-transfer torque magnetization switching

    NASA Astrophysics Data System (ADS)

    Baek, Burm

    Superconducting-ferromagnetic hybrid devices have potential for a practical memory technology compatible with superconducting logic circuits and may help realize energy-efficient, high-performance superconducting computers. We have developed Josephson junction devices with pseudo-spin-valve barriers. We observed changes in Josephson critical current depending on the magnetization state of the barrier (parallel or anti-parallel) through the superconductor-ferromagnet proximity effect. This effect persists to nanoscale devices in contrast to the remanent field effect. In nanopillar devices, the magnetization states of the pseudo-spin-valve barriers could also be switched with applied bias currents at 4 K, which is consistent with the spin-transfer torque effect in analogous room-temperature spin valve devices. These results demonstrate devices that combine major superconducting and spintronic effects for scalable read and write of memory states, respectively. Further challenges and proposals towards practical devices will also be discussed.In collaboration with: William Rippard, NIST - Boulder, Matthew Pufall, NIST - Boulder, Stephen Russek, NIST-Boulder, Michael Schneider, NIST - Boulder, Samuel Benz, NIST - Boulder, Horst Rogalla, NIST-Boulder, Paul Dresselhaus, NIST - Boulder

  15. Enhanced switching stability in Ta2O5 resistive RAM by fluorine doping

    NASA Astrophysics Data System (ADS)

    Sedghi, N.; Li, H.; Brunell, I. F.; Dawson, K.; Guo, Y.; Potter, R. J.; Gibbon, J. T.; Dhanak, V. R.; Zhang, W. D.; Zhang, J. F.; Hall, S.; Robertson, J.; Chalker, P. R.

    2017-08-01

    The effect of fluorine doping on the switching stability of Ta2O5 resistive random access memory devices is investigated. It shows that the dopant serves to increase the memory window and improve the stability of the resistive states due to the neutralization of oxygen vacancies. The ability to alter the current in the low resistance state with set current compliance coupled with large memory window makes multilevel cell switching more favorable. The devices have set and reset voltages of <1 V with improved stability due to the fluorine doping. Density functional modeling shows that the incorporation of fluorine dopant atoms at the two-fold O vacancy site in the oxide network removes the defect state in the mid bandgap, lowering the overall density of defects capable of forming conductive filaments. This reduces the probability of forming alternative conducting paths and hence improves the current stability in the low resistance states. The doped devices exhibit more stable resistive states in both dc and pulsed set and reset cycles. The retention failure time is estimated to be a minimum of 2 years for F-doped devices measured by temperature accelerated and stress voltage accelerated retention failure methods.

  16. Switching mechanism transition induced by annealing treatment in nonvolatile Cu/ZnO/Cu/ZnO/Pt resistive memory: From carrier trapping/detrapping to electrochemical metallization

    NASA Astrophysics Data System (ADS)

    Yang, Y. C.; Pan, F.; Zeng, F.; Liu, M.

    2009-12-01

    ZnO/Cu/ZnO trilayer films sandwiched between Cu and Pt electrodes were prepared for nonvolatile resistive memory applications. These structures show resistance switching under electrical bias both before and after a rapid thermal annealing (RTA) treatment, while it is found that the resistive switching effects in the two cases exhibit distinct characteristics. Compared with the as-fabricated device, the memory cell after RTA demonstrates remarkable device parameter improvements including lower threshold voltages, lower write current, and higher Roff/Ron ratio. A high-voltage forming process is avoided in the annealed device as well. Furthermore, the RTA treatment has triggered a switching mechanism transition from a carrier trapping/detrapping type to an electrochemical-redox-reaction-controlled conductive filament formation/rupture process, as indicated by different features in current-voltage characteristics. Both scanning electron microscopy observations and Auger electron spectroscopy depth profiles reveal that the Cu charge trapping layer in ZnO/Cu/ZnO disperses uniformly into the storage medium after RTA, while x-ray diffraction and x-ray photoelectron spectroscopy analyses demonstrate that the Cu atoms have lost electrons to become Cu2+ ions after dispersion. The above experimental facts indicate that the altered status of Cu in the ZnO/Cu/ZnO trilayer films during RTA treatment should be responsible for the switching mechanism transition. This study is envisioned to open the door for understanding the interrelation between different mechanisms that currently exist in the field of resistive memories.

  17. Forming-free and self-rectifying resistive switching of the simple Pt/TaOx/n-Si structure for access device-free high-density memory application

    NASA Astrophysics Data System (ADS)

    Gao, Shuang; Zeng, Fei; Li, Fan; Wang, Minjuan; Mao, Haijun; Wang, Guangyue; Song, Cheng; Pan, Feng

    2015-03-01

    The search for self-rectifying resistive memories has aroused great attention due to their potential in high-density memory applications without additional access devices. Here we report the forming-free and self-rectifying bipolar resistive switching behavior of a simple Pt/TaOx/n-Si tri-layer structure. The forming-free phenomenon is attributed to the generation of a large amount of oxygen vacancies, in a TaOx region that is in close proximity to the TaOx/n-Si interface, via out-diffusion of oxygen ions from TaOx to n-Si. A maximum rectification ratio of ~6 × 102 is obtained when the Pt/TaOx/n-Si devices stay in a low resistance state, which originates from the existence of a Schottky barrier between the formed oxygen vacancy filament and the n-Si electrode. More importantly, numerical simulation reveals that the self-rectifying behavior itself can guarantee a maximum crossbar size of 212 × 212 (~44 kbit) on the premise of 10% read margin. Moreover, satisfactory switching uniformity and retention performance are observed based on this simple tri-layer structure. All of these results demonstrate the great potential of this simple Pt/TaOx/n-Si tri-layer structure for access device-free high-density memory applications.The search for self-rectifying resistive memories has aroused great attention due to their potential in high-density memory applications without additional access devices. Here we report the forming-free and self-rectifying bipolar resistive switching behavior of a simple Pt/TaOx/n-Si tri-layer structure. The forming-free phenomenon is attributed to the generation of a large amount of oxygen vacancies, in a TaOx region that is in close proximity to the TaOx/n-Si interface, via out-diffusion of oxygen ions from TaOx to n-Si. A maximum rectification ratio of ~6 × 102 is obtained when the Pt/TaOx/n-Si devices stay in a low resistance state, which originates from the existence of a Schottky barrier between the formed oxygen vacancy filament and the n-Si electrode. More importantly, numerical simulation reveals that the self-rectifying behavior itself can guarantee a maximum crossbar size of 212 × 212 (~44 kbit) on the premise of 10% read margin. Moreover, satisfactory switching uniformity and retention performance are observed based on this simple tri-layer structure. All of these results demonstrate the great potential of this simple Pt/TaOx/n-Si tri-layer structure for access device-free high-density memory applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06406b

  18. Novel nano materials for high performance logic and memory devices

    NASA Astrophysics Data System (ADS)

    Das, Saptarshi

    After decades of relentless progress, the silicon CMOS industry is approaching a stall in device performance for both logic and memory devices due to fundamental scaling limitations. In order to reinforce the accelerating pace, novel materials with unique properties are being proposed on an urgent basis. This list includes one dimensional nanotubes, quasi one dimensional nanowires, two dimensional atomistically thin layered materials like graphene, hexagonal boron nitride and the more recently the rich family of transition metal di-chalcogenides comprising of MoS2, WSe2, WS2 and many more for logic applications and organic and inorganic ferroelectrics, phase change materials and magnetic materials for memory applications. Only time will tell who will win, but exploring these novel materials allow us to revisit the fundamentals and strengthen our understanding which will ultimately be beneficial for high performance device design. While there has been growing interest in two-dimensional (2D) crystals other than graphene, evaluating their potential usefulness for electronic applications is still in its infancies due to the lack of a complete picture of their performance potential. The fact that the 2-D layered semiconducting di-chalcogenides need to be connected to the "outside" world in order to capitalize on their ultimate potential immediately emphasizes the importance of a thorough understanding of the contacts. This thesis demonstrate that through a proper understanding and design of source/drain contacts and the right choice of number of MoS2 layers the excellent intrinsic properties of this 2D material can be harvested. A comprehensive experimental study on the dependence of carrier mobility on the layer thickness of back gated multilayer MoS 2 field effect transistors is also provided. A resistor network model that comprises of Thomas-Fermi charge screening and interlayer coupling is used to explain the non-monotonic trend in the extracted field effect mobility with the layer thickness. The non-monotonic trend suggests that in order to harvest the maximum potential of MoS2 for high performance device applications, a layer thickness in the range of 6-12 nm would be ideal. Finally using scandium contacts on 10nm thick exfoliated MoS2 flakes that are covered by a 15nm ALD grown Al2O3 film, record high mobility of 700cm2/Vs is achieved at room-temperature which is extremely encouraging for the design of high performance logic devices. The destructive nature of the readout process in Ferroelectric Random Access Memories (FeRAMs) is one of the major limiting factors for their wide scale commercialization. Utilizing Ferroelectric Field-Effect Transistor RAM (FeTRAM) instead solves the destructive read out problem, but at the expense of introducing crystalline ferroelectrics that are hard to integrate into CMOS. In order to address these challenges a novel, fully functional, CMOS compatible, One-Transistor-One-Transistor (1T1T) memory cell architecture using an organic ferroelectric -- PVDF-TrFE -- as the memory storage unit (gate oxide) and a silicon nanowire as the memory read out unit (channel material) is proposed and experimentally demonstrated. While evaluating the scaling potential of the above mentioned organic FeTRAM, it is found that the switching time and switching voltage of this organic copolymer PVDF-TrFE exhibits an unexpected scaling behavior as a function of the lateral device dimensions. The phenomenological theory, that explains this abnormal scaling trend, involves in-plane interchain and intrachain interaction of the copolymer - resulting in a power-law dependence of the switching field on the device area (ESW alpha ACH0.1) that is ultimately responsible for the decrease in the switching time and switching voltage. These findings are encouraging since they indicate that scaling the switching voltage and switching time without aggressively scaling the copolymer thickness occurs naturally while scaling the device area -- in this way ultimately improving the packing density and leading towards high performance memory devices.

  19. Resonant tunneling based graphene quantum dot memristors.

    PubMed

    Pan, Xuan; Skafidas, Efstratios

    2016-12-08

    In this paper, we model two-terminal all graphene quantum dot (GQD) based resistor-type memory devices (memristors). The resistive switching is achieved by resonant electron tunneling. We show that parallel GQDs can be used to create multi-state memory circuits. The number of states can be optimised with additional voltage sources, whilst the noise margin for each state can be controlled by appropriately choosing the branch resistance. A three-terminal GQD device configuration is also studied. The addition of an isolated gate terminal can be used to add further or modify the states of the memory device. The proposed devices provide a promising route towards volatile memory devices utilizing only atomically thin two-dimensional graphene.

  20. Solution-processed flexible NiO resistive random access memory device

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Jung; Lee, Heon; Hong, Sung-Hoon

    2018-04-01

    Non-volatile memories (NVMs) using nanocrystals (NCs) as active materials can be applied to soft electronic devices requiring a low-temperature process because NCs do not require a heat treatment process for crystallization. In addition, memory devices can be implemented simply by using a patterning technique using a solution process. In this study, a flexible NiO ReRAM device was fabricated using a simple NC patterning method that controls the capillary force and dewetting of a NiO NC solution at low temperature. The switching behavior of a NiO NC based memory was clearly observed by conductive atomic force microscopy (c-AFM).

  1. Effect of Electronegativity on Bipolar Resistive Switching in a WO3-Based Asymmetric Capacitor Structure.

    PubMed

    Kim, Jongmin; Inamdar, Akbar I; Jo, Yongcheol; Woo, Hyeonseok; Cho, Sangeun; Pawar, Sambhaji M; Kim, Hyungsang; Im, Hyunsik

    2016-04-13

    This study investigates the transport and switching time of nonvolatile tungsten oxide based resistive-switching (RS) memory devices. These devices consist of a highly resistive tungsten oxide film sandwiched between metal electrodes, and their RS characteristics are bipolar in the counterclockwise direction. The switching voltage, retention, endurance, and switching time are strongly dependent on the type of electrodes used, and we also find quantitative and qualitative evidence that the electronegativity (χ) of the electrodes plays a key role in determining the RS properties and switching time. We also propose an RS model based on the role of the electronegativity at the interface.

  2. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Bai, Zi Long; Chen, Zhi Hui; He, Long; Zhang, David Wei; Zhang, Qing Hua; Shi, Jin An; Park, Min Hyuk; Scott, James F.; Hwang, Cheol Seong; Jiang, An Quan

    2018-01-01

    Erasable conductive domain walls in insulating ferroelectric thin films can be used for non-destructive electrical read-out of the polarization states in ferroelectric memories. Still, the domain-wall currents extracted by these devices have not yet reached the intensity and stability required to drive read-out circuits operating at high speeds. This study demonstrated non-destructive read-out of digital data stored using specific domain-wall configurations in epitaxial BiFeO3 thin films formed in mesa-geometry structures. Partially switched domains, which enable the formation of conductive walls during the read operation, spontaneously retract when the read voltage is removed, reducing the accumulation of mobile defects at the domain walls and potentially improving the device stability. Three-terminal memory devices produced 14 nA read currents at an operating voltage of 5 V, and operated up to T = 85 °C. The gap length can also be smaller than the film thickness, allowing the realization of ferroelectric memories with device dimensions far below 100 nm.

  3. Ultra-Lightweight Resistive Switching Memory Devices Based on Silk Fibroin.

    PubMed

    Wang, Hong; Zhu, Bowen; Wang, Hua; Ma, Xiaohua; Hao, Yue; Chen, Xiaodong

    2016-07-01

    Ultra-lightweight resistive switching memory based on protein has been demonstrated. The memory foil is 0.4 mg cm(-2) , which is 320-fold lighter than silicon substrate, 20-fold lighter than office paper and can be sustained by a human hair. Additionally, high resistance OFF/ON ratio of 10(5) , retention time of 10(4) s, and excellent flexibility (bending radius of 800 μm) have been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hardware enabled performance counters with support for operating system context switching

    DOEpatents

    Salapura, Valentina; Wisniewski, Robert W.

    2015-06-30

    A device for supporting hardware enabled performance counters with support for context switching include a plurality of performance counters operable to collect information associated with one or more computer system related activities, a first register operable to store a memory address, a second register operable to store a mode indication, and a state machine operable to read the second register and cause the plurality of performance counters to copy the information to memory area indicated by the memory address based on the mode indication.

  5. Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances.

    PubMed

    Hu, Wei; Qin, Ni; Wu, Guangheng; Lin, Yanting; Li, Shuwei; Bao, Dinghua

    2012-09-12

    The opportunity of spinel ferrites in nonvolatile memory device applications has been demonstrated by the resistive switching performance characteristics of a Pt/NiFe(2)O(4)/Pt structure, such as low operating voltage, high device yield, long retention time (up to 10(5) s), and good endurance (up to 2.2 × 10(4) cycles). The dominant conduction mechanisms are Ohmic conduction in the low-resistance state and in the lower-voltage region of the high-resistance state and Schottky emission in the higher-voltage region of the high-resistance state. On the basis of measurements of the temperature dependence of the resistances and magnetic properties in different resistance states, we explain the physical mechanism of resistive switching of Pt/NiFe(2)O(4)/Pt devices using the model of formation and rupture of conducting filaments by considering the thermal effect of oxygen vacancies and changes in the valences of cations due to the redox effect.

  6. Space-charge-mediated anomalous ferroelectric switching in P(VDF-TrEE) polymer films.

    PubMed

    Hu, Weijin; Wang, Zhihong; Du, Yuanmin; Zhang, Xi-Xiang; Wu, Tom

    2014-11-12

    We report on the switching dynamics of P(VDF-TrEE) copolymer devices and the realization of additional substable ferroelectric states via modulation of the coupling between polarizations and space charges. The space-charge-limited current is revealed to be the dominant leakage mechanism in such organic ferroelectric devices, and electrostatic interactions due to space charges lead to the emergence of anomalous ferroelectric loops. The reliable control of ferroelectric switching in P(VDF-TrEE) copolymers opens doors toward engineering advanced organic memories with tailored switching characteristics.

  7. A graphene-based non-volatile memory

    NASA Astrophysics Data System (ADS)

    Loisel, Loïc.; Maurice, Ange; Lebental, Bérengère; Vezzoli, Stefano; Cojocaru, Costel-Sorin; Tay, Beng Kang

    2015-09-01

    We report on the development and characterization of a simple two-terminal non-volatile graphene switch. After an initial electroforming step during which Joule heating leads to the formation of a nano-gap impeding the current flow, the devices can be switched reversibly between two well-separated resistance states. To do so, either voltage sweeps or pulses can be used, with the condition that VSET < VRESET , where SET is the process decreasing the resistance and RESET the process increasing the resistance. We achieve reversible switching on more than 100 cycles with resistance ratio values of 104. This approach of graphene memory is competitive as compared to other graphene approaches such as redox of graphene oxide, or electro-mechanical switches with suspended graphene. We suggest a switching model based on a planar electro-mechanical switch, whereby electrostatic, elastic and friction forces are competing to switch devices ON and OFF, and the stability in the ON state is achieved by the formation of covalent bonds between the two stretched sides of the graphene, hence bridging the nano-gap. Developing a planar electro-mechanical switch enables to obtain the advantages of electro-mechanical switches while avoiding most of their drawbacks.

  8. Direct observation of conductive filament formation in Alq3 based organic resistive memories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busby, Y., E-mail: yan.busby@unamur.be; Pireaux, J.-J.; Nau, S.

    2015-08-21

    This work explores resistive switching mechanisms in non-volatile organic memory devices based on tris(8-hydroxyquinolie)aluminum (Alq{sub 3}). Advanced characterization tools are applied to investigate metal diffusion in ITO/Alq{sub 3}/Ag memory device stacks leading to conductive filament formation. The morphology of Alq{sub 3}/Ag layers as a function of the metal evaporation conditions is studied by X-ray reflectivity, while depth profile analysis with X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry is applied to characterize operational memory elements displaying reliable bistable current-voltage characteristics. 3D images of the distribution of silver inside the organic layer clearly point towards the existence of conductive filamentsmore » and allow for the identification of the initial filament formation and inactivation mechanisms during switching of the device. Initial filament formation is suggested to be driven by field assisted diffusion of silver from abundant structures formed during the top electrode evaporation, whereas thermochemical effects lead to local filament inactivation.« less

  9. Electric field-triggered metal-insulator transition resistive switching of bilayered multiphasic VOx

    NASA Astrophysics Data System (ADS)

    Won, Seokjae; Lee, Sang Yeon; Hwang, Jungyeon; Park, Jucheol; Seo, Hyungtak

    2018-01-01

    Electric field-triggered Mott transition of VO2 for next-generation memory devices with sharp and fast resistance-switching response is considered to be ideal but the formation of single-phase VO2 by common deposition techniques is very challenging. Here, VOx films with a VO2-dominant phase for a Mott transition-based metal-insulator transition (MIT) switching device were successfully fabricated by the combined process of RF magnetron sputtering of V metal and subsequent O2 annealing to form. By performing various material characterizations, including scanning transmission electron microscopy-electron energy loss spectroscopy, the film is determined to have a bilayer structure consisting of a VO2-rich bottom layer acting as the Mott transition switching layer and a V2O5/V2O3 mixed top layer acting as a control layer that suppresses any stray leakage current and improves cyclic performance. This bilayer structure enables excellent electric field-triggered Mott transition-based resistive switching of Pt-VOx-Pt metal-insulator-metal devices with a set/reset current ratio reaching 200, set/reset voltage of less than 2.5 V, and very stable DC cyclic switching upto 120 cycles with a great set/reset current and voltage distribution less than 5% of standard deviation at room temperature, which are specifications applicable for neuromorphic or memory device applications. [Figure not available: see fulltext.

  10. Ion beam synthesis of indium-oxide nanocrystals for improvement of oxide resistive random-access memories

    NASA Astrophysics Data System (ADS)

    Bonafos, C.; Benassayag, G.; Cours, R.; Pécassou, B.; Guenery, P. V.; Baboux, N.; Militaru, L.; Souifi, A.; Cossec, E.; Hamga, K.; Ecoffey, S.; Drouin, D.

    2018-01-01

    We report on the direct ion beam synthesis of a delta-layer of indium oxide nanocrystals (In2O3-NCs) in silica matrices by using ultra-low energy ion implantation. The formation of the indium oxide phase can be explained by (i) the affinity of indium with oxygen, (ii) the generation of a high excess of oxygen recoils generated by the implantation process in the region where the nanocrystals are formed and (iii) the proximity of the indium-based nanoparticles with the free surface and oxidation from the air. Taking advantage of the selective diffusivity of implanted indium in SiO2 with respect to Si3N4, In2O3-NCs have been inserted in the SiO2 switching oxide of micrometric planar oxide-based resistive random access memory (OxRAM) devices fabricated using the nanodamascene process. Preliminary electrical measurements show switch voltage from high to low resistance state. The devices with In2O3-NCs have been cycled 5 times with identical operating voltages and RESET current meanwhile no switch has been observed for non implanted devices. This first measurement of switching is very promising for the concept of In2O3-NCs based OxRAM memories.

  11. Composition-ratio influence on resistive switching behavior of solution-processed InGaZnO-based thin-film.

    PubMed

    Hwang, Yeong-Hyeon; Hwang, Inchan; Cho, Won-Ju

    2014-11-01

    The influence of composition ratio on the bipolar resistive switching behavior of resistive switching memory devices based on amorphous indium-gallium-zinc-oxide (a-IGZO) using the spin-coating process was investigated. To study the stoichiometric effects of the a-IGZO films on device characteristics, four devices with In/Ga/Zn stoichiometries of 1:1:1, 3:1:1, 1:3:1, and 1:1:3 were fabricated and characterized. The 3:1:1 film showed an ohmic behavior and the 1:1:3 film showed a rectifying switching behavior. The current-voltage characteristics of the a-IGZO films with stoichiometries of 1:1:1 and 1:3:1, however, showed a bipolar resistive memory switching behavior. We found that the three-fold increase in the gallium content ratio reduces the reset voltage from -0.9 to - 0.4 V and enhances the current ratio of high to low resistive states from 0.7 x 10(1) to 3 x 10(1). Our results show that the increase in the Ga composition ratio in the a-IGZO-based ReRAM cells effectively improves the device performance and reliability by increasing the initial defect density in the a-IGZO films.

  12. All oxide semiconductor-based bidirectional vertical p-n-p selectors for 3D stackable crossbar-array electronics

    PubMed Central

    Bae, Yoon Cheol; Lee, Ah Rahm; Baek, Gwang Ho; Chung, Je Bock; Kim, Tae Yoon; Park, Jea Gun; Hong, Jin Pyo

    2015-01-01

    Three-dimensional (3D) stackable memory devices including nano-scaled crossbar array are central for the realization of high-density non-volatile memory electronics. However, an essential sneak path issue affecting device performance in crossbar array remains a bottleneck and a grand challenge. Therefore, a suitable bidirectional selector as a two-way switch is required to facilitate a major breakthrough in the 3D crossbar array memory devices. Here, we show the excellent selectivity of all oxide p-/n-type semiconductor-based p-n-p open-based bipolar junction transistors as selectors in crossbar memory array. We report that bidirectional nonlinear characteristics of oxide p-n-p junctions can be highly enhanced by manipulating p-/n-type oxide semiconductor characteristics. We also propose an associated Zener tunneling mechanism that explains the unique features of our p-n-p selector. Our experimental findings are further extended to confirm the profound functionality of oxide p-n-p selectors integrated with several bipolar resistive switching memory elements working as storage nodes. PMID:26289565

  13. One bipolar transistor selector - One resistive random access memory device for cross bar memory array

    NASA Astrophysics Data System (ADS)

    Aluguri, R.; Kumar, D.; Simanjuntak, F. M.; Tseng, T.-Y.

    2017-09-01

    A bipolar transistor selector was connected in series with a resistive switching memory device to study its memory characteristics for its application in cross bar array memory. The metal oxide based p-n-p bipolar transistor selector indicated good selectivity of about 104 with high retention and long endurance showing its usefulness in cross bar RRAM devices. Zener tunneling is found to be the main conduction phenomena for obtaining high selectivity. 1BT-1R device demonstrated good memory characteristics with non-linearity of 2 orders, selectivity of about 2 orders and long retention characteristics of more than 105 sec. One bit-line pull-up scheme shows that a 650 kb cross bar array made with this 1BT1R devices works well with more than 10 % read margin proving its ability in future memory technology application.

  14. Scalability of voltage-controlled filamentary and nanometallic resistance memory devices.

    PubMed

    Lu, Yang; Lee, Jong Ho; Chen, I-Wei

    2017-08-31

    Much effort has been devoted to device and materials engineering to realize nanoscale resistance random access memory (RRAM) for practical applications, but a rational physical basis to be relied on to design scalable devices spanning many length scales is still lacking. In particular, there is no clear criterion for switching control in those RRAM devices in which resistance changes are limited to localized nanoscale filaments that experience concentrated heat, electric current and field. Here, we demonstrate voltage-controlled resistance switching, always at a constant characteristic critical voltage, for macro and nanodevices in both filamentary RRAM and nanometallic RRAM, and the latter switches uniformly and does not require a forming process. As a result, area-scalability can be achieved under a device-area-proportional current compliance for the low resistance state of the filamentary RRAM, and for both the low and high resistance states of the nanometallic RRAM. This finding will help design area-scalable RRAM at the nanoscale. It also establishes an analogy between RRAM and synapses, in which signal transmission is also voltage-controlled.

  15. Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes.

    PubMed

    Liu, Juqing; Yin, Zongyou; Cao, Xiehong; Zhao, Fei; Lin, Anping; Xie, Linghai; Fan, Quli; Boey, Freddy; Zhang, Hua; Huang, Wei

    2010-07-27

    A unique device structure with a configuration of reduced graphene oxide (rGO) /P3HT:PCBM/Al has been designed for the polymer nonvolatile memory device. The current-voltage (I-V) characteristics of the fabricated device showed the electrical bistability with a write-once-read-many-times (WORM) memory effect. The memory device exhibits a high ON/OFF ratio (10(4)-10(5)) and low switching threshold voltage (0.5-1.2 V), which are dependent on the sheet resistance of rGO electrode. Our experimental results confirm that the carrier transport mechanisms in the OFF and ON states are dominated by the thermionic emission current and ohmic current, respectively. The polarization of PCBM domains and the localized internal electrical field formed among the adjacent domains are proposed to explain the electrical transition of the memory device.

  16. Resistive switching mechanism of Ag/ZrO2:Cu/Pt memory cell

    NASA Astrophysics Data System (ADS)

    Long, Shibing; Liu, Qi; Lv, Hangbing; Li, Yingtao; Wang, Yan; Zhang, Sen; Lian, Wentai; Zhang, Kangwei; Wang, Ming; Xie, Hongwei; Liu, Ming

    2011-03-01

    Resistive switching mechanism of zirconium oxide-based resistive random access memory (RRAM) devices composed of Cu-doped ZrO2 film sandwiched between an oxidizable electrode and an inert electrode was investigated. The Ag/ZrO2:Cu/Pt RRAM devices with crosspoint structure fabricated by e-beam evaporation and e-beam lithography show reproducible bipolar resistive switching. The linear I- V relationship of low resistance state (LRS) and the dependence of LRS resistance ( R ON) and reset current ( I reset) on the set current compliance ( I comp) indicate that the observed resistive switching characteristics of the Ag/ZrO2:Cu/Pt device should be ascribed to the formation and annihilation of localized conductive filaments (CFs). The physical origin of CF was further analyzed by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). CFs were directly observed by cross-sectional TEM. According to EDS and elemental mapping analysis, the main chemical composition of CF is determined by Ag atoms, coming from the Ag top electrode. On the basis of these experiments, we propose that the set and reset process of the device stem from the electrochemical reactions in the zirconium oxide under different external electrical stimuli.

  17. Optical backplane interconnect switch for data processors and computers

    NASA Technical Reports Server (NTRS)

    Hendricks, Herbert D.; Benz, Harry F.; Hammer, Jacob M.

    1989-01-01

    An optoelectronic integrated device design is reported which can be used to implement an all-optical backplane interconnect switch. The switch is sized to accommodate an array of processors and memories suitable for direct replacement into the basic avionic multiprocessor backplane. The optical backplane interconnect switch is also suitable for direct replacement of the PI bus traffic switch and at the same time, suitable for supporting pipelining of the processor and memory. The 32 bidirectional switchable interconnects are configured with broadcast capability for controls, reconfiguration, and messages. The approach described here can handle a serial interconnection of data processors or a line-to-link interconnection of data processors. An optical fiber demonstration of this approach is presented.

  18. Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells

    NASA Astrophysics Data System (ADS)

    Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel; Sebastian, Abu

    2016-01-01

    In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current in doped Ge2Sb2Te5 nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters.

  19. Electrically-controlled nonlinear switching and multi-level storage characteristics in WOx film-based memory cells

    NASA Astrophysics Data System (ADS)

    Duan, W. J.; Wang, J. B.; Zhong, X. L.

    2018-05-01

    Resistive switching random access memory (RRAM) is considered as a promising candidate for the next generation memory due to its scalability, high integration density and non-volatile storage characteristics. Here, the multiple electrical characteristics in Pt/WOx/Pt cells are investigated. Both of the nonlinear switching and multi-level storage can be achieved by setting different compliance current in the same cell. The correlations among the current, time and temperature are analyzed by using contours and 3D surfaces. The switching mechanism is explained in terms of the formation and rupture of conductive filament which is related to oxygen vacancies. The experimental results show that the non-stoichiometric WOx film-based device offers a feasible way for the applications of oxide-based RRAMs.

  20. Logic computation in phase change materials by threshold and memory switching.

    PubMed

    Cassinerio, M; Ciocchini, N; Ielmini, D

    2013-11-06

    Memristors, namely hysteretic devices capable of changing their resistance in response to applied electrical stimuli, may provide new opportunities for future memory and computation, thanks to their scalable size, low switching energy and nonvolatile nature. We have developed a functionally complete set of logic functions including NOR, NAND and NOT gates, each utilizing a single phase-change memristor (PCM) where resistance switching is due to the phase transformation of an active chalcogenide material. The logic operations are enabled by the high functionality of nanoscale phase change, featuring voltage comparison, additive crystallization and pulse-induced amorphization. The nonvolatile nature of memristive states provides the basis for developing reconfigurable hybrid logic/memory circuits featuring low-power and high-speed switching. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Voltage switching of a VO{sub 2} memory metasurface using ionic gel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldflam, M. D.; Liu, M. K.; Chapler, B. C.

    2014-07-28

    We demonstrate an electrolyte-based voltage tunable vanadium dioxide (VO{sub 2}) memory metasurface. Large spatial scale, low voltage, non-volatile switching of terahertz (THz) metasurface resonances is achieved through voltage application using an ionic gel to drive the insulator-to-metal transition in an underlying VO{sub 2} layer. Positive and negative voltage application can selectively tune the metasurface resonance into the “off” or “on” state by pushing the VO{sub 2} into a more conductive or insulating regime respectively. Compared to graphene based control devices, the relatively long saturation time of resonance modification in VO{sub 2} based devices suggests that this voltage-induced switching originates primarilymore » from electrochemical effects related to oxygen migration across the electrolyte–VO{sub 2} interface.« less

  2. Regulation of the forming process and the set voltage distribution of unipolar resistance switching in spin-coated CoFe2O4 thin films.

    PubMed

    Mustaqima, Millaty; Yoo, Pilsun; Huang, Wei; Lee, Bo Wha; Liu, Chunli

    2015-01-01

    We report the preparation of (111) preferentially oriented CoFe2O4 thin films on Pt(111)/TiO2/SiO2/Si substrates using a spin-coating process. The post-annealing conditions and film thickness were varied for cobalt ferrite (CFO) thin films, and Pt/CFO/Pt structures were prepared to investigate the resistance switching behaviors. Our results showed that resistance switching without a forming process is preferred to obtain less fluctuation in the set voltage, which can be regulated directly from the preparation conditions of the CFO thin films. Therefore, instead of thicker film, CFO thin films deposited by two times spin-coating with a thickness about 100 nm gave stable resistance switching with the most stable set voltage. Since the forming process and the large variation in set voltage have been considered as serious obstacles for the practical application of resistance switching for non-volatile memory devices, our results could provide meaningful insights in improving the performance of ferrite material-based resistance switching memory devices.

  3. Electrical Conductance Tuning and Bistable Switching in Poly(N-vinylcarbazole)-Carbon Nanotube Composite Films.

    PubMed

    Liu, Gang; Ling, Qi-Dan; Teo, Eric Yeow Hwee; Zhu, Chun-Xiang; Chan, D Siu-Hung; Neoh, Koon-Gee; Kang, En-Tang

    2009-07-28

    By varying the carbon nanotube (CNT) content in poly(N-vinylcarbazole) (PVK) composite thin films, the electrical conductance behavior of an indium-tin oxide/PVK-CNT/aluminum (ITO/PVK-CNT/Al) sandwich structure can be tuned in a controlled manner. Distinctly different electrical conductance behaviors, such as (i) insulator behavior, (ii) bistable electrical conductance switching effects (write-once read-many-times (WORM) memory effect and rewritable memory effect), and (iii) conductor behavior, are discernible from the current density-voltage characteristics of the composite films. The turn-on voltage of the two bistable conductance switching devices decreases and the ON/OFF state current ratio of the WORM device increases with the increase in CNT content of the composite film. Both the WORM and rewritable devices are stable under a constant voltage stress or a continuous pulse voltage stress, with an ON/OFF state current ratio in excess of 10(3). The conductance switching effects of the composite films have been attributed to electron trapping in the CNTs of the electron-donating/hole-transporting PVK matrix.

  4. Resistive switching characteristics of solution-processed Al-Zn-Sn-O films annealed by microwave irradiation

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Wan; Baek, Il-Jin; Cho, Won-Ju

    2018-02-01

    In this study, we employed microwave irradiation (MWI) at low temperature in the fabrication of solution-processed AlZnSnO (AZTO) resistive random access memory (ReRAM) devices with a structure of Ti/AZTO/Pt and compared the memory characteristics with the conventional thermal annealing (CTA) process. Typical bipolar resistance switching (BRS) behavior was observed in AZTO ReRAM devices treated with as-deposited (as-dep), CTA and MWI. In the low resistance state, the Ohmic conduction mechanism describes the dominant conduction of these devices. On the other hand, the trap-controlled space charge limited conduction (SCLC) mechanism predominates in the high resistance state. The AZTO ReRAM devices processed with MWI showed larger memory windows, uniform distribution of resistance state and operating voltage, stable DC durability (>103 cycles) and stable retention characteristics (>104 s). In addition, the AZTO ReRAM devices treated with MWI exhibited multistage storage characteristics by modulating the amplitude of the reset bias, and eight distinct resistance levels were obtained with stable retention capability.

  5. Rapid thermal responsive conductive hybrid cryogels with shape memory properties, photothermal properties and pressure dependent conductivity.

    PubMed

    Deng, Zexing; Guo, Yi; Ma, Peter X; Guo, Baolin

    2018-09-15

    Stimuli responsive cryogels with multi-functionality have potential application for electrical devices, actuators, sensors and biomedical devices. However, conventional thermal sensitive poly(N-isopropylacrylamide) cryogels show slow temperature response speed and lack of multi-functionality, which greatly limit their practical application. Herein we present conductive fast (2 min for both deswelling and reswelling behavior) thermally responsive poly(N-isopropylacrylamide) cryogels with rapid shape memory properties (3 s for shape recovery), near-infrared (NIR) light sensitivity and pressure dependent conductivity, and further demonstrated their applications as temperature sensitive on-off switch, NIR light sensitive on-off switch, water triggered shape memory on-off switch and pressure dependent device. These cryogels were first prepared in dimethyl sulfoxide below its melting temperature in ice bath and subsequently put into aniline or pyrrole solution to in situ deposition of conducting polyaniline or polypyrrole nanoparticles. The continuous macroporous sponge-like structure provides cryogels with rapid responsivity both in deswelling, reswelling kinetics and good elasticity. After incorporating electrically conductive polyaniline or polypyrrole nanoaggregates, the hybrid cryogels exhibit desirable conductivity, photothermal property, pressure dependent conductivity and good cytocompatibility. These multifunctional hybrid cryogels make them great potential as stimuli responsive electrical device, tissue engineering scaffolds, drug delivery vehicle and electronic skin. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Resistive Switching Memory Phenomena in PEDOT PSS: Coexistence of Switchable Diode Effect and Write Once Read Many Memory

    PubMed Central

    Nguyen, Viet Cuong; Lee, Pooi See

    2016-01-01

    We study resistive switching memory phenomena in conducting polymer PEDOT PSS. In the same film, there are two types of memory behavior coexisting; namely, the switchable diode effect and write once read many memory. This is the first report on switchable diode phenomenon based on conducting organic materials. The effect was explained as charge trapping of PEDOT PSS film and movement of proton. The same PEDOT PSS device also exhibits write once read many memory (WORM) phenomenon which arises due to redox reaction that reduces PEDOT PSS and renders it non-conducting. The revelation of these two types of memory phenomena in PEDOT PSS highlights the remarkable versatility of this conducting conjugated polymer. PMID:26806868

  7. Selection by current compliance of negative and positive bipolar resistive switching behaviour in ZrO2-x /ZrO2 bilayer memory

    NASA Astrophysics Data System (ADS)

    Huang, Ruomeng; Yan, Xingzhao; Morgan, Katrina A.; Charlton, Martin D. B.; (Kees de Groot, C. H.

    2017-05-01

    We report here a ZrO2-x /ZrO2-based bilayer resistive switching memory with unique properties that enables the selection of the switching mode by applying different electroforming current compliances. Two opposite polarity modes, positive bipolar and negative bipolar, correspond to the switching in the ZrO2 and ZrO2-x layer, respectively. The ZrO2 layer is proved to be responsible for the negative bipolar mode which is also observed in a ZrO2 single layer device. The oxygen deficient ZrO2-x layer plays the dominant role in the positive bipolar mode, which is exclusive to the bilayer memory. A systematic investigation of the ZrO2-x composition in the bilayer memory suggests that ZrO1.8 layer demonstrates optimum switching performance with low switching voltage, narrow switching voltage distribution and good cycling endurance. An excess of oxygen vacancies, beyond this composition, leads to a deterioration of switching properties. The formation and dissolution of the oxygen vacancy filament model has been proposed to explain both polarity switching behaviours and the improved properties in the bilayer positive bipolar mode are attributed to the confined oxygen vacancy filament size within the ZrO2-x layer.

  8. Engineering the switching dynamics of TiOx-based RRAM with Al doping

    NASA Astrophysics Data System (ADS)

    Trapatseli, Maria; Khiat, Ali; Cortese, Simone; Serb, Alexantrou; Carta, Daniela; Prodromakis, Themistoklis

    2016-07-01

    Titanium oxide (TiOx) has attracted a lot of attention as an active material for resistive random access memory (RRAM), due to its versatility and variety of possible crystal phases. Although existing RRAM materials have demonstrated impressive characteristics, like ultra-fast switching and high cycling endurance, this technology still encounters challenges like low yields, large variability of switching characteristics, and ultimately device failure. Electroforming has been often considered responsible for introducing irreversible damage to devices, with high switching voltages contributing to device degradation. In this paper, we have employed Al doping for tuning the resistive switching characteristics of titanium oxide RRAM. The resistive switching threshold voltages of undoped and Al-doped TiOx thin films were first assessed by conductive atomic force microscopy. The thin films were then transferred in RRAM devices and tested with voltage pulse sweeping, demonstrating that the Al-doped devices could on average form at lower potentials compared to the undoped ones and could support both analog and binary switching at potentials as low as 0.9 V. This work demonstrates a potential pathway for implementing low-power RRAM systems.

  9. Highly flexible and electroforming free resistive switching behavior of tungsten disulfide flakes fabricated through advanced printing technology

    NASA Astrophysics Data System (ADS)

    Muqeet Rehman, Muhammad; Uddin Siddiqui, Ghayas; Doh, Yang Hoi; Choi, Kyung Hyun

    2017-09-01

    Tungsten disulfide (WS2) is a transition metal dichalcogenide that differs from other 2D materials such as graphene owing to its distinctive semiconducting nature and tunable band gap. In this study, we have reported the structural, electrical, physical, and mechanical properties of exfoliated WS2 flakes and used them as the functional layer of a rewritable bipolar memory device. We demonstrate this concept by sandwiching few-layered WS2 flakes between two silver (Ag) electrodes on a flexible and transparent PET substrate. The entire device fabrication was carried out through all-printing technology such as reverse offset printing for patterning bottom electrodes, electrohydrodynamic (EHD) atomization for depositing functional thin film and EHD patterning for depositing the top electrode respectively. The memory device was further encapsulated with an atomically thin layer of aluminum oxide (Al2O3), deposited through a spatial atmospheric atomic layer deposition system to protect it against a humid environment. Remarkable resistive switching results were obtained, such as nonvolatile bipolar behavior, a high switching ratio (∼103), a long retention time (∼105 s), high endurance (1500 voltage sweeps), a low operating voltage (∼2 V), low current compliance (50 μA), mechanical robustness (1500 cycles) and unique repeatability at ambient conditions. Ag/WS2/Ag-based memory devices offer a new possibility for integration in flexible electronic devices.

  10. Exponential increase in the on-off ratio of conductance in organic memory devices by controlling the surface morphology of the devices

    NASA Astrophysics Data System (ADS)

    Vyas, Giriraj; Dagar, Parveen; Sahu, Satyajit

    2018-05-01

    We have shown an exponential increase in the ratio of conductance in the on and off states of switching devices by controlling the surface morphology of the thin films for the device by depositing at different rotational speeds. The pinholes which are preferred topography on the surface at higher rotational speed give rise to higher on-off ratio of current from the devices fabricated at the speed. The lower rotational speed contributes to higher thickness of the film and hence no switching. For thicker films, the domain is formed due to phase segregation between the two components in the film, which also indicates that the film is far from thermal equilibrium. At higher speed, there is very little scope of segregation when the film is drying up. Hence, there are only few pinholes on the surface of the film which are shallow. So, the filamentary mechanism of switching in memory devices can be firmly established by varying the speed of thin film deposition which leads to phase segregation of the materials. Thus, the formation of filament can be regulated by controlling the thickness and the surface morphology.

  11. Observation of conducting filament growth in nanoscale resistive memories

    NASA Astrophysics Data System (ADS)

    Yang, Yuchao; Gao, Peng; Gaba, Siddharth; Chang, Ting; Pan, Xiaoqing; Lu, Wei

    2012-03-01

    Nanoscale resistive switching devices, sometimes termed memristors, have recently generated significant interest for memory, logic and neuromorphic applications. Resistive switching effects in dielectric-based devices are normally assumed to be caused by conducting filament formation across the electrodes, but the nature of the filaments and their growth dynamics remain controversial. Here we report direct transmission electron microscopy imaging, and structural and compositional analysis of the nanoscale conducting filaments. Through systematic ex-situ and in-situ transmission electron microscopy studies on devices under different programming conditions, we found that the filament growth can be dominated by cation transport in the dielectric film. Unexpectedly, two different growth modes were observed for the first time in materials with different microstructures. Regardless of the growth direction, the narrowest region of the filament was found to be near the dielectric/inert-electrode interface in these devices, suggesting that this region deserves particular attention for continued device optimization.

  12. Non-volatile resistive switching in the Mott insulator (V1-xCrx)2O3

    NASA Astrophysics Data System (ADS)

    Querré, M.; Tranchant, J.; Corraze, B.; Cordier, S.; Bouquet, V.; Députier, S.; Guilloux-Viry, M.; Besland, M.-P.; Janod, E.; Cario, L.

    2018-05-01

    The discovery of non-volatile resistive switching in Mott insulators related to an electric-field-induced insulator to metal transition (IMT) has paved the way for their use in a new type of non-volatile memories, the Mott memories. While most of the previous studies were dedicated to uncover the resistive switching mechanism and explore the memory potential of chalcogenide Mott insulators, we present here a comprehensive study of resistive switching in the canonical oxide Mott insulator (V1-xCrx)2O3. Our work demonstrates that this compound undergoes a non-volatile resistive switching under electric field. This resistive switching is induced by a Mott transition at the local scale which creates metallic domains closely related to existing phases of the temperature-pressure phase diagram of (V1-xCrx)2O3. Our work demonstrates also reversible resistive switching in (V1-xCrx)2O3 crystals and thin film devices. Preliminary performances obtained on 880 nm thick layers with 500 nm electrodes show the strong potential of Mott memories based on the Mott insulator (V1-xCrx)2O3.

  13. Terahertz electrical writing speed in an antiferromagnetic memory

    PubMed Central

    Kašpar, Zdeněk; Campion, Richard P.; Baumgartner, Manuel; Sinova, Jairo; Kužel, Petr; Müller, Melanie; Kampfrath, Tobias

    2018-01-01

    The speed of writing of state-of-the-art ferromagnetic memories is physically limited by an intrinsic gigahertz threshold. Recently, realization of memory devices based on antiferromagnets, in which spin directions periodically alternate from one atomic lattice site to the next has moved research in an alternative direction. We experimentally demonstrate at room temperature that the speed of reversible electrical writing in a memory device can be scaled up to terahertz using an antiferromagnet. A current-induced spin-torque mechanism is responsible for the switching in our memory devices throughout the 12-order-of-magnitude range of writing speeds from hertz to terahertz. Our work opens the path toward the development of memory-logic technology reaching the elusive terahertz band. PMID:29740601

  14. CMOS imager for pointing and tracking applications

    NASA Technical Reports Server (NTRS)

    Sun, Chao (Inventor); Pain, Bedabrata (Inventor); Yang, Guang (Inventor); Heynssens, Julie B. (Inventor)

    2006-01-01

    Systems and techniques to realize pointing and tracking applications with CMOS imaging devices. In general, in one implementation, the technique includes: sampling multiple rows and multiple columns of an active pixel sensor array into a memory array (e.g., an on-chip memory array), and reading out the multiple rows and multiple columns sampled in the memory array to provide image data with reduced motion artifact. Various operation modes may be provided, including TDS, CDS, CQS, a tracking mode to read out multiple windows, and/or a mode employing a sample-first-read-later readout scheme. The tracking mode can take advantage of a diagonal switch array. The diagonal switch array, the active pixel sensor array and the memory array can be integrated onto a single imager chip with a controller. This imager device can be part of a larger imaging system for both space-based applications and terrestrial applications.

  15. Switching dynamics of TaOx-based threshold switching devices

    NASA Astrophysics Data System (ADS)

    Goodwill, Jonathan M.; Gala, Darshil K.; Bain, James A.; Skowronski, Marek

    2018-03-01

    Bi-stable volatile switching devices are being used as access devices in solid-state memory arrays and as the active part of compact oscillators. Such structures exhibit two stable states of resistance and switch between them at a critical value of voltage or current. A typical resistance transient under a constant amplitude voltage pulse starts with a slow decrease followed by a rapid drop and leveling off at a low steady state value. This behavior prompted the interpretation of initial delay and fast transition as due to two different processes. Here, we show that the entire transient including incubation time, transition time, and the final resistance values in TaOx-based switching can be explained by one process, namely, Joule heating with the rapid transition due to the thermal runaway. The time, which is required for the device in the conducting state to relax back to the stable high resistance one, is also consistent with the proposed mechanism.

  16. Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide

    NASA Astrophysics Data System (ADS)

    Lee, Taek Joon; Chang, Cha-Wen; Hahm, Suk Gyu; Kim, Kyungtae; Park, Samdae; Kim, Dong Min; Kim, Jinchul; Kwon, Won-Sang; Liou, Guey-Sheng; Ree, Moonhor

    2009-04-01

    We have fabricated electrically programmable memory devices with thermally and dimensionally stable poly(N-(N',N'-diphenyl-N'-1,4-phenyl)-N,N-4,4'-diphenylene hexafluoroisopropylidene-diphthalimide) (6F-2TPA PI) films and investigated their switching characteristics and reliability. 6F-2TPA PI films were found to reveal a conductivity of 1.0 × 10-13-1.0 × 10-14 S cm-1. The 6F-2TPA PI films exhibit versatile memory characteristics that depend on the film thickness. All the PI films are initially present in the OFF state. The PI films with a thickness of >15 to <100 nm exhibit excellent write-once-read-many-times (WORM) (i.e. fuse-type) memory characteristics with and without polarity depending on the thickness. The WORM memory devices are electrically stable, even in air ambient, for a very long time. The devices' ON/OFF current ratio is high, up to 1010. Therefore, these WORM memory devices can provide an efficient, low-cost means of permanent data storage. On the other hand, the 100 nm thick PI films exhibit excellent dynamic random access memory (DRAM) characteristics with polarity. The ON/OFF current ratio of the DRAM devices is as high as 1011. The observed electrical switching behaviors were found to be governed by trap-limited space-charge-limited conduction and local filament formation and further dependent on the differences between the highest occupied molecular orbital and the lowest unoccupied molecular orbital energy levels of the PI film and the work functions of the top and bottom electrodes as well as the PI film thickness. In summary, the excellent memory properties of 6F-2TPA PI make it a promising candidate material for the low-cost mass production of high density and very stable digital nonvolatile WORM and volatile DRAM memory devices.

  17. Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide.

    PubMed

    Lee, Taek Joon; Chang, Cha-Wen; Hahm, Suk Gyu; Kim, Kyungtae; Park, Samdae; Kim, Dong Min; Kim, Jinchul; Kwon, Won-Sang; Liou, Guey-Sheng; Ree, Moonhor

    2009-04-01

    We have fabricated electrically programmable memory devices with thermally and dimensionally stable poly(N-(N',N'-diphenyl-N'-1,4-phenyl)-N,N-4,4'-diphenylene hexafluoroisopropylidene-diphthalimide) (6F-2TPA PI) films and investigated their switching characteristics and reliability. 6F-2TPA PI films were found to reveal a conductivity of 1.0 x 10(-13)-1.0 x 10(-14) S cm(-1). The 6F-2TPA PI films exhibit versatile memory characteristics that depend on the film thickness. All the PI films are initially present in the OFF state. The PI films with a thickness of >15 to <100 nm exhibit excellent write-once-read-many-times (WORM) (i.e. fuse-type) memory characteristics with and without polarity depending on the thickness. The WORM memory devices are electrically stable, even in air ambient, for a very long time. The devices' ON/OFF current ratio is high, up to 10(10). Therefore, these WORM memory devices can provide an efficient, low-cost means of permanent data storage. On the other hand, the 100 nm thick PI films exhibit excellent dynamic random access memory (DRAM) characteristics with polarity. The ON/OFF current ratio of the DRAM devices is as high as 10(11). The observed electrical switching behaviors were found to be governed by trap-limited space-charge-limited conduction and local filament formation and further dependent on the differences between the highest occupied molecular orbital and the lowest unoccupied molecular orbital energy levels of the PI film and the work functions of the top and bottom electrodes as well as the PI film thickness. In summary, the excellent memory properties of 6F-2TPA PI make it a promising candidate material for the low-cost mass production of high density and very stable digital nonvolatile WORM and volatile DRAM memory devices.

  18. Elucidation and Optimization of Resistive Random Access Memory Switching Behavior for Advanced Computing Applications

    NASA Astrophysics Data System (ADS)

    Alamgir, Zahiruddin

    RRAM has recently emerged as a strong candidate for non-volatile memory (NVM). Beyond memory applications, RRAM holds promise for use in performing logic functions, mimicking neuromorphic activities, enabling multi-level switching, and as one of the key elements of hardware based encryption or signal processing systems. It has been shown previously that RRAM resistance levels can be changed by adjusting compliance current or voltage level. This characteristic makes RRAM suitable for use in setting the synaptic weight in neuromorphic computing circuits. RRAM is also considered as a key element in hardware encryption systems, to produce unique and reproducible signals. However, a key challenge to implement RRAM in these applications is significant cycle to cycle performance variability. We sought to develop RRAM that can be tuned to different resistance levels gradually, with high reliability, and low variability. To achieve this goal, we focused on elucidating the conduction mechanisms underlying the resistive switching behavior for these devices. Electrical conduction mechanisms were determined by curve fitting I-V data using different current conduction equations. Temperature studies were also performed to corroborate these data. It was found that Schottky barrier height and width modulation was one of the key parameters that could be tuned to achieve different resistance levels, and for switching resistance states, primarily via oxygen vacancy movement. Oxygen exchange layers with different electronegativity were placed between top electrode and the oxide layer of TaOx devices to determine the effect of oxygen vacancy concentrations and gradients in these devices. It was found that devices with OELs with lower electronegativity tend to yield greater separation in the OFF vs. ON state resistance levels. As an extension of this work, TaOx based RRAM with Hf as the OEL was fabricated and could be tuned to different resistance level using pulse width and height modulation, yielding excellent uniformity and reliability. These findings improve our understanding of conduction within TaO x-based RRAM devices, providing a physical basis for switching in these devices. The value of this work lies in the demonstration of devices with excellent performance and demonstrated devices constitute a significant step toward real-world applications.

  19. White-light-controlled resistive switching in ZnO/BaTiO3/C multilayer layer at room temperature

    NASA Astrophysics Data System (ADS)

    Wang, Junshuai; Liang, Dandan; Wu, Liangchen; Li, Xiaoping; Chen, Peng

    2018-07-01

    The bipolar resistance switching effect is observed in ZnO/BaTiO3/C structure. The resistance switching behavior can be modulated by white light. The resistance switch states and threshold voltage can be changed when subjected to white light. This research can help explore multi-functional materials and applications in nonvolatile memory device.

  20. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes

    PubMed Central

    Baeumer, Christoph; Schmitz, Christoph; Marchewka, Astrid; Mueller, David N.; Valenta, Richard; Hackl, Johanna; Raab, Nicolas; Rogers, Steven P.; Khan, M. Imtiaz; Nemsak, Slavomir; Shim, Moonsub; Menzel, Stephan; Schneider, Claus Michael; Waser, Rainer; Dittmann, Regina

    2016-01-01

    The continuing revolutionary success of mobile computing and smart devices calls for the development of novel, cost- and energy-efficient memories. Resistive switching is attractive because of, inter alia, increased switching speed and device density. On electrical stimulus, complex nanoscale redox processes are suspected to induce a resistance change in memristive devices. Quantitative information about these processes, which has been experimentally inaccessible so far, is essential for further advances. Here we use in operando spectromicroscopy to verify that redox reactions drive the resistance change. A remarkable agreement between experimental quantification of the redox state and device simulation reveals that changes in donor concentration by a factor of 2–3 at electrode-oxide interfaces cause a modulation of the effective Schottky barrier and lead to >2 orders of magnitude change in device resistance. These findings allow realistic device simulations, opening a route to less empirical and more predictive design of future memory cells. PMID:27539213

  1. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes.

    PubMed

    Baeumer, Christoph; Schmitz, Christoph; Marchewka, Astrid; Mueller, David N; Valenta, Richard; Hackl, Johanna; Raab, Nicolas; Rogers, Steven P; Khan, M Imtiaz; Nemsak, Slavomir; Shim, Moonsub; Menzel, Stephan; Schneider, Claus Michael; Waser, Rainer; Dittmann, Regina

    2016-08-19

    The continuing revolutionary success of mobile computing and smart devices calls for the development of novel, cost- and energy-efficient memories. Resistive switching is attractive because of, inter alia, increased switching speed and device density. On electrical stimulus, complex nanoscale redox processes are suspected to induce a resistance change in memristive devices. Quantitative information about these processes, which has been experimentally inaccessible so far, is essential for further advances. Here we use in operando spectromicroscopy to verify that redox reactions drive the resistance change. A remarkable agreement between experimental quantification of the redox state and device simulation reveals that changes in donor concentration by a factor of 2-3 at electrode-oxide interfaces cause a modulation of the effective Schottky barrier and lead to >2 orders of magnitude change in device resistance. These findings allow realistic device simulations, opening a route to less empirical and more predictive design of future memory cells.

  2. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes

    NASA Astrophysics Data System (ADS)

    Baeumer, Christoph; Schmitz, Christoph; Marchewka, Astrid; Mueller, David N.; Valenta, Richard; Hackl, Johanna; Raab, Nicolas; Rogers, Steven P.; Khan, M. Imtiaz; Nemsak, Slavomir; Shim, Moonsub; Menzel, Stephan; Schneider, Claus Michael; Waser, Rainer; Dittmann, Regina

    2016-08-01

    The continuing revolutionary success of mobile computing and smart devices calls for the development of novel, cost- and energy-efficient memories. Resistive switching is attractive because of, inter alia, increased switching speed and device density. On electrical stimulus, complex nanoscale redox processes are suspected to induce a resistance change in memristive devices. Quantitative information about these processes, which has been experimentally inaccessible so far, is essential for further advances. Here we use in operando spectromicroscopy to verify that redox reactions drive the resistance change. A remarkable agreement between experimental quantification of the redox state and device simulation reveals that changes in donor concentration by a factor of 2-3 at electrode-oxide interfaces cause a modulation of the effective Schottky barrier and lead to >2 orders of magnitude change in device resistance. These findings allow realistic device simulations, opening a route to less empirical and more predictive design of future memory cells.

  3. Molecular Rotors as Switches

    PubMed Central

    Xue, Mei; Wang, Kang L.

    2012-01-01

    The use of a functional molecular unit acting as a state variable provides an attractive alternative for the next generations of nanoscale electronics. It may help overcome the limits of conventional MOSFETd due to their potential scalability, low-cost, low variability, and highly integratable characteristics as well as the capability to exploit bottom-up self-assembly processes. This bottom-up construction and the operation of nanoscale machines/devices, in which the molecular motion can be controlled to perform functions, have been studied for their functionalities. Being triggered by external stimuli such as light, electricity or chemical reagents, these devices have shown various functions including those of diodes, rectifiers, memories, resonant tunnel junctions and single settable molecular switches that can be electronically configured for logic gates. Molecule-specific electronic switching has also been reported for several of these device structures, including nanopores containing oligo(phenylene ethynylene) monolayers, and planar junctions incorporating rotaxane and catenane monolayers for the construction and operation of complex molecular machines. A specific electrically driven surface mounted molecular rotor is described in detail in this review. The rotor is comprised of a monolayer of redox-active ligated copper compounds sandwiched between a gold electrode and a highly-doped P+ Si. This electrically driven sandwich-type monolayer molecular rotor device showed an on/off ratio of approximately 104, a read window of about 2.5 V, and a retention time of greater than 104 s. The rotation speed of this type of molecular rotor has been reported to be in the picosecond timescale, which provides a potential of high switching speed applications. Current-voltage spectroscopy (I-V) revealed a temperature-dependent negative differential resistance (NDR) associated with the device. The analysis of the device I–V characteristics suggests the source of the observed switching effects to be the result of the redox-induced ligand rotation around the copper metal center and this attribution of switching is consistent with the observed temperature dependence of the switching behavior as well as the proposed energy diagram of the device. The observed resistance switching shows the potential for future non-volatile memories and logic devices applications. This review will discuss the progress and provide a perspective of molecular motion for nanoelectronics and other applications.

  4. Study of harsh environment operation of flexible ferroelectric memory integrated with PZT and silicon fabric

    NASA Astrophysics Data System (ADS)

    Ghoneim, M. T.; Hussain, M. M.

    2015-08-01

    Flexible memory can enable industrial, automobile, space, and smart grid centered harsh/extreme environment focused electronics application(s) for enhanced operation, safety, and monitoring where bent or complex shaped infrastructures are common and state-of-the-art rigid electronics cannot be deployed. Therefore, we report on the physical-mechanical-electrical characteristics of a flexible ferroelectric memory based on lead zirconium titanate as a key memory material and flexible version of bulk mono-crystalline silicon (100). The experimented devices show a bending radius down to 1.25 cm corresponding to 0.16% nominal strain (high pressure of ˜260 MPa), and full functionality up to 225 °C high temperature in ambient gas composition (21% oxygen and 55% relative humidity). The devices showed unaltered data retention and fatigue properties under harsh conditions, still the reduced memory window (20% difference between switching and non-switching currents at 225 °C) requires sensitive sense circuitry for proper functionality and is the limiting factor preventing operation at higher temperatures.

  5. Nanoscale content-addressable memory

    NASA Technical Reports Server (NTRS)

    Davis, Bryan (Inventor); Principe, Jose C. (Inventor); Fortes, Jose (Inventor)

    2009-01-01

    A combined content addressable memory device and memory interface is provided. The combined device and interface includes one or more one molecular wire crossbar memories having spaced-apart key nanowires, spaced-apart value nanowires adjacent to the key nanowires, and configurable switches between the key nanowires and the value nanowires. The combination further includes a key microwire-nanowire grid (key MNG) electrically connected to the spaced-apart key nanowires, and a value microwire-nanowire grid (value MNG) electrically connected to the spaced-apart value nanowires. A key or value MNGs selects multiple nanowires for a given key or value.

  6. Analogue spin-orbit torque device for artificial-neural-network-based associative memory operation

    NASA Astrophysics Data System (ADS)

    Borders, William A.; Akima, Hisanao; Fukami, Shunsuke; Moriya, Satoshi; Kurihara, Shouta; Horio, Yoshihiko; Sato, Shigeo; Ohno, Hideo

    2017-01-01

    We demonstrate associative memory operations reminiscent of the brain using nonvolatile spintronics devices. Antiferromagnet-ferromagnet bilayer-based Hall devices, which show analogue-like spin-orbit torque switching under zero magnetic fields and behave as artificial synapses, are used. An artificial neural network is used to associate memorized patterns from their noisy versions. We develop a network consisting of a field-programmable gate array and 36 spin-orbit torque devices. An effect of learning on associative memory operations is successfully confirmed for several 3 × 3-block patterns. A discussion on the present approach for realizing spintronics-based artificial intelligence is given.

  7. Effect of a PEDOT:PSS modified layer on the electrical characteristics of flexible memristive devices based on graphene oxide:polyvinylpyrrolidone nanocomposites

    NASA Astrophysics Data System (ADS)

    Kim, Woo Kyum; Wu, Chaoxing; Kim, Tae Whan

    2018-06-01

    The electrical characteristics of flexible memristive devices utilizing a graphene oxide (GO):polyvinylpyrrolidone (PVP) nanocomposite charge-trapping layer with a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)-modified layer fabricated on an indium-tin-oxide (ITO)-coated polyethylene glycol naphthalate (PEN) substrate were investigated. Current-voltage (I-V) curves for the Al/GO:PVP/PEDOT:PSS/ITO/PEN devices showed remarkable hysteresis behaviors before and after bending. The maximum memory margins of the devices before and after 100 bending cycles were approximately 7.69 × 103 and 5.16 × 102, respectively. The devices showed nonvolatile memory effect with a retention time of more than 1 × 104 s. The "Reset" voltages were distributed between 2.3 and 3.5 V, and the "Set" voltages were dispersed between -0.7 and -0.2 V, indicative of excellent, uniform electrical performance. The endurance number of ON/OFF-switching and bending cycles for the devices was 1 × 102, respectively. The bipolar resistive switching behavior was explained on the basis of I-V results. In particular, the bipolar resistive switching behaviors of the LRS and the HRS for the devices are dominated by the Ohmic and space charge current mechanisms, respectively.

  8. Magnetization switching schemes for nanoscale three-terminal spintronics devices

    NASA Astrophysics Data System (ADS)

    Fukami, Shunsuke; Ohno, Hideo

    2017-08-01

    Utilizing spintronics-based nonvolatile memories in integrated circuits offers a promising approach to realize ultralow-power and high-performance electronics. While two-terminal devices with spin-transfer torque switching have been extensively developed nowadays, there has been a growing interest in devices with a three-terminal structure. Of primary importance for applications is the efficient manipulation of magnetization, corresponding to information writing, in nanoscale devices. Here we review the studies of current-induced domain wall motion and spin-orbit torque-induced switching, which can be applied to the write operation of nanoscale three-terminal spintronics devices. For domain wall motion, the size dependence of device properties down to less than 20 nm will be shown and the underlying mechanism behind the results will be discussed. For spin-orbit torque-induced switching, factors governing the threshold current density and strategies to reduce it will be discussed. A proof-of-concept demonstration of artificial intelligence using an analog spin-orbit torque device will also be reviewed.

  9. Vortex-Core Reversal Dynamics: Towards Vortex Random Access Memory

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Koog

    2011-03-01

    An energy-efficient, ultrahigh-density, ultrafast, and nonvolatile solid-state universal memory is a long-held dream in the field of information-storage technology. The magnetic random access memory (MRAM) along with a spin-transfer-torque switching mechanism is a strong candidate-means of realizing that dream, given its nonvolatility, infinite endurance, and fast random access. Magnetic vortices in patterned soft magnetic dots promise ground-breaking applications in information-storage devices, owing to the very stable twofold ground states of either their upward or downward core magnetization orientation and plausible core switching by in-plane alternating magnetic fields or spin-polarized currents. However, two technologically most important but very challenging issues --- low-power recording and reliable selection of each memory cell with already existing cross-point architectures --- have not yet been resolved for the basic operations in information storage, that is, writing (recording) and readout. Here, we experimentally demonstrate a magnetic vortex random access memory (VRAM) in the basic cross-point architecture. This unique VRAM offers reliable cell selection and low-power-consumption control of switching of out-of-plane core magnetizations using specially designed rotating magnetic fields generated by two orthogonal and unipolar Gaussian-pulse currents along with optimized pulse width and time delay. Our achievement of a new device based on a new material, that is, a medium composed of patterned vortex-state disks, together with the new physics on ultrafast vortex-core switching dynamics, can stimulate further fruitful research on MRAMs that are based on vortex-state dot arrays.

  10. Transient dynamics of NbOx threshold switches explained by Poole-Frenkel based thermal feedback mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Ziwen; Kumar, Suhas; Nishi, Yoshio; Wong, H.-S. Philip

    2018-05-01

    Niobium oxide (NbOx) two-terminal threshold switches are potential candidates as selector devices in crossbar memory arrays and as building blocks for neuromorphic systems. However, the physical mechanism of NbOx threshold switches is still under debate. In this paper, we show that a thermal feedback mechanism based on Poole-Frenkel conduction can explain both the quasi-static and the transient electrical characteristics that are experimentally observed for NbOx threshold switches, providing strong support for the validity of this mechanism. Furthermore, a clear picture of the transient dynamics during the thermal-feedback-induced threshold switching is presented, providing useful insights required to model nonlinear devices where thermal feedback is important.

  11. Conductance switching in Ag(2)S devices fabricated by in situ sulfurization.

    PubMed

    Morales-Masis, M; van der Molen, S J; Fu, W T; Hesselberth, M B; van Ruitenbeek, J M

    2009-03-04

    We report a simple and reproducible method to fabricate switchable Ag(2)S devices. The alpha-Ag(2)S thin films are produced by a sulfurization process after silver deposition on an Si substrate. Structure and composition of the Ag(2)S are characterized using XRD and RBS. Our samples show semiconductor behaviour at low bias voltages, whereas they exhibit reproducible bipolar resistance switching at higher bias voltages. The transition between both types of behaviour is observed by hysteresis in the I-V curves, indicating decomposition of the Ag(2)S, increasing the Ag(+) ion mobility. The as-fabricated Ag(2)S samples are a good candidate for future solid state memory devices, as they show reproducible memory resistive properties and they are fabricated by an accessible and reliable method.

  12. Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel

    2016-01-14

    In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current inmore » doped Ge{sub 2}Sb{sub 2}Te{sub 5} nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters.« less

  13. Spatial nonuniformity in resistive-switching memory effects of NiO.

    PubMed

    Oka, Keisuke; Yanagida, Takeshi; Nagashima, Kazuki; Kanai, Masaki; Kawai, Tomoji; Kim, Jin-Soo; Park, Bae Ho

    2011-08-17

    Electrically driven resistance change phenomenon in metal/NiO/metal junctions, so-called resistive switching (RS), is a candidate for next-generation universal nonvolatile memories. However, the knowledge as to RS mechanisms is unfortunately far from comprehensive, especially the spatial switching location, which is crucial information to design reliable devices. In this communication, we demonstrate the identification of the spatial switching location of bipolar RS by introducing asymmetrically passivated planar NiO nanowire junctions. We have successfully identified that the bipolar RS in NiO occurs near the cathode rather than the anode. This trend can be interpreted in terms of an electrochemical redox model based on ion migration and p-type conduction.

  14. Non-exponential resistive switching in Ag2S memristors: a key to nanometer-scale non-volatile memory devices.

    PubMed

    Gubicza, Agnes; Csontos, Miklós; Halbritter, András; Mihály, György

    2015-03-14

    The dynamics of resistive switchings in nanometer-scale metallic junctions formed between an inert metallic tip and an Ag film covered by a thin Ag2S layer are investigated. Our thorough experimental analysis and numerical simulations revealed that the resistance change upon a switching bias voltage pulse exhibits a strongly non-exponential behaviour yielding markedly different response times at different bias levels. Our results demonstrate the merits of Ag2S nanojunctions as nanometer-scale non-volatile memory cells with stable switching ratios, high endurance as well as fast response to write/erase, and an outstanding stability against read operations at technologically optimal bias and current levels.

  15. Electrically and Optically Readable Light Emitting Memories

    PubMed Central

    Chang, Che-Wei; Tan, Wei-Chun; Lu, Meng-Lin; Pan, Tai-Chun; Yang, Ying-Jay; Chen, Yang-Fang

    2014-01-01

    Electrochemical metallization memories based on redox-induced resistance switching have been considered as the next-generation electronic storage devices. However, the electronic signals suffer from the interconnect delay and the limited reading speed, which are the major obstacles for memory performance. To solve this problem, here we demonstrate the first attempt of light-emitting memory (LEM) that uses SiO2 as the resistive switching material in tandem with graphene-insulator-semiconductor (GIS) light-emitting diode (LED). By utilizing the excellent properties of graphene, such as high conductivity, high robustness and high transparency, our proposed LEM enables data communication via electronic and optical signals simultaneously. Both the bistable light-emission state and the resistance switching properties can be attributed to the conducting filament mechanism. Moreover, on the analysis of current-voltage characteristics, we further confirm that the electroluminescence signal originates from the carrier tunneling, which is quite different from the standard p-n junction model. We stress here that the newly developed LEM device possesses a simple structure with mature fabrication processes, which integrates advantages of all composed materials and can be extended to many other material systems. It should be able to attract academic interest as well as stimulate industrial application. PMID:24894723

  16. A synaptic device built in one diode-one resistor (1D-1R) architecture with intrinsic SiOx-based resistive switching memory

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Kuan-Chang; Tsai, Tsung-Ming; Chang, Ting-Chang; Sze, Simon M.; Lee, Jack C.

    2016-04-01

    We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes to further minimize total synaptic power consumption due to sneak-path currents and demonstrate the capability for spike-induced synaptic behaviors, representing critical milestones for the use of SiO2-based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation, long-term depression, and spike-timing dependent plasticity are demonstrated systemically with comprehensive investigation of spike waveform analyses and represent a potential application for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from the (SiH)2 defect to generate the hydrogenbridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with largescale complementary metal-oxide semiconductor manufacturing technology.

  17. Poly-4-vinylphenol (PVP) and Poly(melamine-co-formaldehyde) (PMF)-Based Atomic Switching Device and Its Application to Logic Gate Circuits with Low Operating Voltage.

    PubMed

    Kang, Dong-Ho; Choi, Woo-Young; Woo, Hyunsuk; Jang, Sungkyu; Park, Hyung-Youl; Shim, Jaewoo; Choi, Jae-Woong; Kim, Sungho; Jeon, Sanghun; Lee, Sungjoo; Park, Jin-Hong

    2017-08-16

    In this study, we demonstrate a high-performance solid polymer electrolyte (SPE) atomic switching device with low SET/RESET voltages (0.25 and -0.5 V, respectively), high on/off-current ratio (10 5 ), excellent cyclic endurance (>10 3 ), and long retention time (>10 4 s), where poly-4-vinylphenol (PVP)/poly(melamine-co-formaldehyde) (PMF) is used as an SPE layer. To accomplish these excellent device performance parameters, we reduce the off-current level of the PVP/PMF atomic switching device by improving the electrical insulating property of the PVP/PMF electrolyte through adjustment of the number of cross-linked chains. We then apply a titanium buffer layer to the PVP/PMF switching device for further improvement of bipolar switching behavior and device stability. In addition, we first implement SPE atomic switch-based logic AND and OR circuits with low operating voltages below 2 V by integrating 5 × 5 arrays of PVP/PMF switching devices on the flexible substrate. In particular, this low operating voltage of our logic circuits was much lower than that (>5 V) of the circuits configured by polymer resistive random access memory. This research successfully presents the feasibility of PVP/PMF atomic switches for flexible integrated circuits for next-generation electronic applications.

  18. Nanogap-Engineerable Electromechanical System for Ultralow Power Memory.

    PubMed

    Zhang, Jian; Deng, Ya; Hu, Xiao; Nshimiyimana, Jean Pierre; Liu, Siyu; Chi, Xiannian; Wu, Pei; Dong, Fengliang; Chen, Peipei; Chu, Weiguo; Zhou, Haiqing; Sun, Lianfeng

    2018-02-01

    Nanogap engineering of low-dimensional nanomaterials has received considerable interest in a variety of fields, ranging from molecular electronics to memories. Creating nanogaps at a certain position is of vital importance for the repeatable fabrication of the devices. Here, a rational design of nonvolatile memories based on sub-5 nm nanogaped single-walled carbon nanotubes (SWNTs) via the electromechanical motion is reported. The nanogaps are readily realized by electroburning in a partially suspended SWNT device with nanoscale region. The SWNT memory devices are applicable for both metallic and semiconducting SWNTs, resolving the challenge of separation of semiconducting SWNTs from metallic ones. Meanwhile, the memory devices exhibit excellent performance: ultralow writing energy (4.1 × 10 -19 J bit -1 ), ON/OFF ratio of 10 5 , stable switching ON operations, and over 30 h retention time in ambient conditions.

  19. Nanogap‐Engineerable Electromechanical System for Ultralow Power Memory

    PubMed Central

    Zhang, Jian; Deng, Ya; Hu, Xiao; Nshimiyimana, Jean Pierre; Liu, Siyu; Chi, Xiannian; Wu, Pei; Dong, Fengliang; Chen, Peipei

    2017-01-01

    Abstract Nanogap engineering of low‐dimensional nanomaterials has received considerable interest in a variety of fields, ranging from molecular electronics to memories. Creating nanogaps at a certain position is of vital importance for the repeatable fabrication of the devices. Here, a rational design of nonvolatile memories based on sub‐5 nm nanogaped single‐walled carbon nanotubes (SWNTs) via the electromechanical motion is reported. The nanogaps are readily realized by electroburning in a partially suspended SWNT device with nanoscale region. The SWNT memory devices are applicable for both metallic and semiconducting SWNTs, resolving the challenge of separation of semiconducting SWNTs from metallic ones. Meanwhile, the memory devices exhibit excellent performance: ultralow writing energy (4.1 × 10−19 J bit−1), ON/OFF ratio of 105, stable switching ON operations, and over 30 h retention time in ambient conditions. PMID:29619307

  20. Multiprocessor switch with selective pairing

    DOEpatents

    Gara, Alan; Gschwind, Michael K; Salapura, Valentina

    2014-03-11

    System, method and computer program product for a multiprocessing system to offer selective pairing of processor cores for increased processing reliability. A selective pairing facility is provided that selectively connects, i.e., pairs, multiple microprocessor or processor cores to provide one highly reliable thread (or thread group). Each paired microprocessor or processor cores that provide one highly reliable thread for high-reliability connect with a system components such as a memory "nest" (or memory hierarchy), an optional system controller, and optional interrupt controller, optional I/O or peripheral devices, etc. The memory nest is attached to a selective pairing facility via a switch or a bus

  1. Spin torque switching of 20 nm magnetic tunnel junctions with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Gajek, M.; Nowak, J. J.; Sun, J. Z.; Trouilloud, P. L.; O'Sullivan, E. J.; Abraham, D. W.; Gaidis, M. C.; Hu, G.; Brown, S.; Zhu, Y.; Robertazzi, R. P.; Gallagher, W. J.; Worledge, D. C.

    2012-03-01

    Spin-transfer torque magnetic random access memory (STT-MRAM) is one of the most promising emerging non-volatile memory technologies. MRAM has so far been demonstrated with a unique combination of density, speed, and non-volatility in a single chip, however, without the capability to replace any single mainstream memory. In this paper, we demonstrate the basic physics of spin torque switching in 20 nm diameter magnetic tunnel junctions with perpendicular magnetic anisotropy materials. This deep scaling capability clearly indicates the STT MRAM device itself may be suitable for integration at much higher densities than previously proven.

  2. Tri-state resistive switching characteristics of MnO/Ta2O5 resistive random access memory device by a controllable reset process

    NASA Astrophysics Data System (ADS)

    Lee, N. J.; Kang, T. S.; Hu, Q.; Lee, T. S.; Yoon, T.-S.; Lee, H. H.; Yoo, E. J.; Choi, Y. J.; Kang, C. J.

    2018-06-01

    Tri-state resistive switching characteristics of bilayer resistive random access memory devices based on manganese oxide (MnO)/tantalum oxide (Ta2O5) have been studied. The current–voltage (I–V) characteristics of the Ag/MnO/Ta2O5/Pt device show tri-state resistive switching (RS) behavior with a high resistance state (HRS), intermediate resistance state (IRS), and low resistance state (LRS), which are controlled by the reset process. The MnO/Ta2O5 film shows bipolar RS behavior through the formation and rupture of conducting filaments without the forming process. The device shows reproducible and stable RS both from the HRS to the LRS and from the IRS to the LRS. In order to elucidate the tri-state RS mechanism in the Ag/MnO/Ta2O5/Pt device, transmission electron microscope (TEM) images are measured in the LRS, IRS and HRS. White lines like dendrites are observed in the Ta2O5 film in both the LRS and the IRS. Poole–Frenkel conduction, space charge limited conduction, and Ohmic conduction are proposed as the dominant conduction mechanisms for the Ag/MnO/Ta2O5/Pt device based on the obtained I–V characteristics and TEM images.

  3. High density submicron magnetoresistive random access memory (invited)

    NASA Astrophysics Data System (ADS)

    Tehrani, S.; Chen, E.; Durlam, M.; DeHerrera, M.; Slaughter, J. M.; Shi, J.; Kerszykowski, G.

    1999-04-01

    Various giant magnetoresistance material structures were patterned and studied for their potential as memory elements. The preferred memory element, based on pseudo-spin valve structures, was designed with two magnetic stacks (NiFeCo/CoFe) of different thickness with Cu as an interlayer. The difference in thickness results in dissimilar switching fields due to the shape anisotropy at deep submicron dimensions. It was found that a lower switching current can be achieved when the bits have a word line that wraps around the bit 1.5 times. Submicron memory elements integrated with complementary metal-oxide-semiconductor (CMOS) transistors maintained their characteristics and no degradation to the CMOS devices was observed. Selectivity between memory elements in high-density arrays was demonstrated.

  4. Oxygen-modulated quantum conductance for ultrathin HfO 2 -based memristive switching devices

    DOE PAGES

    Zhong, Xiaoliang; Rungger, Ivan; Zapol, Peter; ...

    2016-10-24

    Memristive switching devices, candidates for resistive random access memory technology, have been shown to switch off through a progression of states with quantized conductance and subsequent noninteger conductance (in terms of conductance quantum G 0). We have performed calculations based on density functional theory to model the switching process for a Pt-HfO 2-Pt structure, involving the movement of one or two oxygen atoms. Oxygen atoms moving within a conductive oxygen vacancy filament act as tunneling barriers, and partition the filament into weakly coupled quantum wells. We show that the low-bias conductance decreases exponentially when one oxygen atom moves away frommore » interface. In conclusion, our results demonstrate the high sensitivity of the device conductance to the position of oxygen atoms.« less

  5. Oxygen-modulated quantum conductance for ultrathin HfO 2 -based memristive switching devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Xiaoliang; Rungger, Ivan; Zapol, Peter

    Memristive switching devices, candidates for resistive random access memory technology, have been shown to switch off through a progression of states with quantized conductance and subsequent noninteger conductance (in terms of conductance quantum G 0). We have performed calculations based on density functional theory to model the switching process for a Pt-HfO 2-Pt structure, involving the movement of one or two oxygen atoms. Oxygen atoms moving within a conductive oxygen vacancy filament act as tunneling barriers, and partition the filament into weakly coupled quantum wells. We show that the low-bias conductance decreases exponentially when one oxygen atom moves away frommore » interface. In conclusion, our results demonstrate the high sensitivity of the device conductance to the position of oxygen atoms.« less

  6. Improvement of SET variability in TaO x based resistive RAM devices

    NASA Astrophysics Data System (ADS)

    Schönhals, Alexander; Waser, Rainer; Wouters, Dirk J.

    2017-11-01

    Improvement or at least control of variability is one of the key challenges for Redox based resistive switching memory technology. In this paper, we investigate the impact of a serial resistor as a voltage divider on the SET variability in Pt/Ta2O5/Ta/Pt nano crossbar devices. A partial RESET in a competing complementary switching (CS) mode is identified as a possible failure mechanism of bipolar switching SET in our devices. Due to a voltage divider effect, serial resistance value shows unequal impact on switching voltages of both modes which allows for a selective suppression of the CS mode. The impact of voltage divider on SET variability is demonstrated. A combination of appropriate write voltage and serial resistance allows for a significant improvement of the SET variability.

  7. Redefining the Speed Limit of Phase Change Memory Revealed by Time-resolved Steep Threshold-Switching Dynamics of AgInSbTe Devices

    NASA Astrophysics Data System (ADS)

    Shukla, Krishna Dayal; Saxena, Nishant; Durai, Suresh; Manivannan, Anbarasu

    2016-11-01

    Although phase-change memory (PCM) offers promising features for a ‘universal memory’ owing to high-speed and non-volatility, achieving fast electrical switching remains a key challenge. In this work, a correlation between the rate of applied voltage and the dynamics of threshold-switching is investigated at picosecond-timescale. A distinct characteristic feature of enabling a rapid threshold-switching at a critical voltage known as the threshold voltage as validated by an instantaneous response of steep current rise from an amorphous off to on state is achieved within 250 picoseconds and this is followed by a slower current rise leading to crystallization. Also, we demonstrate that the extraordinary nature of threshold-switching dynamics in AgInSbTe cells is independent to the rate of applied voltage unlike other chalcogenide-based phase change materials exhibiting the voltage dependent transient switching characteristics. Furthermore, numerical solutions of time-dependent conduction process validate the experimental results, which reveal the electronic nature of threshold-switching. These findings of steep threshold-switching of ‘sub-50 ps delay time’, opens up a new way for achieving high-speed non-volatile memory for mainstream computing.

  8. Endurance and Cycle-to-cycle Uniformity Improvement in Tri-Layered CeO2/Ti/CeO2 Resistive Switching Devices by Changing Top Electrode Material

    PubMed Central

    Rana, Anwar Manzoor; Akbar, Tahira; Ismail, Muhammad; Ahmad, Ejaz; Hussain, Fayyaz; Talib, Ijaz; Imran, Muhammad; Mehmood, Khalid; Iqbal, Khalid; Nadeem, M. Younus

    2017-01-01

    Resistance switching characteristics of CeO2/Ti/CeO2 tri-layered films sandwiched between Pt bottom electrode and two different top electrodes (Ti and TaN) with different work functions have been investigated. RRAM memory cells composed of TaN/CeO2/Ti/CeO2/Pt reveal better resistive switching performance instead of Ti/CeO2/Ti/CeO2/Pt memory stacks. As compared to the Ti/CeO2 interface, much better ability of TaN/CeO2 interface to store and exchange plays a key role in the RS performance improvement, including lower forming/SET voltages, large memory window (~102) and no significant data degradation during endurance test of >104 switching cycles. The formation of TaON thinner interfacial layer between TaN TE and CeO2 film is found to be accountable for improved resistance switching behavior. Partial charge density of states is analyzed using density functional theory. It is found that the conductive filaments formed in CeO2 based devices is assisted by interstitial Ti dopant. Better stability and reproducibility in cycle-to-cycle (C2C) resistance distribution and Vset/Vreset uniformity were achieved due to the modulation of current conduction mechanism from Ohmic in low field region to Schottky emission in high field region. PMID:28079056

  9. Investigation of resistance switching in SiO x RRAM cells using a 3D multi-scale kinetic Monte Carlo simulator

    NASA Astrophysics Data System (ADS)

    Sadi, Toufik; Mehonic, Adnan; Montesi, Luca; Buckwell, Mark; Kenyon, Anthony; Asenov, Asen

    2018-02-01

    We employ an advanced three-dimensional (3D) electro-thermal simulator to explore the physics and potential of oxide-based resistive random-access memory (RRAM) cells. The physical simulation model has been developed recently, and couples a kinetic Monte Carlo study of electron and ionic transport to the self-heating phenomenon while accounting carefully for the physics of vacancy generation and recombination, and trapping mechanisms. The simulation framework successfully captures resistance switching, including the electroforming, set and reset processes, by modeling the dynamics of conductive filaments in the 3D space. This work focuses on the promising yet less studied RRAM structures based on silicon-rich silica (SiO x ) RRAMs. We explain the intrinsic nature of resistance switching of the SiO x layer, analyze the effect of self-heating on device performance, highlight the role of the initial vacancy distributions acting as precursors for switching, and also stress the importance of using 3D physics-based models to capture accurately the switching processes. The simulation work is backed by experimental studies. The simulator is useful for improving our understanding of the little-known physics of SiO x resistive memory devices, as well as other oxide-based RRAM systems (e.g. transition metal oxide RRAMs), offering design and optimization capabilities with regard to the reliability and variability of memory cells.

  10. Recent Advances of Flexible Data Storage Devices Based on Organic Nanoscaled Materials.

    PubMed

    Zhou, Li; Mao, Jingyu; Ren, Yi; Han, Su-Ting; Roy, Vellaisamy A L; Zhou, Ye

    2018-03-01

    Following the trend of miniaturization as per Moore's law, and facing the strong demand of next-generation electronic devices that should be highly portable, wearable, transplantable, and lightweight, growing endeavors have been made to develop novel flexible data storage devices possessing nonvolatile ability, high-density storage, high-switching speed, and reliable endurance properties. Nonvolatile organic data storage devices including memory devices on the basis of floating-gate, charge-trapping, and ferroelectric architectures, as well as organic resistive memory are believed to be favorable candidates for future data storage applications. In this Review, typical information on device structure, memory characteristics, device operation mechanisms, mechanical properties, challenges, and recent progress of the above categories of flexible data storage devices based on organic nanoscaled materials is summarized. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Interfacial Metal-Oxide Interactions in Resistive Switching Memories.

    PubMed

    Cho, Deok-Yong; Luebben, Michael; Wiefels, Stefan; Lee, Kug-Seung; Valov, Ilia

    2017-06-07

    Metal oxides are commonly used as electrolytes for redox-based resistive switching memories. In most cases, non-noble metals are directly deposited as ohmic electrodes. We demonstrate that irrespective of bulk thermodynamics predictions an intermediate oxide film a few nanometers in thickness is always formed at the metal/insulator interface, and this layer significantly contributes to the development of reliable switching characteristics. We have tested metal electrodes and metal oxides mostly used for memristive devices, that is, Ta, Hf, and Ti and Ta 2 O 5 , HfO 2 , and SiO 2 . Intermediate oxide layers are always formed at the interfaces, whereas only the rate of the electrode oxidation depends on the oxygen affinity of the metal and the chemical stability of the oxide matrix. Device failure is associated with complete transition of short-range order to a more disordered main matrix structure.

  12. A fast low-power optical memory based on coupled micro-ring lasers

    NASA Astrophysics Data System (ADS)

    Hill, Martin T.; Dorren, Harmen J. S.; de Vries, Tjibbe; Leijtens, Xaveer J. M.; den Besten, Jan Hendrik; Smalbrugge, Barry; Oei, Yok-Siang; Binsma, Hans; Khoe, Giok-Djan; Smit, Meint K.

    2004-11-01

    The increasing speed of fibre-optic-based telecommunications has focused attention on high-speed optical processing of digital information. Complex optical processing requires a high-density, high-speed, low-power optical memory that can be integrated with planar semiconductor technology for buffering of decisions and telecommunication data. Recently, ring lasers with extremely small size and low operating power have been made, and we demonstrate here a memory element constructed by interconnecting these microscopic lasers. Our device occupies an area of 18 × 40µm2 on an InP/InGaAsP photonic integrated circuit, and switches within 20ps with 5.5fJ optical switching energy. Simulations show that the element has the potential for much smaller dimensions and switching times. Large numbers of such memory elements can be densely integrated and interconnected on a photonic integrated circuit: fast digital optical information processing systems employing large-scale integration should now be viable.

  13. Application of graphene oxide-poly (vinyl alcohol) polymer nanocomposite for memory devices

    NASA Astrophysics Data System (ADS)

    Kaushal, Jyoti; Kaur, Ravneet; Sharma, Jadab; Tripathi, S. K.

    2018-05-01

    Significant attention has been gained by polymer nanocomposites because of their possible demands in future electronic memory devices. In the present work, device based on Graphene Oxide (GO) and polyvinyl alcohol (PVA) has been made and examined for the memory device application. The prepared Graphene oxide (GO) and GO-PVA nanocomposite (NC) has been characterized by X-ray Diffraction (XRD). GO nanosheets show the diffraction peak at 2θ = 11.60° and the interlayer spacing of 0.761 nm. The XRD of GO-PVA NC shows the diffraction peak at 2θ =18.56°. The fabricated device shows bipolar switching behavior having ON/OFF current ratio ˜102. The Write-Read-Erase-Read (WRER) cycles test shows that the Al/GO-PVA/Ag device has good stability and repeatability.

  14. Set statistics in conductive bridge random access memory device with Cu/HfO{sub 2}/Pt structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Meiyun; Long, Shibing, E-mail: longshibing@ime.ac.cn; Wang, Guoming

    2014-11-10

    The switching parameter variation of resistive switching memory is one of the most important challenges in its application. In this letter, we have studied the set statistics of conductive bridge random access memory with a Cu/HfO{sub 2}/Pt structure. The experimental distributions of the set parameters in several off resistance ranges are shown to nicely fit a Weibull model. The Weibull slopes of the set voltage and current increase and decrease logarithmically with off resistance, respectively. This experimental behavior is perfectly captured by a Monte Carlo simulator based on the cell-based set voltage statistics model and the Quantum Point Contact electronmore » transport model. Our work provides indications for the improvement of the switching uniformity.« less

  15. Piezotronic nanowire-based resistive switches as programmable electromechanical memories.

    PubMed

    Wu, Wenzhuo; Wang, Zhong Lin

    2011-07-13

    We present the first piezoelectrically modulated resistive switching device based on piezotronic ZnO nanowire (NW), through which the write/read access of the memory cell is programmed via electromechanical modulation. Adjusted by the strain-induced polarization charges created at the semiconductor/metal interface under externally applied deformation by the piezoelectric effect, the resistive switching characteristics of the cell can be modulated in a controlled manner, and the logic levels of the strain stored in the cell can be recorded and read out, which has the potential for integrating with NEMS technology to achieve micro/nanosystems capable for intelligent and self-sufficient multidimensional operations.

  16. Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) Interlayer Insertion Enables Organic Quaternary Memory.

    PubMed

    Cheng, Xue-Feng; Hou, Xiang; Qian, Wen-Hu; He, Jing-Hui; Xu, Qing-Feng; Li, Hua; Li, Na-Jun; Chen, Dong-Yun; Lu, Jian-Mei

    2017-08-23

    Herein, for the first time, quaternary resistive memory based on an organic molecule is achieved via surface engineering. A layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) was inserted between the indium tin oxide (ITO) electrode and the organic layer (squaraine, SA-Bu) to form an ITO/PEDOT-PSS/SA-Bu/Al architecture. The modified resistive random-access memory (RRAM) devices achieve quaternary memory switching with the highest yield (∼41%) to date. Surface morphology, crystallinity, and mosaicity of the deposited organic grains are greatly improved after insertion of a PEDOT-PSS interlayer, which provides better contacts at the grain boundaries as well as the electrode/active layer interface. The PEDOT-PSS interlayer also reduces the hole injection barrier from the electrode to the active layer. Thus, the threshold voltage of each switching is greatly reduced, allowing for more quaternary switching in a certain voltage window. Our results provide a simple yet powerful strategy as an alternative to molecular design to achieve organic quaternary resistive memory.

  17. An associative capacitive network based on nanoscale complementary resistive switches for memory-intensive computing

    NASA Astrophysics Data System (ADS)

    Kavehei, Omid; Linn, Eike; Nielen, Lutz; Tappertzhofen, Stefan; Skafidas, Efstratios; Valov, Ilia; Waser, Rainer

    2013-05-01

    We report on the implementation of an Associative Capacitive Network (ACN) based on the nondestructive capacitive readout of two Complementary Resistive Switches (2-CRSs). ACNs are capable of performing a fully parallel search for Hamming distances (i.e. similarity) between input and stored templates. Unlike conventional associative memories where charge retention is a key function and hence, they require frequent refresh cycles, in ACNs, information is retained in a nonvolatile resistive state and normal tasks are carried out through capacitive coupling between input and output nodes. Each device consists of two CRS cells and no selective element is needed, therefore, CMOS circuitry is only required in the periphery, for addressing and read-out. Highly parallel processing, nonvolatility, wide interconnectivity and low-energy consumption are significant advantages of ACNs over conventional and emerging associative memories. These characteristics make ACNs one of the promising candidates for applications in memory-intensive and cognitive computing, switches and routers as binary and ternary Content Addressable Memories (CAMs) and intelligent data processing.

  18. Study of harsh environment operation of flexible ferroelectric memory integrated with PZT and silicon fabric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghoneim, M. T.; Hussain, M. M., E-mail: muhammadmustafa.hussain@kaust.edu.sa

    Flexible memory can enable industrial, automobile, space, and smart grid centered harsh/extreme environment focused electronics application(s) for enhanced operation, safety, and monitoring where bent or complex shaped infrastructures are common and state-of-the-art rigid electronics cannot be deployed. Therefore, we report on the physical-mechanical-electrical characteristics of a flexible ferroelectric memory based on lead zirconium titanate as a key memory material and flexible version of bulk mono-crystalline silicon (100). The experimented devices show a bending radius down to 1.25 cm corresponding to 0.16% nominal strain (high pressure of ∼260 MPa), and full functionality up to 225 °C high temperature in ambient gas composition (21% oxygenmore » and 55% relative humidity). The devices showed unaltered data retention and fatigue properties under harsh conditions, still the reduced memory window (20% difference between switching and non-switching currents at 225 °C) requires sensitive sense circuitry for proper functionality and is the limiting factor preventing operation at higher temperatures.« less

  19. Ferroelectric polarization induces electronic nonlinearity in ion-doped conducting polymers

    PubMed Central

    Fabiano, Simone; Sani, Negar; Kawahara, Jun; Kergoat, Loïg; Nissa, Josefin; Engquist, Isak; Crispin, Xavier; Berggren, Magnus

    2017-01-01

    Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is an organic mixed ion-electron conducting polymer. The PEDOT phase transports holes and is redox-active, whereas the PSS phase transports ions. When PEDOT is redox-switched between its semiconducting and conducting state, the electronic and optical properties of its bulk are controlled. Therefore, it is appealing to use this transition in electrochemical devices and to integrate those into large-scale circuits, such as display or memory matrices. Addressability and memory functionality of individual devices, within these matrices, are typically achieved by nonlinear current-voltage characteristics and bistability—functions that can potentially be offered by the semiconductor-conductor transition of redox polymers. However, low conductivity of the semiconducting state and poor bistability, due to self-discharge, make fast operation and memory retention impossible. We report that a ferroelectric polymer layer, coated along the counter electrode, can control the redox state of PEDOT. The polarization switching characteristics of the ferroelectric polymer, which take place as the coercive field is overcome, introduce desired nonlinearity and bistability in devices that maintain PEDOT in its highly conducting and fast-operating regime. Memory functionality and addressability are demonstrated in ferro-electrochromic display pixels and ferro-electrochemical transistors. PMID:28695197

  20. The role of nitrogen doping in ALD Ta2O5 and its influence on multilevel cell switching in RRAM

    NASA Astrophysics Data System (ADS)

    Sedghi, N.; Li, H.; Brunell, I. F.; Dawson, K.; Potter, R. J.; Guo, Y.; Gibbon, J. T.; Dhanak, V. R.; Zhang, W. D.; Zhang, J. F.; Robertson, J.; Hall, S.; Chalker, P. R.

    2017-03-01

    The role of nitrogen doping on the stability and memory window of resistive state switching in N-doped Ta2O5 deposited by atomic layer deposition is elucidated. Nitrogen incorporation increases the stability of resistive memory states which is attributed to neutralization of electronic defect levels associated with oxygen vacancies. The density functional simulations with the screened exchange hybrid functional approximation show that the incorporation of nitrogen dopant atoms in the oxide network removes the O vacancy midgap defect states, thus nullifying excess defects and eliminating alternative conductive paths. By effectively reducing the density of vacancy-induced defect states through N doping, 3-bit multilevel cell switching is demonstrated, consisting of eight distinctive resistive memory states achieved by either controlling the set current compliance or the maximum voltage during reset. Nitrogen doping has a threefold effect: widening the switching memory window to accommodate the more intermediate states, improving the stability of states, and providing a gradual reset for multi-level cell switching during reset. The N-doped Ta2O5 devices have relatively small set and reset voltages (< 1 V) with reduced variability due to doping.

  1. Thickness-dependent resistance switching in Cr-doped SrTiO3

    NASA Astrophysics Data System (ADS)

    Kim, TaeKwang; Du, Hyewon; Kim, Minchang; Seo, Sunae; Hwang, Inrok; Kim, Yeonsoo; Jeon, Jihoon; Lee, Sangik; Park, Baeho

    2012-09-01

    The thickness-dependent bipolar resistance-switching behavior was investigated for epitaxiallygrown Cr-doped SrTiO3 (Cr-STO). All the pristine devices of different thickness showed polarity-independent symmetric current-voltage characteristic and the same space-charge-limited conduction mechanism. However, after a forming process, the resultant conduction and switching phenomena were significantly different depending on the thickness of Cr-STO. The forming process itself was highly influenced by resistance value of each pristine device. Based on our results, we suggest that the resistance-switching mechanism in Cr-STO depends not only on the insulating material's composition or the contact metal as previously reported but also on the initial resistance level determined by the geometry and the quality of the insulating material. The bipolar resistance-switching behaviors in oxide materials of different thicknesses exhibit mixed bulk and interface switching. This indicates that efforts in resistance-based memory research should be focused on scalability or process method to control a given oxide material in addition to material type and device structure.

  2. Resistive Switching in All-Printed, Flexible and Hybrid MoS2-PVA Nanocomposite based Memristive Device Fabricated by Reverse Offset

    PubMed Central

    Rehman, Muhammad Muqeet; Siddiqui, Ghayas Uddin; Gul, Jahan Zeb; Kim, Soo-Wan; Lim, Jong Hwan; Choi, Kyung Hyun

    2016-01-01

    Owing to the increasing interest in the nonvolatile memory devices, resistive switching based on hybrid nanocomposite of a 2D material, molybdenum disulphide (MoS2) and polyvinyl alcohol (PVA) is explored in this work. As a proof of concept, we have demonstrated the fabrication of a memory device with the configuration of PET/Ag/MoS2-PVA/Ag via an all printed, hybrid, and state of the art fabrication approach. Bottom Ag electrodes, active layer of hybrid MoS2-PVA nanocomposite and top Ag electrode are deposited by reverse offset, electrohydrodynamic (EHD) atomization and electrohydrodynamic (EHD) patterning respectively. The fabricated device displayed characteristic bistable, nonvolatile and rewritable resistive switching behavior at a low operating voltage. A decent off/on ratio, high retention time, and large endurance of 1.28 × 102, 105 sec and 1000 voltage sweeps were recorded respectively. Double logarithmic curve satisfy the trap controlled space charge limited current (TCSCLC) model in high resistance state (HRS) and ohmic model in low resistance state (LRS). Bendability test at various bending diameters (50-2 mm) for 1500 cycles was carried out to show the mechanical robustness of fabricated device. PMID:27811977

  3. Ultralow power switching in a silicon-rich SiNy/SiNx double-layer resistive memory device.

    PubMed

    Kim, Sungjun; Chang, Yao-Feng; Kim, Min-Hwi; Bang, Suhyun; Kim, Tae-Hyeon; Chen, Ying-Chen; Lee, Jong-Ho; Park, Byung-Gook

    2017-07-26

    Here we demonstrate low-power resistive switching in a Ni/SiN y /SiN x /p ++ -Si device by proposing a double-layered structure (SiN y /SiN x ), where the two SiN layers have different trap densities. The LRS was measured to be as low as 1 nA at a voltage of 1 V, because the SiN x layer maintains insulating properties for the LRS. The single-layered device suffers from uncontrollability of the conducting path, accompanied by the inherent randomness of switching parameters, weak immunity to breakdown during the reset process, and a high operating current. On the other hand, for a double-layered device, the effective conducting path in each layer, which can determine the operating current, can be well controlled by the I CC during the initial forming and set processes. A one-step forming and progressive reset process is observed for a low-power mode, which differs from the high-power switching mode that shows a two-step forming and reset process. Moreover, nonlinear behavior in the LRS, whose origin can be attributed to the P-F conduction and F-N tunneling driven by abundant traps in the silicon-rich SiN x layer, would be beneficial for next-generation nonvolatile memory applications by using a conventional passive SiN x layer as an active dielectric.

  4. Flexible non-volatile memory devices based on organic semiconductors

    NASA Astrophysics Data System (ADS)

    Cosseddu, Piero; Casula, Giulia; Lai, Stefano; Bonfiglio, Annalisa

    2015-09-01

    The possibility of developing fully organic electronic circuits is critically dependent on the ability to realize a full set of electronic functionalities based on organic devices. In order to complete the scene, a fundamental element is still missing, i.e. reliable data storage. Over the past few years, a considerable effort has been spent on the development and optimization of organic polymer based memory elements. Among several possible solutions, transistor-based memories and resistive switching-based memories are attracting a great interest in the scientific community. In this paper, a route for the fabrication of organic semiconductor-based memory devices with performances beyond the state of the art is reported. Both the families of organic memories will be considered. A flexible resistive memory based on a novel combination of materials is presented. In particular, high retention time in ambient conditions are reported. Complementary, a low voltage transistor-based memory is presented. Low voltage operation is allowed by an hybrid, nano-sized dielectric, which is also responsible for the memory effect in the device. Thanks to the possibility of reproducibly fabricating such device on ultra-thin substrates, high mechanical stability is reported.

  5. Excellent resistive memory characteristics and switching mechanism using a Ti nanolayer at the Cu/TaOx interface

    PubMed Central

    2012-01-01

    Excellent resistive switching memory characteristics were demonstrated for an Al/Cu/Ti/TaOx/W structure with a Ti nanolayer at the Cu/TaOx interface under low voltage operation of ± 1.5 V and a range of current compliances (CCs) from 0.1 to 500 μA. Oxygen accumulation at the Ti nanolayer and formation of a defective high-κ TaOx film were confirmed by high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray photo-electron spectroscopy. The resistive switching memory characteristics of the Al/Cu/Ti/TaOx/W structure, such as HRS/LRS (approximately 104), stable switching cycle stability (>106) and multi-level operation, were improved compared with those of Al/Cu/TaOx/W devices. These results were attributed to the control of Cu migration/dissolution by the insertion of a Ti nanolayer at the Cu/TaOx interface. In contrast, CuOx formation at the Cu/TaOx interface was observed in an Al/Cu/TaOx/W structure, which hindered dissolution of the Cu filament and resulted in a small resistance ratio of approximately 10 at a CC of 500 μA. A high charge-trapping density of 6.9 × 1016 /cm2 was observed in the Al/Cu/Ti/TaOx/W structure from capacitance-voltage hysteresis characteristics, indicating the migration of Cu ions through defect sites. The switching mechanism was successfully explained for structures with and without the Ti nanolayer. By using a new approach, the nanoscale diameter of Cu filament decreased from 10.4 to 0.17 nm as the CC decreased from 500 to 0.1 μA, resulting in a large memory size of 7.6 T to 28 Pbit/sq in. Extrapolated 10-year data retention of the Ti nanolayer device was also obtained. The findings of this study will not only improve resistive switching memory performance but also aid future design of nanoscale nonvolatile memory. PMID:22734564

  6. Optically Addressable, Ferroelectric Memory With NDRO

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita

    1994-01-01

    For readout, memory cells addressed via on-chip semiconductor lasers. Proposed thin-film ferroelectric memory device features nonvolatile storage, optically addressable, nondestructive readout (NDRO) with fast access, and low vulnerability to damage by ionizing radiation. Polarization switched during recording and erasure, but not during readout. As result, readout would not destroy contents of memory, and operating life in specific "read-intensive" applications increased up to estimated 10 to the 16th power cycles.

  7. Electroformed silicon nitride based light emitting memory device

    NASA Astrophysics Data System (ADS)

    Anutgan, Tamila; Anutgan, Mustafa; Atilgan, Ismail; Katircioglu, Bayram

    2017-07-01

    The resistive memory switching effect of an electroformed nanocrystal silicon nitride thin film light emitting diode (LED) is demonstrated. For this purpose, current-voltage (I-V) characteristics of the diode were systematically scanned, paying particular attention to the sequence of the measurements. It was found that when the voltage polarity was changed from reverse to forward, the previously measured reverse I-V behavior was remembered until some critical forward bias voltage. Beyond this critical voltage, the I-V curve returns to its original state instantaneously, and light emission switches from the OFF state to the ON state. The kinetics of this switching mechanism was studied for different forward bias stresses by measuring the corresponding time at which the switching occurs. Finally, the switching of resistance and light emission states was discussed via energy band structure of the electroformed LED.

  8. Origin of the OFF state variability in ReRAM cells

    NASA Astrophysics Data System (ADS)

    Salaoru, Iulia; Khiat, Ali; Li, Qingjiang; Berdan, Radu; Papavassiliou, Christos; Prodromakis, Themistoklis

    2014-04-01

    This work exploits the switching dynamics of nanoscale resistive random access memory (ReRAM) cells with particular emphasis on the origin of the observed variability when cells are consecutively cycled/programmed at distinct memory states. It is demonstrated that this variance is a common feature of all ReRAM elements and is ascribed to the formation and rupture of conductive filaments that expand across the active core, independently of the material employed as the active switching core, the causal physical switching mechanism, the switching mode (bipolar/unipolar) or even the unit cells' dimensions. Our hypothesis is supported through both experimental and theoretical studies on TiO2 and In2O3 : SnO2 (ITO) based ReRAM cells programmed at three distinct resistive states. Our prototypes employed TiO2 or ITO active cores over 5 × 5 µm2 and 100 × 100 µm2 cell areas, with all tested devices demonstrating both unipolar and bipolar switching modalities. In the case of TiO2-based cells, the underlying switching mechanism is based on the non-uniform displacement of ionic species that foster the formation of conductive filaments. On the other hand, the resistive switching observed in the ITO-based devices is considered to be due to a phase change mechanism. The selected experimental parameters allowed us to demonstrate that the observed programming variance is a common feature of all ReRAM devices, proving that its origin is dependent upon randomly oriented local disorders within the active core that have a substantial impact on the overall state variance, particularly for high-resistive states.

  9. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Switching Characteristics of Phase Change Memory Cell Integrated with Metal-Oxide Semiconductor Field Effect Transistor

    NASA Astrophysics Data System (ADS)

    Xu, Cheng; Liu, Bo; Chen, Yi-Feng; Liang, Shuang; Song, Zhi-Tang; Feng, Song-Lin; Wan, Xu-Dong; Yang, Zuo-Ya; Xie, Joseph; Chen, Bomy

    2008-05-01

    A Ge2Sb2Te5 based phase change memory device cell integrated with metal-oxide semiconductor field effect transistor (MOSFET) is fabricated using standard 0. 18 μm complementary metal-oxide semiconductor process technology. It shows steady switching characteristics in the dc current-voltage measurement. The phase changing phenomenon from crystalline state to amorphous state with a voltage pulse altitude of 2.0 V and pulse width of 50 ns is also obtained. These results show the feasibility of integrating phase change memory cell with MOSFET.

  10. Study of self-compliance behaviors and internal filament characteristics in intrinsic SiO{sub x}-based resistive switching memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yao-Feng, E-mail: yfchang@utexas.edu; Zhou, Fei; Chen, Ying-Chen

    2016-01-18

    Self-compliance characteristics and reliability optimization are investigated in intrinsic unipolar silicon oxide (SiO{sub x})-based resistive switching (RS) memory using TiW/SiO{sub x}/TiW device structures. The program window (difference between SET voltage and RESET voltage) is dependent on external series resistance, demonstrating that the SET process is due to a voltage-triggered mechanism. The program window has been optimized for program/erase disturbance immunity and reliability for circuit-level applications. The SET and RESET transitions have also been characterized using a dynamic conductivity method, which distinguishes the self-compliance behavior due to an internal series resistance effect (filament) in SiO{sub x}-based RS memory. By using amore » conceptual “filament/resistive gap (GAP)” model of the conductive filament and a proton exchange model with appropriate assumptions, the internal filament resistance and GAP resistance can be estimated for high- and low-resistance states (HRS and LRS), and are found to be independent of external series resistance. Our experimental results not only provide insights into potential reliability issues but also help to clarify the switching mechanisms and device operating characteristics of SiO{sub x}-based RS memory.« less

  11. Dielectric elastomer memory

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; McKay, Thomas G.; Xie, Sheng Q.; Calius, Emilio P.; Anderson, Iain A.

    2011-04-01

    Life shows us that the distribution of intelligence throughout flexible muscular networks is a highly successful solution to a wide range of challenges, for example: human hearts, octopi, or even starfish. Recreating this success in engineered systems requires soft actuator technologies with embedded sensing and intelligence. Dielectric Elastomer Actuator(s) (DEA) are promising due to their large stresses and strains, as well as quiet flexible multimodal operation. Recently dielectric elastomer devices were presented with built in sensor, driver, and logic capability enabled by a new concept called the Dielectric Elastomer Switch(es) (DES). DES use electrode piezoresistivity to control the charge on DEA and enable the distribution of intelligence throughout a DEA device. In this paper we advance the capabilities of DES further to form volatile memory elements. A set reset flip-flop with inverted reset line was developed based on DES and DEA. With a 3200V supply the flip-flop behaved appropriately and demonstrated the creation of dielectric elastomer memory capable of changing state in response to 1 second long set and reset pulses. This memory opens up applications such as oscillator, de-bounce, timing, and sequential logic circuits; all of which could be distributed throughout biomimetic actuator arrays. Future work will include miniaturisation to improve response speed, implementation into more complex circuits, and investigation of longer lasting and more sensitive switching materials.

  12. Multilevel non-volatile data storage utilizing common current hysteresis of networked single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hwang, Ihn; Wang, Wei; Hwang, Sun Kak; Cho, Sung Hwan; Kim, Kang Lib; Jeong, Beomjin; Huh, June; Park, Cheolmin

    2016-05-01

    The characteristic source-drain current hysteresis frequently observed in field-effect transistors with networked single walled carbon-nanotube (NSWNT) channels is problematic for the reliable switching and sensing performance of devices. But the two distinct current states of the hysteresis curve at a zero gate voltage can be useful for memory applications. In this work, we demonstrate a novel non-volatile transistor memory with solution-processed NSWNTs which are suitable for multilevel data programming and reading. A polymer passivation layer with a small amount of water employed on the top of the NSWNT channel serves as an efficient gate voltage dependent charge trapping and de-trapping site. A systematic investigation evidences that the water mixed in a polymer passivation solution is critical for reliable non-volatile memory operation. The optimized device is air-stable and temperature-resistive up to 80 °C and exhibits excellent non-volatile memory performance with an on/off current ratio greater than 104, a switching time less than 100 ms, data retention longer than 4000 s, and write/read endurance over 100 cycles. Furthermore, the gate voltage dependent charge injection mediated by water in the passivation layer allowed for multilevel operation of our memory in which 4 distinct current states were programmed repetitively and preserved over a long time period.The characteristic source-drain current hysteresis frequently observed in field-effect transistors with networked single walled carbon-nanotube (NSWNT) channels is problematic for the reliable switching and sensing performance of devices. But the two distinct current states of the hysteresis curve at a zero gate voltage can be useful for memory applications. In this work, we demonstrate a novel non-volatile transistor memory with solution-processed NSWNTs which are suitable for multilevel data programming and reading. A polymer passivation layer with a small amount of water employed on the top of the NSWNT channel serves as an efficient gate voltage dependent charge trapping and de-trapping site. A systematic investigation evidences that the water mixed in a polymer passivation solution is critical for reliable non-volatile memory operation. The optimized device is air-stable and temperature-resistive up to 80 °C and exhibits excellent non-volatile memory performance with an on/off current ratio greater than 104, a switching time less than 100 ms, data retention longer than 4000 s, and write/read endurance over 100 cycles. Furthermore, the gate voltage dependent charge injection mediated by water in the passivation layer allowed for multilevel operation of our memory in which 4 distinct current states were programmed repetitively and preserved over a long time period. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00505e

  13. Correlated resistive/capacitive state variability in solid TiO2 based memory devices

    NASA Astrophysics Data System (ADS)

    Li, Qingjiang; Salaoru, Iulia; Khiat, Ali; Xu, Hui; Prodromakis, Themistoklis

    2017-05-01

    In this work, we experimentally demonstrated the correlated resistive/capacitive switching and state variability in practical TiO2 based memory devices. Based on filamentary functional mechanism, we argue that the impedance state variability stems from the randomly distributed defects inside the oxide bulk. Finally, our assumption was verified via a current percolation circuit model, by taking into account of random defects distribution and coexistence of memristor and memcapacitor.

  14. Enhanced fatigue and retention in ferroelectric thin film memory capacitors by post-top electrode anneal treatment

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita (Inventor)

    1994-01-01

    Thin film ferroelectric capacitors (10) comprising a ferroelectric film (18) sandwiched between electrodes (16 and 20) for nonvolatile memory operations are rendered more stable by subjecting the capacitors to an anneal following deposition of the top electrode (20). The anneal is done so as to form the interface (22) between the ferroelectric film and the top electrode. Heating in an air oven, laser annealing, or electron bombardment may be used to form the interface. Heating in an air oven is done at a temperature at least equal to the crystallization temperature of the ferroelectric film. Where the ferroelectric film comprises lead zirconate titanate, annealing is done at about 550.degree. to 600.degree. C. for about 10 to 15 minutes. The formation treatment reduces the magnitude of charge associated with the non-switching pulse in the thin film ferroelectric capacitors. Reduction of this charge leads to significantly more stable nonvolatile memory operations in both digital and analog memory devices. The formation treatment also reduces the ratio of change of the charge associated with the non-switching pulse as a function of retention time. These improved memory devices exhibit greater performance in retention and reduced fatigue in memory arrays.

  15. Electroforming free controlled bipolar resistive switching in Al/CoFe2O4/FTO device with self-compliance effect

    NASA Astrophysics Data System (ADS)

    Munjal, Sandeep; Khare, Neeraj

    2018-02-01

    Controlled bipolar resistive switching (BRS) has been observed in nanostructured CoFe2O4 (CFO) films using an Al (aluminum)/CoFe2O4/FTO (fluorine-doped tin oxide) device. The fabricated device shows electroforming-free uniform BRS with two clearly distinguished and stable resistance states without any application of compliance current, with a resistance ratio of the high resistance state (HRS) and the low resistance state (LRS) of >102. Small switching voltage (<1 volt) and lower current in both the resistance states confirm the fabrication of a low power consumption device. In the LRS, the conduction mechanism was found to be Ohmic in nature, while the high-resistance state (HRS/OFF state) was governed by the space charge-limited conduction mechanism, which indicates the presence of an interfacial layer with an imperfect microstructure near the top Al/CFO interface. The device shows nonvolatile behavior with good endurance properties, an acceptable resistance ratio, uniform resistive switching due to stable, less random filament formation/rupture, and a control over the resistive switching properties by choosing different stop voltages, which makes the device suitable for its application in future nonvolatile resistive random access memory.

  16. CLOCS (Computer with Low Context-Switching Time) Architecture Reference Documents

    DTIC Science & Technology

    1988-05-06

    Peculiarities The only state inside the central processing unit(CPU) is a program status word. All data operations are memory to memory. One result of this... to the challenge "if I whore to design RISC, this is how I would do it." The architecture was designed by Mark Davis and Bill Gallmeister. 1.2...are memory to memory. Any special devices added should be memory mapped. The program counter is even memory mapped. 1.3.1 Working storage There is no

  17. System for simultaneously loading program to master computer memory devices and corresponding slave computer memory devices

    NASA Technical Reports Server (NTRS)

    Hall, William A. (Inventor)

    1993-01-01

    A bus programmable slave module card for use in a computer control system is disclosed which comprises a master computer and one or more slave computer modules interfacing by means of a bus. Each slave module includes its own microprocessor, memory, and control program for acting as a single loop controller. The slave card includes a plurality of memory means (S1, S2...) corresponding to a like plurality of memory devices (C1, C2...) in the master computer, for each slave memory means its own communication lines connectable through the bus with memory communication lines of an associated memory device in the master computer, and a one-way electronic door which is switchable to either a closed condition or a one-way open condition. With the door closed, communication lines between master computer memory (C1, C2...) and slave memory (S1, S2...) are blocked. In the one-way open condition invention, the memory communication lines or each slave memory means (S1, S2...) connect with the memory communication lines of its associated memory device (C1, C2...) in the master computer, and the memory devices (C1, C2...) of the master computer and slave card are electrically parallel such that information seen by the master's memory is also seen by the slave's memory. The slave card is also connectable to a switch for electronically removing the slave microprocessor from the system. With the master computer and the slave card in programming mode relationship, and the slave microprocessor electronically removed from the system, loading a program in the memory devices (C1, C2...) of the master accomplishes a parallel loading into the memory devices (S1, S2...) of the slave.

  18. Inserting Thienyl Linkers into Conjugated Molecules for Efficient Multilevel Electronic Memory: A New Understanding of Charge-Trapping in Organic Materials.

    PubMed

    Li, Yang; Li, Hua; He, Jinghui; Xu, Qingfeng; Li, Najun; Chen, Dongyun; Lu, Jianmei

    2016-03-18

    The practical application of organic memory devices requires low power consumption and reliable device quality. Herein, we report that inserting thienyl units into D-π-A molecules can improve these parameters by tuning the texture of the film. Theoretical calculations revealed that introducing thienyl π bridges increased the planarity of the molecular backbone and extended the D-A conjugation. Thus, molecules with more thienyl spacers showed improved stacking and orientation in the film state relative to the substrates. The corresponding sandwiched memory devices showed enhanced ternary memory behavior, with lower threshold voltages and better repeatability. The conductive switching and variation in the performance of the memory devices were interpreted by using an extended-charge-trapping mechanism. Our study suggests that judicious molecular engineering can facilitate control of the orientation of the crystallite in the solid state to achieve superior multilevel memory performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Conductive bridging random access memory—materials, devices and applications

    NASA Astrophysics Data System (ADS)

    Kozicki, Michael N.; Barnaby, Hugh J.

    2016-11-01

    We present a review and primer on the subject of conductive bridging random access memory (CBRAM), a metal ion-based resistive switching technology, in the context of current research and the near-term requirements of the electronics industry in ultra-low energy devices and new computing paradigms. We include extensive discussions of the materials involved, the underlying physics and electrochemistry, the critical roles of ion transport and electrode reactions in conducting filament formation and device switching, and the electrical characteristics of the devices. Two general cation material systems are given—a fast ion chacogenide electrolyte and a lower ion mobility oxide ion conductor, and numerical examples are offered to enhance understanding of the operation of devices based on these. The effect of device conditioning on the activation energy for ion transport and consequent switching speed is discussed, as well as the mechanisms involved in the removal of the conducting bridge. The morphology of the filament and how this could be influenced by the solid electrolyte structure is described, and the electrical characteristics of filaments with atomic-scale constrictions are discussed. Consideration is also given to the thermal and mechanical environments within the devices. Finite element and compact modelling illustrations are given and aspects of CBRAM storage elements in memory circuits and arrays are included. Considerable emphasis is placed on the effects of ionizing radiation on CBRAM since this is important in various high reliability applications, and the potential uses of the devices in reconfigurable logic and neuromorphic systems is also discussed.

  20. Material Engineering for Phase Change Memory

    NASA Astrophysics Data System (ADS)

    Cabrera, David M.

    As semiconductor devices continue to scale downward, and portable consumer electronics become more prevalent there is a need to develop memory technology that will scale with devices and use less energy, while maintaining performance. One of the leading prototypical memories that is being investigated is phase change memory. Phase change memory (PCM) is a non-volatile memory composed of 1 transistor and 1 resistor. The resistive structure includes a memory material alloy which can change between amorphous and crystalline states repeatedly using current/voltage pulses of different lengths and magnitudes. The most widely studied PCM materials are chalcogenides - Germanium-Antimony-Tellerium (GST) with Ge2Sb2Te3 and Germanium-Tellerium (GeTe) being some of the most popular stochiometries. As these cells are scaled downward, the current/voltage needed to switch these materials becomes comparable to the voltage needed to sense the cell's state. The International Roadmap for Semiconductors aims to raise the threshold field of these devices from 66.6 V/mum to be at least 375 V/mum for the year 2024. These cells are also prone to resistance drift between states, leading to bit corruption and memory loss. Phase change material properties are known to influence PCM device performance such as crystallization temperature having an effect on data retention and litetime, while resistivity values in the amorphous and crystalline phases have an effect on the current/voltage needed to write/erase the cell. Addition of dopants is also known to modify the phase change material parameters. The materials G2S2T5, GeTe, with dopants - nitrogen, silicon, titanium, and aluminum oxide and undoped Gallium-Antimonide (GaSb) are studied for these desired characteristics. Thin films of these compositions are deposited via physical vapor deposition at IBM Watson Research Center. Crystallization temperatures are investigated using time resolved x-ray diffraction at Brookhaven National Laboratory. Subsequently, these are incorporated into PCM cells with structure designed as shown in Fig.1. A photolithographic lift-off process is developed to realize these devices. Electrical parameters such as the voltage needed to switch the device between memory states, the difference in resistance between these memory states, and the amount of time to switch are studied using HP4145 equipped with a pulsed generator. The results show that incorporating aluminum oxide dopant into G2S2T 5 raises its threshold field from 60 V/mum to 96 V/mum, while for GeTe, nitrogen doping raises its threshold field from 143 V/mum to 248 V/mum. It is found that GaSb at comparable volume devices has a threshold field of 130 V/mum. It was also observed that nitrogen and silicon doping made G 2S2T5 more resistant to drift, raising time to drift from 2 to 16.6 minutes while titanium and aluminum oxide doping made GeTe drift time rise from 3 to 20 minutes. It was also found that shrinking the cell area in GaSb from 1 mum2 to 0.5 mum2 lengthened drift time from 45s to over 24 hours. The PCM process developed in this study is extended to GeTe/Sb2 Te3 multilayers called the superlattice (SL) structure that opens opportunities for future work. Recent studies have shown that the superlattice structure exhibits low switching energies, therefore has potential for low power operation.

  1. Coexistence of bipolar and unipolar resistive switching behaviors in the double-layer Ag/ZnS-Ag/CuAlO2/Pt memory device

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Xu, Haiyang; Wang, Zhongqiang; Yu, Hao; Ma, Jiangang; Liu, Yichun

    2016-01-01

    The coexistence of uniform bipolar and unipolar resistive-switching (RS) characteristics was demonstrated in a double-layer Ag/ZnS-Ag/CuAlO2/Pt memory device. By changing the compliance current (CC) from 1 mA to 10 mA, the RS behavior can be converted from the bipolar mode (BRS) to the unipolar mode (URS). The temperature dependence of low resistance states further indicates that the CFs are composed of the Ag atoms and Cu vacancies for the BRS mode and URS mode, respectively. For this double-layer structure device, the thicker conducting filaments (CFs) will be formed in the ZnS-Ag layer, and it can act as tip electrodes. Thus, the formation and rupture of these two different CFs are located in the CuAlO2 layer, realizing the uniform and stable BRS and URS.

  2. Interfacial interactions and their impact on redox-based resistive switching memories (ReRAMs)

    NASA Astrophysics Data System (ADS)

    Valov, Ilia

    2017-09-01

    Redox-based resistive switching memories are nowadays one of the most studied systems in both academia and industrial communities. These devices are scalable down to an almost atomic level and are supposed to be applicable not only for next-generation nonvolatile memories, but also for neuromorphic computing, alternative logic operations and selector devices. The main characteristic feature of these cells is their nano- to sub-nano dimension. This makes the control and especially prediction of their properties very challenging. One of the ways to achieve better understanding and to improve the control of these systems is to study and modify their interfaces. In this review, first the fundamentals will be discussed, as these are essential for understanding which factors control the nanoscale interface properties. Further, different types of interactions at the electrode/solid electrolyte interface reported for ECM- and VCM-type cells will be exemplarily shown. Finally, the strategies and different solutions used to modify the interfaces and overcome the existing problems on the way to more stable and reliable devices will be highlighted.

  3. The effect of doping Sb on the electronic structure and the device characteristics of Ovonic Threshold Switches based on Ge-Se.

    PubMed

    Shin, Sang-Yeol; Choi, J M; Seo, Juhee; Ahn, Hyung-Woo; Choi, Yong Gyu; Cheong, Byung-ki; Lee, Suyoun

    2014-11-18

    The Ovonic Threshold Switch (OTS) based on an amorphous chalcogenide material has attracted much interest as a promising candidate for a high-performance thin-film switching device enabling 3D-stacking of memory devices. In this work, we studied on the electronic structure of amorphous Sb-doped Ge(0.6)Se(0.4) (in atomic mole fraction) film and its characteristics as to OTS devices. From the optical absorption spectroscopy measurement, the band gap (Eg) was found to decrease with increasing Sb content. In addition, as Sb content increased, the activation energy (Ea) for electrical conduction was found to decrease down to about one third of Eg from a half. As to the device characteristics, we found that the threshold switching voltage (Vth) drastically decreased with the Sb content. These results, being accountable in terms of the changes in the bonding configuration of constituent atoms as well as in the electronic structure such as the energy gap and trap states, advance an effective method of compositional adjustment to modulate Vth of an OTS device for various applications.

  4. Pulse width and height modulation for multi-level resistance in bi-layer TaOx based RRAM

    NASA Astrophysics Data System (ADS)

    Alamgir, Zahiruddin; Beckmann, Karsten; Holt, Joshua; Cady, Nathaniel C.

    2017-08-01

    Mutli-level switching in resistive memory devices enables a wide range of computational paradigms, including neuromorphic and cognitive computing. To this end, we have developed a bi-layer tantalum oxide based resistive random access memory device using Hf as the oxygen exchange layer. Multiple, discrete resistance levels were achieved by modulating the RESET pulse width and height, ranging from 2 kΩ to several MΩ. For a fixed pulse height, OFF state resistance was found to increase gradually with the increase in the pulse width, whereas for a fixed pulse width, the increase in the pulse height resulted in drastic changes in resistance. Resistive switching in these devices transitioned from Schottky emission in the OFF state to tunneling based conduction in the ON state, based on I-V curve fitting and temperature dependent current measurements. These devices also demonstrated endurance of more than 108 cycles with a satisfactory Roff/Ron ratio and retention greater than 104 s.

  5. A Novel Ni/WOX/W Resistive Random Access Memory with Excellent Retention and Low Switching Current

    NASA Astrophysics Data System (ADS)

    Chien, Wei-Chih; Chen, Yi-Chou; Lee, Feng-Ming; Lin, Yu-Yu; Lai, Erh-Kun; Yao, Yeong-Der; Gong, Jeng; Horng, Sheng-Fu; Yeh, Chiao-Wen; Tsai, Shih-Chang; Lee, Ching-Hsiung; Huang, Yu-Kai; Chen, Chun-Fu; Kao, Hsiao-Feng; Shih, Yen-Hao; Hsieh, Kuang-Yeu; Lu, Chih-Yuan

    2011-04-01

    The behavior of WOX resistive random access memory (ReRAM) is a strong function of the top electrode material, which controls the conduction mechanism and the forming process. When using a top electrode with low work function, the current conduction is limited by space charges. On the other hand, the mechanism becomes thermionic emission for devices with a high work function top electrode. These (thermionic) devices are also found to have higher initial resistance, reduced forming current, and larger resistance window. Based on these insights and considering the compatibility to complementary metal-oxide-semiconductor (CMOS) process, we proposed to use Ni as the top electrode for high performance WOX ReRAM devices. The new Ni/WOX/W device can be switched at a low current density less than 8×105 A/cm2, with RESET/SET resistance ratio greater than 100, and extremely good data retention of more than 300 years at 85 °C.

  6. Organic Bistable Memory Switching Phenomena in Squarylium-Dye Langmuir-Blodgett Films

    NASA Astrophysics Data System (ADS)

    Kushida, Masahito; Inomata, Hisao; Miyata, Hiroshi; Harada, Kieko; Saito, Kyoichi; Sugita, Kazuyuki

    2003-06-01

    We have investigated the relationship between the switching phenomena and H-like aggregates in squarylium-dye Langmuir-Blodgett (SQ LB) films. The current-voltage characteristics of SQ LB films sandwiched between the top gold electrode and the bottom aluminum electrode indicated conductance switching phenomena below the temperature of 100°C but not at 140°C. Current densities suddenly increased at switching voltages between 2 and 4 V. The switching voltage increased as the temperature increased between room temperature and 100°C. Current densities were 50-100 μA/cm2 in a low-impedance state (ON state). A high-impedance state (OFF state) can be recovered by applying a reverse bias, and therefore, these bistable devices are ideal for memory applications. The dependence of conductance switching phenomena and ultraviolet-visible absorption spectra on annealing temperatures was studied. The results revealed that conductance switching phenomena were caused by the presence of H-like aggregates in the SQ LB films.

  7. Thickness effect of ultra-thin Ta2O5 resistance switching layer in 28 nm-diameter memory cell

    NASA Astrophysics Data System (ADS)

    Park, Tae Hyung; Song, Seul Ji; Kim, Hae Jin; Kim, Soo Gil; Chung, Suock; Kim, Beom Yong; Lee, Kee Jeung; Kim, Kyung Min; Choi, Byung Joon; Hwang, Cheol Seong

    2015-11-01

    Resistance switching (RS) devices with ultra-thin Ta2O5 switching layer (0.5-2.0 nm) with a cell diameter of 28 nm were fabricated. The performance of the devices was tested by voltage-driven current—voltage (I-V) sweep and closed-loop pulse switching (CLPS) tests. A Ta layer was placed beneath the Ta2O5 switching layer to act as an oxygen vacancy reservoir. The device with the smallest Ta2O5 thickness (0.5 nm) showed normal switching properties with gradual change in resistance in I-V sweep or CLPS and high reliability. By contrast, other devices with higher Ta2O5 thickness (1.0-2.0 nm) showed abrupt switching with several abnormal behaviours, degraded resistance distribution, especially in high resistance state, and much lower reliability performance. A single conical or hour-glass shaped double conical conducting filament shape was conceived to explain these behavioural differences that depended on the Ta2O5 switching layer thickness. Loss of oxygen via lateral diffusion to the encapsulating Si3N4/SiO2 layer was suggested as the main degradation mechanism for reliability, and a method to improve reliability was also proposed.

  8. Power- and Low-Resistance-State-Dependent, Bipolar Reset-Switching Transitions in SiN-Based Resistive Random-Access Memory

    NASA Astrophysics Data System (ADS)

    Kim, Sungjun; Park, Byung-Gook

    2016-08-01

    A study on the bipolar-resistive switching of an Ni/SiN/Si-based resistive random-access memory (RRAM) device shows that the influences of the reset power and the resistance value of the low-resistance state (LRS) on the reset-switching transitions are strong. For a low LRS with a large conducting path, the sharp reset switching, which requires a high reset power (>7 mW), was observed, whereas for a high LRS with small multiple-conducting paths, the step-by-step reset switching with a low reset power (<7 mW) was observed. The attainment of higher nonlinear current-voltage ( I-V) characteristics in terms of the step-by-step reset switching is due to the steep current-increased region of the trap-controlled space charge-limited current (SCLC) model. A multilevel cell (MLC) operation, for which the reset stop voltage ( V STOP) is used in the DC sweep mode and an incremental amplitude is used in the pulse mode for the step-by-step reset switching, is demonstrated here. The results of the present study suggest that well-controlled conducting paths in a SiN-based RRAM device, which are not too strong and not too weak, offer considerable potential for the realization of low-power and high-density crossbar-array applications.

  9. Phase-Change Thermoplastic Elastomer Blends for Tunable Shape Memory by Physical Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mineart, Kenneth P.; Tallury, Syamal S.; Li, Tao

    Shape-memory polymers (SMPs) change shape upon exposure to an environmental stimulus.1-3 They are of considerable importance in the ongoing development of stimuli-responsive biomedical4,5 and deployable6 devices, and their function depends on the presence of two components.7 The first provides mechanical rigidity to ensure retention of one or more temporary strain states and also serves as a switch capable of releasing a temporary strain state. The second, a network-forming component, is required to restore the polymer to a prior strain state upon stimulation. In thermally-activated SMPs, the switching element typically relies on a melting or glass transition temperature,1-3,7 and broad ormore » multiple switches permit several temporary strain states.8-10 Chemical integration of network-forming and switching species endows SMPs with specific properties.8,10,11 Here, we demonstrate that phase-change materials incorporated into network-forming macromolecules yield shape-memory polymer blends (SMPBs) with physically tunable switching temperatures and recovery kinetics for use in multi-responsive laminates and shape-change electronics.« less

  10. Carbon nanomaterials for non-volatile memories

    NASA Astrophysics Data System (ADS)

    Ahn, Ethan C.; Wong, H.-S. Philip; Pop, Eric

    2018-03-01

    Carbon can create various low-dimensional nanostructures with remarkable electronic, optical, mechanical and thermal properties. These features make carbon nanomaterials especially interesting for next-generation memory and storage devices, such as resistive random access memory, phase-change memory, spin-transfer-torque magnetic random access memory and ferroelectric random access memory. Non-volatile memories greatly benefit from the use of carbon nanomaterials in terms of bit density and energy efficiency. In this Review, we discuss sp2-hybridized carbon-based low-dimensional nanostructures, such as fullerene, carbon nanotubes and graphene, in the context of non-volatile memory devices and architectures. Applications of carbon nanomaterials as memory electrodes, interfacial engineering layers, resistive-switching media, and scalable, high-performance memory selectors are investigated. Finally, we compare the different memory technologies in terms of writing energy and time, and highlight major challenges in the manufacturing, integration and understanding of the physical mechanisms and material properties.

  11. Unveiling the Switching Riddle of Silver Tetracyanoquinodimethane Towards Novel Planar Single-Crystalline Electrochemical Metallization Memories.

    PubMed

    Yang, Fangxu; Zhao, Qiang; Xu, Chunhui; Zou, Ye; Dong, Huanli; Zheng, Yonggang; Hu, Wenping

    2016-09-01

    The switching riddle of AgTCNQ is shown to be caused by the solid electrolyte mechanism. Both factors of bulk phase change and contact issue play key roles in the efficient work of the devices. An effective strategy is developed to locate the formation/disruption of Ag conductive filaments using the planar asymmetric configuration of Au/AgTCNQ/AlOx /Al. These novel electrochemical metallization memories demonstrate many promising properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Light-activated resistance switching in SiOx RRAM devices

    NASA Astrophysics Data System (ADS)

    Mehonic, A.; Gerard, T.; Kenyon, A. J.

    2017-12-01

    We report a study of light-activated resistance switching in silicon oxide (SiOx) resistive random access memory (RRAM) devices. Our devices had an indium tin oxide/SiOx/p-Si Metal/Oxide/Semiconductor structure, with resistance switching taking place in a 35 nm thick SiOx layer. The optical activity of the devices was investigated by characterising them in a range of voltage and light conditions. Devices respond to illumination at wavelengths in the range of 410-650 nm but are unresponsive at 1152 nm, suggesting that photons are absorbed by the bottom p-type silicon electrode and that generation of free carriers underpins optical activity. Applied light causes charging of devices in the high resistance state (HRS), photocurrent in the low resistance state (LRS), and lowering of the set voltage (required to go from the HRS to LRS) and can be used in conjunction with a voltage bias to trigger switching from the HRS to the LRS. We demonstrate negative correlation between set voltage and applied laser power using a 632.8 nm laser source. We propose that, under illumination, increased electron injection and hence a higher rate of creation of Frenkel pairs in the oxide—precursors for the formation of conductive oxygen vacancy filaments—reduce switching voltages. Our results open up the possibility of light-triggered RRAM devices.

  13. Focused ion beam and field-emission microscopy of metallic filaments in memory devices based on thin films of an ambipolar organic compound consisting of oxadiazole, carbazole, and fluorene units

    USGS Publications Warehouse

    Pearson, Christopher; Bowen, Leon; Lee, Myung Won; Fisher, Alison L.; Linton, Katherine E.; Bryce, Martin R.; Petty, Michael C.

    2013-01-01

    We report on the mechanism of operation of organic thin film resistive memory architectures based on an ambipolar compound consisting of oxadiazole, carbazole, and fluorene units. Cross-sections of the devices have been imaged by electron microscopy both before and after applying a voltage. The micrographs reveal the growth of filaments, with diameters of 50 nm–100 nm, on the metal cathode. We suggest that these are formed by the drift of aluminium ions from the anode and are responsible for the observed switching and negative differential resistance phenomena in the memory devices.

  14. A high performance transparent resistive switching memory made from ZrO2/AlON bilayer structure

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Ling; Chang, Hsiang-Yu; Lou, Jesse Jen-Chung; Tseng, Tseung-Yuen

    2016-04-01

    In this study, the switching properties of an indium tin oxide (ITO)/zirconium oxide (ZrO2)/ITO single layer device and those of a device with an aluminum oxynitride (AlON) layer were investigated. The devices with highly transparent characteristics were fabricated. Compared with the ITO/ZrO2/ITO single layer device, the ITO/ZrO2/AlON/ITO bilayer device exhibited a larger ON/OFF ratio, higher endurance performance, and superior retention properties by using a simple two-step forming process. These substantial improvements in the resistive switching properties were attributed to the minimized influence of oxygen migration through the ITO top electrode (TE), which can be realized by forming an asymmetrical conductive filament with the weakest part at the ZrO2/AlON interface. Therefore, in the ITO/ZrO2/AlON/ITO bilayer device, the regions where conductive filament formation and rupture occur can be effectively moved from the TE interface to the interior of the device.

  15. Metallic oxide switches using thick film technology

    NASA Technical Reports Server (NTRS)

    Patel, D. N.; Williams, L., Jr.

    1974-01-01

    Metallic oxide thick film switches were processed on alumina substrates using thick film technology. Vanadium pentoxide in powder form was mixed with other oxides e.g., barium, strontium copper and glass frit, ground to a fine powder. Pastes and screen printable inks were made using commercial conductive vehicles and appropriate thinners. Some switching devices were processed by conventional screen printing and firing of the inks and commercial cermet conductor terminals on 96% alumina substrates while others were made by applying small beads or dots of the pastes between platinum wires. Static, and dynamic volt-ampere, and pulse tests indicate that the switching and self-oscillatory characteristics of these devices could make them useful in memory element, oscillator, and automatic control applications.

  16. Analysis of the threshold switching mechanism of a Te-SbO selector device for crosspoint nonvolatile memory applications

    NASA Astrophysics Data System (ADS)

    Kim, Young Seok; Park, Ji Woon; Lee, Jong Ho; Choi, In Ah; Heo, Jaeyeong; Kim, Hyeong Joon

    2017-10-01

    The threshold switching mechanism of Te-SbO thin films with a unique microstructure in which a Te nanocluster is present in the SbO matrix is analyzed. During the electro-forming process, amorphous Te filaments are formed in the Te nanocluster. However, unlike conventional Ovonic threshold switching (TS) selector devices, it has been demonstrated that the off-current flows along the filament. Numerical calculations show that the off-current is due to the trap present in the filament. We also observed changes in TS parameters through controls in the strength or volume of the filaments.

  17. High-Performance Flexible Organic Nano-Floating Gate Memory Devices Functionalized with Cobalt Ferrite Nanoparticles.

    PubMed

    Jung, Ji Hyung; Kim, Sunghwan; Kim, Hyeonjung; Park, Jongnam; Oh, Joon Hak

    2015-10-07

    Nano-floating gate memory (NFGM) devices are transistor-type memory devices that use nanostructured materials as charge trap sites. They have recently attracted a great deal of attention due to their excellent performance, capability for multilevel programming, and suitability as platforms for integrated circuits. Herein, novel NFGM devices have been fabricated using semiconducting cobalt ferrite (CoFe2O4) nanoparticles (NPs) as charge trap sites and pentacene as a p-type semiconductor. Monodisperse CoFe2O4 NPs with different diameters have been synthesized by thermal decomposition and embedded in NFGM devices. The particle size effects on the memory performance have been investigated in terms of energy levels and particle-particle interactions. CoFe2O4 NP-based memory devices exhibit a large memory window (≈73.84 V), a high read current on/off ratio (read I(on)/I(off)) of ≈2.98 × 10(3), and excellent data retention. Fast switching behaviors are observed due to the exceptional charge trapping/release capability of CoFe2O4 NPs surrounded by the oleate layer, which acts as an alternative tunneling dielectric layer and simplifies the device fabrication process. Furthermore, the NFGM devices show excellent thermal stability, and flexible memory devices fabricated on plastic substrates exhibit remarkable mechanical and electrical stability. This study demonstrates a viable means of fabricating highly flexible, high-performance organic memory devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Electrical latching of microelectromechanical devices

    DOEpatents

    Garcia, Ernest J.; Sleefe, Gerard E.

    2004-11-02

    Methods are disclosed for row and column addressing of an array of microelectromechanical (MEM) devices. The methods of the present invention are applicable to MEM micromirrors or memory elements and allow the MEM array to be programmed and maintained latched in a programmed state with a voltage that is generally lower than the voltage required for electrostatically switching the MEM devices.

  19. Influence of thermal agitation on the electric field induced precessional magnetization reversal with perpendicular easy axis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Hongguang, E-mail: chenghg7932@gmail.com; Deng, Ning

    2013-12-15

    We investigated the influence of thermal agitation on the electric field induced precessional magnetization switching probability with perpendicular easy axis by solving the Fokker-Planck equation numerically with finite difference method. The calculated results show that the thermal agitation during the reversal process crucially influences the switching probability. The switching probability can be achieved is only determined by the thermal stability factor Δ of the free layer, it is independent on the device dimension, which is important for the high density device application. Ultra-low error rate down to the order of 10{sup −9} can be achieved for the device of thermalmore » stability factor Δ of 40. Low damping factor α material should be used for the free layer for high reliability device applications. These results exhibit potential of electric field induced precessional magnetization switching with perpendicular easy axis for ultra-low power, high speed and high density magnetic random access memory (MRAM) applications.« less

  20. Ovonic switching in tin selenide thin films. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Baxter, C. R.

    1974-01-01

    Amorphous tin selenide thin films which possess Ovonic switching properties were fabricated using vacuum deposition techniques. Results obtained indicate that memory type Ovonic switching does occur in these films the energy density required for switching from a high impedance to a low impedance state is dependent on the spacing between the electrodes of the device. The switching is also function of the magnitude of the applied voltage pulse. A completely automated computer controlled testing procedure was developed which allows precise control over the shape of the applied voltage switching pulse. A survey of previous experimental and theoretical work in the area of Ovonic switching is also presented.

  1. Computing with volatile memristors: an application of non-pinched hysteresis

    NASA Astrophysics Data System (ADS)

    Pershin, Y. V.; Shevchenko, S. N.

    2017-02-01

    The possibility of in-memory computing with volatile memristive devices, namely, memristors requiring a power source to sustain their memory, is demonstrated theoretically. We have adopted a hysteretic graphene-based field emission structure as a prototype of a volatile memristor, which is characterized by a non-pinched hysteresis loop. A memristive model of the structure is developed and used to simulate a polymorphic circuit implementing stateful logic gates, such as the material implication. Specific regions of parameter space realizing useful logic functions are identified. Our results are applicable to other realizations of volatile memory devices, such as certain NEMS switches.

  2. Bistable resistive memory behavior in gelatin-CdTe quantum dot composite film

    NASA Astrophysics Data System (ADS)

    Vallabhapurapu, Sreedevi; Rohom, Ashwini; Chaure, N. B.; Du, Shengzhi; Srinivasan, Ananthakrishnan

    2018-05-01

    Bistable memory behavior has been observed for the first time in gelatin type A thin film dispersed with functionalized CdTe quantum dots. The two terminal device with the polymer nanocomposite layer sandwiched between an indium tin oxide coated glass plate and an aluminium top electrode performs as a bistable resistive random access memory module. Butterfly shaped (O-shaped with a hysteresis in forward and reverse sweeps) current-voltage response is observed in this device. The conduction mechanism leading to the bistable electrical switching has been deduced to be a combination of ohmic and electron hopping.

  3. Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures

    PubMed Central

    Wen, Yao; Cai, Kaiming; Cheng, Ruiqing; Yin, Lei; Zhang, Yu; Li, Jie; Wang, Zhenxing; Wang, Feng; Wang, Fengmei; Shifa, Tofik Ahmed; Jiang, Chao; Yang, Hyunsoo

    2018-01-01

    Optoelectronic devices for information storage and processing are at the heart of optical communication technology due to their significant applications in optical recording and computing. The infrared radiations of 850, 1310, and 1550 nm with low energy dissipation in optical fibers are typical optical communication wavebands. However, optoelectronic devices that could convert and store the infrared data into electrical signals, thereby enabling optical data communications, have not yet been realized. We report an infrared memory device using MoS2/PbS van der Waals heterostructures, in which the infrared pulse intrigues a persistent resistance state that hardly relaxes within our experimental time scales (more than 104 s). The device fully retrieves the memory state even after powering off for 3 hours, indicating its potential for nonvolatile storage devices. Furthermore, the device presents a reconfigurable switch of 2000 stable cycles. Supported by a theoretical model with quantitative analysis, we propose that the optical memory and the electrical erasing phenomenon, respectively, originate from the localization of infrared-induced holes in PbS and gate voltage pulse-enhanced tunneling of electrons from MoS2 to PbS. The demonstrated MoS2 heterostructure–based memory devices open up an exciting field for optoelectronic infrared memory and programmable logic devices. PMID:29770356

  4. Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures.

    PubMed

    Wang, Qisheng; Wen, Yao; Cai, Kaiming; Cheng, Ruiqing; Yin, Lei; Zhang, Yu; Li, Jie; Wang, Zhenxing; Wang, Feng; Wang, Fengmei; Shifa, Tofik Ahmed; Jiang, Chao; Yang, Hyunsoo; He, Jun

    2018-04-01

    Optoelectronic devices for information storage and processing are at the heart of optical communication technology due to their significant applications in optical recording and computing. The infrared radiations of 850, 1310, and 1550 nm with low energy dissipation in optical fibers are typical optical communication wavebands. However, optoelectronic devices that could convert and store the infrared data into electrical signals, thereby enabling optical data communications, have not yet been realized. We report an infrared memory device using MoS 2 /PbS van der Waals heterostructures, in which the infrared pulse intrigues a persistent resistance state that hardly relaxes within our experimental time scales (more than 10 4 s). The device fully retrieves the memory state even after powering off for 3 hours, indicating its potential for nonvolatile storage devices. Furthermore, the device presents a reconfigurable switch of 2000 stable cycles. Supported by a theoretical model with quantitative analysis, we propose that the optical memory and the electrical erasing phenomenon, respectively, originate from the localization of infrared-induced holes in PbS and gate voltage pulse-enhanced tunneling of electrons from MoS 2 to PbS. The demonstrated MoS 2 heterostructure-based memory devices open up an exciting field for optoelectronic infrared memory and programmable logic devices.

  5. Nano-cone resistive memory for ultralow power operation.

    PubMed

    Kim, Sungjun; Jung, Sunghun; Kim, Min-Hwi; Kim, Tae-Hyeon; Bang, Suhyun; Cho, Seongjae; Park, Byung-Gook

    2017-03-24

    SiN x -based nano-structure resistive memory is fabricated by fully silicon CMOS compatible process integration including particularly designed anisotropic etching for the construction of a nano-cone silicon bottom electrode (BE). Bipolar resistive switching characteristics have significantly reduced switching current and voltage and are demonstrated in a nano-cone BE structure, as compared with those in a flat BE one. We have verified by systematic device simulations that the main cause of reduction in the performance parameters is the high electric field being more effectively concentrated at the tip of the cone-shaped BE. The greatly improved nonlinearity of the nano-cone resistive memory cell will be beneficial in the ultra-high-density crossbar array.

  6. Non-switching to switching transferring mechanism investigation for Ag/SiO x /p-Si structure with SiO x deposited by HWCVD

    NASA Astrophysics Data System (ADS)

    Liu, Yanhong; Wang, Ruoying; Li, Zhongyue; Wang, Song; Huang, Yang; Peng, Wei

    2018-04-01

    We proposed and fabricated an Ag/SiO x /p-Si sandwich structure, in which amorphous SiO x films were deposited through hot wire chemical vapor deposition (HWCVD) using tetraethylorthosilicate (TEOS) as Si and O precursor. Experimental results indicate that the I–V properties of this structure transfer from non-switching to switching operation as the SiO x deposition temperature increased. The device with SiO x deposited at high deposition temperature exhibits typical bipolar switching properties, which can be potentially used in resistive switching random accessible memory (RRAM). The transferring mechanism from non-switching to switching can be ascribed to the change of structural and electronic properties of SiO x active layer deposited at different temperatures, as evidenced by analyzing FTIR spectrum and fitting its I–V characteristics curves. This work demonstrates a safe and practicable low-temperature device-grade SiO x film deposition technology by conducting HWCVD from TEOS.

  7. Memristive behavior in BaTiO 3 thin films integrated with semiconductors

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srinivasa Rao; Prater, John; Narayan, Jay

    BaTiO3 has been studied for emerging non-volatile memory applications. However, most of the previous work has focused on this material when it was deposited on insulting oxide substrates such as SrTiO3. Unfortunately, this substrate is not suitable for CMOS-based microelectronics applications. This motivated us to carry out the present work. We have studied the resistive switching behavior in BaTiO3/La0.7Sr0.3MnO3 (BTO/LSMO) heterostructures integrated with Si (100) using pulsed laser deposition1,2. I-V measurements were conducted on BTO (500nm)/LSMO (25nm) devices at 200K, with the compliance current of 10mA. Here, Pt was used as a top electrode and LSMO served as bottom electrode. A few important observations are noted: (a) broad hysteresis in forward and reverse voltage sweeps -ideal for memory applications, (b) the ratio of high resistance to low resistance state is ~600 -important for switching devices, (c) the device is stable at least up to 50 cycles. However, we found that hysteretic behavior was collapsed after 36 cycles upon oxygen annealing of the device at 1 atmospheric pressure, 200o C for 1 hour, inferring the important role of oxygen vacancies in the resistive switching behavior of BTO/LSMO device. The comprehensive experimental data will be presented and discussed.1,2.

  8. Solution-processed Al-chelated gelatin for highly transparent non-volatile memory applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yu-Chi; Wang, Yeong-Her, E-mail: yhw@ee.ncku.edu.tw

    2015-03-23

    Using the biomaterial of Al-chelated gelatin (ACG) prepared by sol-gel method in the ITO/ACG/ITO structure, a highly transparent resistive random access memory (RRAM) was obtained. The transmittance of the fabricated device is approximately 83% at 550 nm while that of Al/gelatin/ITO is opaque. As to the ITO/gelatin/ITO RRAM, no resistive switching behavior can be seen. The ITO/ACG/ITO RRAM shows high ON/OFF current ratio (>10{sup 5}), low operation voltage, good uniformity, and retention characteristics at room temperature and 85 °C. The mechanism of the ACG-based memory devices is presented. The enhancement of these electrical properties can be attributed to the chelate effect ofmore » Al ions with gelatin. Results show that transparent ACG-based memory devices possess the potential for next-generation resistive memories and bio-electronic applications.« less

  9. Electro-optical switching and memory display device

    DOEpatents

    Skotheim, T.A.; O'Grady, W.E.; Linkous, C.A.

    1983-12-29

    An electro-optical display device having a housing with wall means including one transparent wall and at least one other wall. Counter electrodes are positioned on the transparent wall and display electrodes are positioned on the other wall with both electrodes in electrically conductive relationship with an electrolyte. Circuits means are connected to the display and counter electrodes to apply different predetermined control potentials between them. The display electrodes are covered with a thin electrically conductive polymer film that is characterized according to the invention by having embedded in it pigment molecules as counter ions. The display device is operable to be switched to a plurality of different visual color states at an exceptionally rapid switching rate while each of the color states is characterized by possessing good color intensity and definition.

  10. Electro-optical switching and memory display device

    DOEpatents

    Skotheim, Terje A.; O'Grady, William E.; Linkous, Clovis A.

    1986-01-01

    An electro-optical display device having a housing with wall means including one transparent wall and at least one other wall. Counter electrodes are positioned on the transparent wall and display electrodes are positioned on the other wall with both electrodes in electrically conductive relationship with an electrolyte. Circuit means are connected to the display and counter electrodes to apply different predetermined control potentials between them. The display electrodes are covered with a thin electrically conductive polymer film that is characterized according to the invention by having embedded in it pigment molecules as counter ions. The display device is operable to be switched to a plurality of different visual color states at an exceptionally rapid switching rate while each of the color states is characterized by possessing good color intensity and definition.

  11. Electrical Switching of Perovskite Thin-Film Resistors

    NASA Technical Reports Server (NTRS)

    Liu, Shangqing; Wu, Juan; Ignatiev, Alex

    2010-01-01

    Electronic devices that exploit electrical switching of physical properties of thin films of perovskite materials (especially colossal magnetoresistive materials) have been invented. Unlike some related prior devices, these devices function at room temperature and do not depend on externally applied magnetic fields. Devices of this type can be designed to function as sensors (exhibiting varying electrical resistance in response to varying temperature, magnetic field, electric field, and/or mechanical pressure) and as elements of electronic memories. The underlying principle is that the application of one or more short electrical pulse(s) can induce a reversible, irreversible, or partly reversible change in the electrical, thermal, mechanical, and magnetic properties of a thin perovskite film. The energy in the pulse must be large enough to induce the desired change but not so large as to destroy the film. Depending on the requirements of a specific application, the pulse(s) can have any of a large variety of waveforms (e.g., square, triangular, or sine) and be of positive, negative, or alternating polarity. In some applications, it could be necessary to use multiple pulses to induce successive incremental physical changes. In one class of applications, electrical pulses of suitable shapes, sizes, and polarities are applied to vary the detection sensitivities of sensors. Another class of applications arises in electronic circuits in which certain resistance values are required to be variable: Incorporating the affected resistors into devices of the present type makes it possible to control their resistances electrically over wide ranges, and the lifetimes of electrically variable resistors exceed those of conventional mechanically variable resistors. Another and potentially the most important class of applications is that of resistance-based nonvolatile-memory devices, such as a resistance random access memory (RRAM) described in the immediately following article, Electrically Variable Resistive Memory Devices (MFS-32511-1).

  12. Preparation and characterization of Sb2Se3 devices for memory applications

    NASA Astrophysics Data System (ADS)

    Shylashree, N.; Uma B., V.; Dhanush, S.; Abachi, Sagar; Nisarga, A.; Aashith, K.; Sangeetha B., G.

    2018-05-01

    In this paper, A phase change material of Sb2Se3 was proposed for non volatile memory application. The thin film device preparation and characterization were carried out. The deposition method used was vapor evaporation technique and a thickness of 180nm was deposited. The switching between the SET and RESET state is shown by the I-V characterization. The change of phase was studied using R-V characterization. Different fundamental modes were also identified using Raman spectroscopy.

  13. Electrochemical metallization memories--fundamentals, applications, prospects.

    PubMed

    Valov, Ilia; Waser, Rainer; Jameson, John R; Kozicki, Michael N

    2011-06-24

    This review focuses on electrochemical metallization memory cells (ECM), highlighting their advantages as the next generation memories. In a brief introduction, the basic switching mechanism of ECM cells is described and the historical development is sketched. In a second part, the full spectra of materials and material combinations used for memory device prototypes and for dedicated studies are presented. In a third part, the specific thermodynamics and kinetics of nanosized electrochemical cells are described. The overlapping of the space charge layers is found to be most relevant for the cell properties at rest. The major factors determining the functionality of the ECM cells are the electrode reaction and the transport kinetics. Depending on electrode and/or electrolyte material electron transfer, electro-crystallization or slow diffusion under strong electric fields can be rate determining. In the fourth part, the major device characteristics of ECM cells are explained. Emphasis is placed on switching speed, forming and SET/RESET voltage, R(ON) to R(OFF) ratio, endurance and retention, and scaling potentials. In the last part, circuit design aspects of ECM arrays are discussed, including the pros and cons of active and passive arrays. In the case of passive arrays, the fundamental sneak path problem is described and as well as a possible solution by two anti-serial (complementary) interconnected resistive switches per cell. Furthermore, the prospects of ECM with regard to further scalability and the ability for multi-bit data storage are addressed.

  14. Resistive Random Access Memory from Materials Development fnd Engineering to Novel Encryption and Neuromorphic Applications

    NASA Astrophysics Data System (ADS)

    Beckmann, Karsten

    Resistive random access memory (ReRAM or RRAM) is a novel form of non-volatile memory that is expected to play a major role in future computing and memory solutions. It has been shown that the resistance state of ReRAM devices can be precisely tuned by modulating switching voltages, by limiting peak current, and by adjusting the switching pulse properties. This enables the realization of novel applications such as memristive neuromorphic computing and neural network computing. I have developed two processes based on 100 and 300mm wafer platforms to demonstrate functional HfO2 based ReRAM devices. The first process is designed for a rapid materials engineering and device characterization, while the second is an advanced hybrid ReRAM/CMOS combination based on the IBM 65nm 10LPe process technology. The 100mm wafer efforts were used to show impacts of etch processes on ReRAM switching performance and the need for a rigorous structural evaluation of ReRAM devices before starting materials development. After an etch development, a bottom electrode comparison between the inert materials Pt, Ru and W was performed where Ru showed superior results with respect to yield and resilience against environmental impacts such as humidity over a 2-month period. A comparison of amorphous and crystalline devices showed no statistical difference in the performance with respect to random telegraph noise. This demonstrates, that the forming process fundamentally alters the crystallographic structure within and around the filament. The 300mm wafer development efforts were aimed towards implementing ReRAM in the FEOL, combined with CMOS, to yield a seamless process flow of 1 transistor 1 ReRAM structures (1T1R). This technology was customized with custom-developed tungsten metal 1 (M1) and dual tungsten/copper via 1 (V1) structures, within which the ReRAM stack is embedded. The ReRAM itself consists of an inert W bottom electrode, HfO2 based active switching layer, a Ti oxygen scavenger layer, and an inert TiN top electrode. Linear sweep and controlled pulse (down to 5 ns) based electrical characterization of 1 transistor 1 ReRAM (1T1R) elements was performed to determine key properties including endurance, reliability, and threshold voltages. We demonstrated endurance values above 1010 cycles with an average on/off ratio of 10, and pulse voltages for set/reset operation of +/-1.5V. The on-chip 1T1R structures show an excellent controllability with respect to the low and high resistive states by manipulating the peak current from 75 up to 350 mu?A resulting in 10 distinct low resistance states (LRS). Our results demonstrate that the set operation (which shifts the ReRAM device from the high to the low resistance state) is only dependent on the voltage of the switching pulse and the peak current limit. The reset operation, however, occurs in an analog fashion and appears to be dependent on the total energy of the applied switching pulse. Pulse energy was modulated by varying the peak voltage resulting in a larger relative change of the ReRAM device resistance. The incremental resistance changes are ideally suited to emulate synaptic weights for future implementation into neuromorphic architectures. Switching results from these devices were also used to develop a model time-delay physical unclonable function (PUF) circuit, which showed excellent performance when compared to a pure CMOS implementation with significant improvements in uniqueness, size and accuracy.

  15. Effects of device size and material on the bending performance of resistive-switching memory devices fabricated on flexible substrates

    NASA Astrophysics Data System (ADS)

    Lee, Won-Ho; Yoon, Sung-Min

    2017-05-01

    The resistive change memory (RCM) devices using amorphous In-Ga-Zn-O (IGZO) and microcrystalline Al-doped ZnO (AZO) thin films were fabricated on plastic substrates and characterized for flexible electronic applications. The device cell sizes were varied to 25 × 25, 50 × 50, 100 × 100, and 200 × 200 μm2 to examine the effects of cell size on the resistive-switching (RS) behaviors at a flat state and under bending conditions. First, it was found that the high-resistance state programmed currents markedly increased with the increase in the cell size. Second, while the AZO RCM devices did not exhibit RESET operations at a curvature radius smaller than 8.0 mm, the IGZO RCM devices showed sound RS behaviors even at a curvature radius of 4.5 mm. Third, for the IGZO RCM devices with the cell size bigger than 100 × 100 μm2, the RESET operation could not be performed at a curvature radius smaller than 6.5 mm. Thus, it was elucidated that the RS characteristics of the flexible RCM devices using oxide semiconductor thin films were closely related to the types of RS materials and the cell size of the device.

  16. Nonvolatile Bio-Memristor Fabricated with Egg Albumen Film

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Chih; Yu, Hsin-Chieh; Huang, Chun-Yuan; Chung, Wen-Lin; Wu, San-Lein; Su, Yan-Kuin

    2015-05-01

    This study demonstrates the fabrication and characterization of chicken egg albumen-based bio-memristors. By introducing egg albumen as an insulator to fabricate memristor devices comprising a metal/insulator/metal sandwich structure, significant bipolar resistive switching behavior can be observed. The 1/f noise characteristics of the albumen devices were measured, and results suggested that their memory behavior results from the formation and rupture of conductive filaments. Oxygen diffusion and electrochemical redox reaction of metal ions under a sufficiently large electric field are the principal physical mechanisms of the formation and rupture of conductive filaments; these mechanisms were observed by analysis of the time-of-flight secondary ion mass spectrometry (TOF-SIMS) and resistance-temperature (R-T) measurement results. The switching property of the devices remarkably improved by heat-denaturation of proteins; reliable switching endurance of over 500 cycles accompanied by an on/off current ratio (Ion/off) of higher than 103 were also observed. Both resistance states could be maintained for a suitably long time (>104 s). Taking the results together, the present study reveals for the first time that chicken egg albumen is a promising material for nonvolatile memory applications.

  17. Epitaxial Growth of Thin Ferroelectric Polymer Films on Graphene Layer for Fully Transparent and Flexible Nonvolatile Memory.

    PubMed

    Kim, Kang Lib; Lee, Wonho; Hwang, Sun Kak; Joo, Se Hun; Cho, Suk Man; Song, Giyoung; Cho, Sung Hwan; Jeong, Beomjin; Hwang, Ihn; Ahn, Jong-Hyun; Yu, Young-Jun; Shin, Tae Joo; Kwak, Sang Kyu; Kang, Seok Ju; Park, Cheolmin

    2016-01-13

    Enhancing the device performance of organic memory devices while providing high optical transparency and mechanical flexibility requires an optimized combination of functional materials and smart device architecture design. However, it remains a great challenge to realize fully functional transparent and mechanically durable nonvolatile memory because of the limitations of conventional rigid, opaque metal electrodes. Here, we demonstrate ferroelectric nonvolatile memory devices that use graphene electrodes as the epitaxial growth substrate for crystalline poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) polymer. The strong crystallographic interaction between PVDF-TrFE and graphene results in the orientation of the crystals with distinct symmetry, which is favorable for polarization switching upon the electric field. The epitaxial growth of PVDF-TrFE on a graphene layer thus provides excellent ferroelectric performance with high remnant polarization in metal/ferroelectric polymer/metal devices. Furthermore, a fully transparent and flexible array of ferroelectric field effect transistors was successfully realized by adopting transparent poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] semiconducting polymer.

  18. A study on the resistance switching of Ag2Se and Ta2O5 heterojunctions using structural engineering

    NASA Astrophysics Data System (ADS)

    Lee, Tae Sung; Lee, Nam Joo; Abbas, Haider; Hu, Quanli; Yoon, Tae-Sik; Lee, Hyun Ho; Le Shim, Ee; Kang, Chi Jung

    2018-01-01

    The resistive random access memory (RRAM) devices with heterostuctures have been investigated due to cycling stability, nonlinear switching, complementary resistive switching and self-compliance. The heterostructured devices can modulate the resistive switching (RS) behavior appropriately by bilayer structure with a variety of materials. In this study, the bipolar resistive switching characteristics of the bilayer structures composed of Ta2O5 and Ag2Se, which are transition-metal oxide (TMO) and silver chalcogenide, were investigated. The bilayer devices of Ta2O5 deposited on Ag2Se (Ta2O5/Ag2Se) and Ag2Se deposited on Ta2O5 (Ag2Se/Ta2O5) were fabricated for investigation of the RS characteristics by stacking sequence of Ta2O5 and Ag2Se. All operating voltages were applied to the Ag top electrode with the Pt bottom electrode grounded. The Ta2O5/Ag2Se device showed that a negative voltage sweep switched the device from high resistance state (HRS) to low resistance state (LRS) and a positive voltage sweep switched the device from LRS to HRS. On the contrary, for the Ag2Se/Ta2O5 device a positive voltage sweep switched the device from HRS to LRS, and a negative voltage sweep switched it from LRS to HRS. The polarity dependence of RS was attributed to the stacking sequence of Ta2O5 and Ag2Se. In addition, the combined heterostructured device of both bilayer stacks, Ta2O5/Ag2Se and Ag2Se/Ta2O5, exhibited the complementary switching characteristics. By using threshold switching devices, sneak path leakage can be reduced without additional selectors. The bilayer heterostructures of Ta2O5 and Ag2Se have various advantages such as self-compliance, reproducibility and forming-free stable RS. It confirms the possible applications of TMO and silver chalcogenide heterostructures in RRAM.

  19. Giant Electroresistive Ferroelectric Diode on 2DEG

    PubMed Central

    Kim, Shin-Ik; Jin Gwon, Hyo; Kim, Dai-Hong; Keun Kim, Seong; Choi, Ji-Won; Yoon, Seok-Jin; Jung Chang, Hye; Kang, Chong-Yun; Kwon, Beomjin; Bark, Chung-Wung; Hong, Seong-Hyeon; Kim, Jin-Sang; Baek, Seung-Hyub

    2015-01-01

    Manipulation of electrons in a solid through transmitting, storing, and switching is the fundamental basis for the microelectronic devices. Recently, the electroresistance effect in the ferroelectric capacitors has provided a novel way to modulate the electron transport by polarization reversal. Here, we demonstrate a giant electroresistive ferroelectric diode integrating a ferroelectric capacitor into two-dimensional electron gas (2DEG) at oxide interface. As a model system, we fabricate an epitaxial Au/Pb(Zr0.2Ti0.8)O3/LaAlO3/SrTiO3 heterostructure, where 2DEG is formed at LaAlO3/SrTiO3 interface. This device functions as a two-terminal, non-volatile memory of 1 diode-1 resistor with a large I+/I− ratio (>108 at ±6 V) and Ion/Ioff ratio (>107). This is attributed to not only Schottky barrier modulation at metal/ferroelectric interface by polarization reversal but also the field-effect metal-insulator transition of 2DEG. Moreover, using this heterostructure, we can demonstrate a memristive behavior for an artificial synapse memory, where the resistance can be continuously tuned by partial polarization switching, and the electrons are only unidirectionally transmitted. Beyond non-volatile memory and logic devices, our results will provide new opportunities to emerging electronic devices such as multifunctional nanoelectronics and neuromorphic electronics. PMID:26014446

  20. Influence of metal electrode on the performance of ZnO based resistance switching memories

    NASA Astrophysics Data System (ADS)

    Wang, Xueting; Qian, Haolei; Guan, Liao; Wang, Wei; Xing, Boran; Yan, Xiaoyuan; Zhang, Shucheng; Sha, Jian; Wang, Yewu

    2017-10-01

    Resistance random access memory (RRAM) is considered a promising candidate for the next generation of non-volatile memory. In this work, we fabricate metal (Ag, Ti, or Pt)/ZnO/Pt RRAM cells and then systematically investigate the effects of different top electrodes and their performance. With the formation and rupture of Ag-bridge and the shapeless oxygen vacancy filaments under a series of positive and negative bias, the set and reset processes have been successfully conducted in the Ag/ZnO/Pt device with very low work voltage, high on-off ratio, and good endurance. When applying the voltage bias to the Ti/ZnO/Pt device, the interfacial oxygen ions' migration causes the redox reaction of the conducting filament's oxygen vacancies, leading to the formation and rupture of the conducting filaments but in a relatively poor endurance. At the same time, for the Pt/ZnO/Pt device, once the filaments in the functional layer consisting of oxygen vacancies are formed, it is difficult to disrupt, resulting in the permanent low resistance state after a forming-like process. The results demonstrated that the devices with a metallic conductive bridge mechanism show much better switching behaviors than those with an oxygen ion/vacancy filament mechanism.

  1. Resistive Switching of Sub-10 nm TiO2 Nanoparticle Self-Assembled Monolayers

    PubMed Central

    Schmidt, Dirk Oliver; Raab, Nicolas; Santhanam, Venugopal; Dittmann, Regina; Simon, Ulrich

    2017-01-01

    Resistively switching devices are promising candidates for the next generation of non-volatile data memories. Such devices are up to now fabricated mainly by means of top-down approaches that apply thin films sandwiched between electrodes. Recent works have demonstrated that resistive switching (RS) is also feasible on chemically synthesized nanoparticles (NPs) in the 50 nm range. Following this concept, we developed this approach further to the sub-10 nm range. In this work, we report RS of sub-10 nm TiO2 NPs that were self-assembled into monolayers and transferred onto metallic substrates. We electrically characterized these monolayers in regard to their RS properties by means of a nanorobotics system in a scanning electron microscope, and found features typical of bipolar resistive switching. PMID:29113050

  2. Dimensionality effects in chalcogenide-based devices

    NASA Astrophysics Data System (ADS)

    Kostylev, S. A.

    2013-06-01

    The multiplicity of fundamental bulk effects with small characteristic dimensions and short times and diversity of their combinations attracts a lot of researcher and industrialist attention in nanoelectronics and photonics to chalcogenide materials. Experimental data presented on dimensional effects of electrical chalcogenide switching (threshold voltage and threshold current dependence on device area and the film thickness), and in phase-change memory (switching, programming and read parameters), are analyzed from the point of view of choice of low dimensional materials with S-NDC and participation of electrical instabilities - high current density filaments. New ways of improving parameters of phase-change devices are proposed together with new criteria of material choice.

  3. Impact of AlO x layer on resistive switching characteristics and device-to-device uniformity of bilayered HfO x -based resistive random access memory devices

    NASA Astrophysics Data System (ADS)

    Chuang, Kai-Chi; Chung, Hao-Tung; Chu, Chi-Yan; Luo, Jun-Dao; Li, Wei-Shuo; Li, Yi-Shao; Cheng, Huang-Chung

    2018-06-01

    An AlO x layer was deposited on HfO x , and bilayered dielectric films were found to confine the formation locations of conductive filaments (CFs) during the forming process and then improve device-to-device uniformity. In addition, the Ti interposing layer was also adopted to facilitate the formation of oxygen vacancies. As a result, the resistive random access memory (RRAM) device with TiN/Ti/AlO x (1 nm)/HfO x (6 nm)/TiN stack layers demonstrated excellent device-to-device uniformity although it achieved slightly larger resistive switching characteristics, which were forming voltage (V Forming) of 2.08 V, set voltage (V Set) of 1.96 V, and reset voltage (V Reset) of ‑1.02 V, than the device with TiN/Ti/HfO x (6 nm)/TiN stack layers. However, the device with a thicker 2-nm-thick AlO x layer showed worse uniformity than the 1-nm-thick one. It was attributed to the increased oxygen atomic percentage in the bilayered dielectric films of the 2-nm-thick one. The difference in oxygen content showed that there would be less oxygen vacancies to form CFs. Therefore, the random growth of CFs would become severe and the device-to-device uniformity would degrade.

  4. The effect of doping Sb on the electronic structure and the device characteristics of Ovonic Threshold Switches based on Ge-Se

    PubMed Central

    Shin, Sang-Yeol; Choi, J. M.; Seo, Juhee; Ahn, Hyung-Woo; Choi, Yong Gyu; Cheong, Byung-ki; Lee, Suyoun

    2014-01-01

    The Ovonic Threshold Switch (OTS) based on an amorphous chalcogenide material has attracted much interest as a promising candidate for a high-performance thin-film switching device enabling 3D-stacking of memory devices. In this work, we studied on the electronic structure of amorphous Sb-doped Ge0.6Se0.4 (in atomic mole fraction) film and its characteristics as to OTS devices. From the optical absorption spectroscopy measurement, the band gap (Eg) was found to decrease with increasing Sb content. In addition, as Sb content increased, the activation energy (Ea) for electrical conduction was found to decrease down to about one third of Eg from a half. As to the device characteristics, we found that the threshold switching voltage (Vth) drastically decreased with the Sb content. These results, being accountable in terms of the changes in the bonding configuration of constituent atoms as well as in the electronic structure such as the energy gap and trap states, advance an effective method of compositional adjustment to modulate Vth of an OTS device for various applications. PMID:25403772

  5. Indium-oxide nanoparticles for RRAM devices compatible with CMOS back-end-off-line

    NASA Astrophysics Data System (ADS)

    León Pérez, Edgar A. A.; Guenery, Pierre-Vincent; Abouzaid, Oumaïma; Ayadi, Khaled; Brottet, Solène; Moeyaert, Jérémy; Labau, Sébastien; Baron, Thierry; Blanchard, Nicholas; Baboux, Nicolas; Militaru, Liviu; Souifi, Abdelkader

    2018-05-01

    We report on the fabrication and characterization of Resistive Random Access Memory (RRAM) devices based on nanoparticles in MIM structures. Our approach is based on the use of indium oxide (In2O3) nanoparticles embedded in a dielectric matrix using CMOS-full-compatible fabrication processes in view of back-end-off-line integration for non-volatile memory (NVM) applications. A bipolar switching behavior has been observed using current-voltage measurements (I-V) for all devices. Very high ION/IOFF ratios have been obtained up to 108. Our results provide insights for further integration of In2O3 nanoparticles-based devices for NVM applications. He is currently a Postdoctoral Researcher in the Institute of Nanotechnologies of Lyon (INL), INSA de Lyon, France, in the Electronics Department. His current research include indium oxide nanoparticles for non-volatile memory applications, and the integrations of these devices in CMOS BEOL.

  6. Thickness effect of nickel oxide thin films on associated solution-processed write-once-read-many-times memory devices

    NASA Astrophysics Data System (ADS)

    Wang, Xiao Lin; Liu, Zhen; Wen, Chao; Liu, Yang; Wang, Hong Zhe; Chen, T. P.; Zhang, Hai Yan

    2018-06-01

    With self-prepared nickel acetate based solution, NiO thin films with different thicknesses have been fabricated by spin coating followed by thermal annealing. By forming a two-terminal Ag/NiO/ITO structure on glass, write-once-read-many-times (WORM) memory devices are realized. The WORM memory behavior is based on a permanent switching from an initial high-resistance state (HRS) to an irreversible low-resistance state (LRS) under the application of a writing voltage, due to the formation of a solid bridge across Ag and ITO electrodes by conductive filaments (CFs). The memory performance is investigated as a function of the NiO film thickness, which is determined by the number of spin-coated NiO layers. For devices with 4 and 6 NiO layers, data retention up to 104 s and endurance of 103 reading operations in the measurement range have been obtained with memory window maintained above four orders for both HRS and LRS. Before and after writing, the devices show the hopping and ohmic conduction behaviors, respectively, confirming that the CF formation could be the mechanism responsible for writing in the WORM memory devices.

  7. Redox driven conductance changes for resistive memory

    NASA Astrophysics Data System (ADS)

    Shoute, Lian C. T.; Pekas, Nikola; Wu, Yiliang; McCreery, Richard L.

    2011-03-01

    The relationship between bias-induced redox reactions and resistance switching is considered for memory devices containing TiO2 or a conducting polymer in "molecular heterojunctions" consisting of thin (2-25 nm) films of covalently bonded molecules, polymers, and oxides. Raman spectroscopy was used to monitor changes in the oxidation state of polythiophene in Au/P3HT/SiO2/Au devices, and it was possible to directly determine the formation and stability of the conducting polaron state of P3HT by applied bias pulses [P3HT = poly(3-hexyl thiophene)]. Polaron formation was strongly dependent on junction composition, particularly on the interfaces between the polymer, oxide, and electrodes. In all cases, trace water was required for polaron formation, leading to the proposal that water reduction acts as a redox counter-reaction to polymer oxidation. Polaron stability was longest for the case of a direct contact between Au and SiO2, implying that catalytic water reduction at the Au surface generated hydroxide ions which stabilized the cationic polaron. The spectroscopic information about the dependence of polaron stability on device composition will be useful for designing and monitoring resistive switching memory based on conducting polymers, with or without TiO2 present.

  8. Non-destructive reversible resistive switching in Cr doped Mott insulator Ca2RuO4: Interface vs bulk effects

    NASA Astrophysics Data System (ADS)

    Shen, Shida; Williamson, Morgan; Cao, Gang; Zhou, Jianshi; Goodenough, John; Tsoi, Maxim

    2017-12-01

    A non-destructive reversible resistive switching is demonstrated in single crystals of Cr-doped Mott insulator Ca2RuO4. An applied electrical bias was shown to reduce the DC resistance of the crystal by as much as 75%. The original resistance of the sample could be restored by applying an electrical bias of opposite polarity. We have studied this resistive switching as a function of the bias strength, applied magnetic field, and temperature. A combination of 2-, 3-, and 4-probe measurements provide a means to distinguish between bulk and interfacial contributions to the switching and suggests that the switching is mostly an interfacial effect. The switching was tentatively attributed to electric-field driven lattice distortions which accompany the impurity-induced Mott transition. This field effect was confirmed by temperature-dependent resistivity measurements which show that the activation energy of this material can be tuned by an applied DC electrical bias. The observed resistance switching can potentially be used for building non-volatile memory devices like resistive random access memory.

  9. Development and characterization of a ferroelectric non-volatile memory for flexible electronics

    NASA Astrophysics Data System (ADS)

    Mao, Duo

    Flexible electronics have received significant attention recently because of the potential applications in displays, sensors, radio frequency identification (RFID) tags and other integrated circuits. Electrically addressable non-volatile memory is a key component for these applications. The major challenges are to fabricate the memory at a low temperature compatible with plastic substrates while maintaining good device reliability, by being compatible with process as needed to integrate with other electronic components for system-on-chip applications. In this work, ferroelectric capacitors fabricated at low temperature were developed. Based on that, a ferroelectric random access memory (FRAM) for flexible electronics was developed and characterized. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer was used as a ferroelectric material and a photolithographic process was developed to fabricate ferroelectric capacitors. Different characterization methods including atomic force microscopy, x-ray diffraction and Fourier-transform infrared reflection-absorption spectroscopy were used to study the material properties of the P(VDF-TrFE) film. The material properties were correlated with the electrical characteristics of the ferroelectric capacitors. To understand the polarization switching behavior of the P(VDF-TrFE) ferroelectric capacitors, a Nucleation-Limited-Switching (NLS) model was used to study the switching kinetics. The switching kinetics were characterized over the temperature range from -60 °C to 100 °C. Fatigue characteristics were studied at different electrical stress voltages and frequencies to evaluate the reliability of the ferroelectric capacitor. The degradation mechanism is attributed to the increase of the activation field and the suppression of the switchable polarization. To develop a FRAM circuit for flexible electronics, an n-channel thin film transistor (TFT) based on CdS as the semiconductor was integrated with a P(VDF-TrFE) ferroelectric capacitor for a one-transistor-one-capacitor (1T1C) memory cell. The 1T1C devices were fabricated at low temperature and demonstrated a memory window (DeltaVBL) of 2.3 V and 3.5 V, depending on the device dimensions. Next, FRAM arrays (4-bit, 16-bit and 64-bit) based on the two-transistor-two-capacitor (2T2C) memory cell architecture were designed and fabricated using a photolithographic process with 9 masks. The fabricated FRAM arrays were packaged in 28-pin ceramic packages. The read/write schemes were developed and the FRAM arrays show successful program and erase with a memory window of approximately 1 V at the output of the sense amplifier.

  10. Fabrication of poly(methyl methacrylate)-MoS{sub 2}/graphene heterostructure for memory device application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinde, Sachin M.; Tanemura, Masaki; Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp

    2014-12-07

    Combination of two dimensional graphene and semi-conducting molybdenum disulfide (MoS{sub 2}) is of great interest for various electronic device applications. Here, we demonstrate fabrication of a hybridized structure with the chemical vapor deposited graphene and MoS{sub 2} crystals to configure a memory device. Elongated hexagonal and rhombus shaped MoS{sub 2} crystals are synthesized by sulfurization of thermally evaporated molybdenum oxide (MoO{sub 3}) thin film. Scanning transmission electron microscope studies reveal atomic level structure of the synthesized high quality MoS{sub 2} crystals. In the prospect of a memory device fabrication, poly(methyl methacrylate) (PMMA) is used as an insulating dielectric material asmore » well as a supporting layer to transfer the MoS{sub 2} crystals. In the fabricated device, PMMA-MoS{sub 2} and graphene layers act as the functional and electrode materials, respectively. Distinctive bistable electrical switching and nonvolatile rewritable memory effect is observed in the fabricated PMMA-MoS{sub 2}/graphene heterostructure. The developed material system and demonstrated memory device fabrication can be significant for next generation data storage applications.« less

  11. Spectromicroscopic insights for rational design of redox-based memristive devices

    PubMed Central

    Baeumer, Christoph; Schmitz, Christoph; Ramadan, Amr H. H.; Du, Hongchu; Skaja, Katharina; Feyer, Vitaliy; Müller, Philipp; Arndt, Benedikt; Jia, Chun-Lin; Mayer, Joachim; De Souza, Roger A.; Michael Schneider, Claus; Waser, Rainer; Dittmann, Regina

    2015-01-01

    The demand for highly scalable, low-power devices for data storage and logic operations is strongly stimulating research into resistive switching as a novel concept for future non-volatile memory devices. To meet technological requirements, it is imperative to have a set of material design rules based on fundamental material physics, but deriving such rules is proving challenging. Here, we elucidate both switching mechanism and failure mechanism in the valence-change model material SrTiO3, and on this basis we derive a design rule for failure-resistant devices. Spectromicroscopy reveals that the resistance change during device operation and failure is indeed caused by nanoscale oxygen migration resulting in localized valence changes between Ti4+ and Ti3+. While fast reoxidation typically results in retention failure in SrTiO3, local phase separation within the switching filament stabilizes the retention. Mimicking this phase separation by intentionally introducing retention-stabilization layers with slow oxygen transport improves retention times considerably. PMID:26477940

  12. Highly-Ordered 3D Vertical Resistive Switching Memory Arrays with Ultralow Power Consumption and Ultrahigh Density.

    PubMed

    Al-Haddad, Ahmed; Wang, Chengliang; Qi, Haoyuan; Grote, Fabian; Wen, Liaoyong; Bernhard, Jörg; Vellacheri, Ranjith; Tarish, Samar; Nabi, Ghulam; Kaiser, Ute; Lei, Yong

    2016-09-07

    Resistive switching random access memories (RRAM) have attracted great scientific and industrial attention for next generation data storage because of their advantages of nonvolatile properties, high density, low power consumption, fast writing/erasing speed, good endurance, and simple and small operation system. Here, by using a template-assisted technique, we demonstrate a three-dimensional highly ordered vertical RRAM device array with density as high as that of the nanopores of the template (10(8)-10(9) cm(-2)), which can also be fabricated in large area. The high crystallinity of the materials, the large contact area and the intimate semiconductor/electrode interface (3 nm interfacial layer) make the ultralow voltage operation (millivolt magnitude) and ultralow power consumption (picowatt) possible. Our procedure for fabrication of the nanodevice arrays in large area can be used for producing many other different materials and such three-dimensional electronic device arrays with the capability to adjust the device densities can be extended to other applications of the next generation nanodevice technology.

  13. A high performance transparent resistive switching memory made from ZrO{sub 2}/AlON bilayer structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Tsung-Ling; Chang, Hsiang-Yu; Tseng, Tseung-Yuen, E-mail: tseng@cc.nctu.edu.tw

    2016-04-11

    In this study, the switching properties of an indium tin oxide (ITO)/zirconium oxide (ZrO{sub 2})/ITO single layer device and those of a device with an aluminum oxynitride (AlON) layer were investigated. The devices with highly transparent characteristics were fabricated. Compared with the ITO/ZrO{sub 2}/ITO single layer device, the ITO/ZrO{sub 2}/AlON/ITO bilayer device exhibited a larger ON/OFF ratio, higher endurance performance, and superior retention properties by using a simple two-step forming process. These substantial improvements in the resistive switching properties were attributed to the minimized influence of oxygen migration through the ITO top electrode (TE), which can be realized by formingmore » an asymmetrical conductive filament with the weakest part at the ZrO{sub 2}/AlON interface. Therefore, in the ITO/ZrO{sub 2}/AlON/ITO bilayer device, the regions where conductive filament formation and rupture occur can be effectively moved from the TE interface to the interior of the device.« less

  14. Charged Defects-Induced Resistive Switching in Sb2Te3 Memristor

    NASA Astrophysics Data System (ADS)

    Zhang, J. J.; Liu, N.; Sun, H. J.; Yan, P.; Li, Y.; Zhong, S. J.; Xie, S.; Li, R. J.; Miao, X. S.

    2016-02-01

    Resistive switching (RS) characteristics of Ta/Sb2Te3/Ta and Ag/Sb2Te3/Ta memory devices have been investigated. The I- V curves show the bipolar RS at room temperature. We have demonstrated that the redistribution and migration of charged defects are responsible for the memristive switching. By using Ag electrode instead of Ta, more defects can be created near the Ag/Sb2Te3 interface, which is a feasible method to eliminate the electroforming process.

  15. Kinetics of Domain Switching by Mechanical and Electrical Stimulation in Relaxor-Based Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Chen, Zibin; Hong, Liang; Wang, Feifei; An, Xianghai; Wang, Xiaolin; Ringer, Simon; Chen, Long-Qing; Luo, Haosu; Liao, Xiaozhou

    2017-12-01

    Ferroelectric materials have been extensively explored for applications in high-density nonvolatile memory devices because of their ferroelectric-ferroelastic domain-switching behavior under electric loading or mechanical stress. However, the existence of ferroelectric and ferroelastic backswitching would cause significant data loss, which affects the reliability of data storage. Here, we apply in situ transmission electron microscopy and phase-field modeling to explore the unique ferroelastic domain-switching kinetics and the origin of this in relaxor-based Pb (Mg1 /3Nb2 /3)O3-33 % PbTiO3 single-crystal pillars under electrical and mechanical stimulations. Results showed that the electric-mechanical hysteresis loop shifted for relaxor-based single-crystal pillars because of the low energy levels of domains in the material and the constraint on the pillars, resulting in various mechanically reversible and irreversible domain-switching states. The phenomenon can potentially be used for advanced bit writing and reading in nonvolatile memories, which effectively overcomes the backswitching problem and broadens the types of ferroelectric materials for nonvolatile memory applications.

  16. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM.

    PubMed

    Cooper, David; Baeumer, Christoph; Bernier, Nicolas; Marchewka, Astrid; La Torre, Camilla; Dunin-Borkowski, Rafal E; Menzel, Stephan; Waser, Rainer; Dittmann, Regina

    2017-06-01

    The control and rational design of redox-based memristive devices, which are highly attractive candidates for next-generation nonvolatile memory and logic applications, is complicated by competing and poorly understood switching mechanisms, which can result in two coexisting resistance hystereses that have opposite voltage polarity. These competing processes can be defined as regular and anomalous resistive switching. Despite significant characterization efforts, the complex nanoscale redox processes that drive anomalous resistive switching and their implications for current transport remain poorly understood. Here, lateral and vertical mapping of O vacancy concentrations is used during the operation of such devices in situ in an aberration corrected transmission electron microscope to explain the anomalous switching mechanism. It is found that an increase (decrease) in the overall O vacancy concentration within the device after positive (negative) biasing of the Schottky-type electrode is associated with the electrocatalytic release and reincorporation of oxygen at the electrode/oxide interface and is responsible for the resistance change. This fundamental insight presents a novel perspective on resistive switching processes and opens up new technological opportunities for the implementation of memristive devices, as anomalous switching can now be suppressed selectively or used deliberately to achieve the desirable so-called deep Reset. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Piezoelectric control of magnetoelectric coupling driven non-volatile memory switching and self cooling effects in FE/FSMA multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Singh, Kirandeep; Kaur, Davinder

    2017-02-01

    The manipulation of magnetic states and materials' spin degree-of-freedom via a control of an electric (E-) field has been recently pursued to develop magnetoelectric (ME) coupling-driven electronic data storage devices with high read/write endurance, fast dynamic response, and low energy dissipation. One major hurdle for this approach is to develop reliable materials which should be compatible with prevailing silicon (Si)-based complementary metal-oxide-semiconductor (CMOS) technology, simultaneously allowing small voltage for the tuning of magnetization switching. In this regard, multiferroic heterostructures where ferromagnetic (FM) and ferroelectric (FE) layers are alternatively grown on conventional Si substrates are promising as the piezoelectric control of magnetization switching is anticipated to be possible by an E-field. In this work, we study the ferromagnetic shape memory alloys based PbZr0.52Ti0.48O3/Ni50Mn35In15 (PZT/Ni-Mn-In) multiferroic heterostructures, and investigate their potential for CMOS compatible non-volatile magnetic data storage applications. We demonstrate the voltage-impulse controlled nonvolatile, reversible, and bistable magnetization switching at room temperature in Si-integrated PZT/Ni-Mn-In thin film multiferroic heterostructures. We also thoroughly unveil the various intriguing features in these materials, such as E-field tuned ME coupling and magnetocaloric effect, shape memory induced ferroelectric modulation, improved fatigue endurance as well as Refrigeration Capacity (RC). This comprehensive study suggests that these novel materials have a great potential for the development of unconventional nanoscale memory and refrigeration devices with self-cooling effect and enhanced refrigeration efficiency, thus providing a new venue for their applications.

  18. Heat switch technology for cryogenic thermal management

    NASA Astrophysics Data System (ADS)

    Shu, Q. S.; Demko, J. A.; E Fesmire, J.

    2017-12-01

    Systematic review is given of development of novel heat switches at cryogenic temperatures that alternatively provide high thermal connection or ideal thermal isolation to the cold mass. These cryogenic heat switches are widely applied in a variety of unique superconducting systems and critical space applications. The following types of heat switch devices are discussed: 1) magnetic levitation suspension, 2) shape memory alloys, 3) differential thermal expansion, 4) helium or hydrogen gap-gap, 5) superconducting, 6) piezoelectric, 7) cryogenic diode, 8) magneto-resistive, and 9) mechanical demountable connections. Advantages and limitations of different cryogenic heat switches are examined along with the outlook for future thermal management solutions in materials and cryogenic designs.

  19. Origin of multi-level switching and telegraphic noise in organic nanocomposite memory devices

    PubMed Central

    Song, Younggul; Jeong, Hyunhak; Chung, Seungjun; Ahn, Geun Ho; Kim, Tae-Young; Jang, Jingon; Yoo, Daekyoung; Jeong, Heejun; Javey, Ali; Lee, Takhee

    2016-01-01

    The origin of negative differential resistance (NDR) and its derivative intermediate resistive states (IRSs) of nanocomposite memory systems have not been clearly analyzed for the past decade. To address this issue, we investigate the current fluctuations of organic nanocomposite memory devices with NDR and the IRSs under various temperature conditions. The 1/f noise scaling behaviors at various temperature conditions in the IRSs and telegraphic noise in NDR indicate the localized current pathways in the organic nanocomposite layers for each IRS. The clearly observed telegraphic noise with a long characteristic time in NDR at low temperature indicates that the localized current pathways for the IRSs are attributed to trapping/de-trapping at the deep trap levels in NDR. This study will be useful for the development and tuning of multi-bit storable organic nanocomposite memory device systems. PMID:27659298

  20. An electrically actuated molecular toggle switch

    NASA Astrophysics Data System (ADS)

    Gerhard, Lukas; Edelmann, Kevin; Homberg, Jan; Valášek, Michal; Bahoosh, Safa G.; Lukas, Maya; Pauly, Fabian; Mayor, Marcel; Wulfhekel, Wulf

    2017-03-01

    Molecular electronics is considered a promising approach for future nanoelectronic devices. In order that molecular junctions can be used as electrical switches or even memory devices, they need to be actuated between two distinct conductance states in a controlled and reproducible manner by external stimuli. Here we present a tripodal platform with a cantilever arm and a nitrile group at its end that is lifted from the surface. The formation of a coordinative bond between the nitrile nitrogen and the gold tip of a scanning tunnelling microscope can be controlled by both electrical and mechanical means, and leads to a hysteretic switching of the conductance of the junction by more than two orders of magnitude. This toggle switch can be actuated with high reproducibility so that the forces involved in the mechanical deformation of the molecular cantilever can be determined precisely with scanning tunnelling microscopy.

  1. Performance analysis of resistive switching devices based on BaTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Samardzic, Natasa; Kojic, Tijana; Vukmirovic, Jelena; Tripkovic, Djordjije; Bajac, Branimir; Srdic, Vladimir; Stojanovic, Goran

    2016-03-01

    Resitive switching devices, memristors, have recenty attracted much attention due to promising performances and potential applications in the field of logic and memory devices. Here, we present thin film BaTiO3 based memristor fabricated using ink-jet printing technique. Active material is a single layer barium titanate film with thickness of ̴100 nm, sandwitched between metal electodes. Printing parameters were optimized aiming to achieve stable drop flow and uniform printed layer. Current-voltage characteristics show typical memristive behavior with pinched hysteresis loop crossed at the origin, with marked differences between High Resistive State (HRS) and Low Resistive State (LRS). Obtained resistive states are stable during numerous switching processes. The device also shows unipolar switching effect for negative voltage impulses. Variable voltage impulse amplitudes leads to the shifting of the energy levels of electode contacts resulting in changing of the overall current through the device. Structural charcterization have been performed using XRD analysis and SEM micrography. High-temperature current-voltage measurements combined with transport parameter analysis using Hall efect measurement system (HMS 3000) and Impedance Analyzer AC measurements allows deeper insigth into conduction mechanism of ferroelectric memristors.

  2. Low Temperature Resistive Switching Behavior in a Manganite

    NASA Astrophysics Data System (ADS)

    Salvo, Christopher; Lopez, Melinda; Tsui, Stephen

    2012-02-01

    The development of new nonvolatile memory devices remains an important field of consumer electronics. A possible candidate is bipolar resistive switching, a method by which the resistance of a material changes when a voltage is applied. Although there is a great deal of research on this topic, not much has been done at low temperatures. In this work, we compare the room temperature and low temperature behaviors of switching in a manganite thin film. The data indicates that the switching is suppressed upon cooling to cryogenic temperatures, and the presence of crystalline charge traps is tied to the physical mechanism.

  3. Copper atomic-scale transistors.

    PubMed

    Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas

    2017-01-01

    We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.

  4. Insertion of a pentacene layer into the gold/poly(methyl methacrylate)/heavily doped p-type Si/indium device leading to the modulation of resistive switching characteristics

    NASA Astrophysics Data System (ADS)

    Hung, Cheng-Chun; Lin, Yow-Jon

    2018-01-01

    In order to get a physical insight into the pentacene interlayer-modulated resistive switching (RS) characteristics, the Au/pentacene/poly(methyl methacrylate) (PMMA)/heavily doped p-type Si (p+-Si)/In and Au/PMMA/p+-Si/In devices are fabricated and the device performance is provided. The Au/pentacene/PMMA/p+-Si/In device shows RS behavior, whereas the Au/PMMA/p+-Si/In device exhibits the set/reset-free hysteresis current-voltage characteristics. The insertion of a pentacene layer is a noticeable contribution to the RS characteristic. This is because of the occurrence of carrier accumulation/depletion in the pentacene interlayer. The transition from carrier depletion to carrier accumulation (carrier accumulation to carrier depletion) in pentacene occurring under negative (positive) voltage induces the process of set (reset). The switching conduction mechanism is primarily described as space charge limited conduction according to the electrical transport properties measurement. The concept of a pentacene/PMMA heterostructure opens a promising direction for organic memory devices.

  5. Synaptic plasticity and memory functions achieved in a WO3-x-based nanoionics device by using the principle of atomic switch operation

    NASA Astrophysics Data System (ADS)

    Yang, Rui; Terabe, Kazuya; Yao, Yiping; Tsuruoka, Tohru; Hasegawa, Tsuyoshi; Gimzewski, James K.; Aono, Masakazu

    2013-09-01

    A compact neuromorphic nanodevice with inherent learning and memory properties emulating those of biological synapses is the key to developing artificial neural networks rivaling their biological counterparts. Experimental results showed that memorization with a wide time scale from volatile to permanent can be achieved in a WO3-x-based nanoionics device and can be precisely and cumulatively controlled by adjusting the device’s resistance state and input pulse parameters such as the amplitude, interval, and number. This control is analogous to biological synaptic plasticity including short-term plasticity, long-term potentiation, transition from short-term memory to long-term memory, forgetting processes for short- and long-term memory, learning speed, and learning history. A compact WO3-x-based nanoionics device with a simple stacked layer structure should thus be a promising candidate for use as an inorganic synapse in artificial neural networks due to its striking resemblance to the biological synapse.

  6. Hydrogen-peroxide-modified egg albumen for transparent and flexible resistive switching memory

    NASA Astrophysics Data System (ADS)

    Zhou, Guangdong; Yao, Yanqing; Lu, Zhisong; Yang, Xiude; Han, Juanjuan; Wang, Gang; Rao, Xi; Li, Ping; Liu, Qian; Song, Qunliang

    2017-10-01

    Egg albumen is modified by hydrogen peroxide with concentrations of 5%, 10%, 15% and 30% at room temperature. Compared with devices without modification, a memory cell of Ag/10% H2O2-egg albumen/indium tin oxide exhibits obviously enhanced resistive switching memory behavior with a resistance ratio of 104, self-healing switching endurance for 900 cycles and a prolonged retention time for a 104 s @ 200 mV reading voltage after being bent 103 times. The breakage of massive protein chains occurs followed by the recombination of new protein chain networks due to the oxidation of amidogen and the synthesis of disulfide during the hydrogen peroxide modifying egg albumen. Ions such as Fe3+, Na+, K+, which are surrounded by protein chains, are exposed to the outside of protein chains to generate a series of traps during the egg albumen degeneration process. According to the fitting results of the double logarithm I-V curves and the current-sensing atomic force microscopy (CS-AFM) images of the ON and OFF states, the charge transfer from one trap center to its neighboring trap center is responsible for the resistive switching memory phenomena. The results of our work indicate that hydrogen- peroxide-modified egg albumen could open up a new avenue of biomaterial application in nanoelectronic systems.

  7. Different threshold and bipolar resistive switching mechanisms in reactively sputtered amorphous undoped and Cr-doped vanadium oxide thin films

    NASA Astrophysics Data System (ADS)

    Rupp, Jonathan A. J.; Querré, Madec; Kindsmüller, Andreas; Besland, Marie-Paule; Janod, Etienne; Dittmann, Regina; Waser, Rainer; Wouters, Dirk J.

    2018-01-01

    This study investigates resistive switching in amorphous undoped and Cr-doped vanadium oxide thin films synthesized by sputtering deposition at low oxygen partial pressure. Two different volatile threshold switching characteristics can occur as well as a non-volatile bipolar switching mechanism, depending on device stack symmetry and Cr-doping. The two threshold switching types are associated with different crystalline phases in the conduction filament created during an initial forming step. The first kind of threshold switching, observed for undoped vanadium oxide films, was, by its temperature dependence, proven to be associated with a thermally triggered insulator-to-metal transition in a crystalline VO2 phase, whereas the threshold switch observed in chromium doped films is stable up to 90 °C and shows characteristics of an electronically induced Mott transition. This different behaviour for undoped versus doped films has been attributed to an increased stability of V3+ due to the Cr3+ doping (as evidenced by X-ray photoelectron spectroscopy analysis), probably favouring the creation of a crystalline Cr-doped V2O3 phase (rather than a Cr-doped VO2 phase) during the energetic forming step. The symmetric Pt/a-(VCr)Ox/Pt device showing high temperature stable threshold switching may find interesting applications as a possible new selector device for resistive switching memory (ReRAM) crossbar arrays.

  8. Spin-transfer torque in multiferroic tunnel junctions with composite dielectric/ferroelectric barriers

    NASA Astrophysics Data System (ADS)

    Velev, Julian P.; Merodio, Pablo; Pollack, Cesar; Kalitsov, Alan; Chshiev, Mairbek; Kioussis, Nicholas

    2017-12-01

    Using model calculations, we demonstrate a very high level of control of the spin-transfer torque (STT) by electric field in multiferroic tunnel junctions with composite dielectric/ferroelectric barriers. We find that, for particular device parameters, toggling the polarization direction can switch the voltage-induced part of STT between a finite value and a value close to zero, i.e. quench and release the torque. Additionally, we demonstrate that under certain conditions the zero-voltage STT, i.e. the interlayer exchange coupling, can switch sign with polarization reversal, which is equivalent to reversing the magnetic ground state of the tunnel junction. This bias- and polarization-tunability of the STT could be exploited to engineer novel functionalities such as softening/hardening of the bit or increasing the signal-to-noise ratio in magnetic sensors, which can have important implications for magnetic random access memories or for combined memory and logic devices.

  9. Recent advances in degradable lactide-based shape-memory polymers.

    PubMed

    Balk, Maria; Behl, Marc; Wischke, Christian; Zotzmann, Jörg; Lendlein, Andreas

    2016-12-15

    Biodegradable polymers are versatile polymeric materials that have a high potential in biomedical applications avoiding subsequent surgeries to remove, for example, an implanted device. In the past decade, significant advances have been achieved with poly(lactide acid) (PLA)-based materials, as they can be equipped with an additional functionality, that is, a shape-memory effect (SME). Shape-memory polymers (SMPs) can switch their shape in a predefined manner upon application of a specific external stimulus. Accordingly, SMPs have a high potential for applications ranging from electronic engineering, textiles, aerospace, and energy to biomedical and drug delivery fields based on the perspectives of new capabilities arising with such materials in biomedicine. This study summarizes the progress in SMPs with a particular focus on PLA, illustrates the design of suitable homo- and copolymer structures as well as the link between the (co)polymer structure and switching functionality, and describes recent advantages in the implementation of novel switching phenomena into SMP technology. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effect of Atomic Layer Depositions (ALD)-Deposited Titanium Oxide (TiO2) Thickness on the Performance of Zr40Cu35Al15Ni10 (ZCAN)/TiO2/Indium (In)-Based Resistive Random Access Memory (RRAM) Structures

    DTIC Science & Technology

    2015-08-01

    metal structures, memristors, resistive random access memory, RRAM, titanium dioxide, Zr40Cu35Al15Ni10, ZCAN, resistive memory, tunnel junction 16...TiO2 thickness ........................6 1 1. Introduction Resistive-switching memory elements based on metal-insulator-metal (MIM) diodes ...have attracted great interest due to their potential as components for simple, inexpensive, and high-density non-volatile storage devices. MIM diodes

  11. RF assisted switching in magnetic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Caruso, R.; Massarotti, D.; Bolginov, V. V.; Ben Hamida, A.; Karelina, L. N.; Miano, A.; Vernik, I. V.; Tafuri, F.; Ryazanov, V. V.; Mukhanov, O. A.; Pepe, G. P.

    2018-04-01

    We test the effect of an external RF field on the switching processes of magnetic Josephson junctions (MJJs) suitable for the realization of fast, scalable cryogenic memories compatible with Single Flux Quantum logic. We show that the combined application of microwaves and magnetic field pulses can improve the performances of the device, increasing the separation between the critical current levels corresponding to logical "0" and "1." The enhancement of the current level separation can be as high as 80% using an optimal set of parameters. We demonstrate that external RF fields can be used as an additional tool to manipulate the memory states, and we expect that this approach may lead to the development of new methods of selecting MJJs and manipulating their states in memory arrays for various applications.

  12. Electron holography on HfO2/HfO2-x bilayer structures with multilevel resistive switching properties

    NASA Astrophysics Data System (ADS)

    Niu, G.; Schubert, M. A.; Sharath, S. U.; Zaumseil, P.; Vogel, S.; Wenger, C.; Hildebrandt, E.; Bhupathi, S.; Perez, E.; Alff, L.; Lehmann, M.; Schroeder, T.; Niermann, T.

    2017-05-01

    Unveiling the physical nature of the oxygen-deficient conductive filaments (CFs) that are responsible for the resistive switching of the HfO2-based resistive random access memory (RRAM) devices represents a challenging task due to the oxygen vacancy related defect nature and nanometer size of the CFs. As a first important step to this goal, we demonstrate in this work direct visualization and a study of physico-chemical properties of oxygen-deficient amorphous HfO2-x by carrying out transmission electron microscopy electron holography as well as energy dispersive x-ray spectroscopy on HfO2/HfO2-x bilayer heterostructures, which are realized by reactive molecular beam epitaxy. Furthermore, compared to single layer devices, Pt/HfO2/HfO2-x /TiN bilayer devices show enhanced resistive switching characteristics with multilevel behavior, indicating their potential as electronic synapses in future neuromorphic computing applications.

  13. A review of the Z2-FET 1T-DRAM memory: Operation mechanisms and key parameters

    NASA Astrophysics Data System (ADS)

    Cristoloveanu, S.; Lee, K. H.; Parihar, M. S.; El Dirani, H.; Lacord, J.; Martinie, S.; Le Royer, C.; Barbe, J.-Ch.; Mescot, X.; Fonteneau, P.; Galy, Ph.; Gamiz, F.; Navarro, C.; Cheng, B.; Duan, M.; Adamu-Lema, F.; Asenov, A.; Taur, Y.; Xu, Y.; Kim, Y.-T.; Wan, J.; Bawedin, M.

    2018-05-01

    The band-modulation and sharp-switching mechanisms in Z2-FET device operated as a capacitorless 1T-DRAM memory are reviewed. The main parameters that govern the memory performance are discussed based on detailed experiments and simulations. This 1T-DRAM memory does not suffer from super-coupling effect and can be integrated in sub-10 nm thick SOI films. It offers low leakage current, high current margin, long retention, low operating voltage especially for programming, and high speed. The Z2-FET is suitable for embedded memory applications.

  14. Conductive bridge random access memory characteristics of SiCN based transparent device due to indium diffusion

    NASA Astrophysics Data System (ADS)

    Kumar, Dayanand; Aluguri, Rakesh; Chand, Umesh; Tseng, Tseung-Yuen

    2018-03-01

    In this work, the transparent bipolar resistive switching characteristics of a SiCN-based ITO/SiCN/AZO structure due to In diffusion from ITO is studied. The SiCN based device is found to be 80% transparent in the visible wavelength region. This device, with AZO as both top and bottom electrodes, does not show any RRAM property due to deposition of the high quality O2-free SiCN film. Replacing the AZO top electrode with ITO in this device results in good resistive switching (RS) characteristics with a high on/off ratio and long retention. Replacing the SiCN film with ZrO2 also results in excellent RS characteristics due to the formation of an oxygen vacancies filament inside the ZrO2 film. A resistance ratio of on/off is found to be higher in the SiCN based device compared to that of the ZrO2 device. Diffusion of In from ITO into the SiCN film on application of high positive voltage during forming can be attributed to the occurrence of RS in the device, which is confirmed by the analyses of energy dispersive spectroscopy and secondary-ion mass spectrometry. This study shows a pathway for the fabrication of CBRAM based transparent devices for non-volatile memory application.

  15. Transient Resistive Switching Devices Made from Egg Albumen Dielectrics and Dissolvable Electrodes.

    PubMed

    He, Xingli; Zhang, Jian; Wang, Wenbo; Xuan, Weipeng; Wang, Xiaozhi; Zhang, Qilong; Smith, Charles G; Luo, Jikui

    2016-05-04

    Egg albumen as the dielectric, and dissolvable Mg and W as the top and bottom electrodes are used to fabricate water-soluble memristors. 4 × 4 cross-bar configuration memristor devices show a bipolar resistive switching behavior with a high to low resistance ratio in the range of 1 × 10(2) to 1 × 10(4), higher than most other biomaterial-based memristors, and a retention time over 10(4) s without any sign of deterioration, demonstrating its high stability and reliability. Metal filaments accompanied by hopping conduction are believed to be responsible for the switching behavior of the memory devices. The Mg and W electrodes, and albumen film all can be dissolved in water within 72 h, showing their transient characteristics. This work demonstrates a new way to fabricate biocompatible and dissolvable electronic devices by using cheap, abundant, and 100% natural materials for the forthcoming bioelectronics era as well as for environmental sensors when the Internet of things takes off.

  16. Transistor and memory devices based on novel organic and biomaterials

    NASA Astrophysics Data System (ADS)

    Tseng, Jia-Hung

    Organic semiconductor devices have aroused considerable interest because of the enormous potential in many technological applications. Organic electroluminescent devices have been extensively applied in display technology. Rapid progress has also been made in transistor and memory devices. This thesis considers aspects of the transistor based on novel organic single crystals and memory devices using hybrid nanocomposites comprising polymeric/inorganic nanoparticles, and biomolecule/quantum dots. Organic single crystals represent highly ordered structures with much less imperfections compared to amorphous thin films for probing the intrinsic charge transport in transistor devices. We demonstrate that free-standing, thin organic single crystals with natural flexing ability can be fabricated as flexible transistors. We study the surface properties of the organic crystals to determine a nearly perfect surface leading to high performance transistors. The flexible transistors can maintain high performance under reversible bending conditions. Because of the high quality crystal technique, we further develop applications on organic complementary circuits and organic single crystal photovoltaics. In the second part, two aspects of memory devices are studied. We examine the charge transfer process between conjugated polymers and metal nanoparticles. This charge transfer process is essential for the conductance switching in nanoseconds to induce the memory effect. Under the reduction condition, the charge transfer process is eliminated as well as the memory effect, raising the importance of coupling between conjugated systems and nanoparticle accepters. The other aspect of memory devices focuses on the interaction of virus biomolecules with quantum dots or metal nanoparticles in the devices. We investigate the impact of memory function on the hybrid bio-inorganic system. We perform an experimental analysis of the charge storage activation energy in tobacco mosaic virus with platinum nanoparticles. It is established that the effective barrier height in the materials systems needs to be further engineered in order to have sufficiently long retention times. Finally other novel architectures such as negative differential resistance devices and high density memory arrays are investigated for their influence on memory technology.

  17. High performance non-volatile ferroelectric copolymer memory based on a ZnO nanowire transistor fabricated on a transparent substrate

    NASA Astrophysics Data System (ADS)

    Nedic, Stanko; Tea Chun, Young; Hong, Woong-Ki; Chu, Daping; Welland, Mark

    2014-01-01

    A high performance ferroelectric non-volatile memory device based on a top-gate ZnO nanowire (NW) transistor fabricated on a glass substrate is demonstrated. The ZnO NW channel was spin-coated with a poly (vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)) layer acting as a top-gate dielectric without buffer layer. Electrical conductance modulation and memory hysteresis are achieved by a gate electric field induced reversible electrical polarization switching of the P(VDF-TrFE) thin film. Furthermore, the fabricated device exhibits a memory window of ˜16.5 V, a high drain current on/off ratio of ˜105, a gate leakage current below ˜300 pA, and excellent retention characteristics for over 104 s.

  18. A CMOS Compatible, Forming Free TaO x ReRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohn, A. J.; Stevens, J. E.; Mickel, P. R.

    2013-08-31

    Resistive random access memory (ReRAM) has become a promising candidate for next-generation high-performance non-volatile memory that operates by electrically tuning resistance states via modulating vacancy concentrations. Here, we demonstrate a wafer-scale process for resistive switching in tantalum oxide that is completely CMOS compatible. The resulting devices are forming-free and with greater than 1x10 5 cycle endurance.

  19. First-principles thermodynamics and defect kinetics guidelines for engineering a tailored RRAM device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clima, Sergiu, E-mail: clima@imec.be; Chen, Yang Yin; Goux, Ludovic

    Resistive Random Access Memories are among the most promising candidates for the next generation of non-volatile memory. Transition metal oxides such as HfOx and TaOx attracted a lot of attention due to their CMOS compatibility. Furthermore, these materials do not require the inclusion of extrinsic conducting defects since their operation is based on intrinsic ones (oxygen vacancies). Using Density Functional Theory, we evaluated the thermodynamics of the defects formation and the kinetics of diffusion of the conducting species active in transition metal oxide RRAM materials. The gained insights based on the thermodynamics in the Top Electrode, Insulating Matrix and Bottommore » Electrode and at the interfaces are used to design a proper defect reservoir, which is needed for a low-energy reliable switching device. The defect reservoir has also a direct impact on the retention of the Low Resistance State due to the resulting thermodynamic driving forces. The kinetics of the diffusing conducting defects in the Insulating Matrix determine the switching dynamics and resistance retention. The interface at the Bottom Electrode has a significant impact on the low-current operation and long endurance of the memory cell. Our first-principles findings are confirmed by experimental measurements on fabricated RRAM devices.« less

  20. Serial-to-parallel color-TV converter

    NASA Technical Reports Server (NTRS)

    Doak, T. W.; Merwin, R. B.; Zuckswert, S. E.; Sepper, W.

    1976-01-01

    Solid analog-to-digital converter eliminates flicker and problems with time base stability and gain variation in sequential color TV cameras. Device includes 3-bit delta modulator; two-field memory; timing, switching, and sync network; and three 3-bit delta demodulators

  1. Evaluation of the Implications of Nanoscale Architectures on Contextual Knowledge Discovery and Memory: Self-Assembled Architectures and Memory

    DTIC Science & Technology

    2008-05-01

    patterns. Our strategy to nucleate Ag nanoparticles has been to use a templating protein (e.g., streptavidin) that has been chemically pre- charged with...assembly is used to direct the formation of switching devices and wires to create logic circuitry, memory, and I/O interfaces . We can control the reaction...determines the formation of structures (through complementarity ). Sequence design is important because it determines many aspects of the target DNA

  2. Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic

    PubMed Central

    Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas

    2016-01-01

    Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced. PMID:27834352

  3. Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic.

    PubMed

    Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas

    2016-11-11

    Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced.

  4. Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic

    NASA Astrophysics Data System (ADS)

    Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas

    2016-11-01

    Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced.

  5. Advanced development of double-injection, deep-impurity semiconductor switches

    NASA Technical Reports Server (NTRS)

    Hanes, M. H.

    1987-01-01

    Deep-impurity, double-injection devices, commonly refered to as (DI) squared devices, represent a class of semiconductor switches possessing a very high degree of tolerance to electron and neutron irradiation and to elevated temperature operation. These properties have caused them to be considered as attractive candidates for space power applications. The design, fabrication, and testing of several varieties of (DI) squared devices intended for power switching are described. All of these designs were based upon gold-doped silicon material. Test results, along with results of computer simulations of device operation, other calculations based upon the assumed mode of operation of (DI) squared devices, and empirical information regarding power semiconductor device operation and limitations, have led to the conculsion that these devices are not well suited to high-power applications. When operated in power circuitry configurations, they exhibit high-power losses in both the off-state and on-state modes. These losses are caused by phenomena inherent to the physics and material of the devices and cannot be much reduced by device design optimizations. The (DI) squared technology may, however, find application in low-power functions such as sensing, logic, and memory, when tolerance to radiation and temperature are desirable (especially is device performance is improved by incorporation of deep-level impurities other than gold.

  6. Resistance Switching Memory Characteristics of Si/CaF2/CdF2 Quantum-Well Structures Grown on Metal (CoSi2) Layer

    NASA Astrophysics Data System (ADS)

    Denda, Junya; Uryu, Kazuya; Watanabe, Masahiro

    2013-04-01

    A novel scheme of resistance switching random access memory (ReRAM) devices fabricated using Si/CaF2/CdF2/CaF2/Si quantum-well structures grown on metal CoSi2 layer formed on a Si substrate has been proposed, and embryonic write/erase memory operation has been demonstrated at room temperature. It has been found that the oxide-mediated epitaxy (OME) technique for forming the CoSi2 layer on Si dramatically improves the stability and reproducibility of the current-voltage (I-V) curve. This technology involves 10-nm-thick Co layer deposition on a protective oxide prepared by boiling in a peroxide-based solution followed by annealing at 550 °C for 30 min for silicidation in ultrahigh vacuum. A switching voltage of lower than 1 V, a peak current density of 32 kA/cm2, and an ON/OFF ratio of 10 have been observed for the sample with the thickness sequence of 0.9/0.9/2.5/0.9/5.0 nm for the respective layers in the Si/CaF2/CdF2/CaF2/Si structure. Results of surface morphology analysis suggest that the grain size of crystal islands with flat surfaces strongly affects the quality of device characteristics.

  7. Electrochemical metallization memories—fundamentals, applications, prospects

    NASA Astrophysics Data System (ADS)

    Valov, Ilia; Waser, Rainer; Jameson, John R.; Kozicki, Michael N.

    2011-06-01

    This review focuses on electrochemical metallization memory cells (ECM), highlighting their advantages as the next generation memories. In a brief introduction, the basic switching mechanism of ECM cells is described and the historical development is sketched. In a second part, the full spectra of materials and material combinations used for memory device prototypes and for dedicated studies are presented. In a third part, the specific thermodynamics and kinetics of nanosized electrochemical cells are described. The overlapping of the space charge layers is found to be most relevant for the cell properties at rest. The major factors determining the functionality of the ECM cells are the electrode reaction and the transport kinetics. Depending on electrode and/or electrolyte material electron transfer, electro-crystallization or slow diffusion under strong electric fields can be rate determining. In the fourth part, the major device characteristics of ECM cells are explained. Emphasis is placed on switching speed, forming and SET/RESET voltage, RON to ROFF ratio, endurance and retention, and scaling potentials. In the last part, circuit design aspects of ECM arrays are discussed, including the pros and cons of active and passive arrays. In the case of passive arrays, the fundamental sneak path problem is described and as well as a possible solution by two anti-serial (complementary) interconnected resistive switches per cell. Furthermore, the prospects of ECM with regard to further scalability and the ability for multi-bit data storage are addressed.

  8. EDITORIAL: Non-volatile memory based on nanostructures Non-volatile memory based on nanostructures

    NASA Astrophysics Data System (ADS)

    Kalinin, Sergei; Yang, J. Joshua; Demming, Anna

    2011-06-01

    Non-volatile memory refers to the crucial ability of computers to store information once the power source has been removed. Traditionally this has been achieved through flash, magnetic computer storage and optical discs, and in the case of very early computers paper tape and punched cards. While computers have advanced considerably from paper and punched card memory devices, there are still limits to current non-volatile memory devices that restrict them to use as secondary storage from which data must be loaded and carefully saved when power is shut off. Denser, faster, low-energy non-volatile memory is highly desired and nanostructures are the critical enabler. This special issue on non-volatile memory based on nanostructures describes some of the new physics and technology that may revolutionise future computers. Phase change random access memory, which exploits the reversible phase change between crystalline and amorphous states, also holds potential for future memory devices. The chalcogenide Ge2Sb2Te5 (GST) is a promising material in this field because it combines a high activation energy for crystallization and a relatively low crystallization temperature, as well as a low melting temperature and low conductivity, which accommodates localized heating. Doping is often used to lower the current required to activate the phase change or 'reset' GST but this often aggravates other problems. Now researchers in Korea report in-depth studies of SiO2-doped GST and identify ways of optimising the material's properties for phase-change random access memory [1]. Resistance switching is an area that has attracted a particularly high level of interest for non-volatile memory technology, and a great deal of research has focused on the potential of TiO2 as a model system in this respect. Researchers at HP labs in the US have made notable progress in this field, and among the work reported in this special issue they describe means to control the switch resistance and show that limiting the current during electroforming leads to the coexistence of two resistance switching modes in TiO2 memristive devices [2]. They also present spectromicroscopic observations and modelling results for the Joule heating during switching, providing insights into the ON/OFF switching process [3]. Researchers in Korea have examined in detail the mechanism of electronic bipolar resistance switching in the Pt/TiO2/Pt structure and show that degradation in switching performance of this system can be explained by the modified distribution of trap densities [4]. The issue also includes studies of TiO2 that demonstrate analog memory, synaptic plasticity, and spike-timing-dependent plasticity functions, work that contributes to the development of neuromorphic devices that have high efficiency and low power consumption [5]. In addition to enabling a wide range of data storage and logic applications, electroresistive non-volatile memories invite us to re-evaluate the long-held paradigms in the condensed matter physics of oxides. In the past three years, much attention has been attracted to polarization-mediated electronic transport [6, 7] and domain wall conduction [8] as the key to the next generation of electronic and spintronic devices based on ferroelectric tunnelling barriers. Typically local probe experiments are performed on an ambient scanning probe microscope platform under conditions of high voltage stresses, conditions highly conducive to electrochemical reactions. Recent experiments [9-13] suggest that ionic motion can heavily contribute to the measured responses and compete with purely physical mechanisms. Electrochemical effects can also be expected in non-ferroelectric materials such as manganites and cobaltites, as well as for thick ferroelectrics under high-field conditions, as in capacitors and tunnelling junctions where the ionic motion could be a major contributor to electric field-induced strain. Such strain, in turn, can affect the effective barrier width in tunnelling experiments, resulting in memristive ionic switching. These phenomena must be differentiated from intrinsic physical polarization switching effects. Similar analysis of solid-state electrochemistry versus physical mechanisms is also important for future research in all areas of oxide materials. In an age where miniaturised computer components can enable GPS tracking, internet access and even the remote operation of machinery from a mobile phone, there is an endearing quaintness associated with images of the large rooms rammed with wires and boxes that comprised early computers. Yet there was a time when these cumbersome devices were state of the art. When the electronic numerical integrator and computer (ENIAC) was developed it achieved speeds one thousand times faster than previous electromechanical machines, a leap in processing power that has not been achieved since. It is easy to imagine future generations looking back on the slow start up and shut down times and high energy consumption of today's computers with a similar wry smile. The articles in this special issue on non-volatile memory based on nanostructures present the very latest research into the next generation's device technology, which may eventually consign today's cutting edge electronics to the history books. References [1] Ryu S W et al 2011 Nanotechnology 22 254005 [2] Miao F, Yang J J, Borghetti J, Medeiros-Ribeiro G and Williams R S 2011 Nanotechnology 22 254007 [3] Strachan J P, Strukov D B, Borghetti J, Yang J J, Medeiros-Ribeiro G and Williams R S 2011 Nanotechnology 22 245015 [4] Kim K M, Choi B J, Lee M H, Kim G H, Song S J, Seok J Y, Yoon J H, Han S and Hwang C S 2011 Nanotechnology 22 254010 [5] Seo K et al 2011 Nanotechnology 22 254023 [6] Garcia V, Fusil S, Bouzehouane K, Enouz-Vedrenne S, Mathur N D, Barthelemy A and Bibes M 2009 Nature 460 81-4 [7] Maksymovych P, Jesse S, Yu P, Ramesh R, Baddorf A P and Kalinin S V 2009 Science 324 1421 [8] Seidel J et al 2009 Nature Mat. 8 229 [9] Tsuruoka T, Terabe K, Hasegawa T, and Aono M 2010 Nanotechnology 21 425205 [10] Waser R and Aono M 2007 Nature Mat. 6 833 [11] Sawa A 2008 Materials Today 11 28 [12] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80 Changes were made to this Editorial on 16 May 2011. An author was added to the Editorial.

  9. Performance of current-in-plane pseudo-spin-valve devices on CMOS silicon-on-insulator underlayers

    NASA Astrophysics Data System (ADS)

    Katti, R. R.; Zou, D.; Reed, D.; Schipper, D.; Hynes, O.; Shaw, G.; Kaakani, H.

    2003-05-01

    Prior work has shown that current-in-plane (CIP) giant magnetoresistive (GMR) pseudo-spin-valve (PSV) devices grown on bulk Si wafers and bulk complementary metal-oxide semiconductor (CMOS) underlayers exhibit write and read characteristics that are suitable for application as nonvolatile memory devices. In this work, CIP GMR PSV devices fabricated on silicon-on-insulator CMOS underlayers are shown to support write and read performance. Reading and writing fields for selected devices are shown to be approximately 25%-50% that of unselected devices, which provides a margin for reading and writing specific bits in a memory without overwriting bits and without disturbing other bits. The switching characteristics of experimental devices were compared to and found to be similar with Landau-Lifschitz-Gilbert micromagnetic modeling results, which allowed inferring regions of reversible and irreversible rotations in magnetic reversal processes.

  10. Copper atomic-scale transistors

    PubMed Central

    Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen

    2017-01-01

    We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO4 + H2SO4) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and −170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes (U bias) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1G 0 (G 0 = 2e2/h; with e being the electron charge, and h being Planck’s constant) or 2G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors. PMID:28382242

  11. Field-Free Programmable Spin Logics via Chirality-Reversible Spin-Orbit Torque Switching.

    PubMed

    Wang, Xiao; Wan, Caihua; Kong, Wenjie; Zhang, Xuan; Xing, Yaowen; Fang, Chi; Tao, Bingshan; Yang, Wenlong; Huang, Li; Wu, Hao; Irfan, Muhammad; Han, Xiufeng

    2018-06-21

    Spin-orbit torque (SOT)-induced magnetization switching exhibits chirality (clockwise or counterclockwise), which offers the prospect of programmable spin-logic devices integrating nonvolatile spintronic memory cells with logic functions. Chirality is usually fixed by an applied or effective magnetic field in reported studies. Herein, utilizing an in-plane magnetic layer that is also switchable by SOT, the chirality of a perpendicular magnetic layer that is exchange-coupled with the in-plane layer can be reversed in a purely electrical way. In a single Hall bar device designed from this multilayer structure, three logic gates including AND, NAND, and NOT are reconfigured, which opens a gateway toward practical programmable spin-logic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Conduction Channel Formation and Dissolution Due to Oxygen Thermophoresis/Diffusion in Hafnium Oxide Memristors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Suhas; Wang, Ziwen; Huang, Xiaopeng

    Due to the favorable operating power, endurance, speed, and density., transition-metal-oxide memristors, or resistive random-access memory (RRAM) switches, are under intense development for storage-class memory. Their commercial deployment critically depends on predictive compact models based on understanding nanoscale physiocochemical forces, which remains elusive and controversial owing to the difficulties in directly observing atomic motions during resistive switching, Here, using scanning transmission synchrotron X-ray spectromicroscopy to study in situ switching of hafnium oxide memristors, we directly observed the formation of a localized oxygen-deficiency-derived conductive channel surrounded by a low-conductivity ring of excess oxygen. Subsequent thermal annealing homogenized the segregated oxygen, resettingmore » the cells toward their as-grown resistance state. We show that the formation and dissolution of the conduction channel are successfully modeled by radial thermophoresis and Fick diffusion of oxygen atoms driven by Joule heating. This confirmation and quantification of two opposing nanoscale radial forces that affect bipolar memristor switching are important components for any future physics-based compact model for the electronic switching of these devices.« less

  13. Operation of a quantum dot in the finite-state machine mode: Single-electron dynamic memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klymenko, M. V.; Klein, M.; Levine, R. D.

    2016-07-14

    A single electron dynamic memory is designed based on the non-equilibrium dynamics of charge states in electrostatically defined metallic quantum dots. Using the orthodox theory for computing the transfer rates and a master equation, we model the dynamical response of devices consisting of a charge sensor coupled to either a single and or a double quantum dot subjected to a pulsed gate voltage. We show that transition rates between charge states in metallic quantum dots are characterized by an asymmetry that can be controlled by the gate voltage. This effect is more pronounced when the switching between charge states correspondsmore » to a Markovian process involving electron transport through a chain of several quantum dots. By simulating the dynamics of electron transport we demonstrate that the quantum box operates as a finite-state machine that can be addressed by choosing suitable shapes and switching rates of the gate pulses. We further show that writing times in the ns range and retention memory times six orders of magnitude longer, in the ms range, can be achieved on the double quantum dot system using experimentally feasible parameters, thereby demonstrating that the device can operate as a dynamic single electron memory.« less

  14. Impact of ultra-thin Al2O3-y layers on TiO2-x ReRAM switching characteristics

    NASA Astrophysics Data System (ADS)

    Trapatseli, Maria; Cortese, Simone; Serb, Alexander; Khiat, Ali; Prodromakis, Themistoklis

    2017-05-01

    Transition metal-oxide resistive random access memory devices have demonstrated excellent performance in switching speed, versatility of switching and low-power operation. However, this technology still faces challenges like poor cycling endurance, degradation due to high electroforming (EF) switching voltages and low yields. Approaches such as engineering of the active layer by doping or addition of thin oxide buffer layers have been often adopted to tackle these problems. Here, we have followed a strategy that combines the two; we have used ultra-thin Al2O3-y buffer layers incorporated between TiO2-x thin films taking into account both 3+/4+ oxidation states of Al/Ti cations. Our devices were tested by DC and pulsed voltage sweeping and in both cases demonstrated improved switching voltages. We believe that the Al2O3-y layers act as reservoirs of oxygen vacancies which are injected during EF, facilitate a filamentary switching mechanism and provide enhanced filament stability, as shown by the cycling endurance measurements.

  15. Resistive and Ferroelectric-Domain Switching in Multiferroic BiFeO3 Films

    NASA Astrophysics Data System (ADS)

    Ramirez, J. G.; Arango, I. C.; Gomez, M. F.; Dominguez, C.; Sulekar, S.; Cardona, A.; Trastoy, J.; Nino, J. C.; Schuller, I. K.; Gomez, M. E.

    Resistive switching (RS) in oxides has attracted much attention due to its potential application for nonvolatile memory and neuromorphic computing devices. Here we study the voltage-induced RS mechanisms in metal/multiferroic/semiconductor (Au/BiFeO3/Nb:SrTiO3) thin film vertical devices. We found switching with RON and ROFF ratios as big as 0.16 at voltages starting at +/- 2V. Further voltage increase produced an intensification of the RS effects, until dielectric breakdown was reached. Interestingly, the voltage at which the RS effect appears coincides with the coercive voltage of the ferroelectric polarization in similar BiFeO3 films, as measured by piezoelectric force microscopy. This suggests that the primary RS mechanism is the ferroelectric switching. Impedance spectroscopy measurements show filamentary contributions after ferroelectric saturation, possible due to voltage-induced movement of charge defects across the device and therefore suggesting an additional RS mechanism. Work supported by: Univalle CI 7999; FAPA at Uniandes; Colciencias 120471250659 and 120424054303. J.T. acknowledges the support from the Fundación Areces (Spain); AFOSR and DoD for a Vannevar Bush Fellowship.

  16. Effect of AlN layer on the bipolar resistive switching behavior in TiN thin film based ReRAM device for non-volatile memory application

    NASA Astrophysics Data System (ADS)

    Prakash, Ravi; Kaur, Davinder

    2018-05-01

    The effect of an additional AlN layer in the Cu/TiN/AlN/Pt stack configuration deposited using sputtering has been investigated. The Cu/TiN/AlN/Pt device shows a tristate resistive switching. Multilevel switching is facilitated by ionic and metallic filament formation, and the nature of the filaments formed is confirmed by performing a resistance vs. temperature measurement. Ohmic behaviour and trap controlled space charge limited current (SCLC) conduction mechanisms are confirmed as dominant conduction mechanism at low resistance state (LRS) and high resistance state (HRS). High resistance ratio (102) corresponding to HRS and LRS, good write/erase endurance (105) and non-volatile long retention (105s) are also observed. Higher thermal conductivity of the AlN layer is the main reasons for the enhancement of resistive switching performance in Cu/TiN/AlN/Pt cell. The above result suggests the feasibility of Cu/TiN/AlN/Pt devices for multilevel nonvolatile ReRAM application.

  17. Feasibility and limitations of anti-fuses based on bistable non-volatile switches for power electronic applications

    NASA Astrophysics Data System (ADS)

    Erlbacher, T.; Huerner, A.; Bauer, A. J.; Frey, L.

    2012-09-01

    Anti-fuse devices based on non-volatile memory cells and suitable for power electronic applications are demonstrated for the first time using silicon technology. These devices may be applied as stand alone devices or integrated using standard junction-isolation into application-specific and smart-power integrated circuits. The on-resistance of such devices can be permanently switched by nine orders of magnitude by triggering the anti-fuse with a positive voltage pulse. Extrapolation of measurement data and 2D TCAD process and device simulations indicate that 20 A anti-fuses with 10 mΩ can be reliably fabricated in 0.35 μm technology with a footprint of 2.5 mm2. Moreover, this concept offers distinguished added-values compared to existing mechanical relays, e.g. pre-test, temporary and permanent reset functions, gradual turn-on mode, non-volatility, and extendibility to high voltage capability.

  18. Intrinsic SiO{sub x}-based unipolar resistive switching memory. II. Thermal effects on charge transport and characterization of multilevel programing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yao-Feng, E-mail: yfchang@utexas.edu; Chen, Ying-Chen; Chen, Yen-Ting

    2014-07-28

    Multilevel programing and charge transport characteristics of intrinsic SiO{sub x}-based resistive switching memory are investigated using TaN/SiO{sub x}/n{sup ++}Si (MIS) and TiW/SiO{sub x}/TiW (MIM) device structures. Current transport characteristics of high- and low-resistance states (HRS and LRS) are studied in both device structures during multilevel operation. Analysis of device thermal response demonstrates that the effective electron energy barrier is strongly dependent on the resistance of the programed state, with estimates of 0.1 eV in the LRS and 0.6 eV in the HRS. Linear data fitting and conductance analyses indicate Poole-Frenkel emission or hopping conductance in the low-voltage region, whereas Fowler-Nordheim (F-N) ormore » trap-assisted tunneling (TAT) is indicated at moderate voltage. Characterizations using hopping transport lead to hopping distance estimates of ∼1 nm in the LRS for both device structures. Relative permittivity values (ε{sub r}) were extracted using the Poole-Frenkel formulism and estimates of local filament temperature, where ε{sub r} values were ∼80 in the LRS and ∼4 in the HRS, suggesting a strongly polarized medium in the LRS. The onset of F-N tunneling or TAT corresponds to an observed “overshoot” in the I-V response with an estimated threshold of 1.6 ± 0.2 V, in good agreement with reported electro-luminescence results for LRS devices. Resistive switching is discussed in terms of electrochemical reactions between common SiO{sub 2} defects, and specific defect energy levels are assigned to the dominant transitions in the I-V response. The overshoot response in the LRS is consistent with TAT through either the Eγ' oxygen vacancy or the hydrogen bridge defect, both of which are reported to have an effective bandgap of 1.7 eV. The SET threshold at ∼2.5 V is modeled as hydrogen release from the (Si-H){sub 2} defect to generate the hydrogen bridge, and the RESET transition is modeled as an electrochemical reaction that re-forms (SiH){sub 2}. The results provide further insights into charge transport and help identify potential switching mechanisms in SiO{sub x}-based unipolar resistive switching memory.« less

  19. A triple quantum dot based nano-electromechanical memory device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pozner, R.; Lifshitz, E.; Solid State Institute, Technion-Israel Institute of Technology, Haifa 32000

    Colloidal quantum dots (CQDs) are free-standing nano-structures with chemically tunable electronic properties. This tunability offers intriguing possibilities for nano-electromechanical devices. In this work, we consider a nano-electromechanical nonvolatile memory (NVM) device incorporating a triple quantum dot (TQD) cluster. The device operation is based on a bias induced motion of a floating quantum dot (FQD) located between two bound quantum dots (BQDs). The mechanical motion is used for switching between two stable states, “ON” and “OFF” states, where ligand-mediated effective interdot forces between the BQDs and the FQD serve to hold the FQD in each stable position under zero bias. Consideringmore » realistic microscopic parameters, our quantum-classical theoretical treatment of the TQD reveals the characteristics of the NVM.« less

  20. Realization of Minimum and Maximum Gate Function in Ta2O5-based Memristive Devices

    NASA Astrophysics Data System (ADS)

    Breuer, Thomas; Nielen, Lutz; Roesgen, Bernd; Waser, Rainer; Rana, Vikas; Linn, Eike

    2016-04-01

    Redox-based resistive switching devices (ReRAM) are considered key enablers for future non-volatile memory and logic applications. Functionally enhanced ReRAM devices could enable new hardware concepts, e.g. logic-in-memory or neuromorphic applications. In this work, we demonstrate the implementation of ReRAM-based fuzzy logic gates using Ta2O5 devices to enable analogous Minimum and Maximum operations. The realized gates consist of two anti-serially connected ReRAM cells offering two inputs and one output. The cells offer an endurance up to 106 cycles. By means of exemplary input signals, each gate functionality is verified and signal constraints are highlighted. This realization could improve the efficiency of analogous processing tasks such as sorting networks in the future.

  1. Adaptive packet switch with an optical core (demonstrator)

    NASA Astrophysics Data System (ADS)

    Abdo, Ahmad; Bishtein, Vadim; Clark, Stewart A.; Dicorato, Pino; Lu, David T.; Paredes, Sofia A.; Taebi, Sareh; Hall, Trevor J.

    2004-11-01

    A three-stage opto-electronic packet switch architecture is described consisting of a reconfigurable optical centre stage surrounded by two electronic buffering stages partitioned into sectors to ease memory contention. A Flexible Bandwidth Provision (FBP) algorithm, implemented on a soft-core processor, is used to change the configuration of the input sectors and optical centre stage to set up internal paths that will provide variable bandwidth to serve the traffic. The switch is modeled by a bipartite graph built from a service matrix, which is a function of the arriving traffic. The bipartite graph is decomposed by solving an edge-colouring problem and the resulting permutations are used to configure the switch. Simulation results show that this architecture exhibits a dramatic reduction of complexity and increased potential for scalability, at the price of only a modest spatial speed-up k, 1

  2. Characteristics of multilevel storage and switching dynamics in resistive switching cell of Al2O3/HfO2/Al2O3 sandwich structure

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Yang, Huafeng; Ma, Zhongyuan; Chen, Kunji; Zhang, Xinxin; Huang, Xinfan; Oda, Shunri

    2018-01-01

    We reported an Al2O3/HfO2/Al2O3 sandwich structure resistive switching device with significant improvement of multilevel cell (MLC) operation capability, which exhibited that four stable and distinct resistance states (one low resistance state and three high resistance states) can be achieved by controlling the Reset stop voltages (V Reset-stop) during the Reset operation. The improved MLC operation capability can be attributed to the R HRS/R LRS ratio enhancement resulting from increasing of the series resistance and decreasing of leakage current by inserting two Al2O3 layers. For the high-speed switching applications, we studied the initial switching dynamics by using the measurements of the pulse width and amplitude dependence of Set and Reset switching characteristics. The results showed that under the same pulse amplitude conditions, the initial Set progress is faster than the initial Reset progress, which can be explained by thermal-assisted electric field induced rupture model in the oxygen vacancies conductive filament. Thus, proper combination of varying pulse amplitude and width can help us to optimize the device operation parameters. Moreover, the device demonstrated ultrafast program/erase speed (10 ns) and good pulse switching endurance (105 cycles) characteristics, which are suitable for high-density and fast-speed nonvolatile memory applications.

  3. Lead-free epitaxial ferroelectric material integration on semiconducting (100) Nb-doped SrTiO3 for low-power non-volatile memory and efficient ultraviolet ray detection

    PubMed Central

    Kundu, Souvik; Clavel, Michael; Biswas, Pranab; Chen, Bo; Song, Hyun-Cheol; Kumar, Prashant; Halder, Nripendra N.; Hudait, Mantu K.; Banerji, Pallab; Sanghadasa, Mohan; Priya, Shashank

    2015-01-01

    We report lead-free ferroelectric based resistive switching non-volatile memory (NVM) devices with epitaxial (1-x)BaTiO3-xBiFeO3 (x = 0.725) (BT-BFO) film integrated on semiconducting (100) Nb (0.7%) doped SrTiO3 (Nb:STO) substrates. The piezoelectric force microscopy (PFM) measurement at room temperature demonstrated ferroelectricity in the BT-BFO thin film. PFM results also reveal the repeatable polarization inversion by poling, manifesting its potential for read-write operation in NVM devices. The electroforming-free and ferroelectric polarization coupled electrical behaviour demonstrated excellent resistive switching with high retention time, cyclic endurance, and low set/reset voltages. X-ray photoelectron spectroscopy was utilized to determine the band alignment at the BT-BFO and Nb:STO heterojunction, and it exhibited staggered band alignment. This heterojunction is found to behave as an efficient ultraviolet photo-detector with low rise and fall time. The architecture also demonstrates half-wave rectification under low and high input signal frequencies, where the output distortion is minimal. The results provide avenue for an electrical switch that can regulate the pixels in low or high frequency images. Combined this work paves the pathway towards designing future generation low-power ferroelectric based microelectronic devices by merging both electrical and photovoltaic properties of BT-BFO materials. PMID:26202946

  4. Lead-free epitaxial ferroelectric material integration on semiconducting (100) Nb-doped SrTiO3 for low-power non-volatile memory and efficient ultraviolet ray detection.

    PubMed

    Kundu, Souvik; Clavel, Michael; Biswas, Pranab; Chen, Bo; Song, Hyun-Cheol; Kumar, Prashant; Halder, Nripendra N; Hudait, Mantu K; Banerji, Pallab; Sanghadasa, Mohan; Priya, Shashank

    2015-07-23

    We report lead-free ferroelectric based resistive switching non-volatile memory (NVM) devices with epitaxial (1-x)BaTiO3-xBiFeO3 (x = 0.725) (BT-BFO) film integrated on semiconducting (100) Nb (0.7%) doped SrTiO3 (Nb:STO) substrates. The piezoelectric force microscopy (PFM) measurement at room temperature demonstrated ferroelectricity in the BT-BFO thin film. PFM results also reveal the repeatable polarization inversion by poling, manifesting its potential for read-write operation in NVM devices. The electroforming-free and ferroelectric polarization coupled electrical behaviour demonstrated excellent resistive switching with high retention time, cyclic endurance, and low set/reset voltages. X-ray photoelectron spectroscopy was utilized to determine the band alignment at the BT-BFO and Nb:STO heterojunction, and it exhibited staggered band alignment. This heterojunction is found to behave as an efficient ultraviolet photo-detector with low rise and fall time. The architecture also demonstrates half-wave rectification under low and high input signal frequencies, where the output distortion is minimal. The results provide avenue for an electrical switch that can regulate the pixels in low or high frequency images. Combined this work paves the pathway towards designing future generation low-power ferroelectric based microelectronic devices by merging both electrical and photovoltaic properties of BT-BFO materials.

  5. Two-magnon bound state causes ultrafast thermally induced magnetisation switching

    PubMed Central

    Barker, J.; Atxitia, U.; Ostler, T. A.; Hovorka, O.; Chubykalo-Fesenko, O.; Chantrell, R. W.

    2013-01-01

    There has been much interest recently in the discovery of thermally induced magnetisation switching using femtosecond laser excitation, where a ferrimagnetic system can be switched deterministically without an applied magnetic field. Experimental results suggest that the reversal occurs due to intrinsic material properties, but so far the microscopic mechanism responsible for reversal has not been identified. Using computational and analytic methods we show that the switching is caused by the excitation of two-magnon bound states, the properties of which are dependent on material factors. This discovery allows us to accurately predict the onset of switching and the identification of this mechanism will allow new classes of materials to be identified or designed for memory devices in the THz regime. PMID:24253110

  6. Functional nanometer-scale structures

    NASA Astrophysics Data System (ADS)

    Chan, Tsz On Mario

    Nanometer-scale structures have properties that are fundamentally different from their bulk counterparts. Much research effort has been devoted in the past decades to explore new fabrication techniques, model the physical properties of these structures, and construct functional devices. The ability to manipulate and control the structure of matter at the nanoscale has made many new classes of materials available for the study of fundamental physical processes and potential applications. The interplay between fabrication techniques and physical understanding of the nanostructures and processes has revolutionized the physical and material sciences, providing far superior properties in materials for novel applications that benefit society. This thesis consists of two major aspects of my graduate research in nano-scale materials. In the first part (Chapters 3--6), a comprehensive study on the nanostructures based on electrospinning and thermal treatment is presented. Electrospinning is a well-established method for producing high-aspect-ratio fibrous structures, with fiber diameter ranging from 1 nm--1 microm. A polymeric solution is typically used as a precursor in electrospinning. In our study, the functionality of the nanostructure relies on both the nanostructure and material constituents. Metallic ions containing precursors were added to the polymeric precursor following a sol-gel process to prepare the solution suitable for electrospinning. A typical electrospinning process produces as-spun fibers containing both polymer and metallic salt precursors. Subsequent thermal treatments of the as-spun fibers were carried out in various conditions to produce desired structures. In most cases, polymer in the solution and the as-spun fibers acted as a backbone for the structure formation during the subsequent heat treatment, and were thermally removed in the final stage. Polymers were also designed to react with the metallic ion precursors during heat treatment in some cases, which led to desired chemical phase formation. The residue of polymer thermal decomposition was also controlled and utilized for certain functionality in some nanostructures. Throughout this study, we successfully fabricated several novel functional structures and revealed a new formation mechanism of metal/metal oxide nanotubes. The magnetic and electrical properties of these nanostructures were studied and optimized for applications in soft magnetic materials and spintronics devices. In the second part, (Chapter 7) a study on memristive switching devices with magnetron-sputtered metal-semiconductor-metal thin film structures based on ZnO is presented. Resistive random access memory (RRAM) is a new, non-volatile memory based on the memristor effect theoretically predicted by Leon Chua in 1971 and first experimentally demonstrated by Hewlett Packard in 2008. The unit cell of a RRAM (a memristor) is a two-terminal device in which the switching medium is sandwiched between the top and bottom electrodes and the resistance of the switching medium can be modulated by applying an electrical signal (current or voltage) to the electrodes. On the other hand, the significance of a memristor, as the fourth element of circuit elements besides resistor, capacitor and inductor, is not limited to just being a candidate for next-generation memory. Owing to the unique i-v characteristics of non-linear memristors that cannot be duplicated with any combinations of the other three basic elements in a passive circuitry, many new electrical functions are being developed based on the memristors. In our study, various contact electrode combinations and semiconductor doping profiles were utilized to achieve different functional resistive switching behaviors and to help fundamentally understand the underlying switching mechanisms in ZnO-based thin film structures. Two distinctive switching mechanisms (ferroelectric charge-induced resistive switching and dopant-induced filament-type resistive switching) have been identified in specified structures. Among them, the ferroelectric charge induced resistive switching is new to the existing mechanisms; and the crucial role of the electrode oxide layer in the filament type resistive switching was reported for the first time. Based on these studies, a unique structure that is believed to combine the two competing switching mechanisms was demonstrated. The new memory structure acts like a complimentary resistive switching memory (CRS) that is designed to eliminate the cross-talk issue in RRAM.

  7. Hot-carrier trap-limited transport in switching chalcogenides

    NASA Astrophysics Data System (ADS)

    Piccinini, Enrico; Cappelli, Andrea; Buscemi, Fabrizio; Brunetti, Rossella; Ielmini, Daniele; Rudan, Massimo; Jacoboni, Carlo

    2012-10-01

    Chalcogenide materials have received great attention in the last decade owing to their application in new memory systems. Recently, phase-change memories have, in fact, reached the early stages of production. In spite of the industrial exploitation of such materials, the physical processes governing the switching mechanism are still debated. In this paper, we work out a complete and consistent model for transport in amorphous chalcogenide materials based on trap-limited conduction accompanied by carrier heating. A previous model is here extended to include position-dependent carrier concentration and field, consistently linked by the Poisson equation. The results of the new model reproduce the experimental electrical characteristics and their dependences on the device length and temperature. Furthermore, the model provides a sound physical interpretation of the switching phenomenon and is able to give an estimate of the threshold condition in terms of the material parameters, a piece of information of great technological interest.

  8. Super non-linear RRAM with ultra-low power for 3D vertical nano-crossbar arrays.

    PubMed

    Luo, Qing; Xu, Xiaoxin; Liu, Hongtao; Lv, Hangbing; Gong, Tiancheng; Long, Shibing; Liu, Qi; Sun, Haitao; Banerjee, Writam; Li, Ling; Gao, Jianfeng; Lu, Nianduan; Liu, Ming

    2016-08-25

    Vertical crossbar arrays provide a cost-effective approach for high density three-dimensional (3D) integration of resistive random access memory. However, an individual selector device is not allowed to be integrated with the memory cell separately. The development of V-RRAM has impeded the lack of satisfactory self-selective cells. In this study, we have developed a high performance bilayer self-selective device using HfO2 as the memory switching layer and a mixed ionic and electron conductor as the selective layer. The device exhibits high non-linearity (>10(3)) and ultra-low half-select leakage (<0.1 pA). A four layer vertical crossbar array was successfully demonstrated based on the developed self-selective device. High uniformity, ultra-low leakage, sub-nA operation, self-compliance, and excellent read/write disturbance immunity were achieved. The robust array level performance shows attractive potential for low power and high density 3D data storage applications.

  9. Electrical bistabilities and memory mechanisms of nonvolatile organic bistable devices based on exfoliated muscovite-type mica nanoparticle/poly(methylmethacrylate) nanocomposites

    NASA Astrophysics Data System (ADS)

    Lim, Won Gyu; Lee, Dea Uk; Na, Han Gil; Kim, Hyoun Woo; Kim, Tae Whan

    2018-02-01

    Organic bistable devices (OBDs) with exfoliated mica nanoparticles (NPs) embedded into an insulating poly(methylmethacrylate) (PMMA) layer were fabricated by using a spin-coating method. Current-voltage (I-V) curves for the Al/PMMA/exfoliated mica NP/PMMA/indium-tin-oxide/glass devices at 300 K showed a clockwise current hysteresis behavior due to the existence of the exfoliated muscovite-type mica NPs, which is an essential feature for bistable devices. Write-read-erase-read data showed that the OBDs had rewritable nonvolatile memories and an endurance number of ON/OFF switching for the OBDs of 102 cycles. An ON/OFF ratio of 1 × 103 was maintained for retention times larger than 1 × 104 s. The memory mechanisms of the fabricated OBDs were described by using the trapping and the tunneling processes within a PMMA active layer containing exfoliated muscovite-type mica NPs on the basis of the energy band diagram and the I-V curves.

  10. From MEMRISTOR to MEMImpedance device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakrim, T.; Univ. Grenoble Alpes, G2Elab, F-38000 Grenoble; Vallée, C., E-mail: christophe.vallee@cea.fr

    2016-02-01

    The behavior of the capacitance switching of HfO{sub 2} Resistive non-volatile Memories is investigated in view of realizing a MEMImpedance (MEM-Z) device. In such a Metal Insulator Metal structure, the impedance value can be tuned by the adjustment of both resistance and capacitance values. We observe a strong variation of capacitance from positive to negative values in a single layer Metal Insulator Metal device made of HfO{sub 2} deposited by Atomic Layer Deposition, but unfortunately no memory effect is observed. However, in the case of a two layer structure, a device has been obtained with a memory effect where bothmore » resistance and capacitance values can be tuned simultaneously, with a variation of capacitance down to negative values to get an inductive behavior. Negative capacitance values are observed for voltage values near SET voltage. A schematic model based on shaped oxygen vacancy density is proposed to account for this capacitance variation. The oxygen vacancies can be either isolated or connected in the bulk of the oxide.« less

  11. Review of radiation effects on ReRAM devices and technology

    NASA Astrophysics Data System (ADS)

    Gonzalez-Velo, Yago; Barnaby, Hugh J.; Kozicki, Michael N.

    2017-08-01

    A review of the ionizing radiation effects on resistive random access memory (ReRAM) technology and devices is presented in this article. The review focuses on vertical devices exhibiting bipolar resistance switching, devices that have already exhibited interesting properties and characteristics for memory applications and, in particular, for non-volatile memory applications. Non-volatile memories are important devices for any type of electronic and embedded system, as they are for space applications. In such applications, specific environmental issues related to the existence of cosmic rays and Van Allen radiation belts around the Earth contribute to specific failure mechanisms related to the energy deposition induced by such ionizing radiation. Such effects are important in non-volatile memory as the current leading technology, i.e. flash-based technology, is sensitive to the total ionizing dose (TID) and single-event effects. New technologies such as ReRAM, if competing with or complementing the existing non-volatile area of memories from the point of view of performance, also have to exhibit great reliability for use in radiation environments such as space. This has driven research on the radiation effects of such ReRAM technology, on both the conductive-bridge RAM as well as the valence-change memories, or OxRAM variants of the technology. Initial characterizations of ReRAM technology showed a high degree of resilience to TID, developing researchers’ interest in characterizing such resilience as well as investigating the cause of such behavior. The state of the art of such research is reviewed in this article.

  12. A Review on Resistive Switching in High-k Dielectrics: A Nanoscale Point of View Using Conductive Atomic Force Microscope

    PubMed Central

    Lanza, Mario

    2014-01-01

    Metal-Insulator-Metal (MIM) structures have raised as the most promising configuration for next generation information storage, leading to great performance and fabrication-friendly Resistive Random Access Memories (RRAM). In these cells, the memory concept is no more based on the charge storage, but on tuning the electrical resistance of the insulating layer by applying electrical stresses to reach a high resistive state (HRS or “0”) and a low resistive state (LRS or “1”), which makes the memory point. Some high-k dielectrics show this unusual property and in the last years high-k based RRAM have been extensively analyzed, especially at the device level. However, as resistance switching (in the most promising cells) is a local phenomenon that takes place in areas of ~100 nm2, the use of characterization tools with high lateral spatial resolution is necessary. In this paper the status of resistive switching in high-k materials is reviewed from a nanoscale point of view by means of conductive atomic force microscope analyses. PMID:28788561

  13. Partial spin absorption induced magnetization switching and its voltage-assisted improvement in an asymmetrical all spin logic device at the mesoscopic scale

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Zhang, Zhizhong; Wang, Lezhi; Nan, Jiang; Zheng, Zhenyi; Li, Xiang; Wong, Kin; Wang, Yu; Klein, Jacques-Olivier; Khalili Amiri, Pedram; Zhang, Youguang; Wang, Kang L.; Zhao, Weisheng

    2017-07-01

    Beyond memory and storage, future logic applications put forward higher requirements for electronic devices. All spin logic devices (ASLDs) have drawn exceptional interest as they utilize pure spin current instead of charge current, which could promise ultra-low power consumption. However, relatively low efficiencies of spin injection, transport, and detection actually impede high-speed magnetization switching and challenge perspectives of ASLD. In this work, we study partial spin absorption induced magnetization switching in asymmetrical ASLD at the mesoscopic scale, in which the injector and detector have the nano-fabrication compatible device size (>100 nm) and their contact areas are different. The enlarged contact area of the detector is conducive to the spin current absorption, and the contact resistance difference between the injector and the detector can decrease the spin current backflow. Rigorous spin circuit modeling and micromagnetic simulations have been carried out to analyze the electrical and magnetic features. The results show that, at the fabrication-oriented technology scale, the ferromagnetic layer can hardly be switched by geometrically partial spin current absorption. The voltage-controlled magnetic anisotropy (VCMA) effect has been applied on the detector to accelerate the magnetization switching by modulating magnetic anisotropy of the ferromagnetic layer. With a relatively high VCMA coefficient measured experimentally, a voltage of 1.68 V can assist the whole magnetization switching within 2.8 ns. This analysis and improving approach will be of significance for future low-power, high-speed logic applications.

  14. Ionic Liquid Gating Control of Spin Reorientation Transition and Switching of Perpendicular Magnetic Anisotropy.

    PubMed

    Zhao, Shishun; Wang, Lei; Zhou, Ziyao; Li, Chunlei; Dong, Guohua; Zhang, Le; Peng, Bin; Min, Tai; Hu, Zhongqiang; Ma, Jing; Ren, Wei; Ye, Zuo-Guang; Chen, Wei; Yu, Pu; Nan, Ce-Wen; Liu, Ming

    2018-05-29

    Electric field (E-field) modulation of perpendicular magnetic anisotropy (PMA) switching, in an energy-efficient manner, is of great potential to realize magnetoelectric (ME) memories and other ME devices. Voltage control of the spin-reorientation transition (SRT) that allows the magnetic moment rotating between the out-of-plane and the in-plane direction is thereby crucial. In this work, a remarkable magnetic anisotropy field change up to 1572 Oe is achieved under a small operation voltage of 4 V through ionic liquid (IL) gating control of SRT in Au/[DEME] + [TFSI] - /Pt/(Co/Pt) 2 /Ta capacitor heterostructures at room temperature, corresponding to a large ME coefficient of 378 Oe V -1 . As revealed by both ferromagnetic resonance measurements and magnetic domain evolution observation, the magnetization can be switched stably and reversibly between the out-of-plane and in-plane directions via IL gating. The key mechanism, revealed by the first-principles calculation, is that the IL gating process influences the interfacial spin-orbital coupling as well as net Rashba magnetic field between the Co and Pt layers, resulting in the modulation of the SRT and in-plane/out-of-plane magnetization switching. This work demonstrates a unique IL-gated PMA with large ME tunability and paves a way toward IL gating spintronic/electronic devices such as voltage tunable PMA memories. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Origin of negative resistance in anion migration controlled resistive memory

    NASA Astrophysics Data System (ADS)

    Banerjee, Writam; Wu, Facai; Hu, Yuan; Wu, Quantan; Wu, Zuheng; Liu, Qi; Liu, Ming

    2018-03-01

    Resistive random access memory (RRAM) is one of the most promising emerging nonvolatile technologies for the futuristic memory devices. Resistive switching behavior often shows negative resistance (NR), either voltage controlled or current controlled. In this work, the origin of a current compliance dependent voltage controlled NR effect during the resetting of anion migration based RRAM devices is discussed. The N-type voltage controlled NR is a high field driven phenomena. The current conduction within the range of a certain negative voltage is mostly dominated by space charge limited current. But with the higher negative voltage, a field induced tunneling effect is generated in the NR region. The voltage controlled NR is strongly dependent on the compliance current. The area independent behavior indicates the filamentary switching. The peak to valley ratio (PVR) is > 5. The variation of PVR as a function of the conduction band offset is achieved. Compared to other reported works, based on the PVR, it is possible to distinguish the RRAM types. Generally, due to the higher electric field effect on the metallic bridge during RESET, the electrochemical metallization type RRAM shows much higher PVR than the valance change type RRAM.

  16. Forming-free, bipolar resistivity switching characteristics of fully transparent resistive random access memory with IZO/α-IGZO/ITO structure

    NASA Astrophysics Data System (ADS)

    Lo, Chun-Chieh; Hsieh, Tsung-Eong

    2016-09-01

    Fully transparent resistive random access memory (TRRAM) containing amorphous indium gallium zinc oxide as the resistance switching (RS) layer and transparent conducting oxides (indium zinc oxide and indium tin oxide) as the electrodes was prepared. Optical measurement indicated the transmittance of device exceeds 80% in visible-light wavelength range. TRRAM samples exhibited the forming-free feature and the best electrical performance (V SET  =  0.61 V V RESET  =  -0.76 V R HRS/R LRS (i.e. the R-ratio)  >103) was observed in the device subject to a post-annealing at 300 °C for 1 hr in atmospheric ambient. Such a sample also exhibited satisfactory endurance and retention properties at 85 °C as revealed by the reliability tests. Electrical measurement performed in vacuum ambient indicated that the RS mechanism correlates with the charge trapping/de-trapping process associated with oxygen defects in the RS layer.

  17. Electric field-induced resistive switching, magnetism, and photoresponse modulation in a Pt/Co0.03Zn0.97O/Nb:SrTiO3 multi-function heterostructure

    NASA Astrophysics Data System (ADS)

    Luo, Zhipeng; Pei, Ling; Li, Meiya; Zhu, Yongdan; Xie, Shuai; Cheng, Xiangyang; Liu, Jiaxian; Ding, Huaqi; Xiong, Rui

    2018-04-01

    A Co0.03Zn0.97O (CZO) thin film was epitaxially grown on a Nb doped (001) SrTiO3 (NSTO) single-crystal substrate by pulsed laser deposition to form a Pt/CZO/NSTO heterostructure. This device exhibits stable bipolar resistive switching, well retention and endurance, multilevel memories, and a resistance ratio of high resistance state (HRS)/low resistance state (LRS) up to 7 × 105. Under the illumination of a 405 nm laser, the HRS of the device showed distinct photoelectricity with an open-circuit voltage of 0.5 V. A stronger ferromagnetism was observed at the HRS than at the LRS. The above phenomenon is attributable to the accumulation and migration of oxygen vacancies at the interface of CZO/NSTO. Our results demonstrated a pathway towards making multifunctional devices that simultaneously exhibit resistive switching, photoelectricity, and ferromagnetism.

  18. Enhancement of memory margins in the polymer composite of [6,6]-phenyl-C61-butyric acid methyl ester and polystyrene.

    PubMed

    Sun, Yanmei; Lu, Junguo; Ai, Chunpeng; Wen, Dianzhong; Bai, Xuduo

    2016-11-09

    Memory devices based on composites of polystyrene (PS) and [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) were investigated with bistable resistive switching behavior. Current-voltage (I-V) curves for indium-tin-oxide (ITO)/PS + PCBM/Al devices with 33 wt% PCBM showed non-volatile, rewritable, flash memory properties with a maximum ON/OFF current ratio of 1 × 10 4 , which was 100 times larger than the ON/OFF ratio of the device with 5 wt% PCBM. For ITO/PS + PCBM/Al devices with 33 wt% PCBM, the write-read-erase-read test cycles demonstrated the bistable devices with ON and OFF states at the same voltage. The programmable ON and OFF states endured up to 10 4 read pulses and possessed a retention time of over 10 5 s, indicative of the memory stability of the device. In the OFF state, the I-V curve at lower voltages up to 0.45 V was attributed to the thermionic emission mechanism, and the I-V characteristics in the applied voltage above 0.5 V dominantly followed the space-charge-limited-current behaviors. In the ON state, the curve in the applied voltage range was related to an Ohmic mechanism.

  19. Coexistence of high performance resistance and capacitance memory based on multilayered metal-oxide structures

    PubMed Central

    Yan, Z. B.; Liu, J. -M.

    2013-01-01

    The Au/DyMnO3/Nb:SrTiO3/Au stack was demonstrated to be not only a high performance memristor but also a good memcapacitor. The switching time is below 10 ns, the retention is longer than 105 s, and the change ratio of resistance (or capacitance) is larger than 100 over the 108 switching cycles. Moreover, this stack has a broad range of intermediate states that are tunable by the operating voltages. It is indicated that the memory effects originate from the Nb:SrTiO3/Au junction where the barrier profile is electrically modulated. The serial connected Au/DyMnO3/Nb:SrTiO3 stack behaves as a high nonlinear resistor paralleling with a capacitor, which raises the capacitance change ratio and enhances the memory stability of the device. PMID:23963467

  20. Effect of electrode material on characteristics of non-volatile resistive memory consisting of Ag{sub 2}S nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Jaewon, E-mail: j1jang@knu.ac.kr

    2016-07-15

    In this study, Ag{sub 2}S nanoparticles are synthesized and used as the active material for two-terminal resistance switching memory devices. Sintered Ag{sub 2}S films are successfully crystallized on plastic substrates with synthesized Ag{sub 2}S nanoparticles, after a relatively low-temperature sintering process (200 °C). After the sintering process, the crystallite size is increased from 6.8 nm to 80.3 nm. The high ratio of surface atoms to inner atoms of nanoparticles reduces the melting point temperature, deciding the sintering process temperature. In order to investigate the resistance switching characteristics, metal/Ag{sub 2}S/metal structures are fabricated and tested. The effect of the electrode materialmore » on the non-volatile resistive memory characteristics is studied. The bottom electrochemically inert materials, such as Au and Pt, were critical for maintaining stable memory characteristics. By using Au and Pt inert bottom electrodes, we are able to significantly improve the memory endurance and retention to more than 10{sup 3} cycles and 10{sup 4} sec, respectively.« less

  1. The effect of different oxygen exchange layers on TaO x based RRAM devices

    NASA Astrophysics Data System (ADS)

    Alamgir, Zahiruddin; Holt, Joshua; Beckmann, Karsten; Cady, Nathaniel C.

    2018-01-01

    In this work, we investigated the effect of the oxygen exchange layer (OEL) on the resistive switching properties of TaO x based memory cells. It was found that the forming voltage, SET-RESET voltage, R off, R on and retention properties are strongly correlated with the oxygen scavenging ability of the OEL, and the resulting oxygen vacancy formation ability of this layer. Higher forming voltage was observed for OELs having lower electronegativity/lower Gibbs free energy for oxide formation, and devices fabricated with these OELs exhibited an increased memory window, when using similar SET-RESET voltage range.

  2. Hydrogen doping in HfO{sub 2} resistance change random access memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, D.; Magyari-Köpe, B.; Nishi, Y.

    2016-01-25

    The structures and energies of hydrogen-doped monoclinic hafnium dioxide were calculated using density-functional theory. The electronic interactions are described within the LDA + U formalism, where on-site Coulomb corrections are applied to the 5d orbital electrons of Hf atoms and 2p orbital electrons of the O atoms. The effects of charge state, defect-defect interactions, and hydrogenation are investigated and compared with experiment. It is found that hydrogenation of HfO{sub 2} resistance-change random access memory devices energetically stabilizes the formation of oxygen vacancies and conductive vacancy filaments through multiple mechanisms, leading to improved switching characteristic and device yield.

  3. High Performance Polymer Memory and Its Formation

    DTIC Science & Technology

    2007-04-26

    the retention time of the device was performed to estimate the barrier height of the charge trap . The activation energy was approximated to be about...characteristics and presented a model to explain the mechanism of electrical switching in the device. By exploiting an electric-field induced charge transfer...electrical current in the high conductivity state would be due to some temperature-independent charge tunneling processes. The IV curves could be

  4. Compliance-Free, Digital SET and Analog RESET Synaptic Characteristics of Sub-Tantalum Oxide Based Neuromorphic Device.

    PubMed

    Abbas, Yawar; Jeon, Yu-Rim; Sokolov, Andrey Sergeevich; Kim, Sohyeon; Ku, Boncheol; Choi, Changhwan

    2018-01-19

    A two terminal semiconducting device like a memristor is indispensable to emulate the function of synapse in the working memory. The analog switching characteristics of memristor play a vital role in the emulation of biological synapses. The application of consecutive voltage sweeps or pulses (action potentials) changes the conductivity of the memristor which is considered as the fundamental cause of the synaptic plasticity. In this study, a neuromorphic device using an in-situ growth of sub-tantalum oxide switching layer is fabricated, which exhibits the digital SET and analog RESET switching with an electroforming process without any compliance current (compliance free). The process of electroforming and SET is observed at the positive sweeps of +2.4 V and +0.86 V, respectively, while multilevel RESET is observed with the consecutive negative sweeps in the range of 0 V to -1.2 V. The movement of oxygen vacancies and gradual change in the anatomy of the filament is attributed to digital SET and analog RESET switching characteristics. For the Ti/Ta 2 O 3-x /Pt neuromorphic device, the Ti top and Pt bottom electrodes are considered as counterparts of the pre-synaptic input terminal and a post-synaptic output terminal, respectively.

  5. Nanoelectronics: Opportunities for future space applications

    NASA Technical Reports Server (NTRS)

    Frazier, Gary

    1995-01-01

    Further improvements in the performance of integrated electronics will eventually halt due to practical fundamental limits on our ability to downsize transistors and interconnect wiring. Avoiding these limits requires a revolutionary approach to switching device technology and computing architecture. Nanoelectronics, the technology of exploiting physics on the nanometer scale for computation and communication, attempts to avoid conventional limits by developing new approaches to switching, circuitry, and system integration. This presentation overviews the basic principles that operate on the nanometer scale that can be assembled into practical devices and circuits. Quantum resonant tunneling (RT) is used as the center-piece of the overview since RT devices already operate at high temperature (120 degrees C) and can be scaled, in principle, to a few nanometers in semiconductors. Near- and long-term applications of GaAs and silicon quantum devices are suggested for signal and information processing, memory, optoelectronics, and radio frequency (RF) communication.

  6. A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio

    NASA Astrophysics Data System (ADS)

    Li, Chong; Yan, Hui; Zhao, Ling-Xi; Zhang, Guo-Feng; Hu, Zhe; Huang, Zhen-Li; Zhu, Ming-Qiang

    2014-12-01

    Photoswitchable fluorescent diarylethenes are promising in molecular optical memory and photonic devices. However, the performance of current diarylethenes is far from satisfactory because of the scarcity of high-speed switching capability and large fluorescence on-off ratio. Here we report a trident perylenemonoimide dyad modified by triple dithienylethenes whose photochromic fluorescence quenching ratio at the photostationary state exceeds 10,000 and the fluorescence quenching efficiency is close to 100% within seconds of ultraviolet irradiation. The highly sensitive fluorescence on/off switching of the trident dyad enables recyclable fluorescence patterning and all-optical transistors. The prototype optical device based on the trident dyad enables the optical switching of incident light and conversion from incident light wavelength to transmitted light wavelength, which is all-optically controlled, reversible and wavelength-convertible. In addition, the trident dyad-staining block copolymer vesicles are observed via optical nanoimaging with a sub-100 nm resolution, portending a potential prospect of the dithienylethene dyad in super-resolution imaging.

  7. A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio.

    PubMed

    Li, Chong; Yan, Hui; Zhao, Ling-Xi; Zhang, Guo-Feng; Hu, Zhe; Huang, Zhen-Li; Zhu, Ming-Qiang

    2014-12-12

    Photoswitchable fluorescent diarylethenes are promising in molecular optical memory and photonic devices. However, the performance of current diarylethenes is far from satisfactory because of the scarcity of high-speed switching capability and large fluorescence on-off ratio. Here we report a trident perylenemonoimide dyad modified by triple dithienylethenes whose photochromic fluorescence quenching ratio at the photostationary state exceeds 10,000 and the fluorescence quenching efficiency is close to 100% within seconds of ultraviolet irradiation. The highly sensitive fluorescence on/off switching of the trident dyad enables recyclable fluorescence patterning and all-optical transistors. The prototype optical device based on the trident dyad enables the optical switching of incident light and conversion from incident light wavelength to transmitted light wavelength, which is all-optically controlled, reversible and wavelength-convertible. In addition, the trident dyad-staining block copolymer vesicles are observed via optical nanoimaging with a sub-100 nm resolution, portending a potential prospect of the dithienylethene dyad in super-resolution imaging.

  8. Direct observation of oxygen vacancy-driven structural and resistive phase transitions in La2/3Sr1/3MnO3

    NASA Astrophysics Data System (ADS)

    Yao, Lide; Inkinen, Sampo; van Dijken, Sebastiaan

    2017-02-01

    Resistive switching in transition metal oxides involves intricate physical and chemical behaviours with potential for non-volatile memory and memristive devices. Although oxygen vacancy migration is known to play a crucial role in resistive switching of oxides, an in-depth understanding of oxygen vacancy-driven effects requires direct imaging of atomic-scale dynamic processes and their real-time impact on resistance changes. Here we use in situ transmission electron microscopy to demonstrate reversible switching between three resistance states in epitaxial La2/3Sr1/3MnO3 films. Simultaneous high-resolution imaging and resistance probing indicate that the switching events are caused by the formation of uniform structural phases. Reversible horizontal migration of oxygen vacancies within the manganite film, driven by combined effects of Joule heating and bias voltage, predominantly triggers the structural and resistive transitions. Our findings open prospects for ionotronic devices based on dynamic control of physical properties in complex oxide nanostructures.

  9. Bipolar resistive switching of single gold-in-Ga2O3 nanowire.

    PubMed

    Hsu, Chia-Wei; Chou, Li-Jen

    2012-08-08

    We have fabricated single nanowire chips on gold-in-Ga(2)O(3) core-shell nanowires using the electron-beam lithography techniques and realized bipolar resistive switching characteristics having invariable set and reset voltages. We attribute the unique property of invariance to the built-in conduction path of gold core. This invariance allows us to fabricate many resistive switching cells with the same operating voltage by simple depositing repetitive metal electrodes along a single nanowire. Other characteristics of these core-shell resistive switching nanowires include comparable driving electric field with other thin film and nanowire devices and a remarkable on/off ratio more than 3 orders of magnitude at a low driving voltage of 2 V. A smaller but still impressive on/off ratio of 10 can be obtained at an even lower bias of 0.2 V. These characteristics of gold-in-Ga(2)O(3) core-shell nanowires make fabrication of future high-density resistive memory devices possible.

  10. Size dependence of spin-torque induced magnetic switching in CoFeB-based perpendicular magnetization tunnel junctions (invited)

    NASA Astrophysics Data System (ADS)

    Sun, J. Z.; Trouilloud, P. L.; Gajek, M. J.; Nowak, J.; Robertazzi, R. P.; Hu, G.; Abraham, D. W.; Gaidis, M. C.; Brown, S. L.; O'Sullivan, E. J.; Gallagher, W. J.; Worledge, D. C.

    2012-04-01

    CoFeB-based magnetic tunnel junctions with perpendicular magnetic anisotropy are used as a model system for studies of size dependence in spin-torque-induced magnetic switching. For integrated solid-state memory applications, it is important to understand the magnetic and electrical characteristics of these magnetic tunnel junctions as they scale with tunnel junction size. Size-dependent magnetic anisotropy energy, switching voltage, apparent damping, and anisotropy field are systematically compared for devices with different materials and fabrication treatments. Results reveal the presence of sub-volume thermal fluctuation and reversal, with a characteristic length-scale of the order of approximately 40 nm, depending on the strength of the perpendicular magnetic anisotropy and exchange stiffness. To have the best spin-torque switching efficiency and best stability against thermal activation, it is desirable to optimize the perpendicular anisotropy strength with the junction size for intended use. It also is important to ensure strong exchange-stiffness across the magnetic thin film. These combine to give an exchange length that is comparable or larger than the lateral device size for efficient spin-torque switching.

  11. Device Demonstration

    DTIC Science & Technology

    2006-12-31

    Reset (Write a Ŕ") * Apply current to melt memory element * Cool quickly to " freeze -in" amorphous state * Amorphous state = high resistance = low...It consists of a 6 jtF storage capacitor switched by 3 series thyristors. The module output is connected to the x-ray source through a ferrite

  12. Emerging memories: resistive switching mechanisms and current status

    NASA Astrophysics Data System (ADS)

    Jeong, Doo Seok; Thomas, Reji; Katiyar, R. S.; Scott, J. F.; Kohlstedt, H.; Petraru, A.; Hwang, Cheol Seong

    2012-07-01

    The resistance switching behaviour of several materials has recently attracted considerable attention for its application in non-volatile memory (NVM) devices, popularly described as resistive random access memories (RRAMs). RRAM is a type of NVM that uses a material(s) that changes the resistance when a voltage is applied. Resistive switching phenomena have been observed in many oxides: (i) binary transition metal oxides (TMOs), e.g. TiO2, Cr2O3, FeOx and NiO; (ii) perovskite-type complex TMOs that are variously functional, paraelectric, ferroelectric, multiferroic and magnetic, e.g. (Ba,Sr)TiO3, Pb(Zrx Ti1-x)O3, BiFeO3 and PrxCa1-xMnO3 (iii) large band gap high-k dielectrics, e.g. Al2O3 and Gd2O3; (iv) graphene oxides. In the non-oxide category, higher chalcogenides are front runners, e.g. In2Se3 and In2Te3. Hence, the number of materials showing this technologically interesting behaviour for information storage is enormous. Resistive switching in these materials can form the basis for the next generation of NVM, i.e. RRAM, when current semiconductor memory technology reaches its limit in terms of density. RRAMs may be the high-density and low-cost NVMs of the future. A review on this topic is of importance to focus concentration on the most promising materials to accelerate application into the semiconductor industry. This review is a small effort to realize the ambitious goal of RRAMs. Its basic focus is on resistive switching in various materials with particular emphasis on binary TMOs. It also addresses the current understanding of resistive switching behaviour. Moreover, a brief comparison between RRAMs and memristors is included. The review ends with the current status of RRAMs in terms of stability, scalability and switching speed, which are three important aspects of integration onto semiconductors.

  13. Room temperature operation of electro-optical bistability in the edge-emitting tunneling-collector transistor laser

    NASA Astrophysics Data System (ADS)

    Feng, M.; Holonyak, N.; Wang, C. Y.

    2017-09-01

    Optical bistable devices are fundamental to digital photonics as building blocks of switches, logic gates, and memories in future computer systems. Here, we demonstrate both optical and electrical bistability and capability for switching in a single transistor operated at room temperature. The electro-optical hysteresis is explained by the interaction of electron-hole (e-h) generation and recombination dynamics with the cavity photon modulation in different switching paths. The switch-UP and switch-DOWN threshold voltages are determined by the rate difference of photon generation at the base quantum-well and the photon absorption via intra-cavity photon-assisted tunneling controlled by the collector voltage. Thus, the transistor laser electro-optical bistable switching is programmable with base current and collector voltage, and the basis for high speed optical logic processors.

  14. On the origin of resistive switching volatility in Ni/TiO{sub 2}/Ni stacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortese, Simone, E-mail: simone.cortese@soton.ac.uk; Trapatseli, Maria; Khiat, Ali

    2016-08-14

    Resistive switching and resistive random access memories have attracted huge interest for next generation nonvolatile memory applications, also thought to be able to overcome flash memories limitations when arranged in crossbar arrays. A cornerstone of their potential success is that the toggling between two distinct resistance states, usually a High Resistive State (HRS) and a Low Resistive State (LRS), is an intrinsic non-volatile phenomenon with the two states being thermodynamically stable. TiO{sub 2} is one of the most common materials known to support non-volatile RS. In this paper, we report a volatile resistive switching in a titanium dioxide thin filmmore » sandwiched by two nickel electrodes. The aim of this work is to understand the underlying physical mechanism that triggers the volatile effect, which is ascribed to the presence of a NiO layer at the bottom interface. The NiO layer alters the equilibrium between electric field driven filament formation and thermal enhanced ion diffusion, resulting in the volatile behaviour. Although the volatility is not ideal for non-volatile memory applications, it shows merit for access devices in crossbar arrays due to its high LRS/HRS ratio, which are also briefly discussed.« less

  15. A FPGA-based Measurement System for Nonvolatile Semiconductor Memory Characterization

    NASA Astrophysics Data System (ADS)

    Bu, Jiankang; White, Marvin

    2002-03-01

    Low voltage, long retention, high density SONOS nonvolatile semiconductor memory (NVSM) devices are ideally suited for PCMCIA, FLASH and 'smart' cards. The SONOS memory transistor requires characterization with an accurate, rapid measurement system with minimum disturbance to the device. The FPGA-based measurement system includes three parts: 1) a pattern generator implemented with XILINX FPGAs and corresponding software, 2) a high-speed, constant-current, threshold voltage detection circuit, 3) and a data evaluation program, implemented with a LABVIEW program. Fig. 1 shows the general block diagram of the FPGA-based measurement system. The function generator is designed and simulated with XILINX Foundation Software. Under the control of the specific erase/write/read pulses, the analog detect circuit applies operational modes to the SONOS device under test (DUT) and determines the change of the memory-state of the SONOS nonvolatile memory transistor. The TEK460 digitizes the analog threshold voltage output and sends to the PC computer. The data is filtered and averaged with a LABVIEWTM program running on the PC computer and displayed on the monitor in real time. We have implemented the pattern generator with XILINX FPGAs. Fig. 2 shows the block diagram of the pattern generator. We realized the logic control by a method of state machine design. Fig. 3 shows a small part of the state machine. The flexibility of the FPGAs enhances the capabilities of this system and allows measurement variations without hardware changes. The characterization of the nonvolatile memory transistor device under test (DUT), as function of programming voltage and time, is achieved by a high-speed, constant-current threshold voltage detection circuit. The analog detection circuit incorporating fast analog switches controlled digitally with the FPGAs. The schematic circuit diagram is shown in Fig. 4. The various operational modes for the DUT are realized with control signals applied to the analog switches (SW) as shown in Fig. 5. A LABVIEWTM program, on a PC platform, collects and processes the data. The data is displayed on the monitor in real time. This time-domain filtering reduces the digitizing error. Fig. 6 shows the data processing. SONOS nonvolatile semiconductor memories are characterized by erase/write, retention and endurance measurements. Fig. 7 shows the erase/write characteristics of an n-Channel, 5V prog-rammable SONOS memory transistor. Fig.8 shows the retention characteristic of the same SONOS transistor. We have used this system to characterize SONOS nonvolatile semiconductor memory transistors. The attractive features of the test system design lies in the cost-effectiveness and flexibility of the test pattern implementation, fast read-out of memory state, low power, high precision determination of the device threshold voltage, and perhaps most importantly, minimum disturbance, which is indispensable for nonvolatile memory characterization.

  16. Time-resolved photoluminescence of SiOx encapsulated Si

    NASA Astrophysics Data System (ADS)

    Kalem, Seref; Hannas, Amal; Österman, Tomas; Sundström, Villy

    Silicon and its oxide SiOx offer a number of exciting electrical and optical properties originating from defects and size reduction enabling engineering new electronic devices including resistive switching memories. Here we present the results of photoluminescence dynamics relevant to defects and quantum confinement effects. Time-resolved luminescence at room temperature exhibits an ultrafast decay component of less than 10 ps at around 480 nm and a slower component of around 60 ps as measured by streak camera. Red shift at the initial stages of the blue luminescence decay confirms the presence of a charge transfer to long lived states. Time-correlated single photon counting measurements revealed a life-time of about 5 ns for these states. The same quantum structures emit in near infrared close to optical communication wavelengths. Nature of the emission is described and modeling is provided for the luminescence dynamics. The electrical characteristics of metal-oxide-semiconductor devices were correlated with the optical and vibrational measurement results in order to have better insight into the switching mechanisms in such resistive devices as possible next generation RAM memory elements. ``This work was supported by ENIAC Joint Undertaking and Laser-Lab Europe''.

  17. Realization of write-once-read-many-times memory device with O{sub 2} plasma-treated indium gallium zinc oxide thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, P., E-mail: liup0013@ntu.edu.sg; Chen, T. P., E-mail: echentp@ntu.edu.sg; Li, X. D.

    2014-01-20

    A write-once-read-many-times (WORM) memory devices based on O{sub 2} plasma-treated indium gallium zinc oxide (IGZO) thin films has been demonstrated. The device has a simple Al/IGZO/Al structure. The device has a normally OFF state with a very high resistance (e.g., the resistance at 2 V is ∼10{sup 9} Ω for a device with the radius of 50 μm) as a result of the O{sub 2} plasma treatment on the IGZO thin films. The device could be switched to an ON state with a low resistance (e.g., the resistance at 2 V is ∼10{sup 3} Ω for the radius of 50 μm) by applying amore » voltage pulse (e.g., 10 V/1 μs). The WORM device has good data-retention and reading-endurance capabilities.« less

  18. Atomic Layer Deposited Oxide-Based Nanocomposite Structures with Embedded CoPtx Nanocrystals for Resistive Random Access Memory Applications.

    PubMed

    Wang, Lai-Guo; Cao, Zheng-Yi; Qian, Xu; Zhu, Lin; Cui, Da-Peng; Li, Ai-Dong; Wu, Di

    2017-02-22

    Al 2 O 3 - or HfO 2 -based nanocomposite structures with embedded CoPt x nanocrystals (NCs) on TiN-coated Si substrates have been prepared by combination of thermal atomic layer deposition (ALD) and plasma-enhanced ALD for resistive random access memory (RRAM) applications. The impact of CoPt x NCs and their average size/density on the resistive switching properties has been explored. Compared to the control sample without CoPt x NCs, ALD-derived Pt/oxide/100 cycle-CoPt x NCs/TiN/SiO 2 /Si exhibits a typical bipolar, reliable, and reproducible resistive switching behavior, such as sharp distribution of RRAM parameters, smaller set/reset voltages, stable resistance ratio (≥10 2 ) of OFF/ON states, better switching endurance up to 10 4 cycles, and longer data retention over 10 5 s. The possible resistive switching mechanism based on nanocomposite structures of oxide/CoPt x NCs has been proposed. The dominant conduction mechanisms in low- and high-resistance states of oxide-based device units with embedded CoPt x NCs are Ohmic behavior and space-charge-limited current, respectively. The insertion of CoPt x NCs can effectively improve the formation of conducting filaments due to the CoPt x NC-enhanced electric field intensity. Besides excellent resistive switching performances, the nanocomposite structures also simultaneously present ferromagnetic property. This work provides a flexible pathway by combining PEALD and TALD compatible with state-of-the-art Si-based technology for multifunctional electronic devices applications containing RRAM.

  19. Uniting Gradual and Abrupt set Processes in Resistive Switching Oxides

    NASA Astrophysics Data System (ADS)

    Fleck, Karsten; La Torre, Camilla; Aslam, Nabeel; Hoffmann-Eifert, Susanne; Böttger, Ulrich; Menzel, Stephan

    2016-12-01

    Identifying limiting factors is crucial for a better understanding of the dynamics of the resistive switching phenomenon in transition-metal oxides. This improved understanding is important for the design of fast-switching, energy-efficient, and long-term stable redox-based resistive random-access memory devices. Therefore, this work presents a detailed study of the set kinetics of valence change resistive switches on a time scale from 10 ns to 104 s , taking Pt /SrTiO3/TiN nanocrossbars as a model material. The analysis of the transient currents reveals that the switching process can be subdivided into a linear-degradation process that is followed by a thermal runaway. The comparison with a dynamical electrothermal model of the memory cell allows the deduction of the physical origin of the degradation. The origin is an electric-field-induced increase of the oxygen-vacancy concentration near the Schottky barrier of the Pt /SrTiO3 interface that is accompanied by a steadily rising local temperature due to Joule heating. The positive feedback of the temperature increase on the oxygen-vacancy mobility, and thereby on the conductivity of the filament, leads to a self-acceleration of the set process.

  20. Switching characteristics in Cu:SiO2 by chemical soak methods for resistive random access memory (ReRAM)

    NASA Astrophysics Data System (ADS)

    Chin, Fun-Tat; Lin, Yu-Hsien; Yang, Wen-Luh; Liao, Chin-Hsuan; Lin, Li-Min; Hsiao, Yu-Ping; Chao, Tien-Sheng

    2015-01-01

    A limited copper (Cu)-source Cu:SiO2 switching layer composed of various Cu concentrations was fabricated using a chemical soaking (CS) technique. The switching layer was then studied for developing applications in resistive random access memory (ReRAM) devices. Observing the resistive switching mechanism exhibited by all the samples suggested that Cu conductive filaments formed and ruptured during the set/reset process. The experimental results indicated that the endurance property failure that occurred was related to the joule heating effect. Moreover, the endurance switching cycle increased as the Cu concentration decreased. In high-temperature tests, the samples demonstrated that the operating (set/reset) voltages decreased as the temperature increased, and an Arrhenius plot was used to calculate the activation energy of the set/reset process. In addition, the samples demonstrated stable data retention properties when baked at 85 °C, but the samples with low Cu concentrations exhibited short retention times in the low-resistance state (LRS) during 125 °C tests. Therefore, Cu concentration is a crucial factor in the trade-off between the endurance and retention properties; furthermore, the Cu concentration can be easily modulated using this CS technique.

  1. Working memory costs of task switching.

    PubMed

    Liefooghe, Baptist; Barrouillet, Pierre; Vandierendonck, André; Camos, Valérie

    2008-05-01

    Although many accounts of task switching emphasize the importance of working memory as a substantial source of the switch cost, there is a lack of evidence demonstrating that task switching actually places additional demands on working memory. The present study addressed this issue by implementing task switching in continuous complex span tasks with strictly controlled time parameters. A series of 4 experiments demonstrate that recall performance decreased as a function of the number of task switches and that the concurrent load of item maintenance had no influence on task switching. These results indicate that task switching induces a cost on working memory functioning. Implications for theories of task switching, working memory, and resource sharing are addressed.

  2. Graphene as a platform for novel nanoelectronic devices

    NASA Astrophysics Data System (ADS)

    Standley, Brian

    Graphene's superlative electrical and mechanical properties, combined with its compatibility with existing planar silicon-based technology, make it an attractive platform for novel nanoelectronic devices. The development of two such devices is reported--a nonvolatile memory element exploiting the nanoscale graphene edge and a field-effect transistor using graphene for both the conducting channel and, in oxidized form, the gate dielectric. These experiments were enabled by custom software written to fully utilize both instrument-based and computer-based data acquisition hardware and provide a simple measurement automation system. Graphene break junctions were studied and found to exhibit switching behavior in response to an electric field. This switching allows the devices to act as nonvolatile memory elements which have demonstrated thousands of writing cycles and long retention times. A model for device operation is proposed based on the formation and breaking of carbon-atom chains that bridge the junctions. Information storage was demonstrated using the concept of rank coding, in which information is stored in the relative conductance of multiple graphene switches in a memory cell. The high mobility and two dimensional nature of graphene make it an attractive material for field-effect transistors. Another ultrathin layered materialmd graphene's insulating analogue, graphite oxidemd was studied as an alternative to bulk gate dielectric materials such as Al2O3 or HfO 2. Transistors were fabricated comprising single or bilayer graphene channels, graphite oxide gate insulators, and metal top-gates. Electron transport measurements reveal minimal leakage through the graphite oxide at room temperature. Its breakdown electric field was found to be comparable to SiO2, typically ˜1-3 x 108 V/m, while its dielectric constant is slightly higher, kappa ≈ 4.3. As nanoelectronics experiments and their associated instrumentation continue to grow in complexity the need for powerful data acquisition software has only increased. This role has traditionally been filled by semiconductor parameter analyzers or desktop computers running LabVIEW. Mezurit 2 represents a hybrid approach, providing basic virtual instruments which can be controlled in concert through a comprehensive scripting interface. Each virtual instrument's model of operation is described and an architectural overview is provided.

  3. Current-voltage characteristics of organic semiconductors: Interfacial control between organic layers and electrodes

    NASA Astrophysics Data System (ADS)

    Kondo, Takeshi

    2007-12-01

    Current-voltage (I-V) characteristics of organic molecular glasses and solution processable materials embedded between two electrodes were studied to find materials possessing high charge-carrier mobilities and to design organic memory devices. The comparison studies between TOF, FET and SCLC measurements confirm the validity of using analyses of I-V characteristics to determine the mobility of organic semiconductors. Hexaazatrinaphthylene derivatives tri-substituted by electron withdrawing groups were characterized as potential electron transporting molecular glasses. The presence of two isomers has important implications for film morphology and effective mobility. The statistical isomer mixture of hexaazatrinaphthylene derivatized with pentafluoro-phenylmethyl ester is able to form amorphous films, and electron mobilities with the range of 10--2 cm2/Vs are observed in their I-V characteristics. Single-layer organic memory devices consisting of a polymer layer embedded between an Al electrode and ITO modified with Ag nanodots (Ag-NDs) prepared by a solution-based surface assembly demonstrated a potential capability as nonvolatile organic memory device with high ON/OFF switching ratios of 10 4. This level of performance could be achieved by modifying the ITO electrodes with some Ag-NDs that act as trapping sites, reducing the current in the OFF state. Based upon the observed electrical characteristics, the currents of the low-resistance state can be attributed to a tunneling through low-resistance pathways of metal particles originating from the metal top electrode in the organic layer and that the high-resistance state is controlled by charge trapping by the metal particles including Ag-NDs. In an alternative approach, complex films of AgNO3: hexaazatrinaphthylene derivatives were studied as the active layers for all-solution processed and air-stable organic memory devices. Rewritable memory effects were observed in the devices comprised of a thin polymer dielectric layer deposited on the bottom electrode, the complex film, and a conducting polymer film as the top electrode. The electrical characteristics indicate that the accumulation of Ag+ ions at the interface of the complex film and the top electrode may contribute to the switching effect.

  4. Organic-Inorganic Hybrid Halide Perovskites for Memories, Transistors, and Artificial Synapses.

    PubMed

    Choi, Jaeho; Han, Ji Su; Hong, Kootak; Kim, Soo Young; Jang, Ho Won

    2018-05-30

    Fascinating characteristics of halide perovskites (HPs), which cannot be seen in conventional semiconductors and metal oxides, have boosted the application of HPs in electronic devices beyond optoelectronics such as solar cells, photodetectors, and light-emitting diodes. Here, recent advances in HP-based memory and logic devices such as resistive-switching memories (i.e., resistive random access memory (RRAM) or memristors), transistors, and artificial synapses are reviewed, focusing on inherently exotic properties of HPs: i) tunable bandgap, ii) facile majority carrier control, iii) fast ion migration, and iv) superflexibility. Various fabrication techniques of HP thin films from solution-based methods to vacuum processes are introduced. Up-to-date work in the field, emphasizing the compositional flexibility of HPs, suggest that HPs are promising candidates for next-generation electronic devices. Taking advantages of their unique electrical properties, low-cost and low-temperature synthesis, and compositional and mechanical flexibility, HPs have enormous potential to provide a new platform for future electronic devices and explosively intensive studies will pave the way in finding new HP materials beyond conventional silicon-based semiconductors to keep up with "More-than-Moore" times. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Electric-Field-Driven Dual Vacancies Evolution in Ultrathin Nanosheets Realizing Reversible Semiconductor to Half-Metal Transition.

    PubMed

    Lyu, Mengjie; Liu, Youwen; Zhi, Yuduo; Xiao, Chong; Gu, Bingchuan; Hua, Xuemin; Fan, Shaojuan; Lin, Yue; Bai, Wei; Tong, Wei; Zou, Youming; Pan, Bicai; Ye, Bangjiao; Xie, Yi

    2015-12-02

    Fabricating a flexible room-temperature ferromagnetic resistive-switching random access memory (RRAM) device is of fundamental importance to integrate nonvolatile memory and spintronics both in theory and practice for modern information technology and has the potential to bring about revolutionary new foldable information-storage devices. Here, we show that a relatively low operating voltage (+1.4 V/-1.5 V, the corresponding electric field is around 20,000 V/cm) drives the dual vacancies evolution in ultrathin SnO2 nanosheets at room temperature, which causes the reversible transition between semiconductor and half-metal, accompanyied by an abrupt conductivity change up to 10(3) times, exhibiting room-temperature ferromagnetism in two resistance states. Positron annihilation spectroscopy and electron spin resonance results show that the Sn/O dual vacancies in the ultrathin SnO2 nanosheets evolve to isolated Sn vacancy under electric field, accounting for the switching behavior of SnO2 ultrathin nanosheets; on the other hand, the different defect types correspond to different conduction natures, realizing the transition between semiconductor and half-metal. Our result represents a crucial step to create new a information-storage device realizing the reversible transition between semiconductor and half-metal with flexibility and room-temperature ferromagnetism at low energy consumption. The as-obtained half-metal in the low-resistance state broadens the application of the device in spintronics and the semiconductor to half-metal transition on the basis of defects evolution and also opens up a new avenue for exploring random access memory mechanisms and finding new half-metals for spintronics.

  6. Structure and properties of a model conductive filament/host oxide interface in HfO2-based ReRAM

    NASA Astrophysics Data System (ADS)

    Padilha, A. C. M.; McKenna, K. P.

    2018-04-01

    Resistive random-access memory (ReRAM) is a promising class of nonvolatile memory capable of storing information via its resistance state. In the case of hafnium oxide-based devices, experimental evidence shows that a conductive oxygen-deficient filament is formed and broken inside of the device by oxygen migration, leading to switching of its resistance state. However, little is known about the nature of this conductive phase, its interface with the host oxide, or the associated interdiffusion of oxygen, presenting a challenge to understanding the switching mechanism and device properties. To address these problems, we present atomic-scale first-principles simulations of a prototypical conductive phase (HfO), the electronic properties of its interface with HfO2, as well as stability with respect to oxygen diffusion across the interface. We show that the conduction-band offset between HfO and HfO2 is 1.3 eV, smaller than typical electrode-HfO2 band offsets, suggesting that positive charging and band bending should occur at the conductive filament-HfO2 interface. We also show that transfer of oxygen across the interface, from HfO2 into HfO, costs around 1.2 eV per atom and leads to a gradual opening of the HfO band gap, and hence disruption of the electrical conductivity. These results provide invaluable insights into understanding the switching mechanism for HfO2-based ReRAM.

  7. Calculation of optical parameters for covalent binary alloys used in optical memories/solar cells: a modified approach

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Promod K.; Gupta, Poonam; Singh, Laxman

    2001-06-01

    Chalcogenide based alloys find applications in a number of devices like optical memories, IR detectors, optical switches, photovoltaics, compound semiconductor heterosrtuctures etc. We have modified the Gurman's statistical thermodynamic model (STM) of binary covalent alloys. In the Gurman's model, entropy calculations are based on the number of structural units present. The need to modify this model arose due to the fact that it gives equal probability for all the tetrahedra present in the alloy. We have modified the Gurman's model by introducing the concept that the entropy is based on the bond arrangement rather than that on the structural units present. In the present work calculation based on this modification have been presented for optical properties, which find application in optical switching/memories, solar cells and other optical devices. It has been shown that the calculated optical parameters (for a typical case of GaxSe1-x) based on modified model are closer to the available experimental results. These parameters include refractive index, extinction coefficient, dielectric functions, optical band gap etc. GaxSe1-x has been found to be suitable for reversible optical memories also, where phase change (a yields c and vice versa) takes place at specified physical conditions. DTA/DSC studies also suggest the suitability of this material for optical switching/memory applications. We have also suggested possible use of GaxSe1-x (x = 0.4) in place of oxide layer in a Metal - Oxide - Semiconductor type solar cells. The new structure is Metal - Ga2Se3 - GaAs. The I-V characteristics and other parameters calculated for this structure are found to be much better than that for Si based solar cells. Maximum output power is obtained at the intermediate layer thickness approximately 40 angstroms for this typical solar cell.

  8. A Novel Bat-Shaped Dicyanomethylene-4H-pyran-Functionalized Naphthalimide for Highly Efficient Solution-Processed Multilevel Memory Devices.

    PubMed

    Zhang, Qi-Jian; Miao, Shi-Feng; Li, Hua; He, Jing-Hui; Li, Na-Jun; Xu, Qing-Feng; Chen, Dong-Yun; Lu, Jian-Mei

    2017-06-19

    Small-molecule-based multilevel memory devices have attracted increasing attention because of their advantages, such as super-high storage density, fast reading speed, light weight, low energy consumption, and shock resistance. However, the fabrication of small-molecule-based devices always requires expensive vacuum-deposition techniques or high temperatures for spin-coating. Herein, through rational tailoring of a previous molecule, DPCNCANA (4,4'-(6,6'-bis(2-octyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)-9H,9'H-[3,3'-bicarbazole]-9,9'-diyl)dibenzonitrile), a novel bat-shaped A-D-A-type (A-D-A=acceptor-donor-acceptor) symmetric framework has been successfully synthesized and can be dissolved in common solvents at room temperature. Additionally, it has a low-energy bandgap and dense intramolecular stacking in the film state. The solution-processed memory devices exhibited high-performance nonvolatile multilevel data-storage properties with low switching threshold voltages of about -1.3 and -2.7 V, which is beneficial for low power consumption. Our result should prompt the study of highly efficient solution-processed multilevel memory devices in the field of organic electronics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Layered memristive and memcapacitive switches for printable electronics

    NASA Astrophysics Data System (ADS)

    Bessonov, Alexander A.; Kirikova, Marina N.; Petukhov, Dmitrii I.; Allen, Mark; Ryhänen, Tapani; Bailey, Marc J. A.

    2015-02-01

    Novel computing technologies that imitate the principles of biological neural systems may offer low power consumption along with distinct cognitive and learning advantages. The development of reliable memristive devices capable of storing multiple states of information has opened up new applications such as neuromorphic circuits and adaptive systems. At the same time, the explosive growth of the printed electronics industry has expedited the search for advanced memory materials suitable for manufacturing flexible devices. Here, we demonstrate that solution-processed MoOx/MoS2 and WOx/WS2 heterostructures sandwiched between two printed silver electrodes exhibit an unprecedentedly large and tunable electrical resistance range from 102 to 108 Ω combined with low programming voltages of 0.1-0.2 V. The bipolar resistive switching, with a concurrent capacitive contribution, is governed by an ultrathin (<3 nm) oxide layer. With strong nonlinearity in switching dynamics, different mechanisms of synaptic plasticity are implemented by applying a sequence of electrical pulses.

  10. Resistive switching of Sn-doped In2O3/HfO2 core-shell nanowire: geometry architecture engineering for nonvolatile memory.

    PubMed

    Huang, Chi-Hsin; Chang, Wen-Chih; Huang, Jian-Shiou; Lin, Shih-Ming; Chueh, Yu-Lun

    2017-05-25

    Core-shell NWs offer an innovative approach to achieve nanoscale metal-insulator-metal (MIM) heterostructures along the wire radial direction, realizing three-dimensional geometry architecture rather than planar type thin film devices. This work demonstrated the tunable resistive switching characteristics of ITO/HfO 2 core-shell nanowires with controllable shell thicknesses by the atomic layer deposition (ALD) process for the first time. Compared to planar HfO 2 thin film device configuration, ITO/HfO 2 core-shell nanowire shows a prominent resistive memory behavior, including lower power consumption with a smaller SET voltage of ∼0.6 V and better switching voltage uniformity with variations (standard deviation(σ)/mean value (μ)) of V SET and V RESET from 0.38 to 0.14 and from 0.33 to 0.05 for ITO/HfO 2 core-shell nanowire and planar HfO 2 thin film, respectively. In addition, endurance over 10 3 cycles resulting from the local electric field enhancement can be achieved, which is attributed to geometry architecture engineering. The concept of geometry architecture engineering provides a promising strategy to modify the electric-field distribution for solving the non-uniformity issue of future RRAM.

  11. Ionic current devices-Recent progress in the merging of electronic, microfluidic, and biomimetic structures.

    PubMed

    Koo, Hyung-Jun; Velev, Orlin D

    2013-05-09

    We review the recent progress in the emerging area of devices and circuits operating on the basis of ionic currents. These devices operate at the intersection of electrochemistry, electronics, and microfluidics, and their potential applications are inspired by essential biological processes such as neural transmission. Ionic current rectification has been demonstrated in diode-like devices containing electrolyte solutions, hydrogel, or hydrated nanofilms. More complex functions have been realized in ionic current based transistors, solar cells, and switching memory devices. Microfluidic channels and networks-an intrinsic component of the ionic devices-could play the role of wires and circuits in conventional electronics.

  12. Crystal that remembers: several ways to utilize nanocrystals in resistive switching memory

    NASA Astrophysics Data System (ADS)

    Banerjee, Writam; Liu, Qi; Long, Shibing; Lv, Hangbing; Liu, Ming

    2017-08-01

    The attractive usability of quantum phenomena in futuristic devices is possible by using zero-dimensional systems like nanocrystals (NCs). The performance of nonvolatile flash memory devices has greatly benefited from the use of NCs over recent decades. The quantum abilities of NCs have been used to improve the reliability of flash devices. Its appeal is extended to the design of emerging devices such as resistive random-access memory (RRAM), a technology where the use of silicon is optional. Here, we are going to review the recent progress in the design, characterization, and utilization of NCs in RRAM devices. We will first introduce the physical design of the RRAM devices using NCs and the improvement of electrical performance in NC-RRAM over conventional ones. In particular, special care has been taken to review the ways of development provided by the NCs in the RRAM devices. In a broad sense, the NCs can play a charge trapping role in the NC-RRAM structure or it can be responsible for the localization and improvement of the stability of the conductive filament or it can play a part in the formation of the conductive filament chain by the NC migration under applied bias. Finally, the scope of NCs in the RRAM devices has also been discussed.

  13. Interplay of multiple synaptic plasticity features in filamentary memristive devices for neuromorphic computing

    NASA Astrophysics Data System (ADS)

    La Barbera, Selina; Vincent, Adrien F.; Vuillaume, Dominique; Querlioz, Damien; Alibart, Fabien

    2016-12-01

    Bio-inspired computing represents today a major challenge at different levels ranging from material science for the design of innovative devices and circuits to computer science for the understanding of the key features required for processing of natural data. In this paper, we propose a detail analysis of resistive switching dynamics in electrochemical metallization cells for synaptic plasticity implementation. We show how filament stability associated to joule effect during switching can be used to emulate key synaptic features such as short term to long term plasticity transition and spike timing dependent plasticity. Furthermore, an interplay between these different synaptic features is demonstrated for object motion detection in a spike-based neuromorphic circuit. System level simulation presents robust learning and promising synaptic operation paving the way to complex bio-inspired computing systems composed of innovative memory devices.

  14. Semiconductor/High-Tc-Superconductor Hybrid ICs

    NASA Technical Reports Server (NTRS)

    Burns, Michael J.

    1995-01-01

    Hybrid integrated circuits (ICs) containing both Si-based semiconducting and YBa(2)Cu(3)O(7-x) superconducting circuit elements on sapphire substrates developed. Help to prevent diffusion of Cu from superconductors into semiconductors. These hybrid ICs combine superconducting and semiconducting features unavailable in superconducting or semiconducting circuitry alone. For example, complementary metal oxide/semiconductor (CMOS) readout and memory devices integrated with fast-switching Josephson-junction super-conducting logic devices and zero-resistance interconnections.

  15. Tunable, ultralow-power switching in memristive devices enabled by a heterogeneous graphene-oxide interface.

    PubMed

    Qian, Min; Pan, Yiming; Liu, Fengyuan; Wang, Miao; Shen, Haoliang; He, Daowei; Wang, Baigeng; Shi, Yi; Miao, Feng; Wang, Xinran

    2014-05-28

    Memristive devices based on vertical heterostructures of graphene and TiOx show a significant power reduction that is up to ∼10(3) times smaller than that of conventional structures. This power reduction arises as a result of a tunneling barrier at the interface. The barrier is tunable, opening up the possibility of engineering several key memory characteristics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Optical recording materials

    NASA Astrophysics Data System (ADS)

    Savant, Gajendra D.; Jannson, Joanna L.

    1991-07-01

    The increased emphasis on speed of operation, wavelength selectivity, compactness, and ruggedization has focused a great deal of attention on the solutions offered by all-optic devices and by hybrid electro-optic systems. In fact, many photonic devices are being considered for use as partial replacements for electronic systems. Optical components, which include modulators, switches, 3-D memory storage devices, wavelength division multiplexers, holographic optical elements, and others, are examples of such devices. The success or failure of these modern optical devices depends, to a great extent, on the performance and survivability of the optical materials used. This is particularly true for volume holographic filters, organic memory media, second- and third-order nonlinear material-based processors and neural networks. Due to the critical importance of these materials and their lack of availability, Physical Optics Corporation (POC) undertook a global advanced optical materials program which has enabled it to introduce several optical devices, based on the new and improved materials which will be described in this article.

  17. Effect of nitrogen-accommodation ability of electrodes in SiNx-based resistive switching devices

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Wang, Hong; Ma, Xiaohua; Gao, Haixia; Wang, Bin

    2017-12-01

    Nitrides could create opportunities of tuning resistive-switching (RS) characteristics due to their different electrical properties and ionic chemistry with oxides. Here, we reported on the effect of nitrogen-accommodation ability of electrodes in SiNx-based RS devices. The Ti/SiNx/Pt devices show a self-compliance bipolar RS with excellent reliability. The W/SiNx/Pt devices provide an unstable RS and fall to an intermediate resistance state (IRS) after a set process. The low resistance states of the Ti/SiNx/Pt devices obey Ohmic conduction and Frenkel-Poole emission from a conductive channel. The IRS of the W/SiNx/Pt devices conforms to Schottky emission and Fowler-Nordheim tunneling from a conductive channel/insulator/electrode structure. A nitrogen-ion-based model is proposed to explain the experimental results. According to the model, the nitrogen-accommodation ability of the electrodes dominates the nitrogen-reservoir size and the nitrogen-ion migration at the metal/SiNx interface, modulating the RS characteristics of the SiNx memory devices.

  18. Simplified ZrTiO x -based RRAM cell structure with rectifying characteristics by integrating Ni/n + -Si diode.

    PubMed

    Lin, Chia-Chun; Wu, Yung-Hsien; Chang, You-Tai; Sun, Cherng-En

    2014-01-01

    A simplified one-diode one-resistor (1D1R) resistive switching memory cell that uses only four layers of TaN/ZrTiO x /Ni/n(+)-Si was proposed to suppress sneak current where TaN/ZrTiO x /Ni can be regarded as a resistive-switching random access memory (RRAM) device while Ni/n(+)-Si acts as an Schottky diode. This is the first RRAM cell structure that employs metal/semiconductor Schottky diode for current rectifying. The 1D1R cell exhibits bipolar switching behavior with SET/RESET voltage close to 1 V without requiring a forming process. More importantly, the cell shows tight resistance distribution for different states, significantly rectifying characteristics with forward/reverse current ratio higher than 10(3) and a resistance ratio larger than 10(3) between two states. Furthermore, the cell also displays desirable reliability performance in terms of long data retention time of up to 10(4) s and robust endurance of 10(5) cycles. Based on the promising characteristics, the four-layer 1D1R structure holds the great potential for next-generation nonvolatile memory technology.

  19. Synthesis of ZnO nanorods and observation of resistive switching memory in ZnO based polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Nair, Manjula G.; Malakar, Meenakshi; Mohapatra, Saumya R.; Chowdhury, Avijit

    2018-05-01

    This research reports the observation of bipolar resistive switching memory in ZnO nanorod based polymer nanocomposites. We synthesized ZnO nanorods by wet-chemical method and characterized them using XRD, UV-VIS spectroscopy and SEM. The synthesized materials have hexagonal ZnO phase with grain size of 24 nm and having strong orientation along (101) direction as observed from XRD. The SEM micrograph confirms the formation of ZnO nanorods with diameter in the range of 10 to 20 nm and length of the order of 1 µm. From optical absorption spectra the band gap is estimated to be 2.42 eV. ZnO nanorods were dispersed in PVDF-HFP polymer matrix to prepare the nanocomposite. This nanocomposite was used as active layer in the devices having sandwich structure of ITO/PVDF-HFP+ZnO nanorods/Al. Bipolar non-volatile memory was observed with ON-OFF resistance ratio of the order of 103 and with a wide voltage window of 2.3V. The switching mechanism could be due to the trapping and de-trapping of electrons by the ZnO nanorods in the nanocomposite during ON and OFF states respectively.

  20. Ti-Doped GaOx Resistive Switching Memory with Self-Rectifying Behavior by Using NbOx/Pt Bilayers.

    PubMed

    Park, Ju Hyun; Jeon, Dong Su; Kim, Tae Geun

    2017-12-13

    Crossbar arrays (CBAs) with resistive random access memory (ReRAM) constitute an established architecture for high-density memory. However, sneak paths via unselected cells increase the total power consumption of these devices and limit the array size. To eliminate such sneak-path problems, we propose a Ti/GaO x /NbO x /Pt structure with a self-rectifying resistive-switching (RS) behavior. In this structure, to reduce the operating voltage, we used a Ti/GaO x stack to increase the number of trap sites in the RS GaO x layer through interfacial reactions between the Ti and GaO x layers. This increase enables easier carrier transport with reduced electric fields. We then adopted a NbO x /Pt stack to add rectifying behavior to the RS GaO x layer. This behavior is a result of the large Schottky barrier height between the NbO x and Pt layers. Finally, both the Ti/GaO x and NbO x /Pt stacks were combined to realize a self-rectifying ReRAM device, which exhibited excellent performance. Characteristics of the device include a low operating voltage range (-2.8 to 2.5 V), high on/off ratios (∼20), high selectivity (∼10 4 ), high operating speeds (200-500 ns), a very low forming voltage (∼3 V), stable operation, and excellent uniformity for high-density CBA-based ReRAM applications.

  1. Nanoscale phase change memory materials.

    PubMed

    Caldwell, Marissa A; Jeyasingh, Rakesh Gnana David; Wong, H-S Philip; Milliron, Delia J

    2012-08-07

    Phase change memory materials store information through their reversible transitions between crystalline and amorphous states. For typical metal chalcogenide compounds, their phase transition properties directly impact critical memory characteristics and the manipulation of these is a major focus in the field. Here, we discuss recent work that explores the tuning of such properties by scaling the materials to nanoscale dimensions, including fabrication and synthetic strategies used to produce nanoscale phase change memory materials. The trends that emerge are relevant to understanding how such memory technologies will function as they scale to ever smaller dimensions and also suggest new approaches to designing materials for phase change applications. Finally, the challenges and opportunities raised by integrating nanoscale phase change materials into switching devices are discussed.

  2. Selector-free resistive switching memory cell based on BiFeO3 nano-island showing high resistance ratio and nonlinearity factor

    PubMed Central

    Jeon, Ji Hoon; Joo, Ho-Young; Kim, Young-Min; Lee, Duk Hyun; Kim, Jin-Soo; Kim, Yeon Soo; Choi, Taekjib; Park, Bae Ho

    2016-01-01

    Highly nonlinear bistable current-voltage (I–V) characteristics are necessary in order to realize high density resistive random access memory (ReRAM) devices that are compatible with cross-point stack structures. Up to now, such I–V characteristics have been achieved by introducing complex device structures consisting of selection elements (selectors) and memory elements which are connected in series. In this study, we report bipolar resistive switching (RS) behaviours of nano-crystalline BiFeO3 (BFO) nano-islands grown on Nb-doped SrTiO3 substrates, with large ON/OFF ratio of 4,420. In addition, the BFO nano-islands exhibit asymmetric I–V characteristics with high nonlinearity factor of 1,100 in a low resistance state. Such selector-free RS behaviours are enabled by the mosaic structures and pinned downward ferroelectric polarization in the BFO nano-islands. The high resistance ratio and nonlinearity factor suggest that our BFO nano-islands can be extended to an N × N array of N = 3,740 corresponding to ~107 bits. Therefore, our BFO nano-island showing both high resistance ratio and nonlinearity factor offers a simple and promising building block of high density ReRAM. PMID:27001415

  3. pH Memory Effects of Tunable Block Copolymer Photonic Gels and Their Applications

    NASA Astrophysics Data System (ADS)

    Kang, Youngjong; Thomas, Edwin L.

    2007-03-01

    Materials with hysteresis, showing a bistable state to the external stimuli, have been widely investigated due to their potential applications. For example, they could be used as memory devices or optical switches when they have magnetic or optical hysteresis response to the external stimuli. Here we report pH tunable photonic gels which are spontaneously assembled from block copolymers. The general idea of this research is based on the selective swelling of block copolymer lamellar mesogels, where the solubility of one block is responsive to the change of pH. In this system, the domain spacing of the lamellar is varied with the extent of swelling. As a model system, we used protonated polystyrene-b-poly(2-vinly pyridine) (PS-b-P2VP) block copolymers forming lamellar structures. The photonic gel films prepared from protonated PS-b-P2VP show a strong reflectance in aqueous solution and the band position was varied with pH. Interestingly, a very strong optical hysteresis was observed while the reflection band of photonic gels was tuned by changing pH. We anticipate that pH tunable photonic gels with hysteresis can be applicable to novel applications such as a component of memory devices, photonic switches or drug delivery vehicles.

  4. The effect of reactive ion etch (RIE) process conditions on ReRAM device performance

    NASA Astrophysics Data System (ADS)

    Beckmann, K.; Holt, J.; Olin-Ammentorp, W.; Alamgir, Z.; Van Nostrand, J.; Cady, N. C.

    2017-09-01

    The recent surge of research on resistive random access memory (ReRAM) devices has resulted in a wealth of different materials and fabrication approaches. In this work, we describe the performance implications of utilizing a reactive ion etch (RIE) based process to fabricate HfO2 based ReRAM devices, versus a more unconventional shadow mask fabrication approach. The work is the result of an effort to increase device yield and reduce individual device size. Our results show that choice of RIE etch gas (SF6 versus CF4) is critical for defining the post-etch device profile (cross-section), and for tuning the removal of metal layers used as bottom electrodes in the ReRAM device stack. We have shown that etch conditions leading to a tapered profile for the device stack cause poor electrical performance, likely due to metal re-deposition during etching, and damage to the switching layer. These devices exhibit nonlinear I-V during the low resistive state, but this could be improved to linear behavior once a near-vertical etch profile was achieved. Device stacks with vertical etch profiles also showed an increase in forming voltage, reduced switching variability and increased endurance.

  5. A β-Ta system for current induced magnetic switching in the absence of external magnetic field

    NASA Astrophysics Data System (ADS)

    Chen, Wenzhe; Qian, Lijuan; Xiao, Gang

    2018-05-01

    Magnetic switching via Giant Spin Hall Effect (GSHE) has received great interest for its role in developing future spintronics logic or memory devices. In this work, a new material system (i.e. a transition metal sandwiched between two ferromagnetic layers) with interlayer exchange coupling is introduced to realize the deterministic field-free perpendicular magnetic switching. This system uses β-Ta, as the GSHE agent to generate a spin current and as the interlayer exchange coupling medium to generate an internal field. The critical switching current density at zero field is on the order of 106 A/cm2 due to the large spin Hall angle of β-Ta. The internal field, along with switching efficiency, depends strongly on the orthogonal magnetization states of two ferromagnetic coupling layers in this system.

  6. Bipolar resistive switching in Si/Ag nanostructures

    NASA Astrophysics Data System (ADS)

    Dias, C.; Lv, H.; Picos, R.; Aguiar, P.; Cardoso, S.; Freitas, P. P.; Ventura, J.

    2017-12-01

    Resistive switching devices are being intensively studied aiming a large number of promising applications such as nonvolatile memories, artificial neural networks and sensors. Here, we show nanoscale bipolar resistive switching in Pt/Si/Ag/TiW structures, with a dielectric barrier thickness of 20 nm. The observed phenomenon is based on the formation/rupture of metallic Ag filaments in the otherwise insulating Si host material. No electroforming process was required to achieve resistive switching. We obtained average values of 0.23 V and -0.24 V for the Set and Reset voltages, respectively. The stability of the switching was observed for over 100 cycles, together with a clear separation of the ON (103 Ω) and OFF (102 Ω) states. Furthermore, the influence of the Set current compliance on the ON resistance, resistances ratio and Set/Reset voltages percentage variation was also studied.

  7. Identifying Read/Write Speeds for Field-Induced Interfacial Resistive Switching.

    NASA Astrophysics Data System (ADS)

    Tsui, Stephen; Das, Nilanjan; Wang, Yaqi; Xue, Yuyi; Chu, C. W.

    2007-03-01

    Efforts continue to explore new phenomena that may allow for next generation nonvolatile memory technology. Much attention has been drawn to the field-induced resistive switch occurring at the interface between a metal electrode and perovskite oxide. The switch between high (off) and low (on) resistance states is controlled by the polarity of applied voltage pulsing. Characterization of Ag-Pr0.7Ca0.3MnO3 interfaces via impedance spectroscopy shows that the resistances above 10^6 Hz are the same at the on and off states, which limits the reading speed to far slower than the applied switching pulses, or device write speed at the order of 10^7 Hz. We deduce that the switching interface is percolative in nature and that small local rearrangement of defect structures may play a major role.

  8. Influences of top electrode reduction potential and operation ambient on the switching characteristics of tantalum oxide resistive switching memories

    NASA Astrophysics Data System (ADS)

    Ding, Tse-Ming; Chen, Yi-Ju; Jeng, Jiann-Shing; Chen, Jen-Sue

    2017-12-01

    Modulation of the oxygen distribution is liable for the electrical performance of oxide-based devices. When the top electrode (TE) is deposited on the active layer, an oxygen exchange layer (OEL) may be formed at the interface. Oxygen ions can be absorbed and offered in OEL to assist resistive switching (RS). In this study, the impact of different TEs (Al, Zr, Ta and Au) on the active layer TaOx is investigated. TEs are chosen based on the reduction potential (E0Al=-2.13V, E0Zr=-1.55V, E0Ta=-0.75V, E0Au=1.52V), which determines whether OEL is formed. Based on TEM micrographs, as the difference of TE reduction potential to E0Ta becomes more negative, a thicker OEL exists. We find that Zr TE device has the most stable I-V characteristic and data retention, while Al TE device suffers from the reset failure, and Au TE device fails to switch. Moreover, we fabricate two different thicknesses (20 nm and 120 nm) of Zr TE and alter the operation ambient to vacuum (10-5 Torr) to study the influence on RS. The magnitude of reset voltage becomes larger when the devices are measured in vacuum ambient. According to these findings, the RS mechanism with different TE materials, thicknesses and at the different operation ambient is established.

  9. Working Memory Costs of Task Switching

    ERIC Educational Resources Information Center

    Liefooghe, Baptist; Barrouillet, Pierre; Vandierendonck, Andre; Camos, Valerie

    2008-01-01

    Although many accounts of task switching emphasize the importance of working memory as a substantial source of the switch cost, there is a lack of evidence demonstrating that task switching actually places additional demands on working memory. The present study addressed this issue by implementing task switching in continuous complex span tasks…

  10. Resistive switching mechanism in the one diode-one resistor memory based on p+-Si/n-ZnO heterostructure revealed by in-situ TEM

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zhu, Liang; Li, Xiaomei; Xu, Zhi; Wang, Wenlong; Bai, Xuedong

    2017-03-01

    One diode-one resistor (1D1R) memory is an effective architecture to suppress the crosstalk interference, realizing the crossbar network integration of resistive random access memory (RRAM). Herein, we designed a p+-Si/n-ZnO heterostructure with 1D1R function. Compared with the conventional multilayer 1D1R devices, the structure and fabrication technique can be largely simplified. The real-time imaging of formation/rupture process of conductive filament (CF) process demonstrated the RS mechanism by in-situ transmission electron microscopy (TEM). Meanwhile, we observed that the formed CF is only confined to the outside of depletion region of Si/ZnO pn junction, and the formation of CF does not degrade the diode performance, which allows the coexistence of RS and rectifying behaviors, revealing the 1D1R switching model. Furthermore, it has been confirmed that the CF is consisting of the oxygen vacancy by in-situ TEM characterization.

  11. Effects of Piezoelectric Potential of ZnO on Resistive Switching Characteristics of Flexible ZnO/TiO2 Heterojunction Cells

    NASA Astrophysics Data System (ADS)

    Li, Hongxia; Zhou, You; Du, Gang; Huang, Yanwei; Ji, Zhenguo

    2018-03-01

    Flexible resistance random access memory (ReRAM) devices with a heterojunction structure of PET/ITO/ZnO/TiO2/Au were fabricated on polyethylene terephthalate/indium tin oxide (PET/ITO) substrates by different physical and chemical preparation methods. X-ray diffraction, scanning electron microscopy and atomic force microscopy were carried out to investigate the crystal structure, surface topography and cross-sectional structure of the prepared films. X-ray photoelectron spectroscopy was also used to identify the chemical state of Ti, O and Zn elements. Theoretical and experimental analyses were conducted to identify the effect of piezoelectric potential of ZnO on resistive switching characteristics of flexible ZnO/TiO2 heterojunction cells. The results showed a pathway to enhance the performance of ReRAM devices by engineering the interface barrier, which is also feasible for other electronics, optoelectronics and photovoltaic devices.

  12. Forming-free bipolar resistive switching in nonstoichiometric ceria films

    NASA Astrophysics Data System (ADS)

    Ismail, Muhammad; Huang, Chun-Yang; Panda, Debashis; Hung, Chung-Jung; Tsai, Tsung-Ling; Jieng, Jheng-Hong; Lin, Chun-An; Chand, Umesh; Rana, Anwar Manzoor; Ahmed, Ejaz; Talib, Ijaz; Nadeem, Muhammad Younus; Tseng, Tseung-Yuen

    2014-01-01

    The mechanism of forming-free bipolar resistive switching in a Zr/CeO x /Pt device was investigated. High-resolution transmission electron microscopy and energy-dispersive spectroscopy analysis indicated the formation of a ZrO y layer at the Zr/CeO x interface. X-ray diffraction studies of CeO x films revealed that they consist of nano-polycrystals embedded in a disordered lattice. The observed resistive switching was suggested to be linked with the formation and rupture of conductive filaments constituted by oxygen vacancies in the CeO x film and in the nonstoichiometric ZrO y interfacial layer. X-ray photoelectron spectroscopy study confirmed the presence of oxygen vacancies in both of the said regions. In the low-resistance ON state, the electrical conduction was found to be of ohmic nature, while the high-resistance OFF state was governed by trap-controlled space charge-limited mechanism. The stable resistive switching behavior and long retention times with an acceptable resistance ratio enable the device for its application in future nonvolatile resistive random access memory (RRAM).

  13. Key concepts behind forming-free resistive switching incorporated with rectifying transport properties

    PubMed Central

    Shuai, Yao; Ou, Xin; Luo, Wenbo; Mücklich, Arndt; Bürger, Danilo; Zhou, Shengqiang; Wu, Chuangui; Chen, Yuanfu; Zhang, Wanli; Helm, Manfred; Mikolajick, Thomas; Schmidt, Oliver G.; Schmidt, Heidemarie

    2013-01-01

    This work reports the effect of Ti diffusion on the bipolar resistive switching in Au/BiFeO3/Pt/Ti capacitor-like structures. Polycrystalline BiFeO3 thin films are deposited by pulsed laser deposition at different temperatures on Pt/Ti/SiO2/Si substrates. From the energy filtered transmission electron microscopy and Rutherford backscattering spectrometry it is observed that Ti diffusion occurs if the deposition temperature is above 600°C. The current-voltage (I–V) curves indicate that resistive switching can only be achieved in Au/BiFeO3/Pt/Ti capacitor-like structures where this Ti diffusion occurs. The effect of Ti diffusion is confirmed by the BiFeO3 thin films deposited on Pt/sapphire and Pt/Ti/sapphire substrates. The resistive switching needs no electroforming process, and is incorporated with rectifying properties which is potentially useful to suppress the sneak current in a crossbar architecture. Those specific features open a promising alternative concept for nonvolatile memory devices as well as for other memristive devices like synapses in neuromorphic circuits. PMID:23860408

  14. Influence of oxygen vacancies in ALD HfO2-x thin films on non-volatile resistive switching phenomena with a Ti/HfO2-x/Pt structure

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey Sergeevich; Jeon, Yu-Rim; Kim, Sohyeon; Ku, Boncheol; Lim, Donghwan; Han, Hoonhee; Chae, Myeong Gyoon; Lee, Jaeho; Ha, Beom Gil; Choi, Changhwan

    2018-03-01

    We report a modulation of oxygen vacancies profile in atomic layer deposition (ALD) HfO2-x thin films by reducing oxidant pulse time (0.7 s-0.1 s) and study its effect on resistive switching behavior with a Ti/HfO2-x/Pt structure. Hf 4f spectra of x-ray photoelectron microscopy (XPS) and depth profile confirm varied oxygen vacancies profiles by shifts of binding energies of Hf 4f5/2 and Hf 4f7/2 main peaks and its according HfO2-x sub-oxides for each device. The ultraviolet photoelectron spectroscopy (UPS) confirms different electron affinity (χ) of HfO2 and HfO2-x thin films, implying that barrier height at Ti/oxide interface is reduced. Current transport mechanism is dictated by Ohmic conduction in fully oxidized HfO2 thin films - Device A (0.7 s) and by Trap Filled Space Charge Limited Conduction (TF-SCLC) in less oxidized HfO2-x thin films - Device B (0.3 s) and Device C (0.1 s). A switching mechanism related to the oxygen vacancies modulation in Ti/HfO2-x/Pt based resistive random access memory (RRAM) devices is used to explain carefully notified current transport mechanism variations from device-to-device. A proper endurance and long-time retention characteristics of the devices are also obtained.

  15. A nonlinear HP-type complementary resistive switch

    NASA Astrophysics Data System (ADS)

    Radtke, Paul K.; Schimansky-Geier, Lutz

    2016-05-01

    Resistive Switching (RS) is the change in resistance of a dielectric under the influence of an external current or electric field. This change is non-volatile, and the basis of both the memristor and resistive random access memory. In the latter, high integration densities favor the anti-serial combination of two RS-elements to a single cell, termed the complementary resistive switch (CRS). Motivated by the irregular shape of the filament protruding into the device, we suggest a nonlinearity in the resistance-interpolation function, characterized by a single parameter p. Thereby the original HP-memristor is expanded upon. We numerically simulate and analytically solve this model. Further, the nonlinearity allows for its application to the CRS.

  16. Ferroelectric switching of poly(vinylidene difluoride-trifluoroethylene) in metal-ferroelectric-semiconductor non-volatile memories with an amorphous oxide semiconductor

    NASA Astrophysics Data System (ADS)

    Gelinck, G. H.; van Breemen, A. J. J. M.; Cobb, B.

    2015-03-01

    Ferroelectric polarization switching of poly(vinylidene difluoride-trifluoroethylene) is investigated in different thin-film device structures, ranging from simple capacitors to dual-gate thin-film transistors (TFT). Indium gallium zinc oxide, a high mobility amorphous oxide material, is used as semiconductor. We find that the ferroelectric can be polarized in both directions in the metal-ferroelectric-semiconductor (MFS) structure and in the dual-gate TFT under certain biasing conditions, but not in the single-gate thin-film transistors. These results disprove the common belief that MFS structures serve as a good model system for ferroelectric polarization switching in thin-film transistors.

  17. Study of Ag/RGO/ITO sandwich structure for resistive switching behavior deposited on plastic substrate

    NASA Astrophysics Data System (ADS)

    Vartak, Rajdeep; Rag, Adarsh; De, Shounak; Bhat, Somashekhara

    2018-05-01

    We report here the use of facile and environmentally benign way synthesized reduced graphene oxide (RGO) for low-voltage non-volatile memory device as charge storing element. The RGO solutions have been synthesized using electrochemical exfoliation of battery electrode. The solution processed based RGO solution is suitable for large area and low-cost processing on plastic substrate. Room-temperature current-voltage characterisation has been carried out in Ag/RGO/ITO PET sandwich configuration to study the type of trap distribution. It is observed that in the low-voltage sweep, ohmic current is the main mechanism of current flow and trap filled/assisted conduction is observed at high-sweep voltage region. The Ag/RGO/ITO PET sandwich structure showed bipolar resistive switching behavior. These mechanisms can be analyzed based on oxygen availability and vacancies in the RGO giving rise to continuous least resistive path (conductive) and high resistance path along the structure. An Ag/RGO/ITO arrangement demonstrates long retention time with low operating voltage, low set/reset voltage, good ON/OFF ratio of 103 (switching transition between lower resistance state and higher resistance state and decent switching performance. The RGO memory showed decent results with an almost negligible degradation in switching properties which can be used for low-voltage and low-cost advanced flexible electronics.

  18. Enhanced oxygen vacancy diffusion in Ta2O5 resistive memory devices due to infinitely adaptive crystal structure

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Stewart, Derek A.

    2016-04-01

    Metal oxide resistive memory devices based on Ta2O5 have demonstrated high switching speed, long endurance, and low set voltage. However, the physical origin of this improved performance is still unclear. Ta2O5 is an important archetype of a class of materials that possess an adaptive crystal structure that can respond easily to the presence of defects. Using first principles nudged elastic band calculations, we show that this adaptive crystal structure leads to low energy barriers for in-plane diffusion of oxygen vacancies in λ phase Ta2O5. Identified diffusion paths are associated with collective motion of neighboring atoms. The overall vacancy diffusion is anisotropic with higher diffusion barriers found for oxygen vacancy movement between Ta-O planes. Coupled with the fact that oxygen vacancy formation energy in Ta2O5 is relatively small, our calculated low diffusion barriers can help explain the low set voltage in Ta2O5 based resistive memory devices. Our work shows that other oxides with adaptive crystal structures could serve as potential candidates for resistive random access memory devices. We also discuss some general characteristics for ideal resistive RAM oxides that could be used in future computational material searches.

  19. Valence change detection in memristive oxide based heterostructure cells by hard X-ray photoelectron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kindsmüller, A.; Schmitz, C.; Wiemann, C.; Skaja, K.; Wouters, D. J.; Waser, R.; Schneider, C. M.; Dittmann, R.

    2018-04-01

    The switching mechanism of valence change resistive memory devices is widely accepted to be an ionic movement of oxygen vacancies resulting in a valence change of the metal cations. However, direct experimental proofs of valence changes in memristive devices are scarce. In this work, we have employed hard X-ray photoelectron emission microscopy (PEEM) to probe local valence changes in Pt/ZrOx/Ta memristive devices. The use of hard X-ray radiation increases the information depth, thus providing chemical information from buried layers. By extracting X-ray photoelectron spectra from different locations in the PEEM images, we show that zirconia in the active device area is reduced compared to a neighbouring region, confirming the valence change in the ZrOx film during electroforming. Furthermore, we succeeded in measuring the Ta 4f spectrum for two different resistance states on the same device. In both states, as well as outside the device region, the Ta electrode is composed of different suboxides without any metallic contribution, hinting to the formation of TaOx during the deposition of the Ta thin film. We observed a reduction of the Ta oxidation state in the low resistance state with respect to the high resistive state. This observation is contradictory to the established model, as the internal redistribution of oxygen between ZrOx and the Ta electrode during switching would lead to an oxidation of the Ta layer in the low resistance state. Instead, we have to conclude that the Ta electrode takes an active part in the switching process in our devices and that oxygen is released and reincorporated in the ZrOx/TaOx bilayer during switching. This is confirmed by the degradation of the high resistance state during endurance measurements under vacuum.

  20. Scaling Effect on Unipolar and Bipolar Resistive Switching of Metal Oxides

    PubMed Central

    Yanagida, Takeshi; Nagashima, Kazuki; Oka, Keisuke; Kanai, Masaki; Klamchuen, Annop; Park, Bae Ho; Kawai, Tomoji

    2013-01-01

    Electrically driven resistance change in metal oxides opens up an interdisciplinary research field for next-generation non-volatile memory. Resistive switching exhibits an electrical polarity dependent “bipolar-switching” and a polarity independent “unipolar-switching”, however tailoring the electrical polarity has been a challenging issue. Here we demonstrate a scaling effect on the emergence of the electrical polarity by examining the resistive switching behaviors of Pt/oxide/Pt junctions over 8 orders of magnitudes in the areas. We show that the emergence of two electrical polarities can be categorised as a diagram of an electric field and a cell area. This trend is qualitatively common for various oxides including NiOx, CoOx, and TiO2-x. We reveal the intrinsic difference between unipolar switching and bipolar switching on the area dependence, which causes a diversity of an electrical polarity for various resistive switching devices with different geometries. This will provide a foundation for tailoring resistive switching behaviors of metal oxides. PMID:23584551

  1. CMOS-compatible spintronic devices: a review

    NASA Astrophysics Data System (ADS)

    Makarov, Alexander; Windbacher, Thomas; Sverdlov, Viktor; Selberherr, Siegfried

    2016-11-01

    For many decades CMOS devices have been successfully scaled down to achieve higher speed and increased performance of integrated circuits at lower cost. Today’s charge-based CMOS electronics encounters two major challenges: power dissipation and variability. Spintronics is a rapidly evolving research and development field, which offers a potential solution to these issues by introducing novel ‘more than Moore’ devices. Spin-based magnetoresistive random-access memory (MRAM) is already recognized as one of the most promising candidates for future universal memory. Magnetic tunnel junctions, the main elements of MRAM cells, can also be used to build logic-in-memory circuits with non-volatile storage elements on top of CMOS logic circuits, as well as versatile compact on-chip oscillators with low power consumption. We give an overview of CMOS-compatible spintronics applications. First, we present a brief introduction to the physical background considering such effects as magnetoresistance, spin-transfer torque (STT), spin Hall effect, and magnetoelectric effects. We continue with a comprehensive review of the state-of-the-art spintronic devices for memory applications (STT-MRAM, domain wall-motion MRAM, and spin-orbit torque MRAM), oscillators (spin torque oscillators and spin Hall nano-oscillators), logic (logic-in-memory, all-spin logic, and buffered magnetic logic gate grid), sensors, and random number generators. Devices with different types of resistivity switching are analyzed and compared, with their advantages highlighted and challenges revealed. CMOS-compatible spintronic devices are demonstrated beginning with predictive simulations, proceeding to their experimental confirmation and realization, and finalized by the current status of application in modern integrated systems and circuits. We conclude the review with an outlook, where we share our vision on the future applications of the prospective devices in the area.

  2. A hybrid ferroelectric-flash memory cells

    NASA Astrophysics Data System (ADS)

    Park, Jae Hyo; Byun, Chang Woo; Seok, Ki Hwan; Kim, Hyung Yoon; Chae, Hee Jae; Lee, Sol Kyu; Son, Se Wan; Ahn, Donghwan; Joo, Seung Ki

    2014-09-01

    A ferroelectric-flash (F-flash) memory cells having a metal-ferroelectric-nitride-oxynitride-silicon structure are demonstrated, and the ferroelectric materials were perovskite-dominated Pb(Zr,Ti)O3 (PZT) crystallized by Pt gate electrode. The PZT thin-film as a blocking layer improves electrical and memorial performance where programming and erasing mechanism are different from the metal-ferroelectric-insulator-semiconductor device or the conventional silicon-oxide-nitride-oxide-silicon device. F-flash cells exhibit not only the excellent electrical transistor performance, having 442.7 cm2 V-1 s-1 of field-effect mobility, 190 mV dec-1 of substhreshold slope, and 8 × 105 on/off drain current ratio, but also a high reliable memory characteristics, having a large memory window (6.5 V), low-operating voltage (0 to -5 V), faster P/E switching speed (50/500 μs), long retention time (>10 years), and excellent fatigue P/E cycle (>105) due to the boosting effect, amplification effect, and energy band distortion of nitride from the large polarization. All these characteristics correspond to the best performances among conventional flash cells reported so far.

  3. Fast Electromechanical Switches Based on Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama; Wong, Eric; Epp, Larry

    2008-01-01

    Electrostatically actuated nanoelectromechanical switches based on carbon nanotubes have been fabricated and tested in a continuing effort to develop high-speed switches for a variety of stationary and portable electronic equipment. As explained below, these devices offer advantages over electrostatically actuated microelectromechanical switches, which, heretofore, have represented the state of the art of rapid, highly miniaturized electromechanical switches. Potential applications for these devices include computer memories, cellular telephones, communication networks, scientific instrumentation, and general radiation-hard electronic equipment. A representative device of the present type includes a single-wall carbon nanotube suspended over a trench about 130 nm wide and 20 nm deep in an electrically insulating material. The ends of the carbon nanotube are connected to metal electrodes, denoted the source and drain electrodes. At bottom of the trench is another metal electrode, denoted the pull electrode (see figure). In the off or open switch state, no voltage is applied, and the nanotube remains out of contact with the pull electrode. When a sufficiently large electric potential (switching potential) is applied between the pull electrode and either or both of the source and drain electrodes, the resulting electrostatic attraction bends and stretches the nanotube into contact with the pull electrode, thereby putting the switch into the "on" or "closed" state, in which substantial current (typically as much as hundreds of nanoamperes) is conducted. Devices of this type for use in initial experiments were fabricated on a thermally oxidized Si wafer, onto which Nb was sputter-deposited for use as the pull-electrode layer. Nb was chosen because its refractory nature would enable it to withstand the chemical and thermal conditions to be subsequently imposed for growing carbon nanotubes. A 200- nm-thick layer of SiO2 was formed on top of the Nb layer by plasma-enhanced chemical vapor deposition. In the device regions, the SiO2 layer was patterned to thin it to the 20-nm trench depth. The trenches were then patterned by electron- beam lithography and formed by reactive- ion etching of the pattern through the 20-nm-thick SiO2 to the Nb layer.

  4. Rapid mapping of polarization switching through complete information acquisition

    NASA Astrophysics Data System (ADS)

    Somnath, Suhas; Belianinov, Alex; Kalinin, Sergei V.; Jesse, Stephen

    2016-12-01

    Polarization switching in ferroelectric and multiferroic materials underpins a broad range of current and emergent applications, ranging from random access memories to field-effect transistors, and tunnelling devices. Switching in these materials is exquisitely sensitive to local defects and microstructure on the nanometre scale, necessitating spatially resolved high-resolution studies of these phenomena. Classical piezoresponse force microscopy and spectroscopy, although providing necessary spatial resolution, are fundamentally limited in data acquisition rates and energy resolution. This limitation stems from their two-tiered measurement protocol that combines slow (~1 s) switching and fast (~10 kHz-1 MHz) detection waveforms. Here we develop an approach for rapid probing of ferroelectric switching using direct strain detection of material response to probe bias. This approach, facilitated by high-sensitivity electronics and adaptive filtering, enables spectroscopic imaging at a rate 3,504 times faster the current state of the art, achieving high-veracity imaging of polarization dynamics in complex microstructures.

  5. Modeling of Nano-Scale Transistors and Memory Devices for Low Power Applications

    NASA Astrophysics Data System (ADS)

    Cao, Xi

    As the featuring size of transistors scaled down to sub-20 nm, the continuous scaling of power has become one of the main challenges of the semiconductor industry. The power issue is raised by the barely scalable supply voltage and a limitation on the subthreshold swing (SS) of conventional metal-oxide-semiconductor field-effect transistor (MOSFET). In this work, self-consistent quantum transport device simulators are developed to examine the nanoscale transistors based on black phosphorus (BP) materials. The scaling limit of double-gated BP MOSFETs is assessed. To reduce the SS below the thermionic limit for ultra-steep switching, tunnel FETs (TFETs) and vertical ballistic impact ionization FETs based on BP and its heterojunctions are investigated. Furthermore, the ferroelectric tunneling junction (FTJ) is modeled and examined for potential low power memory applications. For BP MOSFETs, the device physics at the ultimate scaling limit are examined. The performance of monolayer BP MOSFETs is projected to sub-10 nm and compared with the International Technology Roadmap for Semiconductors (ITRS) requirements. And the interplay of quantum mechanical effects and the highly anisotropic bandstructure of BP at this scale is investigated. By choice of layer number and crystalline direction, BP materials can offer a range of bandgap and effective mass values, which is attractive for TFET applications. Therefore, scaling behaviors of BP TFETs near and below the 10 nm scale are studied. The gate oxide thickness scaling and the effect of high-k dielectric are compared between the TFETs and the MOSFETs. For the TFETs with the gate lengths beyond 10 nm and at the sub-10 nm scale, the direct-source-to-drain tunneling issues are evaluated, and different strategies to achieve ultra-steep switching are specified. In a sub-10 nm graphene-BP-graphene heterojunction transistor, the sharp turnon behavior was observed, under a small source-drain bias of 0.1 V. The fast switch is attributed to a ballistic energy-dependent impact ionization mechanism. A device model is developed, which shows agreement with experiment results. The model is applied to explore the gate oxide scaling behavior and the effect of graphene doping, and to optimize the device for low power applications. Finally, to keep the integrity of the computing system, the FTJ is studied for its possible use as a low power memory device. A compact model for FTJ, dealing with both static and dynamic behaviors, is developed and compared with experimental data. The write energy consumed by the memory cell, comprising one transistor and one FTJ, is estimated by applying the compact model to circuit simulation. And a way to reduce the write energy is suggested.

  6. Nonvolatile RRAM cells from polymeric composites embedding recycled SiC powders.

    PubMed

    De Girolamo Del Mauro, Anna; Nenna, Giuseppe; Miscioscia, Riccardo; Freda, Cesare; Portofino, Sabrina; Galvagno, Sergio; Minarini, Carla

    2014-10-21

    Silicon carbide powders have been synthesized from tires utilizing a patented recycling process. Dynamic light scattering, Raman spectroscopy, SEM microscopy, and X-ray diffraction have been carried out to gather knowledge about powders and the final composite structure. The obtained powder has been proven to induce resistive switching in a PMMA polymer-based composite device. Memory effect has been detected in two-terminal devices having coplanar contacts and quantified by read-write-erase measurements in terms of level separation and persistence.

  7. Resistive switching in ZnO/ZnO:In nanocomposite

    NASA Astrophysics Data System (ADS)

    Khakhulin, D. A.; Vakulov, Z. E.; Smirnov, V. A.; Tominov, R. V.; Yoon, Jong-Gul; Ageev, O. A.

    2017-11-01

    A lot of effort nowadays is put into development of new approaches to processing and storage of information in integrated circuits due to limitations in miniaturisation. Our research is dedicated to one of actively developed concepts - oxide based resistive memory devices. A material that draws interest due to its promising technological properties is ZnO but pure ZnO lacks in performance in comparison with some other transition metal oxides. Thus our work is focused on improvement of resistive switching parameters in ZnO films by creation of complex nanocomposites. In this work we report characterisation of a nanocomposite based on PLD grown ZnO films with inclusions of In. Such solution allows us to achieve improvements of main parameters that are critical for ReRAM device: RHRS/RLRS ratio, endurance and retention.

  8. Towards developing a compact model for magnetization switching in straintronics magnetic random access memory devices

    NASA Astrophysics Data System (ADS)

    Barangi, Mahmood; Erementchouk, Mikhail; Mazumder, Pinaki

    2016-08-01

    Strain-mediated magnetization switching in a magnetic tunneling junction (MTJ) by exploiting a combination of piezoelectricity and magnetostriction has been proposed as an energy efficient alternative to spin transfer torque (STT) and field induced magnetization switching methods in MTJ-based magnetic random access memories (MRAM). Theoretical studies have shown the inherent advantages of strain-assisted switching, and the dynamic response of the magnetization has been modeled using the Landau-Lifshitz-Gilbert (LLG) equation. However, an attempt to use LLG for simulating dynamics of individual elements in large-scale simulations of multi-megabyte straintronics MRAM leads to extremely time-consuming calculations. Hence, a compact analytical solution, predicting the flipping delay of the magnetization vector in the nanomagnet under stress, combined with a liberal approximation of the LLG dynamics in the straintronics MTJ, can lead to a simplified model of the device suited for fast large-scale simulations of multi-megabyte straintronics MRAMs. In this work, a tensor-based approach is developed to study the dynamic behavior of the stressed nanomagnet. First, using the developed method, the effect of stress on the switching behavior of the magnetization is investigated to realize the margins between the underdamped and overdamped regimes. The latter helps the designer realize the oscillatory behavior of the magnetization when settling along the minor axis, and the dependency of oscillations on the stress level and the damping factor. Next, a theoretical model to predict the flipping delay of the magnetization vector is developed and tested against LLG-based numerical simulations to confirm the accuracy of findings. Lastly, the obtained delay is incorporated into the approximate solutions of the LLG dynamics, in order to create a compact model to liberally and quickly simulate the magnetization dynamics of the MTJ under stress. Using the developed delay equation, the efficiency of the straintronics switching over the STT method is highlighted by analytically investigating the energy-delay trade-off of both methodologies.

  9. Towards developing a compact model for magnetization switching in straintronics magnetic random access memory devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barangi, Mahmood, E-mail: barangi@umich.edu; Erementchouk, Mikhail; Mazumder, Pinaki

    Strain-mediated magnetization switching in a magnetic tunneling junction (MTJ) by exploiting a combination of piezoelectricity and magnetostriction has been proposed as an energy efficient alternative to spin transfer torque (STT) and field induced magnetization switching methods in MTJ-based magnetic random access memories (MRAM). Theoretical studies have shown the inherent advantages of strain-assisted switching, and the dynamic response of the magnetization has been modeled using the Landau-Lifshitz-Gilbert (LLG) equation. However, an attempt to use LLG for simulating dynamics of individual elements in large-scale simulations of multi-megabyte straintronics MRAM leads to extremely time-consuming calculations. Hence, a compact analytical solution, predicting the flippingmore » delay of the magnetization vector in the nanomagnet under stress, combined with a liberal approximation of the LLG dynamics in the straintronics MTJ, can lead to a simplified model of the device suited for fast large-scale simulations of multi-megabyte straintronics MRAMs. In this work, a tensor-based approach is developed to study the dynamic behavior of the stressed nanomagnet. First, using the developed method, the effect of stress on the switching behavior of the magnetization is investigated to realize the margins between the underdamped and overdamped regimes. The latter helps the designer realize the oscillatory behavior of the magnetization when settling along the minor axis, and the dependency of oscillations on the stress level and the damping factor. Next, a theoretical model to predict the flipping delay of the magnetization vector is developed and tested against LLG-based numerical simulations to confirm the accuracy of findings. Lastly, the obtained delay is incorporated into the approximate solutions of the LLG dynamics, in order to create a compact model to liberally and quickly simulate the magnetization dynamics of the MTJ under stress. Using the developed delay equation, the efficiency of the straintronics switching over the STT method is highlighted by analytically investigating the energy-delay trade-off of both methodologies.« less

  10. Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch

    PubMed Central

    Lou, Chunbo; Liu, Xili; Ni, Ming; Huang, Yiqi; Huang, Qiushi; Huang, Longwen; Jiang, Lingli; Lu, Dan; Wang, Mingcong; Liu, Chang; Chen, Daizhuo; Chen, Chongyi; Chen, Xiaoyue; Yang, Le; Ma, Haisu; Chen, Jianguo; Ouyang, Qi

    2010-01-01

    Design and synthesis of basic functional circuits are the fundamental tasks of synthetic biologists. Before it is possible to engineer higher-order genetic networks that can perform complex functions, a toolkit of basic devices must be developed. Among those devices, sequential logic circuits are expected to be the foundation of the genetic information-processing systems. In this study, we report the design and construction of a genetic sequential logic circuit in Escherichia coli. It can generate different outputs in response to the same input signal on the basis of its internal state, and ‘memorize' the output. The circuit is composed of two parts: (1) a bistable switch memory module and (2) a double-repressed promoter NOR gate module. The two modules were individually rationally designed, and they were coupled together by fine-tuning the interconnecting parts through directed evolution. After fine-tuning, the circuit could be repeatedly, alternatively triggered by the same input signal; it functions as a push-on push-off switch. PMID:20212522

  11. Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch.

    PubMed

    Lou, Chunbo; Liu, Xili; Ni, Ming; Huang, Yiqi; Huang, Qiushi; Huang, Longwen; Jiang, Lingli; Lu, Dan; Wang, Mingcong; Liu, Chang; Chen, Daizhuo; Chen, Chongyi; Chen, Xiaoyue; Yang, Le; Ma, Haisu; Chen, Jianguo; Ouyang, Qi

    2010-01-01

    Design and synthesis of basic functional circuits are the fundamental tasks of synthetic biologists. Before it is possible to engineer higher-order genetic networks that can perform complex functions, a toolkit of basic devices must be developed. Among those devices, sequential logic circuits are expected to be the foundation of the genetic information-processing systems. In this study, we report the design and construction of a genetic sequential logic circuit in Escherichia coli. It can generate different outputs in response to the same input signal on the basis of its internal state, and 'memorize' the output. The circuit is composed of two parts: (1) a bistable switch memory module and (2) a double-repressed promoter NOR gate module. The two modules were individually rationally designed, and they were coupled together by fine-tuning the interconnecting parts through directed evolution. After fine-tuning, the circuit could be repeatedly, alternatively triggered by the same input signal; it functions as a push-on push-off switch.

  12. Non-Volatile Ferroelectric Switching of Ferromagnetic Resonance in NiFe/PLZT Multiferroic Thin Film Heterostructures.

    PubMed

    Hu, Zhongqiang; Wang, Xinjun; Nan, Tianxiang; Zhou, Ziyao; Ma, Beihai; Chen, Xiaoqin; Jones, John G; Howe, Brandon M; Brown, Gail J; Gao, Yuan; Lin, Hwaider; Wang, Zhiguang; Guo, Rongdi; Chen, Shuiyuan; Shi, Xiaoling; Shi, Wei; Sun, Hongzhi; Budil, David; Liu, Ming; Sun, Nian X

    2016-09-01

    Magnetoelectric effect, arising from the interfacial coupling between magnetic and electrical order parameters, has recently emerged as a robust means to electrically manipulate the magnetic properties in multiferroic heterostructures. Challenge remains as finding an energy efficient way to modify the distinct magnetic states in a reliable, reversible, and non-volatile manner. Here we report ferroelectric switching of ferromagnetic resonance in multiferroic bilayers consisting of ultrathin ferromagnetic NiFe and ferroelectric Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films, where the magnetic anisotropy of NiFe can be electrically modified by low voltages. Ferromagnetic resonance measurements confirm that the interfacial charge-mediated magnetoelectric effect is dominant in NiFe/PLZT heterostructures. Non-volatile modification of ferromagnetic resonance field is demonstrated by applying voltage pulses. The ferroelectric switching of magnetic anisotropy exhibits extensive applications in energy-efficient electronic devices such as magnetoelectric random access memories, magnetic field sensors, and tunable radio frequency (RF)/microwave devices.

  13. Non-Volatile Ferroelectric Switching of Ferromagnetic Resonance in NiFe/PLZT Multiferroic Thin Film Heterostructures

    PubMed Central

    Hu, Zhongqiang; Wang, Xinjun; Nan, Tianxiang; Zhou, Ziyao; Ma, Beihai; Chen, Xiaoqin; Jones, John G.; Howe, Brandon M.; Brown, Gail J.; Gao, Yuan; Lin, Hwaider; Wang, Zhiguang; Guo, Rongdi; Chen, Shuiyuan; Shi, Xiaoling; Shi, Wei; Sun, Hongzhi; Budil, David; Liu, Ming; Sun, Nian X.

    2016-01-01

    Magnetoelectric effect, arising from the interfacial coupling between magnetic and electrical order parameters, has recently emerged as a robust means to electrically manipulate the magnetic properties in multiferroic heterostructures. Challenge remains as finding an energy efficient way to modify the distinct magnetic states in a reliable, reversible, and non-volatile manner. Here we report ferroelectric switching of ferromagnetic resonance in multiferroic bilayers consisting of ultrathin ferromagnetic NiFe and ferroelectric Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films, where the magnetic anisotropy of NiFe can be electrically modified by low voltages. Ferromagnetic resonance measurements confirm that the interfacial charge-mediated magnetoelectric effect is dominant in NiFe/PLZT heterostructures. Non-volatile modification of ferromagnetic resonance field is demonstrated by applying voltage pulses. The ferroelectric switching of magnetic anisotropy exhibits extensive applications in energy-efficient electronic devices such as magnetoelectric random access memories, magnetic field sensors, and tunable radio frequency (RF)/microwave devices. PMID:27581071

  14. Non-Volatile Ferroelectric Switching of Ferromagnetic Resonance in NiFe/PLZT Multiferroic Thin Film Heterostructures

    NASA Astrophysics Data System (ADS)

    Hu, Zhongqiang; Wang, Xinjun; Nan, Tianxiang; Zhou, Ziyao; Ma, Beihai; Chen, Xiaoqin; Jones, John G.; Howe, Brandon M.; Brown, Gail J.; Gao, Yuan; Lin, Hwaider; Wang, Zhiguang; Guo, Rongdi; Chen, Shuiyuan; Shi, Xiaoling; Shi, Wei; Sun, Hongzhi; Budil, David; Liu, Ming; Sun, Nian X.

    2016-09-01

    Magnetoelectric effect, arising from the interfacial coupling between magnetic and electrical order parameters, has recently emerged as a robust means to electrically manipulate the magnetic properties in multiferroic heterostructures. Challenge remains as finding an energy efficient way to modify the distinct magnetic states in a reliable, reversible, and non-volatile manner. Here we report ferroelectric switching of ferromagnetic resonance in multiferroic bilayers consisting of ultrathin ferromagnetic NiFe and ferroelectric Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films, where the magnetic anisotropy of NiFe can be electrically modified by low voltages. Ferromagnetic resonance measurements confirm that the interfacial charge-mediated magnetoelectric effect is dominant in NiFe/PLZT heterostructures. Non-volatile modification of ferromagnetic resonance field is demonstrated by applying voltage pulses. The ferroelectric switching of magnetic anisotropy exhibits extensive applications in energy-efficient electronic devices such as magnetoelectric random access memories, magnetic field sensors, and tunable radio frequency (RF)/microwave devices.

  15. Multiscale modeling of current-induced switching in magnetic tunnel junctions using ab initio spin-transfer torques

    NASA Astrophysics Data System (ADS)

    Ellis, Matthew O. A.; Stamenova, Maria; Sanvito, Stefano

    2017-12-01

    There exists a significant challenge in developing efficient magnetic tunnel junctions with low write currents for nonvolatile memory devices. With the aim of analyzing potential materials for efficient current-operated magnetic junctions, we have developed a multi-scale methodology combining ab initio calculations of spin-transfer torque with large-scale time-dependent simulations using atomistic spin dynamics. In this work we introduce our multiscale approach, including a discussion on a number of possible schemes for mapping the ab initio spin torques into the spin dynamics. We demonstrate this methodology on a prototype Co/MgO/Co/Cu tunnel junction showing that the spin torques are primarily acting at the interface between the Co free layer and MgO. Using spin dynamics we then calculate the reversal switching times for the free layer and the critical voltages and currents required for such switching. Our work provides an efficient, accurate, and versatile framework for designing novel current-operated magnetic devices, where all the materials details are taken into account.

  16. Anatomy of a Nanoscale Conduction Channel Reveals the Mechanism of a High-Performance Memristor

    NASA Astrophysics Data System (ADS)

    Miao, Feng; Strachan, John Paul; Yang, J. Joshua; Yi, Wei; Goldfarb, Ilan; Zhang, M.-X.; Torrezan, Antonio C.; Eschbach, Peter; Kelley, Ronald D.; Medeiros-Ribeiro, Gilberto; Williams, R. Stanley

    2012-02-01

    Two major challenges for resistance memory devices (memristors) based on conductivity changes in oxide materials are better performance and understanding of the microscopic picture of the switching. After researchers' relentless pursuit for years, tantalum oxide-based memristors have rapidly risen to be the top candidate, showing fast speed, high endurance and excellent scalability. While the microscopic picture of these devices remains obscure, by employing a precise method for locating and directly visualizing the conduction channel, here we observed a nanoscale channel consisting of an amorphous Ta(O) solid solution surrounded by crystalline Ta2O5. Structural and chemical analyses of the channel combined with temperature dependent transport measurements revealed a unique resistance switching mechanism: the modulation of the channel elemental composition, and thus the conductivity, by the cooperative influence of drift, diffusion and thermophoresis, which seem to enable the high switching performance observed. (Miao*, Strachan*, Yang* et al., Advanced Materials. DOI: 10.1002/adma201103379 (2011))

  17. EDITORIAL: Synaptic electronics Synaptic electronics

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Gimzewski, James K.; Vuillaume, Dominique

    2013-09-01

    Conventional computers excel in logic and accurate scientific calculations but make hard work of open ended problems that human brains handle easily. Even von Neumann—the mathematician and polymath who first developed the programming architecture that forms the basis of today's computers—was already looking to the brain for future developments before his death in 1957 [1]. Neuromorphic computing uses approaches that better mimic the working of the human brain. Recent developments in nanotechnology are now providing structures with very accommodating properties for neuromorphic approaches. This special issue, with guest editors James K Gimzewski and Dominique Vuillaume, is devoted to research at the serendipitous interface between the two disciplines. 'Synaptic electronics', looks at artificial devices with connections that demonstrate behaviour similar to synapses in the nervous system allowing a new and more powerful approach to computing. Synapses and connecting neurons respond differently to incident signals depending on the history of signals previously experienced, ultimately leading to short term and long term memory behaviour. The basic characteristics of a synapse can be replicated with around ten simple transistors. However with the human brain having around 1011 neurons and 1015 synapses, artificial neurons and synapses from basic transistors are unlikely to accommodate the scalability required. The discovery of nanoscale elements that function as 'memristors' has provided a key tool for the implementation of synaptic connections [2]. Leon Chua first developed the concept of the 'The memristor—the missing circuit element' in 1971 [3]. In this special issue he presents a tutorial describing how memristor research has fed into our understanding of synaptic behaviour and how they can be applied in information processing [4]. He also describes, 'The new principle of local activity, which uncovers a minuscule life-enabling "Goldilocks zone", dubbed the edge of chaos, where complex phenomena, including creativity and intelligence, may emerge'. Also in this issue R Stanley Williams and colleagues report results from simulations that demonstrate the potential for using Mott transistors as building blocks for scalable neuristor-based integrated circuits without transistors [5]. The scalability of neural chip designs is also tackled in the design reported by Narayan Srinivasa and colleagues in the US [6]. Meanwhile Carsten Timm and Massimiliano Di Ventra describe simulations of a molecular transistor in which electrons strongly coupled to a vibrational mode lead to a Franck-Condon (FC) blockade that mimics the spiking action potentials in synaptic memory behaviour [7]. The 'atomic switches' used to demonstrate synaptic behaviour by a collaboration of researchers in California and Japan also come under further scrutiny in this issue. James K Gimzewski and colleagues consider the difference between the behaviour of an atomic switch in isolation and in a network [8]. As the authors point out, 'The work presented represents steps in a unified approach of experimentation and theory of complex systems to make atomic switch networks a uniquely scalable platform for neuromorphic computing'. Researchers in Germany [9] and Sweden [10] also report on theoretical approaches to modelling networks of memristive elements and complementary resistive switches for synaptic devices. As Vincent Derycke and colleagues in France point out, 'Actual experimental demonstrations of neural network type circuits based on non-conventional/non-CMOS memory devices and displaying function learning capabilities remain very scarce'. They describe how their work using carbon nanotubes provides a rare demonstration of actual function learning with synapses based on nanoscale building blocks [11]. However, this is far from the only experimental work reported in this issue, others include: short-term memory of TiO2-based electrochemical capacitors [12]; a neuromorphic circuit composed of a nanoscale 1-kbit resistive random-access memory (RRAM) cross-point array of synapses and complementary metal-oxide-semiconductor (CMOS) neuron circuits [13]; a WO3-x-based nanoionics device from Masakazu Aono's group with a wide scale of reprogrammable memorization functions [14]; a new spike-timing dependent plasticity scheme based on a MOS transistor as a selector and a RRAM as a variable resistance device [15]; a new hybrid memristor-CMOS neuromorphic circuit [16]; and a photo-assisted atomic switch [17]. Synaptic electronics evidently has many emerging facets, and Duygu Kuzum, Shimeng Yu, and H-S Philip Wong in the US provide a review of the field, including the materials, devices and applications [18]. In embracing the expertise acquired over thousands of years of evolution, biomimetics and bio-inspired design is a common, smart approach to technological innovation. Yet in successfully mimicking the physiological mechanisms of the human mind synaptic electronics research has a potential impact that is arguably unprecedented. That the quirks and eccentricities recently unearthed in the behaviour of nanomaterials should lend themselves so accommodatingly to emulating synaptic functions promises some very exciting developments in the field, as the articles in this special issue emphasize. References [1] von Neumann J (ed) 2012 The Computer and the Brain 3rd edn (Yale: Yale University Press) [2] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 The missing memristor found Nature 453 80-3 [3] Chua L O 1971 Memristor—the missing circuit element IEEE Trans. Circuit Theory 18 507-19 [4] Chua L O 2013 Memristor, Hodgkin-Huxley, and Edge of Chaos Nanotechnology 24 383001 [5] Pickett M D and Williams R S 2013 Phase transitions enable computational universality in neuristor-based cellular automata Nanotechnology 24 384002 [6] Cruz-Albrecht J M, Derosier T and Srinivasa N 2013 Scalable neural chip with synaptic electronics using CMOS integrated memristors Nanotechnology 24 384011 [7] Timm C and Di Ventra M 2013 Molecular neuron based on the Franck-Condon blockade Nanotechnology 24 384001 [8] Sillin H O, Aguilera R, Shieh H-H, Avizienis A V, Aono M, Stieg A Z and Gimzewski J K 2013 A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing Nanotechnology 24 384004 [9] Linn E, Menzel S, Ferch S and Waser R 2013 Compact modeling of CRS devices based on ECM cells for memory, logic and neuromorphic applications Nanotechnology 24 384008 [10] Konkoli Z and Wendin G 2013 A generic simulator for large networks of memristive elements Nanotechnology 24 384007 [11] Gacem K, Retrouvey J-M, Chabi D, Filoramo A, Zhao W, Klein J-O and Derycke V 2013 Neuromorphic function learning with carbon nanotube-based synapses Nanotechnology 24 384013 [12] Lim H, Kim I, Kim J-S, Hwang C S and Jeong D S 2013 Short-term memory of TiO2-based electrochemical capacitors: empirical analysis with adoption of a sliding threshold Nanotechnology 24 384005 [13] Park S, Noh J, Choo M-L, Sheri A M, Chang M, Kim Y-B, Kim C J, Jeon M, Lee B-G, Lee B H and Hwang H 2013 Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device Nanotechnology 24 384009 [14] Yang R, Terabe K, Yao Y, Tsuruoka T, Hasegawa T, Gimzewski J K and Aono M 2013 Synaptic plasticity and memory functions achieved in WO3-x-based nanoionics device by using principle of atomic switch operation Nanotechnology 24 384002 [15] Ambrogio S, Balatti S, Nardi F, Facchinetti S and Ielmini D 2013 Spike-timing dependent plasticity in a transistor-selected resistive switching memory Nanotechnology 24 384012 [16] Indiveria G, Linares-Barranco B, Legenstein R, Deligeorgis G and Prodromakise T 2013 Integration of nanoscale memristor synapses in neuromorphic computing architectures Nanotechnology 24 384010 [17] Hino T, Hasegawa T, Tanaka H, Tsuruoka T, Terabe K, Ogawa T and Aono M 2013 Volatile and nonvolatile selective switching of a photo-assited initialized atomic switch Nanotechnology 24 384006 [18] Kuzum D, Yu S and Wong H-S P 2013 Synaptic electronics: materials, devices and applications Nanotechnology 24 382001

  18. Copper pillar and memory characteristics using Al2O3 switching material for 3D architecture.

    PubMed

    Maikap, Siddheswar; Panja, Rajeswar; Jana, Debanjan

    2014-01-01

    A novel idea by using copper (Cu) pillar is proposed in this study, which can replace the through-silicon-vias (TSV) technique in future three-dimensional (3D) architecture. The Cu pillar formation under external bias in an Al/Cu/Al2O3/TiN structure is simple and low cost. The Cu pillar is formed in the Al2O3 film under a small operation voltage of <5 V and a high-current-carrying conductor of >70 mA is obtained. More than 100 devices have shown tight distribution of the Cu pillars in Al2O3 film for high current compliance (CC) of 70 mA. Robust read pulse endurances of >10(6) cycles are observed with read voltages of -1, 1, and 4 V. However, read endurance is failed with read voltages of -1.5, -2, and -4 V. By decreasing negative read voltage, the read endurance is getting worst, which is owing to ruptured Cu pillar. Surface roughness and TiO x N y on TiN bottom electrode are observed by atomic force microscope and transmission electron microscope, respectively. The Al/Cu/Al2O3/TiN memory device shows good bipolar resistive switching behavior at a CC of 500 μA under small operating voltage of ±1 V and good data retention characteristics of >10(3) s with acceptable resistance ratio of >10 is also obtained. This suggests that high-current operation will help to form Cu pillar and lower-current operation will have bipolar resistive switching memory. Therefore, this new Cu/Al2O3/TiN structure will be benefited for 3D architecture in the future.

  19. A C-Te-based binary OTS device exhibiting excellent performance and high thermal stability for selector application.

    PubMed

    Chekol, Solomon Amsalu; Yoo, Jongmyung; Park, Jaehyuk; Song, Jeonghwan; Sung, Changhyuck; Hwang, Hyunsang

    2018-08-24

    In this letter, we demonstrate a new binary ovonic threshold switching (OTS) selector device scalable down to ø30 nm based on C-Te. Our proposed selector device exhibits outstanding performance such as a high switching ratio (I on /I off  > 10 5 ), an extremely low off-current (∼1 nA), an extremely fast operating speed of <10 ns (transition time of <2 ns and delay time of <8 ns), high endurance (10 9 ), and high thermal stability (>450 °C). The observed high thermal stability is caused by the relatively small atomic size of C, compared to Te, which can effectively suppress the segregation and crystallization of Te in the OTS film. Furthermore, to confirm the functionality of the selector in a crossbar array, we evaluated a 1S-1R device by integrating our OTS device with a ReRAM (resistive random access memory) device. The 1S-1R integrated device exhibits a successful suppression of leakage current at the half-selected cell and shows an excellent read-out margin (>2 12 word lines) in a fast read operation.

  20. Nanoelectronics from the bottom up.

    PubMed

    Lu, Wei; Lieber, Charles M

    2007-11-01

    Electronics obtained through the bottom-up approach of molecular-level control of material composition and structure may lead to devices and fabrication strategies not possible with top-down methods. This review presents a brief summary of bottom-up and hybrid bottom-up/top-down strategies for nanoelectronics with an emphasis on memories based on the crossbar motif. First, we will discuss representative electromechanical and resistance-change memory devices based on carbon nanotube and core-shell nanowire structures, respectively. These device structures show robust switching, promising performance metrics and the potential for terabit-scale density. Second, we will review architectures being developed for circuit-level integration, hybrid crossbar/CMOS circuits and array-based systems, including experimental demonstrations of key concepts such lithography-independent, chemically coded stochastic demultipluxers. Finally, bottom-up fabrication approaches, including the opportunity for assembly of three-dimensional, vertically integrated multifunctional circuits, will be critically discussed.

  1. All-optical SR flip-flop based on SOA-MZI switches monolithically integrated on a generic InP platform

    NASA Astrophysics Data System (ADS)

    Pitris, St.; Vagionas, Ch.; Kanellos, G. T.; Kisacik, R.; Tekin, T.; Broeke, R.; Pleros, N.

    2016-03-01

    At the dawning of the exaflop era, High Performance Computers are foreseen to exploit integrated all-optical elements, to overcome the speed limitations imposed by electronic counterparts. Drawing from the well-known Memory Wall limitation, imposing a performance gap between processor and memory speeds, research has focused on developing ultra-fast latching devices and all-optical memory elements capable of delivering buffering and switching functionalities at unprecedented bit-rates. Following the master-slave configuration of electronic Flip-Flops, coupled SOA-MZI based switches have been theoretically investigated to exceed 40 Gb/s operation, provided a short coupling waveguide. However, this flip-flop architecture has been only hybridly integrated with silica-on-silicon integration technology exhibiting a total footprint of 45x12 mm2 and intra-Flip-Flop coupling waveguide of 2.5cm, limited at 5 Gb/s operation. Monolithic integration offers the possibility to fabricate multiple active and passive photonic components on a single chip at a close proximity towards, bearing promises for fast all-optical memories. Here, we present for the first time a monolithically integrated all-optical SR Flip-Flop with coupled master-slave SOA-MZI switches. The photonic chip is integrated on a 6x2 mm2 die as a part of a multi-project wafer run using library based components of a generic InP platform, fiber-pigtailed and fully packaged on a temperature controlled ceramic submount module with electrical contacts. The intra Flip-Flop coupling waveguide is 5 mm long, reducing the total footprint by two orders of magnitude. Successful flip flop functionality is evaluated at 10 Gb/s with clear open eye diagram, achieving error free operation with a power penalty of 4dB.

  2. Ab initio study of ceria films for resistive switching memory applications

    NASA Astrophysics Data System (ADS)

    Firdos, Mehreen; Hussain, Fayyaz; Imran, Muhammad; Ismail, Muhammad; Rana, A. M.; Arshad Javid, M.; Majid, Abdul; Arif Khalil, R. M.; Ullah, Hafeez

    2017-10-01

    The aim of this study is to investigate the charge distribution/relocation activities in relation to resistive switching (RS) memory behavior in the metal/insulator/metal (MIM) structure of Zr/CeO2/Pt hybrid layers. The Zr layer is truly expected to act not only as an oxygen ion extraction layer but also as an ion barrier by forming a ZrO2 interfacial layer. Such behavior of the Zr not only introduces a high concentration of oxygen vacancies to the active CeO2 layer but also enhances the resistance change capability. Such Zr contributions have been explored by determining the work function, charge distribution and electronic properties with the help of density functional theory (DFT) based on the generalized gradient approximation (GGA). In doped CeO2, the dopant (Zr) plays a significant role in the formation of defect states, such as oxygen vacancies, which are necessary for generating conducting filaments. The total density of state (DOS) analyses reveal that the existence of impurity states in the hybrid system considerably upgrade the performance of charge transfer/accumulation, consequently leading to enhanced RS behavior, as noticed in our earlier experimental results on Zr/CeO2/Pt devices. Hence it can be concluded that the present DFT studies can be implemented on CeO2-based RRAM devices, which have skyscraping potential for future nonvolatile memory (NVM) applications.

  3. Reversible photo-chem-electrotriggered three-state luminescence switching based on core-shell nanostructures

    NASA Astrophysics Data System (ADS)

    Zhai, Yanling; Zhu, Zhijun; Zhu, Chengzhou; Zhu, Jinbo; Ren, Jiangtao; Wang, Erkang; Dong, Shaojun

    2013-05-01

    Reversible three-state fluorescence switches triggered by light, electricity and chemical inputs based on ``sponges'' of Pyronin Y-doped silica nanoparticles (PYDS) and polyoxometalate K14[Na(H2O)P5W30O110] (Na-POMs) core-shell nanostructures were realized. Under one or two signal inputs, the system exhibited distinct three-state interconvertible automaton, achieving reversible ``on'' and ``off'' luminescence switches via the related luminescence quenching effect. The features of the system correspond to the equivalent circuitry of an IMPLICATION logic gate performing the Boolean operation by using potential and chemical as inputs. Such a multi-chromic device with novel structure possesses several advantages, such as relative low operation voltage, large reproducibility and reversibility, apparent fluorescence contrast, and long-time stability, which make it a suitable candidate for nonvolatile memory devices. In addition, the current protocol for the hybrid film fabrication can be easily extended from the polyoxometalate and organic dyes to other novel nanostructures matched multifunctional stimulus-responsive species and fluorescence materials in the future.Reversible three-state fluorescence switches triggered by light, electricity and chemical inputs based on ``sponges'' of Pyronin Y-doped silica nanoparticles (PYDS) and polyoxometalate K14[Na(H2O)P5W30O110] (Na-POMs) core-shell nanostructures were realized. Under one or two signal inputs, the system exhibited distinct three-state interconvertible automaton, achieving reversible ``on'' and ``off'' luminescence switches via the related luminescence quenching effect. The features of the system correspond to the equivalent circuitry of an IMPLICATION logic gate performing the Boolean operation by using potential and chemical as inputs. Such a multi-chromic device with novel structure possesses several advantages, such as relative low operation voltage, large reproducibility and reversibility, apparent fluorescence contrast, and long-time stability, which make it a suitable candidate for nonvolatile memory devices. In addition, the current protocol for the hybrid film fabrication can be easily extended from the polyoxometalate and organic dyes to other novel nanostructures matched multifunctional stimulus-responsive species and fluorescence materials in the future. Electronic supplementary information (ESI) available: Experimental details and instrumentation; electrochemical, fluorescence and absorption spectra characterizations of hybrid films. See DOI: 10.1039/c3nr00254c

  4. Recent progress in tungsten oxides based memristors and their neuromorphological applications

    NASA Astrophysics Data System (ADS)

    Qu, Bo; Younis, Adnan; Chu, Dewei

    2016-09-01

    The advance in conventional silicon based semiconductor industry is now becoming indeterminacy as it still along the road of Moore's Law and concomitant problems associated with it are the emergence of a number of practical issues such as short channel effect. In terms of memory applications, it is generally believed that transistors based memory devices will approach to their scaling limits up to 2018. Therefore, one of the most prominent challenges today in semiconductor industry is the need of a new memory technology which is able to combine the best characterises of current devices. The resistive switching memories which are regarded as "memristors" thus gain great attentions thanks to their specific nonlinear electrical properties. More importantly, their behaviour resembles with the transmission characteristic of synapse in biology. Therefore, the research of synapses biomimetic devices based on memristor will certainly bring a great research prospect in studying synapse emulation as well as building artificial neural networks. Tungsten oxides (WO x ) exhibits many essential characteristics as a great candidate for memristive devices including: accredited endurance (over 105 cycles), stoichiometric flexibility, complimentary metal-oxide-semiconductor (CMOS) process compatibility and configurable properties including non-volatile rectification, memorization and learning functions. Herein, recent progress on Tungsten oxide based materials and its associating memory devices had been reviewed. The possible implementation of this material as a bio-inspired artificial synapse is also highlighted. The penultimate section summaries the current research progress for tungsten oxide based biological synapses and end up with several proposals that have been suggested for possible future developments.

  5. Oxygen migration during resistance switching and failure of hafnium oxide memristors

    DOE PAGES

    Kumar, Suhas; Wang, Ziwen; Huang, Xiaopeng; ...

    2017-03-06

    While the recent establishment of the role of thermophoresis/diffusion-driven oxygen migration during resistance switching in metal oxide memristors provided critical insights required for memristor modeling, extended investigations of the role of oxygen migration during ageing and failure remain to be detailed. Such detailing will enable failure-tolerant design, which can lead to enhanced performance of memristor-based next-generation storage-class memory. Furthermore, we directly observed lateral oxygen migration using in-situ synchrotron x-ray absorption spectromicroscopy of HfO x memristors during initial resistance switching, wear over millions of switching cycles, and eventual failure, through which we determined potential physical causes of failure. Using this information,more » we reengineered devices to mitigate three failure mechanisms and demonstrated an improvement in endurance of about three orders of magnitude.« less

  6. Conductance Quantization in Resistive Random Access Memory

    NASA Astrophysics Data System (ADS)

    Li, Yang; Long, Shibing; Liu, Yang; Hu, Chen; Teng, Jiao; Liu, Qi; Lv, Hangbing; Suñé, Jordi; Liu, Ming

    2015-10-01

    The intrinsic scaling-down ability, simple metal-insulator-metal (MIM) sandwich structure, excellent performances, and complementary metal-oxide-semiconductor (CMOS) technology-compatible fabrication processes make resistive random access memory (RRAM) one of the most promising candidates for the next-generation memory. The RRAM device also exhibits rich electrical, thermal, magnetic, and optical effects, in close correlation with the abundant resistive switching (RS) materials, metal-oxide interface, and multiple RS mechanisms including the formation/rupture of nanoscale to atomic-sized conductive filament (CF) incorporated in RS layer. Conductance quantization effect has been observed in the atomic-sized CF in RRAM, which provides a good opportunity to deeply investigate the RS mechanism in mesoscopic dimension. In this review paper, the operating principles of RRAM are introduced first, followed by the summarization of the basic conductance quantization phenomenon in RRAM and the related RS mechanisms, device structures, and material system. Then, we discuss the theory and modeling of quantum transport in RRAM. Finally, we present the opportunities and challenges in quantized RRAM devices and our views on the future prospects.

  7. Conductance Quantization in Resistive Random Access Memory.

    PubMed

    Li, Yang; Long, Shibing; Liu, Yang; Hu, Chen; Teng, Jiao; Liu, Qi; Lv, Hangbing; Suñé, Jordi; Liu, Ming

    2015-12-01

    The intrinsic scaling-down ability, simple metal-insulator-metal (MIM) sandwich structure, excellent performances, and complementary metal-oxide-semiconductor (CMOS) technology-compatible fabrication processes make resistive random access memory (RRAM) one of the most promising candidates for the next-generation memory. The RRAM device also exhibits rich electrical, thermal, magnetic, and optical effects, in close correlation with the abundant resistive switching (RS) materials, metal-oxide interface, and multiple RS mechanisms including the formation/rupture of nanoscale to atomic-sized conductive filament (CF) incorporated in RS layer. Conductance quantization effect has been observed in the atomic-sized CF in RRAM, which provides a good opportunity to deeply investigate the RS mechanism in mesoscopic dimension. In this review paper, the operating principles of RRAM are introduced first, followed by the summarization of the basic conductance quantization phenomenon in RRAM and the related RS mechanisms, device structures, and material system. Then, we discuss the theory and modeling of quantum transport in RRAM. Finally, we present the opportunities and challenges in quantized RRAM devices and our views on the future prospects.

  8. Nanoscale chemical state analysis of resistance random access memory device reacting with Ti

    NASA Astrophysics Data System (ADS)

    Shima, Hisashi; Nakano, Takashi; Akinaga, Hiro

    2010-05-01

    The thermal stability of the resistance random access memory material in the reducing atmosphere at the elevated temperature was improved by the addition of Ti. The unipolar resistance switching before and after the postdeposition annealing (PDA) process at 400 °C was confirmed in Pt/CoO/Ti(5 nm)/Pt device, while the severe degradation of the initial resistance occurs in the Pt/CoO/Pt and Pt/CoO/Ti(50 nm)/Pt devices. By investigating the chemical bonding states of Co, O, and Ti using electron energy loss spectroscopy combined with transmission electron microscopy, it was revealed that excess Ti induces the formation of metallic Co, while the thermal stability was improved by trace Ti. Moreover, it was indicated that the filamentary conduction path can be thermally induced after PDA in the oxide layer by analyzing electrical properties of the degraded devices. The adjustment of the reducing elements is quite essential in order to participate in their profits.

  9. Modeling and experimental study of resistive switching in vertically aligned carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ageev, O. A.; Blinov, Yu F.; Ilina, M. V.; Ilin, O. I.; Smirnov, V. A.

    2016-08-01

    Model of the resistive switching in vertically aligned carbon nanotube (VA CNT) taking into account the processes of deformation, polarization and piezoelectric charge accumulation have been developed. Origin of hysteresis in VA CNT-based structure is described. Based on modeling results the VACNTs-based structure has been created. The ration resistance of high-resistance to low-resistance states of the VACNTs-based structure amounts 48. The correlation the modeling results with experimental studies is shown. The results can be used in the development nanoelectronics devices based on VA CNTs, including the nonvolatile resistive random-access memory.

  10. The effect of external magnetic field changing on the correlated quantum dot dynamics

    NASA Astrophysics Data System (ADS)

    Mantsevich, V. N.; Maslova, N. S.; Arseyev, P. I.

    2018-06-01

    The non-stationary response of local magnetic moment to abrupt switching "on" and "off" of external magnetic field was studied for a single-level quantum dot (QD) coupled to a reservoir. We found that transient processes look different for the shallow and deep localized energy level. It was demonstrated that for deep energy level the relaxation rates of the local magnetic moment strongly differ in the case of magnetic field switching "on" or "off". Obtained results can be applied in the area of dynamic memory devices stabilization in the presence of magnetic field.

  11. In-situ, In-Memory Stateful Vector Logic Operations based on Voltage Controlled Magnetic Anisotropy.

    PubMed

    Jaiswal, Akhilesh; Agrawal, Amogh; Roy, Kaushik

    2018-04-10

    Recently, the exponential increase in compute requirements demanded by emerging applications like artificial intelligence, Internet of things, etc. have rendered the state-of-art von-Neumann machines inefficient in terms of energy and throughput owing to the well-known von-Neumann bottleneck. A promising approach to mitigate the bottleneck is to do computations as close to the memory units as possible. One extreme possibility is to do in-situ Boolean logic computations by using stateful devices. Stateful devices are those that can act both as a compute engine and storage device, simultaneously. We propose such stateful, vector, in-memory operations using voltage controlled magnetic anisotropy (VCMA) effect in magnetic tunnel junctions (MTJ). Our proposal is based on the well known manufacturable 1-transistor - 1-MTJ bit-cell and does not require any modifications in the bit-cell circuit or the magnetic device. Instead, we leverage the very physics of the VCMA effect to enable stateful computations. Specifically, we exploit the voltage asymmetry of the VCMA effect to construct stateful IMP (implication) gate and use the precessional switching dynamics of the VCMA devices to propose a massively parallel NOT operation. Further, we show that other gates like AND, OR, NAND, NOR, NIMP (complement of implication) can be implemented using multi-cycle operations.

  12. Fast Low-Current Spin-Orbit-Torque Switching of Magnetic Tunnel Junctions through Atomic Modifications of the Free-Layer Interfaces

    NASA Astrophysics Data System (ADS)

    Shi, Shengjie; Ou, Yongxi; Aradhya, S. V.; Ralph, D. C.; Buhrman, R. A.

    2018-01-01

    Future applications of spin-orbit torque will require new mechanisms to improve the efficiency of switching nanoscale magnetic tunnel junctions (MTJs), while also controlling the magnetic dynamics to achieve fast nanosecond-scale performance with low-write-error rates. Here, we demonstrate a strategy to simultaneously enhance the interfacial magnetic anisotropy energy and suppress interfacial spin-memory loss by introducing subatomic and monatomic layers of Hf at the top and bottom interfaces of the ferromagnetic free layer of an in-plane magnetized three-terminal MTJ device. When combined with a β -W spin Hall channel that generates spin-orbit torque, the cumulative effect is a switching current density of 5.4 ×106 A /cm2 .

  13. Atomic switch networks as complex adaptive systems

    NASA Astrophysics Data System (ADS)

    Scharnhorst, Kelsey S.; Carbajal, Juan P.; Aguilera, Renato C.; Sandouk, Eric J.; Aono, Masakazu; Stieg, Adam Z.; Gimzewski, James K.

    2018-03-01

    Complexity is an increasingly crucial aspect of societal, environmental and biological phenomena. Using a dense unorganized network of synthetic synapses it is shown that a complex adaptive system can be physically created on a microchip built especially for complex problems. These neuro-inspired atomic switch networks (ASNs) are a dynamic system with inherent and distributed memory, recurrent pathways, and up to a billion interacting elements. We demonstrate key parameters describing self-organized behavior such as non-linearity, power law dynamics, and multistate switching regimes. Device dynamics are then investigated using a feedback loop which provides control over current and voltage power-law behavior. Wide ranging prospective applications include understanding and eventually predicting future events that display complex emergent behavior in the critical regime.

  14. Magnetic domain wall engineering in a nanoscale permalloy junction

    NASA Astrophysics Data System (ADS)

    Wang, Junlin; Zhang, Xichao; Lu, Xianyang; Zhang, Jason; Yan, Yu; Ling, Hua; Wu, Jing; Zhou, Yan; Xu, Yongbing

    2017-08-01

    Nanoscale magnetic junctions provide a useful approach to act as building blocks for magnetoresistive random access memories (MRAM), where one of the key issues is to control the magnetic domain configuration. Here, we study the domain structure and the magnetic switching in the Permalloy (Fe20Ni80) nanoscale magnetic junctions with different thicknesses by using micromagnetic simulations. It is found that both the 90-° and 45-° domain walls can be formed between the junctions and the wire arms depending on the thickness of the device. The magnetic switching fields show distinct thickness dependencies with a broad peak varying from 7 nm to 22 nm depending on the junction sizes, and the large magnetic switching fields favor the stability of the MRAM operation.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Suhas; Wang, Ziwen; Huang, Xiaopeng

    While the recent establishment of the role of thermophoresis/diffusion-driven oxygen migration during resistance switching in metal oxide memristors provided critical insights required for memristor modeling, extended investigations of the role of oxygen migration during ageing and failure remain to be detailed. Such detailing will enable failure-tolerant design, which can lead to enhanced performance of memristor-based next-generation storage-class memory. Furthermore, we directly observed lateral oxygen migration using in-situ synchrotron x-ray absorption spectromicroscopy of HfO x memristors during initial resistance switching, wear over millions of switching cycles, and eventual failure, through which we determined potential physical causes of failure. Using this information,more » we reengineered devices to mitigate three failure mechanisms and demonstrated an improvement in endurance of about three orders of magnitude.« less

  16. Enhancements of the memory margin and the stability of an organic bistable device due to a graphene oxide:mica nanocomposite sandwiched between two polymer (9-vinylcarbazole) buffer layers

    NASA Astrophysics Data System (ADS)

    Kim, Woo Kyum; Wu, Chaoxing; Lee, Dea Uk; Kim, Hyoun Woo; Kim, Tae Whan

    2018-01-01

    Current-voltage (I-V) curves for the Al/polymer (9-vinylcarbazole) (PVK)/graphene oxide (GO):mica/PVK/indium-tin oxide (ITO) devices at 300 K showed a current bistability with a maximum high conductivity (ON)/low conductivity (OFF) ratio of 2 × 104, which was approximately 10 times larger than that of the device without a PVK layer. The endurance number of ON/OFF switchings for the Al/PVK/GO:mica/PVK/ITO device was 1 × 102 cycles, which was 20 times larger than that for the Al/GO:mica/ITO device. The ;erase; voltages were distributed between 2.3 and 3 V, and the ;write; voltages were distributed between -1.2 and -0.5 V. The retention time for the Al/PVK/GO:mica/PVK/ITO device was above 1 × 104 s, indicative of the memory stability of the device. The carrier transport mechanisms occurring in the Al/PVK/GO:mica/PVK/ITO and the Al/GO:mica/ITO devices are described on the basis of the I-V results and the energy band diagrams.

  17. Circuit engineering principles for construction of bipolar large-scale integrated circuit storage devices and very large-scale main memory

    NASA Astrophysics Data System (ADS)

    Neklyudov, A. A.; Savenkov, V. N.; Sergeyez, A. G.

    1984-06-01

    Memories are improved by increasing speed or the memory volume on a single chip. The most effective means for increasing speeds in bipolar memories are current control circuits with the lowest extraction times for a specific power consumption (1/4 pJ/bit). The control current circuitry involves multistage current switches and circuits accelerating transient processes in storage elements and links. Circuit principles for the design of bipolar memories with maximum speeds for an assigned minimum of circuit topology are analyzed. Two main classes of storage with current control are considered: the ECL type and super-integrated injection type storage with data capacities of N = 1/4 and N 4/16, respectively. The circuits reduce logic voltage differentials and the volumes of lexical and discharge buses and control circuit buses. The limiting speed is determined by the antiinterference requirements of the memory in storage and extraction modes.

  18. Engineering amorphous-crystalline interfaces in TiO2-x/TiO2-y-based bilayer structures for enhanced resistive switching and synaptic properties

    NASA Astrophysics Data System (ADS)

    Bousoulas, P.; Asenov, P.; Karageorgiou, I.; Sakellaropoulos, D.; Stathopoulos, S.; Tsoukalas, D.

    2016-10-01

    The operating principle of resistive random access memories (RRAMs) relies on the distribution of ionic species and their influence on the electron transport. Taking into account that formation and annihilation of conducting filaments (CFs) is the driving mechanism for the switching effect, it is very important to control the regions where these filaments will evolve. Thus, homolayers of titanium oxide with different oxygen contents were fabricated in order to tune the local electrical and thermal properties of the CFs and narrow down the potential percolation paths. We show that the oxygen content in the top layer of the TiO2-x/TiO2-y bilayer memristors can directly influence the morphology of the layers which affect the diffusion barrier and consequently the diffusivity and drift velocity of oxygen vacancies, yielding in important enhancement of switching characteristics, in terms of spatial uniformity (σ/μ < 0.2), enlarged switching ratio (˜104), and synaptic learning. In order to address the experimental data, a physical model was applied, divulging the crucial role of temperature, electric potential and oxygen vacancy density on the switching effect and offering physical insights to the SET/RESET transitions and the analog switching. The forming free nature of all the devices in conjunction with the self-rectifying behavior, should also be regarded as important assets towards RRAM device optimization.

  19. In-operando hard X-ray photoelectron spectroscopy study on the impact of current compliance and switching cycles on oxygen and carbon defects in resistive switching Ti/HfO{sub 2}/TiN cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowinska, Malgorzata, E-mail: sowinska@ihp-microelectronics.com; Bertaud, Thomas; Walczyk, Damian

    2014-05-28

    In this study, direct experimental materials science evidence of the important theoretical prediction for resistive random access memory (RRAM) technologies that a critical amount of oxygen vacancies is needed to establish stable resistive switching in metal-oxide-metal samples is presented. In detail, a novel in-operando hard X-ray photoelectron spectroscopy technique is applied to non-destructively investigates the influence of the current compliance and direct current voltage sweep cycles on the Ti/HfO{sub 2} interface chemistry and physics of resistive switching Ti/HfO{sub 2}/TiN cells. These studies indeed confirm that current compliance is a critical parameter to control the amount of oxygen vacancies in themore » conducting filaments in the oxide layer during the RRAM cell operation to achieve stable switching. Furthermore, clear carbon segregation towards the Ti/HfO{sub 2} interface under electrical stress is visible. Since carbon impurities impact the oxygen vacancy defect population under resistive switching, this dynamic carbon segregation to the Ti/HfO{sub 2} interface is suspected to negatively influence RRAM device endurance. Therefore, these results indicate that the RRAM materials engineering needs to include all impurities in the dielectric layer in order to achieve reliable device performance.« less

  20. Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits.

    PubMed

    Lu, Yegang; Stegmaier, Matthias; Nukala, Pavan; Giambra, Marco A; Ferrari, Simone; Busacca, Alessandro; Pernice, Wolfram H P; Agarwal, Ritesh

    2017-01-11

    Phase change materials (PCMs) are highly attractive for nonvolatile electrical and all-optical memory applications because of unique features such as ultrafast and reversible phase transitions, long-term endurance, and high scalability to nanoscale dimensions. Understanding their transient characteristics upon phase transition in both the electrical and the optical domains is essential for using PCMs in future multifunctional optoelectronic circuits. Here, we use a PCM nanowire embedded into a nanophotonic circuit to study switching dynamics in mixed-mode operation. Evanescent coupling between light traveling along waveguides and a phase-change nanowire enables reversible phase transition between amorphous and crystalline states. We perform time-resolved measurements of the transient change in both the optical transmission and resistance of the nanowire and show reversible switching operations in both the optical and the electrical domains. Our results pave the way toward on-chip multifunctional optoelectronic integrated devices, waveguide integrated memories, and hybrid processing applications.

  1. Quantitative Observation of Threshold Defect Behavior in Memristive Devices with Operando X-ray Microscopy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Huajun; Dong, Yongqi; Cherukara, Matthew J.

    Memristive devices are an emerging technology that enables both rich interdisciplinary science and novel device functionalities, such as nonvolatile memories and nanoionics-based synaptic electronics. Recent work has shown that the reproducibility and variability of the devices depend sensitively on the defect structures created during electroforming as well as their continued evolution under dynamic electric fields. However, a fundamental principle guiding the material design of defect structures is still lacking due to the difficulty in understanding dynamic defect behavior under different resistance states. Here, we unravel the existence of threshold behavior by studying model, single-crystal devices: resistive switching requires that themore » pristine oxygen vacancy concentration reside near a critical value. Theoretical calculations show that the threshold oxygen vacancy concentration lies at the boundary for both electronic and atomic phase transitions. Through operando, multimodal X-ray imaging, we show that field tuning of the local oxygen vacancy concentration below or above the threshold value is responsible for switching between different electrical states. These results provide a general strategy for designing functional defect structures around threshold concentrations to create dynamic, field-controlled phases for memristive devices.« less

  2. Development of non-volatile semiconductor memory

    NASA Technical Reports Server (NTRS)

    Heikkila, W. W.

    1979-01-01

    A 256 word by 8-bit random access memory chip was developed utilizing p channel, metal gate metal-nitride-oxide-silicon (MNOS) technology; with operational characteristics of a 2.5 microsecond read cycle, a 6.0 microsecond write cycle, 800 milliwatts of power dissipation; and retention characteristics of 10 to the 8th power read cycles before data refresh and 5000 hours of no power retention. Design changes were implemented to reduce switching currents that caused parasitic bipolar transistors inherent in the MNOS structure to turn on. Final wafer runs exhibited acceptable yields for a die 250 mils on a side. Evaluation testing was performed on the device in order to determine the maturity of the device. A fixed gate breakdown mechanism was found when operated continuously at high temperature.

  3. A dual-stimuli-responsive fluorescent switch ultrathin film

    NASA Astrophysics Data System (ADS)

    Li, Zhixiong; Liang, Ruizheng; Liu, Wendi; Yan, Dongpeng; Wei, Min

    2015-10-01

    Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP@PTBEM and Rf-PSS with cationic layered double hydroxide (LDH) nanoplatelets to obtain the (Rf-PSS/LDH/SP@PTBEM)n UTFs (n: bilayer number). The assembly process of the UTFs and their luminescence properties, as monitored by fluorescence spectroscopy and scanning electron microscopy (SEM), present a uniform and ordered layered structure with stepwise growth. The resulting Rf-PSS/LDH/SP@PTBEM UTF serves as a three-state switchable multicolor (green, yellow, and red) luminescent system based on stimulation from UV/Vis light and pH, with an acceptable reversibility. Therefore, this work provides a facile way to fabricate stimuli-responsive solid-state film switches with tunable-color luminescence, which have potential applications in the areas of displays, sensors, and rewritable optical memory and fluorescent logic devices.Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP@PTBEM and Rf-PSS with cationic layered double hydroxide (LDH) nanoplatelets to obtain the (Rf-PSS/LDH/SP@PTBEM)n UTFs (n: bilayer number). The assembly process of the UTFs and their luminescence properties, as monitored by fluorescence spectroscopy and scanning electron microscopy (SEM), present a uniform and ordered layered structure with stepwise growth. The resulting Rf-PSS/LDH/SP@PTBEM UTF serves as a three-state switchable multicolor (green, yellow, and red) luminescent system based on stimulation from UV/Vis light and pH, with an acceptable reversibility. Therefore, this work provides a facile way to fabricate stimuli-responsive solid-state film switches with tunable-color luminescence, which have potential applications in the areas of displays, sensors, and rewritable optical memory and fluorescent logic devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05376e

  4. Influence of argon and oxygen pressure ratio on bipolar-resistive switching characteristics of CeO2- x thin films deposited at room temperature

    NASA Astrophysics Data System (ADS)

    Ismail, Muhammad; Ullah, Rehmat; Hussain, Riaz; Talib, Ijaz; Rana, Anwar Manzoor; Hussain, Muhammad; Mahmood, Khalid; Hussain, Fayyaz; Ahmed, Ejaz; Bao, Dinghua

    2018-02-01

    Cerium oxide (CeO2-x) film was deposited on Pt/Ti/SiO2/Si substrate by rf magnetron sputtering at room temperature. Resistive switching characteristics of these ceria films have been improved by increasing oxygen content during deposition process. Endurance and statistical analyses indicate that the operating stability of CeO2-x-based memory is highly dependent on the oxygen content. Results indicate that CeO2-x film-based RRAM devices exhibit optimum performance when fabricated at an argon/oxygen ratio of 6:24. An increase in the oxygen content introduced during CeO2-x film deposition not only stabilizes the conventional bipolar RS but also improves excellent switching uniformity such as large ON/OFF ratio (102), excellent switching device-to-device uniformity and good sweep endurance over 500 repeated RS cycles. Conduction in the low-resistance state (LRS) as well as in the low bias field region in the high-resistance state (HRS) is found to be Ohmic and thus supports the conductive filament (CF) theory. In the high voltage region of HRS, space charge limited conduction (SCLC) and Schottky emission are found to be the dominant conduction mechanisms. A feasible filamentary RS mechanism based on the movement of oxygen ions/vacancies under the bias voltage has been discussed.

  5. Task-set switching under cue-based versus memory-based switching conditions in younger and older adults.

    PubMed

    Kray, Jutta

    2006-08-11

    Adult age differences in task switching and advance preparation were examined by comparing cue-based and memory-based switching conditions. Task switching was assessed by determining two types of costs that occur at the general (mixing costs) and specific (switching costs) level of switching. Advance preparation was investigated by varying the time interval until the next task (short, middle, very long). Results indicated that the implementation of task sets was different for cue-based switching with random task sequences and memory-based switching with predictable task sequences. Switching costs were strongly reduced under cue-based switching conditions, indicating that task-set cues facilitate the retrieval of the next task. Age differences were found for mixing costs and for switching costs only under cue-based conditions in which older adults showed smaller switching costs than younger adults. It is suggested that older adults adopt a less extreme bias between two tasks than younger adults in situations associated with uncertainty. For cue-based switching with random task sequences, older adults are less engaged in a complete reconfiguration of task sets because of the probability of a further task change. Furthermore, the reduction of switching costs was more pronounced for cue- than memory-based switching for short preparation intervals, whereas the reduction of switch costs was more pronounced for memory- than cue-based switching for longer preparation intervals at least for older adults. Together these findings suggest that the implementation of task sets is functionally different for the two types of task-switching conditions.

  6. Metal oxide resistive random access memory based synaptic devices for brain-inspired computing

    NASA Astrophysics Data System (ADS)

    Gao, Bin; Kang, Jinfeng; Zhou, Zheng; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan

    2016-04-01

    The traditional Boolean computing paradigm based on the von Neumann architecture is facing great challenges for future information technology applications such as big data, the Internet of Things (IoT), and wearable devices, due to the limited processing capability issues such as binary data storage and computing, non-parallel data processing, and the buses requirement between memory units and logic units. The brain-inspired neuromorphic computing paradigm is believed to be one of the promising solutions for realizing more complex functions with a lower cost. To perform such brain-inspired computing with a low cost and low power consumption, novel devices for use as electronic synapses are needed. Metal oxide resistive random access memory (ReRAM) devices have emerged as the leading candidate for electronic synapses. This paper comprehensively addresses the recent work on the design and optimization of metal oxide ReRAM-based synaptic devices. A performance enhancement methodology and optimized operation scheme to achieve analog resistive switching and low-energy training behavior are provided. A three-dimensional vertical synapse network architecture is proposed for high-density integration and low-cost fabrication. The impacts of the ReRAM synaptic device features on the performances of neuromorphic systems are also discussed on the basis of a constructed neuromorphic visual system with a pattern recognition function. Possible solutions to achieve the high recognition accuracy and efficiency of neuromorphic systems are presented.

  7. Control of Nanofilament Structure and Observations of Quantum Point Contact Behavior in Ni/NiO Nanowire Junctions

    NASA Astrophysics Data System (ADS)

    Oliver, Sean; Fairfield, Jessamyn; Lee, Sunghun; Bellew, Allen; Stone, Iris; Ruppalt, Laura; Boland, John; Vora, Patrick

    Resistive switching is ideal for use in non-volatile memory where information is stored in a metallic or insulating state. Nanowire junctions formed at the intersection of two Ni/NiO core/shell nanowires have emerged as a leading candidate structure where resistive switching occurs due to the formation and destruction of conducting filaments. However, significant knowledge gaps remain regarding the conduction mechanisms as measurements are typically only performed at room temperature. Here, we combine temperature-dependent current-voltage (IV) measurements from 15 - 300 K with magnetoresistance studies and achieve new insight into the nature of the conducting filaments. We identify a novel semiconducting state that behaves as a quantum point contact and find evidence for a possible electric-field driven phase transition. The insulating state exhibits unexpectedly complex IV characteristics that highlight the disordered nature of the ruptured filament while we find clear signs of anisotropic magnetoresistance in the metallic state. Our results expose previously unobserved behaviors in nanowire resistive switching devices and pave the way for future applications where both electrical and magnetic switching can be achieved in a single device. This work was supported by ONR Grant N-00014-15-1-2357.

  8. Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching

    NASA Astrophysics Data System (ADS)

    Cho, Seungho; Yun, Chao; Tappertzhofen, Stefan; Kursumovic, Ahmed; Lee, Shinbuhm; Lu, Ping; Jia, Quanxi; Fan, Meng; Jian, Jie; Wang, Haiyan; Hofmann, Stephan; MacManus-Driscoll, Judith L.

    2016-08-01

    Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO2 and SrTiO3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (~1012 inch-2). We systematically show that these devices allow precise engineering of the resistance states, thus enabling large on-off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics.

  9. Scanning-SQUID investigation of spin-orbit torque acting on yttrium iron garnet devices

    NASA Astrophysics Data System (ADS)

    Rosenberg, Aaron J.; Jermain, Colin L.; Aradhya, Sriharsha V.; Brangham, Jack T.; Nowack, Katja C.; Kirtley, John R.; Yang, Fengyuan; Ralph, Daniel C.; Moler, Kathryn A.

    Successful manipulation of electrically insulating magnets, such as yttrium iron garnet, by by current-driven spin-orbit torques could provide a highly efficient platform for spintronic memory. Compared to devices fabricated using magnetic metals, magnetic insulators have the advantage of the ultra-low magnetic damping and the elimination of shunting currents in the magnet that reduce the torque efficiency. Here, we apply current in the spin Hall metal β-Ta to manipulate the magnetic orientation of micron-sized, electrically-insulating yttrium iron garnet devices. We do not observe spin-torque switching even for applied currents well above the critical current expected in a macrospin switching model. This suggests either inefficient transfer of spin torque at our Ta/YIG interface or a breakdown of the macrospin approximation. This work is supported by FAME, one of six centers of STARnet sponsored by MARCO and DARPA. The SQUID microscope and sensors were developed with support from the NSF-sponsored Center NSF-NSEC 0830228, and from NSF IMR-MIP 0957616.

  10. A double barrier memristive device

    PubMed Central

    Hansen, M.; Ziegler, M.; Kolberg, L.; Soni, R.; Dirkmann, S.; Mussenbrock, T.; Kohlstedt, H.

    2015-01-01

    We present a quantum mechanical memristive Nb/Al/Al2O3/NbxOy/Au device which consists of an ultra-thin memristive layer (NbxOy) sandwiched between an Al2O3 tunnel barrier and a Schottky-like contact. A highly uniform current distribution for the LRS (low resistance state) and HRS (high resistance state) for areas ranging between 70 μm2 and 2300 μm2 were obtained, which indicates a non-filamentary based resistive switching mechanism. In a detailed experimental and theoretical analysis we show evidence that resistive switching originates from oxygen diffusion and modifications of the local electronic interface states within the NbxOy layer, which influences the interface properties of the Au (Schottky) contact and of the Al2O3 tunneling barrier, respectively. The presented device might offer several benefits like an intrinsic current compliance, improved retention and no need for an electric forming procedure, which is especially attractive for possible applications in highly dense random access memories or neuromorphic mixed signal circuits. PMID:26348823

  11. Study of the photovoltaic effect in thin film barium titanate

    NASA Technical Reports Server (NTRS)

    Grannemann, W. W.; Dharmadhikari, V. S.

    1981-01-01

    The photoelectric effect in structures consisting of metal deposited barium titanate film silicon is described. A radio frequency sputtering technique is used to deposit ferroelectric barium titantate films on silicon and quartz. Film properties are measured and correlated with the photoelectric effect characteristics of the films. It was found that to obtain good quality pin hole free films, it is necessary to reduce the substrate temperature during the last part of the deposition. The switching ability of the device with internal applied voltage is improved when applied with a ferroelectric memory device.

  12. Mechanism of rectification and two-type bipolar resistance switching behaviors of Pt /Pb(Zr0.52Ti0.48)O3 /Nb:SrTiO3

    NASA Astrophysics Data System (ADS)

    Liu, W. W.; Jia, C. H.; Zhang, Q.; Zhang, W. F.

    2015-12-01

    Epitaxial Pb(Zr0.52Ti0.48)O3 (PZT) films have been grown on Nb:SrTiO3 (NSTO) (1 0 0) substrates. The films are a tetragonal perovskite phase with good density and homogeneity. Rectification behavior and two types of bipolar resistance switching (BRS) have been observed in the Pt/PZT/NSTO device. It exhibits rectification below 3 V. According to piezo force microscopy analysis, PZT film has a multidomain structure below 8 V and the device shows abnormal BRS between 3 V and 8 V. When the voltage increases above 8 V, the polarization of the PZT film tends to saturation and it becomes single domain and displays normal BRS behavior. In addition, the device demonstrates good retention and anti-fatigue properties. The transition from abnormal bipolar to normal bipolar behavior caused by ferroelectric polarization can broaden device applications and enable large flexibility in terms of memory architecture.

  13. Modeling of the multilevel conduction characteristics and fatigue profile of Ag/La1/3Ca2/3MnO3/Pt structures using a compact memristive approach

    NASA Astrophysics Data System (ADS)

    Miranda, E.; Román Acevedo, W.; Rubi, D.; Lüders, U.; Granell, P.; Suñé, J.; Levy, P.

    2017-05-01

    The hysteretic conduction characteristics and fatigue profile of La1/3Ca2/3MnO3 (LCMO)-based memristive devices were investigated. The oxide films were grown by pulsed laser deposition (PLD) and sandwiched between Ag and Pt electrodes. The devices exhibit bipolar resistive switching (RS) effect with well-defined intermediate conduction states that arise from partial SET and RESET events. The current-voltage curves are modeled and simulated using a compact memristive approach. Two equations are considered: one for the electron transport based on the double-diode equation and the other for the memory state of the device driven by the play operator with logistic ridge functions. An expression that accounts for the remnant resistance of the device is obtained after simplifying the model equations in the low-voltage limit. The role played by the power dissipation in the LCMO reset dynamics as well as the asymmetrical reduction of the resistance window caused by long trains of switching pulses are discussed.

  14. Structurally Engineered Nanoporous Ta2O5-x Selector-Less Memristor for High Uniformity and Low Power Consumption.

    PubMed

    Kwon, Soonbang; Kim, Tae-Wook; Jang, Seonghoon; Lee, Jae-Hwang; Kim, Nam Dong; Ji, Yongsung; Lee, Chul-Ho; Tour, James M; Wang, Gunuk

    2017-10-04

    A memristor architecture based on metal-oxide materials would have great promise in achieving exceptional energy efficiency and higher scalability in next-generation electronic memory systems. Here, we propose a facile method for fabricating selector-less memristor arrays using an engineered nanoporous Ta 2 O 5-x architecture. The device was fabricated in the form of crossbar arrays, and it functions as a switchable rectifier with a self-embedded nonlinear switching behavior and ultralow power consumption (∼2.7 × 10 -6 W), which results in effective suppression of crosstalk interference. In addition, we determined that the essential switching elements, such as the programming power, the sneak current, the nonlinearity value, and the device-to-device uniformity, could be enhanced by in-depth structural engineering of the pores in the Ta 2 O 5-x layer. Our results, on the basis of the structural engineering of metal-oxide materials, could provide an attractive approach for fabricating simple and cost-efficient memristor arrays with acceptable device uniformity and low power consumption without the need for additional addressing selectors.

  15. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2

    NASA Astrophysics Data System (ADS)

    Sangwan, Vinod K.; Jariwala, Deep; Kim, In Soo; Chen, Kan-Sheng; Marks, Tobin J.; Lauhon, Lincoln J.; Hersam, Mark C.

    2015-05-01

    Continued progress in high-speed computing depends on breakthroughs in both materials synthesis and device architectures. The performance of logic and memory can be enhanced significantly by introducing a memristor, a two-terminal device with internal resistance that depends on the history of the external bias voltage. State-of-the-art memristors, based on metal-insulator-metal (MIM) structures with insulating oxides, such as TiO2, are limited by a lack of control over the filament formation and external control of the switching voltage. Here, we report a class of memristors based on grain boundaries (GBs) in single-layer MoS2 devices. Specifically, the resistance of GBs emerging from contacts can be easily and repeatedly modulated, with switching ratios up to ˜103 and a dynamic negative differential resistance (NDR). Furthermore, the atomically thin nature of MoS2 enables tuning of the set voltage by a third gate terminal in a field-effect geometry, which provides new functionality that is not observed in other known memristive devices.

  16. Large-eddy simulation, atmospheric measurement and inverse modeling of greenhouse gas emissions at local spatial scales

    NASA Astrophysics Data System (ADS)

    Nottrott, Anders Andelman

    Multiferroic materials and devices have attracted intensified interests due to the demonstrated strong magnetoelectric coupling in new multiferroic materials, artificial multiferroic heterostructures and devices with unique functionalities and superior performance characteristics. This offers great opportunities for achieving compact, fast, energy-efficient and voltage tunable spintronic devices. In traditional magnetic materials based magnetic random access memories (MRAM) devices, the binary information is stored as magnetization. The high coercivity of the ferromagnetic media requires large magnetic fields for switching the magnetic states thus consuming large amount of energy. In modern MRAM information writing process, spin-torque technique is utilized for minimizing the large energy for generating magnetic field by passing through a spin-polarized current directly to the magnets. However, both methods still need large current/current density to toggle the magnetic bits which consume large amount of energy. With the presence of multiferroic or magnetoelectric materials, spin is controlled by electric field which opens new opportunities for power-efficient voltage control of magnetization in spintronic devices leading to magnetoelectric random access memories (MERAM) with ultra-low energy consumption. However, state of the art multiferroic materials still have difficulty of realizing nonvolatile 180° magnetization reversal, which is desired in realizing MERAM. In a strain-mediated multiferroic system, the typical modification of the magnetism of ferromagnetic phase as a function of bipolar electric field shows a "butterfly" like behavior. This is due to the linear piezoelectricity of ferroelectric phase which has a "butterfly" like piezostrain as a function of electric field curve resulting from ferroelectric domain wall switching. In this case, the magnetization state is volatile because of the vanishing of the piezostrain at zero electric field. However, the non-volatile switching of magnetization would be more promising for information storage or MERAM devices with lower energy consumption and the magnetic state can be further controlled by voltage impulse. In this work, we first study the equivalent of direct and converse magnetoelectric effects. The resonant direct and converse magnetoelectric (ME) effects have been investigated experimentally and theoretically in FeGa/PZT/FeGa sandwich laminate composites. The frequency responses of direct and converse magnetoelectric effects were measured under the same electric and magnetic bias conditions. The resonant direct ME effect (DME) occurs at an antiresonance frequency, while resonant converse ME effect (CME) occurs at a resonance frequency. The antiresonance and resonance frequencies have close but different values under identical bias conditions. The magnitudes of resonant effective ME coefficients for direct and converse ME effects are also not equal. Based on different sets of constitutive equations of the materials for DME and CME, a new model was developed to describe the frequency response of DME and CME in laminate composite, which was in good agreement with the experimental results. Inequivalence of resonant ME effects is ascribed to the different mechanical and electrical boundary conditions for DME and CME. On the other hand, similar bias E and H field dependence was observed for both DME and CME resonance frequencies and resonant coefficients, indicating consistency between DME and CME effects. In the study of the frequency response of DME and CME, the linear piezoelectric effect is used. However, this linear piezoelectric effect in converse magnetoelectric coupling would lead to "butter-fly" like magnetization vs. electric field curve which leads to a "volatile" behavior in magnetic memory system. In the presented study, a unique ferroelastic switching pathway in ferroelectric substrates is utilized to produce two distinct, reversible and stable lattice strain states which leads to the establish of two stable magnetization states of the ferromagnetic thin film. In this process, instead of complete 180° ferromagnetic domain switching, 71°/109° ferroelastic domain wall switching is involved, where the electric polarization is switching between in-plane and out-of-plane direction. A voltage impulse induced reversible bistable magnetization switching in FeGaB/lead zirconate titanate (PZT) multiferroic heterostructures at room temperature is first demonstrated. Two reversible and stable voltage-impulse induced mechanical strain states were obtained in the PZT by applying an electric field impulse with its amplitude smaller than the electric coercive field, which led to reversible voltage impulse induced bistable magnetization switching. Direct and converse magnetoelectric effects are carefully quantified.

  17. Observation of indium ion migration-induced resistive switching in Al/Mg{sub 0.5}Ca{sub 0.5}TiO{sub 3}/ITO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zong-Han; Wang, Yeong-Her, E-mail: yhw@ee.ncku.edu.tw

    2016-08-01

    Understanding switching mechanisms is very important for resistive random access memory (RRAM) applications. This letter reports an investigation of Al/Mg{sub 0.5}Ca{sub 0.5}TiO{sub 3} (MCTO)/ITO RRAM, which exhibits bipolar resistive switching behavior. The filaments that connect Al electrodes with indium tin oxide electrodes across the MCTO layer at a low-resistance state are identified. The filaments composed of In{sub 2}O{sub 3} crystals are observed through energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, nanobeam diffraction, and comparisons of Joint Committee on Powder Diffraction Standards (JCPDS) cards. Finally, a switching mechanism resulting from an electrical field induced by In{sup 3+} ion migration is proposed.more » In{sup 3+} ion migration forms/ruptures the conductive filaments and sets/resets the RRAM device.« less

  18. Effect of thermal insulation on the electrical characteristics of NbOx threshold switches

    NASA Astrophysics Data System (ADS)

    Wang, Ziwen; Kumar, Suhas; Wong, H.-S. Philip; Nishi, Yoshio

    2018-02-01

    Threshold switches based on niobium oxide (NbOx) are promising candidates as bidirectional selector devices in crossbar memory arrays and building blocks for neuromorphic computing. Here, it is experimentally demonstrated that the electrical characteristics of NbOx threshold switches can be tuned by engineering the thermal insulation. Increasing the thermal insulation by ˜10× is shown to produce ˜7× reduction in threshold current and ˜45% reduction in threshold voltage. The reduced threshold voltage leads to ˜5× reduction in half-selection leakage, which highlights the effectiveness of reducing half-selection leakage of NbOx selectors by engineering the thermal insulation. A thermal feedback model based on Poole-Frenkel conduction in NbOx can explain the experimental results very well, which also serves as a piece of strong evidence supporting the validity of the Poole-Frenkel based mechanism in NbOx threshold switches.

  19. Nanoparticle shuttle memory

    DOEpatents

    Zettl, Alex Karlwalter [Kensington, CA

    2012-03-06

    A device for storing data using nanoparticle shuttle memory having a nanotube. The nanotube has a first end and a second end. A first electrode is electrically connected to the first end of the nanotube. A second electrode is electrically connected to the second end of the nanotube. The nanotube has an enclosed nanoparticle shuttle. A switched voltage source is electrically connected to the first electrode and the second electrode, whereby a voltage may be controllably applied across the nanotube. A resistance meter is also connected to the first electrode and the second electrode, whereby the electrical resistance across the nanotube can be determined.

  20. Characterizing filamentary switching in resistive memories (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Busby, Yan; Pireaux, Jean-Jacques

    2015-09-01

    Characterizing filamentary switching in resistive memories For many organic, inorganic and hybrid memory devices the resistive switching mechanism is well known to rely on filament formation [1]. This implies that localized conductive paths are established between the two terminal electrodes during the forming step. This filaments sustain the current flow when the memory is in the low conductive state and they can be ruptured and possibly re-formed for more than hundreds of I-V cycles. The nature and morphology of filaments has been long time debated especially for organic memories. The filament size, density and formation mechanism have been very challenging to be characterized, and need appropriate experimental techniques. However, filaments in organic memories have been recently identified and characterized by cross-section transmission electron microscopy (TEM), conductive-AFM, AFM-tomography and through depth profile analysis combining Time-of-flight secondary ions mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS). In particular, 3D spectroscopic images obtained with ToF-SIMS give access for the first time to filament formation process and rupture mechanism. From these results, a clear picture of the filament(s) dynamics during memory operation can be drawn. In this contribution, recent results showing filaments in memories based on different structures and architectures will be discussed. The memories are based on insulating polymers (polystyrene [2] and poly methyl methacrylate [3]), conductive polymers/nanocomposites (polyera N1400 with metal NPs [4]), and small semiconducting molecules (Tris(8-hydroxyquinolinato)aluminium - Alq3 [5]). The results show that resistive switching clearly involves the inhomogeneous metal diffusion in the organic layer taking place during the top electrode deposition and during memory operation. This may be of great relevance in many other organic electronics applications. REFERENCES [1] S. Nau, S. Sax, E.J.W. List-Kratochvil, Adv. Mater. 2014, 26, 2508-2513. [2] Y. Busby, N. Crespo-Monteiro, M. Girleanu, M. Brinkmann, O. Ersen, J.-J. Pireaux, Organic Electronics 2015, 16, 40-45. [3] C. Wolf, S. Nau, S. Sax, Y. Busby, J.-J. Pireaux, E.J.W. List-Kratochvil (under submission). [4] G. Casula, P. Cosseddu, Y. Busby, J.-J. Pireaux, M. Rosowski, B. Tkacz Szczesna, K. Soliwoda, G. Celichowski, J. Grobelny, J. Novák, R. Banerjee, F. Schreiber, A. Bonfiglio, Organic Electronics, 2015, 18, 17-23. [5] Y. Busby, S. Nau, S. Sax, E.J.W. List- Kratochvil, J. Novak, R. Banerjee, F. Schreiber, J.-J. Pireaux, (under submission)

Top