Sample records for sym minisuperspace approximation

  1. On mini-superspace limit of boundary three-point function in Liouville field theory

    NASA Astrophysics Data System (ADS)

    Apresyan, Elena; Sarkissian, Gor

    2017-12-01

    We study the mini-superspace semiclassical limit of the boundary three-point function in the Liouville field theory. We compute also matrix elements for the Morse potential quantum mechanics. An exact agreement between the former and the latter is found. We show that both of them are given by the generalized hypergeometric functions.

  2. Induction of host defences by Rhizobium during ineffective nodulation of pea (Pisum sativum L.) carrying symbiotically defective mutations sym40 (PsEFD), sym33 (PsIPD3/PsCYCLOPS) and sym42.

    PubMed

    Ivanova, Kira A; Tsyganova, Anna V; Brewin, Nicholas J; Tikhonovich, Igor A; Tsyganov, Viktor E

    2015-11-01

    Rhizobia are able to establish a beneficial interaction with legumes by forming a new organ, called the symbiotic root nodule, which is a unique ecological niche for rhizobial nitrogen fixation. Rhizobial infection has many similarities with pathogenic infection and induction of defence responses accompanies both interactions, but defence responses are induced to a lesser extent during rhizobial infection. However, strong defence responses may result from incompatible interactions between legumes and rhizobia due to a mutation in either macro- or microsymbiont. The aim of this research was to analyse different plant defence reactions in response to Rhizobium infection for several pea (Pisum sativum) mutants that result in ineffective symbiosis. Pea mutants were examined by histochemical and immunocytochemical analyses, light, fluorescence and transmission electron microscopy and quantitative real-time PCR gene expression analysis. It was observed that mutations in pea symbiotic genes sym33 (PsIPD3/PsCYCLOPS encoding a transcriptional factor) and sym40 (PsEFD encoding a putative negative regulator of the cytokinin response) led to suberin depositions in ineffective nodules, and in the sym42 there were callose depositions in infection thread (IT) and host cell walls. The increase in deposition of unesterified pectin in IT walls was observed for mutants in the sym33 and sym42; for mutant in the sym42, unesterified pectin was also found around degrading bacteroids. In mutants in the genes sym33 and sym40, an increase in the expression level of a gene encoding peroxidase was observed. In the genes sym40 and sym42, an increase in the expression levels of genes encoding a marker of hypersensitive reaction and PR10 protein was demonstrated. Thus, a range of plant defence responses like suberisation, callose and unesterified pectin deposition as well as activation of defence genes can be triggered by different pea single mutations that cause perception of an otherwise

  3. SymPy: Symbolic computing in python

    DOE PAGES

    Meurer, Aaron; Smith, Christopher P.; Paprocki, Mateusz; ...

    2017-01-02

    Here, SymPy is a full featured computer algebra system (CAS) written in the Python programming language. It is open source, being licensed under the extremely permissive 3-clause BSD license. SymPy was started by Ondrej Certik in 2005, and it has since grown into a large open source project, with over 500 contributors.

  4. Applications of Subleading-Color Amplitudes in N = 4 SYM Theory

    DOE PAGES

    Naculich, Stephen G.; Nastase, Horatiu; Schnitzer, Howard J.

    2011-01-01

    A numore » mber of features and applications of subleading-color amplitudes of N = 4 SYM theory are reviewed. Particular attention is given to the IR divergences of the subleading-color amplitudes, the relationships of N = 4 SYM theory to N = 8 supergravity, and to geometric interpretations of one-loop subleading-color and N k MHV amplitudes of N = 4 SYM theory.« less

  5. SymB and SymC, two membrane associated proteins, are required for Epichloë festucae hyphal cell-cell fusion and maintenance of a mutualistic interaction with Lolium perenne.

    PubMed

    Green, Kimberly A; Becker, Yvonne; Tanaka, Aiko; Takemoto, Daigo; Fitzsimons, Helen L; Seiler, Stephan; Lalucque, Hervé; Silar, Philippe; Scott, Barry

    2017-02-01

    Cell-cell fusion in fungi is required for colony formation, nutrient transfer and signal transduction. Disruption of genes required for hyphal fusion in Epichloë festucae, a mutualistic symbiont of Lolium grasses, severely disrupts the host interaction phenotype. They examined whether symB and symC, the E. festucae homologs of Podospora anserina self-signaling genes IDC2 and IDC3, are required for E. festucae hyphal fusion and host symbiosis. Deletion mutants of these genes were defective in hyphal cell fusion, formed intra-hyphal hyphae, and had enhanced conidiation. SymB-GFP and SymC-mRFP1 localize to plasma membrane, septa and points of hyphal cell fusion. Plants infected with ΔsymB and ΔsymC strains were severely stunted. Hyphae of the mutants colonized vascular bundles, were more abundant than wild type in the intercellular spaces and formed intra-hyphal hyphae. Although these phenotypes are identical to those previously observed for cell wall integrity MAP kinase mutants no difference was observed in the basal level of MpkA phosphorylation or its cellular localization in the mutant backgrounds. Both genes contain binding sites for the transcription factor ProA. Collectively these results show that SymB and SymC are key components of a conserved signaling network for E. festucae to maintain a mutualistic symbiotic interaction within L. perenne. © 2016 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  6. Tunneling in quantum cosmology and holographic SYM theory

    NASA Astrophysics Data System (ADS)

    Ghoroku, Kazuo; Nakano, Yoshimasa; Tachibana, Motoi; Toyoda, Fumihiko

    2018-03-01

    We study the time evolution of the early Universe, which is developed by a cosmological constant Λ4 and supersymmetric Yang-Mills (SYM) fields in the Friedmann-Robertson-Walker space-time. The renormalized vacuum expectation value of the energy-momentum tensor of the SYM theory is obtained in a holographic way. It includes a radiation of the SYM field, parametrized as C . The evolution is controlled by this radiation C and the cosmological constant Λ4. For positive Λ4, an inflationary solution is obtained at late time. When C is added, the quantum mechanical situation at early time is fairly changed. Here we perform the early time analysis in terms of two different approaches, (i) the Wheeler-DeWitt equation and (ii) Lorentzian path integral with the Picard-Lefschetz method by introducing an effective action. The results of two methods are compared.

  7. The pea Sym37 receptor kinase gene controls infection-thread initiation and nodule development.

    PubMed

    Zhukov, Vladimir; Radutoiu, Simona; Madsen, Lene H; Rychagova, Tamara; Ovchinnikova, Evgenia; Borisov, Alex; Tikhonovich, Igor; Stougaard, Jens

    2008-12-01

    Phenotypic characterization of pea symbiotic mutants has provided a detailed description of the symbiosis with Rhizobium leguminosarum bv. viciae strains. We show here that two allelic non-nodulating pea mutants, RisNod4 and K24, are affected in the PsSym37 gene, encoding a LysM receptor kinase similar to Lotus japonicus NFR1 and Medicago truncatula LYK3. Phenotypic analysis of RisNod4 and K24 suggests a role for the SYM37 in regulation of infection-thread initiation and nodule development from cortical-cell division foci. We show that RisNod4 plants carrying an L to F substitution in the LysM1 domain display a restrictive symbiotic phenotype comparable to the PsSym2(A) lines that distinguish 'European' and 'Middle East' Rhizobium leguminosarum bv. viciae strains. RisNod4 mutants develop nodules only in the presence of a 'Middle East' Rhizobium strain producing O-acetylated Nod factors indicating the SYM37 involvement in Nod-factor recognition. Along with the PsSym37, a homologous LysM receptor kinase gene, PsK1, was isolated and characterized. We show that PsK1 and PsSym37 are genetically linked to each other and to the PsSym2 locus. Allelic complementation analyses and sequencing of the extracellular regions of PsSym37 and PsK1 in several 'European' and 'Afghan' pea cultivars point towards PsK1 as possible candidate for the elusive PsSym2 gene.

  8. NLO evolution of color dipoles in N=4 SYM

    DOE PAGES

    Chirilli, Giovanni A.; Balitsky, Ian

    2009-07-04

    Here, high-energy behavior of amplitudes in a gauge theory can be reformulated in terms of the evolution of Wilson-line operators. In the leading logarithmic approximation it is given by the conformally invariant BK equation for the evolution of color dipoles. In QCD, the next-to-leading order BK equation has both conformal and non-conformal parts, the latter providing the running of the coupling constant. To separate the conformally invariant effects from the running-coupling effects, we calculate the NLO evolution of the color dipoles in the conformalmore » $${\\cal N}$$=4 SYM theory. We define the "composite dipole operator" with the rapidity cutoff preserving conformal invariance.« less

  9. Sym004, a Novel EGFR Antibody Mixture, Can Overcome Acquired Resistance to Cetuximab1

    PubMed Central

    Iida, Mari; Brand, Toni M; Starr, Megan M; Li, Chunrong; Huppert, Evan J; Luthar, Neha; Pedersen, Mikkel W; Horak, Ivan D; Kragh, Michael; Wheeler, Deric L

    2013-01-01

    The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in a variety of human cancers. Cetuximab is an anti-EGFR monoclonal antibody that has been approved for head and neck and colorectal cancer treatment, but many patients treated with cetuximab don't respond or eventually acquire resistance. To determine how tumor cells acquire resistance to cetuximab, we previously developed a model of acquired resistance using the non-small cell lung cancer line NCI-H226. These cetuximab-resistant (CtxR) cells exhibit increased steady-state EGFR expression secondary to alterations in EGFR trafficking and degradation and, further, retained dependence on EGFR signaling for enhanced growth potential. Here, we examined Sym004, a novel mixture of antibodies directed against distinct epitopes on the extracellular domain of EGFR, as an alternative therapy for CtxR tumor cells. Sym004 treatment of CtxR clones resulted in rapid EGFR degradation, followed by robust inhibition of cell proliferation and down-regulation of several mitogen-activated protein kinase pathways. To determine whether Sym004 could have therapeutic benefit in vivo, we established de novo CtxR NCI-H226 mouse xenografts and subsequently treated CtxR tumors with Sym004. Sym004 treatment of mice harboring CtxR tumors resulted in growth delay compared to mice continued on cetuximab. Levels of total and phospho-EGFR were robustly decreased in CtxR tumors treated with Sym004. Immunohistochemical analysis of these Sym004-treated xenograft tumors further demonstrated decreased expression of Ki67, and phospho-rpS6, as well as a modest increase in cleaved caspase-3. These results indicate that Sym004 may be an effective targeted therapy for CtxR tumors. PMID:24204198

  10. Holographic cosmology and phase transitions of SYM theory

    NASA Astrophysics Data System (ADS)

    Ghoroku, Kazuo; Meyer, René; Toyoda, Fumihiko

    2017-10-01

    We study the time development of strongly coupled N =4 supersymmetric Yang Mills (SYM) theory on cosmological Friedmann-Robertson-Walker (FRW) backgrounds via the AdS/CFT correspondence. We implement the cosmological background as a boundary metric fulfilling the Friedmann equation with a four-dimensional cosmological constant and a dark radiation term. We analyze the dual bulk solution of the type IIB supergravity and find that the time dependence of the FRW background strongly influences the dynamical properties of the SYM theory. We in particular find a phase transition between a confined and a deconfined phase. We also argue that some cosmological solutions could be related to the inflationary scenario.

  11. Prediction of Sym-H index by NARX neural network from IMF and solar wind data

    NASA Astrophysics Data System (ADS)

    Cai, L.; Ma, S.-Y.; Liu, R.-S.; Schlegel, K.; Zhou, Y.-L.; Luehr, H.

    2009-04-01

    Similar to Dst, the Sym-H index is also an indicator of magnetic storm intensity, but having distinct advantage of higher time-resolution. In this study an artificial neural network (ANN) of Nonlinear Auto Regressive with eXogenous inputs (NARX) has been developed to predict for the first time Sym-H index from solar wind and IMF parameters. In total 73 great storm events during 1998 to 2006 are used, out of which 67 are selected to train the network and the other 6 samples including 2 super-storms for test. The newly developed NARX model shows much better capability than usual BP and Elman network in Sym-H prediction. When using IMF Bz, By and total B with a history length of 90 minutes along with solar wind proton density Np and velocity Vsw as the original external inputs of the ANN to predict Sym-H index one hour later, the cross-correlation between NARX network predicted and Kyoto observed Sym-H is 0.95 for the 6 test storms as a whole, even as high as 0.95 and 0.98 respectively for the two super-storms. This excellent performance of the NARX model can mainly be attributed to a feedback from the output neuron with a suitable length of about 120 min. to the external input. It is such a feedback that makes the ring current status properly brought into effect in the prediction of storm-time Sym-H index by our NARX network. Furthermore, different parameter combinations with different history length (70 to 120 min.) for IMF and solar wind data as external inputs are examined along with different hidden neuron number. It is found that the NARX network with 10 hidden units and with 100 min. length of Bz, Np and Vsw as external inputs provides the best results in Sym-H prediction. Besides, efforts have also been made to predict Sym-H longer time ahead, showing that the NARX network can predict Sym-H index 180 min. ahead with correlation coefficient of 0.94 between predicted and observed Sym-H and RMSE less than 19 nT for the 6 test samples.

  12. Parallel-SymD: A Parallel Approach to Detect Internal Symmetry in Protein Domains.

    PubMed

    Jha, Ashwani; Flurchick, K M; Bikdash, Marwan; Kc, Dukka B

    2016-01-01

    Internally symmetric proteins are proteins that have a symmetrical structure in their monomeric single-chain form. Around 10-15% of the protein domains can be regarded as having some sort of internal symmetry. In this regard, we previously published SymD (symmetry detection), an algorithm that determines whether a given protein structure has internal symmetry by attempting to align the protein to its own copy after the copy is circularly permuted by all possible numbers of residues. SymD has proven to be a useful algorithm to detect symmetry. In this paper, we present a new parallelized algorithm called Parallel-SymD for detecting symmetry of proteins on clusters of computers. The achieved speedup of the new Parallel-SymD algorithm scales well with the number of computing processors. Scaling is better for proteins with a larger number of residues. For a protein of 509 residues, a speedup of 63 was achieved on a parallel system with 100 processors.

  13. Parallel-SymD: A Parallel Approach to Detect Internal Symmetry in Protein Domains

    PubMed Central

    Jha, Ashwani; Flurchick, K. M.; Bikdash, Marwan

    2016-01-01

    Internally symmetric proteins are proteins that have a symmetrical structure in their monomeric single-chain form. Around 10–15% of the protein domains can be regarded as having some sort of internal symmetry. In this regard, we previously published SymD (symmetry detection), an algorithm that determines whether a given protein structure has internal symmetry by attempting to align the protein to its own copy after the copy is circularly permuted by all possible numbers of residues. SymD has proven to be a useful algorithm to detect symmetry. In this paper, we present a new parallelized algorithm called Parallel-SymD for detecting symmetry of proteins on clusters of computers. The achieved speedup of the new Parallel-SymD algorithm scales well with the number of computing processors. Scaling is better for proteins with a larger number of residues. For a protein of 509 residues, a speedup of 63 was achieved on a parallel system with 100 processors. PMID:27747230

  14. Isolation, phylogeny and evolution of the SymRK gene in the legume genus Lupinus L.

    PubMed

    Mahé, Frédéric; Markova, Dragomira; Pasquet, Rémy; Misset, Marie-Thérèse; Aïnouche, Abdelkader

    2011-07-01

    SymRK is one of the key genes involved in initial steps of legume symbiotic association with fungi (mycorrhization) and nitrogen-fixing bacteria (nodulation). A large portion of the sequence encoding the extracellular domain of SYMRK was obtained for 38 lupine accessions and 2 outgroups in order to characterize this region, to evaluate its phylogenetic utility, and to examine whether its molecular evolutionary pattern is correlated with rhizobial diversity and specificity in Lupinus. The data suggested that, in Lupinus, SymRK is a single copy gene that shows good phylogenetic potential. Accordingly, SymRK provided additional support to previous molecular phylogenies, and shed additional light on relationships within the Old World group of Lupinus, especially among the African species. Similar to results of other studies, analyses of SymRK sequences were unable to resolve placement of the Florida unifoliolate lineage, whose relationship was weakly supported to either the Old or the New World lupines. Our data are consistent with strong purifying selection operating on SymRK in Lupinus, preserving rather than diversifying its function. Thus, although SymRK was demonstrated to be a vital gene in the early stages of the root-bacterial symbiotic associations, no evidence from present analyses indicate that this gene is involved in changes in rhizobial specificity in Lupinus. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Evolution and Multifarious Horizontal Transfer of an Alternative Biosynthetic Pathway for the Alternative Polyamine sym-Homospermidine*♦

    PubMed Central

    Shaw, Frances L.; Elliott, Katherine A.; Kinch, Lisa N.; Fuell, Christine; Phillips, Margaret A.; Michael, Anthony J.

    2010-01-01

    Polyamines are small flexible organic polycations found in almost all cells. They likely existed in the last universal common ancestor of all extant life, and yet relatively little is understood about their biological function, especially in bacteria and archaea. Unlike eukaryotes, where the predominant polyamine is spermidine, bacteria may contain instead an alternative polyamine, sym-homospermidine. We demonstrate that homospermidine synthase (HSS) has evolved vertically, primarily in the α-Proteobacteria, but enzymatically active, diverse HSS orthologues have spread by horizontal gene transfer to other bacteria, bacteriophage, archaea, eukaryotes, and viruses. By expressing diverse HSS orthologues in Escherichia coli, we demonstrate in vivo the production of co-products diaminopropane and N1-aminobutylcadaverine, in addition to sym-homospermidine. We show that sym-homospermidine is required for normal growth of the α-proteobacterium Rhizobium leguminosarum. However, sym-homospermidine can be replaced, for growth restoration, by the structural analogues spermidine and sym-norspermidine, suggesting that the symmetrical or unsymmetrical form and carbon backbone length are not critical for polyamine function in growth. We found that the HSS enzyme evolved from the alternative spermidine biosynthetic pathway enzyme carboxyspermidine dehydrogenase. The structure of HSS is related to lysine metabolic enzymes, and HSS and carboxyspermidine dehydrogenase evolved from the aspartate family of pathways. Finally, we show that other bacterial phyla such as Cyanobacteria and some α-Proteobacteria synthesize sym-homospermidine by an HSS-independent pathway, very probably based on deoxyhypusine synthase orthologues, similar to the alternative homospermidine synthase found in some plants. Thus, bacteria can contain alternative biosynthetic pathways for both spermidine and sym-norspermidine and distinct alternative pathways for sym-homospermidine. PMID:20194510

  16. Functional analysis of duplicated Symbiosis Receptor Kinase (SymRK) genes during nodulation and mycorrhizal infection in soybean (Glycine max).

    PubMed

    Indrasumunar, Arief; Wilde, Julia; Hayashi, Satomi; Li, Dongxue; Gresshoff, Peter M

    2015-03-15

    Association between legumes and rhizobia results in the formation of root nodules, where symbiotic nitrogen fixation occurs. The early stages of this association involve a complex of signalling events between the host and microsymbiont. Several genes dealing with early signal transduction have been cloned, and one of them encodes the leucine-rich repeat (LRR) receptor kinase (SymRK; also termed NORK). The Symbiosis Receptor Kinase gene is required by legumes to establish a root endosymbiosis with Rhizobium bacteria as well as mycorrhizal fungi. Using degenerate primer and BAC sequencing, we cloned duplicated SymRK homeologues in soybean called GmSymRKα and GmSymRKβ. These duplicated genes have high similarity of nucleotide (96%) and amino acid sequence (95%). Sequence analysis predicted a malectin-like domain within the extracellular domain of both genes. Several putative cis-acting elements were found in promoter regions of GmSymRKα and GmSymRKβ, suggesting a participation in lateral root development, cell division and peribacteroid membrane formation. The mutant of SymRK genes is not available in soybean; therefore, to know the functions of these genes, RNA interference (RNAi) of these duplicated genes was performed. For this purpose, RNAi construct of each gene was generated and introduced into the soybean genome by Agrobacterium rhizogenes-mediated hairy root transformation. RNAi of GmSymRKβ gene resulted in an increased reduction of nodulation and mycorrhizal infection than RNAi of GmSymRKα, suggesting it has the major activity of the duplicated gene pair. The results from the important crop legume soybean confirm the joint phenotypic action of GmSymRK genes in both mycorrhizal and rhizobial infection seen in model legumes. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. High-Quality draft genome sequence of the Lotus spp. microsymbiont Mesorhizobium loti strain CJ3Sym

    DOE PAGES

    Reeve, Wayne; Sullivan, John; Ronson, Clive; ...

    2015-08-14

    Mesorhizobium loti strain CJ3Sym was isolated in 1998 following transfer of the integrative and conjugative element ICE Ml Sym R7A , also known as the R7A symbiosis island, in a laboratory mating from the donor M. loti strain R7A to a nonsymbiotic recipient Mesorhizobium strain CJ3. Strain CJ3 was originally isolated from a field site in the Rocklands range in New Zealand in 1994. CJ3Sym is an aerobic, Gram-negative, non-spore-forming rod. This report reveals the genome of M. loti strain CJ3Sym currently comprises 70 scaffolds totaling 7,563,725 bp. In conclusion, the high-quality draft genome is arranged in 70 scaffolds ofmore » 71 contigs, contains 7,331 protein-coding genes and 70 RNA-only encoding genes, and is part of the GEBA-RNB project proposal.« less

  18. High-Quality draft genome sequence of the Lotus spp. microsymbiont Mesorhizobium loti strain CJ3Sym

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeve, Wayne; Sullivan, John; Ronson, Clive

    Mesorhizobium loti strain CJ3Sym was isolated in 1998 following transfer of the integrative and conjugative element ICE Ml Sym R7A , also known as the R7A symbiosis island, in a laboratory mating from the donor M. loti strain R7A to a nonsymbiotic recipient Mesorhizobium strain CJ3. Strain CJ3 was originally isolated from a field site in the Rocklands range in New Zealand in 1994. CJ3Sym is an aerobic, Gram-negative, non-spore-forming rod. This report reveals the genome of M. loti strain CJ3Sym currently comprises 70 scaffolds totaling 7,563,725 bp. In conclusion, the high-quality draft genome is arranged in 70 scaffolds ofmore » 71 contigs, contains 7,331 protein-coding genes and 70 RNA-only encoding genes, and is part of the GEBA-RNB project proposal.« less

  19. Divergently overlapping cis-encoded antisense RNA regulating toxin-antitoxin systems from E. coli: hok/sok, ldr/rdl, symE/symR.

    PubMed

    Kawano, Mitsuoki

    2012-12-01

    Toxin-antitoxin (TA) systems are categorized into three classes based on the type of antitoxin. In type I TA systems, the antitoxin is a small antisense RNA that inhibits translation of small toxic proteins by binding to the corresponding mRNAs. Those type I TA systems were originally identified as plasmid stabilization modules rendering a post-segregational killing (PSK) effect on the host cells. The type I TA loci also exist on the Escherichia coli chromosome but their biological functions are less clear. Genetic organization and regulatory elements of hok/sok and ldr/rdl families are very similar and the toxins are predicted to contain a transmembrane domain, but otherwise share no detectable sequence similarity. This review will give an overview of the type I TA modules of E. coli K-12, especially hok/sok, ldr/rdl and SOS-inducible symE/symR systems, which are regulated by divergently overlapping cis-encoded antisense RNAs.

  20. C. elegans sym-1 is a downstream target of the hunchback-like-1 developmental timing transcription factor

    PubMed Central

    Niwa, Ryusuke; Hada, Kazumasa; Moliyama, Kouichi; Ohniwa, Ryosuke L.; Tan, Yi-Meng; Olsson-Carter, Katherine; Chi, Woo; Reinke, Valerie; Slack, Frank J.

    2010-01-01

    In the nematode Caenorhabditis elegans, the let-7 microRNA (miRNA) and its family members control the timing of key developmental events in part by directly regulating expression of hunchback-like-1 (hbl-1). C. elegans hbl-1 mutants display multiple developmental timing deficiencies, including cell cycle defects during larval development. While hbl-1 is predicted to encode a transcriptional regulator, downstream targets of HBL-1 have not been fully elucidated. Here we report using microarray analysis to uncover genes downstream of HBL-1. We established a transgenic strain that overexpresses hbl-1 under the control of a heat shock promoter. Heat shock-induced hbl-1 overexpression led to retarded hypodermal structures at the adult stage, opposite to the effect seen in loss of function (lf) hbl-1 mutants. The microarray screen identified numerous potential genes that are upregulated or downregulated by HBL-1, including sym-1, which encodes a leucine-rich repeat protein with a signal sequence. We found an increase in sym-1 transcription in the heat shock-induced hbl-1 overexpression strain, while loss of hbl-1 function caused a decrease in sym-1 expression levels. Furthermore, we found that sym-1(lf) modified the hypodermal abnormalities in hbl-1 mutants. Given that SYM-1 is a protein secreted from hypodermal cells to the surrounding cuticle, we propose that the adult-specific cuticular structures may be under the temporal control of HBL-1 through regulation of sym-1 transcription. PMID:19923914

  1. AdS/CFT beyond the N = 4 SYM paradigm

    NASA Astrophysics Data System (ADS)

    Pomoni, Elli

    In this thesis we present studies in the AdS/CFT correspondence that intend to push the present knowledge beyond the N = 4 super Yang-Mills (SYM) paradigm. The first part is concerned with the study of non-supersymmetric deformations of N = 4 SYM (which still are in the N = 4 universality class). For non-supersymmetric CFT's at Large N we explore the correspondence between string theory tachyons in the bulk and instabilities on the boundary effective action. The operators dual to AdS tachyons have anomalous dimensions that are purely complex numbers. We give a prescription for calculating the mass of the tachyon from the field theory side. Moreover, we apply this general dictionary to the case of intersecting D7 flavor branes in AdS 5 x S5 and obtain the mass of the open string tachyon that is dual to the instability in the mesonic sector of the theory. In the second part we present work aiming at finding string theory duals for gauge theories beyond the N = 4 universality class, i.e. theories that have genuinely less supersymmetry and unquenched flavor. Arguably the next simplest example after N = 4 SYM is N = 2 SU(Nc) SYM coupled to Nf = 2Nc fundamental hypermultiplets. The theory admits a Veneziano expansion of large Nc and large Nf, with Nf/Nc and lambda = g2Nc kept fixed. The topological structure of large N diagrams invites a general conjecture: the flavor-singlet sector of a gauge theory in the Veneziano limit is dual to a closed string theory. We present the one-loop Hamiltonian for the scalar sector of N = 2 superconformal QCD and study this integrability of the theory. Furthermore, we explore the chiral spectrum of the protected operators of the theory using the one-loop anomalous dimensions and, additionally, by studying the index of the theory. We finally search for possible AdS dual trying to match the chiral spectrum. We conclude that the string dual is a sub-critical background containing both an AdS 5 and an S1 factor.

  2. Active B12: a rapid, automated assay for holotranscobalamin on the Abbott AxSYM analyzer.

    PubMed

    Brady, Jeff; Wilson, Lesley; McGregor, Lynda; Valente, Edward; Orning, Lars

    2008-03-01

    Conventional tests for vitamin B(12) deficiency measure total serum vitamin B12, whereas only that portion of vitamin B12 carried by transcobalamin (holotranscobalamin) is metabolically active. Measurement of holotranscobalamin (holoTC) may be more diagnostically accurate for detecting B(12) deficiency that requires therapy. We developed an automated assay for holoTC that can be used on the Abbott AxSYM immunoassay analyzer. AxSYM Active B12 is a 2-step sandwich microparticle enzyme immunoassay. In step 1, a holoTC-specific antibody immobilized onto latex microparticles captures holoTC in samples of serum or plasma. In step 2, the captured holoTC is detected with a conjugate of alkaline phosphatase and antiTC antibody. Neither apoTC nor haptocorrin exhibited detectable cross-reactivity. The detection limit was < or = 0.1 pmol/L. Within-run and total imprecision (CV ranges) were 3.4%-5.1% and 6.3%-8.5%, respectively. Assay CVs were < 20% from at least 3 pmol/L to 107 pmol/L. With diluted serum samples, measured concentrations were 104%-114% of the expected values in the working range of the assay. No interference from bilirubin, hemoglobin, triglycerides, erythrocytes, rheumatoid factor, or total protein was detected at expected (abnormal) concentrations. A comparison of the AxSYM Active B12 assay with a commercial RIA for holoTC yielded the regression equation: AxSYM = 0.98RIA + 4.7 pmol/L (S(y x), 11.4 pmol/L; n = 204). Assay throughput was 45 tests/h. A 95% reference interval of 19-134 pmol/L holoTC was established with samples from 292 healthy individuals. The AxSYM Active B12 assay allows rapid, precise, sensitive, specific, and automated measurement of human holoTC in serum and plasma.

  3. Effect of the intra-layer potential distributions and spatial currents on the performance of graphene SymFETs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Mehdi; Sensale-Rodriguez, Berardi, E-mail: berardi.sensale@utah.edu

    2015-09-15

    In this paper, a two-dimensional (2-D) model for a graphene symmetric field effect transistor (SymFET), which considers (a) the intra-graphene layer potential distributions and (b) the internal current flows through the device, is presented and discussed. The local voltages along the graphene electrodes as well as the current-voltage characteristics of the device are numerically calculated based on a single-particle tunneling model. Our numerical results show that: (i) when the tunneling current is small, due to either a large tunneling thickness (≥ 2 atomic layers of BN) or a small coherence length, the voltage distributions along the graphene electrodes have almostmore » zero variations upon including these distributed effects, (ii) when the tunnel current is large, due to either a small tunneling thickness (∼ 1 atomic layer of BN) or due to a large coherence length, the local voltage distributions along the graphene electrodes become appreciable and the device behavior deviates from that predicted by a 1-D approximation. These effects, which are not captured in one-dimensional SymFET models, can provide a better understanding about the electron dynamics in the device and might indicate potential novel applications for this proposed device.« less

  4. Contributions of substorm injections to SYM-H depressions in the main phase of storms

    NASA Astrophysics Data System (ADS)

    He, Zhaohai; Dai, Lei; Wang, Chi; Duan, Suping; Zhang, Lingqian; Chen, Tao; Roth, I.

    2016-12-01

    Substorm injections bring energetic particles to the inner magnetosphere. But the role of the injected population in building up the storm time ring current is not well understood. By surveying Los Alamos National Laboratory geosynchronous data during 34 storm main phases, we show evidence that at least some substorm injections can contribute to substorm-time scale SYM-H/Dst depressions in the main phase of storms. For event studies, we analyze two typical events in which the main-phase SYM-H index exhibited stepwise depressions that are correlated with particle flux enhancement due to injections and with AL index. A statistical study is performed based on 95 storm time injection events. The flux increases of the injected population (50-400 keV) are found proportional to the sharp SYM-H depressions during the injection interval. By identifying dispersionless and dispersive injection signals, we estimate the azimuthal extent of the substorm injection. Statistical results show that the injection regions of these storm time substorms are characterized with an azimuthal extent larger than 06:00 magnetic local time. These results suggest that at least some substorm injections may mimic the large-scale enhanced convection and contribute to sharp decreases of Dst in the storm main phase.

  5. Comparison of Abbott AxSYM and Roche Elecsys 2010 for measurement of BNP and NT-proBNP.

    PubMed

    Chien, Tzu-I; Chen, Hui-Hou; Kao, Jau-Tsuen

    2006-07-15

    B-type natriuretic peptide (BNP) and N-terminal pro-brain natriuretic peptide (NT-proBNP) are small cardiac hormones released from the heart. They can be used as an important aid to diagnose congestive heart failure (CHF). We compared the performances of the Abbott AxSYM and Roche Elecsys 2010 for the measurement of BNP and NT-proBNP. The first method uses a microparticle enzyme-linked immunoassay, whereas the other uses chemiluminescent immunometric assay. The CVs using pooled sera ranged from 3.7% to 12.7% for the AxSYM and 0.9% to 2.2% for the Elecsys 2010. The Passing and Bablok regression was Elecsys 2010 NT-proBNP=7.23xAxSYM BNP+2.53. The BNP in EDTA plasma was more stable than in serum. The immunoreactivity difference of NT-proBNP in serum or EDTA plasma was within 10% when stored at 4 degrees Celsius or 25 degrees Celsius for 72 h. Receiver operating characteristic (ROC) curves were different for both assays, and the areas under the curves were 0.704 and 0.841 for the AxSYM and Elecsys 2010 method, respectively. Both assays were not entirely specific for heart failure. The precision and stability for NT-proBNP was better than for BNP in serum. It is important to use method-appropriate reference ranges (or cutoff) for the BNP and NT-proBNP, respectively, in the assessment of CHF.

  6. Emergent supersymmetry in the marginal deformations of $$\\mathcal{N}=4$$ SYM

    DOE PAGES

    Jin, Qingjun

    2016-10-24

    Here, we study the one loop renormalization group flow of the marginal deformations ofmore » $$\\mathcal{N}=4$$ SYM theory using the a-function. We found that in the planar limit some non-supersymmetric deformations flow to the supersymmetric infrared fixed points described by the Leigh-Strassler theory. This means supersymmetry emerges as a result of renormalization group flow.« less

  7. The Automation of Stochastization Algorithm with Use of SymPy Computer Algebra Library

    NASA Astrophysics Data System (ADS)

    Demidova, Anastasya; Gevorkyan, Migran; Kulyabov, Dmitry; Korolkova, Anna; Sevastianov, Leonid

    2018-02-01

    SymPy computer algebra library is used for automatic generation of ordinary and stochastic systems of differential equations from the schemes of kinetic interaction. Schemes of this type are used not only in chemical kinetics but also in biological, ecological and technical models. This paper describes the automatic generation algorithm with an emphasis on application details.

  8. Grassmannians for scattering amplitudes in 4d $$\\mathcal{N}=4 $$ SYM and 3d ABJM

    DOE PAGES

    Elvang, Henriette; Huang, Yu-tin; Keeler, Cynthia; ...

    2014-12-31

    Scattering amplitudes in 4d N=4 super Yang-Mills theory (SYM) can be described by Grassmannian contour integrals whose form depends on whether the external data is encoded in momentum space, twistor space, or momentum twistor space. Here, after a pedagogical review, we present a new, streamlined proof of the equivalence of the three integral formulations. A similar strategy allows us to derive a new Grassmannian integral for 3d N = 6 ABJM theory amplitudes in momentum twistor space: it is a contour integral in an orthogonal Grassmannian with the novel property that the internal metric depends on the external data. Themore » result can be viewed as a central step towards developing an amplituhedron formulation for ABJM amplitudes. Various properties of Grassmannian integrals are examined, including boundary properties, pole structure, and a homological interpretation of the global residue theorems for N = 4 SYM.« less

  9. Refined counting of necklaces in one-loop N=4 SYM

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryo

    2017-06-01

    We compute the grand partition function of N=4 SYM at one-loop in the SU(2) sector with general chemical potentials, extending the results of Pólya's theorem. We make use of finite group theory, applicable to all orders of perturbative 1 /N c expansion. We show that only the planar terms contribute to the grand partition function, which is therefore equal to the grand partition function of an ensemble of {XXX}_{1/2} spin chains. We discuss how Hagedorn temperature changes on the complex plane of chemical potentials.

  10. Easy fix for clinical laboratories for the false-positive defect with the Abbott AxSym total beta-hCG test.

    PubMed

    Cole, Laurence A; Khanlian, Sarah A

    2004-05-01

    False-positive hCG results can lead to erroneous diagnoses and needless chemotherapy and surgery. In the last 2 years, eight publications described cases involving false-positive hCG tests; all eight involved the AxSym test. We investigated the source of this abundance of cases and a simple fix that may be used by clinical laboratories. False-positive hCG was primarily identified by absence of hCG in urine and varying or negative hCG results in alternative tests. Seventeen false-positive serum samples in the AxSym test were evaluated undiluted and at twofold dilution with diluent containing excess goat serum or immunoglobulin. We identified 58 patients with false-positive hCG, 47 of 58 due to the Abbott AxSym total hCGbeta test (81%). Sixteen of 17 of these "false-positive" results (mean 100 mIU/ml) became undetectable when tested again after twofold dilution. A simple twofold dilution with this diluent containing excess goat serum or immunoglobulin completely protected 16 of 17 samples from patients having false-positive results. It is recommended that laboratories using this test use twofold dilution as a minimum to prevent false-positive results.

  11. Development and Clinical Evaluation of a Recombinant-Antigen-Based Cytomegalovirus Immunoglobulin M Automated Immunoassay Using the Abbott AxSYM Analyzer

    PubMed Central

    Maine, G. T.; Stricker, R.; Schuler, M.; Spesard, J.; Brojanac, S.; Iriarte, B.; Herwig, K.; Gramins, T.; Combs, B.; Wise, J.; Simmons, H.; Gram, T.; Lonze, J.; Ruzicki, D.; Byrne, B.; Clifton, J. D.; Chovan, L. E.; Wachta, D.; Holas, C.; Wang, D.; Wilson, T.; Tomazic-Allen, S.; Clements, M. A.; Wright, G. L.; Lazzarotto, T.; Ripalti, A.; Landini, M. P.

    2000-01-01

    A new microparticle enzyme immunoassay (MEIA), the Cytomegalovirus (CMV) Immunoglobulin M (IgM) test, was developed on the Abbott AxSYM analyzer. This test uses recombinant CMV antigens derived from portions of four structural and nonstructural proteins of CMV: pUL32 (pp150), pUL44 (pp52), pUL83 (pp65), and pUL80a (pp38). A total of 1,608 specimens from random volunteer blood donors (n = 300), pregnant women (n = 1,118), transplant recipients (n = 6), and patients with various clinical conditions and disease states (n = 184) were tested during development and evaluation of this new assay. In a preliminary clinical evaluation we tested specimens collected prospectively from pregnant women (n = 799) and selected CMV IgM-positive archived specimens from pregnant women (n = 39). The results from the new CMV IgM immunoassay were compared to the results of a consensus interpretation of the results obtained with three commercial CMV IgM immunoassays. The results for specimens with discordant results were resolved by a CMV IgM immunoblot assay. The relative sensitivity, specificity, and agreement for the AxSYM CMV IgM assay were 94.29, 96.28, and 96.19%, respectively, and the resolved sensitivity, specificity, and agreement were 95.83, 97.47, and 97.37%, respectively. We also tested serial specimens from women who experienced seroconversion or a recent CMV infection during gestation (n = 17) and potentially cross-reactive specimens negative for CMV IgM antibody by the consensus tests (n = 184). The AxSYM CMV IgM assay was very sensitive for the detection of CMV IgM during primary CMV infection, as shown by the detection of CMV IgM at the same time as or just prior to the detection of CMV IgG. Specimens from individuals with lupus (n = 16) or parvovirus B19 infection (n = 6) or specimens containing hyper IgM (n = 9), hyper IgG (n = 8), or rheumatoid factor (n = 55) did not cross-react with the AxSYM assay. One specimen each from individuals infected with Epstein-Barr virus

  12. SymPix: A Spherical Grid for Efficient Sampling of Rotationally Invariant Operators

    NASA Astrophysics Data System (ADS)

    Seljebotn, D. S.; Eriksen, H. K.

    2016-02-01

    We present SymPix, a special-purpose spherical grid optimized for efficiently sampling rotationally invariant linear operators. This grid is conceptually similar to the Gauss-Legendre (GL) grid, aligning sample points with iso-latitude rings located on Legendre polynomial zeros. Unlike the GL grid, however, the number of grid points per ring varies as a function of latitude, avoiding expensive oversampling near the poles and ensuring nearly equal sky area per grid point. The ratio between the number of grid points in two neighboring rings is required to be a low-order rational number (3, 2, 1, 4/3, 5/4, or 6/5) to maintain a high degree of symmetries. Our main motivation for this grid is to solve linear systems using multi-grid methods, and to construct efficient preconditioners through pixel-space sampling of the linear operator in question. As a benchmark and representative example, we compute a preconditioner for a linear system that involves the operator \\widehat{{\\boldsymbol{D}}}+{\\widehat{{\\boldsymbol{B}}}}T{{\\boldsymbol{N}}}-1\\widehat{{\\boldsymbol{B}}}, where \\widehat{{\\boldsymbol{B}}} and \\widehat{{\\boldsymbol{D}}} may be described as both local and rotationally invariant operators, and {\\boldsymbol{N}} is diagonal in the pixel domain. For a bandwidth limit of {{\\ell }}{max} = 3000, we find that our new SymPix implementation yields average speed-ups of 360 and 23 for {\\widehat{{\\boldsymbol{B}}}}T{{\\boldsymbol{N}}}-1\\widehat{{\\boldsymbol{B}}} and \\widehat{{\\boldsymbol{D}}}, respectively, compared with the previous state-of-the-art implementation.

  13. SymDex: increasing the efficiency of chemical fingerprint similarity searches for comparing large chemical libraries by using query set indexing.

    PubMed

    Tai, David; Fang, Jianwen

    2012-08-27

    The large sizes of today's chemical databases require efficient algorithms to perform similarity searches. It can be very time consuming to compare two large chemical databases. This paper seeks to build upon existing research efforts by describing a novel strategy for accelerating existing search algorithms for comparing large chemical collections. The quest for efficiency has focused on developing better indexing algorithms by creating heuristics for searching individual chemical against a chemical library by detecting and eliminating needless similarity calculations. For comparing two chemical collections, these algorithms simply execute searches for each chemical in the query set sequentially. The strategy presented in this paper achieves a speedup upon these algorithms by indexing the set of all query chemicals so redundant calculations that arise in the case of sequential searches are eliminated. We implement this novel algorithm by developing a similarity search program called Symmetric inDexing or SymDex. SymDex shows over a 232% maximum speedup compared to the state-of-the-art single query search algorithm over real data for various fingerprint lengths. Considerable speedup is even seen for batch searches where query set sizes are relatively small compared to typical database sizes. To the best of our knowledge, SymDex is the first search algorithm designed specifically for comparing chemical libraries. It can be adapted to most, if not all, existing indexing algorithms and shows potential for accelerating future similarity search algorithms for comparing chemical databases.

  14. The use and reliability of SymNose for quantitative measurement of the nose and lip in unilateral cleft lip and palate patients.

    PubMed

    Mosmuller, David; Tan, Robin; Mulder, Frans; Bachour, Yara; de Vet, Henrica; Don Griot, Peter

    2016-10-01

    It is essential to have a reliable assessment method in order to compare the results of cleft lip and palate surgery. In this study the computer-based program SymNose, a method for quantitative assessment of the nose and lip, will be assessed on usability and reliability. The symmetry of the nose and lip was measured twice in 50 six-year-old complete and incomplete unilateral cleft lip and palate patients by four observers. For the frontal view the asymmetry level of the nose and upper lip were evaluated and for the basal view the asymmetry level of the nose and nostrils were evaluated. A mean inter-observer reliability when tracing each image once or twice was 0.70 and 0.75, respectively. Tracing the photographs with 2 observers and 4 observers gave a mean inter-observer score of 0.86 and 0.92, respectively. The mean intra-observer reliability varied between 0.80 and 0.84. SymNose is a practical and reliable tool for the retrospective assessment of large caseloads of 2D photographs of cleft patients for research purposes. Moderate to high single inter-observer reliability was found. For future research with SymNose reliable outcomes can be achieved by using the average outcomes of single tracings of two observers. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  15. 'Ca. Liberibacter asiaticus' proteins orthologous with pSymA-encoded proteins of Sinorhizobium meliloti: hypothetical roles in plant host interation

    USDA-ARS?s Scientific Manuscript database

    A nitrogen-fixing alfalfa-nodulating microsymbiont, Sinorhizobium meliloti, has a genome consisting of a 3.5 Mbp circular chromosome and two megaplasmids totaling 3.0 Mbp, one a 1.3 Mbp pSymA carrying nonessential ‘accessory’ genes including nif, nod and others involved in plant interaction. Predict...

  16. Condensation cyclization reactions of electron deficient aromatics. 4: Tricyclic nitropropene nitronates from the reaction of phloroglucinol and cycloalkanones with sym-trinitrobenzene

    NASA Technical Reports Server (NTRS)

    Strauss, M. J.; Taylor, S. P. B.; Shindo, H.

    1972-01-01

    Interesting similarities have been shown between the reactions of sym-trinitrobenzene with cycloalkanones, and with phloroglucinol. Previously unsuspected common intermediates have been shown to intervene. The structurally similar products in each case are tricyclic nitropropene nitronates. Protonation of these yields the corresponding nitronic acids in certain instances.

  17. Performance analysis for wireless networks: an analytical approach by multifarious Sym Teredo.

    PubMed

    Punithavathani, D Shalini; Radley, Sheryl

    2014-01-01

    IPv4-IPv6 transition rolls out numerous challenges to the world of Internet as the Internet is drifting from IPv4 to IPv6. IETF recommends few transition techniques which includes dual stack and translation and tunneling. By means of tunneling the IPv6 packets over IPv4 UDP, Teredo maintains IPv4/IPv6 dual stack node in isolated IPv4 networks behindhand network address translation (NAT). However, the proposed tunneling protocol works with the symmetric and asymmetric NATs. In order to make a Teredo support several symmetric NATs along with several asymmetric NATs, we propose multifarious Sym Teredo (MTS), which is an extension of Teredo with a capability of navigating through several symmetric NATs. The work preserves the Teredo architecture and also offers a backward compatibility with the original Teredo protocol.

  18. Performance Analysis for Wireless Networks: An Analytical Approach by Multifarious Sym Teredo

    PubMed Central

    Punithavathani, D. Shalini; Radley, Sheryl

    2014-01-01

    IPv4-IPv6 transition rolls out numerous challenges to the world of Internet as the Internet is drifting from IPv4 to IPv6. IETF recommends few transition techniques which includes dual stack and translation and tunneling. By means of tunneling the IPv6 packets over IPv4 UDP, Teredo maintains IPv4/IPv6 dual stack node in isolated IPv4 networks behindhand network address translation (NAT). However, the proposed tunneling protocol works with the symmetric and asymmetric NATs. In order to make a Teredo support several symmetric NATs along with several asymmetric NATs, we propose multifarious Sym Teredo (MTS), which is an extension of Teredo with a capability of navigating through several symmetric NATs. The work preserves the Teredo architecture and also offers a backward compatibility with the original Teredo protocol. PMID:25506611

  19. Ne matrix spectra of the sym-C6Br3F3+ radical cation

    USGS Publications Warehouse

    Bondybey, V.E.; Sears, T.J.; Miller, T.A.; Vaughn, C.; English, J.H.; Shiley, R.S.

    1981-01-01

    The electronic absorption and laser excited, wavelength resolved fluorescence spectra of the title cation have been observed in solid Ne matrix and vibrationally analysed. The vibrational structure of the excited B2A2??? state shows close similarity to the parent compound. The X2E??? ground state structure is strongly perturbed and irregular owing to a large Jahn-Teller distortion. The data are analysed in terms of a recently developed, sophisticated multimode Jahn-Teller theoretical model. We have generated the sym-C6Br3F3+ cations in solid Ne matrix and obtained their wavelength resolved emission and absorption spectra. T ground electronic X2E??? state exhibits an irregular and strongly perturbed vibrational structure, which can be successfully modeled using sophisticated multimode Jahn-Teller theory. ?? 1981.

  20. Relationships of storm-time changes in thermospheric mass density with solar wind/IMF parameters and ring current index of Sym-H

    NASA Astrophysics Data System (ADS)

    Zhou, Yunliang; Ma, S. Y.; Xiong, Chao; Luehr, Hermann

    The total air mass densities at about 500 km altitude are derived using super-STAR accelerom-eter measurements onboard GRACE satellites for 25 great magnetic storms with minimum Dst less than 100 nT during 2002 to 2006 years. Taking NRLMSISE-00 model-predicted densities without active ap index input as a reference baseline of quiet-time mass density, the storm-time changes in upper thermospheric mass densities are obtained by subtraction for all the storm events and sorted into different grids of latitude by local time sector. The relationships of the storm-time density changes with various interplanetary parameters and magnetospheric ring current index of Sym-H are statistically investigated. The parameters include Akasofu energy coupling function, the merging electric field Em, the magnitude of IMF component in the GSM y-z plane etc. as calculated from OMNI data at 1 AU. It is found that the storm-time changes in the upper thermospheric mass density have the best linear correlation with the Sym-H index in general, showing nearly zero time delay at low-latitudes and a little time ahead at high-latitudes for most cases. Unexpectedly, the magnitude of IMF component in the y-z plane, Byz, shows correlation with storm-time mass density changes better and closer than Akasofu function and even Em. And, the mass density changes lag behind Byz about 1-4 hours for most cases at low-latitudes. The correlations considered above are local time dependent, showing the lowest at dusk sectors. For the largest superstorm of November 2003, the changes in mass density are correlated very closely with Byz, Em, and Sym-H index, showing correlation coefficients averaged over all latitudes in noon sector as high as 0.93, 0.91 and 0.90 separately. The physical factors controlling the lag times between the mass density changes at mid-low-latitudes and the interplanetary parameter variations are also analyzed. The results in this study may pro-vide useful suggestions for establishing

  1. The use of SymNose for quantitative assessment of lip symmetry following repair of complete bilateral cleft lip and palate.

    PubMed

    Russell, James H B; Kiddy, Harriet C; Mercer, Nigel S

    2014-07-01

    The SymNose computer program has been proposed as an objective method for the quantitative assessment of lip symmetry following unilateral cleft lip repair. This study aims to demonstrate the use of SymNose in patients with complete bilateral cleft lip and palate (BCLP), a group previously excluded from computer-based analysis. A retrospective cohort study compared several parameters of lip symmetry between BCLP cases and non-cleft controls. 15 BCLP cases aged 10 (±1 year) who had undergone primary repair were recruited from the patient database at the South West Cleft Unit, Frenchay Hospital. Frontal facial photographs were selected for measurement. 15 age-matched controls were recruited from a local school. Lip symmetry was expressed as: percentage mismatch of left vermillion border and upper lip area over the right, horizontal lip tilt and lateral deviation of the lip. A significant increase in lip asymmetry was found in the BCLP group expressed as upper vermillion border mismatch across computer-defined and user-defined midlines (mean difference was 16.4% (p < 0.01) and 17.5% (p < 0.01) respectively). The results suggest that a significant degree of lip asymmetry remains in BCLP patients even after primary repair. This challenges previous assumptions that those with bilateral defects would be relatively symmetrical. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  2. The contribution of scalars to N = 4 SYM amplitudes II: Young tableaux, asymptotic factorisation and strong coupling

    NASA Astrophysics Data System (ADS)

    Bonini, Alfredo; Fioravanti, Davide; Piscaglia, Simone; Rossi, Marco

    2018-06-01

    We disentangle the contribution of scalars to the OPE series of null hexagonal Wilson loops/MHV gluon scattering amplitudes in multicolour N = 4 SYM. In specific, we develop a systematic computation of the SU (4) matrix part of the Wilson loop by means of Young tableaux (with several examples). Then, we use a peculiar factorisation property (when a group of rapidities becomes large) to deduce an explicit polar form. Furthermore, we emphasise the advantages of expanding the logarithm of the Wilson loop in terms of 'connected functions' as we apply this procedure to find an explicit strong coupling expansion (definitively proving that the leading order can prevail on the classical AdS5 string contribution).

  3. AFLOW-SYM: platform for the complete, automatic and self-consistent symmetry analysis of crystals.

    PubMed

    Hicks, David; Oses, Corey; Gossett, Eric; Gomez, Geena; Taylor, Richard H; Toher, Cormac; Mehl, Michael J; Levy, Ohad; Curtarolo, Stefano

    2018-05-01

    Determination of the symmetry profile of structures is a persistent challenge in materials science. Results often vary amongst standard packages, hindering autonomous materials development by requiring continuous user attention and educated guesses. This article presents a robust procedure for evaluating the complete suite of symmetry properties, featuring various representations for the point, factor and space groups, site symmetries and Wyckoff positions. The protocol determines a system-specific mapping tolerance that yields symmetry operations entirely commensurate with fundamental crystallographic principles. The self-consistent tolerance characterizes the effective spatial resolution of the reported atomic positions. The approach is compared with the most used programs and is successfully validated against the space-group information provided for over 54 000 entries in the Inorganic Crystal Structure Database (ICSD). Subsequently, a complete symmetry analysis is applied to all 1.7+ million entries of the AFLOW data repository. The AFLOW-SYM package has been implemented in, and made available for, public use through the automated ab initio framework AFLOW.

  4. Integrands for QCD rational terms and {N} = {4} SYM from massive CSW rules

    NASA Astrophysics Data System (ADS)

    Elvang, Henriette; Freedman, Daniel Z.; Kiermaier, Michael

    2012-06-01

    We use massive CSW rules to derive explicit compact expressions for integrands of rational terms in QCD with any number of external legs. Specifically, we present all- n integrands for the one-loop all-plus and one-minus gluon amplitudes in QCD. We extract the finite part of spurious external-bubble contributions systematically; this is crucial for the application of integrand-level CSW rules in theories without supersymmetry. Our approach yields integrands that are independent of the choice of CSW reference spinor even before integration. Furthermore, we present a recursive derivation of the recently proposed massive CSW-style vertex expansion for massive tree amplitudes and loop integrands on the Coulomb-branch of {N} = {4} SYM. The derivation requires a careful study of boundary terms in all-line shift recursion relations, and provides a rigorous (albeit indirect) proof of the recently proposed construction of massive amplitudes from soft-limits of massless on-shell amplitudes. We show that the massive vertex expansion manifestly preserves all holomorphic and half of the anti-holomorphic supercharges, diagram-by-diagram, even off-shell.

  5. Multi-loop positivity of the planar $$ \\mathcal{N} $$ = 4 SYM six-point amplitude

    DOE PAGES

    Dixon, Lance J.; von Hippel, Matt; McLeod, Andrew J.; ...

    2017-02-22

    We study the six-point NMHV ratio function in planarmore » $$ \\mathcal{N} $$ = 4 SYM theory in the context of positive geometry. The Amplituhedron construction of the integrand for the amplitudes provides a kinematical region in which the integrand was observed to be positive. It is natural to conjecture that this property survives integration, i.e. that the final result for the ratio function is also positive in this region. Establishing such a result would imply that preserving positivity is a surprising property of the Minkowski contour of integration and it might indicate some deeper underlying structure. We find that the ratio function is positive everywhere we have tested it, including analytic results for special kinematical regions at one and two loops, as well as robust numerical evidence through five loops. There is also evidence for not just positivity, but monotonicity in a “radial” direction. We also investigate positivity of the MHV six-gluon amplitude. While the remainder function ceases to be positive at four loops, the BDS-like normalized MHV amplitude appears to be positive through five loops.« less

  6. Generalized Quantum Theory of Bianchi IX Cosmologies

    NASA Astrophysics Data System (ADS)

    Craig, David; Hartle, James

    2003-04-01

    We apply sum-over-histories generalized quantum theory to the closed homogeneous minisuperspace Bianchi IX cosmological model. We sketch how the probabilities in decoherent sets of alternative, coarse-grained histories of this model universe are calculated. We consider in particular, the probabilities for classical evolution in a suitable coarse-graining. For a restricted class of initial conditions and coarse grainings we exhibit the approximate decoherence of alternative histories in which the universe behaves classically and those in which it does not, illustrating the prediction that these universes will evolve in an approximately classical manner with a probability near unity.

  7. Chiral limit of N = 4 SYM and ABJM and integrable Feynman graphs

    NASA Astrophysics Data System (ADS)

    Caetano, João; Gürdoğan, Ömer; Kazakov, Vladimir

    2018-03-01

    We consider a special double scaling limit, recently introduced by two of the authors, combining weak coupling and large imaginary twist, for the γ-twisted N = 4 SYM theory. We also establish the analogous limit for ABJM theory. The resulting non-gauge chiral 4D and 3D theories of interacting scalars and fermions are integrable in the planar limit. In spite of the breakdown of conformality by double-trace interactions, most of the correlators for local operators of these theories are conformal, with non-trivial anomalous dimensions defined by specific, integrable Feynman diagrams. We discuss the details of this diagrammatics. We construct the doubly-scaled asymptotic Bethe ansatz (ABA) equations for multi-magnon states in these theories. Each entry of the mixing matrix of local conformal operators in the simplest of these theories — the bi-scalar model in 4D and tri-scalar model in 3D — is given by a single Feynman diagram at any given loop order. The related diagrams are in principle computable, up to a few scheme dependent constants, by integrability methods (quantum spectral curve or ABA). These constants should be fixed from direct computations of a few simplest graphs. This integrability-based method is advocated to be able to provide information about some high loop order graphs which are hardly computable by other known methods. We exemplify our approach with specific five-loop graphs.

  8. Exact correlators on the Wilson loop in N=4 SYM: localization, defect CFT, and integrability

    NASA Astrophysics Data System (ADS)

    Giombi, Simone; Komatsu, Shota

    2018-05-01

    We compute a set of correlation functions of operator insertions on the 1 /8 BPS Wilson loop in N=4 SYM by employing supersymmetric localization, OPE and the Gram-Schmidt orthogonalization. These correlators exhibit a simple determinant structure, are position-independent and form a topological subsector, but depend nontrivially on the 't Hooft coupling and the rank of the gauge group. When applied to the 1 /2 BPS circular (or straight) Wilson loop, our results provide an infinite family of exact defect CFT data, including the structure constants of protected defect primaries of arbitrary length inserted on the loop. At strong coupling, we show precise agreement with a direct calculation using perturbation theory around the AdS2 string worldsheet. We also explain the connection of our results to the "generalized Bremsstrahlung functions" previously computed from integrability techniques, reproducing the known results in the planar limit as well as obtaining their finite N generalization. Furthermore, we show that the correlators at large N can be recast as simple integrals of products of polynomials (known as Q-functions) that appear in the Quantum Spectral Curve approach. This suggests an interesting interplay between localization, defect CFT and integrability.

  9. A piece of cake: the ground-state energies in γ i -deformed = 4 SYM theory at leading wrapping order

    NASA Astrophysics Data System (ADS)

    Fokken, Jan; Sieg, Christoph; Wilhelm, Matthias

    2014-09-01

    In the non-supersymmetric γi-deformed = 4 SYM theory, the scaling dimensions of the operators tr[ Z L ] composed of L scalar fields Z receive finite-size wrapping and prewrapping corrections in the 't Hooft limit. In this paper, we calculate these scaling dimensions to leading wrapping order directly from Feynman diagrams. For L ≥ 3, the result is proportional to the maximally transcendental `cake' integral. It matches with an earlier result obtained from the integrability-based Lüscher corrections, TBA and Y-system equations. At L = 2, where the integrability-based equations yield infinity, we find a finite rational result. This result is renormalization-scheme dependent due to the non-vanishing β-function of an induced quartic scalar double-trace coupling, on which we have reported earlier. This explicitly shows that conformal invariance is broken — even in the 't Hooft limit. [Figure not available: see fulltext.

  10. Non-supersymmetric Wilson loop in N = 4 SYM and defect 1d CFT

    NASA Astrophysics Data System (ADS)

    Beccaria, Matteo; Giombi, Simone; Tseytlin, Arkady A.

    2018-03-01

    Following Polchinski and Sully (arXiv:1104.5077), we consider a generalized Wilson loop operator containing a constant parameter ζ in front of the scalar coupling term, so that ζ = 0 corresponds to the standard Wilson loop, while ζ = 1 to the locally supersymmetric one. We compute the expectation value of this operator for circular loop as a function of ζ to second order in the planar weak coupling expansion in N = 4 SYM theory. We then explain the relation of the expansion near the two conformal points ζ = 0 and ζ = 1 to the correlators of scalar operators inserted on the loop. We also discuss the AdS5 × S 5 string 1-loop correction to the strong-coupling expansion of the standard circular Wilson loop, as well as its generalization to the case of mixed boundary conditions on the five-sphere coordinates, corresponding to general ζ. From the point of view of the defect CFT1 defined on the Wilson line, the ζ-dependent term can be seen as a perturbation driving a RG flow from the standard Wilson loop in the UV to the supersymmetric Wilson loop in the IR. Both at weak and strong coupling we find that the logarithm of the expectation value of the standard Wilson loop for the circular contour is larger than that of the supersymmetric one, which appears to be in agreement with the 1d analog of the F-theorem.

  11. Can noncommutative effects account for the present speed up of the cosmic expansion?

    NASA Astrophysics Data System (ADS)

    Obregon, Octavio; Quiros, Israel

    2011-08-01

    In this paper we investigate to which extent noncommutativity, an intrinsically quantum property, may influence the Friedmann-Robertson-Walker cosmological dynamics at late times/large scales. To our purpose it will be enough to explore the asymptotic properties of the cosmological model in the phase space. Our recipe to build noncommutativity into our model is based in the approach of Ref. and can be summarized in the following steps: i) the Hamiltonian is derived from the Einstein-Hilbert action (plus a self-interacting scalar field action) for a Friedmann-Robertson-Walker space-time with flat spatial sections, ii) canonical quantization recipe is applied, i.e., the mini-superspace variables are promoted to operators, and the WDW equation is written in terms of these variables, iii) noncommutativity in the mini-superspace is achieved through the replacement of the standard product of functions by the Moyal star product in the WDW equation, and, finally, iv) semiclassical cosmological equations are obtained by means of the WKB approximation applied to the (equivalent) modified Hamilton-Jacobi equation. We demonstrate, indeed, that noncommutative effects of the kind considered here can be those responsible for the present speed up of the cosmic expansion.

  12. On SYM theory and all order bulk singularity structures of BPS strings in type II theory

    NASA Astrophysics Data System (ADS)

    Hatefi, Ehsan

    2018-06-01

    The complete forms of the S-matrix elements of a transverse scalar field, two world volume gauge fields, and a Potential Cn-1 Ramond-Ramond (RR) form field are investigated. In order to find an infinite number of t , s , (t + s + u)-channel bulk singularity structures of this particular mixed open-closed amplitude, we employ all the conformal field theory techniques to , exploring all the entire correlation functions and all order α‧ contact interactions to these supersymmetric Yang-Mills (SYM) couplings. Singularity and contact term comparisons with the other symmetric analysis, and are also carried out in detail. Various couplings from pull-Back of branes, Myers terms and several generalized Bianchi identities should be taken into account to be able to reconstruct all order α‧ bulk singularities of type IIB (IIA) superstring theory. Finally, we make a comment on how to derive without any ambiguity all order α‧ contact terms of this S-matrix which carry momentum of RR in transverse directions.

  13. Hadronic density of states from string theory.

    PubMed

    Pando Zayas, Leopoldo A; Vaman, Diana

    2003-09-12

    We present an exact calculation of the finite temperature partition function for the hadronic states corresponding to a Penrose-Güven limit of the Maldacena-Nùñez embedding of the N=1 super Yang-Mills (SYM) into string theory. It is established that the theory exhibits a Hagedorn density of states. We propose a semiclassical string approximation to the finite temperature partition function for confining gauge theories admitting a supergravity dual, by performing an expansion around classical solutions characterized by temporal windings. This semiclassical approximation reveals a hadronic energy density of states of a Hagedorn type, with the coefficient determined by the gauge theory string tension as expected for confining theories. We argue that our proposal captures primarily information about states of pure N=1 SYM theory, given that this semiclassical approximation does not entail a projection onto states of large U(1) charge.

  14. Structure constant of twist-2 light-ray operators in the Regge limit

    DOE PAGES

    Balitsky, Ian; Kazakov, Vladimir; Sobko, Evgeny

    2016-03-11

    We compute the correlation function of three twist-2 operators in N = 4 SYM in the leading BFKL approximation at any N c. In this limit, the result is applicable to other gauge theories, including QCD.

  15. Harmonization of the Bayer ADVIA Centaur and Abbott AxSYM automated B-type natriuretic peptide assay in patients on hemodialysis.

    PubMed

    Barak, Mira; Weinberger, Ronit; Marcusohn, Jerom; Froom, Paul

    2005-01-01

    There are two fully automated high-throughput clinical instruments for brain natriuretic peptide (BNP) assays, the Bayer ADVIA Centaur assay, and the Abbott AxSYM assay. Although both recommend a cut-off value of 100 pg/mL, we are unaware of previous studies that have compared the unadjusted results of the two methods, required for proper evaluation of patients undergoing this test on different platforms. From 43 hemodialysis patients, 80 paired samples were collected by venipuncture into plastic evacuated tubes containing EDTA. The Bayer assay yielded lower values than the Abbott assay, with linear regression of 0.53 x Abbott assay (95% confidence interval, 0.50-0.56) being forced through 0, demonstrating an r(2)-value of 0.954. Regression for the Abbott assay was 1.79 x Bayer assay (95% CI, 1.69-1.89). The cut-off values for abnormal BNP results analyzed on the Abbott system are not identical to those on the Bayer system, and this needs to be taken into account when comparing studies on the clinical utility of these systems.

  16. The deviations of the Al6Li3Cu quasicrystal from icosahedral symmetry : a reminiscence of a cubic crystal

    NASA Astrophysics Data System (ADS)

    Donnadieu, Patricia

    1994-05-01

    The (Al6Li3Cu) (T2) quasicrystals are known to exhibit large deviations from the icosahedral symmetry. Series of electron diffraction patterns are used to investigate these imperfections in as-cast T, samples. A detailed analysis of the 5-fold and 3-fold symmetry diffraction patterns shows that they are compatible with the m3 point group instead of the m35 icosahedral group. This symmetry reduction is interprétéd as reminiscent of the cubic approximant phase (R-Al5Li3Cu) rather than of higher order approximant phases. This interpretation is supported by previous observations on crystal/quasicrystal phase transformation in the AlLiCu system. Les quasicristaux de phase T2(Al6Li3Cu) montrent d'importantes déviations à la symétrie icosaédrique. Ces imperfections sont mises en évidence par diffraction électronique dans des échantillons de phase T2 brut de coulée. Un examen détaillé des diagrammes de diffraction de symétrie d'ordre 3 et 5 révèle qu'ils sont compatibles avec le groupe ponctuel m3 au lieu du groupe de l'icosaèdre (m35). Cette réduction de symétrie est interprétée comme une réminiscence de la phase cubique approximante (R-Al5Li3Cu) et non l'apparition d'approximant d'ordre plus élevé. Cette interprétation est suggérée par des observations antérieures sur la transformation cristal/quasicristal dans le système AlLiCu.

  17. A comparison of full-spectrum and complex-symbol combining techniques for the Galileo S-band mission

    NASA Technical Reports Server (NTRS)

    Million, S.; Shah, B.; Hinedi, S.

    1994-01-01

    Full-spectrum combining (FSC) and complex-symbol combining (CSC) are two antenna-arraying techniques being considered for the Galileo spacecraft's upcoming encounter with Jupiter. This article describes the performance of these techniques in terms of symbol signal-to-noise ratio (SNR) degradation and symbol SNR loss. It is shown that both degradation and loss are approximately equal at low values of symbol SNR but diverge at high SNR values. For the Galileo S-band (2.2 to 2.3 GHz) mission, degradation provides a good estimate of performance as the symbol SNR is typically below -5 dB. For the following arrays - two 70-m antennas, one 70-m and one 34-m antenna, one 70-m and two 34-m antennas, and one 70-m and three 34-m antennas - it is shown that FSC has less degradation than CSC when the subcarrier and symbol window-loop bandwidth products are above 3.0, 10.0, 8.5, and 8.2 mHz at the symbol rate of 200 sym/sec, and above 1.2, 4.5, 4.0, and 3.5 mHz at a symbol rate of 400 sym/sec, respectively. Moreover, for an array of four 34-m antennas, FSC has less degradation than CSC when the subcarrier and symbol window-loop bandwidth products are above 0.32 mHz at the symbol rate of 50 sym/sec and above 0.8 mHz at the symbol rate of 25 sym/sec.

  18. Quantum transitions through cosmological singularities

    NASA Astrophysics Data System (ADS)

    Bramberger, Sebastian F.; Hertog, Thomas; Lehners, Jean-Luc; Vreys, Yannick

    2017-07-01

    In a quantum theory of cosmology spacetime behaves classically only in limited patches of the configuration space on which the wave function of the universe is defined. Quantum transitions can connect classical evolution in different patches. Working in the saddle point approximation and in minisuperspace we compute quantum transitions connecting inflationary histories across a de Sitter like throat or a singularity. This supplies probabilities for how an inflating universe, when evolved backwards, transitions and branches into an ensemble of histories on the opposite side of a quantum bounce. Generalising our analysis to scalar potentials with negative regions we identify saddle points describing a quantum transition between a classically contracting, crunching ekpyrotic phase and an inflationary universe.

  19. Quantum transitions through cosmological singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramberger, Sebastian F.; Lehners, Jean-Luc; Hertog, Thomas

    2017-07-01

    In a quantum theory of cosmology spacetime behaves classically only in limited patches of the configuration space on which the wave function of the universe is defined. Quantum transitions can connect classical evolution in different patches. Working in the saddle point approximation and in minisuperspace we compute quantum transitions connecting inflationary histories across a de Sitter like throat or a singularity. This supplies probabilities for how an inflating universe, when evolved backwards, transitions and branches into an ensemble of histories on the opposite side of a quantum bounce. Generalising our analysis to scalar potentials with negative regions we identify saddlemore » points describing a quantum transition between a classically contracting, crunching ekpyrotic phase and an inflationary universe.« less

  20. Discreteness of time in the evolution of the universe

    NASA Astrophysics Data System (ADS)

    Faizal, Mir; Ali, Ahmed Farag; Das, Saurya

    2017-04-01

    In this paper, we will first derive the Wheeler-DeWitt equation for the generalized geometry which occurs in M-theory. Then we will observe that M2-branes act as probes for this generalized geometry, and as M2-branes have an extended structure, their extended structure will limits the resolution to which this generalized geometry can be defined. We will demonstrate that this will deform the Wheeler-DeWitt equation for the generalized geometry. We analyze such a deformed Wheeler-DeWitt equation in the minisuperspace approximation, and observe that this deformation can be used as a solution to the problem of time. This is because this deformation gives rise to time crystals in our universe due to the spontaneous breaking of time reparametrization invariance.

  1. Approximate Dynamic Programming: Combining Regional and Local State Following Approximations.

    PubMed

    Deptula, Patryk; Rosenfeld, Joel A; Kamalapurkar, Rushikesh; Dixon, Warren E

    2018-06-01

    An infinite-horizon optimal regulation problem for a control-affine deterministic system is solved online using a local state following (StaF) kernel and a regional model-based reinforcement learning (R-MBRL) method to approximate the value function. Unlike traditional methods such as R-MBRL that aim to approximate the value function over a large compact set, the StaF kernel approach aims to approximate the value function in a local neighborhood of the state that travels within a compact set. In this paper, the value function is approximated using a state-dependent convex combination of the StaF-based and the R-MBRL-based approximations. As the state enters a neighborhood containing the origin, the value function transitions from being approximated by the StaF approach to the R-MBRL approach. Semiglobal uniformly ultimately bounded (SGUUB) convergence of the system states to the origin is established using a Lyapunov-based analysis. Simulation results are provided for two, three, six, and ten-state dynamical systems to demonstrate the scalability and performance of the developed method.

  2. Countably QC-Approximating Posets

    PubMed Central

    Mao, Xuxin; Xu, Luoshan

    2014-01-01

    As a generalization of countably C-approximating posets, the concept of countably QC-approximating posets is introduced. With the countably QC-approximating property, some characterizations of generalized completely distributive lattices and generalized countably approximating posets are given. The main results are as follows: (1) a complete lattice is generalized completely distributive if and only if it is countably QC-approximating and weakly generalized countably approximating; (2) a poset L having countably directed joins is generalized countably approximating if and only if the lattice σ c(L)op of all σ-Scott-closed subsets of L is weakly generalized countably approximating. PMID:25165730

  3. Modulation of spinal nociception by GluR5 kainate receptor ligands in acute and hyperalgesic states and the role of gabaergic mechanisms.

    PubMed

    Mascias, Paula; Scheede, Manuela; Bloms-Funke, Petra; Chizh, Boris

    2002-09-01

    GluR5 receptors modulate spinal nociception, however, their role in nociceptive hypersensitivity remains unclear. Using behavioural and electrophysiological approaches, we have investigated several GluR5 ligands in acute and hyperalgesic states. Furthermore, as the GABAergic system plays a role in GluR5 mediated effects in the brain, we also analysed the interaction between GluR5 agonists and GABA(A) antagonists in the spinal cord. In young rats in vivo, the GluR5 selective agonist ATPA was antinociceptive and antihyperalgesic in a model of inflammatory hyperalgesia (ED(50) approximately 4.6 and approximately 5.2 mg/kg, respectively), whereas the GluR5/GluR6 agonist SYM2081 was only antihyperalgesic. ATPA, but not SYM2081, was also able to inhibit nociceptive motoneurone responses in anaesthetised adult rats after intrathecal administration. In hemisected spinal cords in vitro, SYM2081 was inactive, whereas ATPA and another GluR5 agonist, (S)-5-iodowillardiine, inhibited nociceptive reflexes (EC(50) 1.1+/-0.4 micro M and 0.36+/-0.05 micro M, respectively). Both GluR5 agonists also inhibited motoneurone responses to repetitive dorsal root stimulation and their cumulative depolarisation, a correlate of wind-up. The GABA(A) antagonists bicuculline (10 micro M) and SR95531 (1 micro M) enhanced polysynaptic responses to single stimuli but abolished the cumulative depolarisation. Both bicuculline and SR95531 significantly attenuated the inhibition of nociceptive responses by 1 micro M ATPA (by approximately 50%). We conclude that selective GluR5 kainate receptor activation inhibits spinal nociception and its sensitisation caused by ongoing peripheral nociceptive drive. GABA(A) receptors are involved in tonic inhibition of segmental responses, but contribute to their sensitisation by repetitive primary afferent stimulation. Furthermore, there is a cross-talk between the two systems, presumably due to GluR5-mediated activation of GABAergic inhibitory interneurones in the

  4. Tertiary Structural studies of Myotoxin a from Crotalus viridis viridis Venom by Nuclear Magnetic Resonance

    DTIC Science & Technology

    1993-05-01

    in real time. RMSDs were calculated only to a single structure on which the others were then superimposed. To get a pairwise listing of RMSDs, a group...to fix the chirality, minimize and anneal in 4-D (if necessary) an increasing number of residues until the entire structure is treated as one get /sym...nstr "Number of structures to create: get /sym refseq "Sequence to use: . get /sym refbmx "Bounds matrix to use: get /sym fname "Filename for written

  5. Approximate symmetries of Hamiltonians

    NASA Astrophysics Data System (ADS)

    Chubb, Christopher T.; Flammia, Steven T.

    2017-08-01

    We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.

  6. Padé Approximant and Minimax Rational Approximation in Standard Cosmology

    NASA Astrophysics Data System (ADS)

    Zaninetti, Lorenzo

    2016-02-01

    The luminosity distance in the standard cosmology as given by $\\Lambda$CDM and consequently the distance modulus for supernovae can be defined by the Pad\\'e approximant. A comparison with a known analytical solution shows that the Pad\\'e approximant for the luminosity distance has an error of $4\\%$ at redshift $= 10$. A similar procedure for the Taylor expansion of the luminosity distance gives an error of $4\\%$ at redshift $=0.7 $; this means that for the luminosity distance, the Pad\\'e approximation is superior to the Taylor series. The availability of an analytical expression for the distance modulus allows applying the Levenberg--Marquardt method to derive the fundamental parameters from the available compilations for supernovae. A new luminosity function for galaxies derived from the truncated gamma probability density function models the observed luminosity function for galaxies when the observed range in absolute magnitude is modeled by the Pad\\'e approximant. A comparison of $\\Lambda$CDM with other cosmologies is done adopting a statistical point of view.

  7. Approximate spatial reasoning

    NASA Technical Reports Server (NTRS)

    Dutta, Soumitra

    1988-01-01

    Much of human reasoning is approximate in nature. Formal models of reasoning traditionally try to be precise and reject the fuzziness of concepts in natural use and replace them with non-fuzzy scientific explicata by a process of precisiation. As an alternate to this approach, it has been suggested that rather than regard human reasoning processes as themselves approximating to some more refined and exact logical process that can be carried out with mathematical precision, the essence and power of human reasoning is in its capability to grasp and use inexact concepts directly. This view is supported by the widespread fuzziness of simple everyday terms (e.g., near tall) and the complexity of ordinary tasks (e.g., cleaning a room). Spatial reasoning is an area where humans consistently reason approximately with demonstrably good results. Consider the case of crossing a traffic intersection. We have only an approximate idea of the locations and speeds of various obstacles (e.g., persons and vehicles), but we nevertheless manage to cross such traffic intersections without any harm. The details of our mental processes which enable us to carry out such intricate tasks in such apparently simple manner are not well understood. However, it is that we try to incorporate such approximate reasoning techniques in our computer systems. Approximate spatial reasoning is very important for intelligent mobile agents (e.g., robots), specially for those operating in uncertain or unknown or dynamic domains.

  8. Legendre-Tau approximation for functional differential equations. Part 3: Eigenvalue approximations and uniform stability

    NASA Technical Reports Server (NTRS)

    Ito, K.

    1984-01-01

    The stability and convergence properties of the Legendre-tau approximation for hereditary differential systems are analyzed. A charactristic equation is derived for the eigenvalues of the resulting approximate system. As a result of this derivation the uniform exponential stability of the solution semigroup is preserved under approximation. It is the key to obtaining the convergence of approximate solutions of the algebraic Riccati equation in trace norm.

  9. Approximate spatial reasoning

    NASA Technical Reports Server (NTRS)

    Dutta, Soumitra

    1988-01-01

    A model for approximate spatial reasoning using fuzzy logic to represent the uncertainty in the environment is presented. Algorithms are developed which can be used to reason about spatial information expressed in the form of approximate linguistic descriptions similar to the kind of spatial information processed by humans. Particular attention is given to static spatial reasoning.

  10. Genomic resources for identification of the minimal N2 -fixing symbiotic genome.

    PubMed

    diCenzo, George C; Zamani, Maryam; Milunovic, Branislava; Finan, Turlough M

    2016-09-01

    The lack of an appropriate genomic platform has precluded the use of gain-of-function approaches to study the rhizobium-legume symbiosis, preventing the establishment of the genes necessary and sufficient for symbiotic nitrogen fixation (SNF) and potentially hindering synthetic biology approaches aimed at engineering this process. Here, we describe the development of an appropriate system by reverse engineering Sinorhizobium meliloti. Using a novel in vivo cloning procedure, the engA-tRNA-rmlC (ETR) region, essential for cell viability and symbiosis, was transferred from Sinorhizobium fredii to the ancestral location on the S. meliloti chromosome, rendering the ETR region on pSymB redundant. A derivative of this strain lacking both the large symbiotic replicons (pSymA and pSymB) was constructed. Transfer of pSymA and pSymB back into this strain restored symbiotic capabilities with alfalfa. To delineate the location of the single-copy genes essential for SNF on these replicons, we screened a S. meliloti deletion library, representing > 95% of the 2900 genes of the symbiotic replicons, for their phenotypes with alfalfa. Only four loci, accounting for < 12% of pSymA and pSymB, were essential for SNF. These regions will serve as our preliminary target of the minimal set of horizontally acquired genes necessary and sufficient for SNF. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. CONTRIBUTIONS TO RATIONAL APPROXIMATION,

    DTIC Science & Technology

    Some of the key results of linear Chebyshev approximation theory are extended to generalized rational functions. Prominent among these is Haar’s...linear theorem which yields necessary and sufficient conditions for uniqueness. Some new results in the classic field of rational function Chebyshev...Furthermore a Weierstrass type theorem is proven for rational Chebyshev approximation. A characterization theorem for rational trigonometric Chebyshev approximation in terms of sign alternation is developed. (Author)

  12. Approximate Genealogies Under Genetic Hitchhiking

    PubMed Central

    Pfaffelhuber, P.; Haubold, B.; Wakolbinger, A.

    2006-01-01

    The rapid fixation of an advantageous allele leads to a reduction in linked neutral variation around the target of selection. The genealogy at a neutral locus in such a selective sweep can be simulated by first generating a random path of the advantageous allele's frequency and then a structured coalescent in this background. Usually the frequency path is approximated by a logistic growth curve. We discuss an alternative method that approximates the genealogy by a random binary splitting tree, a so-called Yule tree that does not require first constructing a frequency path. Compared to the coalescent in a logistic background, this method gives a slightly better approximation for identity by descent during the selective phase and a much better approximation for the number of lineages that stem from the founder of the selective sweep. In applications such as the approximation of the distribution of Tajima's D, the two approximation methods perform equally well. For relevant parameter ranges, the Yule approximation is faster. PMID:17182733

  13. Approximate kernel competitive learning.

    PubMed

    Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang

    2015-03-01

    Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Replicon-Dependent Differentiation of Symbiosis-Related Genes in Sinorhizobium Strains Nodulating Glycine max

    PubMed Central

    Guo, Hui Juan; Wang, En Tao; Zhang, Xing Xing; Li, Qin Qin; Zhang, Yan Ming; Chen, Wen Xin

    2014-01-01

    In order to investigate the genetic differentiation of Sinorhizobium strains nodulating Glycine max and related microevolutionary mechanisms, three housekeeping genes (SMc00019, truA, and thrA) and 16 symbiosis-related genes on the chromosome (7 genes), pSymA (6 genes), and pSymB (3 genes) were analyzed. Five distinct species were identified among the test strains by calculating the average nucleotide identity (ANI) of SMc00019-truA-thrA: Sinorhizobium fredii, Sinorhizobium sojae, Sinorhizobium sp. I, Sinorhizobium sp. II, and Sinorhizobium sp. III. These species assignments were also supported by population genetics and phylogenetic analyses of housekeeping genes and symbiosis-related genes on the chromosome and pSymB. Different levels of genetic differentiation were observed among these species or different replicons. S. sojae was the most divergent from the other test species and was characterized by its low intraspecies diversity and limited geographic distribution. Intergenic recombination dominated the evolution of 19 genes from different replicons. Intraspecies recombination happened frequently in housekeeping genes and symbiosis-related genes on the chromosome and pSymB, whereas pSymA genes showed a clear pattern of lateral-transfer events between different species. Moreover, pSymA genes were characterized by a lower level of polymorphism and recombination than those on the chromosome and pSymB. Taken together, genes from different replicons of rhizobia might be involved in the establishment of symbiosis with legumes, but these symbiosis-related genes might have evolved differently according to their corresponding replicons. PMID:24317084

  15. Replicon-dependent differentiation of symbiosis-related genes in Sinorhizobium strains nodulating Glycine max.

    PubMed

    Guo, Hui Juan; Wang, En Tao; Zhang, Xing Xing; Li, Qin Qin; Zhang, Yan Ming; Tian, Chang Fu; Chen, Wen Xin

    2014-02-01

    In order to investigate the genetic differentiation of Sinorhizobium strains nodulating Glycine max and related microevolutionary mechanisms, three housekeeping genes (SMc00019, truA, and thrA) and 16 symbiosis-related genes on the chromosome (7 genes), pSymA (6 genes), and pSymB (3 genes) were analyzed. Five distinct species were identified among the test strains by calculating the average nucleotide identity (ANI) of SMc00019-truA-thrA: Sinorhizobium fredii, Sinorhizobium sojae, Sinorhizobium sp. I, Sinorhizobium sp. II, and Sinorhizobium sp. III. These species assignments were also supported by population genetics and phylogenetic analyses of housekeeping genes and symbiosis-related genes on the chromosome and pSymB. Different levels of genetic differentiation were observed among these species or different replicons. S. sojae was the most divergent from the other test species and was characterized by its low intraspecies diversity and limited geographic distribution. Intergenic recombination dominated the evolution of 19 genes from different replicons. Intraspecies recombination happened frequently in housekeeping genes and symbiosis-related genes on the chromosome and pSymB, whereas pSymA genes showed a clear pattern of lateral-transfer events between different species. Moreover, pSymA genes were characterized by a lower level of polymorphism and recombination than those on the chromosome and pSymB. Taken together, genes from different replicons of rhizobia might be involved in the establishment of symbiosis with legumes, but these symbiosis-related genes might have evolved differently according to their corresponding replicons.

  16. Cosmological applications of Padé approximant

    NASA Astrophysics Data System (ADS)

    Wei, Hao; Yan, Xiao-Peng; Zhou, Ya-Nan

    2014-01-01

    As is well known, in mathematics, any function could be approximated by the Padé approximant. The Padé approximant is the best approximation of a function by a rational function of given order. In fact, the Padé approximant often gives better approximation of the function than truncating its Taylor series, and it may still work where the Taylor series does not converge. In the present work, we consider the Padé approximant in two issues. First, we obtain the analytical approximation of the luminosity distance for the flat XCDM model, and find that the relative error is fairly small. Second, we propose several parameterizations for the equation-of-state parameter (EoS) of dark energy based on the Padé approximant. They are well motivated from the mathematical and physical points of view. We confront these EoS parameterizations with the latest observational data, and find that they can work well. In these practices, we show that the Padé approximant could be an useful tool in cosmology, and it deserves further investigation.

  17. Approximate number and approximate time discrimination each correlate with school math abilities in young children.

    PubMed

    Odic, Darko; Lisboa, Juan Valle; Eisinger, Robert; Olivera, Magdalena Gonzalez; Maiche, Alejandro; Halberda, Justin

    2016-01-01

    What is the relationship between our intuitive sense of number (e.g., when estimating how many marbles are in a jar), and our intuitive sense of other quantities, including time (e.g., when estimating how long it has been since we last ate breakfast)? Recent work in cognitive, developmental, comparative psychology, and computational neuroscience has suggested that our representations of approximate number, time, and spatial extent are fundamentally linked and constitute a "generalized magnitude system". But, the shared behavioral and neural signatures between number, time, and space may alternatively be due to similar encoding and decision-making processes, rather than due to shared domain-general representations. In this study, we investigate the relationship between approximate number and time in a large sample of 6-8 year-old children in Uruguay by examining how individual differences in the precision of number and time estimation correlate with school mathematics performance. Over four testing days, each child completed an approximate number discrimination task, an approximate time discrimination task, a digit span task, and a large battery of symbolic math tests. We replicate previous reports showing that symbolic math abilities correlate with approximate number precision and extend those findings by showing that math abilities also correlate with approximate time precision. But, contrary to approximate number and time sharing common representations, we find that each of these dimensions uniquely correlates with formal math: approximate number correlates more strongly with formal math compared to time and continues to correlate with math even when precision in time and individual differences in working memory are controlled for. These results suggest that there are important differences in the mental representations of approximate number and approximate time and further clarify the relationship between quantity representations and mathematics. Copyright

  18. Producing approximate answers to database queries

    NASA Technical Reports Server (NTRS)

    Vrbsky, Susan V.; Liu, Jane W. S.

    1993-01-01

    We have designed and implemented a query processor, called APPROXIMATE, that makes approximate answers available if part of the database is unavailable or if there is not enough time to produce an exact answer. The accuracy of the approximate answers produced improves monotonically with the amount of data retrieved to produce the result. The exact answer is produced if all of the needed data are available and query processing is allowed to continue until completion. The monotone query processing algorithm of APPROXIMATE works within the standard relational algebra framework and can be implemented on a relational database system with little change to the relational architecture. We describe here the approximation semantics of APPROXIMATE that serves as the basis for meaningful approximations of both set-valued and single-valued queries. We show how APPROXIMATE is implemented to make effective use of semantic information, provided by an object-oriented view of the database, and describe the additional overhead required by APPROXIMATE.

  19. Structural optimization with approximate sensitivities

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Hopkins, D. A.; Coroneos, R.

    1994-01-01

    Computational efficiency in structural optimization can be enhanced if the intensive computations associated with the calculation of the sensitivities, that is, gradients of the behavior constraints, are reduced. Approximation to gradients of the behavior constraints that can be generated with small amount of numerical calculations is proposed. Structural optimization with these approximate sensitivities produced correct optimum solution. Approximate gradients performed well for different nonlinear programming methods, such as the sequence of unconstrained minimization technique, method of feasible directions, sequence of quadratic programming, and sequence of linear programming. Structural optimization with approximate gradients can reduce by one third the CPU time that would otherwise be required to solve the problem with explicit closed-form gradients. The proposed gradient approximation shows potential to reduce intensive computation that has been associated with traditional structural optimization.

  20. Silymarin ameliorates fructose induced insulin resistance syndrome by reducing de novo hepatic lipogenesis in the rat.

    PubMed

    Prakash, Prem; Singh, Vishal; Jain, Manish; Rana, Minakshi; Khanna, Vivek; Barthwal, Manoj Kumar; Dikshit, Madhu

    2014-03-15

    High dietary fructose causes insulin resistance syndrome (IRS), primarily due to simultaneous induction of genes involved in glucose, lipid and mitochondrial oxidative metabolism. The present study evaluates effect of a hepatoprotective agent, silymarin (SYM) on fructose-induced metabolic abnormalities in the rat and also assessed the associated thrombotic complications. Wistar rats were kept on high fructose (HFr) diet throughout the 12-week study duration (9 weeks of HFr feeding and subsequently 3 weeks of HFr plus SYM oral administration [once daily]). SYM treatment significantly reduced the HFr diet-induced increase expression of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α/β, peroxisome proliferator-activated receptor (PPAR)-α, forkhead box protein O1 (FOXO1), sterol regulatory element binding protein (SREBP)-1c, liver X receptor (LXR)-β, fatty acid synthase (FAS) and PPARγ genes in rat liver. SYM also reduced HFr diet mediated increase in plasma triglycerides (TG), non-esterified fatty acids (NEFA), uric acid, malondialdehyde (MDA), total nitrite and pro-inflammatory cytokines (C-reactive protein [CRP], interleukin-6 [IL-6], interferon-gamma [IFN-γ] and tumor necrosis factor [TNF]) levels. Moreover, SYM ameliorated HFr diet induced reduction in glucose utilization and endothelial dysfunction. Additionally, SYM significantly reduced platelet activation (adhesion and aggregation), prolonged ferric chloride-induced blood vessel occlusion time and protected against exacerbated myocardial ischemia reperfusion (MI-RP) injury. SYM treatment prevented HFr induced mRNA expression of hepatic PGC-1α/β and also its target transcription factors which was accompanied with recovery in insulin sensitivity and reduced propensity towards thrombotic complications and aggravated MI-RP injury. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Bounded-Degree Approximations of Stochastic Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, Christopher J.; Pinar, Ali; Kiyavash, Negar

    2017-06-01

    We propose algorithms to approximate directed information graphs. Directed information graphs are probabilistic graphical models that depict causal dependencies between stochastic processes in a network. The proposed algorithms identify optimal and near-optimal approximations in terms of Kullback-Leibler divergence. The user-chosen sparsity trades off the quality of the approximation against visual conciseness and computational tractability. One class of approximations contains graphs with speci ed in-degrees. Another class additionally requires that the graph is connected. For both classes, we propose algorithms to identify the optimal approximations and also near-optimal approximations, using a novel relaxation of submodularity. We also propose algorithms to identifymore » the r-best approximations among these classes, enabling robust decision making.« less

  2. Limitations of shallow nets approximation.

    PubMed

    Lin, Shao-Bo

    2017-10-01

    In this paper, we aim at analyzing the approximation abilities of shallow networks in reproducing kernel Hilbert spaces (RKHSs). We prove that there is a probability measure such that the achievable lower bound for approximating by shallow nets can be realized for all functions in balls of reproducing kernel Hilbert space with high probability, which is different with the classical minimax approximation error estimates. This result together with the existing approximation results for deep nets shows the limitations for shallow nets and provides a theoretical explanation on why deep nets perform better than shallow nets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. More on approximations of Poisson probabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kao, C

    1980-05-01

    Calculation of Poisson probabilities frequently involves calculating high factorials, which becomes tedious and time-consuming with regular calculators. The usual way to overcome this difficulty has been to find approximations by making use of the table of the standard normal distribution. A new transformation proposed by Kao in 1978 appears to perform better for this purpose than traditional transformations. In the present paper several approximation methods are stated and compared numerically, including an approximation method that utilizes a modified version of Kao's transformation. An approximation based on a power transformation was found to outperform those based on the square-root type transformationsmore » as proposed in literature. The traditional Wilson-Hilferty approximation and Makabe-Morimura approximation are extremely poor compared with this approximation. 4 tables. (RWR)« less

  4. Approximate circuits for increased reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the referencemore » circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.« less

  5. Seed development, seed germination and seedling growth in the R50 (sym16) pea mutant are not directly linked to altered cytokinin homeostasis.

    PubMed

    Long, Chengli; Held, Mark; Hayward, Allison; Nisler, Jaroslav; Spíchal, Lukas; Neil Emery, R J; Moffatt, Barbara A; Guinel, Frédérique C

    2012-06-01

    R50 (sym16) is a pea nodulation mutant that accumulates cytokinin (CK) in its vegetative organs. Total CK content increases as the plant ages because of the low activity of the enzyme cytokinin oxidase/dehydrogenase (CKX) responsible for CK degradation. R50 exhibits a large seed with high relative water content, and its seedling establishes itself slowly. Whether these two traits are linked to abnormal CK levels was considered here. R50 was found to have a similar germination rate but a much slower epicotyl emergence than Sparkle, its wild-type (WT). At the onset of emergence, the starch grains in R50 cotyledons were larger than those of WT; furthermore, they did not degrade as fast as in WT because of low amylase activity. No differences between the pea lines were observed in the CK forms identified during seed embryogenesis. However, while CK content compared to that of WT was reduced early in R50 embryogenesis, it was elevated later on in its dry seeds where CKX activity was low, although CKX transcript abundance remained high. Transcripts of the two known PsCKX isoforms exhibited tissue- and development-specific profiles with no detectable PsCKX2 expression in cotyledons. There were more of both transcripts in R50 roots than in WT roots, but less of PsCKX2 than PsCKX1 in R50 shoots compared to WT shoots. Thus, although there is a definite CKX post-transcriptional defect in R50 dry seeds, an abnormal CK homeostasis is not the basis of the delay in R50 seedling establishment, which we linked to abnormal amylase activity early in development. Copyright © Physiologia Plantarum 2012.

  6. Risk approximation in decision making: approximative numeric abilities predict advantageous decisions under objective risk.

    PubMed

    Mueller, Silke M; Schiebener, Johannes; Delazer, Margarete; Brand, Matthias

    2018-01-22

    Many decision situations in everyday life involve mathematical considerations. In decisions under objective risk, i.e., when explicit numeric information is available, executive functions and abilities to handle exact numbers and ratios are predictors of objectively advantageous choices. Although still debated, exact numeric abilities, e.g., normative calculation skills, are assumed to be related to approximate number processing skills. The current study investigates the effects of approximative numeric abilities on decision making under objective risk. Participants (N = 153) performed a paradigm measuring number-comparison, quantity-estimation, risk-estimation, and decision-making skills on the basis of rapid dot comparisons. Additionally, a risky decision-making task with exact numeric information was administered, as well as tasks measuring executive functions and exact numeric abilities, e.g., mental calculation and ratio processing skills, were conducted. Approximative numeric abilities significantly predicted advantageous decision making, even beyond the effects of executive functions and exact numeric skills. Especially being able to make accurate risk estimations seemed to contribute to superior choices. We recommend approximation skills and approximate number processing to be subject of future investigations on decision making under risk.

  7. Neptunomonas phycophila sp. nov. isolated from a culture of Symbiodinium sp., a dinoflagellate symbiont of the sea anemone Aiptasia tagetes.

    PubMed

    Frommlet, Jörg; Guimarães, Bárbara; Sousa, Lígia; Serôdio, João; Alves, Artur

    2015-03-01

    A Gram-stain-negative, facultatively anaerobic, oxidase- and catalase-positive, rod-shaped bacterium, strain SYM1(T), was isolated from a culture of Symbiodinium sp., an algal symbiont of the sea anemone Aiptasia tagetes collected in Puerto Rico. Growth was observed at 4-40 °C (optimum 30 °C), at pH 5.0-11.0 (optimum pH 8.0) and with 0.5-8 % (optimum 2 %) (w/v) NaCl. Phylogenetic analyses of 16S rRNA gene sequences showed that strain SYM1(T) was a member of the genus Neptunomonas with the type strain of Neptunomonas naphthovorans as the closest phylogenetic relative with a pairwise sequence similarity of 98.15 %. However, DNA-DNA relatedness between strain SYM1(T) and N. naphthovorans CIP 106451(T) was 24 %. Moreover, strain SYM1(T) could be distinguished from its closest relative by several phenotypic characteristics such as NaCl, pH and temperature tolerance, nitrate reduction and utilization of carbon substrates. The major cellular fatty acids were C16 : 0, C18 : 1ω7c and summed feature 3 (comprising C16 : 1ω7c and/or iso-C15 : 0 2-OH). The genomic DNA G+C content of strain SYM1(T) was 45 mol%. Ubiquinone-8 (Q-8) was the only respiratory quinone detected. Based on a polyphasic taxonomic characterization, strain SYM1(T) represents a novel species of the genus Neptunomonas, for which the name Neptunomonas phycophila sp. nov. is proposed. The type strain is SYM1(T) ( = LMG 28329(T) = CECT 8716(T)). © 2015 IUMS.

  8. Knock-in human GDF5 proregion L373R mutation as a mouse model for proximal symphalangism.

    PubMed

    Zhang, Xinxin; Xing, Xuesha; Liu, Xing; Hu, Yu; Qu, Shengqiang; Wang, Heyi; Luo, Yang

    2017-12-26

    Proximal symphalangism (SYM1) is an autosomal dominant disorder, mainly characterized by bony fusions of the proximal phalanges of the hands and feet. GDF5 and NOG were identified to be responsible for SYM1. We have previously reported on a p.Leu373Arg mutation in the GDF5 proregion present in a Chinese family with SYM1. Here, we investigated the effects of the GDF-L373R mutation. The variant caused proteolysis efficiency of GDF5 increased in ATDC5 cells. The variant also caused upregulation of SMAD1/5/8 phosphorylation and increased expression of target genes SMURF1 , along with COL2A1 and SOX9 which are factors associated with chondrosis. Furthermore, we developed a human-relevant SYM1 mouse model by making a Gdf5 L367R (the orthologous position for L373R in humans) knock-in mouse. Gdf5 L367R/+ and Gdf5 L367R/L367R mice displayed stiffness and adhesions across the proximal phalanx joint which were in complete accord with SYM1. It was also confirmed the joint formation and development was abnormal in Gdf5 L367R/+ and Gdf5 L367R/L367R mice, including the failure to develop the primary ossification center and be hypertrophic chondrocytes during embryonic development. This knock-in mouse model offers a tool for assessing the pathogenesis of SYM1 and the function of the GDF5 proregion.

  9. Combining global and local approximations

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.

    1991-01-01

    A method based on a linear approximation to a scaling factor, designated the 'global-local approximation' (GLA) method, is presented and shown capable of extending the range of usefulness of derivative-based approximations to a more refined model. The GLA approach refines the conventional scaling factor by means of a linearly varying, rather than constant, scaling factor. The capabilities of the method are demonstrated for a simple beam example with a crude and more refined FEM model.

  10. Spline approximation, Part 1: Basic methodology

    NASA Astrophysics Data System (ADS)

    Ezhov, Nikolaj; Neitzel, Frank; Petrovic, Svetozar

    2018-04-01

    In engineering geodesy point clouds derived from terrestrial laser scanning or from photogrammetric approaches are almost never used as final results. For further processing and analysis a curve or surface approximation with a continuous mathematical function is required. In this paper the approximation of 2D curves by means of splines is treated. Splines offer quite flexible and elegant solutions for interpolation or approximation of "irregularly" distributed data. Depending on the problem they can be expressed as a function or as a set of equations that depend on some parameter. Many different types of splines can be used for spline approximation and all of them have certain advantages and disadvantages depending on the approximation problem. In a series of three articles spline approximation is presented from a geodetic point of view. In this paper (Part 1) the basic methodology of spline approximation is demonstrated using splines constructed from ordinary polynomials and splines constructed from truncated polynomials. In the forthcoming Part 2 the notion of B-spline will be explained in a unique way, namely by using the concept of convex combinations. The numerical stability of all spline approximation approaches as well as the utilization of splines for deformation detection will be investigated on numerical examples in Part 3.

  11. Phase space deformations in phantom cosmology

    NASA Astrophysics Data System (ADS)

    López, J. L.; Sabido, M.; Yee-Romero, C.

    2018-03-01

    We discuss the physical consequences of general phase space deformations on the minisuperspace of phantom cosmology. Based on the principle of physically equivalent descriptions in the deformed theory, we investigate for what values of the deformation parameters the arising descriptions are physically equivalent. We also construct and solve the quantum model and derive the semiclassical dynamics.

  12. Monotone Boolean approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulme, B.L.

    1982-12-01

    This report presents a theory of approximation of arbitrary Boolean functions by simpler, monotone functions. Monotone increasing functions can be expressed without the use of complements. Nonconstant monotone increasing functions are important in their own right since they model a special class of systems known as coherent systems. It is shown here that when Boolean expressions for noncoherent systems become too large to treat exactly, then monotone approximations are easily defined. The algorithms proposed here not only provide simpler formulas but also produce best possible upper and lower monotone bounds for any Boolean function. This theory has practical application formore » the analysis of noncoherent fault trees and event tree sequences.« less

  13. Testing approximations for non-linear gravitational clustering

    NASA Technical Reports Server (NTRS)

    Coles, Peter; Melott, Adrian L.; Shandarin, Sergei F.

    1993-01-01

    The accuracy of various analytic approximations for following the evolution of cosmological density fluctuations into the nonlinear regime is investigated. The Zel'dovich approximation is found to be consistently the best approximation scheme. It is extremely accurate for power spectra characterized by n = -1 or less; when the approximation is 'enhanced' by truncating highly nonlinear Fourier modes the approximation is excellent even for n = +1. The performance of linear theory is less spectrum-dependent, but this approximation is less accurate than the Zel'dovich one for all cases because of the failure to treat dynamics. The lognormal approximation generally provides a very poor fit to the spatial pattern.

  14. A model for a transition from a quasicrystalline to a microcrystalline state

    NASA Astrophysics Data System (ADS)

    Coddens, G.; Launois, P.

    1991-07-01

    We propose a monoatomic model for a quasicrystal transition as observed recently in systems with icosahedral [3] and decagonal [5] symmetry. It is developed here for the case of decagonal symmetry and is inspired by the experimental results on the system Al-Cu-Co-Si [5,6]. The model goes beyond the purely geometrical description by an important physical aspect: the transition mediates through a single atomic jump distance such that only one unique double-well potential has to be invoked to describe it; in conformity with the symmetry there are 10 jump vectors. In the framework of the model, the microcrystalline state is energetically more favourable than a monocrystalline approximant phase. Nous proposons un modèle mono-atomique pour une transition quasicristal-microcristal du type de celles observées récemment dans des systèmes à symétrie icosaédrique [3] et décagonale [5]. Il est développé ici pour la symétrie décagonale et est inspiré par des résultats expérimentaux concernant l'alliage Al-Cu-Co-Si [5,6]. Le modèle va au-delà d'une description purement géometrique par un aspect physique important : la transition se fait via une seule distance de saut inter-atomique de telle sorte q'un seul double-puits de potentiel doit être pris en compte ; conformément à la symétrie, il y a 10 directions de saut. Dans le cadre du modèle, la phase microcristalline est énergétiquement favorisée par rapport à une phase approximante monocristalline.

  15. Analytical approximation schemes for solving exact renormalization group equations in the local potential approximation

    NASA Astrophysics Data System (ADS)

    Bervillier, C.; Boisseau, B.; Giacomini, H.

    2008-02-01

    The relation between the Wilson-Polchinski and the Litim optimized ERGEs in the local potential approximation is studied with high accuracy using two different analytical approaches based on a field expansion: a recently proposed genuine analytical approximation scheme to two-point boundary value problems of ordinary differential equations, and a new one based on approximating the solution by generalized hypergeometric functions. A comparison with the numerical results obtained with the shooting method is made. A similar accuracy is reached in each case. Both two methods appear to be more efficient than the usual field expansions frequently used in the current studies of ERGEs (in particular for the Wilson-Polchinski case in the study of which they fail).

  16. Control of the ethylene signaling pathway prevents plant defenses during intracellular accommodation of the rhizobia.

    PubMed

    Berrabah, Fathi; Balliau, Thierry; Aït-Salem, El Hosseyn; George, Jeoffrey; Zivy, Michel; Ratet, Pascal; Gourion, Benjamin

    2018-04-18

    Massive intracellular populations of symbiotic bacteria, referred to as rhizobia, are housed in legume root nodules. Little is known about the mechanisms preventing the development of defense in these organs although genes such as SymCRK and DNF2 of the model legume Medicago truncatula are required for this control after rhizobial internalization in host nodule cells. Here we investigated the molecular basis of the symbiotic control of immunity. Proteomic analysis was performed to compare functional (wild-type) and defending nodules (symCRK). Based on the results, the control of plant immunity during the functional step of the symbiosis was further investigated by biochemical and pharmacological approaches as well as by transcript and histology analysis. Ethylene was identified as a potential signal inducing plant defenses in symCRK nodules. Involvement of this phytohormone in symCRK and dnf2-developed defenses and in the death of intracellular rhizobia was confirmed. This negative effect of ethylene depended on the M. truncatula sickle gene and was also observed in the legume Lotus japonicus. Together, these data indicate that prevention of ethylene-triggered defenses is crucial for the persistence of endosymbiosis and that the DNF2 and SymCRK genes are required for this process. © 2018 CNRS New Phytologist © 2018 New Phytologist Trust.

  17. An Approximate Approach to Automatic Kernel Selection.

    PubMed

    Ding, Lizhong; Liao, Shizhong

    2016-02-02

    Kernel selection is a fundamental problem of kernel-based learning algorithms. In this paper, we propose an approximate approach to automatic kernel selection for regression from the perspective of kernel matrix approximation. We first introduce multilevel circulant matrices into automatic kernel selection, and develop two approximate kernel selection algorithms by exploiting the computational virtues of multilevel circulant matrices. The complexity of the proposed algorithms is quasi-linear in the number of data points. Then, we prove an approximation error bound to measure the effect of the approximation in kernel matrices by multilevel circulant matrices on the hypothesis and further show that the approximate hypothesis produced with multilevel circulant matrices converges to the accurate hypothesis produced with kernel matrices. Experimental evaluations on benchmark datasets demonstrate the effectiveness of approximate kernel selection.

  18. Approximate error conjugation gradient minimization methods

    DOEpatents

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  19. Applied Routh approximation

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.

    1978-01-01

    The Routh approximation technique for reducing the complexity of system models was applied in the frequency domain to a 16th order, state variable model of the F100 engine and to a 43d order, transfer function model of a launch vehicle boost pump pressure regulator. The results motivate extending the frequency domain formulation of the Routh method to the time domain in order to handle the state variable formulation directly. The time domain formulation was derived and a characterization that specifies all possible Routh similarity transformations was given. The characterization was computed by solving two eigenvalue-eigenvector problems. The application of the time domain Routh technique to the state variable engine model is described, and some results are given. Additional computational problems are discussed, including an optimization procedure that can improve the approximation accuracy by taking advantage of the transformation characterization.

  20. Quantum gravity in timeless configuration space

    NASA Astrophysics Data System (ADS)

    Gomes, Henrique

    2017-12-01

    On the path towards quantum gravity we find friction between temporal relations in quantum mechanics (QM) (where they are fixed and field-independent), and in general relativity (where they are field-dependent and dynamic). This paper aims to attenuate that friction, by encoding gravity in the timeless configuration space of spatial fields with dynamics given by a path integral. The framework demands that boundary conditions for this path integral be uniquely given, but unlike other approaches where they are prescribed—such as the no-boundary and the tunneling proposals—here I postulate basic principles to identify boundary conditions in a large class of theories. Uniqueness arises only if a reduced configuration space can be defined and if it has a profoundly asymmetric fundamental structure. These requirements place strong restrictions on the field and symmetry content of theories encompassed here; shape dynamics is one such theory. When these constraints are met, any emerging theory will have a Born rule given merely by a particular volume element built from the path integral in (reduced) configuration space. Also as in other boundary proposals, Time, including space-time, emerges as an effective concept; valid for certain curves in configuration space but not assumed from the start. When some such notion of time becomes available, conservation of (positive) probability currents ensues. I show that, in the appropriate limits, a Schrödinger equation dictates the evolution of weakly coupled source fields on a classical gravitational background. Due to the asymmetry of reduced configuration space, these probabilities and currents avoid a known difficulty of standard WKB approximations for Wheeler DeWitt in minisuperspace: the selection of a unique Hamilton–Jacobi solution to serve as background. I illustrate these constructions with a simple example of a full quantum gravitational theory (i.e. not in minisuperspace) for which the formalism is applicable, and

  1. Analysis of corrections to the eikonal approximation

    NASA Astrophysics Data System (ADS)

    Hebborn, C.; Capel, P.

    2017-11-01

    Various corrections to the eikonal approximations are studied for two- and three-body nuclear collisions with the goal to extend the range of validity of this approximation to beam energies of 10 MeV/nucleon. Wallace's correction does not improve much the elastic-scattering cross sections obtained at the usual eikonal approximation. On the contrary, a semiclassical approximation that substitutes the impact parameter by a complex distance of closest approach computed with the projectile-target optical potential efficiently corrects the eikonal approximation. This opens the possibility to analyze data measured down to 10 MeV/nucleon within eikonal-like reaction models.

  2. RNA antitoxins.

    PubMed

    Gerdes, Kenn; Wagner, E Gerhart H

    2007-04-01

    Recent genomic analyses revealed a surprisingly large number of toxin-antitoxin loci in free-living prokaryotes. The antitoxins are proteins or antisense RNAs that counteract the toxins. Two antisense RNA-regulated toxin-antitoxin gene families, hok/sok and ldr, are unrelated sequence-wise but have strikingly similar properties at the level of gene and RNA organization. Recently, two SOS-induced toxins were found to be regulated by RNA antitoxins. One such toxin, SymE, exhibits similarity with MazE antitoxin and, surprisingly, inhibits translation. Thus, it is possible that an ancestral antitoxin gene evolved into the present toxin gene (symE) whose translation is repressed by an RNA antitoxin (SymR).

  3. Approximations of Two-Attribute Utility Functions

    DTIC Science & Technology

    1976-09-01

    preferred to") be a bina-zy relation on the set • of simple probability measures or ’gambles’ defined on a set T of consequences. Throughout this study it...simplifying independence assumptions. Although there are several approaches to this problem, the21 present study will focus on approximations of u... study will elicit additional interest in the topic. 2. REMARKS ON APPROXIMATION THEORY This section outlines a few basic ideas of approximation theory

  4. Born approximation in linear-time invariant system

    NASA Astrophysics Data System (ADS)

    Gumjudpai, Burin

    2017-09-01

    An alternative way of finding the LTI’s solution with the Born approximation, is investigated. We use Born approximation in the LTI and in the transformed LTI in form of Helmholtz equation. General solution are considered as infinite series or Feynman graph. Slow-roll approximation are explored. Transforming the LTI system into Helmholtz equation, approximated general solution can be found for any given forms of force with its initial value.

  5. Approximate Model of Zone Sedimentation

    NASA Astrophysics Data System (ADS)

    Dzianik, František

    2011-12-01

    The process of zone sedimentation is affected by many factors that are not possible to express analytically. For this reason, the zone settling is evaluated in practice experimentally or by application of an empirical mathematical description of the process. The paper presents the development of approximate model of zone settling, i.e. the general function which should properly approximate the behaviour of the settling process within its entire range and at the various conditions. Furthermore, the specification of the model parameters by the regression analysis of settling test results is shown. The suitability of the model is reviewed by graphical dependencies and by statistical coefficients of correlation. The approximate model could by also useful on the simplification of process design of continual settling tanks and thickeners.

  6. Energy conservation - A test for scattering approximations

    NASA Technical Reports Server (NTRS)

    Acquista, C.; Holland, A. C.

    1980-01-01

    The roles of the extinction theorem and energy conservation in obtaining the scattering and absorption cross sections for several light scattering approximations are explored. It is shown that the Rayleigh, Rayleigh-Gans, anomalous diffraction, geometrical optics, and Shifrin approximations all lead to reasonable values of the cross sections, while the modified Mie approximation does not. Further examination of the modified Mie approximation for the ensembles of nonspherical particles reveals additional problems with that method.

  7. Recognition of computerized facial approximations by familiar assessors.

    PubMed

    Richard, Adam H; Monson, Keith L

    2017-11-01

    Studies testing the effectiveness of facial approximations typically involve groups of participants who are unfamiliar with the approximated individual(s). This limitation requires the use of photograph arrays including a picture of the subject for comparison to the facial approximation. While this practice is often necessary due to the difficulty in obtaining a group of assessors who are familiar with the approximated subject, it may not accurately simulate the thought process of the target audience (friends and family members) in comparing a mental image of the approximated subject to the facial approximation. As part of a larger process to evaluate the effectiveness and best implementation of the ReFace facial approximation software program, the rare opportunity arose to conduct a recognition study using assessors who were personally acquainted with the subjects of the approximations. ReFace facial approximations were generated based on preexisting medical scans, and co-workers of the scan donors were tested on whether they could accurately pick out the approximation of their colleague from arrays of facial approximations. Results from the study demonstrated an overall poor recognition performance (i.e., where a single choice within a pool is not enforced) for individuals who were familiar with the approximated subjects. Out of 220 recognition tests only 10.5% resulted in the assessor selecting the correct approximation (or correctly choosing not to make a selection when the array consisted only of foils), an outcome that was not significantly different from the 9% random chance rate. When allowed to select multiple approximations the assessors felt resembled the target individual, the overall sensitivity for ReFace approximations was 16.0% and the overall specificity was 81.8%. These results differ markedly from the results of a previous study using assessors who were unfamiliar with the approximated subjects. Some possible explanations for this disparity in

  8. Consistent Yokoya-Chen Approximation to Beamstrahlung(LCC-0010)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peskin, M

    2004-04-22

    I reconsider the Yokoya-Chen approximate evolution equation for beamstrahlung and modify it slightly to generate simple, consistent analytical approximations for the electron and photon energy spectra. I compare these approximations to previous ones, and to simulation data.I reconsider the Yokoya-Chen approximate evolution equation for beamstrahlung and modify it slightly to generate simple, consistent analytical approximations for the electron and photon energy spectra. I compare these approximations to previous ones, and to simulation data.

  9. Exponential approximations in optimal design

    NASA Technical Reports Server (NTRS)

    Belegundu, A. D.; Rajan, S. D.; Rajgopal, J.

    1990-01-01

    One-point and two-point exponential functions have been developed and proved to be very effective approximations of structural response. The exponential has been compared to the linear, reciprocal and quadratic fit methods. Four test problems in structural analysis have been selected. The use of such approximations is attractive in structural optimization to reduce the numbers of exact analyses which involve computationally expensive finite element analysis.

  10. Combination of the pair density approximation and the Takahashi–Imada approximation for path integral Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zillich, Robert E., E-mail: robert.zillich@jku.at

    2015-11-15

    We construct an accurate imaginary time propagator for path integral Monte Carlo simulations for heterogeneous systems consisting of a mixture of atoms and molecules. We combine the pair density approximation, which is highly accurate but feasible only for the isotropic interactions between atoms, with the Takahashi–Imada approximation for general interactions. We present finite temperature simulations results for energy and structure of molecules–helium clusters X{sup 4}He{sub 20} (X=HCCH and LiH) which show a marked improvement over the Trotter approximation which has a 2nd-order time step bias. We show that the 4th-order corrections of the Takahashi–Imada approximation can also be applied perturbativelymore » to a 2nd-order simulation.« less

  11. Better approximation guarantees for job-shop scheduling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, L.A.; Paterson, M.; Srinivasan, A.

    1997-06-01

    Job-shop scheduling is a classical NP-hard problem. Shmoys, Stein & Wein presented the first polynomial-time approximation algorithm for this problem that has a good (polylogarithmic) approximation guarantee. We improve the approximation guarantee of their work, and present further improvements for some important NP-hard special cases of this problem (e.g., in the preemptive case where machines can suspend work on operations and later resume). We also present NC algorithms with improved approximation guarantees for some NP-hard special cases.

  12. Performance and health of Holstein calves fed different levels of milk fortified with symbiotic complex containing pre- and probiotics.

    PubMed

    Marcondes, M I; Pereira, T R; Chagas, J C C; Filgueiras, E A; Castro, M M D; Costa, G P; Sguizzato, A L L; Sainz, R D

    2016-12-01

    The objective of this study was to evaluate the performance and health of Holstein calves fed low or high milk supply (MSP) with or without symbiotic complex (SYM) supplementation, consisting of prebiotics, probiotics, and fibrolytic enzymes. Thirty-two Holstein calves with body weight (BW) of 34 ± 7 kg were distributed in a randomized block design in a 2 × 2 factorial arrangement. Treatments consisted of low and high MSP: 10 % of BW from 1st to 8th weeks after birth (low) and 20 % BW from 1st and 2nd weeks after birth, 15 % BW for the 3rd and 4th weeks after birth, and 10 % BW from 5th and 8th weeks after birth (high). Solid ration was supplied in addition to milk. Intake, ADG, diet digestibility, and fecal consistency index were evaluated. Low and high MSP groups tended (P < 0.10) to differ in calf growth, final BW (69 vs. 73 kg), post-weaning average weight gain (548 vs. 788 g/day), and final average weight gain (549 vs. 646 g/day) in low and high MSP calves, respectively. There was an interaction between MSP level and SYM on the digestibilities of dry matter (DM) and neutral detergent fiber (NDF) (P < 0.10). In the low MSP group, inclusion of SYM increased digestibility of DM (0.720 to 0.736 g/kg) and NDF (0.758 to 0.783 g/kg). The inclusion of SYM improved calf health (P < 0.10) with a fecal score of 0.31 compared to 0.42 without SYM. Milk-feeding level was an important factor in calf performance, while SYM supplementation improved diet digestibility and animal health.

  13. Ribosomal frameshifting and dual-target antiactivation restrict quorum-sensing-activated transfer of a mobile genetic element.

    PubMed

    Ramsay, Joshua P; Tester, Laura G L; Major, Anthony S; Sullivan, John T; Edgar, Christina D; Kleffmann, Torsten; Patterson-House, Jackson R; Hall, Drew A; Tate, Warren P; Hynes, Michael F; Ronson, Clive W

    2015-03-31

    Symbiosis islands are integrative and conjugative mobile genetic elements that convert nonsymbiotic rhizobia into nitrogen-fixing symbionts of leguminous plants. Excision of the Mesorhizobium loti symbiosis island ICEMlSym(R7A) is indirectly activated by quorum sensing through TraR-dependent activation of the excisionase gene rdfS. Here we show that a +1 programmed ribosomal frameshift (PRF) fuses the coding sequences of two TraR-activated genes, msi172 and msi171, producing an activator of rdfS expression named Frameshifted excision activator (FseA). Mass-spectrometry and mutational analyses indicated that the PRF occurred through +1 slippage of the tRNA(phe) from UUU to UUC within a conserved msi172-encoded motif. FseA activated rdfS expression in the absence of ICEMlSym(R7A), suggesting that it directly activated rdfS transcription, despite being unrelated to any characterized DNA-binding proteins. Bacterial two-hybrid and gene-reporter assays demonstrated that FseA was also bound and inhibited by the ICEMlSym(R7A)-encoded quorum-sensing antiactivator QseM. Thus, activation of ICEMlSym(R7A) excision is counteracted by TraR antiactivation, ribosomal frameshifting, and FseA antiactivation. This robust suppression likely dampens the inherent biological noise present in the quorum-sensing autoinduction circuit and ensures that ICEMlSym(R7A) transfer only occurs in a subpopulation of cells in which both qseM expression is repressed and FseA is translated. The architecture of the ICEMlSym(R7A) transfer regulatory system provides an example of how a set of modular components have assembled through evolution to form a robust genetic toggle that regulates gene transcription and translation at both single-cell and cell-population levels.

  14. Ribosomal frameshifting and dual-target antiactivation restrict quorum-sensing–activated transfer of a mobile genetic element

    PubMed Central

    Ramsay, Joshua P.; Tester, Laura G. L.; Major, Anthony S.; Sullivan, John T.; Edgar, Christina D.; Kleffmann, Torsten; Patterson-House, Jackson R.; Hall, Drew A.; Tate, Warren P.; Hynes, Michael F.; Ronson, Clive W.

    2015-01-01

    Symbiosis islands are integrative and conjugative mobile genetic elements that convert nonsymbiotic rhizobia into nitrogen-fixing symbionts of leguminous plants. Excision of the Mesorhizobium loti symbiosis island ICEMlSymR7A is indirectly activated by quorum sensing through TraR-dependent activation of the excisionase gene rdfS. Here we show that a +1 programmed ribosomal frameshift (PRF) fuses the coding sequences of two TraR-activated genes, msi172 and msi171, producing an activator of rdfS expression named Frameshifted excision activator (FseA). Mass-spectrometry and mutational analyses indicated that the PRF occurred through +1 slippage of the tRNAphe from UUU to UUC within a conserved msi172-encoded motif. FseA activated rdfS expression in the absence of ICEMlSymR7A, suggesting that it directly activated rdfS transcription, despite being unrelated to any characterized DNA-binding proteins. Bacterial two-hybrid and gene-reporter assays demonstrated that FseA was also bound and inhibited by the ICEMlSymR7A-encoded quorum-sensing antiactivator QseM. Thus, activation of ICEMlSymR7A excision is counteracted by TraR antiactivation, ribosomal frameshifting, and FseA antiactivation. This robust suppression likely dampens the inherent biological noise present in the quorum-sensing autoinduction circuit and ensures that ICEMlSymR7A transfer only occurs in a subpopulation of cells in which both qseM expression is repressed and FseA is translated. The architecture of the ICEMlSymR7A transfer regulatory system provides an example of how a set of modular components have assembled through evolution to form a robust genetic toggle that regulates gene transcription and translation at both single-cell and cell-population levels. PMID:25787256

  15. Linear Approximation SAR Azimuth Processing Study

    NASA Technical Reports Server (NTRS)

    Lindquist, R. B.; Masnaghetti, R. K.; Belland, E.; Hance, H. V.; Weis, W. G.

    1979-01-01

    A segmented linear approximation of the quadratic phase function that is used to focus the synthetic antenna of a SAR was studied. Ideal focusing, using a quadratic varying phase focusing function during the time radar target histories are gathered, requires a large number of complex multiplications. These can be largely eliminated by using linear approximation techniques. The result is a reduced processor size and chip count relative to ideally focussed processing and a correspondingly increased feasibility for spaceworthy implementation. A preliminary design and sizing for a spaceworthy linear approximation SAR azimuth processor meeting requirements similar to those of the SEASAT-A SAR was developed. The study resulted in a design with approximately 1500 IC's, 1.2 cubic feet of volume, and 350 watts of power for a single look, 4000 range cell azimuth processor with 25 meters resolution.

  16. Complete Genome Sequence of the RmInt1 Group II Intronless Sinorhizobium meliloti Strain RMO17

    PubMed Central

    Martínez-Abarca, Francisco; Nisa-Martínez, Rafael

    2014-01-01

    We report the complete genome sequence of the RmInt1 group II intronless Sinorhizobium meliloti strain RMO17 isolated from Medicago orbicularis nodules from Spanish soil. The genome consists of 6.73 Mb distributed between a single chromosome and two megaplasmids (the chromid pSymB and pSymA). PMID:25301650

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meurer, Aaron; Smith, Christopher P.; Paprocki, Mateusz

    Here, SymPy is a full featured computer algebra system (CAS) written in the Python programming language. It is open source, being licensed under the extremely permissive 3-clause BSD license. SymPy was started by Ondrej Certik in 2005, and it has since grown into a large open source project, with over 500 contributors.

  18. Chemical Laws, Idealization and Approximation

    NASA Astrophysics Data System (ADS)

    Tobin, Emma

    2013-07-01

    This paper examines the notion of laws in chemistry. Vihalemm ( Found Chem 5(1):7-22, 2003) argues that the laws of chemistry are fundamentally the same as the laws of physics they are all ceteris paribus laws which are true "in ideal conditions". In contrast, Scerri (2000) contends that the laws of chemistry are fundamentally different to the laws of physics, because they involve approximations. Christie ( Stud Hist Philos Sci 25:613-629, 1994) and Christie and Christie ( Of minds and molecules. Oxford University Press, New York, pp. 34-50, 2000) agree that the laws of chemistry are operationally different to the laws of physics, but claim that the distinction between exact and approximate laws is too simplistic to taxonomise them. Approximations in chemistry involve diverse kinds of activity and often what counts as a scientific law in chemistry is dictated by the context of its use in scientific practice. This paper addresses the question of what makes chemical laws distinctive independently of the separate question as to how they are related to the laws of physics. From an analysis of some candidate ceteris paribus laws in chemistry, this paper argues that there are two distinct kinds of ceteris paribus laws in chemistry; idealized and approximate chemical laws. Thus, while Christie ( Stud Hist Philos Sci 25:613-629, 1994) and Christie and Christie ( Of minds and molecules. Oxford University Press, New York, pp. 34--50, 2000) are correct to point out that the candidate generalisations in chemistry are diverse and heterogeneous, a distinction between idealizations and approximations can nevertheless be used to successfully taxonomise them.

  19. On Nash-Equilibria of Approximation-Stable Games

    NASA Astrophysics Data System (ADS)

    Awasthi, Pranjal; Balcan, Maria-Florina; Blum, Avrim; Sheffet, Or; Vempala, Santosh

    One reason for wanting to compute an (approximate) Nash equilibrium of a game is to predict how players will play. However, if the game has multiple equilibria that are far apart, or ɛ-equilibria that are far in variation distance from the true Nash equilibrium strategies, then this prediction may not be possible even in principle. Motivated by this consideration, in this paper we define the notion of games that are approximation stable, meaning that all ɛ-approximate equilibria are contained inside a small ball of radius Δ around a true equilibrium, and investigate a number of their properties. Many natural small games such as matching pennies and rock-paper-scissors are indeed approximation stable. We show furthermore there exist 2-player n-by-n approximation-stable games in which the Nash equilibrium and all approximate equilibria have support Ω(log n). On the other hand, we show all (ɛ,Δ) approximation-stable games must have an ɛ-equilibrium of support O(Δ^{2-o(1)}/ɛ2{log n}), yielding an immediate n^{O(Δ^{2-o(1)}/ɛ^2log n)}-time algorithm, improving over the bound of [11] for games satisfying this condition. We in addition give a polynomial-time algorithm for the case that Δ and ɛ are sufficiently close together. We also consider an inverse property, namely that all non-approximate equilibria are far from some true equilibrium, and give an efficient algorithm for games satisfying that condition.

  20. Negative energy, superluminosity, and holography

    NASA Astrophysics Data System (ADS)

    Polchinski, Joseph; Susskind, Leonard; Toumbas, Nicolaos

    1999-10-01

    The holographic connection between large N super Yang-Mills (SYM) theory and gravity in anti-de Sitter (AdS) space requires unfamiliar behavior of the SYM theory in the limit that the curvature of the AdS geometry becomes small. The paradoxical behavior includes superluminal oscillations and negative energy density. These effects typically occur in the SYM description of events which take place far from the boundary of AdS when the signal from the event arrives at the boundary. The paradoxes can be resolved by assuming a very rich collection of hidden degrees of freedom of the SYM theory which store information but give rise to no local energy density. These degrees of freedom, called precursors, are needed to make possible sudden apparently acausal energy momentum flows. Such behavior would be impossible in classical field theory as a consequence of the positivity of the energy density. However we show that these effects are not only allowed in quantum field theory but that we can model them in free quantum field theory.

  1. Legendre-tau approximations for functional differential equations

    NASA Technical Reports Server (NTRS)

    Ito, K.; Teglas, R.

    1986-01-01

    The numerical approximation of solutions to linear retarded functional differential equations are considered using the so-called Legendre-tau method. The functional differential equation is first reformulated as a partial differential equation with a nonlocal boundary condition involving time-differentiation. The approximate solution is then represented as a truncated Legendre series with time-varying coefficients which satisfy a certain system of ordinary differential equations. The method is very easy to code and yields very accurate approximations. Convergence is established, various numerical examples are presented, and comparison between the latter and cubic spline approximation is made.

  2. Legendre-Tau approximations for functional differential equations

    NASA Technical Reports Server (NTRS)

    Ito, K.; Teglas, R.

    1983-01-01

    The numerical approximation of solutions to linear functional differential equations are considered using the so called Legendre tau method. The functional differential equation is first reformulated as a partial differential equation with a nonlocal boundary condition involving time differentiation. The approximate solution is then represented as a truncated Legendre series with time varying coefficients which satisfy a certain system of ordinary differential equations. The method is very easy to code and yields very accurate approximations. Convergence is established, various numerical examples are presented, and comparison between the latter and cubic spline approximations is made.

  3. Piecewise linear approximation for hereditary control problems

    NASA Technical Reports Server (NTRS)

    Propst, Georg

    1987-01-01

    Finite dimensional approximations are presented for linear retarded functional differential equations by use of discontinuous piecewise linear functions. The approximation scheme is applied to optimal control problems when a quadratic cost integral has to be minimized subject to the controlled retarded system. It is shown that the approximate optimal feedback operators converge to the true ones both in case the cost integral ranges over a finite time interval as well as in the case it ranges over an infinite time interval. The arguments in the latter case rely on the fact that the piecewise linear approximations to stable systems are stable in a uniform sense. This feature is established using a vector-component stability criterion in the state space R(n) x L(2) and the favorable eigenvalue behavior of the piecewise linear approximations.

  4. Approximation concepts for efficient structural synthesis

    NASA Technical Reports Server (NTRS)

    Schmit, L. A., Jr.; Miura, H.

    1976-01-01

    It is shown that efficient structural synthesis capabilities can be created by using approximation concepts to mesh finite element structural analysis methods with nonlinear mathematical programming techniques. The history of the application of mathematical programming techniques to structural design optimization problems is reviewed. Several rather general approximation concepts are described along with the technical foundations of the ACCESS 1 computer program, which implements several approximation concepts. A substantial collection of structural design problems involving truss and idealized wing structures is presented. It is concluded that since the basic ideas employed in creating the ACCESS 1 program are rather general, its successful development supports the contention that the introduction of approximation concepts will lead to the emergence of a new generation of practical and efficient, large scale, structural synthesis capabilities in which finite element analysis methods and mathematical programming algorithms will play a central role.

  5. Complete Genome Sequence of the RmInt1 Group II Intronless Sinorhizobium meliloti Strain RMO17.

    PubMed

    Toro, Nicolás; Martínez-Abarca, Francisco; Nisa-Martínez, Rafael

    2014-10-09

    We report the complete genome sequence of the RmInt1 group II intronless Sinorhizobium meliloti strain RMO17 isolated from Medicago orbicularis nodules from Spanish soil. The genome consists of 6.73 Mb distributed between a single chromosome and two megaplasmids (the chromid pSymB and pSymA). Copyright © 2014 Toro et al.

  6. Approximations of e and ?: An Exploration

    ERIC Educational Resources Information Center

    Brown, Philip R.

    2017-01-01

    Fractional approximations of e and p are discovered by searching for repetitions or partial repetitions of digit strings in their expansions in different number bases. The discovery of such fractional approximations is suggested for students and teachers as an entry point into mathematics research.

  7. Topics in Multivariate Approximation Theory.

    DTIC Science & Technology

    1982-05-01

    once that a continuous function f can be approximated from Sa :o span (N3 )B63 to within *(f, 131 ), with 13 t- sup3 e3 dian PS The simple approximation...N(C) 3- U P s P3AC 0 0 ) . Then, as in Lebesgue’s inequality, we could conclude that f - Qf - f-p - Q(f-p) , for all p e k k therefore I(f-0f) JCI 4 I

  8. Approximation methods for combined thermal/structural design

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Shore, C. P.

    1979-01-01

    Two approximation concepts for combined thermal/structural design are evaluated. The first concept is an approximate thermal analysis based on the first derivatives of structural temperatures with respect to design variables. Two commonly used first-order Taylor series expansions are examined. The direct and reciprocal expansions are special members of a general family of approximations, and for some conditions other members of that family of approximations are more accurate. Several examples are used to compare the accuracy of the different expansions. The second approximation concept is the use of critical time points for combined thermal and stress analyses of structures with transient loading conditions. Significant time savings are realized by identifying critical time points and performing the stress analysis for those points only. The design of an insulated panel which is exposed to transient heating conditions is discussed.

  9. A result about scale transformation families in approximation

    NASA Astrophysics Data System (ADS)

    Apprato, Dominique; Gout, Christian

    2000-06-01

    Scale transformations are common in approximation. In surface approximation from rapidly varying data, one wants to suppress, or at least dampen the oscillations of the approximation near steep gradients implied by the data. In that case, scale transformations can be used to give some control over overshoot when the surface has large variations of its gradient. Conversely, in image analysis, scale transformations are used in preprocessing to enhance some features present on the image or to increase jumps of grey levels before segmentation of the image. In this paper, we establish the convergence of an approximation method which allows some control over the behavior of the approximation. More precisely, we study the convergence of an approximation from a data set of , while using scale transformations on the values before and after classical approximation. In addition, the construction of scale transformations is also given. The algorithm is presented with some numerical examples.

  10. Quirks of Stirling's Approximation

    ERIC Educational Resources Information Center

    Macrae, Roderick M.; Allgeier, Benjamin M.

    2013-01-01

    Stirling's approximation to ln "n"! is typically introduced to physical chemistry students as a step in the derivation of the statistical expression for the entropy. However, naive application of this approximation leads to incorrect conclusions. In this article, the problem is first illustrated using a familiar "toy…

  11. Approximations to camera sensor noise

    NASA Astrophysics Data System (ADS)

    Jin, Xiaodan; Hirakawa, Keigo

    2013-02-01

    Noise is present in all image sensor data. Poisson distribution is said to model the stochastic nature of the photon arrival process, while it is common to approximate readout/thermal noise by additive white Gaussian noise (AWGN). Other sources of signal-dependent noise such as Fano and quantization also contribute to the overall noise profile. Question remains, however, about how best to model the combined sensor noise. Though additive Gaussian noise with signal-dependent noise variance (SD-AWGN) and Poisson corruption are two widely used models to approximate the actual sensor noise distribution, the justification given to these types of models are based on limited evidence. The goal of this paper is to provide a more comprehensive characterization of random noise. We concluded by presenting concrete evidence that Poisson model is a better approximation to real camera model than SD-AWGN. We suggest further modification to Poisson that may improve the noise model.

  12. Approximate techniques of structural reanalysis

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Lowder, H. E.

    1974-01-01

    A study is made of two approximate techniques for structural reanalysis. These include Taylor series expansions for response variables in terms of design variables and the reduced-basis method. In addition, modifications to these techniques are proposed to overcome some of their major drawbacks. The modifications include a rational approach to the selection of the reduced-basis vectors and the use of Taylor series approximation in an iterative process. For the reduced basis a normalized set of vectors is chosen which consists of the original analyzed design and the first-order sensitivity analysis vectors. The use of the Taylor series approximation as a first (initial) estimate in an iterative process, can lead to significant improvements in accuracy, even with one iteration cycle. Therefore, the range of applicability of the reanalysis technique can be extended. Numerical examples are presented which demonstrate the gain in accuracy obtained by using the proposed modification techniques, for a wide range of variations in the design variables.

  13. Impact of Reduced Diurnal Temperature Range (DTR) on Grassland Mesocosms

    NASA Astrophysics Data System (ADS)

    Gregg, J. W.; Phillips, C.; Wilson, J.

    2010-12-01

    There has been considerable variation in the magnitude of change in diel temperature range due to on-going global warming and ecological responses are poorly understood. We compared the effects of +3.5C higher temperatures distributed either symmetrically (SYM, continuously +3.5C) or asymmetrically (ASYM, +5C dawn Tmin ramped to +2C midday Tmax and back) on planted native perennial grassland communities in climate-controlled chambers (14 spp. including grasses/forbs, annuals/perennials, N-fixers/not). Here, we present an overview of NPP, phenology, community composition, and whole ecosystem gas exchange results. Biomass was greater for both SYM and ASYM treatments during the fall and winter in all three years (+28-70%). However, spring growth was truncated for the warmer treatments due to reduced soil moisture which provided several extra weeks growth for AMB treatments to ‘catch-up’ to that of SYM and ASYM. Peak spring production and flowering were shifted 1-3 weeks earlier for SYM and ASYM treatments, resulting in a concomitant decrease in water use efficiency concomitant with increased soil moisture as measured via δ13C and whole ecosystem gas exchange (CER)/ evapotranspiration. CER measurements also showed the shift in timing of production and no difference in annual C assimilation between AMB, SYM and ASYM treatments. However, annual net ecosystem production (NEP) was negative for SYM and ASYM treatments which pointed towards the likely importance of changes in stored SOM. Mortality was 70% greater for SYM and ASYM treatments in the first year and remained greater through the three years of treatment application resulting in a decline in species diversity. Differential mortality was most apparent in the forb functional group with 50% of species affected. Survival of graminoid species was generally higher with no significant differences between treatments, resulting in a shift in functional group density and LAI to favor grass species in both warming

  14. Approximate Bayesian evaluations of measurement uncertainty

    NASA Astrophysics Data System (ADS)

    Possolo, Antonio; Bodnar, Olha

    2018-04-01

    The Guide to the Expression of Uncertainty in Measurement (GUM) includes formulas that produce an estimate of a scalar output quantity that is a function of several input quantities, and an approximate evaluation of the associated standard uncertainty. This contribution presents approximate, Bayesian counterparts of those formulas for the case where the output quantity is a parameter of the joint probability distribution of the input quantities, also taking into account any information about the value of the output quantity available prior to measurement expressed in the form of a probability distribution on the set of possible values for the measurand. The approximate Bayesian estimates and uncertainty evaluations that we present have a long history and illustrious pedigree, and provide sufficiently accurate approximations in many applications, yet are very easy to implement in practice. Differently from exact Bayesian estimates, which involve either (analytical or numerical) integrations, or Markov Chain Monte Carlo sampling, the approximations that we describe involve only numerical optimization and simple algebra. Therefore, they make Bayesian methods widely accessible to metrologists. We illustrate the application of the proposed techniques in several instances of measurement: isotopic ratio of silver in a commercial silver nitrate; odds of cryptosporidiosis in AIDS patients; height of a manometer column; mass fraction of chromium in a reference material; and potential-difference in a Zener voltage standard.

  15. Difference equation state approximations for nonlinear hereditary control problems

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1982-01-01

    Discrete approximation schemes for the solution of nonlinear hereditary control problems are constructed. The methods involve approximation by a sequence of optimal control problems in which the original infinite dimensional state equation has been approximated by a finite dimensional discrete difference equation. Convergence of the state approximations is argued using linear semigroup theory and is then used to demonstrate that solutions to the approximating optimal control problems in some sense approximate solutions to the original control problem. Two schemes, one based upon piecewise constant approximation, and the other involving spline functions are discussed. Numerical results are presented, analyzed and used to compare the schemes to other available approximation methods for the solution of hereditary control problems.

  16. Drop/Gas Interactions in Dense Sprays

    DTIC Science & Technology

    2001-06-19

    Xavier Bagnoud Bldg. Ann Arbor, Michigan 48109-2140, U.S.A. SUMMARY/OVERVIEW: Turbulence generation and liquid breakup are being studied due to their...S10-2 10-2 I E-1 1 E- ’ V 10 1-3C 1 E-3 _________ CHEN&FAETH(1 999) PREDICTIONS d,.0.5rmm dp (mm) SYM. n",,(kpartshims) SYM. 0.5------------ IA- 12

  17. Coulomb branches with complex singularities

    NASA Astrophysics Data System (ADS)

    Argyres, Philip C.; Martone, Mario

    2018-06-01

    We construct 4d superconformal field theories (SCFTs) whose Coulomb branches have singular complex structures. This implies, in particular, that their Coulomb branch coordinate rings are not freely generated. Our construction also gives examples of distinct SCFTs which have identical moduli space (Coulomb, Higgs, and mixed branch) geometries. These SCFTs thus provide an interesting arena in which to test the relationship between moduli space geometries and conformal field theory data. We construct these SCFTs by gauging certain discrete global symmetries of N = 4 superYang-Mills (sYM) theories. In the simplest cases, these discrete symmetries are outer automorphisms of the sYM gauge group, and so these theories have lagrangian descriptions as N = 4 sYM theories with disconnected gauge groups.

  18. Approximation algorithms for planning and control

    NASA Technical Reports Server (NTRS)

    Boddy, Mark; Dean, Thomas

    1989-01-01

    A control system operating in a complex environment will encounter a variety of different situations, with varying amounts of time available to respond to critical events. Ideally, such a control system will do the best possible with the time available. In other words, its responses should approximate those that would result from having unlimited time for computation, where the degree of the approximation depends on the amount of time it actually has. There exist approximation algorithms for a wide variety of problems. Unfortunately, the solution to any reasonably complex control problem will require solving several computationally intensive problems. Algorithms for successive approximation are a subclass of the class of anytime algorithms, algorithms that return answers for any amount of computation time, where the answers improve as more time is allotted. An architecture is described for allocating computation time to a set of anytime algorithms, based on expectations regarding the value of the answers they return. The architecture described is quite general, producing optimal schedules for a set of algorithms under widely varying conditions.

  19. Approximation methods in gravitational-radiation theory

    NASA Technical Reports Server (NTRS)

    Will, C. M.

    1986-01-01

    The observation of gravitational-radiation damping in the binary pulsar PSR 1913 + 16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. Recent developments are summarized in two areas in which approximations are important: (a) the quadrupole approxiamtion, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (b) the normal modes of oscillation of black holes, where the Wentzel-Kramers-Brillouin approximation gives accurate estimates of the complex frequencies of the modes.

  20. Generalized quantum theory of recollapsing homogeneous cosmologies

    NASA Astrophysics Data System (ADS)

    Craig, David; Hartle, James B.

    2004-06-01

    A sum-over-histories generalized quantum theory is developed for homogeneous minisuperspace type A Bianchi cosmological models, focusing on the particular example of the classically recollapsing Bianchi type-IX universe. The decoherence functional for such universes is exhibited. We show how the probabilities of decoherent sets of alternative, coarse-grained histories of these model universes can be calculated. We consider in particular the probabilities for classical evolution defined by a suitable coarse graining. For a restricted class of initial conditions and coarse grainings we exhibit the approximate decoherence of alternative histories in which the universe behaves classically and those in which it does not. For these situations we show that the probability is near unity for the universe to recontract classically if it expands classically. We also determine the relative probabilities of quasiclassical trajectories for initial states of WKB form, recovering for such states a precise form of the familiar heuristic “JṡdΣ” rule of quantum cosmology, as well as a generalization of this rule to generic initial states.

  1. Difference equation state approximations for nonlinear hereditary control problems

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1984-01-01

    Discrete approximation schemes for the solution of nonlinear hereditary control problems are constructed. The methods involve approximation by a sequence of optimal control problems in which the original infinite dimensional state equation has been approximated by a finite dimensional discrete difference equation. Convergence of the state approximations is argued using linear semigroup theory and is then used to demonstrate that solutions to the approximating optimal control problems in some sense approximate solutions to the original control problem. Two schemes, one based upon piecewise constant approximation, and the other involving spline functions are discussed. Numerical results are presented, analyzed and used to compare the schemes to other available approximation methods for the solution of hereditary control problems. Previously announced in STAR as N83-33589

  2. Approximate number word knowledge before the cardinal principle.

    PubMed

    Gunderson, Elizabeth A; Spaepen, Elizabet; Levine, Susan C

    2015-02-01

    Approximate number word knowledge-understanding the relation between the count words and the approximate magnitudes of sets-is a critical piece of knowledge that predicts later math achievement. However, researchers disagree about when children first show evidence of approximate number word knowledge-before, or only after, they have learned the cardinal principle. In two studies, children who had not yet learned the cardinal principle (subset-knowers) produced sets in response to number words (verbal comprehension task) and produced number words in response to set sizes (verbal production task). As evidence of approximate number word knowledge, we examined whether children's numerical responses increased with increasing numerosity of the stimulus. In Study 1, subset-knowers (ages 3.0-4.2 years) showed approximate number word knowledge above their knower-level on both tasks, but this effect did not extend to numbers above 4. In Study 2, we collected data from a broader age range of subset-knowers (ages 3.1-5.6 years). In this sample, children showed approximate number word knowledge on the verbal production task even when only examining set sizes above 4. Across studies, children's age predicted approximate number word knowledge (above 4) on the verbal production task when controlling for their knower-level, study (1 or 2), and parents' education, none of which predicted approximation ability. Thus, children can develop approximate knowledge of number words up to 10 before learning the cardinal principle. Furthermore, approximate number word knowledge increases with age and might not be closely related to the development of exact number word knowledge. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Computing Functions by Approximating the Input

    ERIC Educational Resources Information Center

    Goldberg, Mayer

    2012-01-01

    In computing real-valued functions, it is ordinarily assumed that the input to the function is known, and it is the output that we need to approximate. In this work, we take the opposite approach: we show how to compute the values of some transcendental functions by approximating the input to these functions, and obtaining exact answers for their…

  4. Approximating lens power.

    PubMed

    Kaye, Stephen B

    2009-04-01

    To provide a scalar measure of refractive error, based on geometric lens power through principal, orthogonal and oblique meridians, that is not limited to the paraxial and sag height approximations. A function is derived to model sections through the principal meridian of a lens, followed by rotation of the section through orthogonal and oblique meridians. Average focal length is determined using the definition for the average of a function. Average univariate power in the principal meridian (including spherical aberration), can be computed from the average of a function over the angle of incidence as determined by the parameters of the given lens, or adequately computed from an integrated series function. Average power through orthogonal and oblique meridians, can be similarly determined using the derived formulae. The widely used computation for measuring refractive error, the spherical equivalent, introduces non-constant approximations, leading to a systematic bias. The equations proposed provide a good univariate representation of average lens power and are not subject to a systematic bias. They are particularly useful for the analysis of aggregate data, correlating with biological treatment variables and for developing analyses, which require a scalar equivalent representation of refractive power.

  5. Explicit approximations to estimate the perturbative diffusivity in the presence of convectivity and damping. I. Semi-infinite slab approximations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkel, M. van; Fellow of the Japan Society for the Promotion of Science; FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Association EURATOM- FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein

    2014-11-15

    In this paper, a number of new approximations are introduced to estimate the perturbative diffusivity (χ), convectivity (V), and damping (τ) in cylindrical geometry. For this purpose, the harmonic components of heat waves induced by localized deposition of modulated power are used. The approximations are based on semi-infinite slab approximations of the heat equation. The main result is the approximation of χ under the influence of V and τ based on the phase of two harmonics making the estimate less sensitive to calibration errors. To understand why the slab approximations can estimate χ well in cylindrical geometry, the relationships betweenmore » heat transport models in slab and cylindrical geometry are studied. In addition, the relationship between amplitude and phase with respect to their derivatives, used to estimate χ, is discussed. The results are presented in terms of the relative error for the different derived approximations for different values of frequency, transport coefficients, and dimensionless radius. The approximations show a significant region in which χ, V, and τ can be estimated well, but also regions in which the error is large. Also, it is shown that some compensation is necessary to estimate V and τ in a cylindrical geometry. On the other hand, errors resulting from the simplified assumptions are also discussed showing that estimating realistic values for V and τ based on infinite domains will be difficult in practice. This paper is the first part (Part I) of a series of three papers. In Part II and Part III, cylindrical approximations based directly on semi-infinite cylindrical domain (outward propagating heat pulses) and inward propagating heat pulses in a cylindrical domain, respectively, will be treated.« less

  6. Pawlak Algebra and Approximate Structure on Fuzzy Lattice

    PubMed Central

    Zhuang, Ying; Liu, Wenqi; Wu, Chin-Chia; Li, Jinhai

    2014-01-01

    The aim of this paper is to investigate the general approximation structure, weak approximation operators, and Pawlak algebra in the framework of fuzzy lattice, lattice topology, and auxiliary ordering. First, we prove that the weak approximation operator space forms a complete distributive lattice. Then we study the properties of transitive closure of approximation operators and apply them to rough set theory. We also investigate molecule Pawlak algebra and obtain some related properties. PMID:25152922

  7. Pawlak algebra and approximate structure on fuzzy lattice.

    PubMed

    Zhuang, Ying; Liu, Wenqi; Wu, Chin-Chia; Li, Jinhai

    2014-01-01

    The aim of this paper is to investigate the general approximation structure, weak approximation operators, and Pawlak algebra in the framework of fuzzy lattice, lattice topology, and auxiliary ordering. First, we prove that the weak approximation operator space forms a complete distributive lattice. Then we study the properties of transitive closure of approximation operators and apply them to rough set theory. We also investigate molecule Pawlak algebra and obtain some related properties.

  8. A Generalization of the Karush-Kuhn-Tucker Theorem for Approximate Solutions of Mathematical Programming Problems Based on Quadratic Approximation

    NASA Astrophysics Data System (ADS)

    Voloshinov, V. V.

    2018-03-01

    In computations related to mathematical programming problems, one often has to consider approximate, rather than exact, solutions satisfying the constraints of the problem and the optimality criterion with a certain error. For determining stopping rules for iterative procedures, in the stability analysis of solutions with respect to errors in the initial data, etc., a justified characteristic of such solutions that is independent of the numerical method used to obtain them is needed. A necessary δ-optimality condition in the smooth mathematical programming problem that generalizes the Karush-Kuhn-Tucker theorem for the case of approximate solutions is obtained. The Lagrange multipliers corresponding to the approximate solution are determined by solving an approximating quadratic programming problem.

  9. Dynamical cluster approximation plus semiclassical approximation study for a Mott insulator and d-wave pairing

    NASA Astrophysics Data System (ADS)

    Kim, SungKun; Lee, Hunpyo

    2017-06-01

    Via a dynamical cluster approximation with N c = 4 in combination with a semiclassical approximation (DCA+SCA), we study the doped two-dimensional Hubbard model. We obtain a plaquette antiferromagnetic (AF) Mott insulator, a plaquette AF ordered metal, a pseudogap (or d-wave superconductor) and a paramagnetic metal by tuning the doping concentration. These features are similar to the behaviors observed in copper-oxide superconductors and are in qualitative agreement with the results calculated by the cluster dynamical mean field theory with the continuous-time quantum Monte Carlo (CDMFT+CTQMC) approach. The results of our DCA+SCA differ from those of the CDMFT+CTQMC approach in that the d-wave superconducting order parameters are shown even in the high doped region, unlike the results of the CDMFT+CTQMC approach. We think that the strong plaquette AF orderings in the dynamical cluster approximation (DCA) with N c = 4 suppress superconducting states with increasing doping up to strongly doped region, because frozen dynamical fluctuations in a semiclassical approximation (SCA) approach are unable to destroy those orderings. Our calculation with short-range spatial fluctuations is initial research, because the SCA can manage long-range spatial fluctuations in feasible computational times beyond the CDMFT+CTQMC tool. We believe that our future DCA+SCA calculations should supply information on the fully momentum-resolved physical properties, which could be compared with the results measured by angle-resolved photoemission spectroscopy experiments.

  10. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    This paper describes a method to efficiently and accurately approximate the effect of design changes on structural response. The key to this new method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in msot cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacement are used to approximate bending stresses.

  11. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    A method to efficiently and accurately approximate the effect of design changes on structural response is described. The key to this method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in most cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacements are used to approximate bending stresses.

  12. Variationally consistent approximation scheme for charge transfer

    NASA Technical Reports Server (NTRS)

    Halpern, A. M.

    1978-01-01

    The author has developed a technique for testing various charge-transfer approximation schemes for consistency with the requirements of the Kohn variational principle for the amplitude to guarantee that the amplitude is correct to second order in the scattering wave functions. Applied to Born-type approximations for charge transfer it allows the selection of particular groups of first-, second-, and higher-Born-type terms that obey the consistency requirement, and hence yield more reliable approximation to the amplitude.

  13. Uniform analytic approximation of Wigner rotation matrices

    NASA Astrophysics Data System (ADS)

    Hoffmann, Scott E.

    2018-02-01

    We derive the leading asymptotic approximation, for low angle θ, of the Wigner rotation matrix elements, dm1m2 j(θ ) , uniform in j, m1, and m2. The result is in terms of a Bessel function of integer order. We numerically investigate the error for a variety of cases and find that the approximation can be useful over a significant range of angles. This approximation has application in the partial wave analysis of wavepacket scattering.

  14. Early nodule senescence is activated in symbiotic mutants of pea (Pisum sativum L.) forming ineffective nodules blocked at different nodule developmental stages.

    PubMed

    Serova, Tatiana A; Tsyganova, Anna V; Tsyganov, Viktor E

    2018-04-03

    Plant symbiotic mutants are useful tool to uncover the molecular-genetic mechanisms of nodule senescence. The pea (Pisum sativum L.) mutants SGEFix - -1 (sym40), SGEFix - -3 (sym26), and SGEFix - -7 (sym27) display an early nodule senescence phenotype, whereas the mutant SGEFix - -2 (sym33) does not show premature degradation of symbiotic structures, but its nodules show an enhanced immune response. The nodules of these mutants were compared with each other and with those of the wild-type SGE line using seven marker genes that are known to be activated during nodule senescence. In wild-type SGE nodules, transcript levels of all of the senescence-associated genes were highest at 6 weeks after inoculation (WAI). The senescence-associated genes showed higher transcript abundance in mutant nodules than in wild-type nodules at 2 WAI and attained maximum levels in the mutant nodules at 4 WAI. Immunolocalization analyses showed that the ethylene precursor 1-aminocyclopropane-1-carboxylate accumulated earlier in the mutant nodules than in wild-type nodules. Together, these results showed that nodule senescence was activated in ineffective nodules blocked at different developmental stages in pea lines that harbor mutations in four symbiotic genes.

  15. Inversion and approximation of Laplace transforms

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1980-01-01

    A method of inverting Laplace transforms by using a set of orthonormal functions is reported. As a byproduct of the inversion, approximation of complicated Laplace transforms by a transform with a series of simple poles along the left half plane real axis is shown. The inversion and approximation process is simple enough to be put on a programmable hand calculator.

  16. Minimal entropy approximation for cellular automata

    NASA Astrophysics Data System (ADS)

    Fukś, Henryk

    2014-02-01

    We present a method for the construction of approximate orbits of measures under the action of cellular automata which is complementary to the local structure theory. The local structure theory is based on the idea of Bayesian extension, that is, construction of a probability measure consistent with given block probabilities and maximizing entropy. If instead of maximizing entropy one minimizes it, one can develop another method for the construction of approximate orbits, at the heart of which is the iteration of finite-dimensional maps, called minimal entropy maps. We present numerical evidence that the minimal entropy approximation sometimes outperforms the local structure theory in characterizing the properties of cellular automata. The density response curve for elementary CA rule 26 is used to illustrate this claim.

  17. Laplace approximation for Bessel functions of matrix argument

    NASA Astrophysics Data System (ADS)

    Butler, Ronald W.; Wood, Andrew T. A.

    2003-06-01

    We derive Laplace approximations to three functions of matrix argument which arise in statistics and elsewhere: matrix Bessel A[nu]; matrix Bessel B[nu]; and the type II confluent hypergeometric function of matrix argument, [Psi]. We examine the theoretical and numerical properties of the approximations. On the theoretical side, it is shown that the Laplace approximations to A[nu], B[nu] and [Psi] given here, together with the Laplace approximations to the matrix argument functions 1F1 and 2F1 presented in Butler and Wood (Laplace approximations to hyper-geometric functions with matrix argument, Ann. Statist. (2002)), satisfy all the important confluence relations and symmetry relations enjoyed by the original functions.

  18. Approximation Set of the Interval Set in Pawlak's Space

    PubMed Central

    Wang, Jin; Wang, Guoyin

    2014-01-01

    The interval set is a special set, which describes uncertainty of an uncertain concept or set Z with its two crisp boundaries named upper-bound set and lower-bound set. In this paper, the concept of similarity degree between two interval sets is defined at first, and then the similarity degrees between an interval set and its two approximations (i.e., upper approximation set R¯(Z) and lower approximation set R_(Z)) are presented, respectively. The disadvantages of using upper-approximation set R¯(Z) or lower-approximation set R_(Z) as approximation sets of the uncertain set (uncertain concept) Z are analyzed, and a new method for looking for a better approximation set of the interval set Z is proposed. The conclusion that the approximation set R 0.5(Z) is an optimal approximation set of interval set Z is drawn and proved successfully. The change rules of R 0.5(Z) with different binary relations are analyzed in detail. Finally, a kind of crisp approximation set of the interval set Z is constructed. We hope this research work will promote the development of both the interval set model and granular computing theory. PMID:25177721

  19. Function approximation using combined unsupervised and supervised learning.

    PubMed

    Andras, Peter

    2014-03-01

    Function approximation is one of the core tasks that are solved using neural networks in the context of many engineering problems. However, good approximation results need good sampling of the data space, which usually requires exponentially increasing volume of data as the dimensionality of the data increases. At the same time, often the high-dimensional data is arranged around a much lower dimensional manifold. Here we propose the breaking of the function approximation task for high-dimensional data into two steps: (1) the mapping of the high-dimensional data onto a lower dimensional space corresponding to the manifold on which the data resides and (2) the approximation of the function using the mapped lower dimensional data. We use over-complete self-organizing maps (SOMs) for the mapping through unsupervised learning, and single hidden layer neural networks for the function approximation through supervised learning. We also extend the two-step procedure by considering support vector machines and Bayesian SOMs for the determination of the best parameters for the nonlinear neurons in the hidden layer of the neural networks used for the function approximation. We compare the approximation performance of the proposed neural networks using a set of functions and show that indeed the neural networks using combined unsupervised and supervised learning outperform in most cases the neural networks that learn the function approximation using the original high-dimensional data.

  20. A Survey of Techniques for Approximate Computing

    DOE PAGES

    Mittal, Sparsh

    2016-03-18

    Approximate computing trades off computation quality with the effort expended and as rising performance demands confront with plateauing resource budgets, approximate computing has become, not merely attractive, but even imperative. Here, we present a survey of techniques for approximate computing (AC). We discuss strategies for finding approximable program portions and monitoring output quality, techniques for using AC in different processing units (e.g., CPU, GPU and FPGA), processor components, memory technologies etc., and programming frameworks for AC. Moreover, we classify these techniques based on several key characteristics to emphasize their similarities and differences. Finally, the aim of this paper is tomore » provide insights to researchers into working of AC techniques and inspire more efforts in this area to make AC the mainstream computing approach in future systems.« less

  1. A predictive model of geosynchronous magnetopause crossings

    NASA Astrophysics Data System (ADS)

    Dmitriev, A.; Suvorova, A.; Chao, J.-K.

    2011-05-01

    We have developed a model predicting whether or not the magnetopause crosses geosynchronous orbit at a given location for given solar wind pressure Psw, Bz component of the interplanetary magnetic field (IMF), and geomagnetic conditions characterized by 1 min SYM-H index. The model is based on more than 300 geosynchronous magnetopause crossings (GMCs) and about 6000 min when geosynchronous satellites of GOES and Los Alamos National Laboratory (LANL) series are located in the magnetosheath (so-called MSh intervals) in 1994-2001. Minimizing of the Psw required for GMCs and MSh intervals at various locations, Bz, and SYM-H allows describing both an effect of magnetopause dawn-dusk asymmetry and saturation of Bz influence for very large southward IMF. The asymmetry is strong for large negative Bz and almost disappears when Bz is positive. We found that the larger the amplitude of negative SYM-H, the lower the solar wind pressure required for GMCs. We attribute this effect to a depletion of the dayside magnetic field by a storm time intensification of the cross-tail current. It is also found that the magnitude of threshold for Bz saturation increases with SYM-H index such that for small negative and positive SYM-H the effect of saturation diminishes. This supports an idea that enhanced thermal pressure of the magnetospheric plasma and ring current particles during magnetic storms results in the saturation of magnetic effect of the IMF Bz at the dayside magnetopause. A noticeable advantage of the model's prediction capabilities in comparison with other magnetopause models makes the model useful for space weather predictions.

  2. Facial Aesthetic Outcomes of Cleft Surgery: Assessment of Discrete Lip and Nose Images Compared with Digital Symmetry Analysis.

    PubMed

    Deall, Ciara E; Kornmann, Nirvana S S; Bella, Husam; Wallis, Katy L; Hardwicke, Joseph T; Su, Ting-Li; Richard, Bruce M

    2016-10-01

    High-quality aesthetic outcomes are of paramount importance to children growing up after cleft lip and palate surgery. Establishing a validated and reliable assessment tool for cleft professionals and families will facilitate cleft units, surgeons, techniques, and protocols to be audited and compared with greater confidence. This study used exemplar images across a five-point aesthetic scale, identified in a pilot project, to score lips and noses as separate units and compared these human scores with computer-based SymNose symmetry scores. Forty-five assessors (17 cleft surgeons nationally and 28 other cleft professionals from the UK South West Tri-centre units), scored 25 standardized photographs, uploaded randomly onto a Web-based platform, twice. Each photograph was shown in three forms: lip and nose together, and separately cropped images of nose only and lip only. The same images were analyzed using the SymNose software program. Scoring lips gave the best intrarater and interrater reliabilities. Nose scores were more variable. Lip scoring associated most closely with the whole-image score. SymNose ranking of the lip images related highly to the same ranking by humans (p = 0.001). The exemplar images maintained their established previous ranking. Images illustrating the aesthetic outcome grades are confirmed. The lip score is reliable and seems to dominate in the whole-image score. Noses are much harder to score reliably. It appears that SymNose can score lip images very effectively by symmetry. Further use of SymNose will be investigated, and families of children with cleft will trial the scoring system. Therapeutic, III.

  3. Meta-Regression Approximations to Reduce Publication Selection Bias

    ERIC Educational Resources Information Center

    Stanley, T. D.; Doucouliagos, Hristos

    2014-01-01

    Publication selection bias is a serious challenge to the integrity of all empirical sciences. We derive meta-regression approximations to reduce this bias. Our approach employs Taylor polynomial approximations to the conditional mean of a truncated distribution. A quadratic approximation without a linear term, precision-effect estimate with…

  4. Thin-wall approximation in vacuum decay: A lemma

    NASA Astrophysics Data System (ADS)

    Brown, Adam R.

    2018-05-01

    The "thin-wall approximation" gives a simple estimate of the decay rate of an unstable quantum field. Unfortunately, the approximation is uncontrolled. In this paper I show that there are actually two different thin-wall approximations and that they bracket the true decay rate: I prove that one is an upper bound and the other a lower bound. In the thin-wall limit, the two approximations converge. In the presence of gravity, a generalization of this lemma provides a simple sufficient condition for nonperturbative vacuum instability.

  5. Smooth function approximation using neural networks.

    PubMed

    Ferrari, Silvia; Stengel, Robert F

    2005-01-01

    An algebraic approach for representing multidimensional nonlinear functions by feedforward neural networks is presented. In this paper, the approach is implemented for the approximation of smooth batch data containing the function's input, output, and possibly, gradient information. The training set is associated to the network adjustable parameters by nonlinear weight equations. The cascade structure of these equations reveals that they can be treated as sets of linear systems. Hence, the training process and the network approximation properties can be investigated via linear algebra. Four algorithms are developed to achieve exact or approximate matching of input-output and/or gradient-based training sets. Their application to the design of forward and feedback neurocontrollers shows that algebraic training is characterized by faster execution speeds and better generalization properties than contemporary optimization techniques.

  6. Random-Phase Approximation Methods

    NASA Astrophysics Data System (ADS)

    Chen, Guo P.; Voora, Vamsee K.; Agee, Matthew M.; Balasubramani, Sree Ganesh; Furche, Filipp

    2017-05-01

    Random-phase approximation (RPA) methods are rapidly emerging as cost-effective validation tools for semilocal density functional computations. We present the theoretical background of RPA in an intuitive rather than formal fashion, focusing on the physical picture of screening and simple diagrammatic analysis. A new decomposition of the RPA correlation energy into plasmonic modes leads to an appealing visualization of electron correlation in terms of charge density fluctuations. Recent developments in the areas of beyond-RPA methods, RPA correlation potentials, and efficient algorithms for RPA energy and property calculations are reviewed. The ability of RPA to approximately capture static correlation in molecules is quantified by an analysis of RPA natural occupation numbers. We illustrate the use of RPA methods in applications to small-gap systems such as open-shell d- and f-element compounds, radicals, and weakly bound complexes, where semilocal density functional results exhibit strong functional dependence.

  7. Monotonically improving approximate answers to relational algebra queries

    NASA Technical Reports Server (NTRS)

    Smith, Kenneth P.; Liu, J. W. S.

    1989-01-01

    We present here a query processing method that produces approximate answers to queries posed in standard relational algebra. This method is monotone in the sense that the accuracy of the approximate result improves with the amount of time spent producing the result. This strategy enables us to trade the time to produce the result for the accuracy of the result. An approximate relational model that characterizes appromimate relations and a partial order for comparing them is developed. Relational operators which operate on and return approximate relations are defined.

  8. Approximate isotropic cloak for the Maxwell equations

    NASA Astrophysics Data System (ADS)

    Ghosh, Tuhin; Tarikere, Ashwin

    2018-05-01

    We construct a regular isotropic approximate cloak for the Maxwell system of equations. The method of transformation optics has enabled the design of electromagnetic parameters that cloak a region from external observation. However, these constructions are singular and anisotropic, making practical implementation difficult. Thus, regular approximations to these cloaks have been constructed that cloak a given region to any desired degree of accuracy. In this paper, we show how to construct isotropic approximations to these regularized cloaks using homogenization techniques so that one obtains cloaking of arbitrary accuracy with regular and isotropic parameters.

  9. An object oriented code for simulating supersymmetric Yang-Mills theories

    NASA Astrophysics Data System (ADS)

    Catterall, Simon; Joseph, Anosh

    2012-06-01

    We present SUSY_LATTICE - a C++ program that can be used to simulate certain classes of supersymmetric Yang-Mills (SYM) theories, including the well known N=4 SYM in four dimensions, on a flat Euclidean space-time lattice. Discretization of SYM theories is an old problem in lattice field theory. It has resisted solution until recently when new ideas drawn from orbifold constructions and topological field theories have been brought to bear on the question. The result has been the creation of a new class of lattice gauge theories in which the lattice action is invariant under one or more supersymmetries. The resultant theories are local, free of doublers and also possess exact gauge-invariance. In principle they form the basis for a truly non-perturbative definition of the continuum SYM theories. In the continuum limit they reproduce versions of the SYM theories formulated in terms of twisted fields, which on a flat space-time is just a change of the field variables. In this paper, we briefly review these ideas and then go on to provide the details of the C++ code. We sketch the design of the code, with particular emphasis being placed on SYM theories with N=(2,2) in two dimensions and N=4 in three and four dimensions, making one-to-one comparisons between the essential components of the SYM theories and their corresponding counterparts appearing in the simulation code. The code may be used to compute several quantities associated with the SYM theories such as the Polyakov loop, mean energy, and the width of the scalar eigenvalue distributions. Program summaryProgram title: SUSY_LATTICE Catalogue identifier: AELS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 9315 No. of bytes in distributed program

  10. Explicit approximations to estimate the perturbative diffusivity in the presence of convectivity and damping. III. Cylindrical approximations for heat waves traveling inwards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkel, M. van; Fellow of the Japan Society for the Promotion of Science; FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein

    In this paper, a number of new explicit approximations are introduced to estimate the perturbative diffusivity (χ), convectivity (V), and damping (τ) in cylindrical geometry. For this purpose, the harmonic components of heat waves induced by localized deposition of modulated power are used. The approximations are based on the heat equation in cylindrical geometry using the symmetry (Neumann) boundary condition at the plasma center. This means that the approximations derived here should be used only to estimate transport coefficients between the plasma center and the off-axis perturbative source. If the effect of cylindrical geometry is small, it is also possiblemore » to use semi-infinite domain approximations presented in Part I and Part II of this series. A number of new approximations are derived in this part, Part III, based upon continued fractions of the modified Bessel function of the first kind and the confluent hypergeometric function of the first kind. These approximations together with the approximations based on semi-infinite domains are compared for heat waves traveling towards the center. The relative error for the different derived approximations is presented for different values of the frequency, transport coefficients, and dimensionless radius. Moreover, it is shown how combinations of different explicit formulas can be used to estimate the transport coefficients over a large parameter range for cases without convection and damping, cases with damping only, and cases with convection and damping. The relative error between the approximation and its underlying model is below 2% for the case, where only diffusivity and damping are considered. If also convectivity is considered, the diffusivity can be estimated well in a large region, but there is also a large region in which no suitable approximation is found. This paper is the third part (Part III) of a series of three papers. In Part I, the semi-infinite slab approximations have been treated. In

  11. Structural Reliability Analysis and Optimization: Use of Approximations

    NASA Technical Reports Server (NTRS)

    Grandhi, Ramana V.; Wang, Liping

    1999-01-01

    This report is intended for the demonstration of function approximation concepts and their applicability in reliability analysis and design. Particularly, approximations in the calculation of the safety index, failure probability and structural optimization (modification of design variables) are developed. With this scope in mind, extensive details on probability theory are avoided. Definitions relevant to the stated objectives have been taken from standard text books. The idea of function approximations is to minimize the repetitive use of computationally intensive calculations by replacing them with simpler closed-form equations, which could be nonlinear. Typically, the approximations provide good accuracy around the points where they are constructed, and they need to be periodically updated to extend their utility. There are approximations in calculating the failure probability of a limit state function. The first one, which is most commonly discussed, is how the limit state is approximated at the design point. Most of the time this could be a first-order Taylor series expansion, also known as the First Order Reliability Method (FORM), or a second-order Taylor series expansion (paraboloid), also known as the Second Order Reliability Method (SORM). From the computational procedure point of view, this step comes after the design point identification; however, the order of approximation for the probability of failure calculation is discussed first, and it is denoted by either FORM or SORM. The other approximation of interest is how the design point, or the most probable failure point (MPP), is identified. For iteratively finding this point, again the limit state is approximated. The accuracy and efficiency of the approximations make the search process quite practical for analysis intensive approaches such as the finite element methods; therefore, the crux of this research is to develop excellent approximations for MPP identification and also different

  12. Variational Gaussian approximation for Poisson data

    NASA Astrophysics Data System (ADS)

    Arridge, Simon R.; Ito, Kazufumi; Jin, Bangti; Zhang, Chen

    2018-02-01

    The Poisson model is frequently employed to describe count data, but in a Bayesian context it leads to an analytically intractable posterior probability distribution. In this work, we analyze a variational Gaussian approximation to the posterior distribution arising from the Poisson model with a Gaussian prior. This is achieved by seeking an optimal Gaussian distribution minimizing the Kullback-Leibler divergence from the posterior distribution to the approximation, or equivalently maximizing the lower bound for the model evidence. We derive an explicit expression for the lower bound, and show the existence and uniqueness of the optimal Gaussian approximation. The lower bound functional can be viewed as a variant of classical Tikhonov regularization that penalizes also the covariance. Then we develop an efficient alternating direction maximization algorithm for solving the optimization problem, and analyze its convergence. We discuss strategies for reducing the computational complexity via low rank structure of the forward operator and the sparsity of the covariance. Further, as an application of the lower bound, we discuss hierarchical Bayesian modeling for selecting the hyperparameter in the prior distribution, and propose a monotonically convergent algorithm for determining the hyperparameter. We present extensive numerical experiments to illustrate the Gaussian approximation and the algorithms.

  13. Approximate Computing Techniques for Iterative Graph Algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panyala, Ajay R.; Subasi, Omer; Halappanavar, Mahantesh

    Approximate computing enables processing of large-scale graphs by trading off quality for performance. Approximate computing techniques have become critical not only due to the emergence of parallel architectures but also the availability of large scale datasets enabling data-driven discovery. Using two prototypical graph algorithms, PageRank and community detection, we present several approximate computing heuristics to scale the performance with minimal loss of accuracy. We present several heuristics including loop perforation, data caching, incomplete graph coloring and synchronization, and evaluate their efficiency. We demonstrate performance improvements of up to 83% for PageRank and up to 450x for community detection, with lowmore » impact of accuracy for both the algorithms. We expect the proposed approximate techniques will enable scalable graph analytics on data of importance to several applications in science and their subsequent adoption to scale similar graph algorithms.« less

  14. Pumping approximately integrable systems

    PubMed Central

    Lange, Florian; Lenarčič, Zala; Rosch, Achim

    2017-01-01

    Weak perturbations can drive an interacting many-particle system far from its initial equilibrium state if one is able to pump into degrees of freedom approximately protected by conservation laws. This concept has for example been used to realize Bose–Einstein condensates of photons, magnons and excitons. Integrable quantum systems, like the one-dimensional Heisenberg model, are characterized by an infinite set of conservation laws. Here, we develop a theory of weakly driven integrable systems and show that pumping can induce large spin or heat currents even in the presence of integrability breaking perturbations, since it activates local and quasi-local approximate conserved quantities. The resulting steady state is qualitatively captured by a truncated generalized Gibbs ensemble with Lagrange parameters that depend on the structure but not on the overall amplitude of perturbations nor the initial state. We suggest to use spin-chain materials driven by terahertz radiation to realize integrability-based spin and heat pumps. PMID:28598444

  15. Sensitivity analysis and approximation methods for general eigenvalue problems

    NASA Technical Reports Server (NTRS)

    Murthy, D. V.; Haftka, R. T.

    1986-01-01

    Optimization of dynamic systems involving complex non-hermitian matrices is often computationally expensive. Major contributors to the computational expense are the sensitivity analysis and reanalysis of a modified design. The present work seeks to alleviate this computational burden by identifying efficient sensitivity analysis and approximate reanalysis methods. For the algebraic eigenvalue problem involving non-hermitian matrices, algorithms for sensitivity analysis and approximate reanalysis are classified, compared and evaluated for efficiency and accuracy. Proper eigenvector normalization is discussed. An improved method for calculating derivatives of eigenvectors is proposed based on a more rational normalization condition and taking advantage of matrix sparsity. Important numerical aspects of this method are also discussed. To alleviate the problem of reanalysis, various approximation methods for eigenvalues are proposed and evaluated. Linear and quadratic approximations are based directly on the Taylor series. Several approximation methods are developed based on the generalized Rayleigh quotient for the eigenvalue problem. Approximation methods based on trace theorem give high accuracy without needing any derivatives. Operation counts for the computation of the approximations are given. General recommendations are made for the selection of appropriate approximation technique as a function of the matrix size, number of design variables, number of eigenvalues of interest and the number of design points at which approximation is sought.

  16. Convergence Rates of Finite Difference Stochastic Approximation Algorithms

    DTIC Science & Technology

    2016-06-01

    dfferences as gradient approximations. It is shown that the convergence of these algorithms can be accelerated by controlling the implementation of the...descent algorithm, under various updating schemes using finite dfferences as gradient approximations. It is shown that the convergence of these...the Kiefer-Wolfowitz algorithm and the mirror descent algorithm, under various updating schemes using finite differences as gradient approximations. It

  17. Capacitor-Chain Successive-Approximation ADC

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas

    2003-01-01

    A proposed successive-approximation analog-to-digital converter (ADC) would contain a capacitively terminated chain of identical capacitor cells. Like a conventional successive-approximation ADC containing a bank of binary-scaled capacitors, the proposed ADC would store an input voltage on a sample-and-hold capacitor and would digitize the stored input voltage by finding the closest match between this voltage and a capacitively generated sum of binary fractions of a reference voltage (Vref). However, the proposed capacitor-chain ADC would offer two major advantages over a conventional binary-scaled-capacitor ADC: (1) In a conventional ADC that digitizes to n bits, the largest capacitor (representing the most significant bit) must have 2(exp n-1) times as much capacitance, and hence, approximately 2(exp n-1) times as much area as does the smallest capacitor (representing the least significant bit), so that the total capacitor area must be 2(exp n) times that of the smallest capacitor. In the proposed capacitor-chain ADC, there would be three capacitors per cell, each approximately equal to the smallest capacitor in the conventional ADC, and there would be one cell per bit. Therefore, the total capacitor area would be only about 3(exp n) times that of the smallest capacitor. The net result would be that the proposed ADC could be considerably smaller than the conventional ADC. (2) Because of edge effects, parasitic capacitances, and manufacturing tolerances, it is difficult to make capacitor banks in which the values of capacitance are scaled by powers of 2 to the required precision. In contrast, because all the capacitors in the proposed ADC would be identical, the problem of precise binary scaling would not arise.

  18. Rational Approximations with Hankel-Norm Criterion

    DTIC Science & Technology

    1980-01-01

    REPORT TYPE ANDu DATES COVERED It) L. TITLE AND SLWUIlL Fi901 ia FUNDING NUMOIRS, RATIONAL APPROXIMATIONS WITH HANKEL-NORM CRITERION PE61102F i...problem is proved to be reducible to obtain a two-variable all- pass ration 1 function, interpolating a set of parametric values at specified points inside...PAGES WHICH DO NOT REPRODUCE LEGIBLY. V" C - w RATIONAL APPROXIMATIONS WITH HANKEL-NORM CRITERION* Y. Genin* Philips Research Lab. 2, avenue van

  19. Approximate reasoning using terminological models

    NASA Technical Reports Server (NTRS)

    Yen, John; Vaidya, Nitin

    1992-01-01

    Term Subsumption Systems (TSS) form a knowledge-representation scheme in AI that can express the defining characteristics of concepts through a formal language that has a well-defined semantics and incorporates a reasoning mechanism that can deduce whether one concept subsumes another. However, TSS's have very limited ability to deal with the issue of uncertainty in knowledge bases. The objective of this research is to address issues in combining approximate reasoning with term subsumption systems. To do this, we have extended an existing AI architecture (CLASP) that is built on the top of a term subsumption system (LOOM). First, the assertional component of LOOM has been extended for asserting and representing uncertain propositions. Second, we have extended the pattern matcher of CLASP for plausible rule-based inferences. Third, an approximate reasoning model has been added to facilitate various kinds of approximate reasoning. And finally, the issue of inconsistency in truth values due to inheritance is addressed using justification of those values. This architecture enhances the reasoning capabilities of expert systems by providing support for reasoning under uncertainty using knowledge captured in TSS. Also, as definitional knowledge is explicit and separate from heuristic knowledge for plausible inferences, the maintainability of expert systems could be improved.

  20. Comparison of dynamical approximation schemes for nonlinear gravitaional clustering

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.

    1994-01-01

    We have recently conducted a controlled comparison of a number of approximations for gravitational clustering against the same n-body simulations. These include ordinary linear perturbation theory (Eulerian), the lognormal approximation, the adhesion approximation, the frozen-flow approximation, the Zel'dovich approximation (describable as first-order Lagrangian perturbation theory), and its second-order generalization. In the last two cases we also created new versions of the approximation by truncation, i.e., by smoothing the initial conditions with various smoothing window shapes and varying their sizes. The primary tool for comparing simulations to approximation schemes was cross-correlation of the evolved mass density fields, testing the extent to which mass was moved to the right place. The Zel'dovich approximation, with initial convolution with a Gaussian e(exp -k(exp 2)/k(sub G(exp 2)), where k(sub G) is adjusted to be just into the nonlinear regime of the evolved model (details in text) worked extremely well. Its second-order generalization worked slightly better. We recommend either n-body simulations or our modified versions of the Zel'dovich approximation, depending upon the purpose. The theoretical implication is that pancaking is implicit in all cosmological gravitational clustering, at least from Gaussian initial conditions, even when subcondensations are present. This in turn provides a natural explanation for the presence of sheets and filaments in the observed galaxy distribution. Use of the approximation scheme can permit extremely rapid generation of large numbers of realizations of model universes with good accuracy down to galaxy group mass scales.

  1. Embedding impedance approximations in the analysis of SIS mixers

    NASA Technical Reports Server (NTRS)

    Kerr, A. R.; Pan, S.-K.; Withington, S.

    1992-01-01

    Future millimeter-wave radio astronomy instruments will use arrays of many SIS receivers, either as focal plane arrays on individual radio telescopes, or as individual receivers on the many antennas of radio interferometers. Such applications will require broadband integrated mixers without mechanical tuners. To produce such mixers, it will be necessary to improve present mixer design techniques, most of which use the three-frequency approximation to Tucker's quantum mixer theory. This paper examines the adequacy of three approximations to Tucker's theory: (1) the usual three-frequency approximation which assumes a sinusoidal LO voltage at the junction, and a short-circuit at all frequencies above the upper sideband; (2) a five-frequency approximation which allows two LO voltage harmonics and five small-signal sidebands; and (3) a quasi five-frequency approximation in which five small-signal sidebands are allowed, but the LO voltage is assumed sinusoidal. These are compared with a full harmonic-Newton solution of Tucker's equations, including eight LO harmonics and their corresponding sidebands, for realistic SIS mixer circuits. It is shown that the accuracy of the three approximations depends strongly on the value of omega R(sub N)C for the SIS junctions used. For large omega R(sub N)C, all three approximations approach the eight-harmonic solution. For omega R(sub N)C values in the range 0.5 to 10, the range of most practical interest, the quasi five-frequency approximation is a considerable improvement over the three-frequency approximation, and should be suitable for much design work. For the realistic SIS mixers considered here, the five-frequency approximation gives results very close to those of the eight-harmonic solution. Use of these approximations, where appropriate, considerably reduces the computational effort needed to analyze an SIS mixer, and allows the design and optimization of mixers using a personal computer.

  2. Exponential Approximations Using Fourier Series Partial Sums

    NASA Technical Reports Server (NTRS)

    Banerjee, Nana S.; Geer, James F.

    1997-01-01

    The problem of accurately reconstructing a piece-wise smooth, 2(pi)-periodic function f and its first few derivatives, given only a truncated Fourier series representation of f, is studied and solved. The reconstruction process is divided into two steps. In the first step, the first 2N + 1 Fourier coefficients of f are used to approximate the locations and magnitudes of the discontinuities in f and its first M derivatives. This is accomplished by first finding initial estimates of these quantities based on certain properties of Gibbs phenomenon, and then refining these estimates by fitting the asymptotic form of the Fourier coefficients to the given coefficients using a least-squares approach. It is conjectured that the locations of the singularities are approximated to within O(N(sup -M-2), and the associated jump of the k(sup th) derivative of f is approximated to within O(N(sup -M-l+k), as N approaches infinity, and the method is robust. These estimates are then used with a class of singular basis functions, which have certain 'built-in' singularities, to construct a new sequence of approximations to f. Each of these new approximations is the sum of a piecewise smooth function and a new Fourier series partial sum. When N is proportional to M, it is shown that these new approximations, and their derivatives, converge exponentially in the maximum norm to f, and its corresponding derivatives, except in the union of a finite number of small open intervals containing the points of singularity of f. The total measure of these intervals decreases exponentially to zero as M approaches infinity. The technique is illustrated with several examples.

  3. Expression levels of the receptor activator of NF-κB ligand and osteoprotegerin and the number of gram-negative bacteria in symptomatic and asymptomatic periapical lesions.

    PubMed

    Carneiro, E; Parolin, A B; Wichnieski, C; Rosa, E A R; Silva Neto, U X; Westphalen, V P D; Fariniuk, L F; Johann, A C B R

    2017-01-01

    The study aimed to verify the potential correlation between the detected amount of gram-negative bacteria and the radiographic sizes of the lesions in patients with symptomatic and asymptomatic apical periodontitis. Furthermore, to evaluate whether the expression of receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) and the RANKL/OPG ratio are differentially regulated in both groups. Twenty patients with periapical lesions were divided into two groups: symptomatic (SYM) n=10 and asymptomatic (ASYM) n=10. After periapical surgery, the lesions were collected and processed for histological examination, and immunohistochemistry. The percentage of RANKL- and OPG-immunopositive areas relative to the total area of the microscopic field was calculated. For gram staining, the number of gram-negative cells per microscopic field was assessed. The radiographs of each patient were processed and measured. The Student's t-test and the Pearson correlation coefficient were performed. The SYM group showed a significantly higher number of gram-negative cells (p=0.007) when compared to the ASYM group. A higher number of gram-negative bacteria occurred more frequently in larger periapical lesions and the SYM group (p=0.03). The expression for RANKL and OPG and the RANKL/OPG ratio were not significantly different between the groups. There was a significant positive correlation between the number of bacteria and OPG levels in the SYM group (p=0.01). The number of bacteria seems to influence the symptoms and the radiographic size of a periapical lesion. Gram-negative bacteria may play an important role in OPG activity in the SYM group. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Two divergent Symbiodinium genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes.

    PubMed

    Shoguchi, Eiichi; Beedessee, Girish; Tada, Ipputa; Hisata, Kanako; Kawashima, Takeshi; Takeuchi, Takeshi; Arakaki, Nana; Fujie, Manabu; Koyanagi, Ryo; Roy, Michael C; Kawachi, Masanobu; Hidaka, Michio; Satoh, Noriyuki; Shinzato, Chuya

    2018-06-14

    The marine dinoflagellate, Symbiodinium, is a well-known photosynthetic partner for coral and other diverse, non-photosynthetic hosts in subtropical and tropical shallows, where it comprises an essential component of marine ecosystems. Using molecular phylogenetics, the genus Symbiodinium has been classified into nine major clades, A-I, and one of the reported differences among phenotypes is their capacity to synthesize mycosporine-like amino acids (MAAs), which absorb UV radiation. However, the genetic basis for this difference in synthetic capacity is unknown. To understand genetics underlying Symbiodinium diversity, we report two draft genomes, one from clade A, presumed to have been the earliest branching clade, and the other from clade C, in the terminal branch. The nuclear genome of Symbiodinium clade A (SymA) has more gene families than that of clade C, with larger numbers of organelle-related genes, including mitochondrial transcription terminal factor (mTERF) and Rubisco. While clade C (SymC) has fewer gene families, it displays specific expansions of repeat domain-containing genes, such as leucine-rich repeats (LRRs) and retrovirus-related dUTPases. Interestingly, the SymA genome encodes a gene cluster for MAA biosynthesis, potentially transferred from an endosymbiotic red alga (probably of bacterial origin), while SymC has completely lost these genes. Our analysis demonstrates that SymC appears to have evolved by losing gene families, such as the MAA biosynthesis gene cluster. In contrast to the conservation of genes related to photosynthetic ability, the terminal clade has suffered more gene family losses than other clades, suggesting a possible adaptation to symbiosis. Overall, this study implies that Symbiodinium ecology drives acquisition and loss of gene families.

  5. A Gaussian-based rank approximation for subspace clustering

    NASA Astrophysics Data System (ADS)

    Xu, Fei; Peng, Chong; Hu, Yunhong; He, Guoping

    2018-04-01

    Low-rank representation (LRR) has been shown successful in seeking low-rank structures of data relationships in a union of subspaces. Generally, LRR and LRR-based variants need to solve the nuclear norm-based minimization problems. Beyond the success of such methods, it has been widely noted that the nuclear norm may not be a good rank approximation because it simply adds all singular values of a matrix together and thus large singular values may dominant the weight. This results in far from satisfactory rank approximation and may degrade the performance of lowrank models based on the nuclear norm. In this paper, we propose a novel nonconvex rank approximation based on the Gaussian distribution function, which has demanding properties to be a better rank approximation than the nuclear norm. Then a low-rank model is proposed based on the new rank approximation with application to motion segmentation. Experimental results have shown significant improvements and verified the effectiveness of our method.

  6. Quantization of Simple Parametrized Systems

    NASA Astrophysics Data System (ADS)

    Ruffini, Giulio

    1995-01-01

    I study the canonical formulation and quantization of some simple parametrized systems using Dirac's formalism and the Becchi-Rouet-Stora-Tyutin (BRST) extended phase space method. These systems include the parametrized particle and minisuperspace. Using Dirac's formalism I first analyze for each case the construction of the classical reduced phase space. There are two separate features of these systems that may make this construction difficult: (a) Because of the boundary conditions used, the actions are not gauge invariant at the boundaries. (b) The constraints may have a disconnected solution space. The relativistic particle and minisuperspace have such complicated constraints, while the non-relativistic particle displays only the first feature. I first show that a change of gauge fixing is equivalent to a canonical transformation in the reduced phase space, thus resolving the problems associated with the first feature above. Then I consider the quantization of these systems using several approaches: Dirac's method, Dirac-Fock quantization, and the BRST formalism. In the cases of the relativistic particle and minisuperspace I consider first the quantization of one branch of the constraint at the time and then discuss the backgrounds in which it is possible to quantize simultaneously both branches. I motivate and define the inner product, and obtain, for example, the Klein-Gordon inner product for the relativistic case. Then I show how to construct phase space path integral representations for amplitudes in these approaches--the Batalin-Fradkin-Vilkovisky (BFV) and the Faddeev path integrals --from which one can then derive the path integrals in coordinate space--the Faddeev-Popov path integral and the geometric path integral. In particular I establish the connection between the Hilbert space representation and the range of the lapse in the path integrals. I also examine the class of paths that contribute in the path integrals and how they affect space

  7. Fundamentals and Recent Developments in Approximate Bayesian Computation

    PubMed Central

    Lintusaari, Jarno; Gutmann, Michael U.; Dutta, Ritabrata; Kaski, Samuel; Corander, Jukka

    2017-01-01

    Abstract Bayesian inference plays an important role in phylogenetics, evolutionary biology, and in many other branches of science. It provides a principled framework for dealing with uncertainty and quantifying how it changes in the light of new evidence. For many complex models and inference problems, however, only approximate quantitative answers are obtainable. Approximate Bayesian computation (ABC) refers to a family of algorithms for approximate inference that makes a minimal set of assumptions by only requiring that sampling from a model is possible. We explain here the fundamentals of ABC, review the classical algorithms, and highlight recent developments. [ABC; approximate Bayesian computation; Bayesian inference; likelihood-free inference; phylogenetics; simulator-based models; stochastic simulation models; tree-based models.] PMID:28175922

  8. A test of the adhesion approximation for gravitational clustering

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Shandarin, Sergei; Weinberg, David H.

    1993-01-01

    We quantitatively compare a particle implementation of the adhesion approximation to fully non-linear, numerical 'N-body' simulations. Our primary tool, cross-correlation of N-body simulations with the adhesion approximation, indicates good agreement, better than that found by the same test performed with the Zel-dovich approximation (hereafter ZA). However, the cross-correlation is not as good as that of the truncated Zel-dovich approximation (TZA), obtained by applying the Zel'dovich approximation after smoothing the initial density field with a Gaussian filter. We confirm that the adhesion approximation produces an excessively filamentary distribution. Relative to the N-body results, we also find that: (a) the power spectrum obtained from the adhesion approximation is more accurate than that from ZA or TZA, (b) the error in the phase angle of Fourier components is worse than that from TZA, and (c) the mass distribution function is more accurate than that from ZA or TZA. It appears that adhesion performs well statistically, but that TZA is more accurate dynamically, in the sense of moving mass to the right place.

  9. A test of the adhesion approximation for gravitational clustering

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Shandarin, Sergei F.; Weinberg, David H.

    1994-01-01

    We quantitatively compare a particle implementation of the adhesion approximation to fully nonlinear, numerical 'N-body' simulations. Our primary tool, cross-correlation of N-body simulations with the adhesion approximation, indicates good agreement, better than that found by the same test performed with the Zel'dovich approximation (hereafter ZA). However, the cross-correlation is not as good as that of the truncated Zel'dovich approximation (TZA), obtained by applying the Zel'dovich approximation after smoothing the initial density field with a Gaussian filter. We confirm that the adhesion approximation produces an excessively filamentary distribution. Relative to the N-body results, we also find that: (a) the power spectrum obtained from the adhesion approximation is more accurate that that from ZA to TZA, (b) the error in the phase angle of Fourier components is worse that that from TZA, and (c) the mass distribution function is more accurate than that from ZA or TZA. It appears that adhesion performs well statistically, but that TZA is more accurate dynamically, in the sense of moving mass to the right place.

  10. On the origins of approximations for stochastic chemical kinetics.

    PubMed

    Haseltine, Eric L; Rawlings, James B

    2005-10-22

    This paper considers the derivation of approximations for stochastic chemical kinetics governed by the discrete master equation. Here, the concepts of (1) partitioning on the basis of fast and slow reactions as opposed to fast and slow species and (2) conditional probability densities are used to derive approximate, partitioned master equations, which are Markovian in nature, from the original master equation. Under different conditions dictated by relaxation time arguments, such approximations give rise to both the equilibrium and hybrid (deterministic or Langevin equations coupled with discrete stochastic simulation) approximations previously reported. In addition, the derivation points out several weaknesses in previous justifications of both the hybrid and equilibrium systems and demonstrates the connection between the original and approximate master equations. Two simple examples illustrate situations in which these two approximate methods are applicable and demonstrate the two methods' efficiencies.

  11. The Kantowski-Sachs Quantum Model with Stiff Matter Fluid

    NASA Astrophysics Data System (ADS)

    Alvarenga, F. G.; Fracalossi, R.; Freitas, R. C.; Gonçalves, S. V. B.

    2018-05-01

    In this paper, we study the quantum cosmological Kantowski-Sachs model and we solve the Wheeler-DeWitt equation in minisuperspace to obtain the wave function of the corresponding universe. The perfect fluid is described by Schutz's canonical formalism, which allows to attribute dynamical degrees of freedom to matter. The time is introduced phenomenologically using the fluid's degrees of freedom. In particular, we adopt a stiff matter fluid. The viability of this model is analyzed and discussed.

  12. Alternative approximation concepts for space frame synthesis

    NASA Technical Reports Server (NTRS)

    Lust, R. V.; Schmit, L. A.

    1985-01-01

    A structural synthesis methodology for the minimum mass design of 3-dimensionall frame-truss structures under multiple static loading conditions and subject to limits on displacements, rotations, stresses, local buckling, and element cross-sectional dimensions is presented. A variety of approximation concept options are employed to yield near optimum designs after no more than 10 structural analyses. Available options include: (A) formulation of the nonlinear mathematcal programming problem in either reciprocal section property (RSP) or cross-sectional dimension (CSD) space; (B) two alternative approximate problem structures in each design space; and (C) three distinct assumptions about element end-force variations. Fixed element, design element linking, and temporary constraint deletion features are also included. The solution of each approximate problem, in either its primal or dual form, is obtained using CONMIN, a feasible directions program. The frame-truss synthesis methodology is implemented in the COMPASS computer program and is used to solve a variety of problems. These problems were chosen so that, in addition to exercising the various approximation concepts options, the results could be compared with previously published work.

  13. Band structure effects on resonant tunneling in III-V quantum wells versus two-dimensional vertical heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Philip M., E-mail: philip.campbell@gatech.edu; Electronic Systems Laboratory, Georgia Tech Research Institute, Atlanta, Georgia 30332; Tarasov, Alexey

    Since the invention of the Esaki diode, resonant tunneling devices have been of interest for applications including multi-valued logic and communication systems. These devices are characterized by the presence of negative differential resistance in the current-voltage characteristic, resulting from lateral momentum conservation during the tunneling process. While a large amount of research has focused on III-V material systems, such as the GaAs/AlGaAs system, for resonant tunneling devices, poor device performance and device-to-device variability have limited widespread adoption. Recently, the symmetric field-effect transistor (symFET) was proposed as a resonant tunneling device incorporating symmetric 2-D materials, such as transition metal dichalcogenides (TMDs),more » separated by an interlayer barrier, such as hexagonal boron-nitride. The achievable peak-to-valley ratio for TMD symFETs has been predicted to be higher than has been observed for III-V resonant tunneling devices. This work examines the effect that band structure differences between III-V devices and TMDs has on device performance. It is shown that tunneling between the quantized subbands in III-V devices increases the valley current and decreases device performance, while the interlayer barrier height has a negligible impact on performance for barrier heights greater than approximately 0.5 eV.« less

  14. Approximating Integrals Using Probability

    ERIC Educational Resources Information Center

    Maruszewski, Richard F., Jr.; Caudle, Kyle A.

    2005-01-01

    As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches of…

  15. Spline approximations for nonlinear hereditary control systems

    NASA Technical Reports Server (NTRS)

    Daniel, P. L.

    1982-01-01

    A sline-based approximation scheme is discussed for optimal control problems governed by nonlinear nonautonomous delay differential equations. The approximating framework reduces the original control problem to a sequence of optimization problems governed by ordinary differential equations. Convergence proofs, which appeal directly to dissipative-type estimates for the underlying nonlinear operator, are given and numerical findings are summarized.

  16. Approximate supernova remnant dynamics with cosmic ray production

    NASA Technical Reports Server (NTRS)

    Voelk, H. J.; Drury, L. O.; Dorfi, E. A.

    1985-01-01

    Supernova explosions are the most violent and energetic events in the galaxy and have long been considered probably sources of Cosmic Rays. Recent shock acceleration models treating the Cosmic Rays (CR's) as test particles nb a prescribed Supernova Remnant (SNR) evolution, indeed indicate an approximate power law momentum distribution f sub source (p) approximation p(-a) for the particles ultimately injected into the Interstellar Medium (ISM). This spectrum extends almost to the momentum p = 1 million GeV/c, where the break in the observed spectrum occurs. The calculated power law index approximately less than 4.2 agrees with that inferred for the galactic CR sources. The absolute CR intensity can however not be well determined in such a test particle approximation.

  17. Properties of the Boltzmann equation in the classical approximation

    DOE PAGES

    Epelbaum, Thomas; Gelis, François; Tanji, Naoto; ...

    2014-12-30

    We examine the Boltzmann equation with elastic point-like scalar interactions in two different versions of the the classical approximation. Although solving numerically the Boltzmann equation with the unapproximated collision term poses no problem, this allows one to study the effect of the ultraviolet cutoff in these approximations. This cutoff dependence in the classical approximations of the Boltzmann equation is closely related to the non-renormalizability of the classical statistical approximation of the underlying quantum field theory. The kinetic theory setup that we consider here allows one to study in a much simpler way the dependence on the ultraviolet cutoff, since onemore » has also access to the non-approximated result for comparison.« less

  18. Recent advances in approximation concepts for optimum structural design

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.; Haftka, Raphael T.

    1991-01-01

    The basic approximation concepts used in structural optimization are reviewed. Some of the most recent developments in that area since the introduction of the concept in the mid-seventies are discussed. The paper distinguishes between local, medium-range, and global approximations; it covers functions approximations and problem approximations. It shows that, although the lack of comparative data established on reference test cases prevents an accurate assessment, there have been significant improvements. The largest number of developments have been in the areas of local function approximations and use of intermediate variable and response quantities. It also appears that some new methodologies are emerging which could greatly benefit from the introduction of new computer architecture.

  19. Is approximated de-epithelized glanuloplasty beneficial for hypospadiologist?

    PubMed

    ZakiEldahshoury, M; Gamal, W; Salem, E; Rashed, E; Mamdouh, A

    2016-05-01

    Further evaluation of the cosmetic and functional results of approximated de-epithelized glanuloplasty in different degree of hypospadias. This study included 96 male patients (DPH=68 & MPH=28). Patients selected for repair with glans approximation should have wide urethral plate & grooved glans. All cases were repaired with the classic TIP and glans approximation technique. Follow up was for one year by clinical examination of the meatal shape, size & site, glans shape, skin covering, suture line, urethral catheter, edema & fistula in addition to parent satisfaction. Mean operative time was 49±9minutes. As regards the functional and cosmetic outcomes, success was reported in 95.8%, while failure was in 4.16% in the form of glanular disruption in two patients and subcoronal urethrocutaneous fistula in another two patients. Glans approximation has many advantages, good cosmetic and functional results, short operative time, less blood loss, no need for tourniquet. Study of a large number of cases and comparing glans approximation with the classic TIP technique. Copyright © 2015 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Adaptive control using neural networks and approximate models.

    PubMed

    Narendra, K S; Mukhopadhyay, S

    1997-01-01

    The NARMA model is an exact representation of the input-output behavior of finite-dimensional nonlinear discrete-time dynamical systems in a neighborhood of the equilibrium state. However, it is not convenient for purposes of adaptive control using neural networks due to its nonlinear dependence on the control input. Hence, quite often, approximate methods are used for realizing the neural controllers to overcome computational complexity. In this paper, we introduce two classes of models which are approximations to the NARMA model, and which are linear in the control input. The latter fact substantially simplifies both the theoretical analysis as well as the practical implementation of the controller. Extensive simulation studies have shown that the neural controllers designed using the proposed approximate models perform very well, and in many cases even better than an approximate controller designed using the exact NARMA model. In view of their mathematical tractability as well as their success in simulation studies, a case is made in this paper that such approximate input-output models warrant a detailed study in their own right.

  1. Rational trigonometric approximations using Fourier series partial sums

    NASA Technical Reports Server (NTRS)

    Geer, James F.

    1993-01-01

    A class of approximations (S(sub N,M)) to a periodic function f which uses the ideas of Pade, or rational function, approximations based on the Fourier series representation of f, rather than on the Taylor series representation of f, is introduced and studied. Each approximation S(sub N,M) is the quotient of a trigonometric polynomial of degree N and a trigonometric polynomial of degree M. The coefficients in these polynomials are determined by requiring that an appropriate number of the Fourier coefficients of S(sub N,M) agree with those of f. Explicit expressions are derived for these coefficients in terms of the Fourier coefficients of f. It is proven that these 'Fourier-Pade' approximations converge point-wise to (f(x(exp +))+f(x(exp -)))/2 more rapidly (in some cases by a factor of 1/k(exp 2M)) than the Fourier series partial sums on which they are based. The approximations are illustrated by several examples and an application to the solution of an initial, boundary value problem for the simple heat equation is presented.

  2. Self-consistent approximation beyond the CPA: Part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, T.; Gray, L.J.

    1981-08-01

    In Part I, Professor Leath has described the substantial efforts to generalize the CPA. In this second part, a particular self-consistent approximation for random alloys developed by Kaplan, Leath, Gray, and Diehl is described. This approximation is applicable to diagonal, off-diagonal and environmental disorder, includes cluster scattering, and yields a translationally invariant and analytic (Herglotz) average Green's function. Furthermore Gray and Kaplan have shown that an approximation for alloys with short-range order can be constructed from this theory.

  3. A Gaussian Approximation Potential for Silicon

    NASA Astrophysics Data System (ADS)

    Bernstein, Noam; Bartók, Albert; Kermode, James; Csányi, Gábor

    We present an interatomic potential for silicon using the Gaussian Approximation Potential (GAP) approach, which uses the Gaussian process regression method to approximate the reference potential energy surface as a sum of atomic energies. Each atomic energy is approximated as a function of the local environment around the atom, which is described with the smooth overlap of atomic environments (SOAP) descriptor. The potential is fit to a database of energies, forces, and stresses calculated using density functional theory (DFT) on a wide range of configurations from zero and finite temperature simulations. These include crystalline phases, liquid, amorphous, and low coordination structures, and diamond-structure point defects, dislocations, surfaces, and cracks. We compare the results of the potential to DFT calculations, as well as to previously published models including Stillinger-Weber, Tersoff, modified embedded atom method (MEAM), and ReaxFF. We show that it is very accurate as compared to the DFT reference results for a wide range of properties, including low energy bulk phases, liquid structure, as well as point, line, and plane defects in the diamond structure.

  4. CMB-lensing beyond the Born approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marozzi, Giovanni; Fanizza, Giuseppe; Durrer, Ruth

    2016-09-01

    We investigate the weak lensing corrections to the cosmic microwave background temperature anisotropies considering effects beyond the Born approximation. To this aim, we use the small deflection angle approximation, to connect the lensed and unlensed power spectra, via expressions for the deflection angles up to third order in the gravitational potential. While the small deflection angle approximation has the drawback to be reliable only for multipoles ℓ ∼< 2500, it allows us to consistently take into account the non-Gaussian nature of cosmological perturbation theory beyond the linear level. The contribution to the lensed temperature power spectrum coming from the non-Gaussianmore » nature of the deflection angle at higher order is a new effect which has not been taken into account in the literature so far. It turns out to be the leading contribution among the post-Born lensing corrections. On the other hand, the effect is smaller than corrections coming from non-linearities in the matter power spectrum, and its imprint on CMB lensing is too small to be seen in present experiments.« less

  5. New Hardness Results for Diophantine Approximation

    NASA Astrophysics Data System (ADS)

    Eisenbrand, Friedrich; Rothvoß, Thomas

    We revisit simultaneous Diophantine approximation, a classical problem from the geometry of numbers which has many applications in algorithms and complexity. The input to the decision version of this problem consists of a rational vector α ∈ ℚ n , an error bound ɛ and a denominator bound N ∈ ℕ + . One has to decide whether there exists an integer, called the denominator Q with 1 ≤ Q ≤ N such that the distance of each number Q ·α i to its nearest integer is bounded by ɛ. Lagarias has shown that this problem is NP-complete and optimization versions have been shown to be hard to approximate within a factor n c/ loglogn for some constant c > 0. We strengthen the existing hardness results and show that the optimization problem of finding the smallest denominator Q ∈ ℕ + such that the distances of Q·α i to the nearest integer are bounded by ɛ is hard to approximate within a factor 2 n unless {textrm{P}} = NP.

  6. Local approximation of a metapopulation's equilibrium.

    PubMed

    Barbour, A D; McVinish, R; Pollett, P K

    2018-04-18

    We consider the approximation of the equilibrium of a metapopulation model, in which a finite number of patches are randomly distributed over a bounded subset [Formula: see text] of Euclidean space. The approximation is good when a large number of patches contribute to the colonization pressure on any given unoccupied patch, and when the quality of the patches varies little over the length scale determined by the colonization radius. If this is the case, the equilibrium probability of a patch at z being occupied is shown to be close to [Formula: see text], the equilibrium occupation probability in Levins's model, at any point [Formula: see text] not too close to the boundary, if the local colonization pressure and extinction rates appropriate to z are assumed. The approximation is justified by giving explicit upper and lower bounds for the occupation probabilities, expressed in terms of the model parameters. Since the patches are distributed randomly, the occupation probabilities are also random, and we complement our bounds with explicit bounds on the probability that they are satisfied at all patches simultaneously.

  7. Fostering Formal Commutativity Knowledge with Approximate Arithmetic

    PubMed Central

    Hansen, Sonja Maria; Haider, Hilde; Eichler, Alexandra; Godau, Claudia; Frensch, Peter A.; Gaschler, Robert

    2015-01-01

    How can we enhance the understanding of abstract mathematical principles in elementary school? Different studies found out that nonsymbolic estimation could foster subsequent exact number processing and simple arithmetic. Taking the commutativity principle as a test case, we investigated if the approximate calculation of symbolic commutative quantities can also alter the access to procedural and conceptual knowledge of a more abstract arithmetic principle. Experiment 1 tested first graders who had not been instructed about commutativity in school yet. Approximate calculation with symbolic quantities positively influenced the use of commutativity-based shortcuts in formal arithmetic. We replicated this finding with older first graders (Experiment 2) and third graders (Experiment 3). Despite the positive effect of approximation on the spontaneous application of commutativity-based shortcuts in arithmetic problems, we found no comparable impact on the application of conceptual knowledge of the commutativity principle. Overall, our results show that the usage of a specific arithmetic principle can benefit from approximation. However, the findings also suggest that the correct use of certain procedures does not always imply conceptual understanding. Rather, the conceptual understanding of commutativity seems to lag behind procedural proficiency during elementary school. PMID:26560311

  8. A Discrete Approximation Framework for Hereditary Systems.

    DTIC Science & Technology

    1980-05-01

    schemes which are included in the general framework and which may be implemented directly on high-speed computing machines are developed. A numerical...an appropriately chosen Hilbert space. We then proceed to develop general approximation schemes for the solutions to the homogeneous AEE which in turn...rich classes of these schemes . In addition, two particular families of approximation schemes included in the general framework are developed and

  9. Best uniform approximation to a class of rational functions

    NASA Astrophysics Data System (ADS)

    Zheng, Zhitong; Yong, Jun-Hai

    2007-10-01

    We explicitly determine the best uniform polynomial approximation to a class of rational functions of the form 1/(x-c)2+K(a,b,c,n)/(x-c) on [a,b] represented by their Chebyshev expansion, where a, b, and c are real numbers, n-1 denotes the degree of the best approximating polynomial, and K is a constant determined by a, b, c, and n. Our result is based on the explicit determination of a phase angle [eta] in the representation of the approximation error by a trigonometric function. Moreover, we formulate an ansatz which offers a heuristic strategies to determine the best approximating polynomial to a function represented by its Chebyshev expansion. Combined with the phase angle method, this ansatz can be used to find the best uniform approximation to some more functions.

  10. Approximating the Helium Wavefunction in Positronium-Helium Scattering

    NASA Technical Reports Server (NTRS)

    DiRienzi, Joseph; Drachman, Richard J.

    2003-01-01

    In the Kohn variational treatment of the positronium- hydrogen scattering problem the scattering wave function is approximated by an expansion in some appropriate basis set, but the target and projectile wave functions are known exactly. In the positronium-helium case, however, a difficulty immediately arises in that the wave function of the helium target atom is not known exactly, and there are several ways to deal with the associated eigenvalue in formulating the variational scattering equations to be solved. In this work we will use the Kohn variational principle in the static exchange approximation to d e t e e the zero-energy scattering length for the Ps-He system, using a suite of approximate target functions. The results we obtain will be compared with each other and with corresponding values found by other approximation techniques.

  11. Two Phase 1, Open-Label, Single-Dose, Randomized, Crossover Studies to Assess the Pharmacokinetics, Safety, and Tolerability of Orally Administered Granules of Secnidazole (2 g) in Healthy Female Volunteers Under Different Administration Conditions.

    PubMed

    Pentikis, Helen S; Adetoro, Nikki

    2017-11-10

    Bacterial vaginosis (BV) is the most common vaginal infection in reproductive-age women and a significant risk factor for sexually transmitted diseases and pregnancy complications. Standard 5- to 7-day antimicrobial treatments for BV are associated with high rates of recurrence and adverse events. SYM-1219 is a novel granule formulation containing 2 g of secnidazole, developed as an oral, single-dose BV treatment. Two phase 1, open-label, single-center, randomized, crossover trials (studies 102 and 103) assessed the pharmacokinetics and safety of SYM-1219 single doses (≥7-day washout between doses) in healthy, nonpregnant women aged 18 to 65 years inclusive. Study 102 compared SYM-1219 in applesauce in fasted vs fed states. Study 103 compared SYM-1219 (fasted) in pudding and yogurt vs applesauce. Studies 102 and 103 each dosed 24 subjects (mean [standard deviation] ages, 36 [1.8] and 40 [11.6] years, respectively). In both studies the 90% confidence intervals for all treatment comparisons of maximum plasma concentration, area under the concentration-time curve from 0 to last measurable concentration and to infinity, geometric mean ratios were within 80% to 125%, demonstrating bioequivalence. In both studies median fasted time to maximum plasma concentration was 4 hours (6 hours fed in study 102), and mean half-life ranged from 17 to 19 hours. Treatment-emergent adverse events occurred in 70.8% and 83.3% subjects in studies 102 and 103, respectively, most commonly headache (41.7% and 50.0%) and gastrointestinal treatment-emergent adverse events. The pharmacokinetics of SYM-1219 were similar in fed and fasted states and when administered in different foods. © 2017 The Authors. Clinical Pharmacology in Drug Development published by Wiley Periodicals, Inc. on behalf of The American College of Clinical Pharmacology.

  12. Minimax rational approximation of the Fermi-Dirac distribution.

    PubMed

    Moussa, Jonathan E

    2016-10-28

    Accurate rational approximations of the Fermi-Dirac distribution are a useful component in many numerical algorithms for electronic structure calculations. The best known approximations use O(log(βΔ)log(ϵ -1 )) poles to achieve an error tolerance ϵ at temperature β -1 over an energy interval Δ. We apply minimax approximation to reduce the number of poles by a factor of four and replace Δ with Δ occ , the occupied energy interval. This is particularly beneficial when Δ ≫ Δ occ , such as in electronic structure calculations that use a large basis set.

  13. Minimax rational approximation of the Fermi-Dirac distribution

    NASA Astrophysics Data System (ADS)

    Moussa, Jonathan E.

    2016-10-01

    Accurate rational approximations of the Fermi-Dirac distribution are a useful component in many numerical algorithms for electronic structure calculations. The best known approximations use O(log(βΔ)log(ɛ-1)) poles to achieve an error tolerance ɛ at temperature β-1 over an energy interval Δ. We apply minimax approximation to reduce the number of poles by a factor of four and replace Δ with Δocc, the occupied energy interval. This is particularly beneficial when Δ ≫ Δocc, such as in electronic structure calculations that use a large basis set.

  14. On direct theorems for best polynomial approximation

    NASA Astrophysics Data System (ADS)

    Auad, A. A.; AbdulJabbar, R. S.

    2018-05-01

    This paper is to obtain similarity for the best approximation degree of functions, which are unbounded in L p,α (A = [0,1]), which called weighted space by algebraic polynomials. {E}nH{(f)}p,α and the best approximation degree in the same space on the interval [0,2π] by trigonometric polynomials {E}nT{(f)}p,α of direct wellknown theorems in forms the average modules.

  15. Background magnetic spectra - Approximately 10 to the -5th to approximately 10 to the 5th Hz

    NASA Astrophysics Data System (ADS)

    Lanzerotti, L. J.; Maclennan, C. G.; Fraser-Smith, A. C.

    1990-09-01

    The determination of the amplitude and functional form of the geomagnetic fluctuations measured at the Arrival Heights area of the Hut Point Peninsula on Ross Island in June 1986 is presented. The frequency range covered is from approximately 10 to the -5th to approximately 10 to the 5th Hz, with a gap between 0.1 and 10 Hz due to instrumentation limitations. In spite of this gap, it is thought that these magnetic fluctuation spectra, obtained from data acquired simultaneously with two instruments, cover the broadest frequency range to date. Schematic spectra derived from the data obtained are provided.

  16. Resolving the issue of branched Hamiltonian in modified Lanczos-Lovelock gravity

    NASA Astrophysics Data System (ADS)

    Ruz, Soumendranath; Mandal, Ranajit; Debnath, Subhra; Sanyal, Abhik Kumar

    2016-07-01

    The Hamiltonian constraint H_c = N{H} = 0, defines a diffeomorphic structure on spatial manifolds by the lapse function N in general theory of relativity. However, it is not manifest in Lanczos-Lovelock gravity, since the expression for velocity in terms of the momentum is multivalued. Thus the Hamiltonian is a branch function of momentum. Here we propose an extended theory of Lanczos-Lovelock gravity to construct a unique Hamiltonian in its minisuperspace version, which results in manifest diffeomorphic invariance and canonical quantization.

  17. A development of chimeric VEGFR2 TK inhibitor based on two ligand conformers from PDB: 1Y6A complex--medicinal chemistry consequences of a TKs analysis.

    PubMed

    Lintnerová, Lucia; García-Caballero, Melissa; Gregáň, Fridrich; Melicherčík, Milan; Quesada, Ana R; Dobiaš, Juraj; Lác, Ján; Sališová, Marta; Boháč, Andrej

    2014-01-24

    VEGFR2 is an important mediator of angiogenesis and influences fate of some cancer stem cells. Here we analysed all 34 structures of VEGFR2 TK available from PDB database. From them a complex PDB: 1Y6A has an exceptional AAZ ligand bound to TK in form of two conformers (U- and S-shaped). This observation inspired us to develop three chimeric bispyridyl VEGFR2 inhibitors by combining structural features of both AAZ conformers and/or their relative ligand AAX (PDB: 1Y6B). Our most interesting inhibitor 22SYM has an enzymatic VEGFR2 TK activity (IC50: 15.1 nM) comparable or better to the active compounds from clinical drugs Nexavar and Sutent. 22SYM inhibits growth, migration and tube formation of endothelial cells (EC) and selectively induces EC apoptosis. 22SYM also inhibits in vivo angiogenesis in Zebrafish embryo assay. Additionally to the above results, we proved here that tyrosine kinases in an inactive form possessing Type I inhibitors can adopt both a closed or an opened conformation of kinase A-loop independently on their DFG-out arrangement. We proposed here that an activity of certain Type I inhibitors (e.g. 22SYM-like) in complex with DFG-out TK can be negatively influenced by collisions with a dynamically moving TK A-loop. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Compression of strings with approximate repeats.

    PubMed

    Allison, L; Edgoose, T; Dix, T I

    1998-01-01

    We describe a model for strings of characters that is loosely based on the Lempel Ziv model with the addition that a repeated substring can be an approximate match to the original substring; this is close to the situation of DNA, for example. Typically there are many explanations for a given string under the model, some optimal and many suboptimal. Rather than commit to one optimal explanation, we sum the probabilities over all explanations under the model because this gives the probability of the data under the model. The model has a small number of parameters and these can be estimated from the given string by an expectation-maximization (EM) algorithm. Each iteration of the EM algorithm takes O(n2) time and a few iterations are typically sufficient. O(n2) complexity is impractical for strings of more than a few tens of thousands of characters and a faster approximation algorithm is also given. The model is further extended to include approximate reverse complementary repeats when analyzing DNA strings. Tests include the recovery of parameter estimates from known sources and applications to real DNA strings.

  19. Approximating smooth functions using algebraic-trigonometric polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharapudinov, Idris I

    2011-01-14

    The problem under consideration is that of approximating classes of smooth functions by algebraic-trigonometric polynomials of the form p{sub n}(t)+{tau}{sub m}(t), where p{sub n}(t) is an algebraic polynomial of degree n and {tau}{sub m}(t)=a{sub 0}+{Sigma}{sub k=1}{sup m}a{sub k} cos k{pi}t + b{sub k} sin k{pi}t is a trigonometric polynomial of order m. The precise order of approximation by such polynomials in the classes W{sup r}{sub {infinity}(}M) and an upper bound for similar approximations in the class W{sup r}{sub p}(M) with 4/3

  20. Minimax rational approximation of the Fermi-Dirac distribution

    DOE PAGES

    Moussa, Jonathan E.

    2016-10-27

    Accurate rational approximations of the Fermi-Dirac distribution are a useful component in many numerical algorithms for electronic structure calculations. The best known approximations use O(log(βΔ)log(ϵ –1)) poles to achieve an error tolerance ϵ at temperature β –1 over an energy interval Δ. We apply minimax approximation to reduce the number of poles by a factor of four and replace Δ with Δ occ, the occupied energy interval. Furthermore, this is particularly beneficial when Δ >> Δ occ, such as in electronic structure calculations that use a large basis set.

  1. Incorporating approximation error in surrogate based Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Zeng, L.; Li, W.; Wu, L.

    2015-12-01

    There are increasing interests in applying surrogates for inverse Bayesian modeling to reduce repetitive evaluations of original model. In this way, the computational cost is expected to be saved. However, the approximation error of surrogate model is usually overlooked. This is partly because that it is difficult to evaluate the approximation error for many surrogates. Previous studies have shown that, the direct combination of surrogates and Bayesian methods (e.g., Markov Chain Monte Carlo, MCMC) may lead to biased estimations when the surrogate cannot emulate the highly nonlinear original system. This problem can be alleviated by implementing MCMC in a two-stage manner. However, the computational cost is still high since a relatively large number of original model simulations are required. In this study, we illustrate the importance of incorporating approximation error in inverse Bayesian modeling. Gaussian process (GP) is chosen to construct the surrogate for its convenience in approximation error evaluation. Numerical cases of Bayesian experimental design and parameter estimation for contaminant source identification are used to illustrate this idea. It is shown that, once the surrogate approximation error is well incorporated into Bayesian framework, promising results can be obtained even when the surrogate is directly used, and no further original model simulations are required.

  2. The closure approximation in the hierarchy equations.

    NASA Technical Reports Server (NTRS)

    Adomian, G.

    1971-01-01

    The expectation of the solution process in a stochastic operator equation can be obtained from averaged equations only under very special circumstances. Conditions for validity are given and the significance and validity of the approximation in widely used hierarchy methods and the ?self-consistent field' approximation in nonequilibrium statistical mechanics are clarified. The error at any level of the hierarchy can be given and can be avoided by the use of the iterative method.

  3. Adequacy of selected evapotranspiration approximations for hydrologic simulation

    USGS Publications Warehouse

    Sumner, D.M.

    2006-01-01

    Evapotranspiration (ET) approximations, usually based on computed potential ET (PET) and diverse PET-to-ET conceptualizations, are routinely used in hydrologic analyses. This study presents an approach to incorporate measured (actual) ET data, increasingly available using micrometeorological methods, to define the adequacy of ET approximations for hydrologic simulation. The approach is demonstrated at a site where eddy correlation-measured ET values were available. A baseline hydrologic model incorporating measured ET values was used to evaluate the sensitivity of simulated water levels, subsurface recharge, and surface runoff to error in four ET approximations. An annually invariant pattern of mean monthly vegetation coefficients was shown to be most effective, despite the substantial year-to-year variation in measured vegetation coefficients. The temporal variability of available water (precipitation minus ET) at the humid, subtropical site was largely controlled by the relatively high temporal variability of precipitation, benefiting the effectiveness of coarse ET approximations, a result that is likely to prevail at other humid sites.

  4. International Symposium on Molecular Spectroscopy (70th)

    DTIC Science & Technology

    2015-06-22

    N DAY June 22 8:30 AM TU ESDAY June 23 8:30 AM W EDN ESDAY June 24 8:30 AM THU RSDAY June 25 8:30 AM FRIDAY June 26 8:30 AM Foellinger Auditorium M A...energy surfaces Room 100 N oyes Laboratory TB M ini-sym posium : Accelerator-Based Spectroscopy RB M ini-sym posium : Accelerator-Based...Conform ers, isom ers, chirality, stereochem istry RD Astronom y FD Atm ospheric science Room 217 N oyes Laboratory TE Instrum

  5. Conditional symmetries in axisymmetric quantum cosmologies with scalar fields and the fate of the classical singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zampeli, Adamantia; Pailas, Theodoros; Terzis, Petros A.

    2016-05-01

    In this paper, the classical and quantum solutions of some axisymmetric cosmologies coupled to a massless scalar field are studied in the context of minisuperspace approximation. In these models, the singular nature of the Lagrangians entails a search for possible conditional symmetries. These have been proven to be the simultaneous conformal symmetries of the supermetric and the superpotential. The quantization is performed by adopting the Dirac proposal for constrained systems, i.e. promoting the first-class constraints to operators annihilating the wave function. To further enrich the approach, we follow [1] and impose the operators related to the classical conditional symmetries onmore » the wave function. These additional equations select particular solutions of the Wheeler-DeWitt equation. In order to gain some physical insight from the quantization of these cosmological systems, we perform a semiclassical analysis following the Bohmian approach to quantum theory. The generic result is that, in all but one model, one can find appropriate ranges of the parameters, so that the emerging semiclassical geometries are non-singular. An attempt for physical interpretation involves the study of the effective energy-momentum tensor which corresponds to an imperfect fluid.« less

  6. 2-vertex Lorentzian spin foam amplitudes for dipole transitions

    NASA Astrophysics Data System (ADS)

    Sarno, Giorgio; Speziale, Simone; Stagno, Gabriele V.

    2018-04-01

    We compute transition amplitudes between two spin networks with dipole graphs, using the Lorentzian EPRL model with up to two (non-simplicial) vertices. We find power-law decreasing amplitudes in the large spin limit, decreasing faster as the complexity of the foam increases. There are no oscillations nor asymptotic Regge actions at the order considered, nonetheless the amplitudes still induce non-trivial correlations. Spin correlations between the two dipoles appear only when one internal face is present in the foam. We compute them within a mini-superspace description, finding positive correlations, decreasing in value with the Immirzi parameter. The paper also provides an explicit guide to computing Lorentzian amplitudes using the factorisation property of SL(2,C) Clebsch-Gordan coefficients in terms of SU(2) ones. We discuss some of the difficulties of non-simplicial foams, and provide a specific criterion to partially limit the proliferation of diagrams. We systematically compare the results with the simplified EPRLs model, much faster to evaluate, to learn evidence on when it provides reliable approximations of the full amplitudes. Finally, we comment on implications of our results for the physics of non-simplicial spin foams and their resummation.

  7. Approximate analytic expression for the Skyrmions crystal

    NASA Astrophysics Data System (ADS)

    Grandi, Nicolás; Sturla, Mauricio

    2018-01-01

    We find approximate solutions for the two-dimensional nonlinear Σ-model with Dzyalioshinkii-Moriya term, representing magnetic Skyrmions. They are built in an analytic form, by pasting different approximate solutions found in different regions of space. We verify that our construction reproduces the phenomenology known from numerical solutions and Monte Carlo simulations, giving rise to a Skyrmion lattice at an intermediate range of magnetic field, flanked by spiral and spin-polarized phases for low and high magnetic fields, respectively.

  8. On Born approximation in black hole scattering

    NASA Astrophysics Data System (ADS)

    Batic, D.; Kelkar, N. G.; Nowakowski, M.

    2011-12-01

    A massless field propagating on spherically symmetric black hole metrics such as the Schwarzschild, Reissner-Nordström and Reissner-Nordström-de Sitter backgrounds is considered. In particular, explicit formulae in terms of transcendental functions for the scattering of massless scalar particles off black holes are derived within a Born approximation. It is shown that the conditions on the existence of the Born integral forbid a straightforward extraction of the quasi normal modes using the Born approximation for the scattering amplitude. Such a method has been used in literature. We suggest a novel, well defined method, to extract the large imaginary part of quasinormal modes via the Coulomb-like phase shift. Furthermore, we compare the numerically evaluated exact scattering amplitude with the Born one to find that the approximation is not very useful for the scattering of massless scalar, electromagnetic as well as gravitational waves from black holes.

  9. Efficient solution of parabolic equations by Krylov approximation methods

    NASA Technical Reports Server (NTRS)

    Gallopoulos, E.; Saad, Y.

    1990-01-01

    Numerical techniques for solving parabolic equations by the method of lines is addressed. The main motivation for the proposed approach is the possibility of exploiting a high degree of parallelism in a simple manner. The basic idea of the method is to approximate the action of the evolution operator on a given state vector by means of a projection process onto a Krylov subspace. Thus, the resulting approximation consists of applying an evolution operator of a very small dimension to a known vector which is, in turn, computed accurately by exploiting well-known rational approximations to the exponential. Because the rational approximation is only applied to a small matrix, the only operations required with the original large matrix are matrix-by-vector multiplications, and as a result the algorithm can easily be parallelized and vectorized. Some relevant approximation and stability issues are discussed. We present some numerical experiments with the method and compare its performance with a few explicit and implicit algorithms.

  10. Precise analytic approximations for the Bessel function J1 (x)

    NASA Astrophysics Data System (ADS)

    Maass, Fernando; Martin, Pablo

    2018-03-01

    Precise and straightforward analytic approximations for the Bessel function J1 (x) have been found. Power series and asymptotic expansions have been used to determine the parameters of the approximation, which is as a bridge between both expansions, and it is a combination of rational and trigonometric functions multiplied with fractional powers of x. Here, several improvements with respect to the so called Multipoint Quasirational Approximation technique have been performed. Two procedures have been used to determine the parameters of the approximations. The maximum absolute errors are in both cases smaller than 0.01. The zeros of the approximation are also very precise with less than 0.04 per cent for the first one. A second approximation has been also determined using two more parameters, and in this way the accuracy has been increased to less than 0.001.

  11. An approximation method for configuration optimization of trusses

    NASA Technical Reports Server (NTRS)

    Hansen, Scott R.; Vanderplaats, Garret N.

    1988-01-01

    Two- and three-dimensional elastic trusses are designed for minimum weight by varying the areas of the members and the location of the joints. Constraints on member stresses and Euler buckling are imposed and multiple static loading conditions are considered. The method presented here utilizes an approximate structural analysis based on first order Taylor series expansions of the member forces. A numerical optimizer minimizes the weight of the truss using information from the approximate structural analysis. Comparisons with results from other methods are made. It is shown that the method of forming an approximate structural analysis based on linearized member forces leads to a highly efficient method of truss configuration optimization.

  12. Geometrical-optics approximation of forward scattering by coated particles.

    PubMed

    Xu, Feng; Cai, Xiaoshu; Ren, Kuanfang

    2004-03-20

    By means of geometrical optics we present an approximation algorithm with which to accelerate the computation of scattering intensity distribution within a forward angular range (0 degrees-60 degrees) for coated particles illuminated by a collimated incident beam. Phases of emerging rays are exactly calculated to improve the approximation precision. This method proves effective for transparent and tiny absorbent particles with size parameters larger than 75 but fails to give good approximation results at scattering angles at which refractive rays are absent. When the absorption coefficient of a particle is greater than 0.01, the geometrical optics approximation is effective only for forward small angles, typically less than 10 degrees or so.

  13. An analytic superfield formalism for tree superamplitudes in D=10 and D=11

    NASA Astrophysics Data System (ADS)

    Bandos, Igor

    2018-05-01

    Tree amplitudes of 10D supersymmetric Yang-Mills theory (SYM) and 11D supergravity (SUGRA) are collected in multi-particle counterparts of analytic on-shell superfields. These have essentially the same form as their chiral 4D counterparts describing N=4 SYM and N=8 SUGRA, but with components dependent on a different set of bosonic variables. These are the D=10 and D=11 spinor helicity variables, the set of which includes the spinor frame variable (Lorentz harmonics) and a scalar density, and generalized homogeneous coordinates of the coset SO(D-2)/SO(D-4)⊗ U(1) (internal harmonics). We present an especially convenient parametrization of the spinor harmonics (Lorentz covariant gauge fixed with the use of an auxiliary gauge symmetry) and use this to find (a gauge fixed version of) the 3-point tree superamplitudes of 10D SYM and 11D SUGRA which generalize the 4 dimensional anti-MHV superamplitudes.

  14. Object oriented studies into artificial space debris

    NASA Technical Reports Server (NTRS)

    Adamson, J. M.; Marshall, G.

    1988-01-01

    A prototype simulation is being developed under contract to the Royal Aerospace Establishment (RAE), Farnborough, England, to assist in the discrimination of artificial space objects/debris. The methodology undertaken has been to link Object Oriented programming, intelligent knowledge based system (IKBS) techniques and advanced computer technology with numeric analysis to provide a graphical, symbolic simulation. The objective is to provide an additional layer of understanding on top of conventional classification methods. Use is being made of object and rule based knowledge representation, multiple reasoning, truth maintenance and uncertainty. Software tools being used include Knowledge Engineering Environment (KEE) and SymTactics for knowledge representation. Hooks are being developed within the SymTactics framework to incorporate mathematical models describing orbital motion and fragmentation. Penetration and structural analysis can also be incorporated. SymTactics is an Object Oriented discrete event simulation tool built as a domain specific extension to the KEE environment. The tool provides facilities for building, debugging and monitoring dynamic (military) simulations.

  15. Revised Thomas-Fermi approximation for singular potentials

    NASA Astrophysics Data System (ADS)

    Dufty, James W.; Trickey, S. B.

    2016-08-01

    Approximations for the many-fermion free-energy density functional that include the Thomas-Fermi (TF) form for the noninteracting part lead to singular densities for singular external potentials (e.g., attractive Coulomb). This limitation of the TF approximation is addressed here by a formal map of the exact Euler equation for the density onto an equivalent TF form characterized by a modified Kohn-Sham potential. It is shown to be a "regularized" version of the Kohn-Sham potential, tempered by convolution with a finite-temperature response function. The resulting density is nonsingular, with the equilibrium properties obtained from the total free-energy functional evaluated at this density. This new representation is formally exact. Approximate expressions for the regularized potential are given to leading order in a nonlocality parameter, and the limiting behavior at high and low temperatures is described. The noninteracting part of the free energy in this approximation is the usual Thomas-Fermi functional. These results generalize and extend to finite temperatures the ground-state regularization by R. G. Parr and S. Ghosh [Proc. Natl. Acad. Sci. U.S.A. 83, 3577 (1986), 10.1073/pnas.83.11.3577] and by L. R. Pratt, G. G. Hoffman, and R. A. Harris [J. Chem. Phys. 88, 1818 (1988), 10.1063/1.454105] and formally systematize the finite-temperature regularization given by the latter authors.

  16. Double power series method for approximating cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Wren, Andrew J.; Malik, Karim A.

    2017-04-01

    We introduce a double power series method for finding approximate analytical solutions for systems of differential equations commonly found in cosmological perturbation theory. The method was set out, in a noncosmological context, by Feshchenko, Shkil' and Nikolenko (FSN) in 1966, and is applicable to cases where perturbations are on subhorizon scales. The FSN method is essentially an extension of the well known Wentzel-Kramers-Brillouin (WKB) method for finding approximate analytical solutions for ordinary differential equations. The FSN method we use is applicable well beyond perturbation theory to solve systems of ordinary differential equations, linear in the derivatives, that also depend on a small parameter, which here we take to be related to the inverse wave-number. We use the FSN method to find new approximate oscillating solutions in linear order cosmological perturbation theory for a flat radiation-matter universe. Together with this model's well-known growing and decaying Mészáros solutions, these oscillating modes provide a complete set of subhorizon approximations for the metric potential, radiation and matter perturbations. Comparison with numerical solutions of the perturbation equations shows that our approximations can be made accurate to within a typical error of 1%, or better. We also set out a heuristic method for error estimation. A Mathematica notebook which implements the double power series method is made available online.

  17. Approximation abilities of neuro-fuzzy networks

    NASA Astrophysics Data System (ADS)

    Mrówczyńska, Maria

    2010-01-01

    The paper presents the operation of two neuro-fuzzy systems of an adaptive type, intended for solving problems of the approximation of multi-variable functions in the domain of real numbers. Neuro-fuzzy systems being a combination of the methodology of artificial neural networks and fuzzy sets operate on the basis of a set of fuzzy rules "if-then", generated by means of the self-organization of data grouping and the estimation of relations between fuzzy experiment results. The article includes a description of neuro-fuzzy systems by Takaga-Sugeno-Kang (TSK) and Wang-Mendel (WM), and in order to complement the problem in question, a hierarchical structural self-organizing method of teaching a fuzzy network. A multi-layer structure of the systems is a structure analogous to the structure of "classic" neural networks. In its final part the article presents selected areas of application of neuro-fuzzy systems in the field of geodesy and surveying engineering. Numerical examples showing how the systems work concerned: the approximation of functions of several variables to be used as algorithms in the Geographic Information Systems (the approximation of a terrain model), the transformation of coordinates, and the prediction of a time series. The accuracy characteristics of the results obtained have been taken into consideration.

  18. Approximating Exponential and Logarithmic Functions Using Polynomial Interpolation

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.; Yang, Yajun

    2017-01-01

    This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is…

  19. Finding the Best Quadratic Approximation of a Function

    ERIC Educational Resources Information Center

    Yang, Yajun; Gordon, Sheldon P.

    2011-01-01

    This article examines the question of finding the best quadratic function to approximate a given function on an interval. The prototypical function considered is f(x) = e[superscript x]. Two approaches are considered, one based on Taylor polynomial approximations at various points in the interval under consideration, the other based on the fact…

  20. Dynamic Analyses of Result Quality in Energy-Aware Approximate Programs

    NASA Astrophysics Data System (ADS)

    RIngenburg, Michael F.

    Energy efficiency is a key concern in the design of modern computer systems. One promising approach to energy-efficient computation, approximate computing, trades off output precision for energy efficiency. However, this tradeoff can have unexpected effects on computation quality. This thesis presents dynamic analysis tools to study, debug, and monitor the quality and energy efficiency of approximate computations. We propose three styles of tools: prototyping tools that allow developers to experiment with approximation in their applications, online tools that instrument code to determine the key sources of error, and online tools that monitor the quality of deployed applications in real time. Our prototyping tool is based on an extension to the functional language OCaml. We add approximation constructs to the language, an approximation simulator to the runtime, and profiling and auto-tuning tools for studying and experimenting with energy-quality tradeoffs. We also present two online debugging tools and three online monitoring tools. The first online tool identifies correlations between output quality and the total number of executions of, and errors in, individual approximate operations. The second tracks the number of approximate operations that flow into a particular value. Our online tools comprise three low-cost approaches to dynamic quality monitoring. They are designed to monitor quality in deployed applications without spending more energy than is saved by approximation. Online monitors can be used to perform real time adjustments to energy usage in order to meet specific quality goals. We present prototype implementations of all of these tools and describe their usage with several applications. Our prototyping, profiling, and autotuning tools allow us to experiment with approximation strategies and identify new strategies, our online tools succeed in providing new insights into the effects of approximation on output quality, and our monitors succeed in

  1. Comparison of dynamical approximation schemes for non-linear gravitational clustering

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.

    1994-01-01

    We have recently conducted a controlled comparison of a number of approximations for gravitational clustering against the same n-body simulations. These include ordinary linear perturbation theory (Eulerian), the adhesion approximation, the frozen-flow approximation, the Zel'dovich approximation (describable as first-order Lagrangian perturbation theory), and its second-order generalization. In the last two cases we also created new versions of approximation by truncation, i.e., smoothing the initial conditions by various smoothing window shapes and varying their sizes. The primary tool for comparing simulations to approximation schemes was crosscorrelation of the evolved mass density fields, testing the extent to which mass was moved to the right place. The Zel'dovich approximation, with initial convolution with a Gaussian e(exp -k(exp 2)/k(exp 2, sub G)) where k(sub G) is adjusted to be just into the nonlinear regime of the evolved model (details in text) worked extremely well. Its second-order generalization worked slightly better. All other schemes, including those proposed as generalizations of the Zel'dovich approximation created by adding forces, were in fact generally worse by this measure. By explicitly checking, we verified that the success of our best-choice was a result of the best treatment of the phases of nonlinear Fourier components. Of all schemes tested, the adhesion approximation produced the most accurate nonlinear power spectrum and density distribution, but its phase errors suggest mass condensations were moved to slightly the wrong location. Due to its better reproduction of the mass density distribution function and power spectrum, it might be preferred for some uses. We recommend either n-body simulations or our modified versions of the Zel'dovich approximation, depending upon the purpose. The theoretical implication is that pancaking is implicit in all cosmological gravitational clustering, at least from Gaussian initial conditions, even

  2. Application of Approximate Unsteady Aerodynamics for Flutter Analysis

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley W.

    2010-01-01

    A technique for approximating the modal aerodynamic influence coefficient (AIC) matrices by using basis functions has been developed. A process for using the resulting approximated modal AIC matrix in aeroelastic analysis has also been developed. The method requires the unsteady aerodynamics in frequency domain, and this methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root locus et cetera. The unsteady aeroelastic analysis using unsteady subsonic aerodynamic approximation is demonstrated herein. The technique presented is shown to offer consistent flutter speed prediction on an aerostructures test wing (ATW) 2 and a hybrid wing body (HWB) type of vehicle configuration with negligible loss in precision. This method computes AICs that are functions of the changing parameters being studied and are generated within minutes of CPU time instead of hours. These results may have practical application in parametric flutter analyses as well as more efficient multidisciplinary design and optimization studies.

  3. Singularly Perturbed Lie Bracket Approximation

    DOE PAGES

    Durr, Hans-Bernd; Krstic, Miroslav; Scheinker, Alexander; ...

    2015-03-27

    Here, we consider the interconnection of two dynamical systems where one has an input-affine vector field. We show that by employing a singular perturbation analysis and the Lie bracket approximation technique, the stability of the overall system can be analyzed by regarding the stability properties of two reduced, uncoupled systems.

  4. Computational aspects of pseudospectral Laguerre approximations

    NASA Technical Reports Server (NTRS)

    Funaro, Daniele

    1989-01-01

    Pseudospectral approximations in unbounded domains by Laguerre polynomials lead to ill-conditioned algorithms. Introduced are a scaling function and appropriate numerical procedures in order to limit these unpleasant phenomena.

  5. Explicitly solvable complex Chebyshev approximation problems related to sine polynomials

    NASA Technical Reports Server (NTRS)

    Freund, Roland

    1989-01-01

    Explicitly solvable real Chebyshev approximation problems on the unit interval are typically characterized by simple error curves. A similar principle is presented for complex approximation problems with error curves induced by sine polynomials. As an application, some new explicit formulae for complex best approximations are derived.

  6. Approximate convective heating equations for hypersonic flows

    NASA Technical Reports Server (NTRS)

    Zoby, E. V.; Moss, J. N.; Sutton, K.

    1979-01-01

    Laminar and turbulent heating-rate equations appropriate for engineering predictions of the convective heating rates about blunt reentry spacecraft at hypersonic conditions are developed. The approximate methods are applicable to both nonreacting and reacting gas mixtures for either constant or variable-entropy edge conditions. A procedure which accounts for variable-entropy effects and is not based on mass balancing is presented. Results of the approximate heating methods are in good agreement with existing experimental results as well as boundary-layer and viscous-shock-layer solutions.

  7. Kernel K-Means Sampling for Nyström Approximation.

    PubMed

    He, Li; Zhang, Hong

    2018-05-01

    A fundamental problem in Nyström-based kernel matrix approximation is the sampling method by which training set is built. In this paper, we suggest to use kernel -means sampling, which is shown in our works to minimize the upper bound of a matrix approximation error. We first propose a unified kernel matrix approximation framework, which is able to describe most existing Nyström approximations under many popular kernels, including Gaussian kernel and polynomial kernel. We then show that, the matrix approximation error upper bound, in terms of the Frobenius norm, is equal to the -means error of data points in kernel space plus a constant. Thus, the -means centers of data in kernel space, or the kernel -means centers, are the optimal representative points with respect to the Frobenius norm error upper bound. Experimental results, with both Gaussian kernel and polynomial kernel, on real-world data sets and image segmentation tasks show the superiority of the proposed method over the state-of-the-art methods.

  8. Dipole Approximation to Predict the Resonances of Dimers Composed of Dielectric Resonators for Directional Emission: Dielectric Dimers Dipole Approximation

    DOE PAGES

    Campione, Salvatore; Warne, Larry K.; Basilio, Lorena I.

    2017-09-29

    In this paper we develop a fully-retarded, dipole approximation model to estimate the effective polarizabilities of a dimer made of dielectric resonators. They are computed from the polarizabilities of the two resonators composing the dimer. We analyze the situation of full-cubes as well as split-cubes, which have been shown to exhibit overlapping electric and magnetic resonances. We compare the effective dimer polarizabilities to ones retrieved via full-wave simulations as well as ones computed via a quasi-static, dipole approximation. We observe good agreement between the fully-retarded solution and the full-wave results, whereas the quasi-static approximation is less accurate for the problemmore » at hand. The developed model can be used to predict the electric and magnetic resonances of a dimer under parallel or orthogonal (to the dimer axis) excitation. This is particularly helpful when interested in locating frequencies at which the dimer will emit directional radiation.« less

  9. Resumming the large-N approximation for time evolving quantum systems

    NASA Astrophysics Data System (ADS)

    Mihaila, Bogdan; Dawson, John F.; Cooper, Fred

    2001-05-01

    In this paper we discuss two methods of resumming the leading and next to leading order in 1/N diagrams for the quartic O(N) model. These two approaches have the property that they preserve both boundedness and positivity for expectation values of operators in our numerical simulations. These approximations can be understood either in terms of a truncation to the infinitely coupled Schwinger-Dyson hierarchy of equations, or by choosing a particular two-particle irreducible vacuum energy graph in the effective action of the Cornwall-Jackiw-Tomboulis formalism. We confine our discussion to the case of quantum mechanics where the Lagrangian is L(x,ẋ)=(12)∑Ni=1x˙2i-(g/8N)[∑Ni=1x2i- r20]2. The key to these approximations is to treat both the x propagator and the x2 propagator on similar footing which leads to a theory whose graphs have the same topology as QED with the x2 propagator playing the role of the photon. The bare vertex approximation is obtained by replacing the exact vertex function by the bare one in the exact Schwinger-Dyson equations for the one and two point functions. The second approximation, which we call the dynamic Debye screening approximation, makes the further approximation of replacing the exact x2 propagator by its value at leading order in the 1/N expansion. These two approximations are compared with exact numerical simulations for the quantum roll problem. The bare vertex approximation captures the physics at large and modest N better than the dynamic Debye screening approximation.

  10. An approximate classical unimolecular reaction rate theory

    NASA Astrophysics Data System (ADS)

    Zhao, Meishan; Rice, Stuart A.

    1992-05-01

    We describe a classical theory of unimolecular reaction rate which is derived from the analysis of Davis and Gray by use of simplifying approximations. These approximations concern the calculation of the locations of, and the fluxes of phase points across, the bottlenecks to fragmentation and to intramolecular energy transfer. The bottleneck to fragment separation is represented as a vibration-rotation state dependent separatrix, which approximation is similar to but extends and improves the approximations for the separatrix introduced by Gray, Rice, and Davis and by Zhao and Rice. The novel feature in our analysis is the representation of the bottlenecks to intramolecular energy transfer as dividing surfaces in phase space; the locations of these dividing surfaces are determined by the same conditions as locate the remnants of robust tori with frequency ratios related to the golden mean (in a two degree of freedom system these are the cantori). The flux of phase points across each dividing surface is calculated with an analytic representation instead of a stroboscopic mapping. The rate of unimolecular reaction is identified with the net rate at which phase points escape from the region of quasiperiodic bounded motion to the region of free fragment motion by consecutively crossing the dividing surfaces for intramolecular energy exchange and the separatrix. This new theory generates predictions of the rates of predissociation of the van der Waals molecules HeI2, NeI2 and ArI2 which are in very good agreement with available experimental data.

  11. Representation of Ice Geometry by Parametric Functions: Construction of Approximating NURBS Curves and Quantification of Ice Roughness--Year 1: Approximating NURBS Curves

    NASA Technical Reports Server (NTRS)

    Dill, Loren H.; Choo, Yung K. (Technical Monitor)

    2004-01-01

    Software was developed to construct approximating NURBS curves for iced airfoil geometries. Users specify a tolerance that determines the extent to which the approximating curve follows the rough ice. The user can therefore smooth the ice geometry in a controlled manner, thereby enabling the generation of grids suitable for numerical aerodynamic simulations. Ultimately, this ability to smooth the ice geometry will permit studies of the effects of smoothing upon the aerodynamics of iced airfoils. The software was applied to several different types of iced airfoil data collected in the Icing Research Tunnel at NASA Glenn Research Center, and in all cases was found to efficiently generate suitable approximating NURBS curves. This method is an improvement over the current "control point formulation" of Smaggice (v.1.2). In this report, we present the relevant theory of approximating NURBS curves and discuss typical results of the software.

  12. Approximations to the exact exchange potential: KLI versus semilocal

    NASA Astrophysics Data System (ADS)

    Tran, Fabien; Blaha, Peter; Betzinger, Markus; Blügel, Stefan

    2016-10-01

    In the search for an accurate and computationally efficient approximation to the exact exchange potential of Kohn-Sham density functional theory, we recently compared various semilocal exchange potentials to the exact one [F. Tran et al., Phys. Rev. B 91, 165121 (2015), 10.1103/PhysRevB.91.165121]. It was concluded that the Becke-Johnson (BJ) potential is a very good starting point, but requires the use of empirical parameters to obtain good agreement with the exact exchange potential. In this work, we extend the comparison by considering the Krieger-Li-Iafrate (KLI) approximation, which is a beyond-semilocal approximation. It is shown that overall the KLI- and BJ-based potentials are the most reliable approximations to the exact exchange potential, however, sizable differences, especially for the antiferromagnetic transition-metal oxides, can be obtained.

  13. On the dipole approximation with error estimates

    NASA Astrophysics Data System (ADS)

    Boßmann, Lea; Grummt, Robert; Kolb, Martin

    2018-01-01

    The dipole approximation is employed to describe interactions between atoms and radiation. It essentially consists of neglecting the spatial variation of the external field over the atom. Heuristically, this is justified by arguing that the wavelength is considerably larger than the atomic length scale, which holds under usual experimental conditions. We prove the dipole approximation in the limit of infinite wavelengths compared to the atomic length scale and estimate the rate of convergence. Our results include N-body Coulomb potentials and experimentally relevant electromagnetic fields such as plane waves and laser pulses.

  14. Rational-spline approximation with automatic tension adjustment

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Kerr, P. A.

    1984-01-01

    An algorithm for weighted least-squares approximation with rational splines is presented. A rational spline is a cubic function containing a distinct tension parameter for each interval defined by two consecutive knots. For zero tension, the rational spline is identical to a cubic spline; for very large tension, the rational spline is a linear function. The approximation algorithm incorporates an algorithm which automatically adjusts the tension on each interval to fulfill a user-specified criterion. Finally, an example is presented comparing results of the rational spline with those of the cubic spline.

  15. Short-Path Statistics and the Diffusion Approximation

    NASA Astrophysics Data System (ADS)

    Blanco, Stéphane; Fournier, Richard

    2006-12-01

    In the field of first return time statistics in bounded domains, short paths may be defined as those paths for which the diffusion approximation is inappropriate. This is at the origin of numerous open questions concerning the characterization of residence time distributions. We show here how general integral constraints can be derived that make it possible to address short-path statistics indirectly by application of the diffusion approximation to long paths. Application to the moments of the distribution at the low-Knudsen limit leads to simple practical results and novel physical pictures.

  16. Cosmological collapse and the improved Zel'dovich approximation.

    NASA Astrophysics Data System (ADS)

    Salopek, D. S.; Stewart, J. M.; Croudace, K. M.; Parry, J.

    Using a general relativistic formulation, the authors show how to compute the higher order terms in the Zel'dovich approximation which describes cosmological collapse. They evolve the 3-metric in a spatial gradient expansion. Their method is an advance over earlier work because it is local at each order. Using the improved Zel'dovich approximation, they compute the epoch of collapse.

  17. Robustness of controllers designed using Galerkin type approximations

    NASA Technical Reports Server (NTRS)

    Morris, K. A.

    1990-01-01

    One of the difficulties in designing controllers for infinite-dimensional systems arises from attempting to calculate a state for the system. It is shown that Galerkin type approximations can be used to design controllers which will perform as designed when implemented on the original infinite-dimensional system. No assumptions, other than those typically employed in numerical analysis, are made on the approximating scheme.

  18. Analytic Interatomic Forces in the Random Phase Approximation

    NASA Astrophysics Data System (ADS)

    Ramberger, Benjamin; Schäfer, Tobias; Kresse, Georg

    2017-03-01

    We discuss that in the random phase approximation (RPA) the first derivative of the energy with respect to the Green's function is the self-energy in the G W approximation. This relationship allows us to derive compact equations for the RPA interatomic forces. We also show that position dependent overlap operators are elegantly incorporated in the present framework. The RPA force equations have been implemented in the projector augmented wave formalism, and we present illustrative applications, including ab initio molecular dynamics simulations, the calculation of phonon dispersion relations for diamond and graphite, as well as structural relaxations for water on boron nitride. The present derivation establishes a concise framework for forces within perturbative approaches and is also applicable to more involved approximations for the correlation energy.

  19. Economic impact of switching rubella IgG methodologies to the prenatal public health program in Alberta.

    PubMed

    Lai, Florence Y; Dover, Douglas C; Charlton, Carmen L

    2016-10-01

    Despite widespread use of a universal rubella standard, variability in rubella antibody titre can be observed between assays, particularly at the low end of the linear range. Here, we investigate the impact of a methodology change for rubella IgG from the Abbott AXSYM to the Abbott Architect in a comprehensive prenatal screening program in the Canadian province of Alberta. 51,815 specimens (21,399 tested by AxSYM and 30,416 tested by Architect) submitted for routine prenatal screening between January 2006 and December 2012 from women who lived in Alberta after the universal childhood immunization programme for rubella was implemented, and whose immunization records were available, were included in the study. Prenatal samples tested by AxSYM for rubella IgG were approximately 30% higher than those reported by Architect. Among individuals who had tests across multiple pregnancies, the change in test platform led to an additional 7% of women who initially tested positive, becoming non-positive (i.e. negative or indeterminate) in their subsequent tests. The tendency of the Architect IgG assay to report lower quantitative values was demonstrated across all birth cohorts and vaccination status, and resulted in an additional 2800 women requiring vaccination between 2010 and 2012 with an estimated cost of $38,500. The change in rubella IgG screening assay resulted in a significant increase in the number of women who required post partum vaccination and Public Health follow-up. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Polynomial approximation of the Lense-Thirring rigid precession frequency

    NASA Astrophysics Data System (ADS)

    De Falco, Vittorio; Motta, Sara

    2018-05-01

    We propose a polynomial approximation of the global Lense-Thirring rigid precession frequency to study low-frequency quasi-periodic oscillations around spinning black holes. This high-performing approximation allows to determine the expected frequencies of a precessing thick accretion disc with fixed inner radius and variable outer radius around a black hole with given mass and spin. We discuss the accuracy and the applicability regions of our polynomial approximation, showing that the computational times are reduced by a factor of ≈70 in the range of minutes.

  1. Flexible Approximation Model Approach for Bi-Level Integrated System Synthesis

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Kim, Hongman; Ragon, Scott; Soremekun, Grant; Malone, Brett

    2004-01-01

    Bi-Level Integrated System Synthesis (BLISS) is an approach that allows design problems to be naturally decomposed into a set of subsystem optimizations and a single system optimization. In the BLISS approach, approximate mathematical models are used to transfer information from the subsystem optimizations to the system optimization. Accurate approximation models are therefore critical to the success of the BLISS procedure. In this paper, new capabilities that are being developed to generate accurate approximation models for BLISS procedure will be described. The benefits of using flexible approximation models such as Kriging will be demonstrated in terms of convergence characteristics and computational cost. An approach of dealing with cases where subsystem optimization cannot find a feasible design will be investigated by using the new flexible approximation models for the violated local constraints.

  2. The complex variable boundary element method: Applications in determining approximative boundaries

    USGS Publications Warehouse

    Hromadka, T.V.

    1984-01-01

    The complex variable boundary element method (CVBEM) is used to determine approximation functions for boundary value problems of the Laplace equation such as occurs in potential theory. By determining an approximative boundary upon which the CVBEM approximator matches the desired constant (level curves) boundary conditions, the CVBEM is found to provide the exact solution throughout the interior of the transformed problem domain. Thus, the acceptability of the CVBEM approximation is determined by the closeness-of-fit of the approximative boundary to the study problem boundary. ?? 1984.

  3. Combined Constraints on the Equation of State of Dense Neutron-rich Matter from Terrestrial Nuclear Experiments and Observations of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Zhang, Nai-Bo; Li, Bao-An; Xu, Jun

    2018-06-01

    Within the parameter space of the equation of state (EOS) of dense neutron-rich matter limited by existing constraints mainly from terrestrial nuclear experiments, we investigate how the neutron star maximum mass M max > 2.01 ± 0.04 M ⊙, radius 10.62 km < R 1.4 < 12.83 km and tidal deformability Λ1.4 ≤ 800 of canonical neutron stars together constrain the EOS of dense neutron-rich nucleonic matter. While the 3D parameter space of K sym (curvature of nuclear symmetry energy), J sym, and J 0 (skewness of the symmetry energy and EOS of symmetric nuclear matter, respectively) is narrowed down significantly by the observational constraints, more data are needed to pin down the individual values of K sym, J sym, and J 0. The J 0 largely controls the maximum mass of neutron stars. While the EOS with J 0 = 0 is sufficiently stiff to support neutron stars as massive as 2.37 M ⊙, supporting the hypothetical ones as massive as 2.74 M ⊙ (composite mass of GW170817) requires J 0 to be larger than its currently known maximum value of about 400 MeV and beyond the causality limit. The upper limit on the tidal deformability of Λ1.4 = 800 from the recent observation of GW170817 is found to provide upper limits on some EOS parameters consistent with but far less restrictive than the existing constraints of other observables studied.

  4. Robustness encoded across essential and accessory replicons of the ecologically versatile bacterium Sinorhizobium meliloti

    PubMed Central

    Walker, Graham C.; Finan, Turlough M.; Mengoni, Alessio; Griffitts, Joel S.

    2018-01-01

    Bacterial genome evolution is characterized by gains, losses, and rearrangements of functional genetic segments. The extent to which large-scale genomic alterations influence genotype-phenotype relationships has not been investigated in a high-throughput manner. In the symbiotic soil bacterium Sinorhizobium meliloti, the genome is composed of a chromosome and two large extrachromosomal replicons (pSymA and pSymB, which together constitute 45% of the genome). Massively parallel transposon insertion sequencing (Tn-seq) was employed to evaluate the contributions of chromosomal genes to growth fitness in both the presence and absence of these extrachromosomal replicons. Ten percent of chromosomal genes from diverse functional categories are shown to genetically interact with pSymA and pSymB. These results demonstrate the pervasive robustness provided by the extrachromosomal replicons, which is further supported by constraint-based metabolic modeling. A comprehensive picture of core S. meliloti metabolism was generated through a Tn-seq-guided in silico metabolic network reconstruction, producing a core network encompassing 726 genes. This integrated approach facilitated functional assignments for previously uncharacterized genes, while also revealing that Tn-seq alone missed over a quarter of wild-type metabolism. This work highlights the many functional dependencies and epistatic relationships that may arise between bacterial replicons and across a genome, while also demonstrating how Tn-seq and metabolic modeling can be used together to yield insights not obtainable by either method alone. PMID:29672509

  5. In Vitro Aberrometric Assessment of a Multifocal Intraocular Lens and Two Extended Depth of Focus IOLs

    PubMed Central

    Tolosa, Angel; de Fez, Dolores; Caballero, María T.; Miret, Juan J.

    2017-01-01

    Purpose To analyze the “in vitro” aberrometric pattern of a refractive IOL and two extended depth of focus IOLs. Methods A special optical bench with a Shack-Hartmann wavefront sensor (SH) was designed for the measurement. Three presbyopia correction IOLs were analyzed: Mini WELL (MW), TECNIS Symfony ZXR00 (SYM), and Lentis Mplus X LS-313 MF30 (MP). Three different pupil sizes were used for the comparison: 3, 4, and 4.7 mm. Results MW generated negative primary and positive secondary spherical aberrations (SA) for the apertures of 3 mm (−0.13 and +0.12 μm), 4 mm (−0.12 and +0.08 μm), and 4.7 mm (−0.11 and +0.08 μm), while the SYM only generated negative primary SA for 4 and 4.7 mm apertures (−0.12 μm and −0.20 μm, resp.). The MP induced coma and trefoil for all pupils and showed significant HOAs for apertures of 4 and 4.7 mm. Conclusions In an optical bench, the MW induces negative primary and positive secondary SA for all pupils. The SYM aberrations seem to be pupil dependent; it does not produce negative primary SA for 3 mm but increases for higher pupils. Meanwhile, the HOAs for the MW and SYM were not significant. The MP showed in all cases the highest HOAs. PMID:29318040

  6. In Vitro Aberrometric Assessment of a Multifocal Intraocular Lens and Two Extended Depth of Focus IOLs.

    PubMed

    Camps, Vicente J; Tolosa, Angel; Piñero, David P; de Fez, Dolores; Caballero, María T; Miret, Juan J

    2017-01-01

    To analyze the "in vitro" aberrometric pattern of a refractive IOL and two extended depth of focus IOLs. A special optical bench with a Shack-Hartmann wavefront sensor (SH) was designed for the measurement. Three presbyopia correction IOLs were analyzed: Mini WELL (MW), TECNIS Symfony ZXR00 (SYM), and Lentis Mplus X LS-313 MF30 (MP). Three different pupil sizes were used for the comparison: 3, 4, and 4.7 mm. MW generated negative primary and positive secondary spherical aberrations (SA) for the apertures of 3 mm (-0.13 and +0.12  μ m), 4 mm (-0.12 and +0.08  μ m), and 4.7 mm (-0.11 and +0.08  μ m), while the SYM only generated negative primary SA for 4 and 4.7 mm apertures (-0.12  μ m and -0.20  μ m, resp.). The MP induced coma and trefoil for all pupils and showed significant HOAs for apertures of 4 and 4.7 mm. In an optical bench, the MW induces negative primary and positive secondary SA for all pupils. The SYM aberrations seem to be pupil dependent; it does not produce negative primary SA for 3 mm but increases for higher pupils. Meanwhile, the HOAs for the MW and SYM were not significant. The MP showed in all cases the highest HOAs.

  7. Approximation methods for stochastic petri nets

    NASA Technical Reports Server (NTRS)

    Jungnitz, Hauke Joerg

    1992-01-01

    Stochastic Marked Graphs are a concurrent decision free formalism provided with a powerful synchronization mechanism generalizing conventional Fork Join Queueing Networks. In some particular cases the analysis of the throughput can be done analytically. Otherwise the analysis suffers from the classical state explosion problem. Embedded in the divide and conquer paradigm, approximation techniques are introduced for the analysis of stochastic marked graphs and Macroplace/Macrotransition-nets (MPMT-nets), a new subclass introduced herein. MPMT-nets are a subclass of Petri nets that allow limited choice, concurrency and sharing of resources. The modeling power of MPMT is much larger than that of marked graphs, e.g., MPMT-nets can model manufacturing flow lines with unreliable machines and dataflow graphs where choice and synchronization occur. The basic idea leads to the notion of a cut to split the original net system into two subnets. The cuts lead to two aggregated net systems where one of the subnets is reduced to a single transition. A further reduction leads to a basic skeleton. The generalization of the idea leads to multiple cuts, where single cuts can be applied recursively leading to a hierarchical decomposition. Based on the decomposition, a response time approximation technique for the performance analysis is introduced. Also, delay equivalence, which has previously been introduced in the context of marked graphs by Woodside et al., Marie's method and flow equivalent aggregation are applied to the aggregated net systems. The experimental results show that response time approximation converges quickly and shows reasonable accuracy in most cases. The convergence of Marie's method and flow equivalent aggregation are applied to the aggregated net systems. The experimental results show that response time approximation converges quickly and shows reasonable accuracy in most cases. The convergence of Marie's is slower, but the accuracy is generally better. Delay

  8. A Subsonic Aircraft Design Optimization With Neural Network and Regression Approximators

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.; Haller, William J.

    2004-01-01

    The Flight-Optimization-System (FLOPS) code encountered difficulty in analyzing a subsonic aircraft. The limitation made the design optimization problematic. The deficiencies have been alleviated through use of neural network and regression approximations. The insight gained from using the approximators is discussed in this paper. The FLOPS code is reviewed. Analysis models are developed and validated for each approximator. The regression method appears to hug the data points, while the neural network approximation follows a mean path. For an analysis cycle, the approximate model required milliseconds of central processing unit (CPU) time versus seconds by the FLOPS code. Performance of the approximators was satisfactory for aircraft analysis. A design optimization capability has been created by coupling the derived analyzers to the optimization test bed CometBoards. The approximators were efficient reanalysis tools in the aircraft design optimization. Instability encountered in the FLOPS analyzer was eliminated. The convergence characteristics were improved for the design optimization. The CPU time required to calculate the optimum solution, measured in hours with the FLOPS code was reduced to minutes with the neural network approximation and to seconds with the regression method. Generation of the approximators required the manipulation of a very large quantity of data. Design sensitivity with respect to the bounds of aircraft constraints is easily generated.

  9. An approximation function for frequency constrained structural optimization

    NASA Technical Reports Server (NTRS)

    Canfield, R. A.

    1989-01-01

    The purpose is to examine a function for approximating natural frequency constraints during structural optimization. The nonlinearity of frequencies has posed a barrier to constructing approximations for frequency constraints of high enough quality to facilitate efficient solutions. A new function to represent frequency constraints, called the Rayleigh Quotient Approximation (RQA), is presented. Its ability to represent the actual frequency constraint results in stable convergence with effectively no move limits. The objective of the optimization problem is to minimize structural weight subject to some minimum (or maximum) allowable frequency and perhaps subject to other constraints such as stress, displacement, and gage size, as well. A reason for constraining natural frequencies during design might be to avoid potential resonant frequencies due to machinery or actuators on the structure. Another reason might be to satisy requirements of an aircraft or spacecraft's control law. Whatever the structure supports may be sensitive to a frequency band that must be avoided. Any of these situations or others may require the designer to insure the satisfaction of frequency constraints. A further motivation for considering accurate approximations of natural frequencies is that they are fundamental to dynamic response constraints.

  10. Meta-regression approximations to reduce publication selection bias.

    PubMed

    Stanley, T D; Doucouliagos, Hristos

    2014-03-01

    Publication selection bias is a serious challenge to the integrity of all empirical sciences. We derive meta-regression approximations to reduce this bias. Our approach employs Taylor polynomial approximations to the conditional mean of a truncated distribution. A quadratic approximation without a linear term, precision-effect estimate with standard error (PEESE), is shown to have the smallest bias and mean squared error in most cases and to outperform conventional meta-analysis estimators, often by a great deal. Monte Carlo simulations also demonstrate how a new hybrid estimator that conditionally combines PEESE and the Egger regression intercept can provide a practical solution to publication selection bias. PEESE is easily expanded to accommodate systematic heterogeneity along with complex and differential publication selection bias that is related to moderator variables. By providing an intuitive reason for these approximations, we can also explain why the Egger regression works so well and when it does not. These meta-regression methods are applied to several policy-relevant areas of research including antidepressant effectiveness, the value of a statistical life, the minimum wage, and nicotine replacement therapy. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Low rank approximation in G 0W 0 calculations

    DOE PAGES

    Shao, MeiYue; Lin, Lin; Yang, Chao; ...

    2016-06-04

    The single particle energies obtained in a Kohn-Sham density functional theory (DFT) calculation are generally known to be poor approximations to electron excitation energies that are measured in tr ansport, tunneling and spectroscopic experiments such as photo-emission spectroscopy. The correction to these energies can be obtained from the poles of a single particle Green’s function derived from a many-body perturbation theory. From a computational perspective, the accuracy and efficiency of such an approach depends on how a self energy term that properly accounts for dynamic screening of electrons is approximated. The G 0W 0 approximation is a widely used techniquemore » in which the self energy is expressed as the convolution of a noninteracting Green’s function (G 0) and a screened Coulomb interaction (W 0) in the frequency domain. The computational cost associated with such a convolution is high due to the high complexity of evaluating W 0 at multiple frequencies. In this paper, we discuss how the cost of G 0W 0 calculation can be reduced by constructing a low rank approximation to the frequency dependent part of W 0 . In particular, we examine the effect of such a low rank approximation on the accuracy of the G 0W 0 approximation. We also discuss how the numerical convolution of G 0 and W 0 can be evaluated efficiently and accurately by using a contour deformation technique with an appropriate choice of the contour.« less

  12. Pythagorean Approximations and Continued Fractions

    ERIC Educational Resources Information Center

    Peralta, Javier

    2008-01-01

    In this article, we will show that the Pythagorean approximations of [the square root of] 2 coincide with those achieved in the 16th century by means of continued fractions. Assuming this fact and the known relation that connects the Fibonacci sequence with the golden section, we shall establish a procedure to obtain sequences of rational numbers…

  13. Approximate strip exchanging.

    PubMed

    Roy, Swapnoneel; Thakur, Ashok Kumar

    2008-01-01

    Genome rearrangements have been modelled by a variety of primitives such as reversals, transpositions, block moves and block interchanges. We consider such a genome rearrangement primitive Strip Exchanges. Given a permutation, the challenge is to sort it by using minimum number of strip exchanges. A strip exchanging move interchanges the positions of two chosen strips so that they merge with other strips. The strip exchange problem is to sort a permutation using minimum number of strip exchanges. We present here the first non-trivial 2-approximation algorithm to this problem. We also observe that sorting by strip-exchanges is fixed-parameter-tractable. Lastly we discuss the application of strip exchanges in a different area Optical Character Recognition (OCR) with an example.

  14. The unitary convolution approximation for heavy ions

    NASA Astrophysics Data System (ADS)

    Grande, P. L.; Schiwietz, G.

    2002-10-01

    The convolution approximation for the impact-parameter dependent energy loss is reviewed with emphasis on the determination of the stopping force for heavy projectiles. In this method, the energy loss in different impact-parameter regions is well determined and interpolated smoothly. The physical inputs of the model are the projectile-screening function (in the case of dressed ions), the electron density and oscillators strengths of the target atoms. Moreover, the convolution approximation, in the perturbative mode (called PCA), yields remarkable agreement with full semi-classical-approximation (SCA) results for bare as well as for screened ions at all impact parameters. In the unitary mode (called UCA), the method contains some higher-order effects (yielding in some cases rather good agreement with full coupled-channel calculations) and approaches the classical regime similar as the Bohr model for large perturbations ( Z/ v≫1). The results are then used to compare with experimental values of the non-equilibrium stopping force as a function of the projectile charge as well as with the equilibrium energy loss under non-aligned and channeling conditions.

  15. An Origami Approximation to the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Neyrinck, Mark C.

    2016-10-01

    The powerful Lagrangian view of structure formation was essentially introduced to cosmology by Zel'dovich. In the current cosmological paradigm, a dark-matter-sheet 3D manifold, inhabiting 6D position-velocity phase space, was flat (with vanishing velocity) at the big bang. Afterward, gravity stretched and bunched the sheet together in different places, forming a cosmic web when projected to the position coordinates. Here, I explain some properties of an origami approximation, in which the sheet does not stretch or contract (an assumption that is false in general), but is allowed to fold. Even without stretching, the sheet can form an idealized cosmic web, with convex polyhedral voids separated by straight walls and filaments, joined by convex polyhedral nodes. The nodes form in `polygonal' or `polyhedral' collapse, somewhat like spherical/ellipsoidal collapse, except incorporating simultaneous filament and wall formation. The origami approximation allows phase-space geometries of nodes, filaments, and walls to be more easily understood, and may aid in understanding spin correlations between nearby galaxies. This contribution explores kinematic origami-approximation models giving velocity fields for the first time.

  16. Comparison of universal approximators incorporating partial monotonicity by structure.

    PubMed

    Minin, Alexey; Velikova, Marina; Lang, Bernhard; Daniels, Hennie

    2010-05-01

    Neural networks applied in control loops and safety-critical domains have to meet more requirements than just the overall best function approximation. On the one hand, a small approximation error is required; on the other hand, the smoothness and the monotonicity of selected input-output relations have to be guaranteed. Otherwise, the stability of most of the control laws is lost. In this article we compare two neural network-based approaches incorporating partial monotonicity by structure, namely the Monotonic Multi-Layer Perceptron (MONMLP) network and the Monotonic MIN-MAX (MONMM) network. We show the universal approximation capabilities of both types of network for partially monotone functions. On a number of datasets, we investigate the advantages and disadvantages of these approaches related to approximation performance, training of the model and convergence. 2009 Elsevier Ltd. All rights reserved.

  17. Integral approximations to classical diffusion and smoothed particle hydrodynamics

    DOE PAGES

    Du, Qiang; Lehoucq, R. B.; Tartakovsky, A. M.

    2014-12-31

    The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary.more » The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. As a result, an immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.« less

  18. A Varifold Approach to Surface Approximation

    NASA Astrophysics Data System (ADS)

    Buet, Blanche; Leonardi, Gian Paolo; Masnou, Simon

    2017-11-01

    We show that the theory of varifolds can be suitably enriched to open the way to applications in the field of discrete and computational geometry. Using appropriate regularizations of the mass and of the first variation of a varifold we introduce the notion of approximate mean curvature and show various convergence results that hold, in particular, for sequences of discrete varifolds associated with point clouds or pixel/voxel-type discretizations of d-surfaces in the Euclidean n-space, without restrictions on dimension and codimension. The variational nature of the approach also allows us to consider surfaces with singularities, and in that case the approximate mean curvature is consistent with the generalized mean curvature of the limit surface. A series of numerical tests are provided in order to illustrate the effectiveness and generality of the method.

  19. Approximating exponential and logarithmic functions using polynomial interpolation

    NASA Astrophysics Data System (ADS)

    Gordon, Sheldon P.; Yang, Yajun

    2017-04-01

    This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is analysed. The results of interpolating polynomials are compared with those of Taylor polynomials.

  20. Solving the infeasible trust-region problem using approximations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renaud, John E.; Perez, Victor M.; Eldred, Michael Scott

    2004-07-01

    The use of optimization in engineering design has fueled the development of algorithms for specific engineering needs. When the simulations are expensive to evaluate or the outputs present some noise, the direct use of nonlinear optimizers is not advisable, since the optimization process will be expensive and may result in premature convergence. The use of approximations for both cases is an alternative investigated by many researchers including the authors. When approximations are present, a model management is required for proper convergence of the algorithm. In nonlinear programming, the use of trust-regions for globalization of a local algorithm has been provenmore » effective. The same approach has been used to manage the local move limits in sequential approximate optimization frameworks as in Alexandrov et al., Giunta and Eldred, Perez et al. , Rodriguez et al., etc. The experience in the mathematical community has shown that more effective algorithms can be obtained by the specific inclusion of the constraints (SQP type of algorithms) rather than by using a penalty function as in the augmented Lagrangian formulation. The presence of explicit constraints in the local problem bounded by the trust region, however, may have no feasible solution. In order to remedy this problem the mathematical community has developed different versions of a composite steps approach. This approach consists of a normal step to reduce the amount of constraint violation and a tangential step to minimize the objective function maintaining the level of constraint violation attained at the normal step. Two of the authors have developed a different approach for a sequential approximate optimization framework using homotopy ideas to relax the constraints. This algorithm called interior-point trust-region sequential approximate optimization (IPTRSAO) presents some similarities to the two normal-tangential steps algorithms. In this paper, a description of the similarities is presented

  1. Lognormal Approximations of Fault Tree Uncertainty Distributions.

    PubMed

    El-Shanawany, Ashraf Ben; Ardron, Keith H; Walker, Simon P

    2018-01-26

    Fault trees are used in reliability modeling to create logical models of fault combinations that can lead to undesirable events. The output of a fault tree analysis (the top event probability) is expressed in terms of the failure probabilities of basic events that are input to the model. Typically, the basic event probabilities are not known exactly, but are modeled as probability distributions: therefore, the top event probability is also represented as an uncertainty distribution. Monte Carlo methods are generally used for evaluating the uncertainty distribution, but such calculations are computationally intensive and do not readily reveal the dominant contributors to the uncertainty. In this article, a closed-form approximation for the fault tree top event uncertainty distribution is developed, which is applicable when the uncertainties in the basic events of the model are lognormally distributed. The results of the approximate method are compared with results from two sampling-based methods: namely, the Monte Carlo method and the Wilks method based on order statistics. It is shown that the closed-form expression can provide a reasonable approximation to results obtained by Monte Carlo sampling, without incurring the computational expense. The Wilks method is found to be a useful means of providing an upper bound for the percentiles of the uncertainty distribution while being computationally inexpensive compared with full Monte Carlo sampling. The lognormal approximation method and Wilks's method appear attractive, practical alternatives for the evaluation of uncertainty in the output of fault trees and similar multilinear models. © 2018 Society for Risk Analysis.

  2. Darboux coordinates and instanton corrections in projective superspace

    NASA Astrophysics Data System (ADS)

    Crichigno, P. Marcos; Jain, Dharmesh

    2012-10-01

    By demanding consistency of the Legendre transform construction of hyperkähler metrics in projective superspace, we derive the expression for the Darboux coordinates on the hyperkähler manifold. We apply these results to study the Coulomb branch moduli space of 4D, {N}=2 super-Yang-Mills theory (SYM) on {{{R}}^3}× {S^1} , recovering the results by GMN. We also apply this method to study the electric corrections to the moduli space of 5D, {N}=1 SYM on {{{R}}^3}× {T^2} and give the Darboux coordinates explicitly.

  3. Direct application of Padé approximant for solving nonlinear differential equations.

    PubMed

    Vazquez-Leal, Hector; Benhammouda, Brahim; Filobello-Nino, Uriel; Sarmiento-Reyes, Arturo; Jimenez-Fernandez, Victor Manuel; Garcia-Gervacio, Jose Luis; Huerta-Chua, Jesus; Morales-Mendoza, Luis Javier; Gonzalez-Lee, Mario

    2014-01-01

    This work presents a direct procedure to apply Padé method to find approximate solutions for nonlinear differential equations. Moreover, we present some cases study showing the strength of the method to generate highly accurate rational approximate solutions compared to other semi-analytical methods. The type of tested nonlinear equations are: a highly nonlinear boundary value problem, a differential-algebraic oscillator problem, and an asymptotic problem. The high accurate handy approximations obtained by the direct application of Padé method shows the high potential if the proposed scheme to approximate a wide variety of problems. What is more, the direct application of the Padé approximant aids to avoid the previous application of an approximative method like Taylor series method, homotopy perturbation method, Adomian Decomposition method, homotopy analysis method, variational iteration method, among others, as tools to obtain a power series solutions to post-treat with the Padé approximant. 34L30.

  4. Dual methods and approximation concepts in structural synthesis

    NASA Technical Reports Server (NTRS)

    Fleury, C.; Schmit, L. A., Jr.

    1980-01-01

    Approximation concepts and dual method algorithms are combined to create a method for minimum weight design of structural systems. Approximation concepts convert the basic mathematical programming statement of the structural synthesis problem into a sequence of explicit primal problems of separable form. These problems are solved by constructing explicit dual functions, which are maximized subject to nonnegativity constraints on the dual variables. It is shown that the joining together of approximation concepts and dual methods can be viewed as a generalized optimality criteria approach. The dual method is successfully extended to deal with pure discrete and mixed continuous-discrete design variable problems. The power of the method presented is illustrated with numerical results for example problems, including a metallic swept wing and a thin delta wing with fiber composite skins.

  5. Comparison of approximate solutions to the phonon Boltzmann transport equation with the relaxation time approximation: Spherical harmonics expansions and the discrete ordinates method

    NASA Astrophysics Data System (ADS)

    Christenson, J. G.; Austin, R. A.; Phillips, R. J.

    2018-05-01

    The phonon Boltzmann transport equation is used to analyze model problems in one and two spatial dimensions, under transient and steady-state conditions. New, explicit solutions are obtained by using the P1 and P3 approximations, based on expansions in spherical harmonics, and are compared with solutions from the discrete ordinates method. For steady-state energy transfer, it is shown that analytic expressions derived using the P1 and P3 approximations agree quantitatively with the discrete ordinates method, in some cases for large Knudsen numbers, and always for Knudsen numbers less than unity. However, for time-dependent energy transfer, the PN solutions differ qualitatively from converged solutions obtained by the discrete ordinates method. Although they correctly capture the wave-like behavior of energy transfer at short times, the P1 and P3 approximations rely on one or two wave velocities, respectively, yielding abrupt, step-changes in temperature profiles that are absent when the angular dependence of the phonon velocities is captured more completely. It is shown that, with the gray approximation, the P1 approximation is formally equivalent to the so-called "hyperbolic heat equation." Overall, these results support the use of the PN approximation to find solutions to the phonon Boltzmann transport equation for steady-state conditions. Such solutions can be useful in the design and analysis of devices that involve heat transfer at nanometer length scales, where continuum-scale approaches become inaccurate.

  6. Test particle propagation in magnetostatic turbulence. 2: The local approximation method

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Sandri, G.; Scudder, J. D.; Howell, D. R.

    1976-01-01

    An approximation method for statistical mechanics is presented and applied to a class of problems which contains a test particle propagation problem. All of the available basic equations used in statistical mechanics are cast in the form of a single equation which is integrodifferential in time and which is then used as the starting point for the construction of the local approximation method. Simplification of the integrodifferential equation is achieved through approximation to the Laplace transform of its kernel. The approximation is valid near the origin in the Laplace space and is based on the assumption of small Laplace variable. No other small parameter is necessary for the construction of this approximation method. The n'th level of approximation is constructed formally, and the first five levels of approximation are calculated explicitly. It is shown that each level of approximation is governed by an inhomogeneous partial differential equation in time with time independent operator coefficients. The order in time of these partial differential equations is found to increase as n does. At n = 0 the most local first order partial differential equation which governs the Markovian limit is regained.

  7. Blocking performance approximation in flexi-grid networks

    NASA Astrophysics Data System (ADS)

    Ge, Fei; Tan, Liansheng

    2016-12-01

    The blocking probability to the path requests is an important issue in flexible bandwidth optical communications. In this paper, we propose a blocking probability approximation method of path requests in flexi-grid networks. It models the bundled neighboring carrier allocation with a group of birth-death processes and provides a theoretical analysis to the blocking probability under variable bandwidth traffic. The numerical results show the effect of traffic parameters to the blocking probability of path requests. We use the first fit algorithm in network nodes to allocate neighboring carriers to path requests in simulations, and verify approximation results.

  8. Congruence Approximations for Entrophy Endowed Hyperbolic Systems

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Building upon the standard symmetrization theory for hyperbolic systems of conservation laws, congruence properties of the symmetrized system are explored. These congruence properties suggest variants of several stabilized numerical discretization procedures for hyperbolic equations (upwind finite-volume, Galerkin least-squares, discontinuous Galerkin) that benefit computationally from congruence approximation. Specifically, it becomes straightforward to construct the spatial discretization and Jacobian linearization for these schemes (given a small amount of derivative information) for possible use in Newton's method, discrete optimization, homotopy algorithms, etc. Some examples will be given for the compressible Euler equations and the nonrelativistic MHD equations using linear and quadratic spatial approximation.

  9. Theory and applications of a deterministic approximation to the coalescent model

    PubMed Central

    Jewett, Ethan M.; Rosenberg, Noah A.

    2014-01-01

    Under the coalescent model, the random number nt of lineages ancestral to a sample is nearly deterministic as a function of time when nt is moderate to large in value, and it is well approximated by its expectation E[nt]. In turn, this expectation is well approximated by simple deterministic functions that are easy to compute. Such deterministic functions have been applied to estimate allele age, effective population size, and genetic diversity, and they have been used to study properties of models of infectious disease dynamics. Although a number of simple approximations of E[nt] have been derived and applied to problems of population-genetic inference, the theoretical accuracy of the formulas and the inferences obtained using these approximations is not known, and the range of problems to which they can be applied is not well understood. Here, we demonstrate general procedures by which the approximation nt ≈ E[nt] can be used to reduce the computational complexity of coalescent formulas, and we show that the resulting approximations converge to their true values under simple assumptions. Such approximations provide alternatives to exact formulas that are computationally intractable or numerically unstable when the number of sampled lineages is moderate or large. We also extend an existing class of approximations of E[nt] to the case of multiple populations of time-varying size with migration among them. Our results facilitate the use of the deterministic approximation nt ≈ E[nt] for deriving functionally simple, computationally efficient, and numerically stable approximations of coalescent formulas under complicated demographic scenarios. PMID:24412419

  10. Discussion of CoSA: Clustering of Sparse Approximations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Derek Elswick

    2017-03-07

    The purpose of this talk is to discuss the possible applications of CoSA (Clustering of Sparse Approximations) to the exploitation of HSI (HyperSpectral Imagery) data. CoSA is presented by Moody et al. in the Journal of Applied Remote Sensing (“Land cover classification in multispectral imagery using clustering of sparse approximations over learned feature dictionaries”, Vol. 8, 2014) and is based on machine learning techniques.

  11. Green-Ampt approximations: A comprehensive analysis

    NASA Astrophysics Data System (ADS)

    Ali, Shakir; Islam, Adlul; Mishra, P. K.; Sikka, Alok K.

    2016-04-01

    Green-Ampt (GA) model and its modifications are widely used for simulating infiltration process. Several explicit approximate solutions to the implicit GA model have been developed with varying degree of accuracy. In this study, performance of nine explicit approximations to the GA model is compared with the implicit GA model using the published data for broad range of soil classes and infiltration time. The explicit GA models considered are Li et al. (1976) (LI), Stone et al. (1994) (ST), Salvucci and Entekhabi (1994) (SE), Parlange et al. (2002) (PA), Barry et al. (2005) (BA), Swamee et al. (2012) (SW), Ali et al. (2013) (AL), Almedeij and Esen (2014) (AE), and Vatankhah (2015) (VA). Six statistical indicators (e.g., percent relative error, maximum absolute percent relative error, average absolute percent relative errors, percent bias, index of agreement, and Nash-Sutcliffe efficiency) and relative computer computation time are used for assessing the model performance. Models are ranked based on the overall performance index (OPI). The BA model is found to be the most accurate followed by the PA and VA models for variety of soil classes and infiltration periods. The AE, SW, SE, and LI model also performed comparatively better. Based on the overall performance index, the explicit models are ranked as BA > PA > VA > LI > AE > SE > SW > ST > AL. Results of this study will be helpful in selection of accurate and simple explicit approximate GA models for solving variety of hydrological problems.

  12. Strong washout approximation to resonant leptogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garbrecht, Björn; Gautier, Florian; Klaric, Juraj, E-mail: garbrecht@tum.de, E-mail: florian.gautier@tum.de, E-mail: juraj.klaric@tum.de

    We show that the effective decay asymmetry for resonant Leptogenesis in the strong washout regime with two sterile neutrinos and a single active flavour can in wide regions of parameter space be approximated by its late-time limit ε=Xsin(2φ)/(X{sup 2}+sin{sup 2}φ), where X=8πΔ/(|Y{sub 1}|{sup 2}+|Y{sub 2}|{sup 2}), Δ=4(M{sub 1}-M{sub 2})/(M{sub 1}+M{sub 2}), φ=arg(Y{sub 2}/Y{sub 1}), and M{sub 1,2}, Y{sub 1,2} are the masses and Yukawa couplings of the sterile neutrinos. This approximation in particular extends to parametric regions where |Y{sub 1,2}|{sup 2}>> Δ, i.e. where the width dominates the mass splitting. We generalise the formula for the effective decay asymmetry to themore » case of several flavours of active leptons and demonstrate how this quantity can be used to calculate the lepton asymmetry for phenomenological scenarios that are in agreement with the observed neutrino oscillations. We establish analytic criteria for the validity of the late-time approximation for the decay asymmetry and compare these with numerical results that are obtained by solving for the mixing and the oscillations of the sterile neutrinos. For phenomenologically viable models with two sterile neutrinos, we find that the flavoured effective late-time decay asymmetry can be applied throughout parameter space.« less

  13. An approximation theory for the identification of linear thermoelastic systems

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.; Su, Chien-Hua Frank

    1990-01-01

    An abstract approximation framework and convergence theory for the identification of thermoelastic systems is developed. Starting from an abstract operator formulation consisting of a coupled second order hyperbolic equation of elasticity and first order parabolic equation for heat conduction, well-posedness is established using linear semigroup theory in Hilbert space, and a class of parameter estimation problems is then defined involving mild solutions. The approximation framework is based upon generic Galerkin approximation of the mild solutions, and convergence of solutions of the resulting sequence of approximating finite dimensional parameter identification problems to a solution of the original infinite dimensional inverse problem is established using approximation results for operator semigroups. An example involving the basic equations of one dimensional linear thermoelasticity and a linear spline based scheme are discussed. Numerical results indicate how the approach might be used in a study of damping mechanisms in flexible structures.

  14. Reply to Steele & Ferrer: Modeling Oscillation, Approximately or Exactly?

    ERIC Educational Resources Information Center

    Oud, Johan H. L.; Folmer, Henk

    2011-01-01

    This article addresses modeling oscillation in continuous time. It criticizes Steele and Ferrer's article "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011), particularly the approximate estimation procedure applied. This procedure is the latent version of the local linear approximation procedure…

  15. DIS off glueballs from string theory: the role of the chiral anomaly and the Chern-Simons term

    NASA Astrophysics Data System (ADS)

    Kovensky, Nicolas; Michalski, Gustavo; Schvellinger, Martin

    2018-04-01

    We calculate the structure function F 3( x, q 2) of the hadronic tensor of deep inelastic scattering (DIS) of charged leptons from glueballs of N=4 SYM theory at strong coupling and at small values of the Bjorken parameter in the gauge/string theory duality framework. This is done in terms of type IIB superstring theory scattering amplitudes. From the AdS5 perspective, the relevant part of the scattering amplitude comes from the five-dimensional non-Abelian Chern-Simons terms in the SU(4) gauged supergravity obtained from dimensional reduction on S 5. From type IIB superstring theory we derive an effective Lagrangian describing the four-point interaction in the local approximation. The exponentially small regime of the Bjorken parameter is investigated using Pomeron techniques.

  16. Boson expansions based on the random phase approximation representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedrocchi, V.G.; Tamura, T.

    1984-04-01

    A new boson expansion theory based on the random phase approximation is presented. The boson expansions are derived here directly in the random phase approximation representation with the help of a technique that combines the use of the Usui operator with that of a new bosonization procedure, called the term-by-term bosonization method. The present boson expansion theory is constructed by retaining a single collective quadrupole random phase approximation component, a truncation that allows for a perturbative treatment of the whole problem. Both Hermitian, as well as non-Hermitian boson expansions, valid for even nuclei, are obtained.

  17. Dissociation between exact and approximate addition in developmental dyslexia.

    PubMed

    Yang, Xiujie; Meng, Xiangzhi

    2016-09-01

    Previous research has suggested that number sense and language are involved in number representation and calculation, in which number sense supports approximate arithmetic, and language permits exact enumeration and calculation. Meanwhile, individuals with dyslexia have a core deficit in phonological processing. Based on these findings, we thus hypothesized that children with dyslexia may exhibit exact calculation impairment while doing mental arithmetic. The reaction time and accuracy while doing exact and approximate addition with symbolic Arabic digits and non-symbolic visual arrays of dots were compared between typically developing children and children with dyslexia. Reaction time analyses did not reveal any differences across two groups of children, the accuracies, interestingly, revealed a distinction of approximation and exact addition across two groups of children. Specifically, two groups of children had no differences in approximation. Children with dyslexia, however, had significantly lower accuracy in exact addition in both symbolic and non-symbolic tasks than that of typically developing children. Moreover, linguistic performances were selectively associated with exact calculation across individuals. These results suggested that children with dyslexia have a mental arithmetic deficit specifically in the realm of exact calculation, while their approximation ability is relatively intact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A quantum relaxation-time approximation for finite fermion systems

    NASA Astrophysics Data System (ADS)

    Reinhard, P.-G.; Suraud, E.

    2015-03-01

    We propose a relaxation time approximation for the description of the dynamics of strongly excited fermion systems. Our approach is based on time-dependent density functional theory at the level of the local density approximation. This mean-field picture is augmented by collisional correlations handled in relaxation time approximation which is inspired from the corresponding semi-classical picture. The method involves the estimate of microscopic relaxation rates/times which is presently taken from the well established semi-classical experience. The relaxation time approximation implies evaluation of the instantaneous equilibrium state towards which the dynamical state is progressively driven at the pace of the microscopic relaxation time. As test case, we consider Na clusters of various sizes excited either by a swift ion projectile or by a short and intense laser pulse, driven in various dynamical regimes ranging from linear to strongly non-linear reactions. We observe a strong effect of dissipation on sensitive observables such as net ionization and angular distributions of emitted electrons. The effect is especially large for moderate excitations where typical relaxation/dissipation time scales efficiently compete with ionization for dissipating the available excitation energy. Technical details on the actual procedure to implement a working recipe of such a quantum relaxation approximation are given in appendices for completeness.

  19. RATIONAL APPROXIMATIONS TO GENERALIZED HYPERGEOMETRIC FUNCTIONS.

    DTIC Science & Technology

    Under weak restrictions on the various free parameters, general theorems for rational representations of the generalized hypergeometric functions...and certain Meijer G-functions are developed. Upon specialization, these theorems yield a sequency of rational approximations which converge to the

  20. Plasma Physics Approximations in Ares

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Managan, R. A.

    Lee & More derived analytic forms for the transport properties of a plasma. Many hydro-codes use their formulae for electrical and thermal conductivity. The coefficients are complex functions of Fermi-Dirac integrals, F n( μ/θ ), the chemical potential, μ or ζ = ln(1+e μ/θ ), and the temperature, θ = kT. Since these formulae are expensive to compute, rational function approximations were fit to them. Approximations are also used to find the chemical potential, either μ or ζ . The fits use ζ as the independent variable instead of μ/θ . New fits are provided for A α (ζmore » ),A β (ζ ), ζ, f(ζ ) = (1 + e -μ/θ)F 1/2(μ/θ), F 1/2'/F 1/2, F c α, and F c β. In each case the relative error of the fit is minimized since the functions can vary by many orders of magnitude. The new fits are designed to exactly preserve the limiting values in the non-degenerate and highly degenerate limits or as ζ→ 0 or ∞. The original fits due to Lee & More and George Zimmerman are presented for comparison.« less

  1. 36 CFR 254.11 - Exchanges at approximately equal value.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equal value. 254.11 Section 254.11 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LANDOWNERSHIP ADJUSTMENTS Land Exchanges § 254.11 Exchanges at approximately equal value. (a) The authorized officer may exchange lands which are of approximately equal value upon a determination that: (1...

  2. Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix

    NASA Technical Reports Server (NTRS)

    Li, Wesley Waisang; Pak, Chan-Gi

    2010-01-01

    A technique for approximating the modal aerodynamic influence coefficients [AIC] matrices by using basis functions has been developed and validated. An application of the resulting approximated modal AIC matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO(TradeMark) flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing [ATW] 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle

  3. Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix

    NASA Technical Reports Server (NTRS)

    Li, Wesley W.; Pak, Chan-gi

    2011-01-01

    A technique for approximating the modal aerodynamic influence coefficients matrices by using basis functions has been developed and validated. An application of the resulting approximated modal aerodynamic influence coefficients matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle.

  4. Approximation methods in relativistic eigenvalue perturbation theory

    NASA Astrophysics Data System (ADS)

    Noble, Jonathan Howard

    In this dissertation, three questions, concerning approximation methods for the eigenvalues of quantum mechanical systems, are investigated: (i) What is a pseudo--Hermitian Hamiltonian, and how can its eigenvalues be approximated via numerical calculations? This is a fairly broad topic, and the scope of the investigation is narrowed by focusing on a subgroup of pseudo--Hermitian operators, namely, PT--symmetric operators. Within a numerical approach, one projects a PT--symmetric Hamiltonian onto an appropriate basis, and uses a straightforward two--step algorithm to diagonalize the resulting matrix, leading to numerically approximated eigenvalues. (ii) Within an analytic ansatz, how can a relativistic Dirac Hamiltonian be decoupled into particle and antiparticle degrees of freedom, in appropriate kinematic limits? One possible answer is the Foldy--Wouthuysen transform; however, there are alter- native methods which seem to have some advantages over the time--tested approach. One such method is investigated by applying both the traditional Foldy--Wouthuysen transform and the "chiral" Foldy--Wouthuysen transform to a number of Dirac Hamiltonians, including the central-field Hamiltonian for a gravitationally bound system; namely, the Dirac-(Einstein-)Schwarzschild Hamiltonian, which requires the formal- ism of general relativity. (iii) Are there are pseudo--Hermitian variants of Dirac Hamiltonians that can be approximated using a decoupling transformation? The tachyonic Dirac Hamiltonian, which describes faster-than-light spin-1/2 particles, is gamma5--Hermitian, i.e., pseudo-Hermitian. Superluminal particles remain faster than light upon a Lorentz transformation, and hence, the Foldy--Wouthuysen program is unsuited for this case. Thus, inspired by the Foldy--Wouthuysen program, a decoupling transform in the ultrarelativistic limit is proposed, which is applicable to both sub- and superluminal particles.

  5. Comparison of the Radiative Two-Flux and Diffusion Approximations

    NASA Technical Reports Server (NTRS)

    Spuckler, Charles M.

    2006-01-01

    Approximate solutions are sometimes used to determine the heat transfer and temperatures in a semitransparent material in which conduction and thermal radiation are acting. A comparison of the Milne-Eddington two-flux approximation and the diffusion approximation for combined conduction and radiation heat transfer in a ceramic material was preformed to determine the accuracy of the diffusion solution. A plane gray semitransparent layer without a substrate and a non-gray semitransparent plane layer on an opaque substrate were considered. For the plane gray layer the material is semitransparent for all wavelengths and the scattering and absorption coefficients do not vary with wavelength. For the non-gray plane layer the material is semitransparent with constant absorption and scattering coefficients up to a specified wavelength. At higher wavelengths the non-gray plane layer is assumed to be opaque. The layers are heated on one side and cooled on the other by diffuse radiation and convection. The scattering and absorption coefficients were varied. The error in the diffusion approximation compared to the Milne-Eddington two flux approximation was obtained as a function of scattering coefficient and absorption coefficient. The percent difference in interface temperatures and heat flux through the layer obtained using the Milne-Eddington two-flux and diffusion approximations are presented as a function of scattering coefficient and absorption coefficient. The largest errors occur for high scattering and low absorption except for the back surface temperature of the plane gray layer where the error is also larger at low scattering and low absorption. It is shown that the accuracy of the diffusion approximation can be improved for some scattering and absorption conditions if a reflectance obtained from a Kubelka-Munk type two flux theory is used instead of a reflection obtained from the Fresnel equation. The Kubelka-Munk reflectance accounts for surface reflection and

  6. Ranking Support Vector Machine with Kernel Approximation

    PubMed Central

    Dou, Yong

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms. PMID:28293256

  7. Ranking Support Vector Machine with Kernel Approximation.

    PubMed

    Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.

  8. Traveling-cluster approximation for uncorrelated amorphous systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, A.K.; Mills, R.; Kaplan, T.

    1984-11-15

    We have developed a formalism for including cluster effects in the one-electron Green's function for a positionally disordered (liquid or amorphous) system without any correlation among the scattering sites. This method is an extension of the technique known as the traveling-cluster approximation (TCA) originally obtained and applied to a substitutional alloy by Mills and Ratanavararaksa. We have also proved the appropriate fixed-point theorem, which guarantees, for a bounded local potential, that the self-consistent equations always converge upon iteration to a unique, Herglotz solution. To our knowledge, this is the only analytic theory for considering cluster effects. Furthermore, we have performedmore » some computer calculations in the pair TCA, for the model case of delta-function potentials on a one-dimensional random chain. These results have been compared with ''exact calculations'' (which, in principle, take into account all cluster effects) and with the coherent-potential approximation (CPA), which is the single-site TCA. The density of states for the pair TCA clearly shows some improvement over the CPA and yet, apparently, the pair approximation distorts some of the features of the exact results.« less

  9. Approximate Locality for Quantum Systems on Graphs

    NASA Astrophysics Data System (ADS)

    Osborne, Tobias J.

    2008-10-01

    In this Letter we make progress on a long-standing open problem of Aaronson and Ambainis [Theory Comput. 1, 47 (2005)1557-2862]: we show that if U is a sparse unitary operator with a gap Δ in its spectrum, then there exists an approximate logarithm H of U which is also sparse. The sparsity pattern of H gets more dense as 1/Δ increases. This result can be interpreted as a way to convert between local continuous-time and local discrete-time quantum processes. As an example we show that the discrete-time coined quantum walk can be realized stroboscopically from an approximately local continuous-time quantum walk.

  10. Mean-field approximation for spacing distribution functions in classical systems

    NASA Astrophysics Data System (ADS)

    González, Diego Luis; Pimpinelli, Alberto; Einstein, T. L.

    2012-01-01

    We propose a mean-field method to calculate approximately the spacing distribution functions p(n)(s) in one-dimensional classical many-particle systems. We compare our method with two other commonly used methods, the independent interval approximation and the extended Wigner surmise. In our mean-field approach, p(n)(s) is calculated from a set of Langevin equations, which are decoupled by using a mean-field approximation. We find that in spite of its simplicity, the mean-field approximation provides good results in several systems. We offer many examples illustrating that the three previously mentioned methods give a reasonable description of the statistical behavior of the system. The physical interpretation of each method is also discussed.

  11. Facial approximation-from facial reconstruction synonym to face prediction paradigm.

    PubMed

    Stephan, Carl N

    2015-05-01

    Facial approximation was first proposed as a synonym for facial reconstruction in 1987 due to dissatisfaction with the connotations the latter label held. Since its debut, facial approximation's identity has morphed as anomalies in face prediction have accumulated. Now underpinned by differences in what problems are thought to count as legitimate, facial approximation can no longer be considered a synonym for, or subclass of, facial reconstruction. Instead, two competing paradigms of face prediction have emerged, namely: facial approximation and facial reconstruction. This paper shines a Kuhnian lens across the discipline of face prediction to comprehensively review these developments and outlines the distinguishing features between the two paradigms. © 2015 American Academy of Forensic Sciences.

  12. Discrete-Time Stable Generalized Self-Learning Optimal Control With Approximation Errors.

    PubMed

    Wei, Qinglai; Li, Benkai; Song, Ruizhuo

    2018-04-01

    In this paper, a generalized policy iteration (GPI) algorithm with approximation errors is developed for solving infinite horizon optimal control problems for nonlinear systems. The developed stable GPI algorithm provides a general structure of discrete-time iterative adaptive dynamic programming algorithms, by which most of the discrete-time reinforcement learning algorithms can be described using the GPI structure. It is for the first time that approximation errors are explicitly considered in the GPI algorithm. The properties of the stable GPI algorithm with approximation errors are analyzed. The admissibility of the approximate iterative control law can be guaranteed if the approximation errors satisfy the admissibility criteria. The convergence of the developed algorithm is established, which shows that the iterative value function is convergent to a finite neighborhood of the optimal performance index function, if the approximate errors satisfy the convergence criterion. Finally, numerical examples and comparisons are presented.

  13. Approximate Arithmetic Training Improves Informal Math Performance in Low Achieving Preschoolers

    PubMed Central

    Szkudlarek, Emily; Brannon, Elizabeth M.

    2018-01-01

    Recent studies suggest that practice with approximate and non-symbolic arithmetic problems improves the math performance of adults, school aged children, and preschoolers. However, the relative effectiveness of approximate arithmetic training compared to available educational games, and the type of math skills that approximate arithmetic targets are unknown. The present study was designed to (1) compare the effectiveness of approximate arithmetic training to two commercially available numeral and letter identification tablet applications and (2) to examine the specific type of math skills that benefit from approximate arithmetic training. Preschool children (n = 158) were pseudo-randomly assigned to one of three conditions: approximate arithmetic, letter identification, or numeral identification. All children were trained for 10 short sessions and given pre and post tests of informal and formal math, executive function, short term memory, vocabulary, alphabet knowledge, and number word knowledge. We found a significant interaction between initial math performance and training condition, such that children with low pretest math performance benefited from approximate arithmetic training, and children with high pretest math performance benefited from symbol identification training. This effect was restricted to informal, and not formal, math problems. There were also effects of gender, socio-economic status, and age on post-test informal math score after intervention. A median split on pretest math ability indicated that children in the low half of math scores in the approximate arithmetic training condition performed significantly better than children in the letter identification training condition on post-test informal math problems when controlling for pretest, age, gender, and socio-economic status. Our results support the conclusion that approximate arithmetic training may be especially effective for children with low math skills, and that approximate arithmetic

  14. Approximate Arithmetic Training Improves Informal Math Performance in Low Achieving Preschoolers.

    PubMed

    Szkudlarek, Emily; Brannon, Elizabeth M

    2018-01-01

    Recent studies suggest that practice with approximate and non-symbolic arithmetic problems improves the math performance of adults, school aged children, and preschoolers. However, the relative effectiveness of approximate arithmetic training compared to available educational games, and the type of math skills that approximate arithmetic targets are unknown. The present study was designed to (1) compare the effectiveness of approximate arithmetic training to two commercially available numeral and letter identification tablet applications and (2) to examine the specific type of math skills that benefit from approximate arithmetic training. Preschool children ( n = 158) were pseudo-randomly assigned to one of three conditions: approximate arithmetic, letter identification, or numeral identification. All children were trained for 10 short sessions and given pre and post tests of informal and formal math, executive function, short term memory, vocabulary, alphabet knowledge, and number word knowledge. We found a significant interaction between initial math performance and training condition, such that children with low pretest math performance benefited from approximate arithmetic training, and children with high pretest math performance benefited from symbol identification training. This effect was restricted to informal, and not formal, math problems. There were also effects of gender, socio-economic status, and age on post-test informal math score after intervention. A median split on pretest math ability indicated that children in the low half of math scores in the approximate arithmetic training condition performed significantly better than children in the letter identification training condition on post-test informal math problems when controlling for pretest, age, gender, and socio-economic status. Our results support the conclusion that approximate arithmetic training may be especially effective for children with low math skills, and that approximate arithmetic

  15. Analytic approximations to the modon dispersion relation. [in oceanography

    NASA Technical Reports Server (NTRS)

    Boyd, J. P.

    1981-01-01

    Three explicit analytic approximations are given to the modon dispersion relation developed by Flierl et al. (1980) to describe Gulf Stream rings and related phenomena in the oceans and atmosphere. The solutions are in the form of k(q), and are developed in the form of a power series in q for small q, an inverse power series in 1/q for large q, and a two-point Pade approximant. The low order Pade approximant is shown to yield a solution for the dispersion relation with a maximum relative error for the lowest branch of the function equal to one in 700 in the q interval zero to infinity.

  16. Approximate Dispersion Relations for Waves on Arbitrary Shear Flows

    NASA Astrophysics Data System (ADS)

    Ellingsen, S. À.; Li, Y.

    2017-12-01

    An approximate dispersion relation is derived and presented for linear surface waves atop a shear current whose magnitude and direction can vary arbitrarily with depth. The approximation, derived to first order of deviation from potential flow, is shown to produce good approximations at all wavelengths for a wide range of naturally occuring shear flows as well as widely used model flows. The relation reduces in many cases to a 3-D generalization of the much used approximation by Skop (1987), developed further by Kirby and Chen (1989), but is shown to be more robust, succeeding in situations where the Kirby and Chen model fails. The two approximations incur the same numerical cost and difficulty. While the Kirby and Chen approximation is excellent for a wide range of currents, the exact criteria for its applicability have not been known. We explain the apparently serendipitous success of the latter and derive proper conditions of applicability for both approximate dispersion relations. Our new model has a greater range of applicability. A second order approximation is also derived. It greatly improves accuracy, which is shown to be important in difficult cases. It has an advantage over the corresponding second-order expression proposed by Kirby and Chen that its criterion of accuracy is explicitly known, which is not currently the case for the latter to our knowledge. Our second-order term is also arguably significantly simpler to implement, and more physically transparent, than its sibling due to Kirby and Chen.Plain Language SummaryIn order to answer key questions such as how the ocean surface affects the climate, erodes the coastline and transports nutrients, we must understand how waves move. This is not so easy when depth varying currents are present, as they often are in coastal waters. We have developed a modeling tool for accurately predicting wave properties in such situations, ready for use, for example, in the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AdSpR..52..591A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AdSpR..52..591A"><span>Response of the EIA ionosphere to the 7-8 May 2005 geomagnetic storm</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aggarwal, Malini; Joshi, H. P.; Iyer, K. N.; Kwak, Y. S.</p> <p>2013-08-01</p> <p>In this paper, response of low latitude ionosphere to a moderate geomagnetic storm of 7-8 May 2005 (SSC: 1920 UT on 7 May with <span class="hlt">Sym</span>-H minimum, ∼-112 nT around 1600 UT on 8 May) has been investigated using the GPS measurements from a near EIA crest region, Rajkot (Geog. 22.29°N, 70.74°E, Geomag.14°), India. We found a decrease in total electron content (TEC) in 12 h after the onset of the storm, an increase during and after 6 h of <span class="hlt">Sym</span>-H deep minimum with a decrease below its usual-day level on the second day during the recovery phase of the storm. On 8 May, an increase of TEC is observed after sunset and during post-midnight hours (maximum up to 170%) with the formation of ionospheric plasma bubbles followed by a nearly simultaneous onset of scintillations at L-band frequencies following the time of rapid decrease in <span class="hlt">Sym</span>-H index (-30 nT/h around 1300 UT).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2266975','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2266975"><span>Focal Point Theory Models for Dissecting Dynamic Duality Problems of Microbial Infections</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Huang, S.-H.; Zhou, W.; Jong, A.</p> <p>2008-01-01</p> <p>Extending along the dynamic continuum from conflict to cooperation, microbial infections always involve symbiosis (<span class="hlt">Sym</span>) and pathogenesis (Pat). There exists a dynamic <span class="hlt">Sym</span>-Pat duality (DSPD) in microbial infection that is the most fundamental problem in infectomics. DSPD is encoded by the genomes of both the microbes and their hosts. Three focal point (FP) theory-based game models (pure cooperative, dilemma, and pure conflict) are proposed for resolving those problems. Our health is associated with the dynamic interactions of three microbial communities (nonpathogenic microbiota (NP) (Cooperation), conditional pathogens (CP) (Dilemma), and unconditional pathogens (UP) (Conflict)) with the hosts at different health statuses. <span class="hlt">Sym</span> and Pat can be quantitated by measuring symbiotic index (SI), which is quantitative fitness for the symbiotic partnership, and pathogenic index (PI), which is quantitative damage to the symbiotic partnership, respectively. Symbiotic point (SP), which bears analogy to FP, is a function of SI and PI. SP-converting and specific pathogen-targeting strategies can be used for the rational control of microbial infections. PMID:18350122</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4472503','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4472503"><span>Convergence of Biological Nitration and Nitrosation via Symmetrical Nitrous Anhydride</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Vitturi, Dario A.; Minarrieta, Lucia; Salvatore, Sonia R.; Postlethwait, Edward M.; Fazzari, Marco; Ferrer-Sueta, Gerardo; Lancaster, Jack R.; Freeman, Bruce A.; Schopfer, Francisco J.</p> <p>2015-01-01</p> <p>Current perspective holds that the generation of secondary signaling mediators from nitrite (NO2−) requires acidification to nitrous acid (HNO2) or metal catalysis. Herein, the use of stable isotope-labeled NO2− and LC-MS/MS analysis of products revealed that NO2− also participates in fatty acid nitration and thiol S-nitrosation at neutral pH. These reactions occur in the absence of metal centers and are stimulated by nitric oxide (•NO) autoxidation via symmetrical dinitrogen trioxide (nitrous anhydride, <span class="hlt">sym</span>N2O3) formation. While theoretical models have predicted physiological <span class="hlt">sym</span>N2O3 formation, its generation is now demonstrated in aqueous reaction systems, cell models and in viv, with the concerted reactions of •NO and NO2− shown to be critical for <span class="hlt">sym</span>N2O3 formation. These results reveal new mechanisms underlying the NO2− propagation of •NO signaling and the regulation of both biomolecule function and signaling network activity via NO2−-dependent nitrosation and nitration reactions. PMID:26006011</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950012483','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950012483"><span>On the convergence of local <span class="hlt">approximations</span> to pseudodifferential operators with applications</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hagstrom, Thomas</p> <p>1994-01-01</p> <p>We consider the <span class="hlt">approximation</span> of a class pseudodifferential operators by sequences of operators which can be expressed as compositions of differential operators and their inverses. We show that the error in such <span class="hlt">approximations</span> can be bounded in terms of L(1) error in <span class="hlt">approximating</span> a convolution kernel, and use this fact to develop convergence results. Our main result is a finite time convergence analysis of the Engquist-Majda Pade <span class="hlt">approximants</span> to the square root of the d'Alembertian. We also show that no spatially local <span class="hlt">approximation</span> to this operator can be convergent uniformly in time. We propose some temporally local but spatially nonlocal operators with better long time behavior. These are based on Laguerre and exponential series.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28675757','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28675757"><span>Designing quantum information processing via structural physical <span class="hlt">approximation</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bae, Joonwoo</p> <p>2017-10-01</p> <p>In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical <span class="hlt">approximation</span> offers a systematic way of <span class="hlt">approximating</span> those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical <span class="hlt">approximations</span> and the related progress. The review mainly focuses on properties of structural physical <span class="hlt">approximations</span> and their applications toward practical information applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RPPh...80j4001B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RPPh...80j4001B"><span>Designing quantum information processing via structural physical <span class="hlt">approximation</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bae, Joonwoo</p> <p>2017-10-01</p> <p>In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical <span class="hlt">approximation</span> offers a systematic way of <span class="hlt">approximating</span> those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical <span class="hlt">approximations</span> and the related progress. The review mainly focuses on properties of structural physical <span class="hlt">approximations</span> and their applications toward practical information applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22400556','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22400556"><span>Mean-field <span class="hlt">approximation</span> for spacing distribution functions in classical systems.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>González, Diego Luis; Pimpinelli, Alberto; Einstein, T L</p> <p>2012-01-01</p> <p>We propose a mean-field method to calculate <span class="hlt">approximately</span> the spacing distribution functions p((n))(s) in one-dimensional classical many-particle systems. We compare our method with two other commonly used methods, the independent interval <span class="hlt">approximation</span> and the extended Wigner surmise. In our mean-field approach, p((n))(s) is calculated from a set of Langevin equations, which are decoupled by using a mean-field <span class="hlt">approximation</span>. We find that in spite of its simplicity, the mean-field <span class="hlt">approximation</span> provides good results in several systems. We offer many examples illustrating that the three previously mentioned methods give a reasonable description of the statistical behavior of the system. The physical interpretation of each method is also discussed. © 2012 American Physical Society</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1013972','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1013972"><span>Reliable Function <span class="hlt">Approximation</span> and Estimation</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-08-16</p> <p>AUSTIN , TX 78712 08/16/2016 Final Report DISTRIBUTION A: Distribution approved for public release. Air Force Research Laboratory AF Office Of Scientific...UNIVERSITY OF TEXAS AT AUSTIN 101 EAST 27TH STREET STE 4308 AUSTIN , TX 78712 DISTRIBUTION A: Distribution approved for public release. INSTRUCTIONS...AFRL-AFOSR-VA-TR-2016-0293 Reliable Function <span class="hlt">Approximation</span> and Estimation Rachel Ward UNIVERSITY OF TEXAS AT AUSTIN 101 EAST 27TH STREET STE 4308</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4865172','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4865172"><span>Solving Math Problems <span class="hlt">Approximately</span>: A Developmental Perspective</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ganor-Stern, Dana</p> <p>2016-01-01</p> <p>Although solving arithmetic problems <span class="hlt">approximately</span> is an important skill in everyday life, little is known about the development of this skill. Past research has shown that when children are asked to solve multi-digit multiplication problems <span class="hlt">approximately</span>, they provide estimates that are often very far from the exact answer. This is unfortunate as computation estimation is needed in many circumstances in daily life. The present study examined 4th graders, 6th graders and adults’ ability to estimate the results of arithmetic problems relative to a reference number. A developmental pattern was observed in accuracy, speed and strategy use. With age there was a general increase in speed, and an increase in accuracy mainly for trials in which the reference number was close to the exact answer. The children tended to use the sense of magnitude strategy, which does not involve any calculation but relies mainly on an intuitive coarse sense of magnitude, while the adults used the <span class="hlt">approximated</span> calculation strategy which involves rounding and multiplication procedures, and relies to a greater extent on calculation skills and working memory resources. Importantly, the children were less accurate than the adults, but were well above chance level. In all age groups performance was enhanced when the reference number was smaller (vs. larger) than the exact answer and when it was far (vs. close) from it, suggesting the involvement of an <span class="hlt">approximate</span> number system. The results suggest the existence of an intuitive sense of magnitude for the results of arithmetic problems that might help children and even adults with difficulties in math. The present findings are discussed in the context of past research reporting poor estimation skills among children, and the conditions that might allow using children estimation skills in an effective manner. PMID:27171224</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006CoPhC.174..447W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006CoPhC.174..447W"><span>A Mathematica program for the <span class="hlt">approximate</span> analytical solution to a nonlinear undamped Duffing equation by a new <span class="hlt">approximate</span> approach</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Dongmei; Wang, Zhongcheng</p> <p>2006-03-01</p> <p>According to Mickens [R.E. Mickens, Comments on a Generalized Galerkin's method for non-linear oscillators, J. Sound Vib. 118 (1987) 563], the general HB (harmonic balance) method is an <span class="hlt">approximation</span> to the convergent Fourier series representation of the periodic solution of a nonlinear oscillator and not an <span class="hlt">approximation</span> to an expansion in terms of a small parameter. Consequently, for a nonlinear undamped Duffing equation with a driving force Bcos(ωx), to find a periodic solution when the fundamental frequency is identical to ω, the corresponding Fourier series can be written as y˜(x)=∑n=1m acos[(2n-1)ωx]. How to calculate the coefficients of the Fourier series efficiently with a computer program is still an open problem. For HB method, by substituting <span class="hlt">approximation</span> y˜(x) into force equation, expanding the resulting expression into a trigonometric series, then letting the coefficients of the resulting lowest-order harmonic be zero, one can obtain <span class="hlt">approximate</span> coefficients of <span class="hlt">approximation</span> y˜(x) [R.E. Mickens, Comments on a Generalized Galerkin's method for non-linear oscillators, J. Sound Vib. 118 (1987) 563]. But for nonlinear differential equations such as Duffing equation, it is very difficult to construct higher-order analytical <span class="hlt">approximations</span>, because the HB method requires solving a set of algebraic equations for a large number of unknowns with very complex nonlinearities. To overcome the difficulty, forty years ago, Urabe derived a computational method for Duffing equation based on Galerkin procedure [M. Urabe, A. Reiter, Numerical computation of nonlinear forced oscillations by Galerkin's procedure, J. Math. Anal. Appl. 14 (1966) 107-140]. Dooren obtained an <span class="hlt">approximate</span> solution of the Duffing oscillator with a special set of parameters by using Urabe's method [R. van Dooren, Stabilization of Cowell's classic finite difference method for numerical integration, J. Comput. Phys. 16 (1974) 186-192]. In this paper, in the frame of the general HB method</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28129193','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28129193"><span>High-Dimensional Function <span class="hlt">Approximation</span> With Neural Networks for Large Volumes of Data.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Andras, Peter</p> <p>2018-02-01</p> <p><span class="hlt">Approximation</span> of high-dimensional functions is a challenge for neural networks due to the curse of dimensionality. Often the data for which the <span class="hlt">approximated</span> function is defined resides on a low-dimensional manifold and in principle the <span class="hlt">approximation</span> of the function over this manifold should improve the <span class="hlt">approximation</span> performance. It has been show that projecting the data manifold into a lower dimensional space, followed by the neural network <span class="hlt">approximation</span> of the function over this space, provides a more precise <span class="hlt">approximation</span> of the function than the <span class="hlt">approximation</span> of the function with neural networks in the original data space. However, if the data volume is very large, the projection into the low-dimensional space has to be based on a limited sample of the data. Here, we investigate the nature of the <span class="hlt">approximation</span> error of neural networks trained over the projection space. We show that such neural networks should have better <span class="hlt">approximation</span> performance than neural networks trained on high-dimensional data even if the projection is based on a relatively sparse sample of the data manifold. We also find that it is preferable to use a uniformly distributed sparse sample of the data for the purpose of the generation of the low-dimensional projection. We illustrate these results considering the practical neural network <span class="hlt">approximation</span> of a set of functions defined on high-dimensional data including real world data as well.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1327571-hyperspherical-sparse-approximation-techniques-high-dimensional-discontinuity-detection','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1327571-hyperspherical-sparse-approximation-techniques-high-dimensional-discontinuity-detection"><span>Hyperspherical Sparse <span class="hlt">Approximation</span> Techniques for High-Dimensional Discontinuity Detection</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max; ...</p> <p>2016-08-04</p> <p>This work proposes a hyperspherical sparse <span class="hlt">approximation</span> framework for detecting jump discontinuities in functions in high-dimensional spaces. The need for a novel approach results from the theoretical and computational inefficiencies of well-known approaches, such as adaptive sparse grids, for discontinuity detection. Our approach constructs the hyperspherical coordinate representation of the discontinuity surface of a function. Then sparse <span class="hlt">approximations</span> of the transformed function are built in the hyperspherical coordinate system, with values at each point estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hypersurface, the new technique can identify jump discontinuities with significantly reduced computationalmore » cost, compared to existing methods. Several approaches are used to <span class="hlt">approximate</span> the transformed discontinuity surface in the hyperspherical system, including adaptive sparse grid and radial basis function interpolation, discrete least squares projection, and compressed sensing <span class="hlt">approximation</span>. Moreover, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. In conclusion, rigorous complexity analyses of the new methods are provided, as are several numerical examples that illustrate the effectiveness of our approach.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2137171','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2137171"><span>Two-Term Asymptotic <span class="hlt">Approximation</span> of a Cardiac Restitution Curve*</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cain, John W.; Schaeffer, David G.</p> <p>2007-01-01</p> <p>If spatial extent is neglected, ionic models of cardiac cells consist of systems of ordinary differential equations (ODEs) which have the property of excitability, i.e., a brief stimulus produces a prolonged evolution (called an action potential in the cardiac context) before the eventual return to equilibrium. Under repeated stimulation, or pacing, cardiac tissue exhibits electrical restitution: the steady-state action potential duration (APD) at a given pacing period B shortens as B is decreased. Independent of ionic models, restitution is often modeled phenomenologically by a one-dimensional mapping of the form APDnext = f(B – APDprevious). Under some circumstances, a restitution function f can be derived as an asymptotic <span class="hlt">approximation</span> to the behavior of an ionic model. In this paper, extending previous work, we derive the next term in such an asymptotic <span class="hlt">approximation</span> for a particular ionic model consisting of two ODEs. The two-term <span class="hlt">approximation</span> exhibits excellent quantitative agreement with the actual restitution curve, whereas the leading-order <span class="hlt">approximation</span> significantly underestimates actual APD values. PMID:18080006</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22250629-mathematical-treatment-born-oppenheimer-approximation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22250629-mathematical-treatment-born-oppenheimer-approximation"><span>On the mathematical treatment of the Born-Oppenheimer <span class="hlt">approximation</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jecko, Thierry, E-mail: thierry.jecko@u-cergy.fr</p> <p>2014-05-15</p> <p>Motivated by the paper by Sutcliffe and Woolley [“On the quantum theory of molecules,” J. Chem. Phys. 137, 22A544 (2012)], we present the main ideas used by mathematicians to show the accuracy of the Born-Oppenheimer <span class="hlt">approximation</span> for molecules. Based on mathematical works on this <span class="hlt">approximation</span> for molecular bound states, in scattering theory, in resonance theory, and for short time evolution, we give an overview of some rigorous results obtained up to now. We also point out the main difficulties mathematicians are trying to overcome and speculate on further developments. The mathematical approach does not fit exactly to the common usemore » of the <span class="hlt">approximation</span> in Physics and Chemistry. We criticize the latter and comment on the differences, contributing in this way to the discussion on the Born-Oppenheimer <span class="hlt">approximation</span> initiated by Sutcliffe and Woolley. The paper neither contains mathematical statements nor proofs. Instead, we try to make accessible mathematically rigourous results on the subject to researchers in Quantum Chemistry or Physics.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850022868&hterms=functional+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dfunctional%2Bstructure','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850022868&hterms=functional+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dfunctional%2Bstructure"><span><span class="hlt">Approximation</span> of Optimal Infinite Dimensional Compensators for Flexible Structures</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gibson, J. S.; Mingori, D. L.; Adamian, A.; Jabbari, F.</p> <p>1985-01-01</p> <p>The infinite dimensional compensator for a large class of flexible structures, modeled as distributed systems are discussed, as well as an <span class="hlt">approximation</span> scheme for designing finite dimensional compensators to <span class="hlt">approximate</span> the infinite dimensional compensator. The <span class="hlt">approximation</span> scheme is applied to develop a compensator for a space antenna model based on wrap-rib antennas being built currently. While the present model has been simplified, it retains the salient features of rigid body modes and several distributed components of different characteristics. The control and estimator gains are represented by functional gains, which provide graphical representations of the control and estimator laws. These functional gains also indicate the convergence of the finite dimensional compensators and show which modes the optimal compensator ignores.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5375850','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5375850"><span><span class="hlt">Approximate</span> Sensory Data Collection: A Survey</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cheng, Siyao; Cai, Zhipeng; Li, Jianzhong</p> <p>2017-01-01</p> <p>With the rapid development of the Internet of Things (IoTs), wireless sensor networks (WSNs) and related techniques, the amount of sensory data manifests an explosive growth. In some applications of IoTs and WSNs, the size of sensory data has already exceeded several petabytes annually, which brings too many troubles and challenges for the data collection, which is a primary operation in IoTs and WSNs. Since the exact data collection is not affordable for many WSN and IoT systems due to the limitations on bandwidth and energy, many <span class="hlt">approximate</span> data collection algorithms have been proposed in the last decade. This survey reviews the state of the art of <span class="hlt">approximate</span> data collection algorithms. We classify them into three categories: the model-based ones, the compressive sensing based ones, and the query-driven ones. For each category of algorithms, the advantages and disadvantages are elaborated, some challenges and unsolved problems are pointed out, and the research prospects are forecasted. PMID:28287440</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980232929','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980232929"><span>Using <span class="hlt">Approximations</span> to Accelerate Engineering Design Optimization</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Torczon, Virginia; Trosset, Michael W.</p> <p>1998-01-01</p> <p>Optimization problems that arise in engineering design are often characterized by several features that hinder the use of standard nonlinear optimization techniques. Foremost among these features is that the functions used to define the engineering optimization problem often are computationally intensive. Within a standard nonlinear optimization algorithm, the computational expense of evaluating the functions that define the problem would necessarily be incurred for each iteration of the optimization algorithm. Faced with such prohibitive computational costs, an attractive alternative is to make use of surrogates within an optimization context since surrogates can be chosen or constructed so that they are typically much less expensive to compute. For the purposes of this paper, we will focus on the use of algebraic <span class="hlt">approximations</span> as surrogates for the objective. In this paper we introduce the use of so-called merit functions that explicitly recognize the desirability of improving the current <span class="hlt">approximation</span> to the objective during the course of the optimization. We define and experiment with the use of merit functions chosen to simultaneously improve both the solution to the optimization problem (the objective) and the quality of the <span class="hlt">approximation</span>. Our goal is to further improve the effectiveness of our general approach without sacrificing any of its rigor.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910047246&hterms=1089&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3D%2526%25231089','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910047246&hterms=1089&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3D%2526%25231089"><span>Eigenvalue and eigenvector sensitivity and <span class="hlt">approximate</span> analysis for repeated eigenvalue problems</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hou, Gene J. W.; Kenny, Sean P.</p> <p>1991-01-01</p> <p>A set of computationally efficient equations for eigenvalue and eigenvector sensitivity analysis are derived, and a method for eigenvalue and eigenvector <span class="hlt">approximate</span> analysis in the presence of repeated eigenvalues is presented. The method developed for <span class="hlt">approximate</span> analysis involves a reparamaterization of the multivariable structural eigenvalue problem in terms of a single positive-valued parameter. The resulting equations yield first-order <span class="hlt">approximations</span> of changes in both the eigenvalues and eigenvectors associated with the repeated eigenvalue problem. Examples are given to demonstrate the application of such equations for sensitivity and <span class="hlt">approximate</span> analysis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090026532','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090026532"><span>Validity of the Aluminum Equivalent <span class="hlt">Approximation</span> in Space Radiation Shielding</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Badavi, Francis F.; Adams, Daniel O.; Wilson, John W.</p> <p>2009-01-01</p> <p>The origin of the aluminum equivalent shield <span class="hlt">approximation</span> in space radiation analysis can be traced back to its roots in the early years of the NASA space programs (Mercury, Gemini and Apollo) wherein the primary radiobiological concern was the intense sources of ionizing radiation causing short term effects which was thought to jeopardize the safety of the crew and hence the mission. Herein, it is shown that the aluminum equivalent shield <span class="hlt">approximation</span>, although reasonably well suited for that time period and to the application for which it was developed, is of questionable usefulness to the radiobiological concerns of routine space operations of the 21 st century which will include long stays onboard the International Space Station (ISS) and perhaps the moon. This is especially true for a risk based protection system, as appears imminent for deep space exploration where the long-term effects of Galactic Cosmic Ray (GCR) exposure is of primary concern. The present analysis demonstrates that sufficiently large errors in the interior particle environment of a spacecraft result from the use of the aluminum equivalent <span class="hlt">approximation</span>, and such <span class="hlt">approximations</span> should be avoided in future astronaut risk estimates. In this study, the aluminum equivalent <span class="hlt">approximation</span> is evaluated as a means for estimating the particle environment within a spacecraft structure induced by the GCR radiation field. For comparison, the two extremes of the GCR environment, the 1977 solar minimum and the 2001 solar maximum, are considered. These environments are coupled to the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN), which propagates the GCR spectra for elements with charges (Z) in the range I <= Z <= 28 (H -- Ni) and secondary neutrons through selected target materials. The coupling of the GCR extremes to HZETRN allows for the examination of the induced environment within the interior' of an idealized spacecraft</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920051906&hterms=Rule+thumb&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DRule%2Bthumb','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920051906&hterms=Rule+thumb&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DRule%2Bthumb"><span>A comparison of polynomial <span class="hlt">approximations</span> and artificial neural nets as response surfaces</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Carpenter, William C.; Barthelemy, Jean-Francois M.</p> <p>1992-01-01</p> <p>Artificial neural nets and polynomial <span class="hlt">approximations</span> were used to develop response surfaces for several test problems. Based on the number of functional evaluations required to build the <span class="hlt">approximations</span> and the number of undetermined parameters associated with the <span class="hlt">approximations</span>, the performance of the two types of <span class="hlt">approximations</span> was found to be comparable. A rule of thumb is developed for determining the number of nodes to be used on a hidden layer of an artificial neural net, and the number of designs needed to train an <span class="hlt">approximation</span> is discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27832739','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27832739"><span>libFLASM: a software library for fixed-length <span class="hlt">approximate</span> string matching.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ayad, Lorraine A K; Pissis, Solon P P; Retha, Ahmad</p> <p>2016-11-10</p> <p><span class="hlt">Approximate</span> string matching is the problem of finding all factors of a given text that are at a distance at most k from a given pattern. Fixed-length <span class="hlt">approximate</span> string matching is the problem of finding all factors of a text of length n that are at a distance at most k from any factor of length ℓ of a pattern of length m. There exist bit-vector techniques to solve the fixed-length <span class="hlt">approximate</span> string matching problem in time [Formula: see text] and space [Formula: see text] under the edit and Hamming distance models, where w is the size of the computer word; as such these techniques are independent of the distance threshold k or the alphabet size. Fixed-length <span class="hlt">approximate</span> string matching is a generalisation of <span class="hlt">approximate</span> string matching and, hence, has numerous direct applications in computational molecular biology and elsewhere. We present and make available libFLASM, a free open-source C++ software library for solving fixed-length <span class="hlt">approximate</span> string matching under both the edit and the Hamming distance models. Moreover we describe how fixed-length <span class="hlt">approximate</span> string matching is applied to solve real problems by incorporating libFLASM into established applications for multiple circular sequence alignment as well as single and structured motif extraction. Specifically, we describe how it can be used to improve the accuracy of multiple circular sequence alignment in terms of the inferred likelihood-based phylogenies; and we also describe how it is used to efficiently find motifs in molecular sequences representing regulatory or functional regions. The comparison of the performance of the library to other algorithms show how it is competitive, especially with increasing distance thresholds. Fixed-length <span class="hlt">approximate</span> string matching is a generalisation of the classic <span class="hlt">approximate</span> string matching problem. We present libFLASM, a free open-source C++ software library for solving fixed-length <span class="hlt">approximate</span> string matching. The extensive experimental results presented here</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890051477&hterms=Theory+constraints&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DTheory%2Bconstraints','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890051477&hterms=Theory+constraints&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DTheory%2Bconstraints"><span>Parameter estimation in nonlinear distributed systems - <span class="hlt">Approximation</span> theory and convergence results</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Banks, H. T.; Reich, Simeon; Rosen, I. G.</p> <p>1988-01-01</p> <p>An abstract <span class="hlt">approximation</span> framework and convergence theory is described for Galerkin <span class="hlt">approximations</span> applied to inverse problems involving nonlinear distributed parameter systems. Parameter estimation problems are considered and formulated as the minimization of a least-squares-like performance index over a compact admissible parameter set subject to state constraints given by an inhomogeneous nonlinear distributed system. The theory applies to systems whose dynamics can be described by either time-independent or nonstationary strongly maximal monotonic operators defined on a reflexive Banach space which is densely and continuously embedded in a Hilbert space. It is demonstrated that if readily verifiable conditions on the system's dependence on the unknown parameters are satisfied, and the usual Galerkin <span class="hlt">approximation</span> assumption holds, then solutions to the <span class="hlt">approximating</span> problems exist and <span class="hlt">approximate</span> a solution to the original infinite-dimensional identification problem.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AdSpR..57..137K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AdSpR..57..137K"><span>Spacecraft attitude control using neuro-fuzzy <span class="hlt">approximation</span> of the optimal controllers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Sung-Woo; Park, Sang-Young; Park, Chandeok</p> <p>2016-01-01</p> <p>In this study, a neuro-fuzzy controller (NFC) was developed for spacecraft attitude control to mitigate large computational load of the state-dependent Riccati equation (SDRE) controller. The NFC was developed by training a neuro-fuzzy network to <span class="hlt">approximate</span> the SDRE controller. The stability of the NFC was numerically verified using a Lyapunov-based method, and the performance of the controller was analyzed in terms of <span class="hlt">approximation</span> ability, steady-state error, cost, and execution time. The simulations and test results indicate that the developed NFC efficiently <span class="hlt">approximates</span> the SDRE controller, with asymptotic stability in a bounded region of angular velocity encompassing the operational range of rapid-attitude maneuvers. In addition, it was shown that an <span class="hlt">approximated</span> optimal feedback controller can be designed successfully through neuro-fuzzy <span class="hlt">approximation</span> of the optimal open-loop controller.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1197966-quark-condensate-multi-flavour-qcd-planar-equivalence-confronting-lattice-simulations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1197966-quark-condensate-multi-flavour-qcd-planar-equivalence-confronting-lattice-simulations"><span>The quark condensate in multi-flavour QCD – planar equivalence confronting lattice simulations</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Armoni, Adi; Shifman, Mikhail; Shore, Graham; ...</p> <p>2015-02-01</p> <p>Planar equivalence between the large N limits of N=1 Super Yang–Mills (<span class="hlt">SYM</span>) theory and a variant of QCD with fermions in the antisymmetric representation is a powerful tool to obtain analytic non-perturbative results in QCD itself. In particular, it allows the quark condensate for N=3 QCD with quarks in the fundamental representation to be inferred from exact calculations of the gluino condensate in N=1 <span class="hlt">SYM</span>. In this paper, we review and refine our earlier predictions for the quark condensate in QCD with a general number nf of flavours and confront these with lattice results.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050199427','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050199427"><span>Engine With Regression and Neural Network <span class="hlt">Approximators</span> Designed</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Patnaik, Surya N.; Hopkins, Dale A.</p> <p>2001-01-01</p> <p>At the NASA Glenn Research Center, the NASA engine performance program (NEPP, ref. 1) and the design optimization testbed COMETBOARDS (ref. 2) with regression and neural network analysis-<span class="hlt">approximators</span> have been coupled to obtain a preliminary engine design methodology. The solution to a high-bypass-ratio subsonic waverotor-topped turbofan engine, which is shown in the preceding figure, was obtained by the simulation depicted in the following figure. This engine is made of 16 components mounted on two shafts with 21 flow stations. The engine is designed for a flight envelope with 47 operating points. The design optimization utilized both neural network and regression <span class="hlt">approximations</span>, along with the cascade strategy (ref. 3). The cascade used three algorithms in sequence: the method of feasible directions, the sequence of unconstrained minimizations technique, and sequential quadratic programming. The normalized optimum thrusts obtained by the three methods are shown in the following figure: the cascade algorithm with regression <span class="hlt">approximation</span> is represented by a triangle, a circle is shown for the neural network solution, and a solid line indicates original NEPP results. The solutions obtained from both <span class="hlt">approximate</span> methods lie within one standard deviation of the benchmark solution for each operating point. The simulation improved the maximum thrust by 5 percent. The performance of the linear regression and neural network methods as alternate engine analyzers was found to be satisfactory for the analysis and operation optimization of air-breathing propulsion engines (ref. 4).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1128175.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1128175.pdf"><span>Tension and <span class="hlt">Approximation</span> in Poetic Translation</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Al-Shabab, Omar A. S.; Baka, Farida H.</p> <p>2015-01-01</p> <p>Simple observation reveals that each language and each culture enjoys specific linguistic features and rhetorical traditions. In poetry translation difference and the resultant linguistic tension create a gap between Source Language and Target language, a gap that needs to be bridged by creating an <span class="hlt">approximation</span> processed through the translator's…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940019695','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940019695"><span>On the dynamics of <span class="hlt">approximating</span> schemes for dissipative nonlinear equations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jones, Donald A.</p> <p>1993-01-01</p> <p>Since one can rarely write down the analytical solutions to nonlinear dissipative partial differential equations (PDE's), it is important to understand whether, and in what sense, the behavior of <span class="hlt">approximating</span> schemes to these equations reflects the true dynamics of the original equations. Further, because standard error estimates between <span class="hlt">approximations</span> of the true solutions coming from spectral methods - finite difference or finite element schemes, for example - and the exact solutions grow exponentially in time, this analysis provides little value in understanding the infinite time behavior of a given <span class="hlt">approximating</span> scheme. The notion of the global attractor has been useful in quantifying the infinite time behavior of dissipative PDEs, such as the Navier-Stokes equations. Loosely speaking, the global attractor is all that remains of a sufficiently large bounded set in phase space mapped infinitely forward in time under the evolution of the PDE. Though the attractor has been shown to have some nice properties - it is compact, connected, and finite dimensional, for example - it is in general quite complicated. Nevertheless, the global attractor gives a way to understand how the infinite time behavior of <span class="hlt">approximating</span> schemes such as the ones coming from a finite difference, finite element, or spectral method relates to that of the original PDE. Indeed, one can often show that such <span class="hlt">approximations</span> also have a global attractor. We therefore only need to understand how the structure of the attractor for the PDE behaves under <span class="hlt">approximation</span>. This is by no means a trivial task. Several interesting results have been obtained in this direction. However, we will not go into the details. We mention here that <span class="hlt">approximations</span> generally lose information about the system no matter how accurate they are. There are examples that show certain parts of the attractor may be lost by arbitrary small perturbations of the original equations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930083541','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930083541"><span>Short-bearing <span class="hlt">approximation</span> for full journal bearings</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ocvirk, F W</p> <p>1952-01-01</p> <p>A short-bearing <span class="hlt">approximation</span> of pressure distribution in the oil film is presented which is an extension of the pressure-distribution function of Michell and Cardullo and includes end-leakage effects. Equations giving applied load, attitude angle, location and magnitude of peak film pressure, friction, and required oil flow rate as functions of the eccentricity ratio are also given. The capacity number, a basic non dimensional quantity resulting from this analysis is the product of the Sommerfeld number and the square of the length-diameter ratio. Curves determined by this analysis are compared with previously published experimental data and theoretical curves of Sommerfeld and Cameron and Wood. Conclusions reached indicate that this <span class="hlt">approximation</span> is of practical value for analysis of short bearings.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1407456-incomplete-sparse-approximate-inverses-parallel-preconditioning','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1407456-incomplete-sparse-approximate-inverses-parallel-preconditioning"><span>Incomplete Sparse <span class="hlt">Approximate</span> Inverses for Parallel Preconditioning</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Anzt, Hartwig; Huckle, Thomas K.; Bräckle, Jürgen; ...</p> <p>2017-10-28</p> <p>In this study, we propose a new preconditioning method that can be seen as a generalization of block-Jacobi methods, or as a simplification of the sparse <span class="hlt">approximate</span> inverse (SAI) preconditioners. The “Incomplete Sparse <span class="hlt">Approximate</span> Inverses” (ISAI) is in particular efficient in the solution of sparse triangular linear systems of equations. Those arise, for example, in the context of incomplete factorization preconditioning. ISAI preconditioners can be generated via an algorithm providing fine-grained parallelism, which makes them attractive for hardware with a high concurrency level. Finally, in a study covering a large number of matrices, we identify the ISAI preconditioner as anmore » attractive alternative to exact triangular solves in the context of incomplete factorization preconditioning.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950031803&hterms=blue+light&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dblue%2Blight','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950031803&hterms=blue+light&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dblue%2Blight"><span>HST images of very compact blue galaxies at z <span class="hlt">approximately</span> 0.2</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koo, David C.; Bershady, Matthew A.; Wirth, Gregory D.; Stanford, S. Adam; Majewski, Steven R.</p> <p>1994-01-01</p> <p>We present the results of Hubble Space Telescope (HST) Wide-Field Camera (WFC) imaging of seven very compact, very blue galaxies with B less than or equal to 21 and redshifts z <span class="hlt">approximately</span> 0.1 to 0.35. Based on deconvolved images, we estimate typical half-light diameters of <span class="hlt">approximately</span> 0.65 sec, corresponding to <span class="hlt">approximately</span> 1.4 h(exp -1) kpc at redshifts z <span class="hlt">approximately</span> 0.2. The average rest frame surface brightness within this diameter is mu(sub v) <span class="hlt">approximately</span> 20.5 mag arcsec(exp -2), <span class="hlt">approximately</span> 1 mag brighter than that of typical late-type blue galaxies. Ground-based spectra show strong, narrow emission lines indicating high ionization; their very blue colors suggest recent bursts of star-formation; their typical luminosities are <span class="hlt">approximately</span> 4 times fainter than that of field galaxies. These characteristics suggest H II galaxies as likely local counterparts of our sample, though our most luminous targets appear to be unusually compact for their luminosities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1414139-analytic-saddlepoint-approximation-ionization-energy-loss-distributions','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1414139-analytic-saddlepoint-approximation-ionization-energy-loss-distributions"><span>Analytic saddlepoint <span class="hlt">approximation</span> for ionization energy loss distributions</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Sjue, Sky K. L.; George, Jr., Richard Neal; Mathews, David Gregory</p> <p>2017-07-27</p> <p>Here, we present a saddlepoint <span class="hlt">approximation</span> for ionization energy loss distributions, valid for arbitrary relativistic velocities of the incident particle 0 < v/c < 1, provided that ionizing collisions are still the dominant energy loss mechanism. We derive a closed form solution closely related to Moyal’s distribution. This distribution is intended for use in simulations with relatively low computational overhead. The <span class="hlt">approximation</span> generally reproduces the Vavilov most probable energy loss and full width at half maximum to better than 1% and 10%, respectively, with significantly better agreement as Vavilov’s κ approaches 1.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhRvE..85d6705L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhRvE..85d6705L"><span><span class="hlt">Approximated</span> maximum likelihood estimation in multifractal random walks</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Løvsletten, O.; Rypdal, M.</p> <p>2012-04-01</p> <p>We present an <span class="hlt">approximated</span> maximum likelihood method for the multifractal random walk processes of [E. Bacry , Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.64.026103 64, 026103 (2001)]. The likelihood is computed using a Laplace <span class="hlt">approximation</span> and a truncation in the dependency structure for the latent volatility. The procedure is implemented as a package in the r computer language. Its performance is tested on synthetic data and compared to an inference approach based on the generalized method of moments. The method is applied to estimate parameters for various financial stock indices.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NIMPB.407..270S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NIMPB.407..270S"><span>Analytic saddlepoint <span class="hlt">approximation</span> for ionization energy loss distributions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sjue, S. K. L.; George, R. N.; Mathews, D. G.</p> <p>2017-09-01</p> <p>We present a saddlepoint <span class="hlt">approximation</span> for ionization energy loss distributions, valid for arbitrary relativistic velocities of the incident particle 0 < v / c < 1 , provided that ionizing collisions are still the dominant energy loss mechanism. We derive a closed form solution closely related to Moyal's distribution. This distribution is intended for use in simulations with relatively low computational overhead. The <span class="hlt">approximation</span> generally reproduces the Vavilov most probable energy loss and full width at half maximum to better than 1% and 10%, respectively, with significantly better agreement as Vavilov's κ approaches 1.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.966a2050G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.966a2050G"><span>Subtraction method in the Second Random Phase <span class="hlt">Approximation</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gambacurta, Danilo</p> <p>2018-02-01</p> <p>We discuss the subtraction method applied to the Second Random Phase <span class="hlt">Approximation</span> (SRPA). This method has been proposed to overcome double counting and stability issues appearing in beyond mean-field calculations. We show that the subtraction procedure leads to a considerable reduction of the SRPA downwards shift with respect to the random phase <span class="hlt">approximation</span> (RPA) spectra and to results that are weakly cutoff dependent. Applications to the isoscalar monopole and quadrupole response in 16O and to the low-lying dipole response in 48Ca are shown and discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1414139-analytic-saddlepoint-approximation-ionization-energy-loss-distributions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1414139-analytic-saddlepoint-approximation-ionization-energy-loss-distributions"><span>Analytic saddlepoint <span class="hlt">approximation</span> for ionization energy loss distributions</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sjue, Sky K. L.; George, Jr., Richard Neal; Mathews, David Gregory</p> <p></p> <p>Here, we present a saddlepoint <span class="hlt">approximation</span> for ionization energy loss distributions, valid for arbitrary relativistic velocities of the incident particle 0 < v/c < 1, provided that ionizing collisions are still the dominant energy loss mechanism. We derive a closed form solution closely related to Moyal’s distribution. This distribution is intended for use in simulations with relatively low computational overhead. The <span class="hlt">approximation</span> generally reproduces the Vavilov most probable energy loss and full width at half maximum to better than 1% and 10%, respectively, with significantly better agreement as Vavilov’s κ approaches 1.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JChPh.148m4110M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JChPh.148m4110M"><span>A walk through the <span class="hlt">approximations</span> of ab initio multiple spawning</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mignolet, Benoit; Curchod, Basile F. E.</p> <p>2018-04-01</p> <p>Full multiple spawning offers an in principle exact framework for excited-state dynamics, where nuclear wavefunctions in different electronic states are represented by a set of coupled trajectory basis functions that follow classical trajectories. The couplings between trajectory basis functions can be <span class="hlt">approximated</span> to treat molecular systems, leading to the ab initio multiple spawning method which has been successfully employed to study the photochemistry and photophysics of several molecules. However, a detailed investigation of its <span class="hlt">approximations</span> and their consequences is currently missing in the literature. In this work, we simulate the explicit photoexcitation and subsequent excited-state dynamics of a simple system, LiH, and we analyze (i) the effect of the ab initio multiple spawning <span class="hlt">approximations</span> on different observables and (ii) the convergence of the ab initio multiple spawning results towards numerically exact quantum dynamics upon a progressive relaxation of these <span class="hlt">approximations</span>. We show that, despite the crude character of the <span class="hlt">approximations</span> underlying ab initio multiple spawning for this low-dimensional system, the qualitative excited-state dynamics is adequately captured, and affordable corrections can further be applied to ameliorate the coupling between trajectory basis functions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29892139','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29892139"><span>Functional Data <span class="hlt">Approximation</span> on Bounded Domains using Polygonal Finite Elements.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cao, Juan; Xiao, Yanyang; Chen, Zhonggui; Wang, Wenping; Bajaj, Chandrajit</p> <p>2018-07-01</p> <p>We construct and analyze piecewise <span class="hlt">approximations</span> of functional data on arbitrary 2D bounded domains using generalized barycentric finite elements, and particularly quadratic serendipity elements for planar polygons. We compare <span class="hlt">approximation</span> qualities (precision/convergence) of these partition-of-unity finite elements through numerical experiments, using Wachspress coordinates, natural neighbor coordinates, Poisson coordinates, mean value coordinates, and quadratic serendipity bases over polygonal meshes on the domain. For a convex n -sided polygon, the quadratic serendipity elements have 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, rather than the usual n ( n + 1)/2 basis functions to achieve quadratic convergence. Two greedy algorithms are proposed to generate Voronoi meshes for adaptive functional/scattered data <span class="hlt">approximations</span>. Experimental results show space/accuracy advantages for these quadratic serendipity finite elements on polygonal domains versus traditional finite elements over simplicial meshes. Polygonal meshes and parameter coefficients of the quadratic serendipity finite elements obtained by our greedy algorithms can be further refined using an L 2 -optimization to improve the piecewise functional <span class="hlt">approximation</span>. We conduct several experiments to demonstrate the efficacy of our algorithm for modeling features/discontinuities in functional data/image <span class="hlt">approximation</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11325187','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11325187"><span><span class="hlt">Approximation</span> of reliabilities for multiple-trait model with maternal effects.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Strabel, T; Misztal, I; Bertrand, J K</p> <p>2001-04-01</p> <p>Reliabilities for a multiple-trait maternal model were obtained by combining reliabilities obtained from single-trait models. Single-trait reliabilities were obtained using an <span class="hlt">approximation</span> that supported models with additive and permanent environmental effects. For the direct effect, the maternal and permanent environmental variances were assigned to the residual. For the maternal effect, variance of the direct effect was assigned to the residual. Data included 10,550 birth weight, 11,819 weaning weight, and 3,617 postweaning gain records of Senepol cattle. Reliabilities were obtained by generalized inversion and by using single-trait and multiple-trait <span class="hlt">approximation</span> methods. Some reliabilities obtained by inversion were negative because inbreeding was ignored in calculating the inverse of the relationship matrix. The multiple-trait <span class="hlt">approximation</span> method reduced the bias of <span class="hlt">approximation</span> when compared with the single-trait method. The correlations between reliabilities obtained by inversion and by multiple-trait procedures for the direct effect were 0.85 for birth weight, 0.94 for weaning weight, and 0.96 for postweaning gain. Correlations for maternal effects for birth weight and weaning weight were 0.96 to 0.98 for both <span class="hlt">approximations</span>. Further improvements can be achieved by refining the single-trait procedures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29626896','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29626896"><span>A walk through the <span class="hlt">approximations</span> of ab initio multiple spawning.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mignolet, Benoit; Curchod, Basile F E</p> <p>2018-04-07</p> <p>Full multiple spawning offers an in principle exact framework for excited-state dynamics, where nuclear wavefunctions in different electronic states are represented by a set of coupled trajectory basis functions that follow classical trajectories. The couplings between trajectory basis functions can be <span class="hlt">approximated</span> to treat molecular systems, leading to the ab initio multiple spawning method which has been successfully employed to study the photochemistry and photophysics of several molecules. However, a detailed investigation of its <span class="hlt">approximations</span> and their consequences is currently missing in the literature. In this work, we simulate the explicit photoexcitation and subsequent excited-state dynamics of a simple system, LiH, and we analyze (i) the effect of the ab initio multiple spawning <span class="hlt">approximations</span> on different observables and (ii) the convergence of the ab initio multiple spawning results towards numerically exact quantum dynamics upon a progressive relaxation of these <span class="hlt">approximations</span>. We show that, despite the crude character of the <span class="hlt">approximations</span> underlying ab initio multiple spawning for this low-dimensional system, the qualitative excited-state dynamics is adequately captured, and affordable corrections can further be applied to ameliorate the coupling between trajectory basis functions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JChPh.146n4106L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JChPh.146n4106L"><span>Mean-trajectory <span class="hlt">approximation</span> for electronic and vibrational-electronic nonlinear spectroscopy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Loring, Roger F.</p> <p>2017-04-01</p> <p>Mean-trajectory <span class="hlt">approximations</span> permit the calculation of nonlinear vibrational spectra from semiclassically quantized trajectories on a single electronically adiabatic potential surface. By describing electronic degrees of freedom with classical phase-space variables and subjecting these to semiclassical quantization, mean-trajectory <span class="hlt">approximations</span> may be extended to compute both nonlinear electronic spectra and vibrational-electronic spectra. A general mean-trajectory <span class="hlt">approximation</span> for both electronic and nuclear degrees of freedom is presented, and the results for purely electronic and for vibrational-electronic four-wave mixing experiments are quantitatively assessed for harmonic surfaces with linear electronic-nuclear coupling.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EntIS..11..434Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EntIS..11..434Z"><span>Identification of <span class="hlt">approximately</span> duplicate material records in ERP systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zong, Wei; Wu, Feng; Chu, Lap-Keung; Sculli, Domenic</p> <p>2017-03-01</p> <p>The quality of master data is crucial for the accurate functioning of the various modules of an enterprise resource planning (ERP) system. This study addresses specific data problems arising from the generation of <span class="hlt">approximately</span> duplicate material records in ERP databases. Such problems are mainly due to the firm's lack of unique and global identifiers for the material records, and to the arbitrary assignment of alternative names for the same material by various users. Traditional duplicate detection methods are ineffective in identifying such <span class="hlt">approximately</span> duplicate material records because these methods typically rely on string comparisons of each field. To address this problem, a machine learning-based framework is developed to recognise semantic similarity between strings and to further identify and reunify <span class="hlt">approximately</span> duplicate material records - a process referred to as de-duplication in this article. First, the keywords of the material records are extracted to form vectors of discriminating words. Second, a machine learning method using a probabilistic neural network is applied to determine the semantic similarity between these material records. The approach was evaluated using data from a real case study. The test results indicate that the proposed method outperforms traditional algorithms in identifying <span class="hlt">approximately</span> duplicate material records.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24875786','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24875786"><span>Optimal sparse <span class="hlt">approximation</span> with integrate and fire neurons.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shapero, Samuel; Zhu, Mengchen; Hasler, Jennifer; Rozell, Christopher</p> <p>2014-08-01</p> <p>Sparse <span class="hlt">approximation</span> is a hypothesized coding strategy where a population of sensory neurons (e.g. V1) encodes a stimulus using as few active neurons as possible. We present the Spiking LCA (locally competitive algorithm), a rate encoded Spiking Neural Network (SNN) of integrate and fire neurons that calculate sparse <span class="hlt">approximations</span>. The Spiking LCA is designed to be equivalent to the nonspiking LCA, an analog dynamical system that converges on a ℓ(1)-norm sparse <span class="hlt">approximations</span> exponentially. We show that the firing rate of the Spiking LCA converges on the same solution as the analog LCA, with an error inversely proportional to the sampling time. We simulate in NEURON a network of 128 neuron pairs that encode 8 × 8 pixel image patches, demonstrating that the network converges to nearly optimal encodings within 20 ms of biological time. We also show that when using more biophysically realistic parameters in the neurons, the gain function encourages additional ℓ(0)-norm sparsity in the encoding, relative both to ideal neurons and digital solvers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1030363-combinatorial-approximation-algorithms-maxcut-using-random-walks','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1030363-combinatorial-approximation-algorithms-maxcut-using-random-walks"><span>Combinatorial <span class="hlt">approximation</span> algorithms for MAXCUT using random walks.</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Seshadhri, Comandur; Kale, Satyen</p> <p></p> <p>We give the first combinatorial <span class="hlt">approximation</span> algorithm for MaxCut that beats the trivial 0.5 factor by a constant. The main partitioning procedure is very intuitive, natural, and easily described. It essentially performs a number of random walks and aggregates the information to provide the partition. We can control the running time to get an <span class="hlt">approximation</span> factor-running time tradeoff. We show that for any constant b > 1.5, there is an {tilde O}(n{sup b}) algorithm that outputs a (0.5 + {delta})-<span class="hlt">approximation</span> for MaxCut, where {delta} = {delta}(b) is some positive constant. One of the components of our algorithm is a weakmore » local graph partitioning procedure that may be of independent interest. Given a starting vertex i and a conductance parameter {phi}, unless a random walk of length {ell} = O(log n) starting from i mixes rapidly (in terms of {phi} and {ell}), we can find a cut of conductance at most {phi} close to the vertex. The work done per vertex found in the cut is sublinear in n.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AIPC.1497..184Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AIPC.1497..184Z"><span><span class="hlt">Approximation</span> by the iterates of Bernstein operator</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zapryanova, Teodora; Tachev, Gancho</p> <p>2012-11-01</p> <p>We study the degree of pointwise <span class="hlt">approximation</span> of the iterated Bernstein operators to its limiting operator. We obtain a quantitative estimates related to the conjecture of Gonska and Raşa from 2006.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26731788','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26731788"><span>Minimal-<span class="hlt">Approximation</span>-Based Decentralized Backstepping Control of Interconnected Time-Delay Systems.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Choi, Yun Ho; Yoo, Sung Jin</p> <p>2016-12-01</p> <p>A decentralized adaptive backstepping control design using minimal function <span class="hlt">approximators</span> is proposed for nonlinear large-scale systems with unknown unmatched time-varying delayed interactions and unknown backlash-like hysteresis nonlinearities. Compared with existing decentralized backstepping methods, the contribution of this paper is to design a simple local control law for each subsystem, consisting of an actual control with one adaptive function <span class="hlt">approximator</span>, without requiring the use of multiple function <span class="hlt">approximators</span> and regardless of the order of each subsystem. The virtual controllers for each subsystem are used as intermediate signals for designing a local actual control at the last step. For each subsystem, a lumped unknown function including the unknown nonlinear terms and the hysteresis nonlinearities is derived at the last step and is estimated by one function <span class="hlt">approximator</span>. Thus, the proposed approach only uses one function <span class="hlt">approximator</span> to implement each local controller, while existing decentralized backstepping control methods require the number of function <span class="hlt">approximators</span> equal to the order of each subsystem and a calculation of virtual controllers to implement each local actual controller. The stability of the total controlled closed-loop system is analyzed using the Lyapunov stability theorem.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920016496','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920016496"><span>The blind leading the blind: Mutual refinement of <span class="hlt">approximate</span> theories</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kedar, Smadar T.; Bresina, John L.; Dent, C. Lisa</p> <p>1991-01-01</p> <p>The mutual refinement theory, a method for refining world models in a reactive system, is described. The method detects failures, explains their causes, and repairs the <span class="hlt">approximate</span> models which cause the failures. The approach focuses on using one <span class="hlt">approximate</span> model to refine another.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22779638','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22779638"><span>Orbitally invariant internally contracted multireference unitary coupled cluster theory and its perturbative <span class="hlt">approximation</span>: theory and test calculations of second order <span class="hlt">approximation</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Zhenhua; Hoffmann, Mark R</p> <p>2012-07-07</p> <p>A unitary wave operator, exp (G), G(+) = -G, is considered to transform a multiconfigurational reference wave function Φ to the potentially exact, within basis set limit, wave function Ψ = exp (G)Φ. To obtain a useful <span class="hlt">approximation</span>, the Hausdorff expansion of the similarity transformed effective Hamiltonian, exp (-G)Hexp (G), is truncated at second order and the excitation manifold is limited; an additional separate perturbation <span class="hlt">approximation</span> can also be made. In the perturbation <span class="hlt">approximation</span>, which we refer to as multireference unitary second-order perturbation theory (MRUPT2), the Hamiltonian operator in the highest order commutator is <span class="hlt">approximated</span> by a Mo̸ller-Plesset-type one-body zero-order Hamiltonian. If a complete active space self-consistent field wave function is used as reference, then the energy is invariant under orbital rotations within the inactive, active, and virtual orbital subspaces for both the second-order unitary coupled cluster method and its perturbative <span class="hlt">approximation</span>. Furthermore, the redundancies of the excitation operators are addressed in a novel way, which is potentially more efficient compared to the usual full diagonalization of the metric of the excited configurations. Despite the loss of rigorous size-extensivity possibly due to the use of a variational approach rather than a projective one in the solution of the amplitudes, test calculations show that the size-extensivity errors are very small. Compared to other internally contracted multireference perturbation theories, MRUPT2 only needs reduced density matrices up to three-body even with a non-complete active space reference wave function when two-body excitations within the active orbital subspace are involved in the wave operator, exp (G). Both the coupled cluster and perturbation theory variants are amenable to large, incomplete model spaces. Applications to some widely studied model systems that can be problematic because of geometry dependent quasidegeneracy, H4, P4</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009IEITI..92..158S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009IEITI..92..158S"><span>A Space-Saving <span class="hlt">Approximation</span> Algorithm for Grammar-Based Compression</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sakamoto, Hiroshi; Maruyama, Shirou; Kida, Takuya; Shimozono, Shinichi</p> <p></p> <p>A space-efficient <span class="hlt">approximation</span> algorithm for the grammar-based compression problem, which requests for a given string to find a smallest context-free grammar deriving the string, is presented. For the input length n and an optimum CFG size g, the algorithm consumes only O(g log g) space and O(n log*n) time to achieve O((log*n)log n) <span class="hlt">approximation</span> ratio to the optimum compression, where log*n is the maximum number of logarithms satisfying log log…log n > 1. This ratio is thus regarded to almost O(log n), which is the currently best <span class="hlt">approximation</span> ratio. While g depends on the string, it is known that g =Ω(log n) and g=\\\\Omega(\\\\log n) and g=O\\\\left(\\\\frac{n}{log_kn}\\\\right) for strings from k-letter alphabet[12].</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26383040','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26383040"><span>A faster 1.375-<span class="hlt">approximation</span> algorithm for sorting by transpositions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cunha, Luís Felipe I; Kowada, Luis Antonio B; Hausen, Rodrigo de A; de Figueiredo, Celina M H</p> <p>2015-11-01</p> <p>Sorting by Transpositions is an NP-hard problem for which several polynomial-time <span class="hlt">approximation</span> algorithms have been developed. Hartman and Shamir (2006) developed a 1.5-<span class="hlt">approximation</span> [Formula: see text] algorithm, whose running time was improved to O(nlogn) by Feng and Zhu (2007) with a data structure they defined, the permutation tree. Elias and Hartman (2006) developed a 1.375-<span class="hlt">approximation</span> O(n(2)) algorithm, and Firoz et al. (2011) claimed an improvement to the running time, from O(n(2)) to O(nlogn), by using the permutation tree. We provide counter-examples to the correctness of Firoz et al.'s strategy, showing that it is not possible to reach a component by sufficient extensions using the method proposed by them. In addition, we propose a 1.375-<span class="hlt">approximation</span> algorithm, modifying Elias and Hartman's approach with the use of permutation trees and achieving O(nlogn) time.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CMaPh.342...47B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CMaPh.342...47B"><span>Product-State <span class="hlt">Approximations</span> to Quantum States</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brandão, Fernando G. S. L.; Harrow, Aram W.</p> <p>2016-02-01</p> <p>We show that for any many-body quantum state there exists an unentangled quantum state such that most of the two-body reduced density matrices are close to those of the original state. This is a statement about the monogamy of entanglement, which cannot be shared without limit in the same way as classical correlation. Our main application is to Hamiltonians that are sums of two-body terms. For such Hamiltonians we show that there exist product states with energy that is close to the ground-state energy whenever the interaction graph of the Hamiltonian has high degree. This proves the validity of mean-field theory and gives an explicitly bounded <span class="hlt">approximation</span> error. If we allow states that are entangled within small clusters of systems but product across clusters then good <span class="hlt">approximations</span> exist when the Hamiltonian satisfies one or more of the following properties: (1) high degree, (2) small expansion, or (3) a ground state where the blocks in the partition have sublinear entanglement. Previously this was known only in the case of small expansion or in the regime where the entanglement was close to zero. Our <span class="hlt">approximations</span> allow an extensive error in energy, which is the scale considered by the quantum PCP (probabilistically checkable proof) and NLTS (no low-energy trivial-state) conjectures. Thus our results put restrictions on the possible Hamiltonians that could be used for a possible proof of the qPCP or NLTS conjectures. By contrast the classical PCP constructions are often based on constraint graphs with high degree. Likewise we show that the parallel repetition that is possible with classical constraint satisfaction problems cannot also be possible for quantum Hamiltonians, unless qPCP is false. The main technical tool behind our results is a collection of new classical and quantum de Finetti theorems which do not make any symmetry assumptions on the underlying states.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170002764&hterms=storms&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dstorms','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170002764&hterms=storms&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dstorms"><span>Global Images of Trapped Ring Current Ions During Main Phase of 17 March 2015 Geomagnetic Storm as Observed by TWINS</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Perez, J. D.; Goldstein, J.; McComas, D. J.; Valek, P.; Fok, Mei-Ching; Hwang, Kyoung-Joo</p> <p>2016-01-01</p> <p>A unique view of the trapped particles in the inner magnetosphere provided by energetic neutral atom (ENA) imaging is used to observe the dynamics of the spatial structure and the pitch angle anisotropy on a global scale during the last 6 h of the main phase of a large geomagnetic storm (minimum <span class="hlt">SYM</span>-H 230 nT) that began on 17 March 2015. Ion flux and pressure anisotropy obtained from Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) ENA images are shown. The ion flux shows two peaks, an inner one at <span class="hlt">approximately</span> radii 34 RE in the dusk-to-midnight sector and an outer peak at radii 89 RE prior to midnight. The inner peak is relatively stationary during the entire period with some intensification during the final steep decline in <span class="hlt">SYM</span>-H to its minimum. The outer peak shows the significant temporal variation brightening and dimming and finally disappearing at the end of the main phase. The pressure anisotropy shows the expected perpendicular pitch angles inside of L 6 but shows parallel pitch angles at greater L values. This is interpreted as consistent with pitch angle-dependent drift as modeled in the Tsy05 magnetic field and Comprehensive Inner Magnetosphere-Ionosphere simulations. The TWINS results are compared directly with Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)-A measurements. Using 15 min snapshots of flux and pressure anisotropy from TWINS along the path of RBSPICE-A during the 6 h focused upon in this study, the essential features displayed in the TWINS global images are supported.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890002382','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890002382"><span><span class="hlt">Approximation</span> theory for LQG (Linear-Quadratic-Gaussian) optimal control of flexible structures</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gibson, J. S.; Adamian, A.</p> <p>1988-01-01</p> <p>An <span class="hlt">approximation</span> theory is presented for the LQG (Linear-Quadratic-Gaussian) optimal control problem for flexible structures whose distributed models have bounded input and output operators. The main purpose of the theory is to guide the design of finite dimensional compensators that <span class="hlt">approximate</span> closely the optimal compensator. The optimal LQG problem separates into an optimal linear-quadratic regulator problem and an optimal state estimation problem. The solution of the former problem lies in the solution to an infinite dimensional Riccati operator equation. The <span class="hlt">approximation</span> scheme <span class="hlt">approximates</span> the infinite dimensional LQG problem with a sequence of finite dimensional LQG problems defined for a sequence of finite dimensional, usually finite element or modal, <span class="hlt">approximations</span> of the distributed model of the structure. Two Riccati matrix equations determine the solution to each <span class="hlt">approximating</span> problem. The finite dimensional equations for numerical <span class="hlt">approximation</span> are developed, including formulas for converting matrix control and estimator gains to their functional representation to allow comparison of gains based on different orders of <span class="hlt">approximation</span>. Convergence of the <span class="hlt">approximating</span> control and estimator gains and of the corresponding finite dimensional compensators is studied. Also, convergence and stability of the closed-loop systems produced with the finite dimensional compensators are discussed. The convergence theory is based on the convergence of the solutions of the finite dimensional Riccati equations to the solutions of the infinite dimensional Riccati equations. A numerical example with a flexible beam, a rotating rigid body, and a lumped mass is given.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22416066-second-derivatives-approximate-spin-projection-methods','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22416066-second-derivatives-approximate-spin-projection-methods"><span>Second derivatives for <span class="hlt">approximate</span> spin projection methods</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Thompson, Lee M.; Hratchian, Hrant P., E-mail: hhratchian@ucmerced.edu</p> <p>2015-02-07</p> <p>The use of broken-symmetry electronic structure methods is required in order to obtain correct behavior of electronically strained open-shell systems, such as transition states, biradicals, and transition metals. This approach often has issues with spin contamination, which can lead to significant errors in predicted energies, geometries, and properties. <span class="hlt">Approximate</span> projection schemes are able to correct for spin contamination and can often yield improved results. To fully make use of these methods and to carry out exploration of the potential energy surface, it is desirable to develop an efficient second energy derivative theory. In this paper, we formulate the analytical secondmore » derivatives for the Yamaguchi <span class="hlt">approximate</span> projection scheme, building on recent work that has yielded an efficient implementation of the analytical first derivatives.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6234737-analytic-approximation-random-muffin-tin-alloys','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6234737-analytic-approximation-random-muffin-tin-alloys"><span>Analytic <span class="hlt">approximation</span> for random muffin-tin alloys</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mills, R.; Gray, L.J.; Kaplan, T.</p> <p>1983-03-15</p> <p>The methods introduced in a previous paper under the name of ''traveling-cluster <span class="hlt">approximation</span>'' (TCA) are applied, in a multiple-scattering approach, to the case of a random muffin-tin substitutional alloy. This permits the iterative part of a self-consistent calculation to be carried out entirely in terms of on-the-energy-shell scattering amplitudes. Off-shell components of the mean resolvent, needed for the calculation of spectral functions, are obtained by standard methods involving single-site scattering wave functions. The single-site TCA is just the usual coherent-potential <span class="hlt">approximation</span>, expressed in a form particularly suited for iteration. A fixed-point theorem is proved for the general t-matrix TCA, ensuringmore » convergence upon iteration to a unique self-consistent solution with the physically essential Herglotz properties.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA182358','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA182358"><span><span class="hlt">Approximate</span> Evaluation of Reliability and Availability via Perturbation Analysis.</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1986-12-01</p> <p>generating the dxact answers to which the results of the <span class="hlt">approximation</span> will be compared are discussed:." - 87 7" 2 04 2LOISTRIGUTIONIAVAILASILITYI OF...appropriately, constructing the Markov process that <span class="hlt">approximately</span> governs interclass behavior from the result above (this is called the enlarged... compared to a numerical or analytical computation of the aame quantities. This work and its continuation represents our progress so far on Goal 3. 2.4I</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1237574','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1237574"><span>NONLINEAR MULTIGRID SOLVER EXPLOITING AMGe COARSE SPACES WITH <span class="hlt">APPROXIMATION</span> PROPERTIES</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Christensen, Max La Cour; Villa, Umberto E.; Engsig-Karup, Allan P.</p> <p></p> <p>The paper introduces a nonlinear multigrid solver for mixed nite element discretizations based on the Full <span class="hlt">Approximation</span> Scheme (FAS) and element-based Algebraic Multigrid (AMGe). The main motivation to use FAS for unstruc- tured problems is the guaranteed <span class="hlt">approximation</span> property of the AMGe coarse spaces that were developed recently at Lawrence Livermore National Laboratory. These give the ability to derive stable and accurate coarse nonlinear discretization problems. The previous attempts (including ones with the original AMGe method, [5, 11]), were less successful due to lack of such good <span class="hlt">approximation</span> properties of the coarse spaces. With coarse spaces with <span class="hlt">approximation</span> properties, ourmore » FAS approach on un- structured meshes should be as powerful/successful as FAS on geometrically re ned meshes. For comparison, Newton's method and Picard iterations with an inner state-of-the-art linear solver is compared to FAS on a nonlinear saddle point problem with applications to porous media ow. It is demonstrated that FAS is faster than Newton's method and Picard iterations for the experiments considered here. Due to the guaranteed <span class="hlt">approximation</span> properties of our AMGe, the coarse spaces are very accurate, providing a solver with the potential for mesh-independent convergence on general unstructured meshes.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JETAI..29..823S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JETAI..29..823S"><span>Metaheuristic optimisation methods for <span class="hlt">approximate</span> solving of singular boundary value problems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sadollah, Ali; Yadav, Neha; Gao, Kaizhou; Su, Rong</p> <p>2017-07-01</p> <p>This paper presents a novel <span class="hlt">approximation</span> technique based on metaheuristics and weighted residual function (WRF) for tackling singular boundary value problems (BVPs) arising in engineering and science. With the aid of certain fundamental concepts of mathematics, Fourier series expansion, and metaheuristic optimisation algorithms, singular BVPs can be <span class="hlt">approximated</span> as an optimisation problem with boundary conditions as constraints. The target is to minimise the WRF (i.e. error function) constructed in <span class="hlt">approximation</span> of BVPs. The scheme involves generational distance metric for quality evaluation of the <span class="hlt">approximate</span> solutions against exact solutions (i.e. error evaluator metric). Four test problems including two linear and two non-linear singular BVPs are considered in this paper to check the efficiency and accuracy of the proposed algorithm. The optimisation task is performed using three different optimisers including the particle swarm optimisation, the water cycle algorithm, and the harmony search algorithm. Optimisation results obtained show that the suggested technique can be successfully applied for <span class="hlt">approximate</span> solving of singular BVPs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22471898-use-neural-networks-approximation-nuclear-data','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22471898-use-neural-networks-approximation-nuclear-data"><span>The use of neural networks for <span class="hlt">approximation</span> of nuclear data</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Korovin, Yu. A.; Maksimushkina, A. V., E-mail: AVMaksimushkina@mephi.ru</p> <p>2015-12-15</p> <p>The article discusses the possibility of using neural networks for <span class="hlt">approximation</span> or reconstruction of data such as the reaction cross sections. The quality of the <span class="hlt">approximation</span> using fitting criteria is also evaluated. The activity of materials under irradiation is calculated from data obtained using neural networks.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17676137','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17676137"><span>Geometrical-optics <span class="hlt">approximation</span> of forward scattering by gradient-index spheres.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Xiangzhen; Han, Xiang'e; Li, Renxian; Jiang, Huifen</p> <p>2007-08-01</p> <p>By means of geometrical optics we present an <span class="hlt">approximation</span> method for acceleration of the computation of the scattering intensity distribution within a forward angular range (0-60 degrees ) for gradient-index spheres illuminated by a plane wave. The incident angle of reflected light is determined by the scattering angle, thus improving the <span class="hlt">approximation</span> accuracy. The scattering angle and the optical path length are numerically integrated by a general-purpose integrator. With some special index models, the scattering angle and the optical path length can be expressed by a unique function and the calculation is faster. This method is proved effective for transparent particles with size parameters greater than 50. It fails to give good <span class="hlt">approximation</span> results at scattering angles whose refractive rays are in the backward direction. For different index models, the geometrical-optics <span class="hlt">approximation</span> is effective only for forward angles, typically those less than 60 degrees or when the refractive-index difference of a particle is less than a certain value.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930029110&hterms=berenji&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dberenji','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930029110&hterms=berenji&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dberenji"><span>On the integration of reinforcement learning and <span class="hlt">approximate</span> reasoning for control</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Berenji, Hamid R.</p> <p>1991-01-01</p> <p>The author discusses the importance of strengthening the knowledge representation characteristic of reinforcement learning techniques using methods such as <span class="hlt">approximate</span> reasoning. The ARIC (<span class="hlt">approximate</span> reasoning-based intelligent control) architecture is an example of such a hybrid approach in which the fuzzy control rules are modified (fine-tuned) using reinforcement learning. ARIC also demonstrates that it is possible to start with an <span class="hlt">approximately</span> correct control knowledge base and learn to refine this knowledge through further experience. On the other hand, techniques such as the TD (temporal difference) algorithm and Q-learning establish stronger theoretical foundations for their use in adaptive control and also in stability analysis of hybrid reinforcement learning and <span class="hlt">approximate</span> reasoning-based controllers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvL.118p3203H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvL.118p3203H"><span>Strong Field Theories beyond Dipole <span class="hlt">Approximations</span> in Nonrelativistic Regimes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, Pei-Lun; Lao, Di; He, Feng</p> <p>2017-04-01</p> <p>The exact nondipole Volkov solutions to the Schrödinger equation and Pauli equation are found, based on which a strong field theory beyond the dipole <span class="hlt">approximation</span> is built for describing the nondipole effects in nonrelativistic laser driven electron dynamics. This theory is applied to investigate momentum partition laws for multiphoton and tunneling ionization and explicitly shows that the complex interplay of a laser field and Coulomb action may reverse the expected photoelectron momentum along the laser propagation direction. The magnetic-spin coupling does not bring observable effects on the photoelectron momentum distribution and can be neglected. Compared to the strong field <span class="hlt">approximation</span> within the dipole <span class="hlt">approximation</span>, this theory works in a much wider range of laser parameters and lays a solid foundation for describing nonrelativistic electron dynamics in both short wavelength and midinfrared regimes where nondipole effects are unavoidable.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28644677','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28644677"><span>Young Athletes After Anterior Cruciate Ligament Reconstruction With Single-Leg Landing Asymmetries at the Time of Return to Sport Demonstrate Decreased Knee Function 2 Years Later.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ithurburn, Matthew P; Paterno, Mark V; Ford, Kevin R; Hewett, Timothy E; Schmitt, Laura C</p> <p>2017-09-01</p> <p>Previous work shows that young athletes after anterior cruciate ligament reconstruction (ACLR) demonstrate single-leg (SL) landing movement asymmetries at the time of return to sport (RTS); however, the effect of movement asymmetries on longitudinal knee-related function after ACLR has not been examined. Hypothesis/Purpose: The purpose of this study was to examine the effect of SL drop-landing movement symmetry at the time of RTS on knee-related function 2 years later in young athletes after ACLR. The first hypothesis was that young athletes who demonstrated SL drop-landing asymmetries at RTS would demonstrate decreased knee function 2 years later compared with those who demonstrated symmetric SL drop-landing mechanics. The second hypothesis was that SL drop-landing movement symmetry at RTS would be associated with knee functional recovery 2 years later. Cohort study; Level of evidence, 2. This study included 48 young athletes who had undergone ACLR and were assessed at the time of RTS (77% female; mean [±SD] age at RTS, 17.6 ± 2.6 years) and followed for 2 years after RTS. Three sagittal-plane landing variables of interest were calculated using 3-dimensional motion analysis during an SL drop-landing task at the time of RTS: knee flexion excursion, peak internal knee extension moment, and peak trunk flexion. The limb symmetry index (LSI) was calculated for each landing variable using the following: LSI = (involved/uninvolved) × 100%. The LSI was used to divide the cohort into symmetric (<span class="hlt">SYM</span>) and asymmetric (ASYM) groups for each landing variable: knee flexion excursion (<span class="hlt">SYM</span>: LSI ≥ 90% [n = 23]; ASYM: LSI < 85% [n = 18]), peak internal knee extension moment (<span class="hlt">SYM</span>: LSI ≥ 90% [n = 19]; ASYM: LSI < 85% [n = 22]), and peak trunk flexion (<span class="hlt">SYM</span>: LSI ≤ 105% [n = 25]; ASYM: LSI > 115% [n = 19]). At 2 years after RTS, knee-related function was evaluated using the Knee Injury and Osteoarthritis Outcome Score (KOOS), International Knee Documentation Committee (IKDC</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29882849','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29882849"><span>Time and Memory Efficient Online Piecewise Linear <span class="hlt">Approximation</span> of Sensor Signals.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Grützmacher, Florian; Beichler, Benjamin; Hein, Albert; Kirste, Thomas; Haubelt, Christian</p> <p>2018-05-23</p> <p>Piecewise linear <span class="hlt">approximation</span> of sensor signals is a well-known technique in the fields of Data Mining and Activity Recognition. In this context, several algorithms have been developed, some of them with the purpose to be performed on resource constrained microcontroller architectures of wireless sensor nodes. While microcontrollers are usually constrained in computational power and memory resources, all state-of-the-art piecewise linear <span class="hlt">approximation</span> techniques either need to buffer sensor data or have an execution time depending on the segment’s length. In the paper at hand, we propose a novel piecewise linear <span class="hlt">approximation</span> algorithm, with a constant computational complexity as well as a constant memory complexity. Our proposed algorithm’s worst-case execution time is one to three orders of magnitude smaller and its average execution time is three to seventy times smaller compared to the state-of-the-art Piecewise Linear <span class="hlt">Approximation</span> (PLA) algorithms in our experiments. In our evaluations, we show that our algorithm is time and memory efficient without sacrificing the <span class="hlt">approximation</span> quality compared to other state-of-the-art piecewise linear <span class="hlt">approximation</span> techniques, while providing a maximum error guarantee per segment, a small parameter space of only one parameter, and a maximum latency of one sample period plus its worst-case execution time.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA256799','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA256799"><span><span class="hlt">Approximation</span> Algorithms for Multicommodity Flow and Shop Scheduling Problems</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1992-09-01</p> <p>DARPA N00014-89-J-1988 11. SUPPLEMENTARY NOTES Ŗa. oIs7RIBU ric.c / AVAILAaILITY STATEMENT, 1.2. 3ISTRIBUT;CN C:. E In this thesis , we give efficient...University Thesis Supervisor Accepted by Campbell L. Searle Chairman, Departmental Committee on Graduate Students <span class="hlt">Approximation</span> Algorithms for Multicommodity...partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract In this thesis , we give efficient <span class="hlt">approximation</span> algorithms for</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989rtfs.rept.....K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989rtfs.rept.....K"><span>Radiative transfer in falling snow: A two-stream <span class="hlt">approximation</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koh, Gary</p> <p>1989-04-01</p> <p>Light transmission measurements through falling snow have produced results unexplainable by single scattering arguments. A two-stream <span class="hlt">approximation</span> to radiative transfer is used to derive an analytical expression that describes the effects of multiple scattering as a function of the snow optical depth and the snow asymmetry parameter. The <span class="hlt">approximate</span> solution is simple and it may be as accurate as the exact solution for describing the transmission measurements within the limits of experimental uncertainties.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22611442-multi-level-methods-approximating-distribution-functions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22611442-multi-level-methods-approximating-distribution-functions"><span>Multi-level methods and <span class="hlt">approximating</span> distribution functions</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wilson, D., E-mail: daniel.wilson@dtc.ox.ac.uk; Baker, R. E.</p> <p>2016-07-15</p> <p>Biochemical reaction networks are often modelled using discrete-state, continuous-time Markov chains. System statistics of these Markov chains usually cannot be calculated analytically and therefore estimates must be generated via simulation techniques. There is a well documented class of simulation techniques known as exact stochastic simulation algorithms, an example of which is Gillespie’s direct method. These algorithms often come with high computational costs, therefore <span class="hlt">approximate</span> stochastic simulation algorithms such as the tau-leap method are used. However, in order to minimise the bias in the estimates generated using them, a relatively small value of tau is needed, rendering the computational costs comparablemore » to Gillespie’s direct method. The multi-level Monte Carlo method (Anderson and Higham, Multiscale Model. Simul. 10:146–179, 2012) provides a reduction in computational costs whilst minimising or even eliminating the bias in the estimates of system statistics. This is achieved by first crudely <span class="hlt">approximating</span> required statistics with many sample paths of low accuracy. Then correction terms are added until a required level of accuracy is reached. Recent literature has primarily focussed on implementing the multi-level method efficiently to estimate a single system statistic. However, it is clearly also of interest to be able to <span class="hlt">approximate</span> entire probability distributions of species counts. We present two novel methods that combine known techniques for distribution reconstruction with the multi-level method. We demonstrate the potential of our methods using a number of examples.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHyd..556..674B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHyd..556..674B"><span>The validity of flow <span class="hlt">approximations</span> when simulating catchment-integrated flash floods</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bout, B.; Jetten, V. G.</p> <p>2018-01-01</p> <p>Within hydrological models, flow <span class="hlt">approximations</span> are commonly used to reduce computation time. The validity of these <span class="hlt">approximations</span> is strongly determined by flow height, flow velocity and the spatial resolution of the model. In this presentation, the validity and performance of the kinematic, diffusive and dynamic flow <span class="hlt">approximations</span> are investigated for use in a catchment-based flood model. Particularly, the validity during flood events and for varying spatial resolutions is investigated. The OpenLISEM hydrological model is extended to implement both these flow <span class="hlt">approximations</span> and channel flooding based on dynamic flow. The flow <span class="hlt">approximations</span> are used to recreate measured discharge in three catchments, among which is the hydrograph of the 2003 flood event in the Fella river basin. Furthermore, spatial resolutions are varied for the flood simulation in order to investigate the influence of spatial resolution on these flow <span class="hlt">approximations</span>. Results show that the kinematic, diffusive and dynamic flow <span class="hlt">approximation</span> provide least to highest accuracy, respectively, in recreating measured discharge. Kinematic flow, which is commonly used in hydrological modelling, substantially over-estimates hydrological connectivity in the simulations with a spatial resolution of below 30 m. Since spatial resolutions of models have strongly increased over the past decades, usage of routed kinematic flow should be reconsidered. The combination of diffusive or dynamic overland flow and dynamic channel flooding provides high accuracy in recreating the 2003 Fella river flood event. Finally, in the case of flood events, spatial modelling of kinematic flow substantially over-estimates hydrological connectivity and flow concentration since pressure forces are removed, leading to significant errors.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22680072-slow-roll-approximation-loop-quantum-cosmology','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22680072-slow-roll-approximation-loop-quantum-cosmology"><span>Slow-roll <span class="hlt">approximation</span> in loop quantum cosmology</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Luc, Joanna; Mielczarek, Jakub, E-mail: joanna.luc@uj.edu.pl, E-mail: jakub.mielczarek@uj.edu.pl</p> <p></p> <p>The slow-roll <span class="hlt">approximation</span> is an analytical approach to study dynamical properties of the inflationary universe. In this article, systematic construction of the slow-roll expansion for effective loop quantum cosmology is presented. The analysis is performed up to the fourth order in both slow-roll parameters and the parameter controlling the strength of deviation from the classical case. The expansion is performed for three types of the slow-roll parameters: Hubble slow-roll parameters, Hubble flow parameters and potential slow-roll parameters. An accuracy of the <span class="hlt">approximation</span> is verified by comparison with the numerical phase space trajectories for the case with a massive potential term.more » The results obtained in this article may be helpful in the search for the subtle quantum gravitational effects with use of the cosmological data.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM41A2683H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM41A2683H"><span>Correlations between Geomagnetic Disturbances and Field-Aligned Currents during the 22-29 July 2004 Storm Time Interval</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hood, R.; Woodroffe, J. R.; Morley, S.; Aruliah, A. L.</p> <p>2017-12-01</p> <p>Using the CHAMP fluxgate magnetometer to calculate field-aligned current (FAC) densities and magnetic latitudes, with SuperMAG ground magnetometers analogously providing ground geomagnetic disturbances (GMD) magnetic perturbations and latitudes, we probe FAC locations and strengths as predictors of GMD locations and strengths. We also study the relationships between solar wind drivers and global magnetospheric activity, and both FACs and GMDs using IMF Bz and the <span class="hlt">Sym</span>-H index. We present an event study of the 22-29 July 2004 storm time interval, which had particularly large GMDs given its storm intensity. We find no correlation between FAC and GMD magnitudes, perhaps due to CHAMP orbit limitations or ground magnetometer coverage. There is, however, a correlation between IMF Bz and nightside GMD magnitudes, supportive of their generation via tail reconnection. IMF Bz is also correlated with dayside FAC and GMD magnetic latitudes, indicating solar wind as an initial driver. The ring current influence increases during the final storm, with improved correlations between the <span class="hlt">Sym</span>-H index and both FAC magnetic latitudes and GMD magnitudes. <span class="hlt">Sym</span>-H index correlations may only be valid for higher intensity storms; a statistical analysis of many storms is needed to verify this.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4701319','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4701319"><span>Selection of Mother Wavelet Functions for Multi-Channel EEG Signal Analysis during a Working Memory Task</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Al-Qazzaz, Noor Kamal; Hamid Bin Mohd Ali, Sawal; Ahmad, Siti Anom; Islam, Mohd Shabiul; Escudero, Javier</p> <p>2015-01-01</p> <p>We performed a comparative study to select the efficient mother wavelet (MWT) basis functions that optimally represent the signal characteristics of the electrical activity of the human brain during a working memory (WM) task recorded through electro-encephalography (EEG). Nineteen EEG electrodes were placed on the scalp following the 10–20 system. These electrodes were then grouped into five recording regions corresponding to the scalp area of the cerebral cortex. Sixty-second WM task data were recorded from ten control subjects. Forty-five MWT basis functions from orthogonal families were investigated. These functions included Daubechies (db1–db20), Symlets (<span class="hlt">sym</span>1–<span class="hlt">sym</span>20), and Coiflets (coif1–coif5). Using ANOVA, we determined the MWT basis functions with the most significant differences in the ability of the five scalp regions to maximize their cross-correlation with the EEG signals. The best results were obtained using “<span class="hlt">sym</span>9” across the five scalp regions. Therefore, the most compatible MWT with the EEG signals should be selected to achieve wavelet denoising, decomposition, reconstruction, and sub-band feature extraction. This study provides a reference of the selection of efficient MWT basis functions. PMID:26593918</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26593918','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26593918"><span>Selection of Mother Wavelet Functions for Multi-Channel EEG Signal Analysis during a Working Memory Task.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Al-Qazzaz, Noor Kamal; Bin Mohd Ali, Sawal Hamid; Ahmad, Siti Anom; Islam, Mohd Shabiul; Escudero, Javier</p> <p>2015-11-17</p> <p>We performed a comparative study to select the efficient mother wavelet (MWT) basis functions that optimally represent the signal characteristics of the electrical activity of the human brain during a working memory (WM) task recorded through electro-encephalography (EEG). Nineteen EEG electrodes were placed on the scalp following the 10-20 system. These electrodes were then grouped into five recording regions corresponding to the scalp area of the cerebral cortex. Sixty-second WM task data were recorded from ten control subjects. Forty-five MWT basis functions from orthogonal families were investigated. These functions included Daubechies (db1-db20), Symlets (<span class="hlt">sym</span>1-<span class="hlt">sym</span>20), and Coiflets (coif1-coif5). Using ANOVA, we determined the MWT basis functions with the most significant differences in the ability of the five scalp regions to maximize their cross-correlation with the EEG signals. The best results were obtained using "<span class="hlt">sym</span>9" across the five scalp regions. Therefore, the most compatible MWT with the EEG signals should be selected to achieve wavelet denoising, decomposition, reconstruction, and sub-band feature extraction. This study provides a reference of the selection of efficient MWT basis functions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..DPPBO7015B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..DPPBO7015B"><span>Multiple Experimental Platform Consistency at NIF</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benedetti, L. R.; Barrios, M. A.; Bradley, D. K.; Eder, D. C.; Khan, S. F.; Izumi, N.; Jones, O. S.; Ma, T.; Nagel, S. R.; Peterson, J. L.; Rygg, J. R.; Spears, B. K.; Town, R. P.</p> <p>2013-10-01</p> <p>ICF experiments at NIF utilize several platforms to assess different metrics of implosion quality. In addition to the point design-a target capsule of DT ice inside a thin plastic ablator-notable platforms include: (i) Symmetry Capsules(<span class="hlt">Sym</span>Caps), mass-adjusted CH capsules filled with DT gas for similar hydrodynamic performance without the need for a DT crystal; (ii) D:3He filled <span class="hlt">Sym</span>Caps, designed for low neutron yield implosions to accommodate a variety of x-ray and optical diagnostics; and (iii) Convergent Ablators, <span class="hlt">Sym</span>Caps coupled with x-radiography to assess in-flight velocity and symmetry of the implosion over ~1 ns before stagnation and burn. These platforms are expected to be good surrogates for one another, and their hohlraum and implosion performance variations have been simulated in detail. By comparing results of similar experiments, we isolate platform-specific variations. We focus on the symmetry, convergence, and timing of x-ray emission as observed in each platform as this can be used to infer stagnation pressure and temperature. This work performed under the auspices of the U.S. Dept. of Energy by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-640865.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1147172','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1147172"><span>Regulation of spermidine/spermine N1-acetyltransferase in L6 cells by polyamines and related compounds.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Erwin, B G; Pegg, A E</p> <p>1986-01-01</p> <p>Exposure of rat L6 cells in culture to exogenous polyamines led to a very large increase in the activity of spermidine/spermine N1-acetyltransferase. Spermine was more potent than spermidine in bringing about this increase, but in both cases the elevated acetyltransferase activity increased the cellular conversion of spermidine into putrescine. The N1-acetyltransferase turned over very rapidly in the L6 cells, with a half-life of 9 min after spermidine and 18 min after spermine. A wide variety of synthetic polyamine analogues also brought about a substantial induction of spermidine/spermine N1-acetyltransferase activity. These included <span class="hlt">sym</span>-norspermidine, <span class="hlt">sym</span>-norspermine, <span class="hlt">sym</span>-homospermidine, N4-substituted spermidine derivatives, 1,3,6-triaminohexane, 1,4,7-triaminoheptane and deoxyspergualin, which were comparable with spermidine in their potency, and N1N8-bis(ethyl)spermidine, N1N9-bis(ethyl)homospermidine, methylglyoxal bis(guanylhydrazone), ethylglyoxal bis(guanylhydrazone) and 1,1'-[(methylethanediylidene)dinitrilo]bis(3-amino-guanidine ), which were even more active than spermidine. It is suggested that these polyamine analogues may bring about a decrease in cellular polyamines not only by inhibiting biosynthesis but by stimulating the degradation of spermidine into putrescine. PMID:3800951</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930091318','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930091318"><span><span class="hlt">Approximations</span> for column effect in airplane wing spars</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Warner, Edward P; Short, Mac</p> <p>1927-01-01</p> <p>The significance attaching to "column effect" in airplane wing spars has been increasingly realized with the passage of time, but exact computations of the corrections to bending moment curves resulting from the existence of end loads are frequently omitted because of the additional labor involved in an analysis by rigorously correct methods. The present report represents an attempt to provide for <span class="hlt">approximate</span> column effect corrections that can be graphically or otherwise expressed so as to be applied with a minimum of labor. Curves are plotted giving <span class="hlt">approximate</span> values of the correction factors for single and two bay trusses of varying proportions and with various relationships between axial and lateral loads. It is further shown from an analysis of those curves that rough but useful <span class="hlt">approximations</span> can be obtained from Perry's formula for corrected bending moment, with the assumed distance between points of inflection arbitrarily modified in accordance with rules given in the report. The discussion of general rules of variation of bending stress with axial load is accompanied by a study of the best distribution of the points of support along a spar for various conditions of loading.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD0704567','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD0704567"><span>FINITE-STATE <span class="hlt">APPROXIMATIONS</span> TO DENUMERABLE-STATE DYNAMIC PROGRAMS,</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p></p> <p>AIR FORCE OPERATIONS, LOGISTICS), (*INVENTORY CONTROL, DYNAMIC PROGRAMMING), (*DYNAMIC PROGRAMMING, <span class="hlt">APPROXIMATION</span>(MATHEMATICS)), INVENTORY CONTROL, DECISION MAKING, STOCHASTIC PROCESSES, GAME THEORY, ALGORITHMS, CONVERGENCE</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001PhLA..283...62B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001PhLA..283...62B"><span>Classical analogous of quantum cosmological perfect fluid models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Batista, A. B.; Fabris, J. C.; Gonçalves, S. V. B.; Tossa, J.</p> <p>2001-05-01</p> <p>Quantization in the <span class="hlt">minisuperspace</span> of a gravity system coupled to a perfect fluid, leads to a solvable model which implies singularity free solutions through the construction of a superposition of the wavefunctions. We show that such models are equivalent to a classical system where, besides the perfect fluid, a repulsive fluid with an equation of state pQ= ρQ is present. This leads to speculate on the true nature of this quantization procedure. A perturbative analysis of the classical system reveals the condition for the stability of the classical system in terms of the existence of an anti-gravity phase.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001SPIE.4320..339C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001SPIE.4320..339C"><span>Analytical <span class="hlt">approximations</span> to the Hotelling trace for digital x-ray detectors</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clarkson, Eric; Pineda, Angel R.; Barrett, Harrison H.</p> <p>2001-06-01</p> <p>The Hotelling trace is the signal-to-noise ratio for the ideal linear observer in a detection task. We provide an analytical <span class="hlt">approximation</span> for this figure of merit when the signal is known exactly and the background is generated by a stationary random process, and the imaging system is an ideal digital x-ray detector. This <span class="hlt">approximation</span> is based on assuming that the detector is infinite in extent. We test this <span class="hlt">approximation</span> for finite-size detectors by comparing it to exact calculations using matrix inversion of the data covariance matrix. After verifying the validity of the <span class="hlt">approximation</span> under a variety of circumstances, we use it to generate plots of the Hotelling trace as a function of pairs of parameters of the system, the signal and the background.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=348350','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=348350"><span><span class="hlt">Approximating</span> genomic reliabilities for national genomic evaluation</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>With the introduction of standard methods for <span class="hlt">approximating</span> effective daughter/data contribution by Interbull in 2001, conventional EDC or reliabilities contributed by daughter phenotypes are directly comparable across countries and used in routine conventional evaluations. In order to make publishe...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820021683','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820021683"><span>Burgers <span class="hlt">approximation</span> for two-dimensional flow past an ellipse</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dorrepaal, J. M.</p> <p>1982-01-01</p> <p>A linearization of the Navier-Stokes equation due to Burgers in which vorticity is transported by the velocity field corresponding to continuous potential flow is examined. The governing equations are solved exactly for the two dimensional steady flow past an ellipse of arbitrary aspect ratio. The requirement of no slip along the surface of the ellipse results in an infinite algebraic system of linear equations for coefficients appearing in the solution. The system is truncated at a point which gives reliable results for Reynolds numbers R in the range 0 R 5. Predictions of the Burgers <span class="hlt">approximation</span> regarding separation, drag and boundary layer behavior are investigated. In particular, Burgers linearization gives drag coefficients which are closer to observed experimental values than those obtained from Oseen's <span class="hlt">approximation</span>. In the special case of flow past a circular cylinder, Burgers <span class="hlt">approximation</span> predicts a boundary layer whose thickness is roughly proportional to R-1/2.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26580039','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26580039"><span>Correlation Energies from the Two-Component Random Phase <span class="hlt">Approximation</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kühn, Michael</p> <p>2014-02-11</p> <p>The correlation energy within the two-component random phase <span class="hlt">approximation</span> accounting for spin-orbit effects is derived. The resulting plasmon equation is rewritten-analogously to the scalar relativistic case-in terms of the trace of two Hermitian matrices for (Kramers-restricted) closed-shell systems and then represented as an integral over imaginary frequency using the resolution of the identity <span class="hlt">approximation</span>. The final expression is implemented in the TURBOMOLE program suite. The code is applied to the computation of equilibrium distances and vibrational frequencies of heavy diatomic molecules. The efficiency is demonstrated by calculation of the relative energies of the Oh-, D4h-, and C5v-symmetric isomers of Pb6. Results within the random phase <span class="hlt">approximation</span> are obtained based on two-component Kohn-Sham reference-state calculations, using effective-core potentials. These values are finally compared to other two-component and scalar relativistic methods, as well as experimental data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=electroquimica+AND+en+AND+baterias+AND+libros%7d&id=EJ1060255','ERIC'); return false;" href="https://eric.ed.gov/?q=electroquimica+AND+en+AND+baterias+AND+libros%7d&id=EJ1060255"><span>The Role of Intuitive <span class="hlt">Approximation</span> Skills for School Math Abilities</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Libertus, Melissa E.</p> <p>2015-01-01</p> <p>Research has shown that educated children and adults have access to two ways of representing numerical information: an <span class="hlt">approximate</span> number system (ANS) that is present from birth and allows for quick <span class="hlt">approximations</span> of numbers of objects encountered in one's environment, and an exact number system (ENS) that is acquired through experience and…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EPJWC.17508021A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EPJWC.17508021A"><span>Two-dimensional N = 2 Super-Yang-Mills Theory</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>August, Daniel; Wellegehausen, Björn; Wipf, Andreas</p> <p>2018-03-01</p> <p>Supersymmetry is one of the possible scenarios for physics beyond the standard model. The building blocks of this scenario are supersymmetric gauge theories. In our work we study the N = 1 Super-Yang-Mills (<span class="hlt">SYM</span>) theory with gauge group SU(2) dimensionally reduced to two-dimensional N = 2 <span class="hlt">SYM</span> theory. In our lattice formulation we break supersymmetry and chiral symmetry explicitly while preserving R symmetry. By fine tuning the bar-mass of the fermions in the Lagrangian we construct a supersymmetric continuum theory. To this aim we carefully investigate mass spectra and Ward identities, which both show a clear signal of supersymmetry restoration in the continuum limit.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10648E..0CC','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10648E..0CC"><span>Series <span class="hlt">approximation</span> to probability densities</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cohen, L.</p> <p>2018-04-01</p> <p>One of the historical and fundamental uses of the Edgeworth and Gram-Charlier series is to "correct" a Gaussian density when it is determined that the probability density under consideration has moments that do not correspond to the Gaussian [5, 6]. There is a fundamental difficulty with these methods in that if the series are truncated, then the resulting <span class="hlt">approximate</span> density is not manifestly positive. The aim of this paper is to attempt to expand a probability density so that if it is truncated it will still be manifestly positive.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyE..100...24W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyE..100...24W"><span><span class="hlt">Approximate</span> solutions to Mathieu's equation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilkinson, Samuel A.; Vogt, Nicolas; Golubev, Dmitry S.; Cole, Jared H.</p> <p>2018-06-01</p> <p>Mathieu's equation has many applications throughout theoretical physics. It is especially important to the theory of Josephson junctions, where it is equivalent to Schrödinger's equation. Mathieu's equation can be easily solved numerically, however there exists no closed-form analytic solution. Here we collect various <span class="hlt">approximations</span> which appear throughout the physics and mathematics literature and examine their accuracy and regimes of applicability. Particular attention is paid to quantities relevant to the physics of Josephson junctions, but the arguments and notation are kept general so as to be of use to the broader physics community.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/677169','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/677169"><span>Towards syntactic characterizations of <span class="hlt">approximation</span> schemes via predicate and graph decompositions</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hunt, H.B. III; Stearns, R.E.; Jacob, R.</p> <p>1998-12-01</p> <p>The authors present a simple extensible theoretical framework for devising polynomial time <span class="hlt">approximation</span> schemes for problems represented using natural syntactic (algebraic) specifications endowed with natural graph theoretic restrictions on input instances. Direct application of the technique yields polynomial time <span class="hlt">approximation</span> schemes for all the problems studied in [LT80, NC88, KM96, Ba83, DTS93, HM+94a, HM+94] as well as the first known <span class="hlt">approximation</span> schemes for a number of additional combinatorial problems. One notable aspect of the work is that it provides insights into the structure of the syntactic specifications and the corresponding algorithms considered in [KM96, HM+94]. The understanding allows them tomore » extend the class of syntactic specifications for which generic <span class="hlt">approximation</span> schemes can be developed. The results can be shown to be tight in many cases, i.e. natural extensions of the specifications can be shown to yield non-<span class="hlt">approximable</span> problems. The results provide a non-trivial characterization of a class of problems having a PTAS and extend the earlier work on this topic by [KM96, HM+94].« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhyD..237.3109A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhyD..237.3109A"><span>ɛ-connectedness, finite <span class="hlt">approximations</span>, shape theory and coarse graining in hyperspaces</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alonso-Morón, Manuel; Cuchillo-Ibanez, Eduardo; Luzón, Ana</p> <p>2008-12-01</p> <p>We use upper semifinite hyperspaces of compacta to describe ε-connectedness and to compute homology from finite <span class="hlt">approximations</span>. We find a new connection between ε-connectedness and the so-called Shape Theory. We construct a geodesically complete R-tree, by means of ε-components at different resolutions, whose behavior at infinite captures the topological structure of the space of components of a given compact metric space. We also construct inverse sequences of finite spaces using internal finite <span class="hlt">approximations</span> of compact metric spaces. These sequences can be converted into inverse sequences of polyhedra and simplicial maps by means of what we call the Alexandroff-McCord correspondence. This correspondence allows us to relate upper semifinite hyperspaces of finite <span class="hlt">approximation</span> with the Vietoris-Rips complexes of such <span class="hlt">approximations</span> at different resolutions. Two motivating examples are included in the introduction. We propose this procedure as a different mathematical foundation for problems on data analysis. This process is intrinsically related to the methodology of shape theory. This paper reinforces Robins’s idea of using methods from shape theory to compute homology from finite <span class="hlt">approximations</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/20774799-testing-ginzburg-landau-approximation-three-flavor-crystalline-color-superconductivity','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20774799-testing-ginzburg-landau-approximation-three-flavor-crystalline-color-superconductivity"><span>Testing the Ginzburg-Landau <span class="hlt">approximation</span> for three-flavor crystalline color superconductivity</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mannarelli, Massimo; Sharma, Rishi; Rajagopal, Krishna</p> <p>2006-06-01</p> <p>It is an open challenge to analyze the crystalline color superconducting phases that may arise in cold dense, but not asymptotically dense, three-flavor quark matter. At present the only <span class="hlt">approximation</span> within which it seems possible to compare the free energies of the myriad possible crystal structures is the Ginzburg-Landau <span class="hlt">approximation</span>. Here, we test this <span class="hlt">approximation</span> on a particularly simple 'crystal' structure in which there are only two condensates <us>{approx}{delta}exp(iq{sub 2}{center_dot}r) and <ud>{approx}{delta}exp(iq{sub 3}{center_dot}r) whose position-space dependence is that of two plane waves with wave vectors q{sub 2} and q{sub 3} at arbitrary angles. For this case, we are able tomore » solve the mean-field gap equation without making a Ginzburg-Landau <span class="hlt">approximation</span>. We find that the Ginzburg-Landau <span class="hlt">approximation</span> works in the {delta}{yields}0 limit as expected, find that it correctly predicts that {delta} decreases with increasing angle between q{sub 2} and q{sub 3} meaning that the phase with q{sub 2} parallel q{sub 3} has the lowest free energy, and find that the Ginzburg-Landau <span class="hlt">approximation</span> is conservative in the sense that it underestimates {delta} at all values of the angle between q{sub 2} and q{sub 3}.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040090534','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040090534"><span>A Comparison of <span class="hlt">Approximation</span> Modeling Techniques: Polynomial Versus Interpolating Models</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Giunta, Anthony A.; Watson, Layne T.</p> <p>1998-01-01</p> <p>Two methods of creating <span class="hlt">approximation</span> models are compared through the calculation of the modeling accuracy on test problems involving one, five, and ten independent variables. Here, the test problems are representative of the modeling challenges typically encountered in realistic engineering optimization problems. The first <span class="hlt">approximation</span> model is a quadratic polynomial created using the method of least squares. This type of polynomial model has seen considerable use in recent engineering optimization studies due to its computational simplicity and ease of use. However, quadratic polynomial models may be of limited accuracy when the response data to be modeled have multiple local extrema. The second <span class="hlt">approximation</span> model employs an interpolation scheme known as kriging developed in the fields of spatial statistics and geostatistics. This class of interpolating model has the flexibility to model response data with multiple local extrema. However, this flexibility is obtained at an increase in computational expense and a decrease in ease of use. The intent of this study is to provide an initial exploration of the accuracy and modeling capabilities of these two <span class="hlt">approximation</span> methods.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19970019007&hterms=noncoherent&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dnoncoherent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19970019007&hterms=noncoherent&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dnoncoherent"><span>Partially Coherent Scattering in Stellar Chromospheres. Part 4; Analytic Wing <span class="hlt">Approximations</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gayley, K. G.</p> <p>1993-01-01</p> <p>Simple analytic expressions are derived to understand resonance-line wings in stellar chromospheres and similar astrophysical plasmas. The results are <span class="hlt">approximate</span>, but compare well with accurate numerical simulations. The redistribution is modeled using an extension of the partially coherent scattering <span class="hlt">approximation</span> (PCS) which we term the comoving-frame partially coherent scattering <span class="hlt">approximation</span> (CPCS). The distinction is made here because Doppler diffusion is included in the coherent/noncoherent decomposition, in a form slightly improved from the earlier papers in this series.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MSSP...84....2V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MSSP...84....2V"><span><span class="hlt">Approximate</span> Bayesian Computation by Subset Simulation using hierarchical state-space models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vakilzadeh, Majid K.; Huang, Yong; Beck, James L.; Abrahamsson, Thomas</p> <p>2017-02-01</p> <p>A new multi-level Markov Chain Monte Carlo algorithm for <span class="hlt">Approximate</span> Bayesian Computation, ABC-SubSim, has recently appeared that exploits the Subset Simulation method for efficient rare-event simulation. ABC-SubSim adaptively creates a nested decreasing sequence of data-<span class="hlt">approximating</span> regions in the output space that correspond to increasingly closer <span class="hlt">approximations</span> of the observed output vector in this output space. At each level, multiple samples of the model parameter vector are generated by a component-wise Metropolis algorithm so that the predicted output corresponding to each parameter value falls in the current data-<span class="hlt">approximating</span> region. Theoretically, if continued to the limit, the sequence of data-<span class="hlt">approximating</span> regions would converge on to the observed output vector and the <span class="hlt">approximate</span> posterior distributions, which are conditional on the data-<span class="hlt">approximation</span> region, would become exact, but this is not practically feasible. In this paper we study the performance of the ABC-SubSim algorithm for Bayesian updating of the parameters of dynamical systems using a general hierarchical state-space model. We note that the ABC methodology gives an <span class="hlt">approximate</span> posterior distribution that actually corresponds to an exact posterior where a uniformly distributed combined measurement and modeling error is added. We also note that ABC algorithms have a problem with learning the uncertain error variances in a stochastic state-space model and so we treat them as nuisance parameters and analytically integrate them out of the posterior distribution. In addition, the statistical efficiency of the original ABC-SubSim algorithm is improved by developing a novel strategy to regulate the proposal variance for the component-wise Metropolis algorithm at each level. We demonstrate that Self-regulated ABC-SubSim is well suited for Bayesian system identification by first applying it successfully to model updating of a two degree-of-freedom linear structure for three cases: globally</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880015862','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880015862"><span>Galerkin <span class="hlt">approximation</span> for inverse problems for nonautonomous nonlinear distributed systems</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Banks, H. T.; Reich, Simeon; Rosen, I. G.</p> <p>1988-01-01</p> <p>An abstract framework and convergence theory is developed for Galerkin <span class="hlt">approximation</span> for inverse problems involving the identification of nonautonomous nonlinear distributed parameter systems. A set of relatively easily verified conditions is provided which are sufficient to guarantee the existence of optimal solutions and their <span class="hlt">approximation</span> by a sequence of solutions to a sequence of <span class="hlt">approximating</span> finite dimensional identification problems. The approach is based on the theory of monotone operators in Banach spaces and is applicable to a reasonably broad class of nonlinear distributed systems. Operator theoretic and variational techniques are used to establish a fundamental convergence result. An example involving evolution systems with dynamics described by nonstationary quasilinear elliptic operators along with some applications are presented and discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CG....109...51M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CG....109...51M"><span>Big geo data surface <span class="hlt">approximation</span> using radial basis functions: A comparative study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Majdisova, Zuzana; Skala, Vaclav</p> <p>2017-12-01</p> <p><span class="hlt">Approximation</span> of scattered data is often a task in many engineering problems. The Radial Basis Function (RBF) <span class="hlt">approximation</span> is appropriate for big scattered datasets in n-dimensional space. It is a non-separable <span class="hlt">approximation</span>, as it is based on the distance between two points. This method leads to the solution of an overdetermined linear system of equations. In this paper the RBF <span class="hlt">approximation</span> methods are briefly described, a new approach to the RBF <span class="hlt">approximation</span> of big datasets is presented, and a comparison for different Compactly Supported RBFs (CS-RBFs) is made with respect to the accuracy of the computation. The proposed approach uses symmetry of a matrix, partitioning the matrix into blocks and data structures for storage of the sparse matrix. The experiments are performed for synthetic and real datasets.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870020664','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870020664"><span>UNAERO: A package of FORTRAN subroutines for <span class="hlt">approximating</span> unsteady aerodynamics in the time domain</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dunn, H. J.</p> <p>1985-01-01</p> <p>This report serves as an instruction and maintenance manual for a collection of CDC CYBER FORTRAN IV subroutines for <span class="hlt">approximating</span> the unsteady aerodynamic forces in the time domain. The result is a set of constant-coefficient first-order differential equations that <span class="hlt">approximate</span> the dynamics of the vehicle. Provisions are included for adjusting the number of modes used for calculating the <span class="hlt">approximations</span> so that an accurate <span class="hlt">approximation</span> is generated. The number of data points at different values of reduced frequency can also be varied to adjust the accuracy of the <span class="hlt">approximation</span> over the reduced-frequency range. The denominator coefficients of the <span class="hlt">approximation</span> may be calculated by means of a gradient method or a least-squares <span class="hlt">approximation</span> technique. Both the <span class="hlt">approximation</span> methods use weights on the residual error. A new set of system equations, at a different dynamic pressure, can be generated without the <span class="hlt">approximations</span> being recalculated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1441457-spectral-risk-measures-risk-quadrangle-optimal-approximation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1441457-spectral-risk-measures-risk-quadrangle-optimal-approximation"><span>Spectral risk measures: the risk quadrangle and optimal <span class="hlt">approximation</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kouri, Drew P.</p> <p></p> <p>We develop a general risk quadrangle that gives rise to a large class of spectral risk measures. The statistic of this new risk quadrangle is the average value-at-risk at a specific confidence level. As such, this risk quadrangle generates a continuum of error measures that can be used for superquantile regression. For risk-averse optimization, we introduce an optimal <span class="hlt">approximation</span> of spectral risk measures using quadrature. Lastly, we prove the consistency of this <span class="hlt">approximation</span> and demonstrate our results through numerical examples.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1441457-spectral-risk-measures-risk-quadrangle-optimal-approximation','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1441457-spectral-risk-measures-risk-quadrangle-optimal-approximation"><span>Spectral risk measures: the risk quadrangle and optimal <span class="hlt">approximation</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Kouri, Drew P.</p> <p>2018-05-24</p> <p>We develop a general risk quadrangle that gives rise to a large class of spectral risk measures. The statistic of this new risk quadrangle is the average value-at-risk at a specific confidence level. As such, this risk quadrangle generates a continuum of error measures that can be used for superquantile regression. For risk-averse optimization, we introduce an optimal <span class="hlt">approximation</span> of spectral risk measures using quadrature. Lastly, we prove the consistency of this <span class="hlt">approximation</span> and demonstrate our results through numerical examples.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810002914','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810002914"><span>An analytical technique for <span class="hlt">approximating</span> unsteady aerodynamics in the time domain</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dunn, H. J.</p> <p>1980-01-01</p> <p>An analytical technique is presented for <span class="hlt">approximating</span> unsteady aerodynamic forces in the time domain. The order of elements of a matrix Pade <span class="hlt">approximation</span> was postulated, and the resulting polynomial coefficients were determined through a combination of least squares estimates for the numerator coefficients and a constrained gradient search for the denominator coefficients which insures stable <span class="hlt">approximating</span> functions. The number of differential equations required to represent the aerodynamic forces to a given accuracy tends to be smaller than that employed in certain existing techniques where the denominator coefficients are chosen a priori. Results are shown for an aeroelastic, cantilevered, semispan wing which indicate a good fit to the aerodynamic forces for oscillatory motion can be achieved with a matrix Pade <span class="hlt">approximation</span> having fourth order numerator and second order denominator polynomials.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED107144.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED107144.pdf"><span>Cloze, Discourse, and <span class="hlt">Approximations</span> to English.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Oller, John W., Jr.</p> <p></p> <p>Five orders of <span class="hlt">approximation</span> to normal English prose were constructed; 5th, 10th, 25th, 50th, and 100th plus. Five cloze tests were then constructed by inserting blanks for deleted words in 5 word segments (5th order), 10 word segments (10th), 25 word segments (25th), 50 word segments (50th), and 100 word segments of five different passages of…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IzMat..82..186P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IzMat..82..186P"><span>Certain <span class="hlt">approximation</span> problems for functions on the infinite-dimensional torus: Lipschitz spaces</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Platonov, S. S.</p> <p>2018-02-01</p> <p>We consider some questions about the <span class="hlt">approximation</span> of functions on the infinite-dimensional torus by trigonometric polynomials. Our main results are analogues of the direct and inverse theorems in the classical theory of <span class="hlt">approximation</span> of periodic functions and a description of the Lipschitz spaces on the infinite-dimensional torus in terms of the best <span class="hlt">approximation</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860048060&hterms=formula+one&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dformula%2Bone','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860048060&hterms=formula+one&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dformula%2Bone"><span>An <span class="hlt">approximation</span> formula for a class of fault-tolerant computers</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>White, A. L.</p> <p>1986-01-01</p> <p>An <span class="hlt">approximation</span> formula is derived for the probability of failure for fault-tolerant process-control computers. These computers use redundancy and reconfiguration to achieve high reliability. Finite-state Markov models capture the dynamic behavior of component failure and system recovery, and the <span class="hlt">approximation</span> formula permits an estimation of system reliability by an easy examination of the model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920024698','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920024698"><span>Rational <span class="hlt">approximations</span> from power series of vector-valued meromorphic functions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sidi, Avram</p> <p>1992-01-01</p> <p>Let F(z) be a vector-valued function, F: C yields C(sup N), which is analytic at z = 0 and meromorphic in a neighborhood of z = 0, and let its Maclaurin series be given. In this work we developed vector-valued rational <span class="hlt">approximation</span> procedures for F(z) by applying vector extrapolation methods to the sequence of partial sums of its Maclaurin series. We analyzed some of the algebraic and analytic properties of the rational <span class="hlt">approximations</span> thus obtained, and showed that they were akin to Pade <span class="hlt">approximations</span>. In particular, we proved a Koenig type theorem concerning their poles and a de Montessus type theorem concerning their uniform convergence. We showed how optical <span class="hlt">approximations</span> to multiple poles and to Laurent expansions about these poles can be constructed. Extensions of the procedures above and the accompanying theoretical results to functions defined in arbitrary linear spaces was also considered. One of the most interesting and immediate applications of the results of this work is to the matrix eigenvalue problem. In a forthcoming paper we exploited the developments of the present work to devise bona fide generalizations of the classical power method that are especially suitable for very large and sparse matrices. These generalizations can be used to <span class="hlt">approximate</span> simultaneously several of the largest distinct eigenvalues and corresponding eigenvectors and invariant subspaces of arbitrary matrices which may or may not be diagonalizable, and are very closely related with known Krylov subspace methods.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910027253&hterms=ito&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dito','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910027253&hterms=ito&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dito"><span>Finite-dimensional compensators for infinite-dimensional systems via Galerkin-type <span class="hlt">approximation</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ito, Kazufumi</p> <p>1990-01-01</p> <p>In this paper existence and construction of stabilizing compensators for linear time-invariant systems defined on Hilbert spaces are discussed. An existence result is established using Galkerin-type <span class="hlt">approximations</span> in which independent basis elements are used instead of the complete set of eigenvectors. A design procedure based on <span class="hlt">approximate</span> solutions of the optimal regulator and optimal observer via Galerkin-type <span class="hlt">approximation</span> is given and the Schumacher approach is used to reduce the dimension of compensators. A detailed discussion for parabolic and hereditary differential systems is included.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090041751','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090041751"><span>Quickly <span class="hlt">Approximating</span> the Distance Between Two Objects</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hammen, David</p> <p>2009-01-01</p> <p>A method of quickly <span class="hlt">approximating</span> the distance between two objects (one smaller, regarded as a point; the other larger and complexly shaped) has been devised for use in computationally simulating motions of the objects for the purpose of planning the motions to prevent collisions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5296447-uniform-semiclassical-sudden-approximation-rotationally-inelastic-scattering','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5296447-uniform-semiclassical-sudden-approximation-rotationally-inelastic-scattering"><span>Uniform semiclassical sudden <span class="hlt">approximation</span> for rotationally inelastic scattering</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Korsch, H.J.; Schinke, R.</p> <p>1980-08-01</p> <p>The infinite-order-sudden (IOS) <span class="hlt">approximation</span> is investigated in the semiclassical limit. A simplified IOS formula for rotationally inelastic differential cross sections is derived involving a uniform stationary phase <span class="hlt">approximation</span> for two-dimensional oscillatory integrals with two stationary points. The semiclassical analysis provides a quantitative description of the rotational rainbow structure in the differential cross section. The numerical calculation of semiclassical IOS cross sections is extremely fast compared to numerically exact IOS methods, especially if high ..delta..j transitions are involved. Rigid rotor results for He--Na/sub 2/ collisions with ..delta..j< or approx. =26 and for K--CO collisions with ..delta..j< or approx. =70 show satisfactorymore » agreement with quantal IOS calculations.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27785559','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27785559"><span>Estimation of under-reporting in epidemics using <span class="hlt">approximations</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gamado, Kokouvi; Streftaris, George; Zachary, Stan</p> <p>2017-06-01</p> <p>Under-reporting in epidemics, when it is ignored, leads to under-estimation of the infection rate and therefore of the reproduction number. In the case of stochastic models with temporal data, a usual approach for dealing with such issues is to apply data augmentation techniques through Bayesian methodology. Departing from earlier literature approaches implemented using reversible jump Markov chain Monte Carlo (RJMCMC) techniques, we make use of <span class="hlt">approximations</span> to obtain faster estimation with simple MCMC. Comparisons among the methods developed here, and with the RJMCMC approach, are carried out and highlight that <span class="hlt">approximation</span>-based methodology offers useful alternative inference tools for large epidemics, with a good trade-off between time cost and accuracy.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT........16N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT........16N"><span>Visualizing, <span class="hlt">Approximating</span>, and Understanding Black-Hole Binaries</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nichols, David A.</p> <p></p> <p>Numerical-relativity simulations of black-hole binaries and advancements in gravitational-wave detectors now make it possible to learn more about the collisions of compact astrophysical bodies. To be able to infer more about the dynamical behavior of these objects requires a fuller analysis of the connection between the dynamics of pairs of black holes and their emitted gravitational waves. The chapters of this thesis describe three approaches to learn more about the relationship between the dynamics of black-hole binaries and their gravitational waves: modeling momentum flow in binaries with the Landau-Lifshitz formalism, <span class="hlt">approximating</span> binary dynamics near the time of merger with post-Newtonian and black-hole-perturbation theories, and visualizing spacetime curvature with tidal tendexes and frame-drag vortexes. In Chapters 2--4, my collaborators and I present a method to quantify the flow of momentum in black-hole binaries using the Landau-Lifshitz formalism. Chapter 2 reviews an intuitive version of the formalism in the first-post-Newtonian <span class="hlt">approximation</span> that bears a strong resemblance to Maxwell's theory of electromagnetism. Chapter 3 applies this <span class="hlt">approximation</span> to relate the simultaneous bobbing motion of rotating black holes in the superkick configuration---equal-mass black holes with their spins anti-aligned and in the orbital plane---to the flow of momentum in the spacetime, prior to the black holes' merger. Chapter 4 then uses the Landau-Lifshitz formalism to explain the dynamics of a head-on merger of spinning black holes, whose spins are anti-aligned and transverse to the infalling motion. Before they merge, the black holes move with a large, transverse, velocity, which we can explain using the post-Newtonian <span class="hlt">approximation</span>; as the holes merge and form a single black hole, we can use the Landau-Lifshitz formalism without any <span class="hlt">approximations</span> to connect the slowing of the final black hole to its absorbing momentum density during the merger. In Chapters 5</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1880f0006I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1880f0006I"><span><span class="hlt">Approximate</span> formulas for elasticity of the Tornquist functions and some their advantages</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Issin, Meyram</p> <p>2017-09-01</p> <p>In this article functions of demand for prime necessity, second necessity and luxury goods depending on the income are considered. These functions are called Tornquist functions. By means of the return model the demand for prime necessity goods and second necessity goods are <span class="hlt">approximately</span> described. Then on the basis of a method of the smallest squares <span class="hlt">approximate</span> formulas for elasticity of these Tornquist functions are received. To receive an <span class="hlt">approximate</span> formula for elasticity of function of demand for luxury goods, the linear asymptotic formula is constructed for this function. Some benefits of <span class="hlt">approximate</span> formulas for elasticity of Tornquist functions are specified.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4490033','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4490033"><span><span class="hlt">Approximating</span> a DSM-5 Diagnosis of PTSD Using DSM-IV Criteria</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rosellini, Anthony J.; Stein, Murray B.; Colpe, Lisa J.; Heeringa, Steven G.; Petukhova, Maria V.; Sampson, Nancy A.; Schoenbaum, Michael; Ursano, Robert J.; Kessler, Ronald C.</p> <p>2015-01-01</p> <p>Background Diagnostic criteria for DSM-5 posttraumatic stress disorder (PTSD) are in many ways similar to DSM-IV criteria, raising the possibility that it might be possible to closely <span class="hlt">approximate</span> DSM-5 diagnoses using DSM-IV symptoms. If so, the resulting transformation rules could be used to pool research data based on the two criteria sets. Methods The Pre-Post Deployment Study (PPDS) of the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS) administered a blended 30-day DSM-IV and DSM-5 PTSD symptom assessment based on the civilian PTSD Checklist for DSM-IV (PCL-C) and the PTSD Checklist for DSM-5 (PCL-5). This assessment was completed by 9,193 soldiers from three US Army Brigade Combat Teams <span class="hlt">approximately</span> three months after returning from Afghanistan. PCL-C items were used to operationalize conservative and broad <span class="hlt">approximations</span> of DSM-5 PTSD diagnoses. The operating characteristics of these <span class="hlt">approximations</span> were examined compared to diagnoses based on actual DSM-5 criteria. Results The estimated 30-day prevalence of DSM-5 PTSD based on conservative (4.3%) and broad (4.7%) <span class="hlt">approximations</span> of DSM-5 criteria using DSM-IV symptom assessments were similar to estimates based on actual DSM-5 criteria (4.6%). Both <span class="hlt">approximations</span> had excellent sensitivity (92.6-95.5%), specificity (99.6-99.9%), total classification accuracy (99.4-99.6%), and area under the receiver operating characteristic curve (0.96-0.98). Conclusions DSM-IV symptoms can be used to <span class="hlt">approximate</span> DSM-5 diagnoses of PTSD among recently-deployed soldiers, making it possible to recode symptom-level data from earlier DSM-IV studies to draw inferences about DSM-5 PTSD. However, replication is needed in broader trauma-exposed samples to evaluate the external validity of this finding. PMID:25845710</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27704592','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27704592"><span>Guidelines for Use of the <span class="hlt">Approximate</span> Beta-Poisson Dose-Response Model.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xie, Gang; Roiko, Anne; Stratton, Helen; Lemckert, Charles; Dunn, Peter K; Mengersen, Kerrie</p> <p>2017-07-01</p> <p>For dose-response analysis in quantitative microbial risk assessment (QMRA), the exact beta-Poisson model is a two-parameter mechanistic dose-response model with parameters α>0 and β>0, which involves the Kummer confluent hypergeometric function. Evaluation of a hypergeometric function is a computational challenge. Denoting PI(d) as the probability of infection at a given mean dose d, the widely used dose-response model PI(d)=1-(1+dβ)-α is an <span class="hlt">approximate</span> formula for the exact beta-Poisson model. Notwithstanding the required conditions α<β and β>1, issues related to the validity and <span class="hlt">approximation</span> accuracy of this <span class="hlt">approximate</span> formula have remained largely ignored in practice, partly because these conditions are too general to provide clear guidance. Consequently, this study proposes a probability measure Pr(0 < r < 1 | α̂, β̂) as a validity measure (r is a random variable that follows a gamma distribution; α̂ and β̂ are the maximum likelihood estimates of α and β in the <span class="hlt">approximate</span> model); and the constraint conditions β̂>(22α̂)0.50 for 0.02<α̂<2 as a rule of thumb to ensure an accurate <span class="hlt">approximation</span> (e.g., Pr(0 < r < 1 | α̂, β̂) >0.99) . This validity measure and rule of thumb were validated by application to all the completed beta-Poisson models (related to 85 data sets) from the QMRA community portal (QMRA Wiki). The results showed that the higher the probability Pr(0 < r < 1 | α̂, β̂), the better the <span class="hlt">approximation</span>. The results further showed that, among the total 85 models examined, 68 models were identified as valid <span class="hlt">approximate</span> model applications, which all had a near perfect match to the corresponding exact beta-Poisson model dose-response curve. © 2016 Society for Risk Analysis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050207392&hterms=ab-initio&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dab-initio','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050207392&hterms=ab-initio&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dab-initio"><span>Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum <span class="hlt">Approximate</span> Calculations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Good, Brian S.</p> <p>2003-01-01</p> <p>We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum <span class="hlt">approximate</span> energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum <span class="hlt">approximate</span> results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum <span class="hlt">approximate</span> segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum <span class="hlt">approximate</span> calculations are used in selected cases to compute <span class="hlt">approximate</span> relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum <span class="hlt">approximate</span> and ab initio theoretical work, and available experimental results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770021819&hterms=rational+better&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Drational%2Bbetter','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770021819&hterms=rational+better&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Drational%2Bbetter"><span>Rational <span class="hlt">approximation</span> to e to the -x power with negative poles</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cuthill, E.</p> <p>1977-01-01</p> <p>MACSYMA was applied to the generation of an expansion in terms of Laguerre polynomials to obtain <span class="hlt">approximations</span> to e to the -x power on 0, infinity. These <span class="hlt">approximations</span> are compared with those developed by Saff, Schonhage, and Varga.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25450112','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25450112"><span>Formal properties of the probability of fixation: identities, inequalities and <span class="hlt">approximations</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McCandlish, David M; Epstein, Charles L; Plotkin, Joshua B</p> <p>2015-02-01</p> <p>The formula for the probability of fixation of a new mutation is widely used in theoretical population genetics and molecular evolution. Here we derive a series of identities, inequalities and <span class="hlt">approximations</span> for the exact probability of fixation of a new mutation under the Moran process (equivalent results hold for the <span class="hlt">approximate</span> probability of fixation under the Wright-Fisher process, after an appropriate change of variables). We show that the logarithm of the fixation probability has particularly simple behavior when the selection coefficient is measured as a difference of Malthusian fitnesses, and we exploit this simplicity to derive inequalities and <span class="hlt">approximations</span>. We also present a comprehensive comparison of both existing and new <span class="hlt">approximations</span> for the fixation probability, highlighting those <span class="hlt">approximations</span> that induce a reversible Markov chain when used to describe the dynamics of evolution under weak mutation. To demonstrate the power of these results, we consider the classical problem of determining the total substitution rate across an ensemble of biallelic loci and prove that, at equilibrium, a strict majority of substitutions are due to drift rather than selection. Copyright © 2014 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ZNatA..72..673W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ZNatA..72..673W"><span>Highly Accurate Analytical <span class="hlt">Approximate</span> Solution to a Nonlinear Pseudo-Oscillator</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Baisheng; Liu, Weijia; Lim, C. W.</p> <p>2017-07-01</p> <p>A second-order Newton method is presented to construct analytical <span class="hlt">approximate</span> solutions to a nonlinear pseudo-oscillator in which the restoring force is inversely proportional to the dependent variable. The nonlinear equation is first expressed in a specific form, and it is then solved in two steps, a predictor and a corrector step. In each step, the harmonic balance method is used in an appropriate manner to obtain a set of linear algebraic equations. With only one simple second-order Newton iteration step, a short, explicit, and highly accurate analytical <span class="hlt">approximate</span> solution can be derived. The <span class="hlt">approximate</span> solutions are valid for all amplitudes of the pseudo-oscillator. Furthermore, the method incorporates second-order Taylor expansion in a natural way, and it is of significant faster convergence rate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ascl.soft05016E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ascl.soft05016E"><span>zeldovich-PLT: Zel'dovich <span class="hlt">approximation</span> initial conditions generator</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eisenstein, Daniel; Garrison, Lehman</p> <p>2016-05-01</p> <p>zeldovich-PLT generates Zel'dovich <span class="hlt">approximation</span> (ZA) initial conditions (i.e. first-order Lagrangian perturbation theory) for cosmological N-body simulations, optionally applying particle linear theory (PLT) corrections.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760012070','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760012070"><span>The Investigation of Optimal Discrete <span class="hlt">Approximations</span> for Real Time Flight Simulations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parrish, E. A.; Mcvey, E. S.; Cook, G.; Henderson, K. C.</p> <p>1976-01-01</p> <p>The results are presented of an investigation of discrete <span class="hlt">approximations</span> for real time flight simulation. Major topics discussed include: (1) consideration of the particular problem of <span class="hlt">approximation</span> of continuous autopilots by digital autopilots; (2) use of Bode plots and synthesis of transfer functions by asymptotic fits in a warped frequency domain; (3) an investigation of the various substitution formulas, including the effects of nonlinearities; (4) use of pade <span class="hlt">approximation</span> to the solution of the matrix exponential arising from the discrete state equations; and (5) an analytical integration of the state equation using interpolated input.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JCoAM.189..494S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JCoAM.189..494S"><span>Capturing planar shapes by <span class="hlt">approximating</span> their outlines</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sarfraz, M.; Riyazuddin, M.; Baig, M. H.</p> <p>2006-05-01</p> <p>A non-deterministic evolutionary approach for <span class="hlt">approximating</span> the outlines of planar shapes has been developed. Non-uniform Rational B-splines (NURBS) have been utilized as an underlying <span class="hlt">approximation</span> curve scheme. Simulated Annealing heuristic is used as an evolutionary methodology. In addition to independent studies of the optimization of weight and knot parameters of the NURBS, a separate scheme has also been developed for the optimization of weights and knots simultaneously. The optimized NURBS models have been fitted over the contour data of the planar shapes for the ultimate and automatic output. The output results are visually pleasing with respect to the threshold provided by the user. A web-based system has also been developed for the effective and worldwide utilization. The objective of this system is to provide the facility to visualize the output to the whole world through internet by providing the freedom to the user for various desired input parameters setting in the algorithm designed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPhCS.699a2017O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPhCS.699a2017O"><span>Sparse <span class="hlt">approximation</span> problem: how rapid simulated annealing succeeds and fails</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Obuchi, Tomoyuki; Kabashima, Yoshiyuki</p> <p>2016-03-01</p> <p>Information processing techniques based on sparseness have been actively studied in several disciplines. Among them, a mathematical framework to <span class="hlt">approximately</span> express a given dataset by a combination of a small number of basis vectors of an overcomplete basis is termed the sparse <span class="hlt">approximation</span>. In this paper, we apply simulated annealing, a metaheuristic algorithm for general optimization problems, to sparse <span class="hlt">approximation</span> in the situation where the given data have a planted sparse representation and noise is present. The result in the noiseless case shows that our simulated annealing works well in a reasonable parameter region: the planted solution is found fairly rapidly. This is true even in the case where a common relaxation of the sparse <span class="hlt">approximation</span> problem, the G-relaxation, is ineffective. On the other hand, when the dimensionality of the data is close to the number of non-zero components, another metastable state emerges, and our algorithm fails to find the planted solution. This phenomenon is associated with a first-order phase transition. In the case of very strong noise, it is no longer meaningful to search for the planted solution. In this situation, our algorithm determines a solution with close-to-minimum distortion fairly quickly.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JHyd..523..278B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JHyd..523..278B"><span><span class="hlt">Approximation</span> of the exponential integral (well function) using sampling methods</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baalousha, Husam Musa</p> <p>2015-04-01</p> <p>Exponential integral (also known as well function) is often used in hydrogeology to solve Theis and Hantush equations. Many methods have been developed to <span class="hlt">approximate</span> the exponential integral. Most of these methods are based on numerical <span class="hlt">approximations</span> and are valid for a certain range of the argument value. This paper presents a new approach to <span class="hlt">approximate</span> the exponential integral. The new approach is based on sampling methods. Three different sampling methods; Latin Hypercube Sampling (LHS), Orthogonal Array (OA), and Orthogonal Array-based Latin Hypercube (OA-LH) have been used to <span class="hlt">approximate</span> the function. Different argument values, covering a wide range, have been used. The results of sampling methods were compared with results obtained by Mathematica software, which was used as a benchmark. All three sampling methods converge to the result obtained by Mathematica, at different rates. It was found that the orthogonal array (OA) method has the fastest convergence rate compared with LHS and OA-LH. The root mean square error RMSE of OA was in the order of 1E-08. This method can be used with any argument value, and can be used to solve other integrals in hydrogeology such as the leaky aquifer integral.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/15004305','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/15004305"><span>Compressibility Corrections to Closure <span class="hlt">Approximations</span> for Turbulent Flow Simulations</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cloutman, L D</p> <p>2003-02-01</p> <p>We summarize some modifications to the usual closure <span class="hlt">approximations</span> for statistical models of turbulence that are necessary for use with compressible fluids at all Mach numbers. We concentrate here on the gradient-flu <span class="hlt">approximation</span> for the turbulent heat flux, on the buoyancy production of turbulence kinetic energy, and on a modification of the Smagorinsky model to include buoyancy. In all cases, there are pressure gradient terms that do not appear in the incompressible models and are usually omitted in compressible-flow models. Omission of these terms allows unphysical rates of entropy change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950018436','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950018436"><span>Exponentially accurate <span class="hlt">approximations</span> to piece-wise smooth periodic functions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Greer, James; Banerjee, Saheb</p> <p>1995-01-01</p> <p>A family of simple, periodic basis functions with 'built-in' discontinuities are introduced, and their properties are analyzed and discussed. Some of their potential usefulness is illustrated in conjunction with the Fourier series representations of functions with discontinuities. In particular, it is demonstrated how they can be used to construct a sequence of <span class="hlt">approximations</span> which converges exponentially in the maximum norm to a piece-wise smooth function. The theory is illustrated with several examples and the results are discussed in the context of other sequences of functions which can be used to <span class="hlt">approximate</span> discontinuous functions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880031324&hterms=equations+quadratics&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dequations%2Bquadratics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880031324&hterms=equations+quadratics&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dequations%2Bquadratics"><span>Legendre-tau <span class="hlt">approximation</span> for functional differential equations. II - The linear quadratic optimal control problem</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ito, Kazufumi; Teglas, Russell</p> <p>1987-01-01</p> <p>The numerical scheme based on the Legendre-tau <span class="hlt">approximation</span> is proposed to <span class="hlt">approximate</span> the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good <span class="hlt">approximations</span> at low orders and provides an <span class="hlt">approximation</span> technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline <span class="hlt">approximations</span>) is made.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760013825','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760013825"><span>Multidimensional stochastic <span class="hlt">approximation</span> using locally contractive functions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lawton, W. M.</p> <p>1975-01-01</p> <p>A Robbins-Monro type multidimensional stochastic <span class="hlt">approximation</span> algorithm which converges in mean square and with probability one to the fixed point of a locally contractive regression function is developed. The algorithm is applied to obtain maximum likelihood estimates of the parameters for a mixture of multivariate normal distributions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/32874','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/32874"><span>Variance <span class="hlt">approximations</span> for assessments of classification accuracy</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>R. L. Czaplewski</p> <p>1994-01-01</p> <p>Variance <span class="hlt">approximations</span> are derived for the weighted and unweighted kappa statistics, the conditional kappa statistic, and conditional probabilities. These statistics are useful to assess classification accuracy, such as accuracy of remotely sensed classifications in thematic maps when compared to a sample of reference classifications made in the field. Published...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810004009','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810004009"><span>Contextual classification of multispectral image data: <span class="hlt">Approximate</span> algorithm</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tilton, J. C. (Principal Investigator)</p> <p>1980-01-01</p> <p>An <span class="hlt">approximation</span> to a classification algorithm incorporating spatial context information in a general, statistical manner is presented which is computationally less intensive. Classifications that are nearly as accurate are produced.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca2805.photos.377499p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca2805.photos.377499p/"><span>Interior, building 810, view to west from <span class="hlt">approximately</span> midhangar. Area ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>Interior, building 810, view to west from <span class="hlt">approximately</span> mid-hangar. Area of photo encompasses <span class="hlt">approximately</span> 1/4 of the interior space, with the KC-10 tanker aircraft and the figures beneath it giving an idea of scale, 90mm lens plus electronic flash fill lightening. - Travis Air Force Base, B-36 Hangar, Between Woodskill Avenue & Ellis, adjacent to Taxiway V & W, Fairfield, Solano County, CA</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR34B..08B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR34B..08B"><span>The Linear Mixing <span class="hlt">Approximation</span> for Planetary Ices</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bethkenhagen, M.; Meyer, E. R.; Hamel, S.; Nettelmann, N.; French, M.; Scheibe, L.; Ticknor, C.; Collins, L. A.; Kress, J. D.; Fortney, J. J.; Redmer, R.</p> <p>2017-12-01</p> <p>We investigate the validity of the widely used linear mixing <span class="hlt">approximation</span> for the equations of state (EOS) of planetary ices, which are thought to dominate the interior of the ice giant planets Uranus and Neptune. For that purpose we perform density functional theory molecular dynamics simulations using the VASP code.[1] In particular, we compute 1:1 binary mixtures of water, ammonia, and methane, as well as their 2:1:4 ternary mixture at pressure-temperature conditions typical for the interior of Uranus and Neptune.[2,3] In addition, a new ab initio EOS for methane is presented. The linear mixing <span class="hlt">approximation</span> is verified for the conditions present inside Uranus ranging up to 10 Mbar based on the comprehensive EOS data set. We also calculate the diffusion coefficients for the ternary mixture along different Uranus interior profiles and compare them to the values of the pure compounds. We find that deviations of the linear mixing <span class="hlt">approximation</span> from the real mixture are generally small; for the EOS they fall within about 4% uncertainty while the diffusion coefficients deviate up to 20% . The EOS of planetary ices are applied to adiabatic models of Uranus. It turns out that a deep interior of almost pure ices is consistent with the gravity field data, in which case the planet becomes rather cold (T core ˜ 4000 K). [1] G. Kresse and J. Hafner, Physical Review B 47, 558 (1993). [2] R. Redmer, T.R. Mattsson, N. Nettelmann and M. French, Icarus 211, 798 (2011). [3] N. Nettelmann, K. Wang, J. J. Fortney, S. Hamel, S. Yellamilli, M. Bethkenhagen and R. Redmer, Icarus 275, 107 (2016).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120003924','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120003924"><span>On the Accuracy of Double Scattering <span class="hlt">Approximation</span> for Atmospheric Polarization Computations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Korkin, Sergey V.; Lyapustin, Alexei I.; Marshak, Alexander L.</p> <p>2011-01-01</p> <p>Interpretation of multi-angle spectro-polarimetric data in remote sensing of atmospheric aerosols require fast and accurate methods of solving the vector radiative transfer equation (VRTE). The single and double scattering <span class="hlt">approximations</span> could provide an analytical framework for the inversion algorithms and are relatively fast, however accuracy assessments of these <span class="hlt">approximations</span> for the aerosol atmospheres in the atmospheric window channels have been missing. This paper provides such analysis for a vertically homogeneous aerosol atmosphere with weak and strong asymmetry of scattering. In both cases, the double scattering <span class="hlt">approximation</span> gives a high accuracy result (relative error <span class="hlt">approximately</span> 0.2%) only for the low optical path - 10(sup -2) As the error rapidly grows with optical thickness, a full VRTE solution is required for the practical remote sensing analysis. It is shown that the scattering anisotropy is not important at low optical thicknesses neither for reflected nor for transmitted polarization components of radiation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030067936','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030067936"><span>An <span class="hlt">Approximate</span> Dissipation Function for Large Strain Rubber Thermo-Mechanical Analyses</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Johnson, Arthur R.; Chen, Tzi-Kang</p> <p>2003-01-01</p> <p>Mechanically induced viscoelastic dissipation is difficult to compute. When the constitutive model is defined by history integrals, the formula for dissipation is a double convolution integral. Since double convolution integrals are difficult to <span class="hlt">approximate</span>, coupled thermo-mechanical analyses of highly viscous rubber-like materials cannot be made with most commercial finite element software. In this study, we present a method to <span class="hlt">approximate</span> the dissipation for history integral constitutive models that represent Maxwell-like materials without <span class="hlt">approximating</span> the double convolution integral. The method requires that the total stress can be separated into elastic and viscous components, and that the relaxation form of the constitutive law is defined with a Prony series. Numerical data is provided to demonstrate the limitations of this <span class="hlt">approximate</span> method for determining dissipation. Rubber cylinders with imbedded steel disks and with an imbedded steel ball are dynamically loaded, and the nonuniform heating within the cylinders is computed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JCAP...10..022M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JCAP...10..022M"><span><span class="hlt">Approximating</span> tunneling rates in multi-dimensional field spaces</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Masoumi, Ali; Olum, Ken D.; Wachter, Jeremy M.</p> <p>2017-10-01</p> <p>Quantum mechanics makes the otherwise stable vacua of a theory metastable through the nucleation of bubbles of the new vacuum. This in turn causes a first order phase transition. These cosmological phase transitions may have played an important role in settling our universe into its current vacuum, and they may also happen in future. The most important frameworks where vacuum decay happens contain a large number of fields. Unfortunately, calculating the tunneling rates in these models is very time-consuming. In this paper we present a simple <span class="hlt">approximation</span> for the tunneling rate by reducing it to a one-field problem which is easy to calculate. We demonstrate the validity of this <span class="hlt">approximation</span> using our recent code "Anybubble" for several classes of potentials.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22667643-approximating-tunneling-rates-multi-dimensional-field-spaces','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22667643-approximating-tunneling-rates-multi-dimensional-field-spaces"><span><span class="hlt">Approximating</span> tunneling rates in multi-dimensional field spaces</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Masoumi, Ali; Olum, Ken D.; Wachter, Jeremy M., E-mail: ali@cosmos.phy.tufts.edu, E-mail: kdo@cosmos.phy.tufts.edu, E-mail: Jeremy.Wachter@tufts.edu</p> <p></p> <p>Quantum mechanics makes the otherwise stable vacua of a theory metastable through the nucleation of bubbles of the new vacuum. This in turn causes a first order phase transition. These cosmological phase transitions may have played an important role in settling our universe into its current vacuum, and they may also happen in future. The most important frameworks where vacuum decay happens contain a large number of fields. Unfortunately, calculating the tunneling rates in these models is very time-consuming. In this paper we present a simple <span class="hlt">approximation</span> for the tunneling rate by reducing it to a one-field problem which ismore » easy to calculate. We demonstrate the validity of this <span class="hlt">approximation</span> using our recent code 'Anybubble' for several classes of potentials.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010LNCS.6508..309C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010LNCS.6508..309C"><span><span class="hlt">Approximating</span> Multilinear Monomial Coefficients and Maximum Multilinear Monomials in Multivariate Polynomials</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Zhixiang; Fu, Bin</p> <p></p> <p>This paper is our third step towards developing a theory of testing monomials in multivariate polynomials and concentrates on two problems: (1) How to compute the coefficients of multilinear monomials; and (2) how to find a maximum multilinear monomial when the input is a ΠΣΠ polynomial. We first prove that the first problem is #P-hard and then devise a O *(3 n s(n)) upper bound for this problem for any polynomial represented by an arithmetic circuit of size s(n). Later, this upper bound is improved to O *(2 n ) for ΠΣΠ polynomials. We then design fully polynomial-time randomized <span class="hlt">approximation</span> schemes for this problem for ΠΣ polynomials. On the negative side, we prove that, even for ΠΣΠ polynomials with terms of degree ≤ 2, the first problem cannot be <span class="hlt">approximated</span> at all for any <span class="hlt">approximation</span> factor ≥ 1, nor "weakly <span class="hlt">approximated</span>" in a much relaxed setting, unless P=NP. For the second problem, we first give a polynomial time λ-<span class="hlt">approximation</span> algorithm for ΠΣΠ polynomials with terms of degrees no more a constant λ ≥ 2. On the inapproximability side, we give a n (1 - ɛ)/2 lower bound, for any ɛ> 0, on the <span class="hlt">approximation</span> factor for ΠΣΠ polynomials. When the degrees of the terms in these polynomials are constrained as ≤ 2, we prove a 1.0476 lower bound, assuming Pnot=NP; and a higher 1.0604 lower bound, assuming the Unique Games Conjecture.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvD..97k6001A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvD..97k6001A"><span>Dynamically assisted Schwinger effect beyond the spatially-uniform-field <span class="hlt">approximation</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aleksandrov, I. A.; Plunien, G.; Shabaev, V. M.</p> <p>2018-06-01</p> <p>We investigate the phenomenon of electron-positron pair production from vacuum in the presence of a strong electric field superimposed by a weak but fast varying pulse which substantially increases the total particle yield. We employ a nonperturbative numerical technique and perform the calculations beyond the spatially-uniform-field <span class="hlt">approximation</span>, i.e., dipole <span class="hlt">approximation</span>, taking into account the coordinate dependence of the fast component. The analysis of the main characteristics of the pair-production process (momentum spectra of particles and total amount of pairs) reveals a number of important features which are absent within the previously used <span class="hlt">approximation</span>. In particular, the structure of the momentum distribution is modified both qualitatively and quantitatively, and the total number of pairs created as well as the enhancement factor due to dynamical assistance become significantly smaller.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014CEJPh..12..111D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014CEJPh..12..111D"><span>A Jacobi collocation <span class="hlt">approximation</span> for nonlinear coupled viscous Burgers' equation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Doha, Eid H.; Bhrawy, Ali H.; Abdelkawy, Mohamed A.; Hafez, Ramy M.</p> <p>2014-02-01</p> <p>This article presents a numerical <span class="hlt">approximation</span> of the initial-boundary nonlinear coupled viscous Burgers' equation based on spectral methods. A Jacobi-Gauss-Lobatto collocation (J-GL-C) scheme in combination with the implicit Runge-Kutta-Nyström (IRKN) scheme are employed to obtain highly accurate <span class="hlt">approximations</span> to the mentioned problem. This J-GL-C method, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled viscous Burgers' equation to a system of nonlinear ordinary differential equation which is far easier to solve. The given examples show, by selecting relatively few J-GL-C points, the accuracy of the <span class="hlt">approximations</span> and the utility of the approach over other analytical or numerical methods. The illustrative examples demonstrate the accuracy, efficiency, and versatility of the proposed algorithm.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920004993','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920004993"><span>A bandwidth efficient coding scheme for the Hubble Space Telescope</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pietrobon, Steven S.; Costello, Daniel J., Jr.</p> <p>1991-01-01</p> <p>As a demonstration of the performance capabilities of trellis codes using multidimensional signal sets, a Viterbi decoder was designed. The choice of code was based on two factors. The first factor was its application as a possible replacement for the coding scheme currently used on the Hubble Space Telescope (HST). The HST at present uses the rate 1/3 nu = 6 (with 2 (exp nu) = 64 states) convolutional code with Binary Phase Shift Keying (BPSK) modulation. With the modulator restricted to a 3 Msym/s, this implies a data rate of only 1 Mbit/s, since the bandwidth efficiency K = 1/3 bit/<span class="hlt">sym</span>. This is a very bandwidth inefficient scheme, although the system has the advantage of simplicity and large coding gain. The basic requirement from NASA was for a scheme that has as large a K as possible. Since a satellite channel was being used, 8PSK modulation was selected. This allows a K of between 2 and 3 bit/<span class="hlt">sym</span>. The next influencing factor was INTELSAT's intention of transmitting the SONET 155.52 Mbit/s standard data rate over the 72 MHz transponders on its satellites. This requires a bandwidth efficiency of around 2.5 bit/<span class="hlt">sym</span>. A Reed-Solomon block code is used as an outer code to give very low bit error rates (BER). A 16 state rate 5/6, 2.5 bit/<span class="hlt">sym</span>, 4D-8PSK trellis code was selected. This code has reasonable complexity and has a coding gain of 4.8 dB compared to uncoded 8PSK (2). This trellis code also has the advantage that it is 45 deg rotationally invariant. This means that the decoder needs only to synchronize to one of the two naturally mapped 8PSK signals in the signal set.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3296542','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3296542"><span>Modeling boundary measurements of scattered light using the corrected diffusion <span class="hlt">approximation</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lehtikangas, Ossi; Tarvainen, Tanja; Kim, Arnold D.</p> <p>2012-01-01</p> <p>We study the modeling and simulation of steady-state measurements of light scattered by a turbid medium taken at the boundary. In particular, we implement the recently introduced corrected diffusion <span class="hlt">approximation</span> in two spatial dimensions to model these boundary measurements. This implementation uses expansions in plane wave solutions to compute boundary conditions and the additive boundary layer correction, and a finite element method to solve the diffusion equation. We show that this corrected diffusion <span class="hlt">approximation</span> models boundary measurements substantially better than the standard diffusion <span class="hlt">approximation</span> in comparison to numerical solutions of the radiative transport equation. PMID:22435102</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1776i0020G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1776i0020G"><span>The TSP-approach to <span class="hlt">approximate</span> solving the m-Cycles Cover Problem</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gimadi, Edward Kh.; Rykov, Ivan; Tsidulko, Oxana</p> <p>2016-10-01</p> <p>In the m-Cycles Cover problem it is required to find a collection of m vertex-disjoint cycles that covers all vertices of the graph and the total weight of edges in the cover is minimum (or maximum). The problem is a generalization of the Traveling salesmen problem. It is strongly NP-hard. We discuss a TSP-approach that gives polynomial <span class="hlt">approximate</span> solutions for this problem. It transforms an <span class="hlt">approximation</span> TSP algorithm into an <span class="hlt">approximation</span> m-CCP algorithm. In this paper we present a number of successful transformations with proven performance guarantees for the obtained solutions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21954203','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21954203"><span><span class="hlt">Approximate</span> dynamic programming for optimal stationary control with control-dependent noise.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jiang, Yu; Jiang, Zhong-Ping</p> <p>2011-12-01</p> <p>This brief studies the stochastic optimal control problem via reinforcement learning and <span class="hlt">approximate</span>/adaptive dynamic programming (ADP). A policy iteration algorithm is derived in the presence of both additive and multiplicative noise using Itô calculus. The expectation of the <span class="hlt">approximated</span> cost matrix is guaranteed to converge to the solution of some algebraic Riccati equation that gives rise to the optimal cost value. Moreover, the covariance of the <span class="hlt">approximated</span> cost matrix can be reduced by increasing the length of time interval between two consecutive iterations. Finally, a numerical example is given to illustrate the efficiency of the proposed ADP methodology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/11557','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/11557"><span>A first-<span class="hlt">approximation</span> urban-air-quality indicator</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>David M. Paproski; Julian R. Walker</p> <p>1977-01-01</p> <p>Development of the first-<span class="hlt">approximation</span>-urban-air-quality indicator was reported by the Economic Council of Canada. The indicator takes account of ambient concentrations of five pollutants: sulfur dioxide, particulate matter, oxides of nitrogen, carbon monoxide, and total oxidants. Epidemiological evidence indicating the potential impact of these pollutants on human...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4989465','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4989465"><span><span class="hlt">Approximate</span> Uncertainty Modeling in Risk Analysis with Vine Copulas</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bedford, Tim; Daneshkhah, Alireza</p> <p>2015-01-01</p> <p>Many applications of risk analysis require us to jointly model multiple uncertain quantities. Bayesian networks and copulas are two common approaches to modeling joint uncertainties with probability distributions. This article focuses on new methodologies for copulas by developing work of Cooke, Bedford, Kurowica, and others on vines as a way of constructing higher dimensional distributions that do not suffer from some of the restrictions of alternatives such as the multivariate Gaussian copula. The article provides a fundamental <span class="hlt">approximation</span> result, demonstrating that we can <span class="hlt">approximate</span> any density as closely as we like using vines. It further operationalizes this result by showing how minimum information copulas can be used to provide parametric classes of copulas that have such good levels of <span class="hlt">approximation</span>. We extend previous approaches using vines by considering nonconstant conditional dependencies, which are particularly relevant in financial risk modeling. We discuss how such models may be quantified, in terms of expert judgment or by fitting data, and illustrate the approach by modeling two financial data sets. PMID:26332240</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25152920','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25152920"><span>Analytical <span class="hlt">approximate</span> solutions for a general class of nonlinear delay differential equations.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Căruntu, Bogdan; Bota, Constantin</p> <p>2014-01-01</p> <p>We use the polynomial least squares method (PLSM), which allows us to compute analytical <span class="hlt">approximate</span> polynomial solutions for a very general class of strongly nonlinear delay differential equations. The method is tested by computing <span class="hlt">approximate</span> solutions for several applications including the pantograph equations and a nonlinear time-delay model from biology. The accuracy of the method is illustrated by a comparison with <span class="hlt">approximate</span> solutions previously computed using other methods.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........87C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........87C"><span>Nonlinear Schroedinger <span class="hlt">Approximations</span> for Partial Differential Equations with Quadratic and Quasilinear Terms</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cummings, Patrick</p> <p></p> <p>We consider the <span class="hlt">approximation</span> of solutions of two complicated, physical systems via the nonlinear Schrodinger equation (NLS). In particular, we discuss the evolution of wave packets and long waves in two physical models. Due to the complicated nature of the equations governing many physical systems and the in-depth knowledge we have for solutions of the nonlinear Schrodinger equation, it is advantageous to use <span class="hlt">approximation</span> results of this kind to model these physical systems. The <span class="hlt">approximations</span> are simple enough that we can use them to understand the qualitative and quantitative behavior of the solutions, and by justifying them we can show that the behavior of the <span class="hlt">approximation</span> captures the behavior of solutions to the original equation, at least for long, but finite time. We first consider a model of the water wave equations which can be <span class="hlt">approximated</span> by wave packets using the NLS equation. We discuss a new proof that both simplifies and strengthens previous justification results of Schneider and Wayne. Rather than using analytic norms, as was done by Schneider and Wayne, we construct a modified energy functional so that the <span class="hlt">approximation</span> holds for the full interval of existence of the <span class="hlt">approximate</span> NLS solution as opposed to a subinterval (as is seen in the analytic case). Furthermore, the proof avoids problems associated with inverting the normal form transform by working with a modified energy functional motivated by Craig and Hunter et al. We then consider the Klein-Gordon-Zakharov system and prove a long wave <span class="hlt">approximation</span> result. In this case there is a non-trivial resonance that cannot be eliminated via a normal form transform. By combining the normal form transform for small Fourier modes and using analytic norms elsewhere, we can get a justification result on the order 1 over epsilon squared time scale.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhFl...30d0910P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhFl...30d0910P"><span>Padé <span class="hlt">approximant</span> for normal stress differences in large-amplitude oscillatory shear flow</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poungthong, P.; Saengow, C.; Giacomin, A. J.; Kolitawong, C.; Merger, D.; Wilhelm, M.</p> <p>2018-04-01</p> <p>Analytical solutions for the normal stress differences in large-amplitude oscillatory shear flow (LAOS), for continuum or molecular models, normally take the inexact form of the first few terms of a series expansion in the shear rate amplitude. Here, we improve the accuracy of these truncated expansions by replacing them with rational functions called Padé <span class="hlt">approximants</span>. The recent advent of exact solutions in LAOS presents an opportunity to identify accurate and useful Padé <span class="hlt">approximants</span>. For this identification, we replace the truncated expansion for the corotational Jeffreys fluid with its Padé <span class="hlt">approximants</span> for the normal stress differences. We uncover the most accurate and useful <span class="hlt">approximant</span>, the [3,4] <span class="hlt">approximant</span>, and then test its accuracy against the exact solution [C. Saengow and A. J. Giacomin, "Normal stress differences from Oldroyd 8-constant framework: Exact analytical solution for large-amplitude oscillatory shear flow," Phys. Fluids 29, 121601 (2017)]. We use Ewoldt grids to show the stunning accuracy of our [3,4] <span class="hlt">approximant</span> in LAOS. We quantify this accuracy with an objective function and then map it onto the Pipkin space. Our two applications illustrate how to use our new <span class="hlt">approximant</span> reliably. For this, we use the Spriggs relations to generalize our best <span class="hlt">approximant</span> to multimode, and then, we compare with measurements on molten high-density polyethylene and on dissolved polyisobutylene in isobutylene oligomer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1708g0012T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1708g0012T"><span>Weber's gravitational force as static weak field <span class="hlt">approximation</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tiandho, Yuant</p> <p>2016-02-01</p> <p>Weber's gravitational force (WGF) is one of gravitational model that can accommodate a non-static system because it depends not only on the distance but also on the velocity and the acceleration. Unlike Newton's law of gravitation, WGF can predict the anomalous of Mercury and gravitational bending of light near massive object very well. Then, some researchers use WGF as an alternative model of gravitation and propose a new mechanics theory namely the relational mechanics theory. However, currently we have known that the theory of general relativity which proposed by Einstein can explain gravity with very accurate. Through the static weak field <span class="hlt">approximation</span> for the non-relativistic object, we also have known that the theory of general relativity will reduce to Newton's law of gravity. In this work, we expand the static weak field <span class="hlt">approximation</span> that compatible with relativistic object and we obtain a force equation which correspond to WGF. Therefore, WGF is more precise than Newton's gravitational law. The static-weak gravitational field that we used is a solution of the Einstein's equation in the vacuum that satisfy the linear field <span class="hlt">approximation</span>. The expression of WGF with ξ = 1 and satisfy the requirement of energy conservation are obtained after resolving the geodesic equation. By this result, we can conclude that WGF can be derived from the general relativity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890011266','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890011266"><span>Optimal feedback control infinite dimensional parabolic evolution systems: <span class="hlt">Approximation</span> techniques</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Banks, H. T.; Wang, C.</p> <p>1989-01-01</p> <p>A general <span class="hlt">approximation</span> framework is discussed for computation of optimal feedback controls in linear quadratic regular problems for nonautonomous parabolic distributed parameter systems. This is done in the context of a theoretical framework using general evolution systems in infinite dimensional Hilbert spaces. Conditions are discussed for preservation under <span class="hlt">approximation</span> of stabilizability and detectability hypotheses on the infinite dimensional system. The special case of periodic systems is also treated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=combining+AND+chemicals&pg=2&id=EJ717172','ERIC'); return false;" href="https://eric.ed.gov/?q=combining+AND+chemicals&pg=2&id=EJ717172"><span>Unified <span class="hlt">Approximations</span>: A New Approach for Monoprotic Weak Acid-Base Equilibria</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Pardue, Harry; Odeh, Ihab N.; Tesfai, Teweldemedhin M.</p> <p>2004-01-01</p> <p>The unified <span class="hlt">approximations</span> reduce the conceptual complexity by combining solutions for a relatively large number of different situations into just two similar sets of processes. Processes used to solve problems by either the unified or classical <span class="hlt">approximations</span> require similar degrees of understanding of the underlying chemical processes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EPJWC.17508006B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EPJWC.17508006B"><span>Real-time dynamics of matrix quantum mechanics beyond the classical <span class="hlt">approximation</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buividovich, Pavel; Hanada, Masanori; Schäfer, Andreas</p> <p>2018-03-01</p> <p>We describe a numerical method which allows to go beyond the classical <span class="hlt">approximation</span> for the real-time dynamics of many-body systems by <span class="hlt">approximating</span> the many-body Wigner function by the most general Gaussian function with time-dependent mean and dispersion. On a simple example of a classically chaotic system with two degrees of freedom we demonstrate that this Gaussian state <span class="hlt">approximation</span> is accurate for significantly smaller field strengths and longer times than the classical one. Applying this <span class="hlt">approximation</span> to matrix quantum mechanics, we demonstrate that the quantum Lyapunov exponents are in general smaller than their classical counterparts, and even seem to vanish below some temperature. This behavior resembles the finite-temperature phase transition which was found for this system in Monte-Carlo simulations, and ensures that the system does not violate the Maldacena-Shenker-Stanford bound λL < 2πT, which inevitably happens for classical dynamics at sufficiently small temperatures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880014126','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880014126"><span>An <span class="hlt">approximation</span> theory for the identification of nonlinear distributed parameter systems</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Banks, H. T.; Reich, Simeon; Rosen, I. G.</p> <p>1988-01-01</p> <p>An abstract <span class="hlt">approximation</span> framework for the identification of nonlinear distributed parameter systems is developed. Inverse problems for nonlinear systems governed by strongly maximal monotone operators (satisfying a mild continuous dependence condition with respect to the unknown parameters to be identified) are treated. Convergence of Galerkin <span class="hlt">approximations</span> and the corresponding solutions of finite dimensional <span class="hlt">approximating</span> identification problems to a solution of the original finite dimensional identification problem is demonstrated using the theory of nonlinear evolution systems and a nonlinear analog of the Trotter-Kato <span class="hlt">approximation</span> result for semigroups of bounded linear operators. The nonlinear theory developed here is shown to subsume an existing linear theory as a special case. It is also shown to be applicable to a broad class of nonlinear elliptic operators and the corresponding nonlinear parabolic partial differential equations to which they lead. An application of the theory to a quasilinear model for heat conduction or mass transfer is discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860035396&hterms=rational+better&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Drational%2Bbetter','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860035396&hterms=rational+better&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Drational%2Bbetter"><span>Monte Carlo turbulence simulation using rational <span class="hlt">approximations</span> to von Karman spectra</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Campbell, C. W.</p> <p>1986-01-01</p> <p>Turbulence simulation is computationally much simpler using rational spectra, but turbulence falls off as f exp -5/3 in frequency ranges of interest to aircraft response and as predicted by von Karman's model. Rational <span class="hlt">approximations</span> to von Karman spectra should satisfy three requirements: (1) the rational spectra should provide a good <span class="hlt">approximation</span> to the von Karman spectra in the frequency range of interest; (2) for stability, the resulting rational transfer function should have all its poles in the left half-plane; and (3) at high frequencies, the rational spectra must fall off as an integer power of frequency, and since the -2 power is closest to the -5/3 power, the rational <span class="hlt">approximation</span> should roll off as the -2 power at high frequencies. Rational <span class="hlt">approximations</span> to von Karman spectra that satisfy these three criteria are presented, along with spectra from simulated turbulence. Agreement between the spectra of the simulated turbulence and von Karman spectra is excellent.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JCoPh.297..530B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JCoPh.297..530B"><span>Stable finite element <span class="hlt">approximations</span> of two-phase flow with soluble surfactant</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barrett, John W.; Garcke, Harald; Nürnberg, Robert</p> <p>2015-09-01</p> <p>A parametric finite element <span class="hlt">approximation</span> of incompressible two-phase flow with soluble surfactants is presented. The Navier-Stokes equations are coupled to bulk and surfaces PDEs for the surfactant concentrations. At the interface adsorption, desorption and stress balances involving curvature effects and Marangoni forces have to be considered. A parametric finite element <span class="hlt">approximation</span> for the advection of the interface, which maintains good mesh properties, is coupled to the evolving surface finite element method, which is used to discretize the surface PDE for the interface surfactant concentration. The resulting system is solved together with standard finite element <span class="hlt">approximations</span> of the Navier-Stokes equations and of the bulk parabolic PDE for the surfactant concentration. Semidiscrete and fully discrete <span class="hlt">approximations</span> are analyzed with respect to stability, conservation and existence/uniqueness issues. The approach is validated for simple test cases and for complex scenarios, including colliding drops in a shear flow, which are computed in two and three space dimensions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22697250','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22697250"><span>Normal and compound poisson <span class="hlt">approximations</span> for pattern occurrences in NGS reads.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhai, Zhiyuan; Reinert, Gesine; Song, Kai; Waterman, Michael S; Luan, Yihui; Sun, Fengzhu</p> <p>2012-06-01</p> <p>Next generation sequencing (NGS) technologies are now widely used in many biological studies. In NGS, sequence reads are randomly sampled from the genome sequence of interest. Most computational approaches for NGS data first map the reads to the genome and then analyze the data based on the mapped reads. Since many organisms have unknown genome sequences and many reads cannot be uniquely mapped to the genomes even if the genome sequences are known, alternative analytical methods are needed for the study of NGS data. Here we suggest using word patterns to analyze NGS data. Word pattern counting (the study of the probabilistic distribution of the number of occurrences of word patterns in one or multiple long sequences) has played an important role in molecular sequence analysis. However, no studies are available on the distribution of the number of occurrences of word patterns in NGS reads. In this article, we build probabilistic models for the background sequence and the sampling process of the sequence reads from the genome. Based on the models, we provide normal and compound Poisson <span class="hlt">approximations</span> for the number of occurrences of word patterns from the sequence reads, with bounds on the <span class="hlt">approximation</span> error. The main challenge is to consider the randomness in generating the long background sequence, as well as in the sampling of the reads using NGS. We show the accuracy of these <span class="hlt">approximations</span> under a variety of conditions for different patterns with various characteristics. Under realistic assumptions, the compound Poisson <span class="hlt">approximation</span> seems to outperform the normal <span class="hlt">approximation</span> in most situations. These <span class="hlt">approximate</span> distributions can be used to evaluate the statistical significance of the occurrence of patterns from NGS data. The theory and the computational algorithm for calculating the <span class="hlt">approximate</span> distributions are then used to analyze ChIP-Seq data using transcription factor GABP. Software is available online (www</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1983PhyBC.115..271F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1983PhyBC.115..271F"><span>Strong shock implosion, <span class="hlt">approximate</span> solution</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fujimoto, Y.; Mishkin, E. A.; Alejaldre, C.</p> <p>1983-01-01</p> <p>The self-similar, center-bound motion of a strong spherical, or cylindrical, shock wave moving through an ideal gas with a constant, γ= cp/ cv, is considered and a linearized, <span class="hlt">approximate</span> solution is derived. An X, Y phase plane of the self-similar solution is defined and the representative curved of the system behind the shock front is replaced by a straight line connecting the mappings of the shock front with that of its tail. The reduced pressure P(ξ), density R(ξ) and velocity U1(ξ) are found in closed, quite accurate, form. Comparison with numerically obtained results, for γ= {5}/{3} and γ= {7}/{5}, is shown.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23838959','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23838959"><span>Are common symbiosis genes required for endophytic rice-rhizobial interactions?</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Caiyan; Zhu, Hongyan</p> <p>2013-09-01</p> <p>Legume plants are able to establish root nodule symbioses with nitrogen-fixing bacteria, called rhizobia. Recent studies revealed that the root nodule symbiosis has co-opted the signaling pathway that mediates the ancestral mycorrhizal symbiosis that occurs in most land plants. Despite being unable to induce nodulation, rhizobia have been shown to be able to infect and colonize the roots of non-legumes such as rice. One fascinating question is whether establishment of such associations requires the common symbiosis (<span class="hlt">Sym</span>) genes that are essential for infection of plant cells by mycorrhizal fungi and rhizobia in legumes. Here, we demonstrated that the common <span class="hlt">Sym</span> genes are not required for endophytic colonization of rice roots by nitrogen-fixing rhizobia.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/957785','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/957785"><span>Optimal <span class="hlt">approximation</span> of harmonic growth clusters by orthogonal polynomials</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Teodorescu, Razvan</p> <p>2008-01-01</p> <p>Interface dynamics in two-dimensional systems with a maximal number of conservation laws gives an accurate theoreticaI model for many physical processes, from the hydrodynamics of immiscible, viscous flows (zero surface-tension limit of Hele-Shaw flows), to the granular dynamics of hard spheres, and even diffusion-limited aggregation. Although a complete solution for the continuum case exists, efficient <span class="hlt">approximations</span> of the boundary evolution are very useful due to their practical applications. In this article, the <span class="hlt">approximation</span> scheme based on orthogonal polynomials with a deformed Gaussian kernel is discussed, as well as relations to potential theory.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008LNP...728..283R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008LNP...728..283R"><span>An Integrable <span class="hlt">Approximation</span> for the Fermi Pasta Ulam Lattice</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rink, Bob</p> <p></p> <p>This contribution presents a review of results obtained from computations of <span class="hlt">approximate</span> equations of motion for the Fermi-Pasta-Ulam lattice. These <span class="hlt">approximate</span> equations are obtained as a finite-dimensional Birkhoff normal form. It turns out that in many cases, the Birkhoff normal form is suitable for application of the KAM theorem. In particular, this proves Nishida's 1971 conjecture stating that almost all low-energetic motions of the anharmonic Fermi-Pasta-Ulam lattice with fixed endpoints are quasi-periodic. The proof is based on the formal Birkhoff normal form computations of Nishida, the KAM theorem and discrete symmetry considerations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21310946','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21310946"><span><span class="hlt">Approximate</span> likelihood calculation on a phylogeny for Bayesian estimation of divergence times.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>dos Reis, Mario; Yang, Ziheng</p> <p>2011-07-01</p> <p>The molecular clock provides a powerful way to estimate species divergence times. If information on some species divergence times is available from the fossil or geological record, it can be used to calibrate a phylogeny and estimate divergence times for all nodes in the tree. The Bayesian method provides a natural framework to incorporate different sources of information concerning divergence times, such as information in the fossil and molecular data. Current models of sequence evolution are intractable in a Bayesian setting, and Markov chain Monte Carlo (MCMC) is used to generate the posterior distribution of divergence times and evolutionary rates. This method is computationally expensive, as it involves the repeated calculation of the likelihood function. Here, we explore the use of Taylor expansion to <span class="hlt">approximate</span> the likelihood during MCMC iteration. The <span class="hlt">approximation</span> is much faster than conventional likelihood calculation. However, the <span class="hlt">approximation</span> is expected to be poor when the proposed parameters are far from the likelihood peak. We explore the use of parameter transforms (square root, logarithm, and arcsine) to improve the <span class="hlt">approximation</span> to the likelihood curve. We found that the new methods, particularly the arcsine-based transform, provided very good <span class="hlt">approximations</span> under relaxed clock models and also under the global clock model when the global clock is not seriously violated. The <span class="hlt">approximation</span> is poorer for analysis under the global clock when the global clock is seriously wrong and should thus not be used. The results suggest that the <span class="hlt">approximate</span> method may be useful for Bayesian dating analysis using large data sets.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED583731.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED583731.pdf"><span>Communicating Professional Noticing through Animations as a Transformational <span class="hlt">Approximation</span> of Practice</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Amador, Julie M.; Estapa, Anna; Weston, Tracy; Kosko, Karl</p> <p>2016-01-01</p> <p>This paper explores the use of animations as an <span class="hlt">approximation</span> of practice to provide a transformational technology experience for elementary mathematics preservice teachers. Preservice teachers in mathematics methods courses at six universities (n = 126) engaged in a practice of decomposing and <span class="hlt">approximating</span> components of a fraction lesson. Data…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003CRMec.331..575Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003CRMec.331..575Z"><span>Joseph Boussinesq et son <span class="hlt">approximation</span> : un aperçu actuel</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zeytounian, Radyadour Kh.</p> <p>2003-08-01</p> <p>A hundred years ago, in his 1903 volume II of the monograph devoted to 'Théorie Analytique de la Chaleur', Joseph Valentin Boussinesq observes that: "The v ariations of density can be ignored except were they are multiplied by the acceleration of gravity in equation of motion for the vertical component of the velocity vector." A spectacular consequence of this Boussinesq observation (called, in 1916, by Rayleigh, the 'Boussinesq <span class="hlt">approximation</span>') is the possibility to work with a quasi-incompressible system of coupled dynamic, (Navier) and thermal (Fourier) equations where buoyancy is the main driving force. After a few words on the life of Boussinesq and on his observation, the applicability of this <span class="hlt">approximation</span> is briefly discussed for various thermal, geophysical, astrophysical and magnetohydrodynamic problems in the framework of 'Boussinesquian fluid dynamics'. An important part of our contemporary view is devoted to a logical (100 years later) justification of this Boussinesq <span class="hlt">approximation</span> for a perfect gas and an ideal liquid in the framework of an asymptotic modelling of the full fluid dynamics (Euler and Navier-Stokes-Fourier) equations with especially careful attention given to the validity of this <span class="hlt">approximation</span>. To cite this article: R.Kh. Zeytounian, C. R. Mecanique 331 (2003).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27596808','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27596808"><span>Non-symbolic <span class="hlt">approximate</span> arithmetic training improves math performance in preschoolers.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Park, Joonkoo; Bermudez, Vanessa; Roberts, Rachel C; Brannon, Elizabeth M</p> <p>2016-12-01</p> <p>Math proficiency at early school age is an important predictor of later academic achievement. Thus, an important goal for society should be to improve math readiness in preschool-age children, especially in low-income children who typically arrive in kindergarten with less mathematical competency than their higher income peers. The majority of existing research-based math intervention programs target symbolic verbal number concepts in young children. However, very little attention has been paid to the preverbal intuitive ability to <span class="hlt">approximately</span> represent numerical quantity, which is hypothesized to be an important foundation for full-fledged mathematical thinking. Here, we tested the hypothesis that repeated engagement of non-symbolic <span class="hlt">approximate</span> addition and subtraction of large arrays of items results in improved math skills in very young children, an idea that stems from our previous studies in adults. In the current study, 3- to 5-year-olds showed selective improvements in math skills after multiple days of playing a tablet-based non-symbolic <span class="hlt">approximate</span> arithmetic game compared with children who played a memory game. These findings, collectively with our previous reports, suggest that mental manipulation of <span class="hlt">approximate</span> numerosities provides an important tool for improving math readiness, even in preschoolers who have yet to master the meaning of number words. Copyright © 2016 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28384496','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28384496"><span><span class="hlt">Approximate</span> number sense correlates with math performance in gifted adolescents.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Jinjing Jenny; Halberda, Justin; Feigenson, Lisa</p> <p>2017-05-01</p> <p>Nonhuman animals, human infants, and human adults all share an <span class="hlt">Approximate</span> Number System (ANS) that allows them to imprecisely represent number without counting. Among humans, people differ in the precision of their ANS representations, and these individual differences have been shown to correlate with symbolic mathematics performance in both children and adults. For example, children with specific math impairment (dyscalculia) have notably poor ANS precision. However, it remains unknown whether ANS precision contributes to individual differences only in populations of people with lower or average mathematical abilities, or whether this link also is present in people who excel in math. Here we tested non-symbolic numerical <span class="hlt">approximation</span> in 13- to 16-year old gifted children enrolled in a program for talented adolescents (the Center for Talented Youth). We found that in this high achieving population, ANS precision significantly correlated with performance on the symbolic math portion of two common standardized tests (SAT and ACT) that typically are administered to much older students. This relationship was robust even when controlling for age, verbal performance, and reaction times in the <span class="hlt">approximate</span> number task. These results suggest that the <span class="hlt">Approximate</span> Number System is linked to symbolic math performance even at the top levels of math performance. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5053875','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5053875"><span>Non-symbolic <span class="hlt">approximate</span> arithmetic training improves math performance in preschoolers</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Park, Joonkoo; Bermudez, Vanessa; Roberts, Rachel C.; Brannon, Elizabeth M.</p> <p>2016-01-01</p> <p>Math proficiency in early school age is an important predictor of later academic achievement. Thus, an important goal for society should be to improve math readiness in pre-school age children, especially in low-income children who typically arrive in kindergarten with less mathematical competency than their higher-income peers. The majority of existing research-based math intervention programs target symbolic, verbal number concepts in young children. However, very little attention has been paid to the preverbal, intuitive ability to <span class="hlt">approximately</span> represent numerical quantity, which is hypothesized to be an important foundation for full-fledged mathematical thinking. Here, we test the hypothesis that repeated engagement of non-symbolic <span class="hlt">approximate</span> addition and subtraction of large array of items results in improved math skills in very young children, an idea that stems from our previous studies in adults. Three to five year-old children showed selective improvements in math skills after multiple days of playing a tablet-based non-symbolic <span class="hlt">approximate</span> arithmetic game compared to children who played a memory game. These findings, collectively with our previous reports, suggest that mental manipulation of <span class="hlt">approximate</span> numerosities provides an important tool for improving math readiness, even in preschoolers who have yet to master the meaning of number words. PMID:27596808</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982MolPh..46..449M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982MolPh..46..449M"><span>SCF-Xα-SW electron densities with the overlapping sphere <span class="hlt">approximation</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McMaster, Blair N.; Smith, Vedene H., Jr.; Salahub, Dennis R.</p> <p></p> <p>Self consistent field-Xα-scattered wave (SCF-Xα-SW) calculations have been performed for a series of eight first and second row homonuclear diatomic molecules using both the touching (TS) and 25 per cent overlapping sphere (OS) versions. The OS deformation density maps exhibit much better quantitative agreement with those from other Xα methods, which do not employ the spherical muffin-tin (MT) potential <span class="hlt">approximation</span>, than do the TS maps. The OS version thus compensates very effectively for the errors involved in the MT <span class="hlt">approximation</span> in computing electron densities. A detailed comparison between the TS- and OS-Xα-SW orbitals reveals that the reasons for this improvement are surprisingly specific. The dominant effect of the OS <span class="hlt">approximation</span> is to increase substantially the electron density near the midpoint of bonding σ orbitals, with a consequent reduction of the density behind the atoms. A similar effect occurs for the bonding π orbitals but is less pronounced. These effects are due to a change in hybridization of the orbitals, with the OS <span class="hlt">approximation</span> increasing the proportion of the subdominant partial waves and hence changing the shapes of the orbitals. It is this increased orbital polarization which so effectively compensates for the lack of (non-spherically symmetric) polarization components in the MT potential, when overlapping spheres are used.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050215274','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050215274"><span>Subsonic Aircraft With Regression and Neural-Network <span class="hlt">Approximators</span> Designed</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Patnaik, Surya N.; Hopkins, Dale A.</p> <p>2004-01-01</p> <p>At the NASA Glenn Research Center, NASA Langley Research Center's Flight Optimization System (FLOPS) and the design optimization testbed COMETBOARDS with regression and neural-network-analysis <span class="hlt">approximators</span> have been coupled to obtain a preliminary aircraft design methodology. For a subsonic aircraft, the optimal design, that is the airframe-engine combination, is obtained by the simulation. The aircraft is powered by two high-bypass-ratio engines with a nominal thrust of about 35,000 lbf. It is to carry 150 passengers at a cruise speed of Mach 0.8 over a range of 3000 n mi and to operate on a 6000-ft runway. The aircraft design utilized a neural network and a regression-<span class="hlt">approximations</span>-based analysis tool, along with a multioptimizer cascade algorithm that uses sequential linear programming, sequential quadratic programming, the method of feasible directions, and then sequential quadratic programming again. Optimal aircraft weight versus the number of design iterations is shown. The central processing unit (CPU) time to solution is given. It is shown that the regression-method-based analyzer exhibited a smoother convergence pattern than the FLOPS code. The optimum weight obtained by the <span class="hlt">approximation</span> technique and the FLOPS code differed by 1.3 percent. Prediction by the <span class="hlt">approximation</span> technique exhibited no error for the aircraft wing area and turbine entry temperature, whereas it was within 2 percent for most other parameters. Cascade strategy was required by FLOPS as well as the <span class="hlt">approximators</span>. The regression method had a tendency to hug the data points, whereas the neural network exhibited a propensity to follow a mean path. The performance of the neural network and regression methods was considered adequate. It was at about the same level for small, standard, and large models with redundancy ratios (defined as the number of input-output pairs to the number of unknown coefficients) of 14, 28, and 57, respectively. In an SGI octane workstation (Silicon Graphics</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22390649-data-approximation-using-blending-type-spline-construction','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22390649-data-approximation-using-blending-type-spline-construction"><span>Data <span class="hlt">approximation</span> using a blending type spline construction</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dalmo, Rune; Bratlie, Jostein</p> <p>2014-11-18</p> <p>Generalized expo-rational B-splines (GERBS) is a blending type spline construction where local functions at each knot are blended together by C{sup k}-smooth basis functions. One way of <span class="hlt">approximating</span> discrete regular data using GERBS is by partitioning the data set into subsets and fit a local function to each subset. Partitioning and fitting strategies can be devised such that important or interesting data points are interpolated in order to preserve certain features. We present a method for fitting discrete data using a tensor product GERBS construction. The method is based on detection of feature points using differential geometry. Derivatives, which aremore » necessary for feature point detection and used to construct local surface patches, are <span class="hlt">approximated</span> from the discrete data using finite differences.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JCAP...06..054F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JCAP...06..054F"><span>Swiss-cheese models and the Dyer-Roeder <span class="hlt">approximation</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fleury, Pierre</p> <p>2014-06-01</p> <p>In view of interpreting the cosmological observations precisely, especially when they involve narrow light beams, it is crucial to understand how light propagates in our statistically homogeneous, clumpy, Universe. Among the various approaches to tackle this issue, Swiss-cheese models propose an inhomogeneous spacetime geometry which is an exact solution of Einstein's equation, while the Dyer-Roeder <span class="hlt">approximation</span> deals with inhomogeneity in an effective way. In this article, we demonstrate that the distance-redshift relation of a certain class of Swiss-cheese models is the same as the one predicted by the Dyer-Roeder approach, at a well-controlled level of <span class="hlt">approximation</span>. Both methods are therefore equivalent when applied to the interpretation of, e.g., supernova obervations. The proof relies on completely analytical arguments, and is illustrated by numerical results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRD..11910471L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRD..11910471L"><span>Estimating ice particle scattering properties using a modified Rayleigh-Gans <span class="hlt">approximation</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, Yinghui; Clothiaux, Eugene E.; Aydin, Kültegin; Verlinde, Johannes</p> <p>2014-09-01</p> <p>A modification to the Rayleigh-Gans <span class="hlt">approximation</span> is made that includes self-interactions between different parts of an ice crystal, which both improves the accuracy of the Rayleigh-Gans <span class="hlt">approximation</span> and extends its applicability to polarization-dependent parameters. This modified Rayleigh-Gans <span class="hlt">approximation</span> is both efficient and reasonably accurate for particles with at least one dimension much smaller than the wavelength (e.g., dendrites at millimeter or longer wavelengths) or particles with sparse structures (e.g., low-density aggregates). Relative to the Generalized Multiparticle Mie method, backscattering reflectivities at horizontal transmit and receive polarization (HH) (ZHH) computed with this modified Rayleigh-Gans approach are about 3 dB more accurate than with the traditional Rayleigh-Gans <span class="hlt">approximation</span>. For realistic particle size distributions and pristine ice crystals the modified Rayleigh-Gans approach agrees with the Generalized Multiparticle Mie method to within 0.5 dB for ZHH whereas for the polarimetric radar observables differential reflectivity (ZDR) and specific differential phase (KDP) agreement is generally within 0.7 dB and 13%, respectively. Compared to the A-DDA code, the modified Rayleigh-Gans <span class="hlt">approximation</span> is several to tens of times faster if scattering properties for different incident angles and particle orientations are calculated. These accuracies and computational efficiencies are sufficient to make this modified Rayleigh-Gans approach a viable alternative to the Rayleigh-Gans <span class="hlt">approximation</span> in some applications such as millimeter to centimeter wavelength radars and to other methods that assume simpler, less accurate shapes for ice crystals. This method should not be used on materials with dielectric properties much different from ice and on compact particles much larger than the wavelength.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JChPh.148j2316R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JChPh.148j2316R"><span>Harmonic-phase path-integral <span class="hlt">approximation</span> of thermal quantum correlation functions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robertson, Christopher; Habershon, Scott</p> <p>2018-03-01</p> <p>We present an <span class="hlt">approximation</span> to the thermal symmetric form of the quantum time-correlation function in the standard position path-integral representation. By transforming to a sum-and-difference position representation and then Taylor-expanding the potential energy surface of the system to second order, the resulting expression provides a harmonic weighting function that <span class="hlt">approximately</span> recovers the contribution of the phase to the time-correlation function. This method is readily implemented in a Monte Carlo sampling scheme and provides exact results for harmonic potentials (for both linear and non-linear operators) and near-quantitative results for anharmonic systems for low temperatures and times that are likely to be relevant to condensed phase experiments. This article focuses on one-dimensional examples to provide insights into convergence and sampling properties, and we also discuss how this <span class="hlt">approximation</span> method may be extended to many-dimensional systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5546968-new-approximate-orientation-averaging-water-molecule-interacting-thermal-neutron','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5546968-new-approximate-orientation-averaging-water-molecule-interacting-thermal-neutron"><span>New <span class="hlt">approximate</span> orientation averaging of the water molecule interacting with the thermal neutron</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Markovic, M.I.; Minic, D.M.; Rakic, A.D.</p> <p>1992-02-01</p> <p>This paper reports that exactly describing the time of thermal neutron collisions with water molecules, orientation averaging is performed by an exact method (EOA{sub k}) and four <span class="hlt">approximate</span> methods (two well known and two less known). Expressions for the microscopic scattering kernel are developed. The two well-known <span class="hlt">approximate</span> orientation averaging methods are Krieger-Nelkin (K-N) and Koppel-Young (K-Y). The results obtained by one of the two proposed <span class="hlt">approximate</span> orientation averaging methods agree best with the corresponding results obtained by EOA{sub k}. The largest discrepancies between the EOA{sub k} results and the results of the <span class="hlt">approximate</span> methods are obtained using the well-knowmore » K-N <span class="hlt">approximate</span> orientation averaging method.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4260907','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4260907"><span>Dynamic <span class="hlt">Approximate</span> Entropy Electroanatomic Maps Detect Rotors in a Simulated Atrial Fibrillation Model</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ugarte, Juan P.; Orozco-Duque, Andrés; Tobón, Catalina; Kremen, Vaclav; Novak, Daniel; Saiz, Javier; Oesterlein, Tobias; Schmitt, Clauss; Luik, Armin; Bustamante, John</p> <p>2014-01-01</p> <p>There is evidence that rotors could be drivers that maintain atrial fibrillation. Complex fractionated atrial electrograms have been located in rotor tip areas. However, the concept of electrogram fractionation, defined using time intervals, is still controversial as a tool for locating target sites for ablation. We hypothesize that the fractionation phenomenon is better described using non-linear dynamic measures, such as <span class="hlt">approximate</span> entropy, and that this tool could be used for locating the rotor tip. The aim of this work has been to determine the relationship between <span class="hlt">approximate</span> entropy and fractionated electrograms, and to develop a new tool for rotor mapping based on fractionation levels. Two episodes of chronic atrial fibrillation were simulated in a 3D human atrial model, in which rotors were observed. Dynamic <span class="hlt">approximate</span> entropy maps were calculated using unipolar electrogram signals generated over the whole surface of the 3D atrial model. In addition, we optimized the <span class="hlt">approximate</span> entropy calculation using two real multi-center databases of fractionated electrogram signals, labeled in 4 levels of fractionation. We found that the values of <span class="hlt">approximate</span> entropy and the levels of fractionation are positively correlated. This allows the dynamic <span class="hlt">approximate</span> entropy maps to localize the tips from stable and meandering rotors. Furthermore, we assessed the optimized <span class="hlt">approximate</span> entropy using bipolar electrograms generated over a vicinity enclosing a rotor, achieving rotor detection. Our results suggest that high <span class="hlt">approximate</span> entropy values are able to detect a high level of fractionation and to locate rotor tips in simulated atrial fibrillation episodes. We suggest that dynamic <span class="hlt">approximate</span> entropy maps could become a tool for atrial fibrillation rotor mapping. PMID:25489858</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25489858','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25489858"><span>Dynamic <span class="hlt">approximate</span> entropy electroanatomic maps detect rotors in a simulated atrial fibrillation model.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ugarte, Juan P; Orozco-Duque, Andrés; Tobón, Catalina; Kremen, Vaclav; Novak, Daniel; Saiz, Javier; Oesterlein, Tobias; Schmitt, Clauss; Luik, Armin; Bustamante, John</p> <p>2014-01-01</p> <p>There is evidence that rotors could be drivers that maintain atrial fibrillation. Complex fractionated atrial electrograms have been located in rotor tip areas. However, the concept of electrogram fractionation, defined using time intervals, is still controversial as a tool for locating target sites for ablation. We hypothesize that the fractionation phenomenon is better described using non-linear dynamic measures, such as <span class="hlt">approximate</span> entropy, and that this tool could be used for locating the rotor tip. The aim of this work has been to determine the relationship between <span class="hlt">approximate</span> entropy and fractionated electrograms, and to develop a new tool for rotor mapping based on fractionation levels. Two episodes of chronic atrial fibrillation were simulated in a 3D human atrial model, in which rotors were observed. Dynamic <span class="hlt">approximate</span> entropy maps were calculated using unipolar electrogram signals generated over the whole surface of the 3D atrial model. In addition, we optimized the <span class="hlt">approximate</span> entropy calculation using two real multi-center databases of fractionated electrogram signals, labeled in 4 levels of fractionation. We found that the values of <span class="hlt">approximate</span> entropy and the levels of fractionation are positively correlated. This allows the dynamic <span class="hlt">approximate</span> entropy maps to localize the tips from stable and meandering rotors. Furthermore, we assessed the optimized <span class="hlt">approximate</span> entropy using bipolar electrograms generated over a vicinity enclosing a rotor, achieving rotor detection. Our results suggest that high <span class="hlt">approximate</span> entropy values are able to detect a high level of fractionation and to locate rotor tips in simulated atrial fibrillation episodes. We suggest that dynamic <span class="hlt">approximate</span> entropy maps could become a tool for atrial fibrillation rotor mapping.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3835605','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3835605"><span><span class="hlt">Approximate</span> Single-Diode Photovoltaic Model for Efficient I-V Characteristics Estimation</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ting, T. O.; Zhang, Nan; Guan, Sheng-Uei; Wong, Prudence W. H.</p> <p>2013-01-01</p> <p>Precise photovoltaic (PV) behavior models are normally described by nonlinear analytical equations. To solve such equations, it is necessary to use iterative procedures. Aiming to make the computation easier, this paper proposes an <span class="hlt">approximate</span> single-diode PV model that enables high-speed predictions for the electrical characteristics of commercial PV modules. Based on the experimental data, statistical analysis is conducted to validate the <span class="hlt">approximate</span> model. Simulation results show that the calculated current-voltage (I-V) characteristics fit the measured data with high accuracy. Furthermore, compared with the existing modeling methods, the proposed model reduces the simulation time by <span class="hlt">approximately</span> 30% in this work. PMID:24298205</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000032346&hterms=Clustering&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DClustering','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000032346&hterms=Clustering&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DClustering"><span><span class="hlt">Approximation</span> Of Multi-Valued Inverse Functions Using Clustering And Sugeno Fuzzy Inference</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walden, Maria A.; Bikdash, Marwan; Homaifar, Abdollah</p> <p>1998-01-01</p> <p>Finding the inverse of a continuous function can be challenging and computationally expensive when the inverse function is multi-valued. Difficulties may be compounded when the function itself is difficult to evaluate. We show that we can use fuzzy-logic <span class="hlt">approximators</span> such as Sugeno inference systems to compute the inverse on-line. To do so, a fuzzy clustering algorithm can be used in conjunction with a discriminating function to split the function data into branches for the different values of the forward function. These data sets are then fed into a recursive least-squares learning algorithm that finds the proper coefficients of the Sugeno <span class="hlt">approximators</span>; each Sugeno <span class="hlt">approximator</span> finds one value of the inverse function. Discussions about the accuracy of the <span class="hlt">approximation</span> will be included.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21502460-analytic-derivation-approximate-su-symmetry-inside-symmetry-triangle-interacting-boson-approximation-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21502460-analytic-derivation-approximate-su-symmetry-inside-symmetry-triangle-interacting-boson-approximation-model"><span>Analytic derivation of an <span class="hlt">approximate</span> SU(3) symmetry inside the symmetry triangle of the interacting boson <span class="hlt">approximation</span> model</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bonatsos, Dennis; Karampagia, S.; Casten, R. F.</p> <p>2011-05-15</p> <p>Using a contraction of the SU(3) algebra to the algebra of the rigid rotator in the large-boson-number limit of the interacting boson <span class="hlt">approximation</span> (IBA) model, a line is found inside the symmetry triangle of the IBA, along which the SU(3) symmetry is preserved. The line extends from the SU(3) vertex to near the critical line of the first-order shape/phase transition separating the spherical and prolate deformed phases, and it lies within the Alhassid-Whelan arc of regularity, the unique valley of regularity connecting the SU(3) and U(5) vertices in the midst of chaotic regions. In addition to providing an explanation formore » the existence of the arc of regularity, the present line represents an example of an analytically determined <span class="hlt">approximate</span> symmetry in the interior of the symmetry triangle of the IBA. The method is applicable to algebraic models possessing subalgebras amenable to contraction. This condition is equivalent to algebras in which the equilibrium ground state and its rotational band become energetically isolated from intrinsic excitations, as typified by deformed solutions to the IBA for large numbers of valence nucleons.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080040183','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080040183"><span><span class="hlt">Approximation</span> of Failure Probability Using Conditional Sampling</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Giesy. Daniel P.; Crespo, Luis G.; Kenney, Sean P.</p> <p>2008-01-01</p> <p>In analyzing systems which depend on uncertain parameters, one technique is to partition the uncertain parameter domain into a failure set and its complement, and judge the quality of the system by estimating the probability of failure. If this is done by a sampling technique such as Monte Carlo and the probability of failure is small, accurate <span class="hlt">approximation</span> can require so many sample points that the computational expense is prohibitive. Previous work of the authors has shown how to bound the failure event by sets of such simple geometry that their probabilities can be calculated analytically. In this paper, it is shown how to make use of these failure bounding sets and conditional sampling within them to substantially reduce the computational burden of <span class="hlt">approximating</span> failure probability. It is also shown how the use of these sampling techniques improves the confidence intervals for the failure probability estimate for a given number of sample points and how they reduce the number of sample point analyses needed to achieve a given level of confidence.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036726','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036726"><span>USGS 1-min Dst index</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gannon, J.L.; Love, J.J.</p> <p>2011-01-01</p> <p>We produce a 1-min time resolution storm-time disturbance index, the USGS Dst, called Dst8507-4SM. This index is based on minute resolution horizontal magnetic field intensity from low-latitude observatories in Honolulu, Kakioka, San Juan and Hermanus, for the years 1985-2007. The method used to produce the index uses a combination of time- and frequency-domain techniques, which more clearly identifies and excises solar-quiet variation from the horizontal intensity time series of an individual station than the strictly time-domain method used in the Kyoto Dst index. The USGS 1-min Dst is compared against the Kyoto Dst, Kyoto <span class="hlt">Sym</span>-H, and the USGS 1-h Dst (Dst5807-4SH). In a time series comparison, <span class="hlt">Sym</span>-H is found to produce more extreme values during both sudden impulses and main phase maximum deviation, possibly due to the latitude of its contributing observatories. Both Kyoto indices are shown to have a peak in their distributions below zero, while the USGS indices have a peak near zero. The USGS 1-min Dst is shown to have the higher time resolution benefits of <span class="hlt">Sym</span>-H, while using the more typical low-latitude observatories of Kyoto Dst. ?? 2010.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24710761','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24710761"><span>An optimized design to reduce eddy current sensitivity in velocity-selective arterial spin labeling using symmetric BIR-8 pulses.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guo, Jia; Meakin, James A; Jezzard, Peter; Wong, Eric C</p> <p>2015-03-01</p> <p>Velocity-selective arterial spin labeling (VSASL) tags arterial blood on a velocity-selective (VS) basis and eliminates the tagging/imaging gap and associated transit delay sensitivity observed in other ASL tagging methods. However, the flow-weighting gradient pulses in VS tag preparation can generate eddy currents (ECs), which may erroneously tag the static tissue and create artificial perfusion signal, compromising the accuracy of perfusion quantification. A novel VS preparation design is presented using an eight-segment B1 insensitive rotation with symmetric radio frequency and gradient layouts (<span class="hlt">sym</span>-BIR-8), combined with delays after gradient pulses to optimally reduce ECs of a wide range of time constants while maintaining B0 and B1 insensitivity. Bloch simulation, phantom, and in vivo experiments were carried out to determine robustness of the new and existing pulse designs to ECs, B0 , and B1 inhomogeneity. VSASL with reduced EC sensitivity across a wide range of EC time constants was achieved with the proposed <span class="hlt">sym</span>-BIR-8 design, and the accuracy of cerebral blood flow measurement was improved. The <span class="hlt">sym</span>-BIR-8 design performed the most robustly among the existing VS tagging designs, and should benefit studies using VS preparation with improved accuracy and reliability. © 2014 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvA..97c2121T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvA..97c2121T"><span>Accuracy of the adiabatic-impulse <span class="hlt">approximation</span> for closed and open quantum systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tomka, Michael; Campos Venuti, Lorenzo; Zanardi, Paolo</p> <p>2018-03-01</p> <p>We study the adiabatic-impulse <span class="hlt">approximation</span> (AIA) as a tool to <span class="hlt">approximate</span> the time evolution of quantum states when driven through a region of small gap. Such small-gap regions are a common situation in adiabatic quantum computing and having reliable <span class="hlt">approximations</span> is important in this context. The AIA originates from the Kibble-Zurek theory applied to continuous quantum phase transitions. The Kibble-Zurek mechanism was developed to predict the power-law scaling of the defect density across a continuous quantum phase transition. Instead, here we quantify the accuracy of the AIA via the trace norm distance with respect to the exact evolved state. As expected, we find that for short times or fast protocols, the AIA outperforms the simple adiabatic <span class="hlt">approximation</span>. However, for large times or slow protocols, the situation is actually reversed and the AIA provides a worse <span class="hlt">approximation</span>. Nevertheless, we found a variation of the AIA that can perform better than the adiabatic one. This counterintuitive modification consists in crossing the region of small gap twice. Our findings are illustrated by several examples of driven closed and open quantum systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910050732&hterms=family+beliefs&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dfamily%2Bbeliefs','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910050732&hterms=family+beliefs&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dfamily%2Bbeliefs"><span>The CFL condition for spectral <span class="hlt">approximations</span> to hyperbolic initial-boundary value problems</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gottlieb, David; Tadmor, Eitan</p> <p>1991-01-01</p> <p>The stability of spectral <span class="hlt">approximations</span> to scalar hyperbolic initial-boundary value problems with variable coefficients are studied. Time is discretized by explicit multi-level or Runge-Kutta methods of order less than or equal to 3 (forward Euler time differencing is included), and spatial discretizations are studied by spectral and pseudospectral <span class="hlt">approximations</span> associated with the general family of Jacobi polynomials. It is proved that these fully explicit spectral <span class="hlt">approximations</span> are stable provided their time-step, delta t, is restricted by the CFL-like condition, delta t less than Const. N(exp-2), where N equals the spatial number of degrees of freedom. We give two independent proofs of this result, depending on two different choices of <span class="hlt">approximate</span> L(exp 2)-weighted norms. In both approaches, the proofs hinge on a certain inverse inequality interesting for its own sake. The result confirms the commonly held belief that the above CFL stability restriction, which is extensively used in practical implementations, guarantees the stability (and hence the convergence) of fully-explicit spectral <span class="hlt">approximations</span> in the nonperiodic case.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900015517','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900015517"><span>The CFL condition for spectral <span class="hlt">approximations</span> to hyperbolic initial-boundary value problems</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gottlieb, David; Tadmor, Eitan</p> <p>1990-01-01</p> <p>The stability of spectral <span class="hlt">approximations</span> to scalar hyperbolic initial-boundary value problems with variable coefficients are studied. Time is discretized by explicit multi-level or Runge-Kutta methods of order less than or equal to 3 (forward Euler time differencing is included), and spatial discretizations are studied by spectral and pseudospectral <span class="hlt">approximations</span> associated with the general family of Jacobi polynomials. It is proved that these fully explicit spectral <span class="hlt">approximations</span> are stable provided their time-step, delta t, is restricted by the CFL-like condition, delta t less than Const. N(exp-2), where N equals the spatial number of degrees of freedom. We give two independent proofs of this result, depending on two different choices of <span class="hlt">approximate</span> L(exp 2)-weighted norms. In both approaches, the proofs hinge on a certain inverse inequality interesting for its own sake. The result confirms the commonly held belief that the above CFL stability restriction, which is extensively used in practical implementations, guarantees the stability (and hence the convergence) of fully-explicit spectral <span class="hlt">approximations</span> in the nonperiodic case.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9666V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9666V"><span>Integrating flood modelling in a hydrological catchment model: flow <span class="hlt">approximations</span> and spatial resolution.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van den Bout, Bastian; Jetten, Victor</p> <p>2017-04-01</p> <p>Within hydrological models, flow <span class="hlt">approximations</span> are commonly used to reduce computation time. The validity of these <span class="hlt">approximations</span> is strongly determined by flow height, flow velocity, the spatial resolution of the model, and by the manner in which flow routing is implemented. The assumptions of these <span class="hlt">approximations</span> can furthermore limit emergent behavior, and influence flow behavior under space-time scaling. In this presentation, the validity and performance of the kinematic, diffusive and dynamic flow <span class="hlt">approximations</span> are investigated for use in a catchment-based flood model. Particularly, the validity during flood events and for varying spatial resolutions is investigated. The OpenLISEM hydrological model is extended to implement these flow <span class="hlt">approximations</span> and channel flooding based on dynamic flow. The kinematic routing uses a predefined converging flow network, the diffusive and dynamic routing uses a 2D flow solution over a DEM. The channel flow in all cases is a 1D kinematic wave <span class="hlt">approximation</span>. The flow <span class="hlt">approximations</span> are used to recreate measured discharge in three catchments of different size in China, Spain and Italy, among which is the hydrograph of the 2003 flood event in the Fella river basin (Italy). Furthermore, spatial resolutions are varied for the flood simulation in order to investigate the influence of spatial resolution on these flow <span class="hlt">approximations</span>. Results show that the kinematic, diffusive and dynamic flow <span class="hlt">approximation</span> provide least to highest accuracy, respectively, in recreating measured temporal variation of the discharge. Kinematic flow, which is commonly used in hydrological modelling, substantially over-estimates hydrological connectivity in the simulations with a spatial resolution of below 30 meters. Since spatial resolutions of models have strongly increased over the past decades, usage of routed kinematic flow should be reconsidered. In the case of flood events, spatial modelling of kinematic flow substantially over</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22080326-symmetric-rotating-wave-approximation-generalized-single-mode-spin-boson-system','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22080326-symmetric-rotating-wave-approximation-generalized-single-mode-spin-boson-system"><span>Symmetric rotating-wave <span class="hlt">approximation</span> for the generalized single-mode spin-boson system</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Albert, Victor V.; Scholes, Gregory D.; Brumer, Paul</p> <p>2011-10-15</p> <p>The single-mode spin-boson model exhibits behavior not included in the rotating-wave <span class="hlt">approximation</span> (RWA) in the ultra and deep-strong coupling regimes, where counter-rotating contributions become important. We introduce a symmetric rotating-wave <span class="hlt">approximation</span> that treats rotating and counter-rotating terms equally, preserves the invariances of the Hamiltonian with respect to its parameters, and reproduces several qualitative features of the spin-boson spectrum not present in the original rotating-wave <span class="hlt">approximation</span> both off-resonance and at deep-strong coupling. The symmetric rotating-wave <span class="hlt">approximation</span> allows for the treatment of certain ultra- and deep-strong coupling regimes with similar accuracy and mathematical simplicity as does the RWA in the weak-coupling regime.more » Additionally, we symmetrize the generalized form of the rotating-wave <span class="hlt">approximation</span> to obtain the same qualitative correspondence with the addition of improved quantitative agreement with the exact numerical results. The method is readily extended to higher accuracy if needed. Finally, we introduce the two-photon parity operator for the two-photon Rabi Hamiltonian and obtain its generalized symmetric rotating-wave <span class="hlt">approximation</span>. The existence of this operator reveals a parity symmetry similar to that in the Rabi Hamiltonian as well as another symmetry that is unique to the two-photon case, providing insight into the mathematical structure of the two-photon spectrum, significantly simplifying the numerics, and revealing some interesting dynamical properties.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28242415','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28242415"><span>Analysis of nodule senescence in pea (Pisum sativum L.) using laser microdissection, real-time PCR, and ACC immunolocalization.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Serova, Tatiana A; Tikhonovich, Igor A; Tsyganov, Viktor E</p> <p>2017-05-01</p> <p>A delay in the senescence of symbiotic nodules could prolong active nitrogen fixation, resulting in improved crop yield and a reduced need for chemical fertilizers. The molecular genetic mechanisms underlying nodule senescence have not been extensively studied with a view to breeding varieties with delayed nodule senescence. In such studies, plant mutants with the phenotype of premature degradation of symbiotic structures are useful models to elucidate the genetic basis of nodule senescence. Using a dataset from transcriptome analysis of Medicago truncatula Gaertn. nodules and previous studies on pea (Pisum sativum L.) nodules, we developed a set of molecular markers based on genes that are known to be activated during nodule senescence. These genes encode cysteine proteases, a thiol protease, a bZIP transcription factor, enzymes involved in the biosynthesis of ethylene (ACS2 for ACC synthase and ACO1 for ACC oxidase) and ABA (AO3 for aldehyde oxidase), and an enzyme involved in catabolism of gibberellins (GA 2-oxidase). We analyzed the transcript levels of these genes in the nodules of two pea wild-types (cv. Sparkle and line Sprint-2) and two mutant lines, one showing premature nodule senescence (E135F (<span class="hlt">sym</span>13)) and one showing no morphological signs of symbiotic structure degradation (Sprint-2Fix - (<span class="hlt">sym</span>31)). Real-time PCR analyses revealed that all of the selected genes showed increased transcript levels during nodule aging in all phenotypes. Remarkably, at 4 weeks after inoculation (WAI), the transcript levels of all analyzed genes were significantly higher in the early senescent nodules of the mutant line E135F (<span class="hlt">sym</span>13) and in nodules of the mutant Sprint-2Fix - (<span class="hlt">sym</span>31) than in the active nitrogen-fixing nodules of wild-types. In contrast, the transcript levels of the same genes of both wild-types were significantly increased only at 6 WAI. We evaluated the expression of selected markers in the different histological nodule zones of pea cv. Sparkle and its</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018InvPr..34e5002T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018InvPr..34e5002T"><span>Sparsest representations and <span class="hlt">approximations</span> of an underdetermined linear system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tardivel, Patrick J. C.; Servien, Rémi; Concordet, Didier</p> <p>2018-05-01</p> <p>In an underdetermined linear system of equations, constrained l 1 minimization methods such as the basis pursuit or the lasso are often used to recover one of the sparsest representations or <span class="hlt">approximations</span> of the system. The null space property is a sufficient and ‘almost’ necessary condition to recover a sparsest representation with the basis pursuit. Unfortunately, this property cannot be easily checked. On the other hand, the mutual coherence is an easily checkable sufficient condition insuring the basis pursuit to recover one of the sparsest representations. Because the mutual coherence condition is too strong, it is hardly met in practice. Even if one of these conditions holds, to our knowledge, there is no theoretical result insuring that the lasso solution is one of the sparsest <span class="hlt">approximations</span>. In this article, we study a novel constrained problem that gives, without any condition, one of the sparsest representations or <span class="hlt">approximations</span>. To solve this problem, we provide a numerical method and we prove its convergence. Numerical experiments show that this approach gives better results than both the basis pursuit problem and the reweighted l 1 minimization problem.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28538985','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28538985"><span>Numerical <span class="hlt">Approximation</span> of Elasticity Tensor Associated With Green-Naghdi Rate.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Haofei; Sun, Wei</p> <p>2017-08-01</p> <p>Objective stress rates are often used in commercial finite element (FE) programs. However, deriving a consistent tangent modulus tensor (also known as elasticity tensor or material Jacobian) associated with the objective stress rates is challenging when complex material models are utilized. In this paper, an <span class="hlt">approximation</span> method for the tangent modulus tensor associated with the Green-Naghdi rate of the Kirchhoff stress is employed to simplify the evaluation process. The effectiveness of the approach is demonstrated through the implementation of two user-defined fiber-reinforced hyperelastic material models. Comparisons between the <span class="hlt">approximation</span> method and the closed-form analytical method demonstrate that the former can simplify the material Jacobian evaluation with satisfactory accuracy while retaining its computational efficiency. Moreover, since the <span class="hlt">approximation</span> method is independent of material models, it can facilitate the implementation of complex material models in FE analysis using shell/membrane elements in abaqus.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3533448','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3533448"><span><span class="hlt">APPROXIMATING</span> SYMMETRIC POSITIVE SEMIDEFINITE TENSORS OF EVEN ORDER*</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>BARMPOUTIS, ANGELOS; JEFFREY, HO; VEMURI, BABA C.</p> <p>2012-01-01</p> <p>Tensors of various orders can be used for modeling physical quantities such as strain and diffusion as well as curvature and other quantities of geometric origin. Depending on the physical properties of the modeled quantity, the estimated tensors are often required to satisfy the positivity constraint, which can be satisfied only with tensors of even order. Although the space P02m of 2mth-order symmetric positive semi-definite tensors is known to be a convex cone, enforcing positivity constraint directly on P02m is usually not straightforward computationally because there is no known analytic description of P02m for m > 1. In this paper, we propose a novel approach for enforcing the positivity constraint on even-order tensors by <span class="hlt">approximating</span> the cone P02m for the cases 0 < m < 3, and presenting an explicit characterization of the <span class="hlt">approximation</span> Σ2m ⊂ Ω2m for m ≥ 1, using the subset Ω2m⊂P02m of semi-definite tensors that can be written as a sum of squares of tensors of order m. Furthermore, we show that this <span class="hlt">approximation</span> leads to a non-negative linear least-squares (NNLS) optimization problem with the complexity that equals the number of generators in Σ2m. Finally, we experimentally validate the proposed approach and we present an application for computing 2mth-order diffusion tensors from Diffusion Weighted Magnetic Resonance Images. PMID:23285313</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=visual+AND+acuity+AND+old+AND+adult&id=EJ1008108','ERIC'); return false;" href="https://eric.ed.gov/?q=visual+AND+acuity+AND+old+AND+adult&id=EJ1008108"><span>Developmental Change in the Acuity of <span class="hlt">Approximate</span> Number and Area Representations</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Odic, Darko; Libertus, Melissa E.; Feigenson, Lisa; Halberda, Justin</p> <p>2013-01-01</p> <p>From very early in life, humans can <span class="hlt">approximate</span> the number and surface area of objects in a scene. The ability to discriminate between 2 <span class="hlt">approximate</span> quantities, whether number or area, critically depends on the ratio between the quantities, with the most difficult ratio that a participant can reliably discriminate known as the Weber fraction.…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>