Prediction of dynamical systems by symbolic regression.
Quade, Markus; Abel, Markus; Shafi, Kamran; Niven, Robert K; Noack, Bernd R
2016-07-01
We study the modeling and prediction of dynamical systems based on conventional models derived from measurements. Such algorithms are highly desirable in situations where the underlying dynamics are hard to model from physical principles or simplified models need to be found. We focus on symbolic regression methods as a part of machine learning. These algorithms are capable of learning an analytically tractable model from data, a highly valuable property. Symbolic regression methods can be considered as generalized regression methods. We investigate two particular algorithms, the so-called fast function extraction which is a generalized linear regression algorithm, and genetic programming which is a very general method. Both are able to combine functions in a certain way such that a good model for the prediction of the temporal evolution of a dynamical system can be identified. We illustrate the algorithms by finding a prediction for the evolution of a harmonic oscillator based on measurements, by detecting an arriving front in an excitable system, and as a real-world application, the prediction of solar power production based on energy production observations at a given site together with the weather forecast. PMID:27575130
Prediction of dynamical systems by symbolic regression
NASA Astrophysics Data System (ADS)
Quade, Markus; Abel, Markus; Shafi, Kamran; Niven, Robert K.; Noack, Bernd R.
2016-07-01
We study the modeling and prediction of dynamical systems based on conventional models derived from measurements. Such algorithms are highly desirable in situations where the underlying dynamics are hard to model from physical principles or simplified models need to be found. We focus on symbolic regression methods as a part of machine learning. These algorithms are capable of learning an analytically tractable model from data, a highly valuable property. Symbolic regression methods can be considered as generalized regression methods. We investigate two particular algorithms, the so-called fast function extraction which is a generalized linear regression algorithm, and genetic programming which is a very general method. Both are able to combine functions in a certain way such that a good model for the prediction of the temporal evolution of a dynamical system can be identified. We illustrate the algorithms by finding a prediction for the evolution of a harmonic oscillator based on measurements, by detecting an arriving front in an excitable system, and as a real-world application, the prediction of solar power production based on energy production observations at a given site together with the weather forecast.
Prediction of dynamical systems by symbolic regression.
Quade, Markus; Abel, Markus; Shafi, Kamran; Niven, Robert K; Noack, Bernd R
2016-07-01
We study the modeling and prediction of dynamical systems based on conventional models derived from measurements. Such algorithms are highly desirable in situations where the underlying dynamics are hard to model from physical principles or simplified models need to be found. We focus on symbolic regression methods as a part of machine learning. These algorithms are capable of learning an analytically tractable model from data, a highly valuable property. Symbolic regression methods can be considered as generalized regression methods. We investigate two particular algorithms, the so-called fast function extraction which is a generalized linear regression algorithm, and genetic programming which is a very general method. Both are able to combine functions in a certain way such that a good model for the prediction of the temporal evolution of a dynamical system can be identified. We illustrate the algorithms by finding a prediction for the evolution of a harmonic oscillator based on measurements, by detecting an arriving front in an excitable system, and as a real-world application, the prediction of solar power production based on energy production observations at a given site together with the weather forecast.
Detecting Recurrence Domains of Dynamical Systems by Symbolic Dynamics
NASA Astrophysics Data System (ADS)
Graben, Peter beim; Hutt, Axel
2013-04-01
We propose an algorithm for the detection of recurrence domains of complex dynamical systems from time series. Our approach exploits the characteristic checkerboard texture of recurrence domains exhibited in recurrence plots. In phase space, recurrence plots yield intersecting balls around sampling points that could be merged into cells of a phase space partition. We construct this partition by a rewriting grammar applied to the symbolic dynamics of time indices. A maximum entropy principle defines the optimal size of intersecting balls. The final application to high-dimensional brain signals yields an optimal symbolic recurrence plot revealing functional components of the signal.
Causation entropy from symbolic representations of dynamical systems
Cafaro, Carlo; Lord, Warren M.; Sun, Jie; Bollt, Erik M.
2015-04-15
Identification of causal structures and quantification of direct information flows in complex systems is a challenging yet important task, with practical applications in many fields. Data generated by dynamical processes or large-scale systems are often symbolized, either because of the finite resolution of the measurement apparatus, or because of the need of statistical estimation. By algorithmic application of causation entropy, we investigated the effects of symbolization on important concepts such as Markov order and causal structure of the tent map. We uncovered that these quantities depend nonmonotonically and, most of all, sensitively on the choice of symbolization. Indeed, we show that Markov order and causal structure do not necessarily converge to their original analog counterparts as the resolution of the partitioning becomes finer.
A dynamical systems perspective on the relationship between symbolic and non-symbolic computation.
Tabor, Whitney
2009-12-01
It has been claimed that connectionist (artificial neural network) models of language processing, which do not appear to employ "rules", are doing something different in kind from classical symbol processing models, which treat "rules" as atoms (e.g., McClelland and Patterson in Trends Cogn Sci 6(11):465-472, 2002). This claim is hard to assess in the absence of careful, formal comparisons between the two approaches. This paper formally investigates the symbol-processing properties of simple dynamical systems called affine dynamical automata, which are close relatives of several recurrent connectionist models of language processing (e.g., Elman in Cogn Sci 14:179-211, 1990). In line with related work (Moore in Theor Comput Sci 201:99-136, 1998; Siegelmann in Neural networks and analog computation: beyond the Turing limit. Birkhäuser, Boston, 1999), the analysis shows that affine dynamical automata exhibit a range of symbol processing behaviors, some of which can be mirrored by various Turing machine devices, and others of which cannot be. On the assumption that the Turing machine framework is a good way to formalize the "computation" part of our understanding of classical symbol processing, this finding supports the view that there is a fundamental "incompatibility" between connectionist and classical models (see Fodor and Pylyshyn 1988; Smolensky in Behav Brain Sci 11(1):1-74, 1988; beim Graben in Mind Matter 2(2):29--51,2004b). Given the empirical successes of connectionist models, the more general, super-Turing framework is a preferable vantage point from which to consider cognitive phenomena. This vantage may give us insight into ill-formed as well as well-formed language behavior and shed light on important structural properties of learning processes. PMID:19898957
Symbolic Dynamics of Reanalysis Data
NASA Astrophysics Data System (ADS)
Larson, J. W.; Dickens, P. M.
2003-12-01
Symbolic dynamics1 is the study of sequences of symbols belonging to a discrete set of elements, the most commmon example being a sequence of ones and zeroes. Often the set of symbols is derived from a timeseries of a continuous variable through the introduction of a partition function--a process called symbolization. Symbolic dynamics has been used widely in the physical sciences; a geophysical example being the application of C1 and C2 complexity2 to hourly precipitation station data3. The C1 and C2 complexities are computed by examining subsequences--or words--of fixed length L in the limit of large values of L. Recent advances in information theory have led to techniques focused on the growth rate of the Shannon entropy and its asymptotic behavior in the limit of long words--levels of entropy convergence4. The result is a set of measures one can use to quantify the amount of memory stored in the sequence, whether or not an observer is able to synchronize to the sequence, and with what confidence it may be predicted. These techniques may also be used to uncover periodic behavior in the sequence. We are currently applying complexity theory and levels of entropy convergence to gridpoint timeseries from the NCAR/NCEP 50-year reanalysis5. Topics to be discussed include: a brief introduction to symbolic dynamics; a description of the partition function/symbolization strategy; a discussion of C1 and C2 complexity and entropy convergence rates and their utility; and example applications of these techniques to NCAR/NCEP 50-reanalyses gridpoint timeseries, resulting in maps of C1 and C2 complexities and entropy convergence rates. Finally, we will discuss how these results may be used to validate climate models. 1{Hao, Bai-Lin, Elementary Symbolic Dynamics and Chaos in Dissipative Systems, Wold Scientific, Singapore (1989)} 2{d'Alessandro, G. and Politi, A., Phys. Rev. Lett., 64, 1609-1612 (1990).} 3{Elsner, J. and Tsonis, A., J. Atmos. Sci., 50, 400-405 (1993).} 4
Reconciling symbolic and dynamic aspects of language
Rączaszek-Leonardi, Joanna; Kelso, J.A. Scott
2009-01-01
The present paper examines natural language as a dynamical system. The oft-expressed view of language as “a static system of symbols” is here seen as an element of a larger system that embraces the mutuality of symbols and dynamics. Following along the lines of the theoretical biologist H.H. Pattee, the relation between symbolic and dynamic aspects of language is expressed within a more general framework that deals with the role of information in biological systems. In this framework, symbols are seen as information-bearing entities that emerge under pressures of communicative needs and that serve as concrete constraints on development and communication. In an attempt to identify relevant dynamic aspects of such a system, one has to take into account events that happen on different time scales: evolutionary language change (i.e., a diachronic aspect), processes of communication (language use) and language acquisition. Acknowledging the role of dynamic processes in shaping and sustaining the structures of natural language calls for a change in methodology. In particular, a purely synchronic analysis of a system of symbols as “meaning-containing entities” is not sufficient to obtain answers to certain recurring problems in linguistics and the philosophy of language. A more encompassing research framework may be the one designed specifically for studying informationally based coupled dynamical systems (coordination dynamics) in which processes of self-organization take place over different time scales. PMID:19173014
Symbolic dynamics for Lozi maps
NASA Astrophysics Data System (ADS)
Misiurewicz, M.; Štimac, S.
2016-10-01
We study the family of Lozi maps {{L}a,b}:{{{R}}2}\\to {{{R}}2} , {{L}a,b}(x,y)=(1+y-a|x|,bx) , and their strange attractors {{ Λ }a,b} . We introduce the set of kneading sequences for the Lozi map and prove that it determines the symbolic dynamics for that map. We also introduce two other equivalent approaches.
Symbolic Dynamics of Biological Feedback Networks
NASA Astrophysics Data System (ADS)
Pigolotti, Simone; Krishna, Sandeep; Jensen, Mogens H.
2009-02-01
We formulate general rules for a coarse graining of the dynamics, which we term “symbolic dynamics,” of feedback networks with monotonic interactions, such as most biological modules. Networks which are more complex than simple cyclic structures can exhibit multiple different symbolic dynamics. Nevertheless, we show several examples where the symbolic dynamics is dominated by a single pattern that is very robust to changes in parameters and is consistent with the dynamics being dictated by a single feedback loop. Our analysis provides a method for extracting these dominant loops from short time series, even if they only show transient trajectories.
Abstraction in perceptual symbol systems.
Barsalou, Lawrence W
2003-01-01
After reviewing six senses of abstraction, this article focuses on abstractions that take the form of summary representations. Three central properties of these abstractions are established: ( i ) type-token interpretation; (ii) structured representation; and (iii) dynamic realization. Traditional theories of representation handle interpretation and structure well but are not sufficiently dynamical. Conversely, connectionist theories are exquisitely dynamic but have problems with structure. Perceptual symbol systems offer an approach that implements all three properties naturally. Within this framework, a loose collection of property and relation simulators develops to represent abstractions. Type-token interpretation results from binding a property simulator to a region of a perceived or simulated category member. Structured representation results from binding a configuration of property and relation simulators to multiple regions in an integrated manner. Dynamic realization results from applying different subsets of property and relation simulators to category members on different occasions. From this standpoint, there are no permanent or complete abstractions of a category in memory. Instead, abstraction is the skill to construct temporary online interpretations of a category's members. Although an infinite number of abstractions are possible, attractors develop for habitual approaches to interpretation. This approach provides new ways of thinking about abstraction phenomena in categorization, inference, background knowledge and learning. PMID:12903648
Symbolic Execution Enhanced System Testing
NASA Technical Reports Server (NTRS)
Davies, Misty D.; Pasareanu, Corina S.; Raman, Vishwanath
2012-01-01
We describe a testing technique that uses information computed by symbolic execution of a program unit to guide the generation of inputs to the system containing the unit, in such a way that the unit's, and hence the system's, coverage is increased. The symbolic execution computes unit constraints at run-time, along program paths obtained by system simulations. We use machine learning techniques treatment learning and function fitting to approximate the system input constraints that will lead to the satisfaction of the unit constraints. Execution of system input predictions either uncovers new code regions in the unit under analysis or provides information that can be used to improve the approximation. We have implemented the technique and we have demonstrated its effectiveness on several examples, including one from the aerospace domain.
Symbol Systems and Pictorial Representations
NASA Astrophysics Data System (ADS)
Diederich, Joachim; Wright, Susan
All problem-solvers are subject to the same ultimate constraints -- limitations on space, time, and materials (Minsky, 1985). He introduces two principles: (1) Economics: Every intelligence must develop symbol-systems for representing objects, causes and goals, and (2) Sparseness: Every evolving intelligence will eventually encounter certain very special ideas -- e.g., about arithmetic, causal reasoning, and economics -- because these particular ideas are very much simpler than other ideas with similar uses. An extra-terrestrial intelligence (ETI) would have developed symbol systems to express these ideas and would have the capacity of multi-modal processing. Vakoch (1998) states that ...``ETI may rely significantly on other sensory modalities (than vision). Particularly useful representations would be ones that may be intelligible through more than one sensory modality. For instance, the information used to create a three-dimensional representation of an object might be intelligible to ETI heavily reliant on either visual or tactile sensory processes.'' The cross-modal representations Vakoch (1998) describes and the symbol systems Minsky (1985) proposes are called ``metaphors'' when combined. Metaphors allow for highly efficient communication. Metaphors are compact, condensed ways of expressing an idea: words, sounds, gestures or images are used in novel ways to refer to something they do not literally denote. Due to the importance of Minsky's ``economics'' principle, it is therefore possible that a message heavily relies on metaphors.
Quantitative characterisation of audio data by ordinal symbolic dynamics
NASA Astrophysics Data System (ADS)
Aschenbrenner, T.; Monetti, R.; Amigó, J. M.; Bunk, W.
2013-06-01
Ordinal symbolic dynamics has developed into a valuable method to describe complex systems. Recently, using the concept of transcripts, the coupling behaviour of systems was assessed, combining the properties of the symmetric group with information theoretic ideas. In this contribution, methods from the field of ordinal symbolic dynamics are applied to the characterisation of audio data. Coupling complexity between frequency bands of solo violin music, as a fingerprint of the instrument, is used for classification purposes within a support vector machine scheme. Our results suggest that coupling complexity is able to capture essential characteristics, sufficient to distinguish among different violins.
Validity of threshold-crossing analysis of symbolic dynamics from chaotic time series
Bollt; Stanford; Lai; Zyczkowski
2000-10-16
A practical and popular technique to extract the symbolic dynamics from experimentally measured chaotic time series is the threshold-crossing method, by which an arbitrary partition is utilized for determining the symbols. We address to what extent the symbolic dynamics so obtained can faithfully represent the phase-space dynamics. Our principal result is that such a practice can lead to a severe misrepresentation of the dynamical system. The measured topological entropy is a Devil's staircase-like, but surprisingly nonmonotone, function of a parameter characterizing the amount of misplacement of the partition.
The rich detail of cultural symbol systems.
Read, Dwight W
2014-08-01
The goal of forming a science of intentional behavior requires a more richly detailed account of symbolic systems than is assumed by the authors. Cultural systems are not simply the equivalent in the ideational domain of culture of the purported Baldwin Effect in the genetic domain. PMID:25162879
Media and Symbol Systems as Related to Cognition and Learning.
ERIC Educational Resources Information Center
Salomon, Gavriel
1979-01-01
The failure of research on media to deal with media's symbol systems is discussed. Nature of symbol systems is described and related to cognition and learning. Symbolic elements used by media can facilitate the cultivation of mental skills in interaction with individual differences and depth of processing. (Author/RD)
Quantification of cardiorespiratory interactions based on joint symbolic dynamics.
Kabir, Muammar M; Saint, David A; Nalivaiko, Eugene; Abbott, Derek; Voss, Andreas; Baumert, Mathias
2011-10-01
Cardiac and respiratory rhythms are highly nonlinear and nonstationary. As a result traditional time-domain techniques are often inadequate to characterize their complex dynamics. In this article, we introduce a novel technique to investigate the interactions between R-R intervals and respiratory phases based on their joint symbolic dynamics. To evaluate the technique, electrocardiograms (ECG) and respiratory signals were recorded in 13 healthy subjects in different body postures during spontaneous and controlled breathing. Herein, the R-R time series were extracted from ECG and respiratory phases were obtained from abdomen impedance belts using the Hilbert transform. Both time series were transformed into ternary symbol vectors based on the changes between two successive R-R intervals or respiratory phases. Subsequently, words of different symbol lengths were formed and the correspondence between the two series of words was determined to quantify the interaction between cardiac and respiratory cycles. To validate our results, respiratory sinus arrhythmia (RSA) was further studied using the phase-averaged characterization of the RSA pattern. The percentage of similarity of the sequence of symbols, between the respective words of the two series determined by joint symbolic dynamics, was significantly reduced in the upright position compared to the supine position (26.4 ± 4.7 vs. 20.5 ± 5.4%, p < 0.01). Similarly, RSA was also reduced during upright posture, but the difference was less significant (0.11 ± 0.02 vs. 0.08 ± 0.01 s, p < 0.05). In conclusion, joint symbolic dynamics provides a new efficient technique for the analysis of cardiorespiratory interaction that is highly sensitive to the effects of orthostatic challenge.
Dynamic Assessment of Graphic Symbol Combinations by Children with Autism.
ERIC Educational Resources Information Center
Nigam, Ravi
2001-01-01
This article offers teaching strategies in the dynamic assessment of the potential of students with autism to acquire and use multiple graphic symbol combinations for communicative purposes. Examples are given of the matrix strategy and milieu language teaching strategies. It also describes the Individualized Communication-Care Protocol, which…
A Scalable Distribution Network Risk Evaluation Framework via Symbolic Dynamics
Yuan, Kai; Liu, Jian; Liu, Kaipei; Tan, Tianyuan
2015-01-01
Background Evaluations of electric power distribution network risks must address the problems of incomplete information and changing dynamics. A risk evaluation framework should be adaptable to a specific situation and an evolving understanding of risk. Methods This study investigates the use of symbolic dynamics to abstract raw data. After introducing symbolic dynamics operators, Kolmogorov-Sinai entropy and Kullback-Leibler relative entropy are used to quantitatively evaluate relationships between risk sub-factors and main factors. For layered risk indicators, where the factors are categorized into four main factors – device, structure, load and special operation – a merging algorithm using operators to calculate the risk factors is discussed. Finally, an example from the Sanya Power Company is given to demonstrate the feasibility of the proposed method. Conclusion Distribution networks are exposed and can be affected by many things. The topology and the operating mode of a distribution network are dynamic, so the faults and their consequences are probabilistic. PMID:25789859
Application of symbolic computation to the analysis of mechanical systems, including robot arms
NASA Technical Reports Server (NTRS)
Hussain, M. A.; Noble, B.
1984-01-01
This paper illustrates the application of symbolic computation in connection with three aspects of mechanical systems: (1) The derivation of dynamical equations by Lagrangian methods; (2) The analysis and synthesis of kinematic mechanisms; and (3) A robot manipulator arm.
Narotam, Pradeep K; Morrison, John F; Schmidt, Michael D; Nathoo, Narendra
2014-04-01
Predictive modeling of emergent behavior, inherent to complex physiological systems, requires the analysis of large complex clinical data streams currently being generated in the intensive care unit. Brain tissue oxygen protocols have yielded outcome benefits in traumatic brain injury (TBI), but the critical physiological thresholds for low brain oxygen have not been established for a dynamical patho-physiological system. High frequency, multi-modal clinical data sets from 29 patients with severe TBI who underwent multi-modality neuro-clinical care monitoring and treatment with a brain oxygen protocol were analyzed. The inter-relationship between acute physiological parameters was determined using symbolic regression (SR) as the computational framework. The mean patient age was 44.4±15 with a mean admission GCS of 6.6±3.9. Sixty-three percent sustained motor vehicle accidents and the most common pathology was intra-cerebral hemorrhage (50%). Hospital discharge mortality was 21%, poor outcome occurred in 24% of patients, and good outcome occurred in 56% of patients. Criticality for low brain oxygen was intracranial pressure (ICP) ≥22.8 mm Hg, for mortality at ICP≥37.1 mm Hg. The upper therapeutic threshold for cerebral perfusion pressure (CPP) was 75 mm Hg. Eubaric hyperoxia significantly impacted partial pressure of oxygen in brain tissue (PbtO2) at all ICP levels. Optimal brain temperature (Tbr) was 34-35°C, with an adverse effect when Tbr≥38°C. Survivors clustered at [Formula: see text] Hg vs. non-survivors [Formula: see text] 18 mm Hg. There were two mortality clusters for ICP: High ICP/low PbtO2 and low ICP/low PbtO2. Survivors maintained PbtO2 at all ranges of mean arterial pressure in contrast to non-survivors. The final SR equation for cerebral oxygenation is: [Formula: see text]. The SR-model of acute TBI advances new physiological thresholds or boundary conditions for acute TBI management: PbtO2≥25 mmHg; ICP≤22 mmHg; CPP≈60-75
Characterizing the dynamics of coupled pendulums via symbolic time series analysis
NASA Astrophysics Data System (ADS)
De Polsi, G.; Cabeza, C.; Marti, A. C.; Masoller, C.
2013-06-01
We propose a novel method of symbolic time-series analysis aimed at characterizing the regular or chaotic dynamics of coupled oscillators. The method is applied to two identical pendulums mounted on a frictionless platform, resembling Huygens' clocks. Employing a transformation rule inspired in ordinal analysis [C. Bandt and B. Pompe, Phys. Rev. Lett. 88, 174102 (2002)], the dynamics of the coupled system is represented by a sequence of symbols that are determined by the order in which the trajectory of each pendulum intersects an appropriately chosen hyperplane in the phase space. For two coupled pendulums we use four symbols corresponding to the crossings of the vertical axis (at the bottom equilibrium point), either clock-wise or anti-clock wise. The complexity of the motion, quantified in terms of the entropy of the symbolic sequence, is compared with the degree of chaos, quantified in terms of the largest Lyapunov exponent. We demonstrate that the symbolic entropy sheds light into the large variety of different periodic and chaotic motions, with different types synchronization, that cannot be inferred from the Lyapunov analysis.
An Acoustic OFDM System with Symbol-by-Symbol Doppler Compensation for Underwater Communication
MinhHai, Tran; Rie, Saotome; Suzuki, Taisaku; Wada, Tomohisa
2016-01-01
We propose an acoustic OFDM system for underwater communication, specifically for vertical link communications such as between a robot in the sea bottom and a mother ship in the surface. The main contributions are (1) estimation of time varying Doppler shift using continual pilots in conjunction with monitoring the drift of Power Delay Profile and (2) symbol-by-symbol Doppler compensation in frequency domain by an ICI matrix representing nonuniform Doppler. In addition, we compare our proposal against a resampling method. Simulation and experimental results confirm that our system outperforms the resampling method when the velocity changes roughly over OFDM symbols. Overall, experimental results taken in Shizuoka, Japan, show our system using 16QAM, and 64QAM achieved a data throughput of 7.5 Kbit/sec with a transmitter moving at maximum 2 m/s, in a complicated trajectory, over 30 m vertically. PMID:27057558
Emergent latent symbol systems in recurrent neural networks
NASA Astrophysics Data System (ADS)
Monner, Derek; Reggia, James A.
2012-12-01
Fodor and Pylyshyn [(1988). Connectionism and cognitive architecture: A critical analysis. Cognition, 28(1-2), 3-71] famously argued that neural networks cannot behave systematically short of implementing a combinatorial symbol system. A recent response from Frank et al. [(2009). Connectionist semantic systematicity. Cognition, 110(3), 358-379] claimed to have trained a neural network to behave systematically without implementing a symbol system and without any in-built predisposition towards combinatorial representations. We believe systems like theirs may in fact implement a symbol system on a deeper and more interesting level: one where the symbols are latent - not visible at the level of network structure. In order to illustrate this possibility, we demonstrate our own recurrent neural network that learns to understand sentence-level language in terms of a scene. We demonstrate our model's learned understanding by testing it on novel sentences and scenes. By paring down our model into an architecturally minimal version, we demonstrate how it supports combinatorial computation over distributed representations by using the associative memory operations of Vector Symbolic Architectures. Knowledge of the model's memory scheme gives us tools to explain its errors and construct superior future models. We show how the model designs and manipulates a latent symbol system in which the combinatorial symbols are patterns of activation distributed across the layers of a neural network, instantiating a hybrid of classical symbolic and connectionist representations that combines advantages of both.
Symbolic, ritual and social dynamics of spiritual healing.
Glik, D C
1988-01-01
Participant observation among white, middle class spiritual healing groups in the Baltimore area (1981-1983) revealed distinct sociocultural and interpersonal patterns of action and influence among two types of groups found. Types of groups were (1) Christian, Pentecostal, neo-Pentecostal or 'charismatic' healing groups and (2) 'New Age', or 'metaphysical' healing groups. Qualitative findings highlight similarities and differences between these two types of groups through examination of organizational characteristics, leadership patterns, ideological systems, and ritual processes. Illness and social characteristics of participants are also compared. Analysis of characteristics of groups and participants shows how the incorporation of explanatory models, social roles, myths, and symbols into the social, ideational, and ritual context of spiritual healing is essential to its therapeutic effect, and that spiritual healing exemplifies a symbolic healing system. Finally, a substantive theoretical model for healing research is suggested.
Quantification of fetal heart rate regularity using symbolic dynamics
NASA Astrophysics Data System (ADS)
van Leeuwen, P.; Cysarz, D.; Lange, S.; Geue, D.; Groenemeyer, D.
2007-03-01
Fetal heart rate complexity was examined on the basis of RR interval time series obtained in the second and third trimester of pregnancy. In each fetal RR interval time series, short term beat-to-beat heart rate changes were coded in 8bit binary sequences. Redundancies of the 28 different binary patterns were reduced by two different procedures. The complexity of these sequences was quantified using the approximate entropy (ApEn), resulting in discrete ApEn values which were used for classifying the sequences into 17 pattern sets. Also, the sequences were grouped into 20 pattern classes with respect to identity after rotation or inversion of the binary value. There was a specific, nonuniform distribution of the sequences in the pattern sets and this differed from the distribution found in surrogate data. In the course of gestation, the number of sequences increased in seven pattern sets, decreased in four and remained unchanged in six. Sequences that occurred less often over time, both regular and irregular, were characterized by patterns reflecting frequent beat-to-beat reversals in heart rate. They were also predominant in the surrogate data, suggesting that these patterns are associated with stochastic heart beat trains. Sequences that occurred more frequently over time were relatively rare in the surrogate data. Some of these sequences had a high degree of regularity and corresponded to prolonged heart rate accelerations or decelerations which may be associated with directed fetal activity or movement or baroreflex activity. Application of the pattern classes revealed that those sequences with a high degree of irregularity correspond to heart rate patterns resulting from complex physiological activity such as fetal breathing movements. The results suggest that the development of the autonomic nervous system and the emergence of fetal behavioral states lead to increases in not only irregular but also regular heart rate patterns. Using symbolic dynamics to
Fixing the broken system of genetic locus symbols
Lohmann, Katja; Lang, Anthony; Klein, Christine
2012-01-01
Originally, locus symbols (e.g., DYT1) were introduced to specify chromosomal regions that had been linked to a familial disorder with a yet unknown gene. Symbols were systematically assigned in a numerical series to designate mapped loci for a specific phenotype or group of phenotypes. Since the system of designating and using locus symbols was originally established, both our knowledge and our techniques of gene discovery have evolved substantially. The current system has problems that are sources of confusion, perpetuate misinformation, and misrepresent the system as a useful reference tool for a list of inherited disorders of a particular phenotypic class. These include erroneously assigned loci, duplicated loci, missing symbols, missing loci, unconfirmed loci in a consecutively numbered system, combining causative genes and risk factor genes in the same list, and discordance between phenotype and list assignment. In this article, we describe these problems and their impact, and propose solutions. The system could be significantly improved by creating distinct lists for clinical and research purposes, creating more informative locus symbols, distinguishing disease-causing mutations from risk factors, raising the threshold of evidence prior to assigning a locus symbol, paying strict attention to the predominant phenotype when assigning symbols lists, and having a formal system for reviewing and continually revising the list that includes input from both clinical and genetics experts. PMID:22454269
Carrier and symbol synchronization system performance study
NASA Technical Reports Server (NTRS)
Lindsey, W. C.
1976-01-01
Results pertinent to predicting the performance of convolutionally encoded binary phase-shift keyed communication links were presented. The details of the development are provided in four sections. These sections are concerned with developing the bit error probability performance degradations due to PN despreading by a time-shared delay locked loop, the Costas demodulation process, symbol synchronization effects and cycle slipping phenomena in the Costas loop. In addition, Costas cycle slipping probabilities are studied as functions of Doppler count time and signal-to-noise conditions. The effect of cycle slipping in the symbol synchronizer is also studied as a function of channel Doppler and other frequency uncertainties.
Color and symbology: symbolic systems of color ordering
NASA Astrophysics Data System (ADS)
Varela, Diana
2002-06-01
Color has been used symbolically in various different fields, such as Heraldry, Music, Liturgy, Alchemy, Art and Literature. In this study, we shall investigate and analyse the structures of relationships that have taken shape as symbolic systems within each specific area of analysis. We shall discuss the most significant symbolic fields and their systems of color ording, considering each one of them as a topological model based on a logic that determines the total organization, according to the scale of reciprocities applied, and the cultural context that gives it meaning.
Symbolic dynamics of jejunal motility in the irritable bowel
NASA Astrophysics Data System (ADS)
Wackerbauer, Renate; Schmidt, Thomas
1999-09-01
Different studies of the irritable bowel syndrome (IBS) by conventional analysis of jejunal motility report conflicting results. Therefore, our aim is to quantify the jejunal contraction activity by symbolic dynamics in order to discriminate between IBS and control subjects. Contraction amplitudes during fasting motility (phase II) are analyzed for 30 IBS and 30 healthy subjects. On the basis of a particular scale-independent discretization of the contraction amplitudes with respect to the median, IBS patients are characterized by increased block entropy as well as increased mean contraction amplitude. In a further more elementary level of analysis these differences can be reduced to specific contraction patterns within the time series, namely the fact that successive large contraction amplitudes are less ordered in IBS than in controls. These significant differences in jejunal motility may point to an altered control of the gut in IBS, although further studies on a representative number of patients have to be done for a validation of these findings.
Balázs, András
2003-06-01
In the present paper, some physical considerations of the biological symbol-matter problem is exposed. First of all, the physical concept of quantum dynamical internal measuremental robustness is discussed. In this context, the significance of introducing affine molecular Hilbert spaces, the original (primordeal) internal quantum measurement, and the global constraining nature of time-inversion symmetry restoring, as a special restoration force, is discussed at some length. It is pointed out, as a summary, that global robustness of the internal dynamics of quantum measurements is due to two basic factors: on one hand, the global constraining nature of the chosen specific (symmetry-) restoring force, and on the other, the individual robustness of the discrete local internal measuremental interactions. The second condition is supposed to follow from a system-internalised ("objective") Bohr-type Copenhagen interpretation of quantum mechanics, corresponding, in an external context, to the Generalized Complementarity Principle of Bohr and Elsasser. It is not claimed, however, that this latter problem has been, as yet, satisfactorily settled physically. In fact, if it were, it would amount to a specifically biological quantum theory of internal measurement, which had to be rooted in the original primordeal global internal measurement, amounting to the origin of the genetic code.
Space telescope coordinate systems, symbols, and nomenclature definitions
NASA Technical Reports Server (NTRS)
Kennel, H. F.
1976-01-01
The major coordinate systems as well as the transformations and transformation angles between them, for the Space Telescope are defined. The coordinate systems were primarily developed for use in pointing and control system analysis and simulation. Additional useful information (on nomenclature, symbols, quaternion operations, etc.) is also contained.
Combining Automated Theorem Provers with Symbolic Algebraic Systems: Position Paper
NASA Technical Reports Server (NTRS)
Schumann, Johann; Koga, Dennis (Technical Monitor)
1999-01-01
In contrast to pure mathematical applications where automated theorem provers (ATPs) are quite capable, proof tasks arising form real-world applications from the area of Software Engineering show quite different characteristics: they usually do not only contain much arithmetic (albeit often quite simple one), but they also often contain reasoning about specific structures (e.g. graphics, sets). Thus, an ATP must be capable of performing reasoning together with a fair amount of simplification, calculation and solving. Therefore, powerful simplifiers and other (symbolic and semi-symbolic) algorithms seem to be ideally suited to augment ATPs. In the following we shortly describe two major points of interest in combining SASs (symbolic algebraic systems) with top-down automated theorem provers (here: SETHEO [Let92, GLMS94]).
Reilly, Jamie; Peelle, Jonathan E; Garcia, Amanda; Crutch, Sebastian J
2016-08-01
Biological plausibility is an essential constraint for any viable model of semantic memory. Yet, we have only the most rudimentary understanding of how the human brain conducts abstract symbolic transformations that underlie word and object meaning. Neuroscience has evolved a sophisticated arsenal of techniques for elucidating the architecture of conceptual representation. Nevertheless, theoretical convergence remains elusive. Here we describe several contrastive approaches to the organization of semantic knowledge, and in turn we offer our own perspective on two recurring questions in semantic memory research: (1) to what extent are conceptual representations mediated by sensorimotor knowledge (i.e., to what degree is semantic memory embodied)? (2) How might an embodied semantic system represent abstract concepts such as modularity, symbol, or proposition? To address these questions, we review the merits of sensorimotor (i.e., embodied) and amodal (i.e., disembodied) semantic theories and address the neurobiological constraints underlying each. We conclude that the shortcomings of both perspectives in their extreme forms necessitate a hybrid middle ground. We accordingly propose the Dynamic Multilevel Reactivation Framework-an integrative model predicated upon flexible interplay between sensorimotor and amodal symbolic representations mediated by multiple cortical hubs. We discuss applications of the dynamic multilevel reactivation framework to abstract and concrete concept representation and describe how a multidimensional conceptual topography based on emotion, sensation, and magnitude can successfully frame a semantic space containing meanings for both abstract and concrete words. The consideration of 'abstract conceptual features' does not diminish the role of logical and/or executive processing in activating, manipulating and using information stored in conceptual representations. Rather, it proposes that the materials upon which these processes operate
Reilly, Jamie; Peelle, Jonathan E; Garcia, Amanda; Crutch, Sebastian J
2016-08-01
Biological plausibility is an essential constraint for any viable model of semantic memory. Yet, we have only the most rudimentary understanding of how the human brain conducts abstract symbolic transformations that underlie word and object meaning. Neuroscience has evolved a sophisticated arsenal of techniques for elucidating the architecture of conceptual representation. Nevertheless, theoretical convergence remains elusive. Here we describe several contrastive approaches to the organization of semantic knowledge, and in turn we offer our own perspective on two recurring questions in semantic memory research: (1) to what extent are conceptual representations mediated by sensorimotor knowledge (i.e., to what degree is semantic memory embodied)? (2) How might an embodied semantic system represent abstract concepts such as modularity, symbol, or proposition? To address these questions, we review the merits of sensorimotor (i.e., embodied) and amodal (i.e., disembodied) semantic theories and address the neurobiological constraints underlying each. We conclude that the shortcomings of both perspectives in their extreme forms necessitate a hybrid middle ground. We accordingly propose the Dynamic Multilevel Reactivation Framework-an integrative model predicated upon flexible interplay between sensorimotor and amodal symbolic representations mediated by multiple cortical hubs. We discuss applications of the dynamic multilevel reactivation framework to abstract and concrete concept representation and describe how a multidimensional conceptual topography based on emotion, sensation, and magnitude can successfully frame a semantic space containing meanings for both abstract and concrete words. The consideration of 'abstract conceptual features' does not diminish the role of logical and/or executive processing in activating, manipulating and using information stored in conceptual representations. Rather, it proposes that the materials upon which these processes operate
A Western apache writing system: the symbols of silas john.
Basso, K H; Anderson, N
1973-06-01
At the outset of this article, it was observed that the adequacy of an etic typology of written symbols could be judged by its ability to describe all the emic distinctions in all the writing systems of the world. In conclusion, we should like to return to this point and briefly examine the extent to which currently available etic concepts can be used to describe the distinctions made by Western Apaches in relation to the writing system of Silas John. Every symbol in the Silas John script may be classified as a phonetic-semantic sign. Symbols of this type denote linguistic expressions that consist of one or more words and contrast as a class with phonetic-nonsemantic signs, which denote phonemes (or phoneme clusters), syllables (or syllable clusters), and various prosodic phenomena (2, pp. 2, 248). Phonetic semantic signs are commonly partitioned into two subclasses: alogographs (which denote single words) and phraseographs (which denote on or more words). Although every symbol in the Silas John script can be assigned to one or the other of these categories, such an exercise is without justification (21). We have no evidence to suggest that Western Apaches classify symbols according to the length or complexity of their linguistic referents, and therefore the imposition of distinctions based on these criteria would be inappropriate and misleading. A far more useful contrast, and one we have already employed, is presented in most etic typologies as an opposition between compound (composite) and noncompound (noncomposite) symbols. Used to break down the category of phonetic-semantic signs, these two concepts enable us to describe more or less exactly the distinction Apaches draw between "symbol elements put together" (ke?escin ledidilgoh) and "symbol elements standing alone" (ke?- escin doledidildaahi). The former may now be defined as consisting of compound phonetic-semantic signs, while the latter is composed of noncompound phonetic-semantic signs. Up to this point
Contrasting methods for symbolic analysis of biological regulatory networks
NASA Astrophysics Data System (ADS)
Wilds, Roy; Glass, Leon
2009-12-01
Symbolic dynamics offers a powerful technique to relate the structure and dynamics of complex networks. We contrast the predictions of two methods of symbolic dynamics for the analysis of monotonic networks suggested by models of genetic control systems.
Symbolic dynamics and entropies of copepod behaviour under non-turbulent and turbulent conditions
NASA Astrophysics Data System (ADS)
Moison, Maud; Schmitt, François G.; Souissi, Sami; Seuront, Laurent; Hwang, Jiang-Shiou
2009-06-01
We consider here behavioural activity of copepods as a succession of symbols associated with swimming states: slow swimming, fast swimming, break and grooming. We characterise these symbolic sequences using tools from symbolic dynamics: probability density function of the residence times in each state; transition probability at each time step; Shannon entropy and dynamic entropy. This approach is applied to the swimming behaviour of Centropages hamatus which we have analyzed as an example of application, in order to stress the differences associated with turbulent and non-turbulent conditions. We characterise in this theoretical framework the behavioural changes exhibited by the copepod under turbulent conditions.
The Dynamic Role of Symbols in Human Meaning Making
ERIC Educational Resources Information Center
Tracy, Rita
2012-01-01
The author reviews "Symbolic Transformation: The Mind in Movement Through Culture and Society," an important first book in a new series that aimed at understanding the myriad ways "social representation processes operate in one's everyday feeling, thinking and acting." The book consists of a series of chapters brought together to develop a rich…
Logical and symbolic analysis of robust biological dynamics.
Glass, Leon; Siegelmann, Hava T
2010-12-01
Logical models provide insight about key control elements of biological networks. Based solely on the logical structure, we can determine state transition diagrams that give the allowed possible transitions in a coarse grained phase space. Attracting pathways and stable nodes in the state transition diagram correspond to robust attractors that would be found in several different types of dynamical systems that have the same logical structure. Attracting nodes in the state transition diagram correspond to stable steady states. Furthermore, the sequence of logical states appearing in biological networks with robust attracting pathways would be expected to appear also in Boolean networks, asynchronous switching networks, and differential equations having the same underlying structure. This provides a basis for investigating naturally occurring and synthetic systems, both to predict the dynamics if the structure is known, and to determine the structure if the transitions are known.
Zhao, Jiaduo; Gong, Weiguo; Tang, Yuzhen; Li, Weihong
2016-01-01
In this paper, we propose an effective human and nonhuman pyroelectric infrared (PIR) signal recognition method to reduce PIR detector false alarms. First, using the mathematical model of the PIR detector, we analyze the physical characteristics of the human and nonhuman PIR signals; second, based on the analysis results, we propose an empirical mode decomposition (EMD)-based symbolic dynamic analysis method for the recognition of human and nonhuman PIR signals. In the proposed method, first, we extract the detailed features of a PIR signal into five symbol sequences using an EMD-based symbolization method, then, we generate five feature descriptors for each PIR signal through constructing five probabilistic finite state automata with the symbol sequences. Finally, we use a weighted voting classification strategy to classify the PIR signals with their feature descriptors. Comparative experiments show that the proposed method can effectively classify the human and nonhuman PIR signals and reduce PIR detector’s false alarms. PMID:26805837
Zhao, Jiaduo; Gong, Weiguo; Tang, Yuzhen; Li, Weihong
2016-01-01
In this paper, we propose an effective human and nonhuman pyroelectric infrared (PIR) signal recognition method to reduce PIR detector false alarms. First, using the mathematical model of the PIR detector, we analyze the physical characteristics of the human and nonhuman PIR signals; second, based on the analysis results, we propose an empirical mode decomposition (EMD)-based symbolic dynamic analysis method for the recognition of human and nonhuman PIR signals. In the proposed method, first, we extract the detailed features of a PIR signal into five symbol sequences using an EMD-based symbolization method, then, we generate five feature descriptors for each PIR signal through constructing five probabilistic finite state automata with the symbol sequences. Finally, we use a weighted voting classification strategy to classify the PIR signals with their feature descriptors. Comparative experiments show that the proposed method can effectively classify the human and nonhuman PIR signals and reduce PIR detector's false alarms. PMID:26805837
Symbolic Dynamics and Spiral Structures due to the Saddle-Focus Bifurcations
NASA Astrophysics Data System (ADS)
Shilnikov, Andrey; Shilnikov, Leonid; Barrio, Roberto
2013-01-01
We examine spiral structures in bi-parametric diagrams of dissipative systems with strange attractors. We show that the organizing center for spiral structures in the Rössler model with the saddle-focus equilibria is related to the change of the structure of the attractor transitioning between the spiral and screw-like types. The structure skeleton is formed by saddlenode bifurcation curves originating from a codimension-two Belyakov point corresponding to the transition to the saddle-focus from a simple saddle. A new computational technique based on the symbolic kneading invariant description for examining dynamical chaos and parametric chaos in systems with Lorenz-like attractors is proposed and tested. This technique uncovers the stunning complexity and universality of spiral structures in the iconic Lorenz equations.
Chaos and crises in a model for cooperative hunting: a symbolic dynamics approach.
Duarte, Jorge; Januário, Cristina; Martins, Nuno; Sardanyés, Josep
2009-12-01
In this work we investigate the population dynamics of cooperative hunting extending the McCann and Yodzis model for a three-species food chain system with a predator, a prey, and a resource species. The new model considers that a given fraction sigma of predators cooperates in prey's hunting, while the rest of the population 1-sigma hunts without cooperation. We use the theory of symbolic dynamics to study the topological entropy and the parameter space ordering of the kneading sequences associated with one-dimensional maps that reproduce significant aspects of the dynamics of the species under several degrees of cooperative hunting. Our model also allows us to investigate the so-called deterministic extinction via chaotic crisis and transient chaos in the framework of cooperative hunting. The symbolic sequences allow us to identify a critical boundary in the parameter spaces (K,C(0)) and (K,sigma) which separates two scenarios: (i) all-species coexistence and (ii) predator's extinction via chaotic crisis. We show that the crisis value of the carrying capacity K(c) decreases at increasing sigma, indicating that predator's populations with high degree of cooperative hunting are more sensitive to the chaotic crises. We also show that the control method of Dhamala and Lai [Phys. Rev. E 59, 1646 (1999)] can sustain the chaotic behavior after the crisis for systems with cooperative hunting. We finally analyze and quantify the inner structure of the target regions obtained with this control method for wider parameter values beyond the crisis, showing a power law dependence of the extinction transients on such critical parameters.
Joint symbolic dynamics for the assessment of cardiovascular and cardiorespiratory interactions
Baumert, Mathias; Javorka, Michal; Kabir, Muammar
2015-01-01
Beat-to-beat variations in heart period provide information on cardiovascular control and are closely linked to variations in arterial pressure and respiration. Joint symbolic analysis of heart period, systolic arterial pressure and respiration allows for a simple description of their shared short-term dynamics that are governed by cardiac baroreflex control and cardiorespiratory coupling. In this review, we discuss methodology and research applications. Studies suggest that analysis of joint symbolic dynamics provides a powerful tool for identifying physiological and pathophysiological changes in cardiovascular and cardiorespiratory control. PMID:25548272
Computational complexity of symbolic dynamics at the onset of chaos
NASA Astrophysics Data System (ADS)
Lakdawala, Porus
1996-05-01
In a variety of studies of dynamical systems, the edge of order and chaos has been singled out as a region of complexity. It was suggested by Wolfram, on the basis of qualitative behavior of cellular automata, that the computational basis for modeling this region is the universal Turing machine. In this paper, following a suggestion of Crutchfield, we try to show that the Turing machine model may often be too powerful as a computational model to describe the boundary of order and chaos. In particular we study the region of the first accumulation of period doubling in unimodal and bimodal maps of the interval, from the point of view of language theory. We show that in relation to the ``extended'' Chomsky hierarchy, the relevant computational model in the unimodal case is the nested stack automaton or the related indexed languages, while the bimodal case is modeled by the linear bounded automaton or the related context-sensitive languages.
Arbitrary mechanical system description by a symbolic line
NASA Astrophysics Data System (ADS)
Dmitrochenko, O.; Mikkola, A.; Olshevskiy, A.
2016-04-01
A single-line symbolic notation is proposed for description of an arbitrary multibody system. The kinematics is represented by a sequence of elementary transformations, each of those being marked by a reserved alphabetic character. Force and constraint links between the bodies are also defined by reserved characters. The parameters of the system, such as identifiers of degrees of freedom, inertia parameters and others, are assigned default names if not specified. However, user-defined names, parameters and functions can be placed instead if needed. The proposed description in its shortest form is suitable for academic purpose to identify only the essential properties of a multibody system. In an extended form, by explicit mentioning names of variables and parameters and other data like initial conditions, this description can serve as input data for a multibody analysis software. Lots of examples from the academic area and technical applications are given to show the applicability of the description.
Semipredictable dynamical systems
NASA Astrophysics Data System (ADS)
García-Morales, Vladimir
2016-10-01
A new class of deterministic dynamical systems, termed semipredictable dynamical systems, is presented. The spatiotemporal evolution of these systems have both predictable and unpredictable traits, as found in natural complex systems. We prove a general result: The dynamics of any deterministic nonlinear cellular automaton (CA) with p possible dynamical states can be decomposed at each instant of time in a superposition of N layers involving p0, p1, …, pN - 1 dynamical states each, where the pk ∈ N , k ∈ [ 0 , N - 1 ] are divisors of p. If the divisors coincide with the prime factors of p this decomposition is unique. Conversely, we also prove that N CA working on symbols p0, p1, …, pN - 1 can be composed to create a graded CA rule with N different layers. We then show that, even when the full spatiotemporal evolution can be unpredictable, certain traits (layers) can exactly be predicted. We present explicit examples of such systems involving compositions of Wolfram's 256 elementary CA and a more complex CA rule acting on a neighborhood of two sites and 12 symbols and whose rule table corresponds to the smallest Moufang loop M12(S3, 2).
Chaos Theory: Self-Organization and Symbolic Representation in Family Systems.
ERIC Educational Resources Information Center
Butz, Michael R.; Carlson, J. Matthew; Carlson, Jon
1998-01-01
Proposes an integration of the use of symbols and metaphors that illustrates nonlinear dynamics through a case example weaving together contemporary science and human development in the context of family therapy. Discusses areas of future study. (Author/MKA)
Standardization of a Graphic Symbol System as an Alternative Communication Tool for Turkish
ERIC Educational Resources Information Center
Karal, Yasemin; Karal, Hasan; Silbir, Lokman; Altun, Taner
2016-01-01
Graphic symbols are commonly used across countries in order to support individuals with communicative deficiency. The literature review revealed the absence of such a system for Turkish socio-cultural context. In this study, the aim was to develop a symbol system appropriate for the Turkish socio-cultural context. The process began with studies…
Problem Solving in Calculus with Symbolic Geometry and CAS
ERIC Educational Resources Information Center
Todd, Philip; Wiechmann, James
2008-01-01
Computer algebra systems (CAS) have been around for a number of years, as has dynamic geometry. Symbolic geometry software is new. It bears a superficial similarity to dynamic geometry software, but differs in that problems may be set up involving symbolic variables and constants, and measurements are given as symbolic expressions. Mathematical…
Symbolic pattern processing system for planar spatial structures
Rao, N.S.V.
1990-01-01
We describe a symbolic pattern processing system that recognizes when composite planar structures are present in a two-dimensional spatial pattern. The composite objects are composed and identified by the arrangement of elementary objects (such as rectangles, squares, circles, etc.). The composite planar structures are represented by a special class of graphs where the nodes satisfy a two-dimensional ordering. We use straightforward algorithms to generate these graphs from an image (obtained using a vision system) that was preprocessed by a system of low-level neural networks. The graphs are generated for all arrangements of elementary objects in an image, and the resulting graphs are compared with predetermined models of composite objects in order to determine if the composite object is present in the image. We present an algorithm to find out if two given graphs match within a specified tolerance given by the pair (l,d). We then develop a similarity measure between two graphs based on two different linearizations of two-dimensional lattice points. A decision making module, based on empirical rules, decides if the image contains any instances of the prestored models of composite objects. 10 refs., 4 figs.
Symbolic Representation for Introduction of Concept of Decimal System in Mexican School Children
ERIC Educational Resources Information Center
Solovieva, Y.; Rosas Rivera, Y.; Quintanar, L.; García, M. A.
2013-01-01
The present study describes the usage of strategies of symbolic representation during teaching introduction of decimal system in primary school in Mexico. Our research is based on Activity Theory conception of teaching-learning process and of gradual introduction of scientific concepts in school age. The method includes symbolic external…
Complexity in Dynamical Systems
NASA Astrophysics Data System (ADS)
Moore, Cristopher David
The study of chaos has shown us that deterministic systems can have a kind of unpredictability, based on a limited knowledge of their initial conditions; after a finite time, the motion appears essentially random. This observation has inspired a general interest in the subject of unpredictability, and more generally, complexity; how can we characterize how "complex" a dynamical system is?. In this thesis, we attempt to answer this question with a paradigm of complexity that comes from computer science, we extract sets of symbol sequences, or languages, from a dynamical system using standard methods of symbolic dynamics; we then ask what kinds of grammars or automata are needed a generate these languages. This places them in the Chomsky heirarchy, which in turn tells us something about how subtle and complex the dynamical system's behavior is. This gives us insight into the question of unpredictability, since these automata can also be thought of as computers attempting to predict the system. In the culmination of the thesis, we find a class of smooth, two-dimensional maps which are equivalent to the highest class in the Chomsky heirarchy, the turning machine; they are capable of universal computation. Therefore, these systems possess a kind of unpredictability qualitatively different from the usual "chaos": even if the initial conditions are known exactly, questions about the system's long-term dynamics are undecidable. No algorithm exists to answer them. Although this kind of unpredictability has been discussed in the context of distributed, many-degree-of -freedom systems (for instance, cellular automata) we believe this is the first example of such phenomena in a smooth, finite-degree-of-freedom system.
Relations between static and dynamic exponents in nonlinear dynamical systems
NASA Astrophysics Data System (ADS)
Badii, R.; Broggi, G.
1990-01-01
The rules governing the evolution of nonlinear dynamical systems are systematically detected by constructing a hierarchical tree of symbol sequences. Relations between local partial dimensions and Lyapunov exponents are obtained from equations for the probabilities of symbol sequences on the logic tree. These relations are nonlinear and involve an open hierarchy of equations, which shows that the dimension spectrum f(α) cannot be obtained in closed form from the sole knowledge of the local Lyapunov exponents.
The analysis of control trajectories using symbolic and database computing
NASA Technical Reports Server (NTRS)
Grossman, Robert
1991-01-01
The research broadly concerned the symbolic computation, mixed numeric-symbolic computation, and data base computation of trajectories of dynamical systems, especially control systems. It was determined that trees can be used to compute symbolically series which approximate solutions to differential equations.
Ravelo-García, A G; Saavedra-Santana, P; Juliá-Serdá, G; Navarro-Mesa, J L; Navarro-Esteva, J; Álvarez-López, X; Gapelyuk, A; Penzel, T; Wessel, N
2014-06-01
Many sleep centres try to perform a reduced portable test in order to decrease the number of overnight polysomnographies that are expensive, time-consuming, and disturbing. With some limitations, heart rate variability (HRV) has been useful in this task. The aim of this investigation was to evaluate if inclusion of symbolic dynamics variables to a logistic regression model integrating clinical and physical variables, can improve the detection of subjects for further polysomnographies. To our knowledge, this is the first contribution that innovates in that strategy. A group of 133 patients has been referred to the sleep center for suspected sleep apnea. Clinical assessment of the patients consisted of a sleep related questionnaire and a physical examination. The clinical variables related to apnea and selected in the statistical model were age (p < 10(-3)), neck circumference (p < 10(-3)), score on a questionnaire scale intended to quantify daytime sleepiness (p < 10(-3)), and intensity of snoring (p < 10(-3)). The validation of this model demonstrated an increase in classification performance when a variable based on non-linear dynamics of HRV (p < 0.01) was used additionally to the other variables. For diagnostic rule based only on clinical and physical variables, the corresponding area under the receiver operating characteristic (ROC) curve was 0.907 (95% confidence interval (CI) = 0.848, 0.967), (sensitivity 87.10% and specificity 80%). For the model including the average of a symbolic dynamic variable, the area under the ROC curve was increased to 0.941 (95% = 0.897, 0.985), (sensitivity 88.71% and specificity 82.86%). In conclusion, symbolic dynamics, coupled with significant clinical and physical variables can help to prioritize polysomnographies in patients with a high probability of apnea. In addition, the processing of the HRV is a well established low cost and robust technique.
NASA Astrophysics Data System (ADS)
Ravelo-García, A. G.; Saavedra-Santana, P.; Juliá-Serdá, G.; Navarro-Mesa, J. L.; Navarro-Esteva, J.; Álvarez-López, X.; Gapelyuk, A.; Penzel, T.; Wessel, N.
2014-06-01
Many sleep centres try to perform a reduced portable test in order to decrease the number of overnight polysomnographies that are expensive, time-consuming, and disturbing. With some limitations, heart rate variability (HRV) has been useful in this task. The aim of this investigation was to evaluate if inclusion of symbolic dynamics variables to a logistic regression model integrating clinical and physical variables, can improve the detection of subjects for further polysomnographies. To our knowledge, this is the first contribution that innovates in that strategy. A group of 133 patients has been referred to the sleep center for suspected sleep apnea. Clinical assessment of the patients consisted of a sleep related questionnaire and a physical examination. The clinical variables related to apnea and selected in the statistical model were age (p < 10-3), neck circumference (p < 10-3), score on a questionnaire scale intended to quantify daytime sleepiness (p < 10-3), and intensity of snoring (p < 10-3). The validation of this model demonstrated an increase in classification performance when a variable based on non-linear dynamics of HRV (p < 0.01) was used additionally to the other variables. For diagnostic rule based only on clinical and physical variables, the corresponding area under the receiver operating characteristic (ROC) curve was 0.907 (95% confidence interval (CI) = 0.848, 0.967), (sensitivity 87.10% and specificity 80%). For the model including the average of a symbolic dynamic variable, the area under the ROC curve was increased to 0.941 (95% = 0.897, 0.985), (sensitivity 88.71% and specificity 82.86%). In conclusion, symbolic dynamics, coupled with significant clinical and physical variables can help to prioritize polysomnographies in patients with a high probability of apnea. In addition, the processing of the HRV is a well established low cost and robust technique.
Immanuel, Sarah A; Kohler, Mark; Kabir, Muammar M; Saint, David A; Baumert, Mathias
2014-01-01
Childhood sleep disordered breathing (SDB) is characterized by an increased work of breathing, restless night sleep and excessive daytime sleepiness and has been associated with cognitive impairment, behavioral disturbances and early cardiovascular changes. Compared to normal controls, children with SDB have elevated arousal thresholds and their sleep EEG may elicit cortical activation associated with arousals but often too subtle to be visually scored. The aim of this study was to assess EEG complexity throughout the respiratory cycle based on symbolic dynamics in children with SDB (n=40) and matched healthy controls. EEG amplitude values were symbolized based on the quartiles of their distribution and words of length 3 were formed and classed into 4 types based on their patterns. Children with SDB showed less complex EEG dynamics in non-REM sleep that was unrelated to the respiratory phase. In REM sleep normal children showed a respiratory phase-related reduction in EEG variability during the expiratory phase compared to inspiration, which was not apparent in children with SDB. In conclusion, respiratory cycle related EEG dynamics are altered in children with SDB during REM sleep and indicate changes in cortical activity.
NASA Astrophysics Data System (ADS)
Kelley, Troy D.; McGhee, S.
2013-05-01
This paper describes the ongoing development of a robotic control architecture that inspired by computational cognitive architectures from the discipline of cognitive psychology. The Symbolic and Sub-Symbolic Robotics Intelligence Control System (SS-RICS) combines symbolic and sub-symbolic representations of knowledge into a unified control architecture. The new architecture leverages previous work in cognitive architectures, specifically the development of the Adaptive Character of Thought-Rational (ACT-R) and Soar. This paper details current work on learning from episodes or events. The use of episodic memory as a learning mechanism has, until recently, been largely ignored by computational cognitive architectures. This paper details work on metric level episodic memory streams and methods for translating episodes into abstract schemas. The presentation will include research on learning through novelty and self generated feedback mechanisms for autonomous systems.
Functional test generation of digital LSI/VLSI systems using machine symbolic execution technique
Lin, T.
1985-01-01
Functional testing is among the promising solutions proposed in recent years for the challenging problems of testing modern digital LSI/VLSI systems. It is aimed at validating the correct operation of a digital system with respect to its functional specification. Functional test generation is performed before functional testing. In this dissertation, a functional test pattern generation algorithm is developed. This algorithm is explicit, systematic, and practical. The whole research work consists of five related topics including theoretical development and computer experiment. First, a register transfer language specially designed for the functional description of a general digital system is defined. Second, a register-transfer (RT) level fault model quite different from the conventional gate-level stuck-at fault model is established and the fault collapsing analysis is performed for better test generation efficiency. Third, the technique of register-transfer-level symbolic execution is explored. The major problems are defined, analyzed, and solved. A register-transfer-level symbolic execution system is designed and implemented. Fourth, an overall RT-level test pattern generation algorithm is developed based on the RT-level fault model and the RT-level symbolic execution technique. The symbolic executions are performed on both fault-free and fault-injected machines for symbolic results. By comparing the symbolic results and path constraints obtained from fault-free and fault-injected machines, an input test pattern which distinguishes each bad machine from the good machine is derived.
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.
1986-01-01
The process of performing an automated stability analysis for an elastic-bladed helicopter rotor is discussed. A symbolic manipulation program, written in FORTRAN, is used to aid in the derivation of the governing equations of motion for the rotor. The blades undergo coupled bending and torsional deformations. Two-dimensional quasi-steady aerodynamics below stall are used. Although reversed flow effects are neglected, unsteady effects, modeled as dynamic inflow are included. Using a Lagrangian approach, the governing equations are derived in generalized coordinates using the symbolic program. The program generates the steady and perturbed equations and writes into subroutines to be called by numerical routines. The symbolic program can operate on both expressions and matrices. For the case of hovering flight, the blade and dynamic inflow equations are converted to equations in a multiblade coordinate system by rearranging the coefficients of the equations. For the case of forward flight, the multiblade equations are obtained through the symbolic program. The final multiblade equations are capable of accommodating any number of elastic blade modes. The computer implementation of this procedure consists of three stages: (1) the symbolic derivation of equations; (2) the coding of the equations into subroutines; and (3) the numerical study after identifying mass, damping, and stiffness coefficients. Damping results are presented in hover and in forward flight with and without dynamic inflow effects for various rotor blade models, including rigid blade lag-flap, elastic flap-lag, flap-lag-torsion, and quasi-static torsion. Results from dynamic inflow effects which are obtained from a lift deficiency function for a quasi-static inflow model in hover are also presented.
Wang, Jinjing Jenny; Odic, Darko; Halberda, Justin; Feigenson, Lisa
2016-07-01
From early in life, humans have access to an approximate number system (ANS) that supports an intuitive sense of numerical quantity. Previous work in both children and adults suggests that individual differences in the precision of ANS representations correlate with symbolic math performance. However, this work has been almost entirely correlational in nature. Here we tested for a causal link between ANS precision and symbolic math performance by asking whether a temporary modulation of ANS precision changes symbolic math performance. First, we replicated a recent finding that 5-year-old children make more precise ANS discriminations when starting with easier trials and gradually progressing to harder ones, compared with the reverse. Next, we show that this brief modulation of ANS precision influenced children's performance on a subsequent symbolic math task but not a vocabulary task. In a supplemental experiment, we present evidence that children who performed ANS discriminations in a random trial order showed intermediate performance on both the ANS task and the symbolic math task, compared with children who made ordered discriminations. Thus, our results point to a specific causal link from the ANS to symbolic math performance.
NASA Technical Reports Server (NTRS)
Simon, M. K.
1974-01-01
Multilevel amplitude-shift-keying (MASK) and quadrature amplitude-shift-keying (QASK) as signaling techniques for multilevel digital communications systems, and the problem of providing symbol synchronization in the receivers of such systems are discussed. A technique is presented for extracting symbol sync from an MASK or QASK signal. The scheme is a generalization of the data transition tracking loop used in PSK systems. The performance of the loop was analyzed in terms of its mean-squared jitter and its effects on the data detection process in MASK and QASK systems.
Symbolic coding for noninvertible systems: uniform approximation and numerical computation
NASA Astrophysics Data System (ADS)
Beyn, Wolf-Jürgen; Hüls, Thorsten; Schenke, Andre
2016-11-01
It is well known that the homoclinic theorem, which conjugates a map near a transversal homoclinic orbit to a Bernoulli subshift, extends from invertible to specific noninvertible dynamical systems. In this paper, we provide a unifying approach that combines such a result with a fully discrete analog of the conjugacy for finite but sufficiently long orbit segments. The underlying idea is to solve appropriate discrete boundary value problems in both cases, and to use the theory of exponential dichotomies to control the errors. This leads to a numerical approach that allows us to compute the conjugacy to any prescribed accuracy. The method is demonstrated for several examples where invertibility of the map fails in different ways.
NASA Astrophysics Data System (ADS)
Morecroft, John
System dynamics is an approach for thinking about and simulating situations and organisations of all kinds and sizes by visualising how the elements fit together, interact and change over time. This chapter, written by John Morecroft, describes modern system dynamics which retains the fundamentals developed in the 1950s by Jay W. Forrester of the MIT Sloan School of Management. It looks at feedback loops and time delays that affect system behaviour in a non-linear way, and illustrates how dynamic behaviour depends upon feedback loop structures. It also recognises improvements as part of the ongoing process of managing a situation in order to achieve goals. Significantly it recognises the importance of context, and practitioner skills. Feedback systems thinking views problems and solutions as being intertwined. The main concepts and tools: feedback structure and behaviour, causal loop diagrams, dynamics, are practically illustrated in a wide variety of contexts from a hot water shower through to a symphony orchestra and the practical application of the approach is described through several real examples of its use for strategic planning and evaluation.
Giraldo, Beatriz F; Rodriguez, Javier; Caminal, Pere; Bayes-Genis, Antonio; Voss, Andreas
2015-01-01
Cardiovascular diseases are the first cause of death in developed countries. Using electrocardiographic (ECG), blood pressure (BP) and respiratory flow signals, we obtained parameters for classifying cardiomyopathy patients. 42 patients with ischemic (ICM) and dilated (DCM) cardiomyopathies were studied. The left ventricular ejection fraction (LVEF) was used to stratify patients with low risk (LR: LVEF>35%, 14 patients) and high risk (HR: LVEF≤ 35%, 28 patients) of heart attack. RR, SBP and TTot time series were extracted from the ECG, BP and respiratory flow signals, respectively. The time series were transformed to a binary space and then analyzed using Joint Symbolic Dynamic with a word length of three, characterizing them by the probability of occurrence of the words. Extracted parameters were then reduced using correlation and statistical analysis. Principal component analysis and support vector machines methods were applied to characterize the cardiorespiratory and cardiovascular interactions in ICM and DCM cardiomyopathies, obtaining an accuracy of 85.7%. PMID:26736261
NASA Astrophysics Data System (ADS)
Pikichyan, H. V.
2015-07-01
Employing the cosmologic concepts and astronomical symbols, the features of the ancient subjective approach of the achievement or perception of the knowledge and its systematic delivery ways are presented. In particular, the ancient systems of the natural medical science and the art of astrology are discussed, whereas the relations of the five cosmological elements, three dynamical agents, nine luminaries and twelve zodiac signs are applied. It is pointed out some misunderstandings encountered in the contemporary interpretation on the evaluation of ancient systems of the knowledge.
General American Speech and Phonic Symbols.
ERIC Educational Resources Information Center
Calvert, Donald R.
1982-01-01
General American Symbols, speech and phonic symbols adapted from the Northampton symbols, are presented as a simplified system for teaching reading and speech to deaf children. Ways to use symbols for indicating features of speech production are suggested. (Author)
NASA Astrophysics Data System (ADS)
DeMaris, David
1998-07-01
This paper brings together observations from a variety of fields to point toward what the author believes to be the most promising computational approach to the modeling of brain-like symbol formation, unifying perceptual and linguistic domains under a common computational physics. It brings Cassirer's Gestalt era evolutionary theory of language and symbolic thought to the attention of the situated cognition community, and describes how recent observations in experimental brain dynamics and computational approaches can be brought to bear on the problem. Research by the author and others in oscillatory network models of ambiguous perception with an attentional component is emphasised as a starting point for exploring increasingly complex pattern formation processes leading to simple forms of linguistic performance. These forms occupy a space between iconic representations and grammar. The dynamic pattern network framework suggests that to separate perception, representation or models and action in a realistic biophysics of situated organisms may be problematic.
A prototype symbolic model of canonical functional neuroanatomy of the motor system.
Talos, Ion-Florin; Rubin, Daniel L; Halle, Michael; Musen, Mark; Kikinis, Ron
2008-04-01
Recent advances in bioinformatics have opened entire new avenues for organizing, integrating and retrieving neuroscientific data, in a digital, machine-processable format, which can be at the same time understood by humans, using ontological, symbolic data representations. Declarative information stored in ontological format can be perused and maintained by domain experts, interpreted by machines, and serve as basis for a multitude of decision support, computerized simulation, data mining, and teaching applications. We have developed a prototype symbolic model of canonical neuroanatomy of the motor system. Our symbolic model is intended to support symbolic look up, logical inference and mathematical modeling by integrating descriptive, qualitative and quantitative functional neuroanatomical knowledge. Furthermore, we show how our approach can be extended to modeling impaired brain connectivity in disease states, such as common movement disorders. In developing our ontology, we adopted a disciplined modeling approach, relying on a set of declared principles, a high-level schema, Aristotelian definitions, and a frame-based authoring system. These features, along with the use of the Unified Medical Language System (UMLS) vocabulary, enable the alignment of our functional ontology with an existing comprehensive ontology of human anatomy, and thus allow for combining the structural and functional views of neuroanatomy for clinical decision support and neuroanatomy teaching applications. Although the scope of our current prototype ontology is limited to a particular functional system in the brain, it may be possible to adapt this approach for modeling other brain functional systems as well.
NASA Technical Reports Server (NTRS)
Macala, G. A.
1983-01-01
A computer program is described that can automatically generate symbolic equations of motion for systems of hinge-connected rigid bodies with tree topologies. The dynamical formulation underlying the program is outlined, and examples are given to show how a symbolic language is used to code the formulation. The program is applied to generate the equations of motion for a four-body model of the Galileo spacecraft. The resulting equations are shown to be a factor of three faster in execution time than conventional numerical subroutines.
Knowledge through "Know How": Systemic Functional Grammatics and the Symbolic Reading
ERIC Educational Resources Information Center
Macken-Horarik, Mary
2006-01-01
This article investigates the potential of systemic functional linguistics (SFL) for exploring students' achievements in writing, thus moving beyond "deficit models" of grammar in school English. It considers the semantic features of successful interpretations of examination narratives, using what I call the "symbolic reading". Halliday has…
The Picture Exchange Communication System: Digital Photographs versus Picture Symbols
ERIC Educational Resources Information Center
Jonaitis, Carmen
2011-01-01
The Picture Exchange Communication System (PECS) is an augmentative and alternative system (AAC) used to improve and increase communication for children with Autism Spectrum Disorder (ASD) and other developmental disorders. Research addressing the efficacy of this system is increasing; however, there is limited information published that evaluates…
Remote Symbolic Computation of Loci
ERIC Educational Resources Information Center
Abanades, Miguel A.; Escribano, Jesus; Botana, Francisco
2010-01-01
This article presents a web-based tool designed to compute certified equations and graphs of geometric loci specified using standard Dynamic Geometry Systems (DGS). Complementing the graphing abilities of the considered DGS, the equations of the loci produced by the application are remotely computed using symbolic algebraic techniques from the…
Tirabassi, Giulio; Masoller, Cristina
2016-01-01
Many natural systems can be represented by complex networks of dynamical units with modular structure in the form of communities of densely interconnected nodes. Unraveling this community structure from observed data requires the development of appropriate tools, particularly when the nodes are embedded in a regular space grid and the datasets are short and noisy. Here we propose two methods to identify communities, and validate them with the analysis of climate datasets recorded at a regular grid of geographical locations covering the Earth surface. By identifying mutual lags among time-series recorded at different grid points, and by applying symbolic time-series analysis, we are able to extract meaningful regional communities, which can be interpreted in terms of large-scale climate phenomena. The methods proposed here are valuable tools for the study of other systems represented by networks of dynamical units, allowing the identification of communities, through time-series analysis of the observed output signals. PMID:27406342
NASA Astrophysics Data System (ADS)
Tirabassi, Giulio; Masoller, Cristina
2016-07-01
Many natural systems can be represented by complex networks of dynamical units with modular structure in the form of communities of densely interconnected nodes. Unraveling this community structure from observed data requires the development of appropriate tools, particularly when the nodes are embedded in a regular space grid and the datasets are short and noisy. Here we propose two methods to identify communities, and validate them with the analysis of climate datasets recorded at a regular grid of geographical locations covering the Earth surface. By identifying mutual lags among time-series recorded at different grid points, and by applying symbolic time-series analysis, we are able to extract meaningful regional communities, which can be interpreted in terms of large-scale climate phenomena. The methods proposed here are valuable tools for the study of other systems represented by networks of dynamical units, allowing the identification of communities, through time-series analysis of the observed output signals.
Symbolic inversion of control relationships in model-based expert systems
NASA Technical Reports Server (NTRS)
Thomas, Stan
1988-01-01
Symbolic inversion is examined from several perspectives. First, a number of symbolic algebra and mathematical tool packages were studied in order to evaluate their capabilities and methods, specifically with respect to symbolic inversion. Second, the KATE system (without hardware interface) was ported to a Zenith Z-248 microcomputer running Golden Common Lisp. The interesting thing about the port is that it allows the user to have measurements vary and components fail in a non-deterministic manner based upon random value from probability distributions. Third, INVERT was studied as currently implemented in KATE, its operation documented, some of its weaknesses identified, and corrections made to it. The corrections and enhancements are primarily in the way that logical conditions involving AND's and OR's and inequalities are processed. In addition, the capability to handle equalities was also added. Suggestions were also made regarding the handling of ranges in INVERT. Last, other approaches to the inversion process were studied and recommendations were made as to how future versions of KATE should perform symbolic inversion.
Implementation of cartographic symbols for planetary mapping in geographic information systems
NASA Astrophysics Data System (ADS)
Nass, A.; van Gasselt, S.; Jaumann, R.; Asche, H.
2011-09-01
The steadily growing international interest in the exploration of planets in our Solar System and many advances in the development of space-sensor technology have led to the launch of a multitude of planetary missions to Mercury, Venus, the Earth's moon, Mars and various Outer-Solar System objects, such as the Jovian and Saturnian satellites. Camera instruments carried along on these missions image surfaces in different wavelength ranges and under different viewing angles, permitting additional data to be derived, such as spectral data or digital terrain models. Such data enable researchers to explore and investigate the development of planetary surfaces by analyzing and interpreting the inventory of surface units and structures. Results of such work are commonly abstracted and represented in thematic, mostly geological and geomorphological, maps. In order to facilitate efficient collaboration among different planetary research disciplines, mapping results need to be prepared, described, managed, archived, and visualized in a uniform way. These tasks have been increasingly carried out by means of computer-based geographic information systems (GIS or GI systems) which have come to be widely employed in the field of planetary research since the last two decades. In this paper we focus on the simplification of mapping processes, putting specific emphasis on a cartographically correct visualization of planetary mapping data using GIS-based environments. We present and discuss the implementation of a set of standardized cartographic symbols for planetary mapping based on the Digital Cartographic Standard for Geologic Map Symbolization as prepared by the United States Geological Survey (USGS) for the Federal Geographic Data Committee (FGDC). Furthermore, we discuss various options to integrate this symbol catalog into generic GI systems, and more specifically into the Environmental Systems Research Institute's (ESRI) ArcGIS environment, and focus on requirements for
NASA Astrophysics Data System (ADS)
Jiang, Wei; Chen, Xuedong; Luo, Xin; Huang, Qingjiu
A novel symbolic formulation is presented to model dynamics of large-scale open-loop holonomic multibody systems, by using absolute joint coordinates and via matrix transformation, instead of solving constraint equations. The resulting minimal set of second-order linear ordinary differential equations (ODEs) can be used for linear vibration analysis and control directly. The ODEs are generated in three steps. Firstly, a set of linearized ODEs are formulated in terms of absolute coordinates without considering any constraint. Secondly, an overall transform matrix representing constraint topology for the entire constrained system is generated. Finally, matrices for a minimal set of ODEs for the open-loop holonomic multibody system are obtained via matrix transformation. The correctness and efficiency of the presented algorithm are verified by numerical experiments on various cases of holonomic multibody systems with different open-loop topologies, including chain topology and tree topology. It is indicated that the proposed method can significantly improve efficiency without losing computational accuracy.
The Symbolics SCOPE System As A Platform For Environmental Analysis
NASA Astrophysics Data System (ADS)
Bauer, Brian P.; Stanzione, Thomas
1988-01-01
In the 1990s, significantly powerful new instruments will be available for the observation, processing and analysis of environmental and meteorological events. The Next Generation Radar (NEXRAD), Atmospheric Profiler (PROFILER), and Vertical Atmospheric Sounder (VAS) will provide timely data to the environmental observer, analyst and forecaster. This data, after processing, will provide the opportunity to: * forecast for time and place at accuracies of less than an hour and locations less than one mile * provide timely tornado warnings before as opposed to during and after an event * continuously annd thoroughly meet the needs of the aircraft meteorlogist for severe weather prediction around airports * provide reliability beyond the capabilities of today's systems.1
Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy
2014-01-01
Background Atrial fibrillation (AF) is the most common and debilitating abnormalities of the arrhythmias worldwide, with a major impact on morbidity and mortality. The detection of AF becomes crucial in preventing both acute and chronic cardiac rhythm disorders. Objective Our objective is to devise a method for real-time, automated detection of AF episodes in electrocardiograms (ECGs). This method utilizes RR intervals, and it involves several basic operations of nonlinear/linear integer filters, symbolic dynamics and the calculation of Shannon entropy. Using novel recursive algorithms, online analytical processing of this method can be achieved. Results Four publicly-accessible sets of clinical data (Long-Term AF, MIT-BIH AF, MIT-BIH Arrhythmia, and MIT-BIH Normal Sinus Rhythm Databases) were selected for investigation. The first database is used as a training set; in accordance with the receiver operating characteristic (ROC) curve, the best performance using this method was achieved at the discrimination threshold of 0.353: the sensitivity (Se), specificity (Sp), positive predictive value (PPV) and overall accuracy (ACC) were 96.72%, 95.07%, 96.61% and 96.05%, respectively. The other three databases are used as testing sets. Using the obtained threshold value (i.e., 0.353), for the second set, the obtained parameters were 96.89%, 98.25%, 97.62% and 97.67%, respectively; for the third database, these parameters were 97.33%, 90.78%, 55.29% and 91.46%, respectively; finally, for the fourth set, the Sp was 98.28%. The existing methods were also employed for comparison. Conclusions Overall, in contrast to the other available techniques, the test results indicate that the newly developed approach outperforms traditional methods using these databases under assessed various experimental situations, and suggest our technique could be of practical use for clinicians in the future. PMID:24533474
Symbolic and algebraic computation
Not Available
1990-01-01
This book contains subjects under the following headings: Foundations of symbolic computation; Computational logics; systems Algorithms on polynormal; Integrative and differential equations; and Differential equations.
Symbolic-numeric efficient solution of optimal control problems for multibody systems
NASA Astrophysics Data System (ADS)
Bertolazzi, Enrico; Biral, Francesco; da Lio, Mauro
2006-01-01
This paper presents an efficient symbolic-numerical approach for generating and solving the boundary value problem-differential algebraic equation (BVP-DAE) originating from the variational form of the optimal control problem (OCP). This paper presents the method for the symbolic derivation, by means of symbolic manipulation software (Maple), of the equations of the OCP applied to a generic multibody system. The constrained problem is transformed into a nonconstrained problem, by means of the Lagrange multipliers and penalty functions. From the first variation of the nonconstrained problem a BVP-DAE is obtained, and the finite difference discretization yields a nonlinear systems. For the numerical solution of the nonlinear system a damped Newton scheme is used. The sparse and structured Jacobians is quickly inverted by exploiting the sparsity pattern in the solution strategy. The proposed method is implemented in an object oriented fashion, and coded in C++ language. Efficiency is ensured in core routines by using Lapack and Blas for linear algebra.
Symbolic gestures and spoken language are processed by a common neural system.
Xu, Jiang; Gannon, Patrick J; Emmorey, Karen; Smith, Jason F; Braun, Allen R
2009-12-01
Symbolic gestures, such as pantomimes that signify actions (e.g., threading a needle) or emblems that facilitate social transactions (e.g., finger to lips indicating "be quiet"), play an important role in human communication. They are autonomous, can fully take the place of words, and function as complete utterances in their own right. The relationship between these gestures and spoken language remains unclear. We used functional MRI to investigate whether these two forms of communication are processed by the same system in the human brain. Responses to symbolic gestures, to their spoken glosses (expressing the gestures' meaning in English), and to visually and acoustically matched control stimuli were compared in a randomized block design. General Linear Models (GLM) contrasts identified shared and unique activations and functional connectivity analyses delineated regional interactions associated with each condition. Results support a model in which bilateral modality-specific areas in superior and inferior temporal cortices extract salient features from vocal-auditory and gestural-visual stimuli respectively. However, both classes of stimuli activate a common, left-lateralized network of inferior frontal and posterior temporal regions in which symbolic gestures and spoken words may be mapped onto common, corresponding conceptual representations. We suggest that these anterior and posterior perisylvian areas, identified since the mid-19th century as the core of the brain's language system, are not in fact committed to language processing, but may function as a modality-independent semiotic system that plays a broader role in human communication, linking meaning with symbols whether these are words, gestures, images, sounds, or objects. PMID:19923436
Newman, Aaron J; Supalla, Ted; Fernandez, Nina; Newport, Elissa L; Bavelier, Daphne
2015-09-15
Sign languages used by deaf communities around the world possess the same structural and organizational properties as spoken languages: In particular, they are richly expressive and also tightly grammatically constrained. They therefore offer the opportunity to investigate the extent to which the neural organization for language is modality independent, as well as to identify ways in which modality influences this organization. The fact that sign languages share the visual-manual modality with a nonlinguistic symbolic communicative system-gesture-further allows us to investigate where the boundaries lie between language and symbolic communication more generally. In the present study, we had three goals: to investigate the neural processing of linguistic structure in American Sign Language (using verbs of motion classifier constructions, which may lie at the boundary between language and gesture); to determine whether we could dissociate the brain systems involved in deriving meaning from symbolic communication (including both language and gesture) from those specifically engaged by linguistically structured content (sign language); and to assess whether sign language experience influences the neural systems used for understanding nonlinguistic gesture. The results demonstrated that even sign language constructions that appear on the surface to be similar to gesture are processed within the left-lateralized frontal-temporal network used for spoken languages-supporting claims that these constructions are linguistically structured. Moreover, although nonsigners engage regions involved in human action perception to process communicative, symbolic gestures, signers instead engage parts of the language-processing network-demonstrating an influence of experience on the perception of nonlinguistic stimuli.
Per-symbol-based digital back-propagation approach for PDM-CO-OFDM transmission systems.
Peng, Wei-Ren; Takahashi, Hidenori; Morita, Itsuro; Tsuritani, Takehiro
2013-01-28
For polarization-division-multiplexing coherent optical orthogonal frequency division multiplexing (PDM-CO-OFDM) systems, we propose a per-symbol-based digital back-propagation (DBP) approach which, after cyclic prefix removal, conducts DBP for each OFDM symbol. Compared with previous DBP, this new proposal avoids the use of inefficient overlap-and-add operation and saves one fast Fourier transform (FFT) module, therefore simplifying the hardware implementation. Transmitting a 16-QAM, 42.8-Gb/s PDM-CO-OFDM signal over 960-km standard single mode fiber (SSMF), we compare the previous and the proposed DBP approaches with different receiver's sampling rates and different step lengths in each DBP iteration, and found that the proposed DBP can achieve a similar performance as that of the previous DBP while enjoying a simpler implementation. We have also specifically introduced a small self-phase modulation (SPM) model for DBP and demonstrated its feasibility with the same experimental setup. PMID:23389137
Symbolic Number Abilities Predict Later Approximate Number System Acuity in Preschool Children
Mussolin, Christophe; Nys, Julie; Content, Alain; Leybaert, Jacqueline
2014-01-01
An ongoing debate in research on numerical cognition concerns the extent to which the approximate number system and symbolic number knowledge influence each other during development. The current study aims at establishing the direction of the developmental association between these two kinds of abilities at an early age. Fifty-seven children of 3–4 years performed two assessments at 7 months interval. In each assessment, children's precision in discriminating numerosities as well as their capacity to manipulate number words and Arabic digits was measured. By comparing relationships between pairs of measures across the two time points, we were able to assess the predictive direction of the link. Our data indicate that both cardinality proficiency and symbolic number knowledge predict later accuracy in numerosity comparison whereas the reverse links are not significant. The present findings are the first to provide longitudinal evidence that the early acquisition of symbolic numbers is an important precursor in the developmental refinement of the approximate number representation system. PMID:24637785
Newman, Aaron J.; Supalla, Ted; Fernandez, Nina; Newport, Elissa L.; Bavelier, Daphne
2015-01-01
Sign languages used by deaf communities around the world possess the same structural and organizational properties as spoken languages: In particular, they are richly expressive and also tightly grammatically constrained. They therefore offer the opportunity to investigate the extent to which the neural organization for language is modality independent, as well as to identify ways in which modality influences this organization. The fact that sign languages share the visual–manual modality with a nonlinguistic symbolic communicative system—gesture—further allows us to investigate where the boundaries lie between language and symbolic communication more generally. In the present study, we had three goals: to investigate the neural processing of linguistic structure in American Sign Language (using verbs of motion classifier constructions, which may lie at the boundary between language and gesture); to determine whether we could dissociate the brain systems involved in deriving meaning from symbolic communication (including both language and gesture) from those specifically engaged by linguistically structured content (sign language); and to assess whether sign language experience influences the neural systems used for understanding nonlinguistic gesture. The results demonstrated that even sign language constructions that appear on the surface to be similar to gesture are processed within the left-lateralized frontal-temporal network used for spoken languages—supporting claims that these constructions are linguistically structured. Moreover, although nonsigners engage regions involved in human action perception to process communicative, symbolic gestures, signers instead engage parts of the language-processing network—demonstrating an influence of experience on the perception of nonlinguistic stimuli. PMID:26283352
Fock space, symbolic algebra, and analytical solutions for small stochastic systems.
Santos, Fernando A N; Gadêlha, Hermes; Gaffney, Eamonn A
2015-12-01
Randomness is ubiquitous in nature. From single-molecule biochemical reactions to macroscale biological systems, stochasticity permeates individual interactions and often regulates emergent properties of the system. While such systems are regularly studied from a modeling viewpoint using stochastic simulation algorithms, numerous potential analytical tools can be inherited from statistical and quantum physics, replacing randomness due to quantum fluctuations with low-copy-number stochasticity. Nevertheless, classical studies remained limited to the abstract level, demonstrating a more general applicability and equivalence between systems in physics and biology rather than exploiting the physics tools to study biological systems. Here the Fock space representation, used in quantum mechanics, is combined with the symbolic algebra of creation and annihilation operators to consider explicit solutions for the chemical master equations describing small, well-mixed, biochemical, or biological systems. This is illustrated with an exact solution for a Michaelis-Menten single enzyme interacting with limited substrate, including a consideration of very short time scales, which emphasizes when stiffness is present even for small copy numbers. Furthermore, we present a general matrix representation for Michaelis-Menten kinetics with an arbitrary number of enzymes and substrates that, following diagonalization, leads to the solution of this ubiquitous, nonlinear enzyme kinetics problem. For this, a flexible symbolic maple code is provided, demonstrating the prospective advantages of this framework compared to stochastic simulation algorithms. This further highlights the possibilities for analytically based studies of stochastic systems in biology and chemistry using tools from theoretical quantum physics.
Fock space, symbolic algebra, and analytical solutions for small stochastic systems
NASA Astrophysics Data System (ADS)
Santos, Fernando A. N.; Gadêlha, Hermes; Gaffney, Eamonn A.
2015-12-01
Randomness is ubiquitous in nature. From single-molecule biochemical reactions to macroscale biological systems, stochasticity permeates individual interactions and often regulates emergent properties of the system. While such systems are regularly studied from a modeling viewpoint using stochastic simulation algorithms, numerous potential analytical tools can be inherited from statistical and quantum physics, replacing randomness due to quantum fluctuations with low-copy-number stochasticity. Nevertheless, classical studies remained limited to the abstract level, demonstrating a more general applicability and equivalence between systems in physics and biology rather than exploiting the physics tools to study biological systems. Here the Fock space representation, used in quantum mechanics, is combined with the symbolic algebra of creation and annihilation operators to consider explicit solutions for the chemical master equations describing small, well-mixed, biochemical, or biological systems. This is illustrated with an exact solution for a Michaelis-Menten single enzyme interacting with limited substrate, including a consideration of very short time scales, which emphasizes when stiffness is present even for small copy numbers. Furthermore, we present a general matrix representation for Michaelis-Menten kinetics with an arbitrary number of enzymes and substrates that, following diagonalization, leads to the solution of this ubiquitous, nonlinear enzyme kinetics problem. For this, a flexible symbolic maple code is provided, demonstrating the prospective advantages of this framework compared to stochastic simulation algorithms. This further highlights the possibilities for analytically based studies of stochastic systems in biology and chemistry using tools from theoretical quantum physics.
Fock space, symbolic algebra, and analytical solutions for small stochastic systems.
Santos, Fernando A N; Gadêlha, Hermes; Gaffney, Eamonn A
2015-12-01
Randomness is ubiquitous in nature. From single-molecule biochemical reactions to macroscale biological systems, stochasticity permeates individual interactions and often regulates emergent properties of the system. While such systems are regularly studied from a modeling viewpoint using stochastic simulation algorithms, numerous potential analytical tools can be inherited from statistical and quantum physics, replacing randomness due to quantum fluctuations with low-copy-number stochasticity. Nevertheless, classical studies remained limited to the abstract level, demonstrating a more general applicability and equivalence between systems in physics and biology rather than exploiting the physics tools to study biological systems. Here the Fock space representation, used in quantum mechanics, is combined with the symbolic algebra of creation and annihilation operators to consider explicit solutions for the chemical master equations describing small, well-mixed, biochemical, or biological systems. This is illustrated with an exact solution for a Michaelis-Menten single enzyme interacting with limited substrate, including a consideration of very short time scales, which emphasizes when stiffness is present even for small copy numbers. Furthermore, we present a general matrix representation for Michaelis-Menten kinetics with an arbitrary number of enzymes and substrates that, following diagonalization, leads to the solution of this ubiquitous, nonlinear enzyme kinetics problem. For this, a flexible symbolic maple code is provided, demonstrating the prospective advantages of this framework compared to stochastic simulation algorithms. This further highlights the possibilities for analytically based studies of stochastic systems in biology and chemistry using tools from theoretical quantum physics. PMID:26764734
NASA Technical Reports Server (NTRS)
Goforth, Andre
1987-01-01
The use of computers in autonomous telerobots is reaching the point where advanced distributed processing concepts and techniques are needed to support the functioning of Space Station era telerobotic systems. Three major issues that have impact on the design of data management functions in a telerobot are covered. It also presents a design concept that incorporates an intelligent systems manager (ISM) running on a spaceborne symbolic processor (SSP), to address these issues. The first issue is the support of a system-wide control architecture or control philosophy. Salient features of two candidates are presented that impose constraints on data management design. The second issue is the role of data management in terms of system integration. This referes to providing shared or coordinated data processing and storage resources to a variety of telerobotic components such as vision, mechanical sensing, real-time coordinated multiple limb and end effector control, and planning and reasoning. The third issue is hardware that supports symbolic processing in conjunction with standard data I/O and numeric processing. A SSP that currently is seen to be technologically feasible and is being developed is described and used as a baseline in the design concept.
Origin of symbol-using systems: speech, but not sign, without the semantic urge.
Sereno, Martin I
2014-09-19
Natural language--spoken and signed--is a multichannel phenomenon, involving facial and body expression, and voice and visual intonation that is often used in the service of a social urge to communicate meaning. Given that iconicity seems easier and less abstract than making arbitrary connections between sound and meaning, iconicity and gesture have often been invoked in the origin of language alongside the urge to convey meaning. To get a fresh perspective, we critically distinguish the origin of a system capable of evolution from the subsequent evolution that system becomes capable of. Human language arose on a substrate of a system already capable of Darwinian evolution; the genetically supported uniquely human ability to learn a language reflects a key contact point between Darwinian evolution and language. Though implemented in brains generated by DNA symbols coding for protein meaning, the second higher-level symbol-using system of language now operates in a world mostly decoupled from Darwinian evolutionary constraints. Examination of Darwinian evolution of vocal learning in other animals suggests that the initial fixation of a key prerequisite to language into the human genome may actually have required initially side-stepping not only iconicity, but the urge to mean itself. If sign languages came later, they would not have faced this constraint.
Origin of symbol-using systems: speech, but not sign, without the semantic urge
Sereno, Martin I.
2014-01-01
Natural language—spoken and signed—is a multichannel phenomenon, involving facial and body expression, and voice and visual intonation that is often used in the service of a social urge to communicate meaning. Given that iconicity seems easier and less abstract than making arbitrary connections between sound and meaning, iconicity and gesture have often been invoked in the origin of language alongside the urge to convey meaning. To get a fresh perspective, we critically distinguish the origin of a system capable of evolution from the subsequent evolution that system becomes capable of. Human language arose on a substrate of a system already capable of Darwinian evolution; the genetically supported uniquely human ability to learn a language reflects a key contact point between Darwinian evolution and language. Though implemented in brains generated by DNA symbols coding for protein meaning, the second higher-level symbol-using system of language now operates in a world mostly decoupled from Darwinian evolutionary constraints. Examination of Darwinian evolution of vocal learning in other animals suggests that the initial fixation of a key prerequisite to language into the human genome may actually have required initially side-stepping not only iconicity, but the urge to mean itself. If sign languages came later, they would not have faced this constraint. PMID:25092671
Origin of symbol-using systems: speech, but not sign, without the semantic urge.
Sereno, Martin I
2014-09-19
Natural language--spoken and signed--is a multichannel phenomenon, involving facial and body expression, and voice and visual intonation that is often used in the service of a social urge to communicate meaning. Given that iconicity seems easier and less abstract than making arbitrary connections between sound and meaning, iconicity and gesture have often been invoked in the origin of language alongside the urge to convey meaning. To get a fresh perspective, we critically distinguish the origin of a system capable of evolution from the subsequent evolution that system becomes capable of. Human language arose on a substrate of a system already capable of Darwinian evolution; the genetically supported uniquely human ability to learn a language reflects a key contact point between Darwinian evolution and language. Though implemented in brains generated by DNA symbols coding for protein meaning, the second higher-level symbol-using system of language now operates in a world mostly decoupled from Darwinian evolutionary constraints. Examination of Darwinian evolution of vocal learning in other animals suggests that the initial fixation of a key prerequisite to language into the human genome may actually have required initially side-stepping not only iconicity, but the urge to mean itself. If sign languages came later, they would not have faced this constraint. PMID:25092671
NASA Astrophysics Data System (ADS)
Stoop, R.; Parisi, J.
1992-09-01
While evaluating scaling functions of fractal dimensions and Lyapunov exponents from time series in the traditional way, assumptions are made concerning the grammar of the underlying dynamical system: it is implicitly assumed that the length of the substrings considered is sufficient to capture the grammatical properties of the system. In this contribution, we show where this assumption becomes relevant. We give an example of a simple grammatical rule which leads to badly behaving convergence properties of the associated scaling functions. As another consequence of our investigations, we conclude that, whenever a finite grammar is encountered, the cycle expansion approach of Cvitanović using periodic orbits should preferably be used.
NASA Astrophysics Data System (ADS)
Wessel, Niels; Ziehmann, Christine; Kurths, Jürgen; Meyerfeldt, Udo; Schirdewan, Alexander; Voss, Andreas
2000-01-01
Ventricular tachycardia or fibrillation (VT-VF) as fatal cardiac arrhythmias are the main factors triggering sudden cardiac death. The objective of this study is to find early signs of sustained VT-VF in patients with an implanted cardioverter-defibrillator (ICD). These devices are able to safeguard patients by returning their hearts to a normal rhythm via strong defibrillatory shocks; additionally, they store the 1000 beat-to-beat intervals immediately before the onset of a life-threatening arrhythmia. We study these 1000 beat-to-beat intervals of 17 chronic heart failure ICD patients before the onset of a life-threatening arrhythmia and at a control time, i.e., without a VT-VF event. To characterize these rather short data sets, we calculate heart rate variability parameters from the time and frequency domain, from symbolic dynamics as well as the finite-time growth rates. We find that neither the time nor the frequency domain parameters show significant differences between the VT-VF and the control time series. However, two parameters from symbolic dynamics as well as the finite-time growth rates discriminate significantly both groups. These findings could be of importance in algorithms for next generation ICD's to improve the diagnostics and therapy of VT-VF.
Symbolic Constraint Maintenance Grid
NASA Technical Reports Server (NTRS)
James, Mark
2006-01-01
Version 3.1 of Symbolic Constraint Maintenance Grid (SCMG) is a software system that provides a general conceptual framework for utilizing pre-existing programming techniques to perform symbolic transformations of data. SCMG also provides a language (and an associated communication method and protocol) for representing constraints on the original non-symbolic data. SCMG provides a facility for exchanging information between numeric and symbolic components without knowing the details of the components themselves. In essence, it integrates symbolic software tools (for diagnosis, prognosis, and planning) with non-artificial-intelligence software. SCMG executes a process of symbolic summarization and monitoring of continuous time series data that are being abstractly represented as symbolic templates of information exchange. This summarization process enables such symbolic- reasoning computing systems as artificial- intelligence planning systems to evaluate the significance and effects of channels of data more efficiently than would otherwise be possible. As a result of the increased efficiency in representation, reasoning software can monitor more channels and is thus able to perform monitoring and control functions more effectively.
ERIC Educational Resources Information Center
Podgor, Ellen S.
1976-01-01
The concept of symbolic speech emanates from the 1967 case of United States v. O'Brien. These discussions of flag desecration, grooming and dress codes, nude entertainment, buttons and badges, and musical expression show that the courts place symbolic speech in different strata from verbal communication. (LBH)
An On-Line Electronics Graphics Symbol Set for the PLATO IV System.
ERIC Educational Resources Information Center
McClintock, Peggy A.; Kimberlin, Donald A.
An electronics graphic symbol set for on-line construction of electrical and electronics schematic diagrams is described. Specific procedures involving off-line and on-line activities are presented for the development and entry of schematic diagrams utilizing a stored set of symbols. An example of the commands and coding required for the…
Tonhajzerova, Ingrid; Farsky, Ivan; Mestanik, Michal; Visnovcova, Zuzana; Mestanikova, Andrea; Hrtanek, Igor; Ondrejka, Igor
2016-06-01
We aimed to evaluate complex cardiac sympathovagal control in attention deficit/hyperactivity disorder (ADHD) by using heart rate variability (HRV) nonlinear analysis - symbolic dynamics. We examined 29 boys with untreated ADHD and 25 healthy boys (age 8-13 years). ADHD symptoms were evaluated by ADHD-RS-IV scale. ECG was recorded in 3 positions: baseline supine position, orthostasis, and clinostasis. Symbolic dynamics indices were used for the assessment of complex cardiac sympathovagal regulation: normalised complexity index (NCI), normalised unpredictability index (NUPI), and pattern classification measures (0V%, 1V%, 2LV%, 2UV%). The results showed that HRV complexity was significantly reduced at rest (NUPI) and during standing position (NCI, NUPI) in ADHD group compared to controls. Cardiac-linked sympathetic index 0V% was significantly higher during all posture positions and cardiovagal index 2LV% was significantly lower to standing in boys suffering from ADHD. Importantly, ADHD symptom inattention positively correlated with 0V%, and negatively correlated with NCI, NUPI. Concluding, symbolic dynamics revealed impaired complex neurocardiac control characterised by potential cardiac beta-adrenergic overactivity and vagal deficiency at rest and to posture changes in boys suffering from ADHD that is correlated with inattention. We suggest that symbolic dynamics indices could represent promising cardiac biomarkers in ADHD.
Tonhajzerova, Ingrid; Farsky, Ivan; Mestanik, Michal; Visnovcova, Zuzana; Mestanikova, Andrea; Hrtanek, Igor; Ondrejka, Igor
2016-06-01
We aimed to evaluate complex cardiac sympathovagal control in attention deficit/hyperactivity disorder (ADHD) by using heart rate variability (HRV) nonlinear analysis - symbolic dynamics. We examined 29 boys with untreated ADHD and 25 healthy boys (age 8-13 years). ADHD symptoms were evaluated by ADHD-RS-IV scale. ECG was recorded in 3 positions: baseline supine position, orthostasis, and clinostasis. Symbolic dynamics indices were used for the assessment of complex cardiac sympathovagal regulation: normalised complexity index (NCI), normalised unpredictability index (NUPI), and pattern classification measures (0V%, 1V%, 2LV%, 2UV%). The results showed that HRV complexity was significantly reduced at rest (NUPI) and during standing position (NCI, NUPI) in ADHD group compared to controls. Cardiac-linked sympathetic index 0V% was significantly higher during all posture positions and cardiovagal index 2LV% was significantly lower to standing in boys suffering from ADHD. Importantly, ADHD symptom inattention positively correlated with 0V%, and negatively correlated with NCI, NUPI. Concluding, symbolic dynamics revealed impaired complex neurocardiac control characterised by potential cardiac beta-adrenergic overactivity and vagal deficiency at rest and to posture changes in boys suffering from ADHD that is correlated with inattention. We suggest that symbolic dynamics indices could represent promising cardiac biomarkers in ADHD. PMID:26963175
NASA Astrophysics Data System (ADS)
Zebrowski, Jan J.; Baranowski, Rafal; Przybylski, Andrzej
2003-07-01
A method is described for the assessment of the complexity of short data sets by nonlinear dynamics. The method was devised for and tested on human heart rate recordings approximately 2000 to 9000 RR intervals long which were extracted from the memory of implantable defibrillator devices (ICD). It is, however, applicable in a more general context. The ICDs are meant to control life-threatening episodes of ventricular tachycardia and/or ventricular fibrillation by applying a electric shock to the heart through intracardiac electrodes. It is well known that conventional ICD algorithms yield approximately 20--30 % of spurious interventions. The main aim of this work is to look for nonlinear dynamics methods to enhance the appropriateness of the ICD intervention. We first showed that nonlinear dynamics methods first applied to 24-hour heart rate variability analysis were able to detect the need for the ICD intervention. To be applicable to future ICD use, the methods must also be low in computational requirements. Methods to analyse the complexity of the short and non-stationary sets were devised. We calculated the Shannon entropy of symbolic words obtained in a sliding 50 beat window and analysed the dependence of this complexity measure on the time. Precursors were found extending much earlier time than the time the standard ICD algorithms span.
Jha, Sumit Kumar; Pullum, Laura L; Ramanathan, Arvind
2016-01-01
Embedded intelligent systems ranging from tiny im- plantable biomedical devices to large swarms of autonomous un- manned aerial systems are becoming pervasive in our daily lives. While we depend on the flawless functioning of such intelligent systems, and often take their behavioral correctness and safety for granted, it is notoriously difficult to generate test cases that expose subtle errors in the implementations of machine learning algorithms. Hence, the validation of intelligent systems is usually achieved by studying their behavior on representative data sets, using methods such as cross-validation and bootstrapping.In this paper, we present a new testing methodology for studying the correctness of intelligent systems. Our approach uses symbolic decision procedures coupled with statistical hypothesis testing to. We also use our algorithm to analyze the robustness of a human detection algorithm built using the OpenCV open-source computer vision library. We show that the human detection implementation can fail to detect humans in perturbed video frames even when the perturbations are so small that the corresponding frames look identical to the naked eye.
ERIC Educational Resources Information Center
Isaacson, Mickey
2012-01-01
The primary purpose of this study was to determine whether Blissymbolics have the potential for being developed into a tactile symbol communication system. Tactile techniques are used by many individuals with augmentative and alternative communication (AAC) needs. Tactile processing is optimized by the use of minimalistic stimuli, i.e., stimuli…
Zhang, Zhen; Zhang, Qianwu; Chen, Jian; Li, Yingchun; Song, Yingxiong
2016-06-13
A low-complexity joint symbol synchronization and SFO estimation scheme for asynchronous optical IMDD OFDM systems based on only one training symbol is proposed. Numerical simulations and experimental demonstrations are also under taken to evaluate the performance of the mentioned scheme. The experimental results show that robust and precise symbol synchronization and the SFO estimation can be achieved simultaneously at received optical power as low as -20dBm in asynchronous OOFDM systems. SFO estimation accuracy in MSE can be lower than 1 × 10^{-11} under SFO range from -60ppm to 60ppm after 25km SSMF transmission. Optimal System performance can be maintained until cumulate number of employed frames for calculation is less than 50 under above-mentioned conditions. Meanwhile, the proposed joint scheme has a low level of operation complexity comparing with existing methods, when the symbol synchronization and SFO estimation are considered together. Above-mentioned results can give an important reference in practical system designs. PMID:27410279
2011-01-01
Background The role of psychotherapy in the treatment of traumatic brain injury is receiving increased attention. The evaluation of psychotherapy with these patients has been conducted largely in the absence of quantitative data concerning the therapy itself. Quantitative methods for characterizing the sequence-sensitive structure of patient-therapist communication are now being developed with the objective of improving the effectiveness of psychotherapy following traumatic brain injury. Methods The content of three therapy session transcripts (sessions were separated by four months) obtained from a patient with a history of several motor vehicle accidents who was receiving dialectical behavior therapy was scored and analyzed using methods derived from the mathematical theory of symbolic dynamics. Results The analysis of symbol frequencies was largely uninformative. When repeated triples were examined a marked pattern of change in content was observed over the three sessions. The context free grammar complexity and the Lempel-Ziv complexity were calculated for each therapy session. For both measures, the rate of complexity generation, expressed as bits per minute, increased longitudinally during the course of therapy. The between-session increases in complexity generation rates are consistent with calculations of mutual information. Taken together these results indicate that there was a quantifiable increase in the variability of patient-therapist verbal behavior during the course of therapy. Comparison of complexity values against values obtained from equiprobable random surrogates established the presence of a nonrandom structure in patient-therapist dialog (P = .002). Conclusions While recognizing that only limited conclusions can be based on a case history, it can be noted that these quantitative observations are consistent with qualitative clinical observations of increases in the flexibility of discourse during therapy. These procedures can be of particular
Selforganization of Symbols and Information
NASA Astrophysics Data System (ADS)
Ebeling, Werner; Feistel, Rainer
2014-12-01
Following the spirit of the late John Nicolis, the purpose of this paper is to develop an evolutionary approach for the basic problem of generation, storage and dissipation of information in physical and biological systems via dynamical processes. After analysing the relation of entropy and information we develop our view that information is in general a nonphysical, emergent quantity, in spite of the fact that information transfer is always connected with flows of physical energy and entropy. We argue that information can have two basic forms: free information (like that of disks, tapes, books), that is what is transferred between sender and receiver, and bound information, that is a physical non-equilibrium structure which retains potential information reflecting the history of its formation (like fossils, geological strata or galaxies). As a basic concept we consider a kinetic phase transition of the second kind, termed the ritualization transition, which leads to the self-organized emergence of symbols, the key elements of free information. Ritualization occurs only in the context of life. Hence, the simplest physical example for a ritualization process is a system that starts as a physical and ends as a biological one, in other words, the origin of life. Our interest in this transition is focussed on the self-organization of information, on the way how a physical system can be enabled to create symbols and the related symbol-processing machinery out of ordinary pre-biological roots.
Reinke, R.E.
1991-01-01
Clustering is the problem of finding a good organization for data. Because there are many kinds of clustering problems, and because there are many possible clusterings for any data set, clustering programs use knowledge and assumptions about individual problems to make clustering tractable. Cluster-analysis techniques allow knowledge to be expressed in the choice of a pairwise distance measure and in the choice of clustering algorithm. Conceptual clustering adds knowledge and preferences about cluster descriptions. In this study the author describes symbolic clustering, which adds representation choice to the set of ways a data analyst can use problem-specific knowledge. He develops an informal model for symbolic clustering, and uses it to suggest where and how knowledge can be expressed in clustering. A language for creating symbolic clusters, based on the model, was developed and tested on three real clustering problems. The study concludes with a discussion of the implications of the model and the results for clustering in general.
Smolensky, Paul; Goldrick, Matthew; Mathis, Donald
2014-08-01
Mental representations have continuous as well as discrete, combinatorial properties. For example, while predominantly discrete, phonological representations also vary continuously; this is reflected by gradient effects in instrumental studies of speech production. Can an integrated theoretical framework address both aspects of structure? The framework we introduce here, Gradient Symbol Processing, characterizes the emergence of grammatical macrostructure from the Parallel Distributed Processing microstructure (McClelland, Rumelhart, & The PDP Research Group, 1986) of language processing. The mental representations that emerge, Distributed Symbol Systems, have both combinatorial and gradient structure. They are processed through Subsymbolic Optimization-Quantization, in which an optimization process favoring representations that satisfy well-formedness constraints operates in parallel with a distributed quantization process favoring discrete symbolic structures. We apply a particular instantiation of this framework, λ-Diffusion Theory, to phonological production. Simulations of the resulting model suggest that Gradient Symbol Processing offers a way to unify accounts of grammatical competence with both discrete and continuous patterns in language performance.
MINING NUCLEAR TRANSIENT DATA THROUGH SYMBOLIC CONVERSION
Diego MAndelli; Tunc Aldemir; Alper Yilmaz; Curtis Smith
2013-09-01
Dynamic Probabilistic Risk Assessment (DPRA) methodologies generate enormous amounts of data for a very large number of simulations. The data contain temporal information of both the state variables of the simulator and the temporal status of specific systems/components. In order to measure system performances, limitations and resilience, such data need to be carefully analyzed with the objective of discovering the correlations between sequence/timing of events and system dynamics. A first approach toward discovering these correlations from data generated by DPRA methodologies has been performed by organizing scenarios into groups using classification or clustering based algorithms. The identification of the correlations between system dynamics and timing/sequencing of events is performed by observing the temporal distribution of these events in each group of scenarios. Instead of performing “a posteriori” analysis of these correlations, this paper shows how it is possible to identify the correlations implicitly by performing a symbolic conversion of both continuous (temporal profiles of simulator state variables) and discrete (status of systems and components) data. Symbolic conversion is performed for each simulation by properly quantizing both continuous and discrete data and then converting them as a series of symbols. After merging both series together, a temporal phrase is obtained. This phrase preserves duration, coincidence and sequence of both continuous and discrete data in a uniform and consistent manner. In this paper it is also shown that by using specific distance measures, it is still possible to post-process such symbolic data using clustering and classification techniques but in considerably less time since the memory needed to store the data is greatly reduced by the symbolic conversion.
NASA Astrophysics Data System (ADS)
Shabana, Ahmed A.
2005-05-01
Dynamics of Multibody Systems introduces multibody dynamics, with an emphasis on flexible body dynamics. Many common mechanisms such as automobiles, space structures, robots, and micro machines have mechanical and structural systems that consist of interconnected rigid and deformable components. The dynamics of these large-scale, multibody systems are highly nonlinear, presenting complex problems that in most cases can only be solved with computer-based techniques. The book begins with a review of the basic ideas of kinematics and the dynamics of rigid and deformable bodies before moving on to more advanced topics and computer implementation. This new edition includes important new developments relating to the problem of large deformations and numerical algorithms as applied to flexible multibody systems. The book's wealth of examples and practical applications will be useful to graduate students, researchers, and practicing engineers working on a wide variety of flexible multibody systems.
Interval modeling of dynamics for multibody systems
NASA Astrophysics Data System (ADS)
Auer, Ekaterina
2007-02-01
Modeling of multibody systems is an important though demanding field of application for interval arithmetic. Interval modeling of dynamics is particularly challenging, not least because of the differential equations which have to be solved in the process. Most modeling tools transform these equations into a (non-autonomous) initial value problem, interval algorithms for solving of which are known. The challenge then consists in finding interfaces between these algorithms and the modeling tools. This includes choosing between "symbolic" and "numerical" modeling environments, transforming the usually non-autonomous resulting system into an autonomous one, ensuring conformity of the new interval version to the old numerical, etc. In this paper, we focus on modeling multibody systems' dynamics with the interval extension of the "numerical" environment MOBILE, discuss the techniques which make the uniform treatment of interval and non-interval modeling easier, comment on the wrapping effect, and give reasons for our choice of MOBILE by comparing the results achieved with its help with those obtained by analogous symbolic tools.
ERIC Educational Resources Information Center
Shavelson, Richard J.; And Others
Some aspects of the relationships among the symbolic representations (Rs) of problems given to students to solve, the Rs that students use to solve problems, and the accuracy of the solutions were studied. Focus was on determining: the mental Rs that students used while solving problems, the kinds of translation that takes place, the accuracy of…
Dynamic On-line Clustering and State Extraction: An Approach to Symbolic Learning.
Mozer, Michael; Das, Sreerupa
1998-01-01
Although recurrent neural nets have been moderately successful in learning to emulate finite-state machines (FSMs), the continuous internal state dynamics of a neural net are not well matched to the discrete behavior of an FSM. We describe an architecture, called DOLCE, that allows discrete states to evolve in a net as learning progresses. DOLCE consists of a standard recurrent neural net trained by gradient descent and an adaptive clustering technique that quantizes the state space. We describe two implementations of DOLCE. The first implementation, called DOLCE(u), uses an adaptive clustering scheme in an unsupervised mode to determine both the number of clusters and the partitioning of the state space as learning progresses. The second model, DOLCE(s), uses a Gaussian Mixture Model in a supervised learning framework to infer the states of an FSM. DOLCE(s) is based on the assumption that a finite set of discrete internal states is required for the task, and that the actual network state belongs to this set but has been corrupted by noise due to inaccuracy in the weights. DOLCE(s) learns to recover the discrete state with maximum a posteriori probability from the noisy state. Simulations show that both implementations of DOLCE lead to a significant improvement in generalization performance over earlier neural net approaches to FSM induction. The idea of adaptive quantization is not just applicable to DOLCE but can be applied to other domains as well.
NASA Astrophysics Data System (ADS)
Kuvich, Gary
2004-09-01
Situation awareness is an important factor in the effectiveness of aerial missions. One of the major problems with the UAV is that human operators lack situation awareness. Limited bandwidth does not allow telepresence to a degree, which gives the same level of situation awareness that pilots of regular airplanes have. The best solution would be to equip UAV with a "situation awareness" system that in the real time provides operators with the information necessary for effective mission control and decision making, and allows effective supervisory control of the UAV. Vision in advanced creatures is a component of situation awareness, navigation and planning systems. Fast information processing and decision making requires reduction of informational and computational complexities. The brain achieves this goal using implicit symbolic coding, hierarchical compression, and selective processing of visual information. The Network-Symbolic representation, in which both systematic structural/logical methods and neural/statistical methods are the parts of a single mechanism, converts visual information into relational Network-Symbolic knowledge models, effectively resolving ambiguity and uncertainty in the visual information, and avoiding artificial precise computations of 3-dimensional models. The UAV equipped with such smart vision, will have a situation awareness system that gives operators better control over aircraft and significantly improves surveillance and reconnaissance capabilities.
ERIC Educational Resources Information Center
Nummenmaa, Lauri; Hietanen, Jari K.
2009-01-01
We investigated orienting of attention by social and symbolic cues presented inside/outside the locus of attention. Participants responded to laterally presented targets preceded by simultaneously presented gaze and arrow cues. Participants' attention was allocated to either of the cues and the other cue served as a distractor. In Experiments 1-4…
ERIC Educational Resources Information Center
Por, Fei Ping; Fong, Soon Fook
2011-01-01
The conventional way of using letter-to-sound approach to acquire English pronunciation competence is limited to simple and regular English words in elementary level. This limitation signifies the potentialities of phonetic symbols that are applicable to the pronunciation of all the words of human languages. The researchers are exploring the…
Marghetis, Tyler; Núñez, Rafael
2013-04-01
The canonical history of mathematics suggests that the late 19th-century "arithmetization" of calculus marked a shift away from spatial-dynamic intuitions, grounding concepts in static, rigorous definitions. Instead, we argue that mathematicians, both historically and currently, rely on dynamic conceptualizations of mathematical concepts like continuity, limits, and functions. In this article, we present two studies of the role of dynamic conceptual systems in expert proof. The first is an analysis of co-speech gesture produced by mathematics graduate students while proving a theorem, which reveals a reliance on dynamic conceptual resources. The second is a cognitive-historical case study of an incident in 19th-century mathematics that suggests a functional role for such dynamism in the reasoning of the renowned mathematician Augustin Cauchy. Taken together, these two studies indicate that essential concepts in calculus that have been defined entirely in abstract, static terms are nevertheless conceptualized dynamically, in both contemporary and historical practice. PMID:23460466
Marghetis, Tyler; Núñez, Rafael
2013-04-01
The canonical history of mathematics suggests that the late 19th-century "arithmetization" of calculus marked a shift away from spatial-dynamic intuitions, grounding concepts in static, rigorous definitions. Instead, we argue that mathematicians, both historically and currently, rely on dynamic conceptualizations of mathematical concepts like continuity, limits, and functions. In this article, we present two studies of the role of dynamic conceptual systems in expert proof. The first is an analysis of co-speech gesture produced by mathematics graduate students while proving a theorem, which reveals a reliance on dynamic conceptual resources. The second is a cognitive-historical case study of an incident in 19th-century mathematics that suggests a functional role for such dynamism in the reasoning of the renowned mathematician Augustin Cauchy. Taken together, these two studies indicate that essential concepts in calculus that have been defined entirely in abstract, static terms are nevertheless conceptualized dynamically, in both contemporary and historical practice.
Symbol Sourcebook; An Authoritative Guide to International Graphic Symbols.
ERIC Educational Resources Information Center
Dreyfuss, Henry
There are today some 5,000 languages and dialects in use throughout the world; in most instances, intercommunication among them ranges from difficult to impossible. This sourcebook of graphic symbols was compiled as a first step toward a basic means of communication through a system of universally recognizable symbols. The sourcebook is limited to…
Directed Incremental Symbolic Execution
NASA Technical Reports Server (NTRS)
Person, Suzette; Yang, Guowei; Rungta, Neha; Khurshid, Sarfraz
2011-01-01
The last few years have seen a resurgence of interest in the use of symbolic execution -- a program analysis technique developed more than three decades ago to analyze program execution paths. Scaling symbolic execution and other path-sensitive analysis techniques to large systems remains challenging despite recent algorithmic and technological advances. An alternative to solving the problem of scalability is to reduce the scope of the analysis. One approach that is widely studied in the context of regression analysis is to analyze the differences between two related program versions. While such an approach is intuitive in theory, finding efficient and precise ways to identify program differences, and characterize their effects on how the program executes has proved challenging in practice. In this paper, we present Directed Incremental Symbolic Execution (DiSE), a novel technique for detecting and characterizing the effects of program changes. The novelty of DiSE is to combine the efficiencies of static analysis techniques to compute program difference information with the precision of symbolic execution to explore program execution paths and generate path conditions affected by the differences. DiSE is a complementary technique to other reduction or bounding techniques developed to improve symbolic execution. Furthermore, DiSE does not require analysis results to be carried forward as the software evolves -- only the source code for two related program versions is required. A case-study of our implementation of DiSE illustrates its effectiveness at detecting and characterizing the effects of program changes.
Documents and Symbols of Democracy.
ERIC Educational Resources Information Center
Virginia State Dept. of Education, Richmond. Div. of Humanities and Secondary Administration.
A three-part handbook for Virginia K-12 social studies teachers presents methods for introducing students to documents and symbols which reflect the principles and ideals of the American democratic system. Although a portion of the material focuses on resources specific to the state of Virginia, information on national documents and symbols can be…
NASA Technical Reports Server (NTRS)
Doolin, B. F.
1975-01-01
Classes of large scale dynamic systems were discussed in the context of modern control theory. Specific examples discussed were in the technical fields of aeronautics, water resources and electric power.
Symbolic extensions applied to multiscale structure of genomes.
Downarowicz, Tomasz; Travisany, Dante; Montecino, Martin; Maass, Alejandro
2014-06-01
A genome of a living organism consists of a long string of symbols over a finite alphabet carrying critical information for the organism. This includes its ability to control post natal growth, homeostasis, adaptation to changes in the surrounding environment, or to biochemically respond at the cellular level to various specific regulatory signals. In this sense, a genome represents a symbolic encoding of a highly organized system of information whose functioning may be revealed as a natural multilayer structure in terms of complexity and prominence. In this paper we use the mathematical theory of symbolic extensions as a framework to shed light onto how this multilayer organization is reflected in the symbolic coding of the genome. The distribution of data in an element of a standard symbolic extension of a dynamical system has a specific form: the symbolic sequence is divided into several subsequences (which we call layers) encoding the dynamics on various "scales". We propose that a similar structure resides within the genomes, building our analogy on some of the most recent findings in the field of regulation of genomic DNA functioning. PMID:24728912
Nummenmaa, Lauri; Hietanen, Jari K
2009-12-01
We investigated orienting of attention by social and symbolic cues presented inside/outside the locus of attention. Participants responded to laterally presented targets preceded by simultaneously presented gaze and arrow cues. Participants' attention was allocated to either of the cues and the other cue served as a distractor. In Experiments 1-4 nonpredictive cues were employed. The validity of the attended cue and distractor were varied orthogonally. Valid cues and distractors produced additive facilitation to reaction times when compared to invalid cues and distractors. The effects of gaze and arrow distractors were similar. When the cue was 100% valid and the distractor 50% valid (Experiment 5), distractor validity had no effect on reaction times. When realistic gaze and arrow cues were employed (Experiment 6), arrow but not gaze distractors influenced the reaction times. The results suggest that social and symbolic directional information can be integrated for attention orienting. The processing of social and symbolic directional information can be modulated by top-down control, but the efficiency of the control depends on the visual saliency of the cues. PMID:19968432
NASA Astrophysics Data System (ADS)
Adem, Abdullahi Rashid; Khalique, Chaudry Masood
2016-04-01
In this paper we study a generalized coupled variable-coefficient modified Korteweg-de Vries (CVCmKdV) system that models a two-layer fluid, which is applied to investigate the atmospheric and oceanic phenomena such as the atmospheric blockings, interactions between the atmosphere and ocean, oceanic circulations and hurricanes. The conservation laws of the CVCmKdV system are derived using the multiplier approach and a new conservation theorem. In addition to this, a similarity reduction and exact solutions with the aid of symbolic computation are computed.
March-Leuba, S.; Jansen, J.F.; Kress, R.L.; Babcock, S.M. ); Dubey, R.V. . Dept. of Mechanical and Aerospace Engineering)
1992-08-01
A new program package, Symbolic Manipulator Laboratory (SML), for the automatic generation of both kinematic and static manipulator models in symbolic form is presented. Critical design parameters may be identified and optimized using symbolic models as shown in the sample application presented for the Future Armor Rearm System (FARS) arm. The computer-aided development of the symbolic models yields equations with reduced numerical complexity. Important considerations have been placed on the closed form solutions simplification and on the user friendly operation. The main emphasis of this research is the development of a methodology which is implemented in a computer program capable of generating symbolic kinematic and static forces models of manipulators. The fact that the models are obtained trigonometrically reduced is among the most significant results of this work and the most difficult to implement. Mathematica, a commercial program that allows symbolic manipulation, is used to implement the program package. SML is written such that the user can change any of the subroutines or create new ones easily. To assist the user, an on-line help has been written to make of SML a user friendly package. Some sample applications are presented. The design and optimization of the 5-degrees-of-freedom (DOF) FARS manipulator using SML is discussed. Finally, the kinematic and static models of two different 7-DOF manipulators are calculated symbolically.
March-Leuba, S.; Jansen, J.F.; Kress, R.L.; Babcock, S.M.; Dubey, R.V.
1992-08-01
A new program package, Symbolic Manipulator Laboratory (SML), for the automatic generation of both kinematic and static manipulator models in symbolic form is presented. Critical design parameters may be identified and optimized using symbolic models as shown in the sample application presented for the Future Armor Rearm System (FARS) arm. The computer-aided development of the symbolic models yields equations with reduced numerical complexity. Important considerations have been placed on the closed form solutions simplification and on the user friendly operation. The main emphasis of this research is the development of a methodology which is implemented in a computer program capable of generating symbolic kinematic and static forces models of manipulators. The fact that the models are obtained trigonometrically reduced is among the most significant results of this work and the most difficult to implement. Mathematica, a commercial program that allows symbolic manipulation, is used to implement the program package. SML is written such that the user can change any of the subroutines or create new ones easily. To assist the user, an on-line help has been written to make of SML a user friendly package. Some sample applications are presented. The design and optimization of the 5-degrees-of-freedom (DOF) FARS manipulator using SML is discussed. Finally, the kinematic and static models of two different 7-DOF manipulators are calculated symbolically.
NASA Astrophysics Data System (ADS)
Pumpe, Daniel; Greiner, Maksim; Müller, Ewald; Enßlin, Torsten A.
2016-07-01
Stochastic differential equations describe well many physical, biological, and sociological systems, despite the simplification often made in their derivation. Here the usage of simple stochastic differential equations to characterize and classify complex dynamical systems is proposed within a Bayesian framework. To this end, we develop a dynamic system classifier (DSC). The DSC first abstracts training data of a system in terms of time-dependent coefficients of the descriptive stochastic differential equation. Thereby the DSC identifies unique correlation structures within the training data. For definiteness we restrict the presentation of the DSC to oscillation processes with a time-dependent frequency ω (t ) and damping factor γ (t ) . Although real systems might be more complex, this simple oscillator captures many characteristic features. The ω and γ time lines represent the abstract system characterization and permit the construction of efficient signal classifiers. Numerical experiments show that such classifiers perform well even in the low signal-to-noise regime.
Pumpe, Daniel; Greiner, Maksim; Müller, Ewald; Enßlin, Torsten A
2016-07-01
Stochastic differential equations describe well many physical, biological, and sociological systems, despite the simplification often made in their derivation. Here the usage of simple stochastic differential equations to characterize and classify complex dynamical systems is proposed within a Bayesian framework. To this end, we develop a dynamic system classifier (DSC). The DSC first abstracts training data of a system in terms of time-dependent coefficients of the descriptive stochastic differential equation. Thereby the DSC identifies unique correlation structures within the training data. For definiteness we restrict the presentation of the DSC to oscillation processes with a time-dependent frequency ω(t) and damping factor γ(t). Although real systems might be more complex, this simple oscillator captures many characteristic features. The ω and γ time lines represent the abstract system characterization and permit the construction of efficient signal classifiers. Numerical experiments show that such classifiers perform well even in the low signal-to-noise regime.
Pumpe, Daniel; Greiner, Maksim; Müller, Ewald; Enßlin, Torsten A
2016-07-01
Stochastic differential equations describe well many physical, biological, and sociological systems, despite the simplification often made in their derivation. Here the usage of simple stochastic differential equations to characterize and classify complex dynamical systems is proposed within a Bayesian framework. To this end, we develop a dynamic system classifier (DSC). The DSC first abstracts training data of a system in terms of time-dependent coefficients of the descriptive stochastic differential equation. Thereby the DSC identifies unique correlation structures within the training data. For definiteness we restrict the presentation of the DSC to oscillation processes with a time-dependent frequency ω(t) and damping factor γ(t). Although real systems might be more complex, this simple oscillator captures many characteristic features. The ω and γ time lines represent the abstract system characterization and permit the construction of efficient signal classifiers. Numerical experiments show that such classifiers perform well even in the low signal-to-noise regime. PMID:27575101
NASA Astrophysics Data System (ADS)
Kuvich, Gary
2004-12-01
To be completely successful, robots need to have reliable perceptual systems that are similar to human vision. It is hard to use geometric operations for processing of natural images. Instead, the brain builds a relational network-symbolic structure of visual scene, using different clues to set up the relational order of surfaces and objects with respect to the observer and to each other. Feature, symbol, and predicate are equivalent in the biologically inspired Network-Symbolic systems. A linking mechanism binds these features/symbols into coherent structures, and image converts from a "raster" into a "vector" representation. View-based object recognition is a hard problem for traditional algorithms that directly match a primary view of an object to a model. In Network-Symbolic Models, the derived structure, not the primary view, is a subject for recognition. Such recognition is not affected by local changes and appearances of the object as seen from a set of similar views. Once built, the model of visual scene changes slower then local information in the visual buffer. It allows for disambiguating visual information and effective control of actions and navigation via incremental relational changes in visual buffer. Network-Symbolic models can be seamlessly integrated into the NIST 4D/RCS architecture and better interpret images/video for situation awareness, target recognition, navigation and actions.
The analysis of control trajectories using symbolic and database computing
NASA Technical Reports Server (NTRS)
Grossman, Robert
1995-01-01
This final report comprises the formal semi-annual status reports for this grant for the periods June 30-December 31, 1993, January 1-June 30, 1994, and June 1-December 31, 1994. The research supported by this grant is broadly concerned with the symbolic computation, mixed numeric-symbolic computation, and database computation of trajectories of dynamical systems, especially control systems. A review of work during the report period covers: trajectories and approximating series, the Cayley algebra of trees, actions of differential operators, geometrically stable integration algorithms, hybrid systems, trajectory stores, PTool, and other activities. A list of publications written during the report period is attached.
Using chaos to model random symbols for improved unsupervised information processing
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sumona; Leung, Henry
We present theoretical analyses that may allow strengthening the connection between chaotic dynamical system and information processing. The analytical and empirical studies prove that computing with chaos and nonlinear characterization of information improves unsupervised information processing. Traditional supervised techniques for information retrieval from noisy environment achieve optimal performance. However, the need for training symbols is an inefficient strategy. We prove that with a chaotic generator as an information source, unsupervised performance is close to that of supervised with a white Gaussian stochastic process. Analytical results show that unsupervised technique using chaotic symbolic dynamics is equivalent to that of supervised when using random symbolic information. We conclude from the concepts of measure theory and ergodic theory, that random symbolic information can be modeled by a chaotic dynamical system via symbolic dynamics. We observe that the performance of unsupervised information retrieval is equivalent to that of supervised, when random symbolic information and a dynamical representation of it are used in conjunction. This fact enables to apply nonlinear dynamics to design improved communication systems. This research is supported by Alberta Innovates Technology Futures doctoral scholarship.
SD-CAS: Spin Dynamics by Computer Algebra System.
Filip, Xenia; Filip, Claudiu
2010-11-01
A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples.
SD-CAS: Spin Dynamics by Computer Algebra System
NASA Astrophysics Data System (ADS)
Filip, Xenia; Filip, Claudiu
2010-11-01
A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples.
Structured programming in symbolic multiprocessing
Tseitlin, G.E.
1984-05-01
This article applies Glushkov's systems of algorithmic algebras (SAA) to symbolic multiprocessing. Regular schemata on abstract memory types are used to formalize the main control techniques for parallel computations in slipway and pipeline multiprocessing. The expressive power of the proposed SAA apparatus is demonstrated for the reader-writer problem, the dynamic communication problem, the firing line problem, and parallel parsing. Structured design grammars combining the SAA apparatus with formal language models are applied for direct and inverse transformation from synchronous to asynchronous regular schemata and back. It is determined that program design based on structured design grammars preserves all the advantages of structured programming and enables partial program verification using top-down, bottom-up, and mixed parsers, the optimization of programs by prespecified criteria using the apparatus of identity transformations developed within the framework of SAA theory, and the joint multilevel (top-down, bottom-up, and mixed) design of structured algorithms and programs.
NASA Technical Reports Server (NTRS)
Wisdom, Jack
2002-01-01
In these 18 years, the research has touched every major dynamical problem in the solar system, including: the effect of chaotic zones on the distribution of asteroids, the delivery of meteorites along chaotic pathways, the chaotic motion of Pluto, the chaotic motion of the outer planets and that of the whole solar system, the delivery of short period comets from the Kuiper belt, the tidal evolution of the Uranian arid Galilean satellites, the chaotic tumbling of Hyperion and other irregular satellites, the large chaotic variations of the obliquity of Mars, the evolution of the Earth-Moon system, and the resonant core- mantle dynamics of Earth and Venus. It has introduced new analytical and numerical tools that are in widespread use. Today, nearly every long-term integration of our solar system, its subsystems, and other solar systems uses algorithms that was invented. This research has all been primarily Supported by this sequence of PGG NASA grants. During this period published major investigations of tidal evolution of the Earth-Moon system and of the passage of the Earth and Venus through non-linear core-mantle resonances were completed. It has published a major innovation in symplectic algorithms: the symplectic corrector. A paper was completed on non-perturbative hydrostatic equilibrium.
NASA Astrophysics Data System (ADS)
Kuvich, Gary
2005-10-01
Tactical behavior of UGVs, which is needed for successful autonomous off-road driving, can be in many cases achieved by covering most possible driving situations with a set of rules and switching into a "drive-me-away" semi-autonomous mode when no such rule exists. However, the unpredictable and rapidly changing nature of combat situations requires more intelligent tactical behavior that must be based on predictive situation awareness with ongoing scene understanding and fast autonomous decision making. The implementation of image understanding and active vision is possible in the form of biologically inspired Network-Symbolic models, which combine the power of Computational Intelligence with graph and diagrammatic representation of knowledge. A Network-Symbolic system converts image information into an "understandable" Network-Symbolic format, which is similar to relational knowledge models. The traditional linear bottom-up "segmentation-grouping-learning-recognition" approach cannot provide a reliable separation of an object from its background/clutter, while human vision unambiguously solves this problem. An Image/Video Analysis that is based on Network-Symbolic approach is a combination of recursive hierarchical bottom-up and top-down processes. Logic of visual scenes can be captured in the Network-Symbolic models and used for the reliable disambiguation of visual information, including object detection and identification. Such a system can better interpret images/video for situation awareness, target recognition, navigation and actions and seamlessly integrates into 4D/RCS architecture.
Dynamic Information Architecture System
1997-02-12
The Dynamic Information System (DIAS) is a flexible object-based software framework for concurrent, multidiscplinary modeling of arbitrary (but related) processes. These processes are modeled as interrelated actions caused by and affecting the collection of diverse real-world objects represented in a simulation. The DIAS architecture allows independent process models to work together harmoniously in the same frame of reference and provides a wide range of data ingestion and output capabilities, including Geographic Information System (GIS) typemore » map-based displays and photorealistic visualization of simulations in progress. In the DIAS implementation of the object-based approach, software objects carry within them not only the data which describe their static characteristics, but also the methods, or functions, which describe their dynamic behaviors. There are two categories of objects: (1) Entity objects which have real-world counterparts and are the actors in a simulation, and (2) Software infrastructure objects which make it possible to carry out the simulations. The Entity objects contain lists of Aspect objects, each of which addresses a single aspect of the Entity''s behavior. For example, a DIAS Stream Entity representing a section of a river can have many aspects correspondimg to its behavior in terms of hydrology (as a drainage system component), navigation (as a link in a waterborne transportation system), meteorology (in terms of moisture, heat, and momentum exchange with the atmospheric boundary layer), and visualization (for photorealistic visualization or map type displays), etc. This makes it possible for each real-world object to exhibit any or all of its unique behaviors within the context of a single simulation.« less
Dynamical systems theory for music dynamics
NASA Astrophysics Data System (ADS)
Boon, Jean Pierre; Decroly, Olivier
1995-09-01
We show that, when music pieces are cast in the form of time series of pitch variations, the concepts and tools of dynamical systems theory can be applied to the analysis of temporal dynamics in music. (i) Phase space portraits are constructed from the time series wherefrom the dimensionality is evaluated as a measure of the global dynamics of each piece. (ii) Spectral analysis of the time series yields power spectra (˜f-ν) close to red noise (ν˜2) in the low frequency range. (iii) We define an information entropy which provides a measure of the local dynamics in the musical piece; the entropy can be interpreted as an evaluation of the degree of complexity in the music, but there is no evidence of an analytical relation between local and global dynamics. These findings are based on computations performed on eighty sequences sampled in the music literature from the 18th to the 20th century.
ERIC Educational Resources Information Center
Miller, Judith; Graham, Lorraine; Pennington, Jim
2013-01-01
Health-related knowledge has been assumed to inform lifestyle choices for school-aged students. A "health-promoting school" provides the conceptual framework for this intervention. A large boarding school developed, implemented and refined a Nutritional Symbol System for their dining hall. The effectiveness of this social marketing…
ERIC Educational Resources Information Center
Lund, Shelley K.; Troha, Jeanette M.
2008-01-01
This study used a single-subject multiple baseline across participants design to evaluate the effectiveness of a modified picture exchange communication system (PECS) teaching protocol with tactile symbols. Three students (two male, one female) aged 12-17 years who had autism and were blind participated in the study. The instructional program…
ERIC Educational Resources Information Center
Ali, Emad; MacFarland, Stephanie Z.; Umbreit, John
2011-01-01
The Picture Exchange Communication System (PECS) is an augmentative and alternative communication (AAC) program used to teach functional requesting and commenting skills to people with disabilities (Bondy & Frost, 1993; Frost & Bondy, 2002). In this study, tangible symbols were added to PECS in teaching requesting to four students (ages 7-14) with…
Data Systems Dynamic Simulator
NASA Technical Reports Server (NTRS)
Rouff, Christopher; Clark, Melana; Davenport, Bill; Message, Philip
1993-01-01
The Data System Dynamic Simulator (DSDS) is a discrete event simulation tool. It was developed for NASA for the specific purpose of evaluating candidate architectures for data systems of the Space Station era. DSDS provides three methods for meeting this requirement. First, the user has access to a library of standard pre-programmed elements. These elements represent tailorable components of NASA data systems and can be connected in any logical manner. Secondly, DSDS supports the development of additional elements. This allows the more sophisticated DSDS user the option of extending the standard element set. Thirdly, DSDS supports the use of data streams simulation. Data streams is the name given to a technique that ignores packet boundaries, but is sensitive to rate changes. Because rate changes are rare compared to packet arrivals in a typical NASA data system, data stream simulations require a fraction of the CPU run time. Additionally, the data stream technique is considerably more accurate than another commonly-used optimization technique.
ERIC Educational Resources Information Center
Novak, Jodie D.; Jacobs, Judith E.
2005-01-01
This article describes a variety of activities that ask students to identify, describe, compare, and classify symbol strings (algebraic expressions and equations). The activities use a collection of twelve symbol strings on cards. (Contains 2 figures.)
Networks of motifs from sequences of symbols.
Sinatra, Roberta; Condorelli, Daniele; Latora, Vito
2010-10-22
We introduce a method to convert an ensemble of sequences of symbols into a weighted directed network whose nodes are motifs, while the directed links and their weights are defined from statistically significant co-occurences of two motifs in the same sequence. The analysis of communities of networks of motifs is shown to be able to correlate sequences with functions in the human proteome database, to detect hot topics from online social dialogs, to characterize trajectories of dynamical systems, and it might find other useful applications to process large amounts of data in various fields.
Networks of Motifs from Sequences of Symbols
NASA Astrophysics Data System (ADS)
Sinatra, Roberta; Condorelli, Daniele; Latora, Vito
2010-10-01
We introduce a method to convert an ensemble of sequences of symbols into a weighted directed network whose nodes are motifs, while the directed links and their weights are defined from statistically significant co-occurences of two motifs in the same sequence. The analysis of communities of networks of motifs is shown to be able to correlate sequences with functions in the human proteome database, to detect hot topics from online social dialogs, to characterize trajectories of dynamical systems, and it might find other useful applications to process large amounts of data in various fields.
Symbolic Shadowing and the Computation of Entropy for Observed Time Series
NASA Astrophysics Data System (ADS)
Mendes, Diana A.; Mendes, Vivaldo M.; Ferreira, Nuno; Menezes, Rui
Order, disorder and recurrence are common features observed in complex time series that can be encountered in many fields, like finance, economics, biology and physiology. These phenomena can be modelled by chaotic dynamical systems and one way to undertake a rigorous analysis is via symbolic dynamics, a mathematical-statistical technique that allows the detection of the underlying topological and metrical structures in the time series. Symbolic dynamics is a powerful tool initially developed for the investigation of discrete dynamical systems. The main idea consists in constructing a partition, that is, a finite collection of disjoint subsets whose union is the state space. By identifying each subset with a distinct symbol, we obtain sequences of symbols that correspond to each trajectory of the original system. One of the major problems in defining a "good" symbolic description of the corresponding time series is to obtain a generating partition, that is, the assignment of symbolic sequences to trajectories that is unique, up to a set of measure zero. Unfortunately, this is not a trivial task, and, moreover, for observed time series the notion of a generating partition is no longer well defined in the presence of noise. In this paper we apply symbolic shadowing, a deterministic algorithm using tessellations, in order to estimate a generating partition for a financial time series (PSI20) and consequently to compute its entropy. This algorithm allows producing partitions such that the symbolic sequences uniquely encode all periodic points up to some order. We compare these results with those obtained by considering the Pesin's identity, that is, the metric entropy is equal to the sum of positive Lyapunov exponents. To obtain the Lyapunov exponents, we reconstruct the state space of the PSI20 data by applying an embedding process and estimate them by using the Wolf et al. algorithm.
Universal Symbols and Cartography.
ERIC Educational Resources Information Center
Modley, Rudolf
The broad use of maps by non-cartographers imposes on the cartographer the burden to make maps not only accurate, but to use symbols which make map-reading easier for the public. The latter requirement implies a need for universal symbols. Although there are no universal symbols today (letters, words, and figures, to a lesser extent, are dependent…
Dynamic Modeling of ALS Systems
NASA Technical Reports Server (NTRS)
Jones, Harry
2002-01-01
The purpose of dynamic modeling and simulation of Advanced Life Support (ALS) systems is to help design them. Static steady state systems analysis provides basic information and is necessary to guide dynamic modeling, but static analysis is not sufficient to design and compare systems. ALS systems must respond to external input variations and internal off-nominal behavior. Buffer sizing, resupply scheduling, failure response, and control system design are aspects of dynamic system design. We develop two dynamic mass flow models and use them in simulations to evaluate systems issues, optimize designs, and make system design trades. One model is of nitrogen leakage in the space station, the other is of a waste processor failure in a regenerative life support system. Most systems analyses are concerned with optimizing the cost/benefit of a system at its nominal steady-state operating point. ALS analysis must go beyond the static steady state to include dynamic system design. All life support systems exhibit behavior that varies over time. ALS systems must respond to equipment operating cycles, repair schedules, and occasional off-nominal behavior or malfunctions. Biological components, such as bioreactors, composters, and food plant growth chambers, usually have operating cycles or other complex time behavior. Buffer sizes, material stocks, and resupply rates determine dynamic system behavior and directly affect system mass and cost. Dynamic simulation is needed to avoid the extremes of costly over-design of buffers and material reserves or system failure due to insufficient buffers and lack of stored material.
Towards Symbolic Model Checking for Multi-Agent Systems via OBDDs
NASA Technical Reports Server (NTRS)
Raimondi, Franco; Lomunscio, Alessio
2004-01-01
We present an algorithm for model checking temporal-epistemic properties of multi-agent systems, expressed in the formalism of interpreted systems. We first introduce a technique for the translation of interpreted systems into boolean formulae, and then present a model-checking algorithm based on this translation. The algorithm is based on OBDD's, as they offer a compact and efficient representation for boolean formulae.
Cysarz, Dirk; Edelhauser, Friedrich; Javorka, Michal; Montano, Nicola; Porta, Alberto
2015-01-01
Coarse graining of physiological time series such as the cardiac interbeat interval series by means of a symbolic transformation retains information about dynamical properties of the underlying system and complements standard measures of heart rate variability. The transformations of the original time series to the coarse grained symbolic series usually lead to a non-uniform occurrence of the different symbols, i.e. some symbols appear more often than others influencing the results of the subsequent symbolic series analysis. Here, we defined a transformation procedure to assure that each symbol appears with equal probability using a short alphabet {0,1,2,3} and a long alphabet {0,1,2,3,4,5}. The procedure was applied to the cardiac interbeat interval series RRi of 17 healthy subjects obtained during graded head-up tilt testing. The symbolic dynamics is analyzed by means of the occurrence of short sequences (`words') of length 3. The occurrence of words is grouped according to words without variations of the symbols (0V%), one variation (1V%), two like variations (2LV%) and two unlike variations (2UV%). Linear regression analysis with respect to tilt angle showed that for the short alphabet 0V% increased with increasing tilt angle whereas 1V%, 2LV% and 2UV% decreased. For the long alphabet 0V%, and 1V% increased with increasing tilt angle whereas 2LV% and 2UV% decreased. These results were slightly better compared to the results from non-uniform symbolic transformations reflecting the deviation from the mean. In conclusion, the symbolic transformation assuring the appearance of symbols with equal probability is capable of reflecting changes of the cardiac autonomic nervous system during graded head-up tilt. Furthermore, the transformation is independent of the time series' distribution. PMID:26736256
Arithmetic coding as a non-linear dynamical system
NASA Astrophysics Data System (ADS)
Nagaraj, Nithin; Vaidya, Prabhakar G.; Bhat, Kishor G.
2009-04-01
In order to perform source coding (data compression), we treat messages emitted by independent and identically distributed sources as imprecise measurements (symbolic sequence) of a chaotic, ergodic, Lebesgue measure preserving, non-linear dynamical system known as Generalized Luröth Series (GLS). GLS achieves Shannon's entropy bound and turns out to be a generalization of arithmetic coding, a popular source coding algorithm, used in international compression standards such as JPEG2000 and H.264. We further generalize GLS to piecewise non-linear maps (Skewed-nGLS). We motivate the use of Skewed-nGLS as a framework for joint source coding and encryption.
NASA Astrophysics Data System (ADS)
Madjid, F. Hadi; Myers, John M.
2016-10-01
The world runs on networks over which signals communicate sequences of symbols, e.g. numerals. Examining both engineered and natural communications networks reveals an unsuspected order that depends on contact with an unpredictable entity. This order has three roots. The first is a proof within quantum theory that no evidence can ever determine its explanation, so that an agent choosing an explanation must do so unpredictably. The second root is the showing that clocks that step computers do not "tell time" but serve as self-adjusting symbol-handling agents that regulate "logically synchronized" motion in response to unpredictable disturbances. Such a clock-agent has a certain independence as well as the capacity to communicate via unpredictable symbols with other clock-agents and to adjust its own tick rate in response to that communication. The third root is the noticing of unpredictable symbol exchange in natural systems, including the transmission of symbols found in molecular biology. We introduce a symbol-handling agent as a role played in some cases by a person, for example a physicist who chooses an explanation of given experimental outcomes, and in other cases by some other biological entity, and in still other cases by an inanimate device, such as a computer-based detector used in physical measurements. While we forbear to try to explain the propensity of agents at all levels from cells to civilizations to form and operate networks of logically synchronized symbol-handling agents, we point to this propensity as an overlooked cosmic order, an order structured by the unpredictability ensuing from the proof. Appreciating the cosmic order leads to a conception of agency that replaces volition by unpredictability and reconceives the notion of objectivity in a way that makes a place for agency in the world as described by physics. Some specific implications for physics are outlined.
Landscape Construction in Dynamical Systems
NASA Astrophysics Data System (ADS)
Tang, Ying; Yuan, Ruoshi; Wang, Gaowei; Ao, Ping
The idea of landscape has been recently applied to study various of biological problems. We demonstrate that a dynamical structure built into nonlinear dynamical systems allows us to construct such a global optimization landscape, which serves as the Lyapunov function for the ordinary differential equation. We find exact constructions on the landscape for a class of dynamical systems, including a van der Pol type oscillator, competitive Lotka-Volterra systems, and a chaotic system. The landscape constructed provides a new angle for understanding and modelling biological network dynamics.
A perceptual account of symbolic reasoning
Landy, David; Allen, Colin; Zednik, Carlos
2014-01-01
People can be taught to manipulate symbols according to formal mathematical and logical rules. Cognitive scientists have traditionally viewed this capacity—the capacity for symbolic reasoning—as grounded in the ability to internally represent numbers, logical relationships, and mathematical rules in an abstract, amodal fashion. We present an alternative view, portraying symbolic reasoning as a special kind of embodied reasoning in which arithmetic and logical formulae, externally represented as notations, serve as targets for powerful perceptual and sensorimotor systems. Although symbolic reasoning often conforms to abstract mathematical principles, it is typically implemented by perceptual and sensorimotor engagement with concrete environmental structures. PMID:24795662
Dynamical Systems in Psychology: Linguistic Approaches
NASA Astrophysics Data System (ADS)
Sulis, William
Major goals for psychoanalysis and psychology are the description, analysis, prediction, and control of behaviour. Natural language has long provided the medium for the formulation of our theoretical understanding of behavior. But with the advent of nonlinear dynamics, a new language has appeared which offers promise to provide a quantitative theory of behaviour. In this paper, some of the limitations of natural and formal languages are discussed. Several approaches to understanding the links between natural and formal languages, as applied to the study of behavior, are discussed. These include symbolic dynamics, Moore's generalized shifts, Crutchfield's ɛ machines, and dynamical automata.
Child and Symbol Factors in Learning to Read a Visually Complex Writing System
ERIC Educational Resources Information Center
Nag, Sonali; Snowling, Margaret; Quinlan, Philip; Hulme, Charles
2014-01-01
In Kannada, visual features are arranged in blocks called "akshara," making this a visually more complex writing system than typical alphabetic orthographies. Akshara knowledge was assessed concurrently and 8 months later in 113 children in the first years of reading instruction (aged 4-7 years). Mixed effects logistic regression models…
Dynamical systems theory for music dynamics.
Boon, Jean Pierre; Decroly, Olivier
1995-09-01
We show that, when music pieces are cast in the form of time series of pitch variations, the concepts and tools of dynamical systems theory can be applied to the analysis of temporal dynamics in music. (i) Phase space portraits are constructed from the time series wherefrom the dimensionality is evaluated as a measure of the global dynamics of each piece. (ii) Spectral analysis of the time series yields power spectra ( approximately f(-nu)) close to red noise (nu approximately 2) in the low frequency range. (iii) We define an information entropy which provides a measure of the local dynamics in the musical piece; the entropy can be interpreted as an evaluation of the degree of complexity in the music, but there is no evidence of an analytical relation between local and global dynamics. These findings are based on computations performed on eighty sequences sampled in the music literature from the 18th to the 20th century. (c) 1995 American Institute of Physics. PMID:12780206
An algebraic criterion for the onset of chaos in nonlinear dynamic systems
NASA Technical Reports Server (NTRS)
Unal, A.; Tobak, M.
1987-01-01
The correspondence between iterated integrals and a noncommutative algebra is used to recast the given dynamical system from the time domain to the Laplace-Borel transform domain. It is then shown that the following algebraic criterion has to be satisfied for the outset of chaos: the limit (as tau approaches infinity and x sub 0 approaches infinity) of ((sigma(k=0) (tau sup k) / (k* x sub 0 sup k)) G II G = 0, where G is the generating power series of the trajectories, the symbol II is the shuffle product (le melange) of the noncommutative algebra, x sub 0 is a noncommutative variable, and tau is the correlation parameter. In the given equation, symbolic forms for both G and II can be obtained by use of one of the currently available symbolic languages such as PLI, REDUCE, and MACSYMA. Hence, the criterion is a computer-algebraic one.
ERIC Educational Resources Information Center
Amsberry, Gianna; McLaughlin, T. F.; Derby, K. Mark; Waco, Teresa
2012-01-01
The purpose of this study was to determine the effectiveness of using the Davis Symbol Mastery Procedure for Words (Davis, 1994) for improving spelling skills. The participant was a fourth-grade male diagnosed with a significant learning disability. The intervention consisted of having the participant write each word, its definition, the word in a…
NASA Astrophysics Data System (ADS)
Voss, Andreas; Schroeder, Rico; Truebner, Sandra; Goernig, Matthias; Figulla, Hans Reiner; Schirdewan, Alexander
2007-03-01
Dilated cardiomyopathy (DCM) has an incidence of about 20/100 000 new cases per annum and accounts for nearly 10 000 deaths per year in the United States. Approximately 36% of patients with dilated cardiomyopathy (DCM) suffer from cardiac death within five years after diagnosis. Currently applied methods for an early risk prediction in DCM patients are rather insufficient. The objective of this study was to investigate the suitability of short-term nonlinear methods symbolic dynamics (STSD), detrended fluctuation (DFA), and Poincaré plot analysis (PPA) for risk stratification in these patients. From 91 DCM patients and 30 healthy subjects (REF), heart rate and blood pressure variability (HRV, BPV), STSD, DFA, and PPA were analyzed. Measures from BPV analysis, DFA, and PPA revealed highly significant differences (p<0.0011) discriminating REF and DCM. For risk stratification in DCM patients, four parameters from BPV analysis, STSD, and PPA revealed significant differences between low and high risk (maximum sensitivity: 90%, specificity: 90%). These results suggest that STSD and PPA are useful nonlinear methods for enhanced risk stratification in DCM patients.
Byk, Christian
2010-12-01
Included in human rights law just after the Second World War, dignity is the quality common to all people in that it symbolises their human condition. Inherent to each person, it is therefore independent of any other personal and random condition (physical state, origin, colour, religion...) just as it is independent of social conditions (a person's dignity cannot be questioned by society). However, the very context of this recognition--in the aftermath of the defeat of Nazism--emphasises the fact that it was not something evident in human history. So there is in this manifestation of the international community a strong political sign which makes dignity as much a construction of man as a quality consubstantial with his nature. A symbol of the human condition, dignity is therefore also a dynamic value, a combat value. As such, it forces us to wonder about what belongs to the human sphere and also about the particular responsibility which springs for every man and for mankind, from the dignity with which he is invested.
Brooks, E.D. III )
1989-08-01
We introduce a new implicit Monte Carlo technique for solving time dependent radiation transport problems involving spontaneous emission. In the usual implicit Monte Carlo procedure an effective scattering term in dictated by the requirement of self-consistency between the transport and implicitly differenced atomic populations equations. The effective scattering term, a source of inefficiency for optically thick problems, becomes an impasse for problems with gain where its sign is negative. In our new technique the effective scattering term does not occur and the excecution time for the Monte Carlo portion of the algorithm is independent of opacity. We compare the performance and accuracy of the new symbolic implicit Monte Carlo technique to the usual effective scattering technique for the time dependent description of a two-level system in slab geometry. We also examine the possibility of effectively exploiting multiprocessors on the algorithm, obtaining supercomputer performance using shared memory multiprocessors based on cheap commodity microprocessor technology. {copyright} 1989 Academic Press, Inc.
Dynamical Aspects of Nuclear Fission
NASA Astrophysics Data System (ADS)
Kliman, J.; Itkis, M. G.; Gmuca, Š.
2008-11-01
Fission dynamics. Dependence of scission-neutron yield on light-fragment mass for [symbol]=1/2 [et al.]. Dynamics of capture quasifission and fusion-fission competition / L. Stuttgé ... [et al.] -- Fission-fission. The processes of fusion-fission and quasi-fission of superheavy nuclei / M. G. Itkis ... [et al.]. Fission and quasifission in the reactions [symbol]Ca+[symbol]Pb and [symbol]Ni+[symbol]W / G. N. Knyazheva ... [et al.]. Mass-energy characteristics of reactions [symbol]Fe+[symbol][symbol][symbol]266Hs and [symbol]Mg+[symbol]Cm[symbol][symbol]Hs at Coulomb barrier / L. Krupa ... [et al.]. Fusion of heavy ions at extreme sub-barrier energies / Ş. Mişicu and H. Esbensen. Fusion and fission dynamics of heavy nuclear system / V. Zagrebaev and W. Greiner. Time-dependent potential energy for fusion and fission processes / A. V. Karpov ... [et al.] -- Superheavy elements. Advances in the understanding of structure and production mechanisms for superheavy elements / W. Greiner and V. Zagrebaev. Fission barriers of heaviest nuclei / A. Sobiczewski ... [et al.]. Possibility of synthesizing doubly magic superheavy nuclei / Y Aritomo ... [et al.]. Synthesis of superheavy nuclei in [symbol]Ca-induced reactions / V. K. Utyonkov ... [et al.] -- Fragmentation. Production of neutron-rich nuclei in the nucleus-nucleus collisions around the Fermi energy / M. Veselský. Signals of enlarged core in [symbol]Al / Y. G. Ma ... [et al.] -- Exotic modes. New insight into the fission process from experiments with relativistic heavy-ion beams / K.-H. Schmidt ... [et al.]. New results for the intensity of bimodal fission in binary and ternary spontaneous fission of [symbol]Cf / C. Goodin ... [et al.]. Rare fission modes: study of multi-cluster decays of actinide nuclei / D. V. Kamanin ... [et al.]. Energy distribution of ternary [symbol]-particles in [symbol]Cf(sf) / M. Mutterer ... [et al.]. Preliminary results of experiment aimed at searching for collinear cluster tripartition of
Generalized Symbolic Execution for Model Checking and Testing
NASA Technical Reports Server (NTRS)
Khurshid, Sarfraz; Pasareanu, Corina; Visser, Willem; Kofmeyer, David (Technical Monitor)
2003-01-01
Modern software systems, which often are concurrent and manipulate complex data structures must be extremely reliable. We present a novel framework based on symbolic execution, for automated checking of such systems. We provide a two-fold generalization of traditional symbolic execution based approaches: one, we define a program instrumentation, which enables standard model checkers to perform symbolic execution; two, we give a novel symbolic execution algorithm that handles dynamically allocated structures (e.g., lists and trees), method preconditions (e.g., acyclicity of lists), data (e.g., integers and strings) and concurrency. The program instrumentation enables a model checker to automatically explore program heap configurations (using a systematic treatment of aliasing) and manipulate logical formulae on program data values (using a decision procedure). We illustrate two applications of our framework: checking correctness of multi-threaded programs that take inputs from unbounded domains with complex structure and generation of non-isomorphic test inputs that satisfy a testing criterion. Our implementation for Java uses the Java PathFinder model checker.
NASA Astrophysics Data System (ADS)
Boghosian, Bruce
2009-03-01
Unstable periodic orbits are a ubiquitous feature of a wide variety of dynamical systems that exhibit behavior that may be characterized as chaotic, complex or turbulent. In physics pedagogy, they may be used as a bridge to the understanding of symbolic dynamics, topological entropy and pressure, and the dynamical zeta function formalism. As high-performance scientific computation makes the application of this methodology possible to ever-larger dynamical systems, this methodology emerges as an effective way to introduce students -- from secondary school, to undergraduate education, to graduate education -- to advanced concepts in the theory of dynamical systems.
The Symbolic Identity Technique.
ERIC Educational Resources Information Center
Goud, Nelson H.
2001-01-01
Explains the role of symbols in attaining total psychic growth by applying concepts of C. Jung, R. Assagiolo, and L. Kubie. Describes a new strategy, the symbolic identity technique, which involves environmental exploration in a relaxed, receptive manner in order to discover something in the outer environment that reflects one's inner nature.…
Quantities, Units, and Symbols.
ERIC Educational Resources Information Center
Royal Society, London (England).
This booklet provides a reference to the quantities, units, and their symbols which are used in physical science. It is a revision of a 1969 report and takes account of the progress which has been made in obtaining international agreement on the definitions, names, and symbols for units and on the rules for the expression of relations involving…
Goebel, P
1986-01-01
Taking Jones' work--A Theory of Symbolism as a Basis--it is attempted to elaborate on the basic underlying hypotheses of his symbol concept and to show the partiality of his metaphor concept. Prominence is given the concepts of similarity, identification and structure of experience. The insufficient definition of the metaphor complicates, the understanding of the connection between symbol, symptom and language. The metaphor phenomenon is explained and its organization principles pointed out; principles which are also found in the organisation of experience formation. Freunds theses of primitive language and the use of language as a bridge to symbolism is clarified. The connection between metaphor and symbol is represented as a circular process.
Analog-symbolic memory that tracks via reconsolidation
NASA Astrophysics Data System (ADS)
Siegelmann, Hava T.
2008-07-01
A fundamental part of a computational system is its memory, which is used to store and retrieve data. Classical computer memories rely on the static approach and are very different from human memories. Neural network memories are based on auto-associative attractor dynamics and thus provide a high level of pattern completion. However, they are not used in general computation since there are practically no algorithms to load an arbitrary landscape of attractors into them. In this sense neural network memory models cannot communicate well with symbolic and prior knowledge. We propose the design of a new memory based on localist attractor dynamics with reconsolidation called Reconsolidation Attractor Network (RAN). RAN combines symbolic and subsymbolic features in a very attractive way: it is based on attractors; enables pattern classification under missing data; and demonstrates dynamic reconsolidation, which is very useful for tracking changing concepts. The perception RAN enables is somewhat reminiscent of human perception due to its context sensitivity. Furthermore, it enables an immediate and clear interface with symbolic memories, including loading of attractors by means of trivial wiring, updating attractors, and retrieving them faster without waiting for full convergence. It also scales to any number of concepts. This provides a useful counterpoint to more conventional memory systems, such as random access memory and auto-associative neural networks.
Dynamic granularity of imaging systems
Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; Porter, John L.
2015-11-04
Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the “dynamic granularity” Gdyn as a standardized, objective relation between a detector’s spatial resolution (granularity) and dynamic range for complex imaging systems in a given environment rathermore » than the widely found characterization of detectors such as cameras or films by themselves. We found that this relation can partly be explained through consideration of the signal’s photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system’s performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. Our article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia’s Z-Backlighter facility.« less
Dynamic granularity of imaging systems
Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; Porter, John L.
2015-11-04
Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the “dynamic granularity” G_{dyn} as a standardized, objective relation between a detector’s spatial resolution (granularity) and dynamic range for complex imaging systems in a given environment rather than the widely found characterization of detectors such as cameras or films by themselves. We found that this relation can partly be explained through consideration of the signal’s photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system’s performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. Our article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia’s Z-Backlighter facility.
The Symbolic Order of School: Waldorf and College Prep.
ERIC Educational Resources Information Center
Henry, Mary E.
Schools embody a "symbolic order" communicated through school rituals and social and symbolic relationships. Schools possess a moral vision, a system of values and norms that they wish to develop in students. This paper compares the symbolic order of two independent schools, one a traditional college preparatory school (preschool-grade 12), the…
Dynamic stability of maglev systems
Cai, Y.; Chen, S.S.; Mulcahy, T.M.; Rote, D.M.
1994-05-01
Because dynamic instabilities are not acceptable in any commercial maglev system, it is important to consider dynamic instability in the development of all maglev systems. This study considers the stability of maglev systems based on experimental data, scoping calculations, and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments. The theory and analysis developed in this study provides basic stability characteristics and identifies future research needs for maglev systems.
Dynamic stability of maglev systems
Cai, Y.; Chen, S.S.; Mulcahy, T.M.; Rote, D.M.
1992-09-01
Since the occurrence of dynamic instabilities is not acceptable for any commercial maglev systems, it is important to consider the dynamic instability in the development of all maglev systems. This study is to consider the stability of maglev systems based on experimental data, scoping calculations and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on the guideway which consists of double L-shaped aluminum segments attached to a rotating wheel. The theory and analysis developed in this study provides basic stability characteristics and identifies future research needs for maglev system.
Dynamic stability of maglev systems
Cai, Y.; Chen, S.S.; Mulcahy, T.M.; Rote, D.M.
1992-01-01
Since the occurrence of dynamic instabilities is not acceptable for any commercial maglev systems, it is important to consider the dynamic instability in the development of all maglev systems. This study is to consider the stability of maglev systems based on experimental data, scoping calculations and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on the guideway which consists of double L-shaped aluminum segments attached to a rotating wheel. The theory and analysis developed in this study provides basic stability characteristics and identifies future research needs for maglev system.
Realization of dynamical electronic systems
NASA Astrophysics Data System (ADS)
Hammari, Elena; Catthoor, Francky; Iasemidis, Leonidas; Kjeldsberg, Per Gunnar; Huisken, Jos; Tsakalis, Konstantinos
2014-04-01
This article gives an overview of a methodology for building dynamical electronic systems. As an example a part of a system for epileptic seizure prediction is used, which monitors EEG signals and continuously calculates the largest short-term Lyapunov exponents. In dynamical electronic systems, the cost of exploitation, for instance energy consumption, may vary substantially with the values of input signals. In addition, the functions describing the variations are not known at the time the system is designed. As a result, the architecture of the system must accommodate for the worst case exploitation costs, which rapidly exceed the available resources (for instance battery life) when accumulated over time. The presented system scenario methodology solves these challenges by identifying at design time groups of possible exploitation costs, called system scenarios, and implementing a mechanism to detect system scenarios at run time and re-configure the system to cost-efficiently accommodate them. During reconfiguration, the optimized system architecture settings for the active system scenario are selected and the total exploitation cost is reduced. When the dynamic behavior is due to input data variables with a large number of possible values, current techniques for bottom-up scenario identification and detection becomes too complex. A new top-down technique, based on polygonal regions, is presented in this paper. The results for the example system indicate that with 10 system scenarios the average energy consumption of the system can be reduced by 28% and brought within 5% of the theoretically best solution.
NASA Technical Reports Server (NTRS)
Wisdom, Jack
1987-01-01
The rotational dynamics of irregularly shaped satellites and the origin of Kirkwood Gaps are discussed. The chaotic tumbling of Hyperion and the anomalously low eccentricity of Deimos are examined. The Digital Orrery is used to explore the phase space of the ellipic restricted three body problem near the principal commensurabilities (2/1, 5/2, 3/1, and 3/2). The results for the 3/1 commensurability are in close agreement with those found earlier with the algebraic mapping method. Large chaotic zones are associated with the 3/1, 2/1 and 5/2 resonances, where there are gaps in the distribution of asteroids. The region near the 3/2 resonance, where the Hilda group of asteroids is located, is largely devoid of chaotic behavior. Thus, there is a qualitative agreement between the character of the motion and the distribution of asteroids.
Noncoherent Symbol Synchronization Techniques
NASA Technical Reports Server (NTRS)
Simon, Marvin
2005-01-01
Traditional methods for establishing symbol synchronization (sync) in digital communication receivers assume that carrier sync has already been established, i.e., the problem is addressed at the baseband level assuming that a 'perfect' estimate of carrier phase is available. We refer to this approach as coherent symbol sync. Since, for NRZ signaling, a suppressed carrier sync loop such as an I-Q Costas loop includes integrate-and-dump (I and D) filters in its in-phase (1) and quadrature (Q) arms, the traditional approach is to first track the carrier in the absence of symbol sync information, then feed back the symbol sync estimate to these filters, and then iterate between the two to a desirable operating level In this paper, we revisit the symbol sync problem by examining methods for obtaining such sync in the absence of carrier phase information, i.e., so-called noncoherent symbol sync loops. We compare the performance of these loops with that of a well-known coherent symbol sync loop and examine the conditions under which one is preferable over the other.
The physics of symbols: bridging the epistemic cut.
Pattee, H H
2001-01-01
Evolution requires the genotype-phenotype distinction, a primeval epistemic cut that separates energy-degenerate, rate-independent genetic symbols from the rate-dependent dynamics of construction that they control. This symbol-matter or subject-object distinction occurs at all higher levels where symbols are related to a referent by an arbitrary code. The converse of control is measurement in which a rate-dependent dynamical state is coded into quiescent symbols. Non-integrable constraints are one necessary condition for bridging the epistemic cut by measurement, control, and coding. Additional properties of heteropolymer constraints are necessary for biological evolution.
Biologically inspired dynamic material systems.
Studart, André R
2015-03-01
Numerous examples of material systems that dynamically interact with and adapt to the surrounding environment are found in nature, from hair-based mechanoreceptors in animals to self-shaping seed dispersal units in plants to remodeling bone in vertebrates. Inspired by such fascinating biological structures, a wide range of synthetic material systems have been created to replicate the design concepts of dynamic natural architectures. Examples of biological structures and their man-made counterparts are herein revisited to illustrate how dynamic and adaptive responses emerge from the intimate microscale combination of building blocks with intrinsic nanoscale properties. By using top-down photolithographic methods and bottom-up assembly approaches, biologically inspired dynamic material systems have been created 1) to sense liquid flow with hair-inspired microelectromechanical systems, 2) to autonomously change shape by utilizing plantlike heterogeneous architectures, 3) to homeostatically influence the surrounding environment through self-regulating adaptive surfaces, and 4) to spatially concentrate chemical species by using synthetic microcompartments. The ever-increasing complexity and remarkable functionalities of such synthetic systems offer an encouraging perspective to the rich set of dynamic and adaptive properties that can potentially be implemented in future man-made material systems.
Self-Supervised Dynamical Systems
NASA Technical Reports Server (NTRS)
Zak, Michail
2003-01-01
Some progress has been made in a continuing effort to develop mathematical models of the behaviors of multi-agent systems known in biology, economics, and sociology (e.g., systems ranging from single or a few biomolecules to many interacting higher organisms). Living systems can be characterized by nonlinear evolution of probability distributions over different possible choices of the next steps in their motions. One of the main challenges in mathematical modeling of living systems is to distinguish between random walks of purely physical origin (for instance, Brownian motions) and those of biological origin. Following a line of reasoning from prior research, it has been assumed, in the present development, that a biological random walk can be represented by a nonlinear mathematical model that represents coupled mental and motor dynamics incorporating the psychological concept of reflection or self-image. The nonlinear dynamics impart the lifelike ability to behave in ways and to exhibit patterns that depart from thermodynamic equilibrium. Reflection or self-image has traditionally been recognized as a basic element of intelligence. The nonlinear mathematical models of the present development are denoted self-supervised dynamical systems. They include (1) equations of classical dynamics, including random components caused by uncertainties in initial conditions and by Langevin forces, coupled with (2) the corresponding Liouville or Fokker-Planck equations that describe the evolutions of probability densities that represent the uncertainties. The coupling is effected by fictitious information-based forces, denoted supervising forces, composed of probability densities and functionals thereof. The equations of classical mechanics represent motor dynamics that is, dynamics in the traditional sense, signifying Newton s equations of motion. The evolution of the probability densities represents mental dynamics or self-image. Then the interaction between the physical and
Dynamically reconfigurable photovoltaic system
Okandan, Murat; Nielson, Gregory N.
2016-05-31
A PV system composed of sub-arrays, each having a group of PV cells that are electrically connected to each other. A power management circuit for each sub-array has a communications interface and serves to connect or disconnect the sub-array to a programmable power grid. The power grid has bus rows and bus columns. A bus management circuit is positioned at a respective junction of a bus column and a bus row and is programmable through its communication interface to connect or disconnect a power path in the grid. As a result, selected sub-arrays are connected by selected power paths to be in parallel so as to produce a low system voltage, and, alternately in series so as to produce a high system voltage that is greater than the low voltage by at least a factor of ten.
Managing Complex Dynamical Systems
ERIC Educational Resources Information Center
Cox, John C.; Webster, Robert L.; Curry, Jeanie A.; Hammond, Kevin L.
2011-01-01
Management commonly engages in a variety of research designed to provide insight into the motivation and relationships of individuals, departments, organizations, etc. This paper demonstrates how the application of concepts associated with the analysis of complex systems applied to such data sets can yield enhanced insights for managerial action.
How Do You Describe a Symbol? The Problems Involved in Retrieving Symbols from a Database.
ERIC Educational Resources Information Center
Dyson, Mary C.
1992-01-01
Analyzes attributes of symbols and identifies the need for a suitable management system for retrieving images from a database. A classification structure that incorporates graphic, semantic, and bibliographic dimensions is described; experiments with describing, sorting, and drawing symbols are reviewed; and future work on a database management…
Matter and symbols of the artificial
Rocha, L.M.
1998-08-01
The study of complex systems should be based on a systems-theoretic framework which requires both self-organizing and symbolic dimensions. An inclusive framework based on the notion of semiotics is advanced to build models capable of representing, as well as evolving in their environments, with implications for Artificial Life. Such undertaking is pursued by discussing the ways in which symbol and matter are irreducibly intertwined in evolutionary systems. The problem is thus phrased in terms of the semiotic categories of syntax, semantics, and pragmatics. With this semiotic view of matter and symbols the requirements of semiotic closure are expressed in models with both self-organizing and symbolic characteristics. Situated action and recent developments in the evolution of cellular automata rules to solve non-trivial tasks are discussed in this context. Finally, indirect encoding schemes for genetic algorithms are developed which follow the semiotic framework here proposed.
NASA Technical Reports Server (NTRS)
Yang, Guowei; Pasareanu, Corina S.; Khurshid, Sarfraz
2012-01-01
This paper introduces memoized symbolic execution (Memoise), a novel approach for more efficient application of forward symbolic execution, which is a well-studied technique for systematic exploration of program behaviors based on bounded execution paths. Our key insight is that application of symbolic execution often requires several successive runs of the technique on largely similar underlying problems, e.g., running it once to check a program to find a bug, fixing the bug, and running it again to check the modified program. Memoise introduces a trie-based data structure that stores the key elements of a run of symbolic execution. Maintenance of the trie during successive runs allows re-use of previously computed results of symbolic execution without the need for re-computing them as is traditionally done. Experiments using our prototype embodiment of Memoise show the benefits it holds in various standard scenarios of using symbolic execution, e.g., with iterative deepening of exploration depth, to perform regression analysis, or to enhance coverage.
Suk, M.
1990-12-01
The Northeast Artificial Intelligence Consortium (NAIC) was created by the Air Force Systems Command, Rome Air Development Center, and the Office of Scientific Research. Its purpose was to conduct pertinent research in artificial intelligence and to perform activities ancillary to this research. This report describes progress during the existence of the NAIC on the technical research tasks undertaken at the member universities. The topics covered in general are: versatile expert for equipment maintenance, distributed AI for communications system control, automatic photointerpretation, time oriented problem solving, speech understanding systems, knowledge base maintenance, hardware architectures for very large systems, knowledge based reasoning and planning, and a knowledge acquisition, assistance, and explanation system. The specific topic for this volume is coupling symbolic and numerical computation as an effective means of solving problems in Knowledge Base Systems.
Symbolism in the Feature Film.
ERIC Educational Resources Information Center
Bakony, Edward
A study of symbolism in feature films reveals how the symbolism employed by film makers can serve as a bridge between feeling and thought, and between aesthetics and cognition. What individuals read from and learn through a symbol varies with what they bring to it. The filmmaker's symbolims must be universal and not private. However, symbolism in…
Exact and Approximate Probabilistic Symbolic Execution
NASA Technical Reports Server (NTRS)
Luckow, Kasper; Pasareanu, Corina S.; Dwyer, Matthew B.; Filieri, Antonio; Visser, Willem
2014-01-01
Probabilistic software analysis seeks to quantify the likelihood of reaching a target event under uncertain environments. Recent approaches compute probabilities of execution paths using symbolic execution, but do not support nondeterminism. Nondeterminism arises naturally when no suitable probabilistic model can capture a program behavior, e.g., for multithreading or distributed systems. In this work, we propose a technique, based on symbolic execution, to synthesize schedulers that resolve nondeterminism to maximize the probability of reaching a target event. To scale to large systems, we also introduce approximate algorithms to search for good schedulers, speeding up established random sampling and reinforcement learning results through the quantification of path probabilities based on symbolic execution. We implemented the techniques in Symbolic PathFinder and evaluated them on nondeterministic Java programs. We show that our algorithms significantly improve upon a state-of- the-art statistical model checking algorithm, originally developed for Markov Decision Processes.
Waddington, Dynamic Systems, and Epigenetics
Tronick, Ed; Hunter, Richard G.
2016-01-01
Waddington coined the term “epigenetic” to attempt to explain the complex, dynamic interactions between the developmental environment and the genome that led to the production of phenotype. Waddington's thoughts on the importance of both adaptability and canalization of phenotypic development are worth recalling as well, as they emphasize the available range for epigenetic action and the importance of environmental feedback (or lack thereof) in the development of complex traits. We suggest that a dynamic systems view fits well with Waddington's conception of epigenetics in the developmental context, as well as shedding light on the study of the molecular epigenetic effects of the environment on brain and behavior. Further, the dynamic systems view emphasizes the importance of the multi-directional interchange between the organism, the genome and various aspects of the environment to the ultimate phenotype. PMID:27375447
Dynamics of Variable Mass Systems
NASA Technical Reports Server (NTRS)
Eke, Fidelis O.
1998-01-01
This report presents the results of an investigation of the effects of mass loss on the attitude behavior of spinning bodies in flight. The principal goal is to determine whether there are circumstances under which the motion of variable mass systems can become unstable in the sense that their transverse angular velocities become unbounded. Obviously, results from a study of this kind would find immediate application in the aerospace field. The first part of this study features a complete and mathematically rigorous derivation of a set of equations that govern both the translational and rotational motions of general variable mass systems. The remainder of the study is then devoted to the application of the equations obtained to a systematic investigation of the effect of various mass loss scenarios on the dynamics of increasingly complex models of variable mass systems. It is found that mass loss can have a major impact on the dynamics of mechanical systems, including a possible change in the systems stability picture. Factors such as nozzle geometry, combustion chamber geometry, propellant's initial shape, size and relative mass, and propellant location can all have important influences on the system's dynamic behavior. The relative importance of these parameters on-system motion are quantified in a way that is useful for design purposes.
Symbolically Modeling Concurrent MCAPI Executions
NASA Technical Reports Server (NTRS)
Fischer, Topher; Mercer, Eric; Rungta, Neha
2011-01-01
Improper use of Inter-Process Communication (IPC) within concurrent systems often creates data races which can lead to bugs that are challenging to discover. Techniques that use Satisfiability Modulo Theories (SMT) problems to symbolically model possible executions of concurrent software have recently been proposed for use in the formal verification of software. In this work we describe a new technique for modeling executions of concurrent software that use a message passing API called MCAPI. Our technique uses an execution trace to create an SMT problem that symbolically models all possible concurrent executions and follows the same sequence of conditional branch outcomes as the provided execution trace. We check if there exists a satisfying assignment to the SMT problem with respect to specific safety properties. If such an assignment exists, it provides the conditions that lead to the violation of the property. We show how our method models behaviors of MCAPI applications that are ignored in previously published techniques.
Dynamic stability of maglev systems
Cai, Y.; Chen, S.S.; Mulcahy, T.M.; Rote, D.M.
1992-04-01
Because dynamic instability is not acceptable for any commercial maglev systems, it is important to consider this phenomenon in the development of all maglev systems. This study considers the stability of maglev systems based on experimental data, scoping calculations, and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments attached to a rotating wheel. The theory and analysis developed in this study identifies basic stability characteristics and future research needs of maglev systems.
Dynamics of immune system vulnerabilities
NASA Astrophysics Data System (ADS)
Stromberg, Sean P.
The adaptive immune system can be viewed as a complex system, which adapts, over time, to reflect the history of infections experienced by the organism. Understanding its operation requires viewing it in terms of tradeoffs under constraints and evolutionary history. It typically displays "robust, yet fragile" behavior, meaning common tasks are robust to small changes but novel threats or changes in environment can have dire consequences. In this dissertation we use mechanistic models to study several biological processes: the immune response, the homeostasis of cells in the lymphatic system, and the process that normally prevents autoreactive cells from entering the lymphatic system. Using these models we then study the effects of these processes interacting. We show that the mechanisms that regulate the numbers of cells in the immune system, in conjunction with the immune response, can act to suppress autoreactive cells from proliferating, thus showing quantitatively how pathogenic infections can suppress autoimmune disease. We also show that over long periods of time this same effect can thin the repertoire of cells that defend against novel threats, leading to an age correlated vulnerability. This vulnerability is shown to be a consequence of system dynamics, not due to degradation of immune system components with age. Finally, modeling a specific tolerance mechanism that normally prevents autoimmune disease, in conjunction with models of the immune response and homeostasis we look at the consequences of the immune system mistakenly incorporating pathogenic molecules into its tolerizing mechanisms. The signature of this dynamic matches closely that of the dengue virus system.
Dynamical systems probabilistic risk assessment.
Denman, Matthew R.; Ames, Arlo Leroy
2014-03-01
Probabilistic Risk Assessment (PRA) is the primary tool used to risk-inform nuclear power regulatory and licensing activities. Risk-informed regulations are intended to reduce inherent conservatism in regulatory metrics (e.g., allowable operating conditions and technical specifications) which are built into the regulatory framework by quantifying both the total risk profile as well as the change in the risk profile caused by an event or action (e.g., in-service inspection procedures or power uprates). Dynamical Systems (DS) analysis has been used to understand unintended time-dependent feedbacks in both industrial and organizational settings. In dynamical systems analysis, feedback loops can be characterized and studied as a function of time to describe the changes to the reliability of plant Structures, Systems and Components (SSCs). While DS has been used in many subject areas, some even within the PRA community, it has not been applied toward creating long-time horizon, dynamic PRAs (with time scales ranging between days and decades depending upon the analysis). Understanding slowly developing dynamic effects, such as wear-out, on SSC reliabilities may be instrumental in ensuring a safely and reliably operating nuclear fleet. Improving the estimation of a plant's continuously changing risk profile will allow for more meaningful risk insights, greater stakeholder confidence in risk insights, and increased operational flexibility.
Multiple symbol differential detection
NASA Technical Reports Server (NTRS)
Divsalar, Dariush (Inventor); Simon, Marvin K. (Inventor)
1991-01-01
A differential detection technique for multiple phase shift keying (MPSK) signals is provided which uses a multiple symbol observation interval on the basis of which a joint decision is made regarding the phase of the received symbols. In accordance with the invention, a first difference phase is created between first and second received symbols. Next, the first difference phase is correlated with the possible values thereof to provide a first plurality of intermediate output signals. A second difference phase is next created between second and third received symbols. The second difference phase is correlated with plural possible values thereof to provide a second plurality of intermediate output signals. Next, a third difference phase is created between the first and third symbols. The third difference phase is correlated with plural possible values thereof to provide a third plurality of intermediate output signals. Each of the first plurality of intermediate outputs are combined with each of the second plurality of intermediate outputs and each of the third plurality of intermediate outputs to provide a plurality of possible output values. Finally, a joint decision is made by choosing from the plurality of possible output values the value which represents the best combined correlation of the first, second and third difference values with the possible values thereof.
Duong, D V; Reilly, K D
1995-10-01
This sociological simulation uses the ideas of semiotics and symbolic interactionism to demonstrate how an appropriately developed associative memory in the minds of individuals on the microlevel can self-organize into macrolevel dissipative structures of societies such as racial cultural/economic classes, status symbols and fads. The associative memory used is based on an extension of the IAC neural network (the Interactive Activation and Competition network). Several IAC networks act together to form a society by virtue of their human-like properties of intuition and creativity. These properties give them the ability to create and understand signs, which lead to the macrolevel structures of society. This system is implemented in hierarchical object oriented container classes which facilitate change in deep structure. Graphs of general trends and an historical account of a simulation run of this dynamical system are presented.
Getting symbols out of a neural architecture
NASA Astrophysics Data System (ADS)
Hummel, John E.
2011-06-01
Traditional connectionist networks are sharply limited as general accounts of human perception and cognition because they are unable to represent relational ideas such as loves (John, Mary) or bigger-than (Volkswagen, breadbox) in a way that allows them to be manipulated as explicitly relational structures. This paper reviews and critiques the four major responses to this problem in the modelling community: (1) reject connectionism (in any form) in favour of traditional symbolic approaches to modelling the mind; (2) reject the idea that mental representations are symbolic (i.e. reject the idea that we can represent relations); and (3) attempt to represent symbolic structures in a connectionist/neural architecture by finding a way to represent role-filler bindings. Approach (3) is further subdivided into (3a) approaches based on varieties of conjunctive coding and (3b) approaches based on dynamic role-filler binding. I will argue that (3b) is necessary to get symbolic processing out of a neural computing architecture. Specifically, I will argue that vector addition is both the best way to accomplish dynamic binding and an essential part of the proper treatment of symbols in a neural architecture.
Vehicle systems: coupled and interactive dynamics analysis
NASA Astrophysics Data System (ADS)
Vantsevich, Vladimir V.
2014-11-01
This article formulates a new direction in vehicle dynamics, described as coupled and interactive vehicle system dynamics. Formalised procedures and analysis of case studies are presented. An analytical consideration, which explains the physics of coupled system dynamics and its consequences for dynamics of a vehicle, is given for several sets of systems including: (i) driveline and suspension of a 6×6 truck, (ii) a brake mechanism and a limited slip differential of a drive axle and (iii) a 4×4 vehicle steering system and driveline system. The article introduces a formal procedure to turn coupled system dynamics into interactive dynamics of systems. A new research direction in interactive dynamics of an active steering and a hybrid-electric power transmitting unit is presented and analysed to control power distribution between the drive axles of a 4×4 vehicle. A control strategy integrates energy efficiency and lateral dynamics by decoupling dynamics of the two systems thus forming their interactive dynamics.
Functional dynamics of living systems and genetic engineering.
Buiatti, Marcello
2004-01-01
The discussion on Genetically Modified Organisms (GMO's) has been centred mainly on the nature and effects on economy, human health, environment, of the few transgenic plant lines present in the market in the last eight years. On the contrary, the present paper starts with a discussion of some of the relevant changes in our basic knowledge of the structure and dynamics of living systems in the last twenty years. Contemporary Biology is then compared with what may be called the "modern paradigm" of life sciences on which present day GMO's are conceptually based. Technical, environmental, social and economic problems deriving from the unexpected, persistent prevalence of the old fashioned modern vision of life in the "spirit of time" will be thoroughly discussed with a particular attention to the virtualisation process of GMO's and the effects of the prevalence over economic, social, environmental reality of their symbolic values.
Crowding affects letters and symbols differently.
Grainger, Jonathan; Tydgat, Ilse; Isselé, Joanna
2010-06-01
Five experiments examined crowding effects with letter and symbol stimuli. Experiments 1 through 3 compared 2-alternative forced-choice (2AFC) identification accuracy for isolated targets presented left and right of fixation with targets flanked either by 2 other items of the same category or a single item situated to the right or left of targets. Interference from flankers (crowding) was significantly stronger for symbols than letters. Single flankers generated performance similar to the isolated targets when the stimuli were letters but closer to the 2-flanker condition when the stimuli were symbols. Experiment 4 confirmed this pattern using a partial-report bar probe procedure. Experiment 5 showed that another measure of crowding, critical spacing, was greater for symbols than for letters. The results support the hypothesis that letter-string processing involves a specialized system developed to limit the spatial extent of crowding for letters in words.
Ordinal symbolic analysis and its application to biomedical recordings
Amigó, José M.; Keller, Karsten; Unakafova, Valentina A.
2015-01-01
Ordinal symbolic analysis opens an interesting and powerful perspective on time-series analysis. Here, we review this relatively new approach and highlight its relation to symbolic dynamics and representations. Our exposition reaches from the general ideas up to recent developments, with special emphasis on its applications to biomedical recordings. The latter will be illustrated with epilepsy data. PMID:25548264
Detailed balance, nonequilibrium states, and dissipation in symbolic sequences
NASA Astrophysics Data System (ADS)
Nicolis, G.; Nicolis, C.
2016-05-01
Symbolic sequences arising from the coarse graining of deterministic dynamical systems continuous in phase space are considered. The extent to which signatures of the time irreversibility and of the nonequilibrium constraints at the level of the original system, such as fluxes or dissipation, can be identified at the coarse-grained level is analyzed. The roles of the partition, of the time window, and of time averaging in distinguishing in a clear-cut way the equilibrium versus nonequilibrium character of the sequence are brought out.
Khanum, Saeeda; Hanif, Rubina; Spelke, Elizabeth S.; Berteletti, Ilaria; Hyde, Daniel C.
2016-01-01
Current theories of numerical cognition posit that uniquely human symbolic number abilities connect to an early developing cognitive system for representing approximate numerical magnitudes, the approximate number system (ANS). In support of this proposal, recent laboratory-based training experiments with U.S. children show enhanced performance on symbolic addition after brief practice comparing or adding arrays of dots without counting: tasks that engage the ANS. Here we explore the nature and generality of this effect through two brief training experiments. In Experiment 1, elementary school children in Pakistan practiced either a non-symbolic numerical addition task or a line-length addition task with no numerical content, and then were tested on symbolic addition. After training, children in the numerical training group completed the symbolic addition test faster than children in the line length training group, suggesting a causal role of brief, non-symbolic numerical training on exact, symbolic addition. These findings replicate and extend the core findings of a recent U.S. laboratory-based study to non-Western children tested in a school setting, attesting to the robustness and generalizability of the observed training effects. Experiment 2 tested whether ANS training would also enhance the consistency of performance on a symbolic number line task. Over several analyses of the data there was some evidence that approximate number training enhanced symbolic number line placements relative to control conditions. Together, the findings suggest that engagement of the ANS through brief training procedures enhances children's immediate attention to number and engagement with symbolic number tasks. PMID:27764117
Symbolic Analysis of Concurrent Programs with Polymorphism
NASA Technical Reports Server (NTRS)
Rungta, Neha Shyam
2010-01-01
The current trend of multi-core and multi-processor computing is causing a paradigm shift from inherently sequential to highly concurrent and parallel applications. Certain thread interleavings, data input values, or combinations of both often cause errors in the system. Systematic verification techniques such as explicit state model checking and symbolic execution are extensively used to detect errors in such systems [7, 9]. Explicit state model checking enumerates possible thread schedules and input data values of a program in order to check for errors [3, 9]. To partially mitigate the state space explosion from data input values, symbolic execution techniques substitute data input values with symbolic values [5, 7, 6]. Explicit state model checking and symbolic execution techniques used in conjunction with exhaustive search techniques such as depth-first search are unable to detect errors in medium to large-sized concurrent programs because the number of behaviors caused by data and thread non-determinism is extremely large. We present an overview of abstraction-guided symbolic execution for concurrent programs that detects errors manifested by a combination of thread schedules and data values [8]. The technique generates a set of key program locations relevant in testing the reachability of the target locations. The symbolic execution is then guided along these locations in an attempt to generate a feasible execution path to the error state. This allows the execution to focus in parts of the behavior space more likely to contain an error.
Hidden attractors in dynamical systems
NASA Astrophysics Data System (ADS)
Dudkowski, Dawid; Jafari, Sajad; Kapitaniak, Tomasz; Kuznetsov, Nikolay V.; Leonov, Gennady A.; Prasad, Awadhesh
2016-06-01
Complex dynamical systems, ranging from the climate, ecosystems to financial markets and engineering applications typically have many coexisting attractors. This property of the system is called multistability. The final state, i.e., the attractor on which the multistable system evolves strongly depends on the initial conditions. Additionally, such systems are very sensitive towards noise and system parameters so a sudden shift to a contrasting regime may occur. To understand the dynamics of these systems one has to identify all possible attractors and their basins of attraction. Recently, it has been shown that multistability is connected with the occurrence of unpredictable attractors which have been called hidden attractors. The basins of attraction of the hidden attractors do not touch unstable fixed points (if exists) and are located far away from such points. Numerical localization of the hidden attractors is not straightforward since there are no transient processes leading to them from the neighborhoods of unstable fixed points and one has to use the special analytical-numerical procedures. From the viewpoint of applications, the identification of hidden attractors is the major issue. The knowledge about the emergence and properties of hidden attractors can increase the likelihood that the system will remain on the most desirable attractor and reduce the risk of the sudden jump to undesired behavior. We review the most representative examples of hidden attractors, discuss their theoretical properties and experimental observations. We also describe numerical methods which allow identification of the hidden attractors.
Two Pieces of Wood: Symbols of Control.
ERIC Educational Resources Information Center
Lee, Sharon Shockley; McKerrow, K. Kelly
For 2 years, at least 2 days a week were spent by a researcher in observing, through the actions of the principal, the dynamics of cultural and ideologic conflict and the process of social control in an elementary school. This personal account analyzes the principal's use of corporal punishment, symbolized by the paddle, and positive…
NASA Astrophysics Data System (ADS)
2009-09-01
So what is the site about? If you enjoyed The Periodic Table of Videos we profiled earlier this year (January p35), but found it a bit too...well...chemical, then this is the website for you. Physics does not really have a periodic table, so a handful of scientists from Nottingham University in the UK worked with video-journalist Brady Haran to create one. The result is a 6 × 10 matrix of important symbols in physics and astronomy, each linked to a 5-10 min video describing the symbol's significance.
NASA Technical Reports Server (NTRS)
1981-01-01
A hardware integrated convolutional coding/symbol interleaving and integrated symbol deinterleaving/Viterbi decoding simulation system is described. Validation on the system of the performance of the TDRSS S-band return link with BPSK modulation, operating in a pulsed RFI environment is included. The system consists of three components, the Fast Linkabit Error Rate Tester (FLERT), the Transition Probability Generator (TPG), and a modified LV7017B which includes rate 1/3 capability as well as a periodic interleaver/deinterleaver. Operating and maintenance manuals for each of these units are included.
Sensitivity analysis of dynamic biological systems with time-delays
2010-01-01
Background Mathematical modeling has been applied to the study and analysis of complex biological systems for a long time. Some processes in biological systems, such as the gene expression and feedback control in signal transduction networks, involve a time delay. These systems are represented as delay differential equation (DDE) models. Numerical sensitivity analysis of a DDE model by the direct method requires the solutions of model and sensitivity equations with time-delays. The major effort is the computation of Jacobian matrix when computing the solution of sensitivity equations. The computation of partial derivatives of complex equations either by the analytic method or by symbolic manipulation is time consuming, inconvenient, and prone to introduce human errors. To address this problem, an automatic approach to obtain the derivatives of complex functions efficiently and accurately is necessary. Results We have proposed an efficient algorithm with an adaptive step size control to compute the solution and dynamic sensitivities of biological systems described by ordinal differential equations (ODEs). The adaptive direct-decoupled algorithm is extended to solve the solution and dynamic sensitivities of time-delay systems describing by DDEs. To save the human effort and avoid the human errors in the computation of partial derivatives, an automatic differentiation technique is embedded in the extended algorithm to evaluate the Jacobian matrix. The extended algorithm is implemented and applied to two realistic models with time-delays: the cardiovascular control system and the TNF-α signal transduction network. The results show that the extended algorithm is a good tool for dynamic sensitivity analysis on DDE models with less user intervention. Conclusions By comparing with direct-coupled methods in theory, the extended algorithm is efficient, accurate, and easy to use for end users without programming background to do dynamic sensitivity analysis on complex
From dynamical systems to renormalization
Menous, Frédéric
2013-09-15
In this paper we study logarithmic derivatives associated to derivations on completed graded Lie algebra, as well as the existence of inverses. These logarithmic derivatives, when invertible, generalize the exp-log correspondence between a Lie algebra and its Lie group. Such correspondences occur naturally in the study of dynamical systems when dealing with the linearization of vector fields and the non linearizability of a resonant vector fields corresponds to the non invertibility of a logarithmic derivative and to the existence of normal forms. These concepts, stemming from the theory of dynamical systems, can be rephrased in the abstract setting of Lie algebra and the same difficulties as in perturbative quantum field theory (pQFT) arise here. Surprisingly, one can adopt the same ideas as in pQFT with fruitful results such as new constructions of normal forms with the help of the Birkhoff decomposition. The analogy goes even further (locality of counter terms, choice of a renormalization scheme) and shall lead to more interactions between dynamical systems and quantum field theory.
From dynamical systems to renormalization
NASA Astrophysics Data System (ADS)
Menous, Frédéric
2013-09-01
In this paper we study logarithmic derivatives associated to derivations on completed graded Lie algebra, as well as the existence of inverses. These logarithmic derivatives, when invertible, generalize the exp-log correspondence between a Lie algebra and its Lie group. Such correspondences occur naturally in the study of dynamical systems when dealing with the linearization of vector fields and the non linearizability of a resonant vector fields corresponds to the non invertibility of a logarithmic derivative and to the existence of normal forms. These concepts, stemming from the theory of dynamical systems, can be rephrased in the abstract setting of Lie algebra and the same difficulties as in perturbative quantum field theory (pQFT) arise here. Surprisingly, one can adopt the same ideas as in pQFT with fruitful results such as new constructions of normal forms with the help of the Birkhoff decomposition. The analogy goes even further (locality of counter terms, choice of a renormalization scheme) and shall lead to more interactions between dynamical systems and quantum field theory.
Structural dynamics system model reduction
NASA Technical Reports Server (NTRS)
Chen, J. C.; Rose, T. L.; Wada, B. K.
1987-01-01
Loads analysis for structural dynamic systems is usually performed by finite element models. Because of the complexity of the structural system, the model contains large number of degree-of-freedom. The large model is necessary since details of the stress, loads and responses due to mission environments are computed. However, a simplified model is needed for other tasks such as pre-test analysis for modal testing, and control-structural interaction studies. A systematic method of model reduction for modal test analysis is presented. Perhaps it will be of some help in developing a simplified model for the control studies.
A Conformance Testing Relation for Symbolic Timed Automata
NASA Astrophysics Data System (ADS)
von Styp, Sabrina; Bohnenkamp, Henrik; Schmaltz, Julien
We introduce Symbolic Timed Automata, an amalgamation of symbolic transition systems and timed automata, which allows to express nondeterministic data-dependent control flow with inputs and outputs and real-time behaviour. In particular, input data can influence the timing behaviour. We define two semantics for STA, a concrete one as timed labelled transition systems and another one on a symbolic level. We show that the symbolic semantics is complete and correct w.r.t. the concrete one. Finally, we introduce symbolic conformance relation stioco , which is an extension of the well-known ioco conformance relation. Relation stioco is defined using FO-logic on a purely symbolic level. We show that stioco corresponds on the concrete semantic level to Krichen and Tripakis' implementation relation tioco for timed labelled transition systems.
Dynamically controlled crystal growth system
NASA Technical Reports Server (NTRS)
Bray, Terry L. (Inventor); Kim, Larry J. (Inventor); Harrington, Michael (Inventor); DeLucas, Lawrence J. (Inventor)
2002-01-01
Crystal growth can be initiated and controlled by dynamically controlled vapor diffusion or temperature change. In one aspect, the present invention uses a precisely controlled vapor diffusion approach to monitor and control protein crystal growth. The system utilizes a humidity sensor and various interfaces under computer control to effect virtually any evaporation rate from a number of different growth solutions simultaneously by means of an evaporative gas flow. A static laser light scattering sensor can be used to detect aggregation events and trigger a change in the evaporation rate for a growth solution. A control/follower configuration can be used to actively monitor one chamber and accurately control replicate chambers relative to the control chamber. In a second aspect, the invention exploits the varying solubility of proteins versus temperature to control the growth of protein crystals. This system contains miniature thermoelectric devices under microcomputer control that change temperature as needed to grow crystals of a given protein. Complex temperature ramps are possible using this approach. A static laser light scattering probe also can be used in this system as a non-invasive probe for detection of aggregation events. The automated dynamic control system provides systematic and predictable responses with regard to crystal size. These systems can be used for microgravity crystallization projects, for example in a space shuttle, and for crystallization work under terrestial conditions. The present invention is particularly useful for macromolecular crystallization, e.g. for proteins, polypeptides, nucleic acids, viruses and virus particles.
Simbolos Nacionales. National Symbols.
ERIC Educational Resources Information Center
Toro, Leonor
Written in Spanish and English, this booklet contains information on Puerto Rico's national symbols, including its anthem, emblem, and flag. Verses to "La Borinquena," the national anthem, are given , as well as the song's historical background and musical evolution, covering contributions of Felix Astol Artes, Paco Ramirez Ortiz, Lola Rodriques…
Exploring Native American Symbolism.
ERIC Educational Resources Information Center
Dufrene, Phoebe
This paper described the events and results of a workshop on Native American symbolism presented to educators and held in Kansas City, Missouri. The presenter maintained that some of the most crucial problems facing U.S. educators and students are caused by racial misunderstandings, and that the universality of artistic expression can be a vehicle…
Survivability of Deterministic Dynamical Systems
NASA Astrophysics Data System (ADS)
Hellmann, Frank; Schultz, Paul; Grabow, Carsten; Heitzig, Jobst; Kurths, Jürgen
2016-07-01
The notion of a part of phase space containing desired (or allowed) states of a dynamical system is important in a wide range of complex systems research. It has been called the safe operating space, the viability kernel or the sunny region. In this paper we define the notion of survivability: Given a random initial condition, what is the likelihood that the transient behaviour of a deterministic system does not leave a region of desirable states. We demonstrate the utility of this novel stability measure by considering models from climate science, neuronal networks and power grids. We also show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work underlines that the type of stability measured by survivability is not captured by common asymptotic stability measures.
Survivability of Deterministic Dynamical Systems.
Hellmann, Frank; Schultz, Paul; Grabow, Carsten; Heitzig, Jobst; Kurths, Jürgen
2016-01-01
The notion of a part of phase space containing desired (or allowed) states of a dynamical system is important in a wide range of complex systems research. It has been called the safe operating space, the viability kernel or the sunny region. In this paper we define the notion of survivability: Given a random initial condition, what is the likelihood that the transient behaviour of a deterministic system does not leave a region of desirable states. We demonstrate the utility of this novel stability measure by considering models from climate science, neuronal networks and power grids. We also show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work underlines that the type of stability measured by survivability is not captured by common asymptotic stability measures. PMID:27405955
Survivability of Deterministic Dynamical Systems
Hellmann, Frank; Schultz, Paul; Grabow, Carsten; Heitzig, Jobst; Kurths, Jürgen
2016-01-01
The notion of a part of phase space containing desired (or allowed) states of a dynamical system is important in a wide range of complex systems research. It has been called the safe operating space, the viability kernel or the sunny region. In this paper we define the notion of survivability: Given a random initial condition, what is the likelihood that the transient behaviour of a deterministic system does not leave a region of desirable states. We demonstrate the utility of this novel stability measure by considering models from climate science, neuronal networks and power grids. We also show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work underlines that the type of stability measured by survivability is not captured by common asymptotic stability measures. PMID:27405955
Use of symbolic computation in robotics education
NASA Technical Reports Server (NTRS)
Vira, Naren; Tunstel, Edward
1992-01-01
An application of symbolic computation in robotics education is described. A software package is presented which combines generality, user interaction, and user-friendliness with the systematic usage of symbolic computation and artificial intelligence techniques. The software utilizes MACSYMA, a LISP-based symbolic algebra language, to automatically generate closed-form expressions representing forward and inverse kinematics solutions, the Jacobian transformation matrices, robot pose error-compensation models equations, and Lagrange dynamics formulation for N degree-of-freedom, open chain robotic manipulators. The goal of such a package is to aid faculty and students in the robotics course by removing burdensome tasks of mathematical manipulations. The software package has been successfully tested for its accuracy using commercially available robots.
Structural Dynamics of Electronic Systems
NASA Astrophysics Data System (ADS)
Suhir, E.
2013-03-01
The published work on analytical ("mathematical") and computer-aided, primarily finite-element-analysis (FEA) based, predictive modeling of the dynamic response of electronic systems to shocks and vibrations is reviewed. While understanding the physics of and the ability to predict the response of an electronic structure to dynamic loading has been always of significant importance in military, avionic, aeronautic, automotive and maritime electronics, during the last decade this problem has become especially important also in commercial, and, particularly, in portable electronics in connection with accelerated testing of various surface mount technology (SMT) systems on the board level. The emphasis of the review is on the nonlinear shock-excited vibrations of flexible printed circuit boards (PCBs) experiencing shock loading applied to their support contours during drop tests. At the end of the review we provide, as a suitable and useful illustration, the exact solution to a highly nonlinear problem of the dynamic response of a "flexible-and-heavy" PCB to an impact load applied to its support contour during drop testing.
Noise in Nonlinear Dynamical Systems
NASA Astrophysics Data System (ADS)
Moss, Frank; McClintock, P. V. E.
2009-08-01
List of contributors; Preface; Introduction to volume three; 1. The effects of coloured quadratic noise on a turbulent transition in liquid He II J. T. Tough; 2. Electrohydrodynamic instability of nematic liquid crystals: growth process and influence of noise S. Kai; 3. Suppression of electrohydrodynamic instabilities by external noise Helmut R. Brand; 4. Coloured noise in dye laser fluctuations R. Roy, A. W. Yu and S. Zhu; 5. Noisy dynamics in optically bistable systems E. Arimondo, D. Hennequin and P. Glorieux; 6. Use of an electronic model as a guideline in experiments on transient optical bistability W. Lange; 7. Computer experiments in nonlinear stochastic physics Riccardo Mannella; 8. Analogue simulations of stochastic processes by means of minimum component electronic devices Leone Fronzoni; 9. Analogue techniques for the study of problems in stochastic nonlinear dynamics P. V. E. McClintock and Frank Moss; Index.
Spatial bias in symbolic and non-symbolic numerical comparison in neglect.
Masson, Nicolas; Pesenti, Mauro; Dormal, Valérie
2013-08-01
When asked to bisect mentally numerical intervals, neglect patients show a displacement of the numerical midpoint similar to the one observed in physical line bisection. This spatial-numerical bias has been taken as evidence of the spatial nature of numerical magnitude representations. However, to date, neuropsychological studies in neglect patients have only used symbolic numerical material. Here, we compare the results of patients with right-hemisphere damage with and without unilateral left neglect and age-matched healthy control participants in two numerical comparison tasks using symbolic and non-symbolic materials, in order to determine whether the representation of non-symbolic numerosities was altered or not by the presence of neglect. When asked to judge if an Arabic digit or a sequence of flashed dots was smaller or larger than a reference value (i.e., 5), the responses of neglect patients to smaller magnitudes (i.e., 4) were impaired. Moreover, only neglect patients presented an asymmetrical distance effect (i.e., an enhanced effect only for stimuli of smaller numerical magnitude than the reference). These results provide the first direct evidence of a spatial bias in non-symbolic numerosity in neglect patients, and support the existence of common processing mechanisms and/or a representational system for symbolic and non-symbolic inputs. PMID:23774183
Spelke, Elizabeth S.
2014-01-01
Recent research reveals a link between individual differences in mathematics achievement and performance on tasks that activate the approximate number system (ANS): a primitive cognitive system shared by diverse animal species and by humans of all ages. Here we used a brief experimental paradigm to test one causal hypothesis suggested by this relationship: activation of the ANS may enhance children's performance of symbolic arithmetic. Over 2 experiments, children who briefly practiced tasks that engaged primitive approximate numerical quantities performed better on subsequent exact, symbolic arithmetic problems than did children given other tasks involving comparison and manipulation of non-numerical magnitudes (brightness and length). The practice effect appeared specific to mathematics, as no differences between groups were observed on a comparable sentence completion task. These results move beyond correlational research and provide evidence that the exercise of non-symbolic numerical processes can enhance children's performance of symbolic mathematics. PMID:24462713
Dynamical habitability of planetary systems.
Dvorak, Rudolf; Pilat-Lohinger, Elke; Bois, Eric; Schwarz, Richard; Funk, Barbara; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Lammer, Helmut; Léger, Alain; Liseau, René; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Selsis, Frank; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J
2010-01-01
The problem of the stability of planetary systems, a question that concerns only multiplanetary systems that host at least two planets, is discussed. The problem of mean motion resonances is addressed prior to discussion of the dynamical structure of the more than 350 known planets. The difference with regard to our own Solar System with eight planets on low eccentricity is evident in that 60% of the known extrasolar planets have orbits with eccentricity e > 0.2. We theoretically highlight the studies concerning possible terrestrial planets in systems with a Jupiter-like planet. We emphasize that an orbit of a particular nature only will keep a planet within the habitable zone around a host star with respect to the semimajor axis and its eccentricity. In addition, some results are given for individual systems (e.g., Gl777A) with regard to the stability of orbits within habitable zones. We also review what is known about the orbits of planets in double-star systems around only one component (e.g., gamma Cephei) and around both stars (e.g., eclipsing binaries).
Dynamical habitability of planetary systems.
Dvorak, Rudolf; Pilat-Lohinger, Elke; Bois, Eric; Schwarz, Richard; Funk, Barbara; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Lammer, Helmut; Léger, Alain; Liseau, René; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Selsis, Frank; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J
2010-01-01
The problem of the stability of planetary systems, a question that concerns only multiplanetary systems that host at least two planets, is discussed. The problem of mean motion resonances is addressed prior to discussion of the dynamical structure of the more than 350 known planets. The difference with regard to our own Solar System with eight planets on low eccentricity is evident in that 60% of the known extrasolar planets have orbits with eccentricity e > 0.2. We theoretically highlight the studies concerning possible terrestrial planets in systems with a Jupiter-like planet. We emphasize that an orbit of a particular nature only will keep a planet within the habitable zone around a host star with respect to the semimajor axis and its eccentricity. In addition, some results are given for individual systems (e.g., Gl777A) with regard to the stability of orbits within habitable zones. We also review what is known about the orbits of planets in double-star systems around only one component (e.g., gamma Cephei) and around both stars (e.g., eclipsing binaries). PMID:20307181
Dynamics of complex multibody systems
NASA Astrophysics Data System (ADS)
Schiehlen, W. O.
The analysis of multibody-system (MBS) dynamics is discussed and demonstrated in a review of recent work. The early history of MBS studies is traced; the kinematic equations are derived for free, holonomic, and nonholonomic systems in both inertial and moving reference frames; the Newton-Euler equations are obtained by replacing the rigid bearings and supports by constraint forces and torques; equations of motion are found by means of D'Alembert's and Jourdain's principles; and generalized constraint forces and bearing and support clearances are considered. The computer derivation of equations of motion is demonstrated on a four-body moving-vehicle problem. The approach described is shown to use less computation time and memory space than techniques based on the Lagrange or Gibbs-Appell equations, while permitting the inclusion of contact and friction forces.
Children's Mapping between Symbolic and Nonsymbolic Representations of Number
ERIC Educational Resources Information Center
Mundy, Eleanor; Gilmore, Camilla K.
2009-01-01
When children learn to count and acquire a symbolic system for representing numbers, they map these symbols onto a preexisting system involving approximate nonsymbolic representations of quantity. Little is known about this mapping process, how it develops, and its role in the performance of formal mathematics. Using a novel task to assess…
Generalized Abstract Symbolic Summaries
NASA Technical Reports Server (NTRS)
Person, Suzette; Dwyer, Matthew B.
2009-01-01
Current techniques for validating and verifying program changes often consider the entire program, even for small changes, leading to enormous V&V costs over a program s lifetime. This is due, in large part, to the use of syntactic program techniques which are necessarily imprecise. Building on recent advances in symbolic execution of heap manipulating programs, in this paper, we develop techniques for performing abstract semantic differencing of program behaviors that offer the potential for improved precision.
Stability in dynamical systems I
Courant, E.D.; Ruth, R.D.; Weng, W.T.
1984-08-01
We have reviewed some of the basic techniques which can be used to analyze stability in nonlinear dynamical systems, particularly in circular particle accelerators. We have concentrated on one-dimensional systems in the examples in order to simply illustrate the general techniques. We began with a review of Hamiltonian dynamics and canonical transformations. We then reviewed linear equations with periodic coefficients using the basic techniques from accelerator theory. To handle nonlinear terms we developed a canonical perturbation theory. From this we calculated invariants and the amplitude dependence of the frequency. This led us to resonances. We studied the cubic resonance in detail by using a rotating coordinate system in phase space. We then considered a general isolated nonlinear resonance. In this case we calculated the width of the resonance and estimated the spacing of resonances in order to use the Chirikov criterion to restrict the validity of the analysis. Finally the resonance equation was reduced to the pendulum equation, and we examined the motion on a separatrix. This brought us to the beginnings of stochastic behavior in the neighborhood of the separatrix. It is this complex behavior in the neighborhood of the separatrix which causes the perturbation theory used here to diverge in many cases. In spite of this the methods developed here have been and are used quite successfully to study nonlinear effects in nearly integrable systems. When used with caution and in conjunction with numerical work they give tremendous insight into the nature of the phase space structure and the stability of nonlinear differential equations. 14 references.
Symbolic walk in regular networks
NASA Astrophysics Data System (ADS)
Ermann, Leonardo; Carlo, Gabriel G.
2015-01-01
We find that a symbolic walk (SW)—performed by a walker with memory given by a Bernoulli shift—is able to distinguish between the random or chaotic topology of a given network. We show this result by means of studying the undirected baker network, which is defined by following the Ulam approach for the baker transformation in order to introduce the effect of deterministic chaos into its structure. The chaotic topology is revealed through the central role played by the nodes associated with the positions corresponding to the shortest periodic orbits of the generating map. They are the overwhelmingly most visited nodes in the limit cycles at which the SW asymptotically arrives. Our findings contribute to linking deterministic chaotic dynamics with the properties of networks constructed using the Ulam approach.
Symbolic play and language development.
Orr, Edna; Geva, Ronny
2015-02-01
Symbolic play and language are known to be highly interrelated, but the developmental process involved in this relationship is not clear. Three hypothetical paths were postulated to explore how play and language drive each other: (1) direct paths, whereby initiation of basic forms in symbolic action or babbling, will be directly related to all later emerging language and motor outputs; (2) an indirect interactive path, whereby basic forms in symbolic action will be associated with more complex forms in symbolic play, as well as with babbling, and babbling mediates the relationship between symbolic play and speech; and (3) a dual path, whereby basic forms in symbolic play will be associated with basic forms of language, and complex forms of symbolic play will be associated with complex forms of language. We micro-coded 288 symbolic vignettes gathered during a yearlong prospective bi-weekly examination (N=14; from 6 to 18 months of age). Results showed that the age of initiation of single-object symbolic play correlates strongly with the age of initiation of later-emerging symbolic and vocal outputs; its frequency at initiation is correlated with frequency at initiation of babbling, later-emerging speech, and multi-object play in initiation. Results support the notion that a single-object play relates to the development of other symbolic forms via a direct relationship and an indirect relationship, rather than a dual-path hypothesis. PMID:25658200
Spatial Operator Algebra for multibody system dynamics
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.
1992-01-01
The Spatial Operator Algebra framework for the dynamics of general multibody systems is described. The use of a spatial operator-based methodology permits the formulation of the dynamical equations of motion of multibody systems in a concise and systematic way. The dynamical equations of progressively more complex grid multibody systems are developed in an evolutionary manner beginning with a serial chain system, followed by a tree topology system and finally, systems with arbitrary closed loops. Operator factorizations and identities are used to develop novel recursive algorithms for the forward dynamics of systems with closed loops. Extensions required to deal with flexible elements are also discussed.
Sun, Xiaoran; Small, Michael; Zhao, Yi; Xue, Xiaoping
2014-06-15
In this work, we propose a novel method to transform a time series into a weighted and directed network. For a given time series, we first generate a set of segments via a sliding window, and then use a doubly symbolic scheme to characterize every windowed segment by combining absolute amplitude information with an ordinal pattern characterization. Based on this construction, a network can be directly constructed from the given time series: segments corresponding to different symbol-pairs are mapped to network nodes and the temporal succession between nodes is represented by directed links. With this conversion, dynamics underlying the time series has been encoded into the network structure. We illustrate the potential of our networks with a well-studied dynamical model as a benchmark example. Results show that network measures for characterizing global properties can detect the dynamical transitions in the underlying system. Moreover, we employ a random walk algorithm to sample loops in our networks, and find that time series with different dynamics exhibits distinct cycle structure. That is, the relative prevalence of loops with different lengths can be used to identify the underlying dynamics.
Handwriting generates variable visual input to facilitate symbol learning
Li, Julia X.; James, Karin H.
2015-01-01
Recent research has demonstrated that handwriting practice facilitates letter categorization in young children. The present experiments investigated why handwriting practice facilitates visual categorization by comparing two hypotheses: That handwriting exerts its facilitative effect because of the visual-motor production of forms, resulting in a direct link between motor and perceptual systems, or because handwriting produces variable visual instances of a named category in the environment that then changes neural systems. We addressed these issues by measuring performance of 5 year-old children on a categorization task involving novel, Greek symbols across 6 different types of learning conditions: three involving visual-motor practice (copying typed symbols independently, tracing typed symbols, tracing handwritten symbols) and three involving visual-auditory practice (seeing and saying typed symbols of a single typed font, of variable typed fonts, and of handwritten examples). We could therefore compare visual-motor production with visual perception both of variable and similar forms. Comparisons across the six conditions (N=72) demonstrated that all conditions that involved studying highly variable instances of a symbol facilitated symbol categorization relative to conditions where similar instances of a symbol were learned, regardless of visual-motor production. Therefore, learning perceptually variable instances of a category enhanced performance, suggesting that handwriting facilitates symbol understanding by virtue of its environmental output: supporting the notion of developmental change though brain-body-environment interactions. PMID:26726913
Dynamical Localization in Molecular Systems.
NASA Astrophysics Data System (ADS)
Wang, Xidi
In the first four chapters of this thesis we concentrate on the Davydov model which describes the vibrational energy quanta of Amide I bonds (C=O bonds on the alpha -helix) coupled to the acoustic phonon modes of the alpha-helix backbone in the form of a Frohlich Hamiltonian. Following a brief introduction in chapter one, in chapter two we formulate the dynamics of vibrational quanta at finite temperature by using coherent state products. The fluctuation-dissipation relation is derived. At zero temperature, in the continuum limit, we recover the original results of Davydov. We also achieve good agreement with numerical simulations. In chapter three, the net contraction of the lattice is calculated exactly at any temperature, and its relation to the so -call "topological stability" of the Davydov soliton is discussed. In the second section of the chapter three we calculate the overtone spectra of crystalline acetanilide (according to some opinions ACN provides experimental evidence for the existence of Davydov solitons). Good agreement with experimental data has been obtained. In chapter four we study the self-trapped vibrational excitations by the Quantum Monte Carlo technique. For a single excitation, the temperature dependence of different physical observables is calculated. The quasi-particle which resembles the Davydov soliton has been found to be fairly narrow using the most commonly used data for the alpha -helix; at temperatures above a few Kelvin, the quasi-particle reaches its smallest limit (extends over three sites), which implies diffusive motion of the small polaron-like quasi-particle at high temperatures. For the multi-excitation case, bound pairs and clusters of excitations are found at low temperatures; they gradually dissociate when the temperature of the system is increased as calculated from the density-density correlation function. In the last chapter of this thesis, we study a more general model of dynamical local modes in molecular systems
Lee, Boon-Ooi; Kirmayer, Laurence J; Groleau, Danielle
2010-03-01
system and symbolic transformation are complex and dynamic, and may be carried over several healing sessions.
The GBT Dynamic Scheduling System
NASA Astrophysics Data System (ADS)
McCarty, M. T.; Balser, D. S.; Braatz, J.; Clark, M. H.; Condon, J.; Creager, R. E.; Maddalena, R. J.; Marganian, P.; O'Neil, K.; Sessoms, E.; Shelton, A. L.
2012-09-01
The Robert C. Byrd Green Bank Telescope (GBT) Dynamic Scheduling System (DSS), in use since September, 2009, was designed to maximize observing efficiency while preserving telescope flexibility and data quality without creating undue adversity for the observers. Using observing criteria; observer availability and qualifications for remote observing; three-dimensional weather forecasts; and telescope state, the DSS software optimally schedules observers 24 to 48 hours in advance for a telescope that has a wide-range of capabilities and a geographical location with variable weather patterns. The DSS project was closed October 28, 2011 and will now enter a continuing maintenance and enhancement phase. Recent improvements include a new resource calendar for incorporating telescope maintenance activities, a sensitivity calculator that leverages the scheduling algorithms to facilitate consistent tools for proposal preparation, improved support for monitoring observations, scheduling of high frequency continuum and spectral line observations for both sparse and fully sampled array receivers, and additional session parameters for observations having special requirements.
Biofluid Dynamics in Cardiovascular System
NASA Astrophysics Data System (ADS)
Chung, Hansol; Yoo, Su Jung; Kyung, Richard
2011-11-01
Biofluid dynamics is characterized by the study of fluids in biological systems. Common biofluid systems include blood flow in the cardiovascular system and airflow in the lungs. The mathematical modeling of blood flow through the complex geometry of a prosthetic heart valve is a difficult task. In such a problem the complex geometries of the valve must be modeled properly so that they can be studied numerically. The present analysis is performed on a disk-type prosthetic heart valve. The valve is assumed to be in the aortic position and observed the structure of the valve cage influence the flow field near an aortic valve. For the purpose of mathematical modeling, the laminar incompressible two-dimensional steady flow of a homogeneous Newtonian fluid with constant viscosity is assumed. The flow is considered during the greater part of systole when the valve is fully open. Convergent numerical solutions are obtained for Reynolds numbers of 30, 180, 900 and 4500. Stream function, horizontal velocity, vertical velocity and shear stress solutions are computed at every grid point.
Dynamical Signatures of Living Systems
NASA Technical Reports Server (NTRS)
Zak, M.
1999-01-01
One of the main challenges in modeling living systems is to distinguish a random walk of physical origin (for instance, Brownian motions) from those of biological origin and that will constitute the starting point of the proposed approach. As conjectured, the biological random walk must be nonlinear. Indeed, any stochastic Markov process can be described by linear Fokker-Planck equation (or its discretized version), only that type of process has been observed in the inanimate world. However, all such processes always converge to a stable (ergodic or periodic) state, i.e., to the states of a lower complexity and high entropy. At the same time, the evolution of living systems directed toward a higher level of complexity if complexity is associated with a number of structural variations. The simplest way to mimic such a tendency is to incorporate a nonlinearity into the random walk; then the probability evolution will attain the features of diffusion equation: the formation and dissipation of shock waves initiated by small shallow wave disturbances. As a result, the evolution never "dies:" it produces new different configurations which are accompanied by an increase or decrease of entropy (the decrease takes place during formation of shock waves, the increase-during their dissipation). In other words, the evolution can be directed "against the second law of thermodynamics" by forming patterns outside of equilibrium in the probability space. Due to that, a specie is not locked up in a certain pattern of behavior: it still can perform a variety of motions, and only the statistics of these motions is constrained by this pattern. It should be emphasized that such a "twist" is based upon the concept of reflection, i.e., the existence of the self-image (adopted from psychology). The model consists of a generator of stochastic processes which represents the motor dynamics in the form of nonlinear random walks, and a simulator of the nonlinear version of the diffusion
SYMBOLIC INFERENCE OF XENOBIOTIC METABOLISM
MCSHAN, D.C.; UPDADHAYAYA, M.; SHAH, I.
2009-01-01
We present a new symbolic computational approach to elucidate the biochemical networks of living systems de novo and we apply it to an important biomedical problem: xenobiotic metabolism. A crucial issue in analyzing and modeling a living organism is understanding its biochemical network beyond what is already known. Our objective is to use the available metabolic information in a representational framework that enables the inference of novel biochemical knowledge and whose results can be validated experimentally. We describe a symbolic computational approach consisting of two parts. First, biotransformation rules are inferred from the molecular graphs of compounds in enzyme-catalyzed reactions. Second, these rules are recursively applied to different compounds to generate novel metabolic networks, containing new biotransformations and new metabolites. Using data for 456 generic reactions and 825 generic compounds from KEGG we were able to extract 110 biotransformation rules, which generalize a subset of known biocatalytic functions. We tested our approach by applying these rules to ethanol, a common substance of abuse and to furfuryl alcohol, a xenobiotic organic solvent, which is absent in metabolic databases. In both cases our predictions on the fate of ethanol and furfuryl alcohol are consistent with the literature on the metabolism of these compounds. PMID:14992532
Concealed identification symbols and nondestructive determination of the identification symbols
Nance, Thomas A.; Gibbs, Kenneth M.
2014-09-16
The concealing of one or more identification symbols into a target object and the subsequent determination or reading of such symbols through non-destructive testing is described. The symbols can be concealed in a manner so that they are not visible to the human eye and/or cannot be readily revealed to the human eye without damage or destruction of the target object. The identification symbols can be determined after concealment by e.g., the compilation of multiple X-ray images. As such, the present invention can also provide e.g., a deterrent to theft and the recovery of lost or stolen objects.
Analysis of discrete bioregulatory networks using symbolic steady states.
Siebert, Heike
2011-04-01
A discrete model of a biological regulatory network can be represented by a discrete function that contains all available information on interactions between network components and the rules governing the evolution of the network in a finite state space. Since the state space size grows exponentially with the number of network components, analysis of large networks is a complex problem. In this paper, we introduce the notion of symbolic steady state that allows us to identify subnetworks that govern the dynamics of the original network in some region of state space. We state rules to explicitly construct attractors of the system from subnetwork attractors. Using the results, we formulate sufficient conditions for the existence of multiple attractors resp. a cyclic attractor based on the existence of positive resp. negative feedback circuits in the graph representing the structure of the system. In addition, we discuss approaches to finding symbolic steady states. We focus both on dynamics derived via synchronous as well as asynchronous update rules. Lastly, we illustrate the results by analyzing a model of T helper cell differentiation.
"They Mean Something More!" Teaching about Symbols Using Balanced Integration
ERIC Educational Resources Information Center
Vesperman, Dean P.; Bernens-Kinkead, Donna J.; Loudermilk, Liesl S.; Newsom, Gladys I. M.
2012-01-01
Since the election of 1796, buttons, slogans, and, most importantly, symbols have become a mainstay of the American election system. The log cabin symbolized the childhoods of Andrew Jackson and Abraham Lincoln; the sun represented hope on Barack Obama's 2008 presidential election posters. Many people without formal instruction in what symbols…
Symbolic Calculators in Mathematics Lessons--The Case of Calculus
ERIC Educational Resources Information Center
Weigand, Hans-Georg; Bichler, Ewald
2010-01-01
Many empirical investigations concerning the use of computer algebra systems (CAS) and symbolic calculators (SC) are restricted to a period of only a few weeks. They do not show long-term effects on students understanding. Therefore, a long term project (2003-2012) was started to test the use of symbolic calculators in Bavarian "Gymnasien"…
The Interpretation of Symbol Schemes in a Computational Medium.
ERIC Educational Resources Information Center
Ford, Michael; Frederickson, Ann; Martin, Lori
This study investigated the variation of meaning that may be assigned by students to instructional symbol systems. Toward this end, student interpretations of symbols employed to represent free fall in Boxer, a computational environment designed for innovative instructional activities in math and science, were analyzed. Four classes of…
,
2005-01-01
Interpreting the colored lines, areas, and other symbols is the first step in using topographic maps. Features are shown as points, lines, or areas, depending on their size and extent. For example, individual houses may be shown as small black squares. For larger buildings, the actual shapes are mapped. In densely built-up areas, most individual buildings are omitted and an area tint is shown. On some maps, post offices, churches, city halls, and other landmark buildings are shown within the tinted area.
Reynvoet, Bert; Sasanguie, Delphine
2016-01-01
Recently, a lot of studies in the domain of numerical cognition have been published demonstrating a robust association between numerical symbol processing and individual differences in mathematics achievement. Because numerical symbols are so important for mathematics achievement, many researchers want to provide an answer on the ‘symbol grounding problem,’ i.e., how does a symbol acquires its numerical meaning? The most popular account, the approximate number system (ANS) mapping account, assumes that a symbol acquires its numerical meaning by being mapped on a non-verbal and ANS. Here, we critically evaluate four arguments that are supposed to support this account, i.e., (1) there is an evolutionary system for approximate number processing, (2) non-symbolic and symbolic number processing show the same behavioral effects, (3) non-symbolic and symbolic numbers activate the same brain regions which are also involved in more advanced calculation and (4) non-symbolic comparison is related to the performance on symbolic mathematics achievement tasks. Based on this evaluation, we conclude that all of these arguments and consequently also the mapping account are questionable. Next we explored less popular alternative, where small numerical symbols are initially mapped on a precise representation and then, in combination with increasing knowledge of the counting list result in an independent and exact symbolic system based on order relations between symbols. We evaluate this account by reviewing evidence on order judgment tasks following the same four arguments. Although further research is necessary, the available evidence so far suggests that this symbol–symbol association account should be considered as a worthy alternative of how symbols acquire their meaning. PMID:27790179
Stability of Dynamical Systems with Discontinuous Motions:
NASA Astrophysics Data System (ADS)
Michel, Anthony N.; Hou, Ling
In this paper we present a stability theory for discontinuous dynamical systems (DDS): continuous-time systems whose motions are not necessarily continuous with respect to time. We show that this theory is not only applicable in the analysis of DDS, but also in the analysis of continuous dynamical systems (continuous-time systems whose motions are continuous with respect to time), discrete-time dynamical systems (systems whose motions are defined at discrete points in time) and hybrid dynamical systems (HDS) (systems whose descriptions involve simultaneously continuous-time and discrete-time). We show that the stability results for DDS are in general less conservative than the corresponding well-known classical Lyapunov results for continuous dynamical systems and discrete-time dynamical systems. Although the DDS stability results are applicable to general dynamical systems defined on metric spaces (divorced from any kind of description by differential equations, or any other kinds of equations), we confine ourselves to finite-dimensional dynamical systems defined by ordinary differential equations and difference equations, to make this paper as widely accessible as possible. We present only sample results, namely, results for uniform asymptotic stability in the large.
Geometric Mathematical Framework for Multibody System Dynamics
NASA Astrophysics Data System (ADS)
Terze, Zdravko; Vrdoljak, Milan; Zlatar, Dario
2010-09-01
The paper surveys geometric mathematical framework for computational modeling of multibody system dynamics. Starting with the configuration space of rigid body motion and analysis of it's Lie group structure, the elements of respective Lie algebra are addressed and basic relations pertinent to geometrical formulations of multibody system dynamics are surveyed. Dynamical model of multibody system on manifold introduced, along with the outline of geometric characteristics of holonomic and non-holonomic kinematical constraints.
Generation of symbolic equations of motion for complex spacecraft using formalism NEWEUL
NASA Astrophysics Data System (ADS)
Kreuzer, E. J.; Schiehlen, W. O.
1984-08-01
In this paper it is demonstrated that an existing program for the computerized generation of symbolic equations of motion of terrestrial multibody systems may easily be extended to include orbiting spacecraft. The necessary dynamical background of the NEWEUL program is presented in detail along with the extensions needed for the description of the spacecraft motion. Two examples using spacecraft models from the literature are included.
Omega: An Object-Oriented Image/Symbol Processing Environment
NASA Astrophysics Data System (ADS)
Carlotto, Mark J.; Fong, Jennifer B.
1989-01-01
A Common Lisp software system to support integrated image and symbolic processing applications is described. The system, termed Omega is implemented on a Symbolics Lisp Machine and is organized into modules to facilitate the development of user applications and for software transportability. An object-oriented programming language similar to Symbolics Zetalisp/Flavors is implemented in Common Lisp and is used for creating symbolic objects known as tokens. Tokens are used to represent images, significant areas in images, and regions that define the spatial extent of the significant areas. The extent of point, line, and areal features is represented by polygons, label maps, boundary points, row- and column-oriented run-length encoded rasters, and bounding rectangles. Macros provide a common means for image processing functions and spatial operators to access spatial representations. The implementation of image processing, segmentation, and symbolic processing functions within Omega are described.
Uncertain destination dynamics of delay coupled systems
NASA Astrophysics Data System (ADS)
Pal, Santinath; Poria, Swarup
2015-03-01
Certain dynamical systems exhibit sensitivity to initial conditions in which the asymptotic state is selected from multiple possible states. The associated uncertain destination dynamics can be analyzed by an appropriate reduction of the full system to a subsystem that explicitly yields the dynamics [1]. These types of systems are known as multistable systems. In this paper, a scheme for designing delay coupled multistable systems is proposed. The scheme considers delay coupled Lorenz-Stenflo systems. The scheme is based on Lyapunov's stability theorem. Numerical simulation results are presented to show the effectiveness of the proposed scheme.
Dynamical systems theory and applications
NASA Astrophysics Data System (ADS)
Awrejcewicz, Jan
2006-08-01
The 7th International Conference devoted to "Dynamical Systems-Theory and Applications" hold in 8-11 December, 2003 in Łódź, Poland, and it was organized by the staff of Department of Automatics and Biomechanics of the Technical University of Łódź. It was financially supported by the Rector of the Technical University of Łódź and the Department of Education and Physical Culture of the Łódź City Hall. The members of the International Scientific Committee included: Igor V. Andrianov (Dniepropetrovsk), Jan Awrejcewicz (Łódź), Iliya Blekhman (Sankt Petersburg), Roman Bogacz (Warszawa), Dick van Campen (Eindhoven), Zbigniew Engel (Kraków), Lothar Gaul (Stuttgart), Józef Giergiel (Kraków), Michał Kleiber (Warszawa), Vadim A. Krysko (Saratov), Włodzimierz Kurnik (Warszawa), Claude-Henri Lamarque (Lyon), Leonid I. Manevitch (Moscow), Jan Osiecki (Warszawa), Wiesaw Ostachowicz (Gdańsk), Ladislav Pust (Prague), Giuseppe Rega (Rome), Tsuneo Someya (Tokyo), Zbigniew Starczewski (Warszawa), Eugeniusz Świtoński (Gliwice), Andrzej Tylikowski (Warszawa), Tadeusz Uhl (Kraków), Aleksander F. Vakakis (Illinois), Józef Wojnarowski (Gliwice).
How Symbolic Experience Shapes Children's Symbolic Flexibility
ERIC Educational Resources Information Center
Thom, Emily E.; Sandhofer, Catherine M.
2014-01-01
The current experiments asked whether children with dual-symbolic experience (e.g., unimodal bilingual and bimodal) develop a preference for words like monolingual children (Namy & Waxman, 1998). In Experiment 1, ninety-five 18- and 24-month-olds, with monolingual, unimodal bilingual, or bimodal symbolic experience, were tested in their…
International Icon Symbols: How Well Are These Symbols Understood?
ERIC Educational Resources Information Center
Griffin, Robert E.; Gibbs, William J.
There is a great reliance on symbolic messages in our society, but the success of these messages depends on how they are interpreted. The variability of subjects' interpretations of commonly used visual symbols was investigated by comparing the interpretations of a U.S. audience and a Jamaican audience. Responses of 27 executive master's in…
Dynamic systems of regional economy management optimization
NASA Astrophysics Data System (ADS)
Trofimov, S.; Kudzh, S.
-called "topographical" approach, which is used by intellectual information technology "Dynamics of systems". According to it the realistic plan of regional economic system is created in the virtual space -directly on a computer desktop. And economic objects are displayed on evident schemes according to their real "geographical" structure. Each enterprise, bank, business-unit or the detached division of the company receives its own "Module" (area in working space of a spreadsheet). In result the general plan of regional economic system appears at planners. A whole real picture of all economic system functioning is recreated by such way. The idea of a method is obvious: the operator sees actual functioning of regional economy. This is promoted by "the friendly interface", allowing to display real objects as a clear symbols. The regional economy can be considered as a set of the separate enterprises connected by various economic communications. Constant monitoring of an infrastructure development, tracking of a cargoes transportation condition, supervision over following the ecological specifications by the regional enterprises, growth of housing and industrial building level, condition of communications, etc. is necessary for carrying out with the help of modern technologies of space shooting and satellite navigating systems. It will allow to obtain the data in an operative mode and will also help to the quickly modeling of a situation development variants, and to accept anticipatory administrative decisions. Other sources of the information are statistical directories and reports on a social condition in region: about a migration level and the population incomes, consumer's basket structure, demographic parameters - age of the capable population, a sexual and national attributes, etc. It is possible to attribute financial parameters to the third group: the regional budget condition data, a gain of investments into the regional economy, a growth of incomes in the regional budget from the
Symbolic Interaction and Applied Social Research
Kotarba, Joseph A.
2014-01-01
In symbolic interaction, a traditional yet unfortunate and unnecessary distinction has been made between basic and applied research. The argument has been made that basic research is intended to generate new knowledge, whereas applied research is intended to apply knowledge to the solution of practical (social and organizational) problems. I will argue that the distinction between basic and applied research in symbolic interaction is outdated and dysfunctional. The masters of symbolic interactionist thought have left us a proud legacy of shaping their scholarly thinking and inquiry in response to and in light of practical issues of the day (e.g., Znaniecki, and Blumer). Current interactionist work continues this tradition in topical areas such as social justice studies. Applied research, especially in term of evaluation and needs assessment studies, can be designed to serve both basic and applied goals. Symbolic interaction provides three great resources to do this. The first is its orientation to dynamic sensitizing concepts that direct research and ask questions instead of supplying a priori and often impractical answers. The second is its orientation to qualitative methods, and appreciation for the logic of grounded theory. The third is interactionism’s overall holistic approach to interfacing with the everyday life world. The primary illustrative case here is the qualitative component of the evaluation of an NIH-funded, translational medical research program. The qualitative component has provided interactionist-inspired insights into translational research, such as examining cultural change in medical research in terms of changes in the form and content of formal and informal discourse among scientists; delineating the impact of significant symbols such as "my lab" on the social organization of science; and appreciating the essence of the self-concept "scientist" on the increasingly bureaucratic and administrative identities of medical researchers. This
Single timepoint models of dynamic systems.
Sachs, K; Itani, S; Fitzgerald, J; Schoeberl, B; Nolan, G P; Tomlin, C J
2013-08-01
Many interesting studies aimed at elucidating the connectivity structure of biomolecular pathways make use of abundance measurements, and employ statistical and information theoretic approaches to assess connectivities. These studies often do not address the effects of the dynamics of the underlying biological system, yet dynamics give rise to impactful issues such as timepoint selection and its effect on structure recovery. In this work, we study conditions for reliable retrieval of the connectivity structure of a dynamic system, and the impact of dynamics on structure-learning efforts. We encounter an unexpected problem not previously described in elucidating connectivity structure from dynamic systems, show how this confounds structure learning of the system and discuss possible approaches to overcome the confounding effect. Finally, we test our hypotheses on an accurate dynamic model of the IGF signalling pathway. We use two structure-learning methods at four time points to contrast the performance and robustness of those methods in terms of recovering correct connectivity. PMID:24511382
Design tool for symbolic substitution
NASA Astrophysics Data System (ADS)
Parthasarathi, Ranjani; Jhunjhunwala, Ashok
1996-11-01
A design tool that aids in designing, evaluating, and comparing various implementations of optical symbolic substitution is presented. A hierarchical, modular approach to design similar to that used in digital electronics is supported to facilitate the design of large complex systems. This tool is composed of a schematic capture unit, a simulator unit, and an evaluation unit. Starting with the definition of certain basic or integrated optical elements performing well-defined functions, a schematic capture unit helps to design specific functions. The simulator tool helps to verify the design and the evaluation tool determines its complexity. The usefulness of this design tool is demonstrated with an example design of a simple four- function arithmetic logic unit.
Detecting event-related recurrences by symbolic analysis: applications to human language processing
beim Graben, Peter; Hutt, Axel
2015-01-01
Quasi-stationarity is ubiquitous in complex dynamical systems. In brain dynamics, there is ample evidence that event-related potentials (ERPs) reflect such quasi-stationary states. In order to detect them from time series, several segmentation techniques have been proposed. In this study, we elaborate a recent approach for detecting quasi-stationary states as recurrence domains by means of recurrence analysis and subsequent symbolization methods. We address two pertinent problems of contemporary recurrence analysis: optimizing the size of recurrence neighbourhoods and identifying symbols from different realizations for sequence alignment. As possible solutions for these problems, we suggest a maximum entropy criterion and a Hausdorff clustering algorithm. The resulting recurrence domains for single-subject ERPs are obtained as partition cells reflecting quasi-stationary brain states. PMID:25548270
Dynamic sensitivity analysis of biological systems
Wu, Wu Hsiung; Wang, Feng Sheng; Chang, Maw Shang
2008-01-01
Background A mathematical model to understand, predict, control, or even design a real biological system is a central theme in systems biology. A dynamic biological system is always modeled as a nonlinear ordinary differential equation (ODE) system. How to simulate the dynamic behavior and dynamic parameter sensitivities of systems described by ODEs efficiently and accurately is a critical job. In many practical applications, e.g., the fed-batch fermentation systems, the system admissible input (corresponding to independent variables of the system) can be time-dependent. The main difficulty for investigating the dynamic log gains of these systems is the infinite dimension due to the time-dependent input. The classical dynamic sensitivity analysis does not take into account this case for the dynamic log gains. Results We present an algorithm with an adaptive step size control that can be used for computing the solution and dynamic sensitivities of an autonomous ODE system simultaneously. Although our algorithm is one of the decouple direct methods in computing dynamic sensitivities of an ODE system, the step size determined by model equations can be used on the computations of the time profile and dynamic sensitivities with moderate accuracy even when sensitivity equations are more stiff than model equations. To show this algorithm can perform the dynamic sensitivity analysis on very stiff ODE systems with moderate accuracy, it is implemented and applied to two sets of chemical reactions: pyrolysis of ethane and oxidation of formaldehyde. The accuracy of this algorithm is demonstrated by comparing the dynamic parameter sensitivities obtained from this new algorithm and from the direct method with Rosenbrock stiff integrator based on the indirect method. The same dynamic sensitivity analysis was performed on an ethanol fed-batch fermentation system with a time-varying feed rate to evaluate the applicability of the algorithm to realistic models with time
Lassègue, Jean
2008-03-01
In his article 'A New View of Language, Emotion and the Brain,' Dan Shanahan claims that the post-war Cognitive Turn focused mainly on information processing and that little attention was paid to the dramatic role played by emotion in human cognition. One key argument in his defence of a more comprehensive view of human cognition rests upon the idea that the process of symbolization--a unique capacity only developed by humans--combines, right from the start, information processing and feelings. The author argues that any theory ignoring this fact would miss the whole point, just as mainstream cognitive science has done since Noam Chomsky published Syntactic Structures, exactly 50 years ago. PMID:18293048
Murray, C
1980-01-01
This paper deals with the traditional beliefs and mythical folklore of the Sotho-Tswana ethnic tribes of South Africa. Their ritual practices are predominantly concerned with the weather, the vicissitudes of the seasonal cycle, and, especially the rain-making powers of certain individuals. It is well known that rain, in all civilizations, is a symbol of fertility. Thus, adolescent girls and young women, as mediators of the association between water and fertility, can be relied upon to bring the clouds and torrential downpours. The characteristic Sesotho explanation that babies come from the river is clearly an allusion to the water of the womb, and the river is generally recognized as a methaphor of the womb. Also, the onset of menarche involves rituals having to do with the drawing and pouring of water, another clear allusion to the beginning of fertility.
Lassègue, Jean
2008-03-01
In his article 'A New View of Language, Emotion and the Brain,' Dan Shanahan claims that the post-war Cognitive Turn focused mainly on information processing and that little attention was paid to the dramatic role played by emotion in human cognition. One key argument in his defence of a more comprehensive view of human cognition rests upon the idea that the process of symbolization--a unique capacity only developed by humans--combines, right from the start, information processing and feelings. The author argues that any theory ignoring this fact would miss the whole point, just as mainstream cognitive science has done since Noam Chomsky published Syntactic Structures, exactly 50 years ago.
Eskander, George S; Atiya, Amir F
2009-05-01
In this paper a model called symbolic function network (SFN) is introduced; that is based on using elementary functions (for example powers, the exponential function, and the logarithm) as building blocks. The proposed method uses these building blocks to synthesize a function that best fits the training data in a regression framework. The resulting network is of the form of a tree, where adding nodes horizontally means having a summation of elementary functions and adding nodes vertically means concatenating elementary functions. Several new algorithms were proposed to construct the tree based on the concepts of forward greedy search and backward greedy search, together with applying the steepest descent concept. The method is tested on a number of examples and it is shown to exhibit good performance.
New directions in algebraic dynamical systems
NASA Astrophysics Data System (ADS)
Schmidt, Klaus; Verbitskiy, Evgeny
2011-02-01
The logarithmic Mahler measure of certain multivariate polynomials occurs frequently as the entropy or the free energy of solvable lattice models (especially dimer models). It is also known that the entropy of an algebraic dynamical system is the logarithmic Mahler measure of the defining polynomial. The connection between the lattice models and the algebraic dynamical systems is still rather mysterious.
Semicontinuity of attractors for impulsive dynamical systems
NASA Astrophysics Data System (ADS)
Bonotto, E. M.; Bortolan, M. C.; Collegari, R.; Czaja, R.
2016-10-01
In this paper we introduce the concept of collective tube conditions which assures a suitable behaviour for a family of dynamical systems close to impulsive sets. Using the collective tube conditions, we develop the theory of upper and lower semicontinuity of global attractors for a family of impulsive dynamical systems.
Systems-Dynamic Analysis for Neighborhood Study
Systems-dynamic analysis (or system dynamics (SD)) helps planners identify interrelated impacts of transportation and land-use policies on neighborhood-scale economic outcomes for households and businesses, among other applications. This form of analysis can show benefits and tr...
The Symbolism Of Chemical Equations
ERIC Educational Resources Information Center
Jensen, William B.
2005-01-01
A question about the historical origin of equal sign and double arrow symbolism in balanced chemical equation is raised. The study shows that Marshall proposed the symbolism in 1902, which includes the use of currently favored double barb for equilibrium reactions.
Symbolic Mediation in Cognitive Activity
ERIC Educational Resources Information Center
Veraksa, Alexander N.
2011-01-01
This article used two studies to investigate sign and symbol mediation in children aged 8-11 years. In role play, children exist at one at the same time in objective reality and their representation of reality. We cannot observe their mental representation directly, but the issue of whether signs or symbols mediate early role play is an important…
Fostering Symbolic Interpretation during Adolescence
ERIC Educational Resources Information Center
Peskin, Joan; Wells-Jopling, Rebecca
2012-01-01
Although by 11 years children demonstrate impressive performance on various tasks that assess symbolic thinking in language development, research suggests that few young adolescents demonstrate evidence of symbolic processing when reading literature. This study investigated whether the difficulty might be due to a lack of adequate exposure to…
Nonlinear Dynamics of Parametrically Excited Gyroscopic Systems
Namachchivaya. N.S.
2001-06-01
The primary objective of this project is to determine how some of the powerful geometric methods of dynamical systems can be applied to study nonlinear gyroscopic systems. We proposed to develop techniques to predict local and global behavior and instability mechanisms and to analyze the interactions between noise, stability, and nonlinearities inherent in gyroscopic systems. In order to obtain these results we use the method of normal forms, global bifurcation techniques, and various other dynamical systems tools.
A Participatory Research Approach to develop an Arabic Symbol Dictionary.
Draffan, E A; Kadous, Amatullah; Idris, Amal; Banes, David; Zeinoun, Nadine; Wald, Mike; Halabi, Nawar
2015-01-01
The purpose of the Arabic Symbol Dictionary research discussed in this paper, is to provide a resource of culturally, environmentally and linguistically suitable symbols to aid communication and literacy skills. A participatory approach with the use of online social media and a bespoke symbol management system has been established to enhance the process of matching a user based Arabic and English core vocabulary with appropriate imagery. Participants including AAC users, their families, carers, teachers and therapists who have been involved in the research from the outset, collating the vocabularies, debating cultural nuances for symbols and critiquing the design of technologies for selection procedures. The positive reaction of those who have voted on the symbols with requests for early use have justified the iterative nature of the methodologies used for this part of the project. However, constant re-evaluation will be necessary and in depth analysis of all the data received has yet to be completed. PMID:26294566
A Participatory Research Approach to develop an Arabic Symbol Dictionary.
Draffan, E A; Kadous, Amatullah; Idris, Amal; Banes, David; Zeinoun, Nadine; Wald, Mike; Halabi, Nawar
2015-01-01
The purpose of the Arabic Symbol Dictionary research discussed in this paper, is to provide a resource of culturally, environmentally and linguistically suitable symbols to aid communication and literacy skills. A participatory approach with the use of online social media and a bespoke symbol management system has been established to enhance the process of matching a user based Arabic and English core vocabulary with appropriate imagery. Participants including AAC users, their families, carers, teachers and therapists who have been involved in the research from the outset, collating the vocabularies, debating cultural nuances for symbols and critiquing the design of technologies for selection procedures. The positive reaction of those who have voted on the symbols with requests for early use have justified the iterative nature of the methodologies used for this part of the project. However, constant re-evaluation will be necessary and in depth analysis of all the data received has yet to be completed.
Improving homogeneity by dynamic speed limit systems.
van Nes, Nicole; Brandenburg, Stefan; Twisk, Divera
2010-05-01
Homogeneity of driving speeds is an important variable in determining road safety; more homogeneous driving speeds increase road safety. This study investigates the effect of introducing dynamic speed limit systems on homogeneity of driving speeds. A total of 46 subjects twice drove a route along 12 road sections in a driving simulator. The speed limit system (static-dynamic), the sophistication of the dynamic speed limit system (basic roadside, advanced roadside, and advanced in-car) and the situational condition (dangerous-non-dangerous) were varied. The homogeneity of driving speed, the rated credibility of the posted speed limit and the acceptance of the different dynamic speed limit systems were assessed. The results show that the homogeneity of individual speeds, defined as the variation in driving speed for an individual subject along a particular road section, was higher with the dynamic speed limit system than with the static speed limit system. The more sophisticated dynamic speed limit system tested within this study led to higher homogeneity than the less sophisticated systems. The acceptance of the dynamic speed limit systems used in this study was positive, they were perceived as quite useful and rather satisfactory.
Identification of dynamic systems, theory and formulation
NASA Technical Reports Server (NTRS)
Maine, R. E.; Iliff, K. W.
1985-01-01
The problem of estimating parameters of dynamic systems is addressed in order to present the theoretical basis of system identification and parameter estimation in a manner that is complete and rigorous, yet understandable with minimal prerequisites. Maximum likelihood and related estimators are highlighted. The approach used requires familiarity with calculus, linear algebra, and probability, but does not require knowledge of stochastic processes or functional analysis. The treatment emphasizes unification of the various areas in estimation in dynamic systems is treated as a direct outgrowth of the static system theory. Topics covered include basic concepts and definitions; numerical optimization methods; probability; statistical estimators; estimation in static systems; stochastic processes; state estimation in dynamic systems; output error, filter error, and equation error methods of parameter estimation in dynamic systems, and the accuracy of the estimates.
Discovering independent parameters in complex dynamical systems
Lainscsek, Claudia; Weyhenmeyer, Jonathan; Sejnowski, Terrence J.; Letellier, Christophe
2015-01-01
The transformation of a nonlinear dynamical system into a standard form by using one of its variables and its successive derivatives can be used to identify the relationships that may exist between the parameters of the original system such as the subset of the parameter space over which the dynamics is left invariant. We show how the size of the attractor or the time scale (the pseudo-period) can be varied without affecting the underlying dynamics. This is demonstrated for the Rössler and the Lorenz systems. We also consider the case when two Rössler systems are unidirectionally coupled and when a Lorenz system is driven by a Rössler system. In both cases, the dynamics of the coupled system is affected. PMID:25983399
Symbols are not uniquely human.
Ribeiro, Sidarta; Loula, Angelo; de Araújo, Ivan; Gudwin, Ricardo; Queiroz, João
2007-01-01
Modern semiotics is a branch of logics that formally defines symbol-based communication. In recent years, the semiotic classification of signs has been invoked to support the notion that symbols are uniquely human. Here we show that alarm-calls such as those used by African vervet monkeys (Cercopithecus aethiops), logically satisfy the semiotic definition of symbol. We also show that the acquisition of vocal symbols in vervet monkeys can be successfully simulated by a computer program based on minimal semiotic and neurobiological constraints. The simulations indicate that learning depends on the tutor-predator ratio, and that apprentice-generated auditory mistakes in vocal symbol interpretation have little effect on the learning rates of apprentices (up to 80% of mistakes are tolerated). In contrast, just 10% of apprentice-generated visual mistakes in predator identification will prevent any vocal symbol to be correctly associated with a predator call in a stable manner. Tutor unreliability was also deleterious to vocal symbol learning: a mere 5% of "lying" tutors were able to completely disrupt symbol learning, invariably leading to the acquisition of incorrect associations by apprentices. Our investigation corroborates the existence of vocal symbols in a non-human species, and indicates that symbolic competence emerges spontaneously from classical associative learning mechanisms when the conditioned stimuli are self-generated, arbitrary and socially efficacious. We propose that more exclusive properties of human language, such as syntax, may derive from the evolution of higher-order domains for neural association, more removed from both the sensory input and the motor output, able to support the gradual complexification of grammatical categories into syntax.
The influence of math anxiety on symbolic and non-symbolic magnitude processing.
Dietrich, Julia F; Huber, Stefan; Moeller, Korbinian; Klein, Elise
2015-01-01
Deficits in basic numerical abilities have been investigated repeatedly as potential risk factors of math anxiety. Previous research suggested that also a deficient approximate number system (ANS), which is discussed as being the foundation for later math abilities, underlies math anxiety. However, these studies examined this hypothesis by investigating ANS acuity using a symbolic number comparison task. Recent evidence questions the view that ANS acuity can be assessed using a symbolic number comparison task. To investigate whether there is an association between math anxiety and ANS acuity, we employed both a symbolic number comparison task and a non-symbolic dot comparison task, which is currently the standard task to assess ANS acuity. We replicated previous findings regarding the association between math anxiety and the symbolic distance effect for response times. High math anxious individuals showed a larger distance effect than less math anxious individuals. However, our results revealed no association between math anxiety and ANS acuity assessed using a non-symbolic dot comparison task. Thus, our results did not provide evidence for the hypothesis that a deficient ANS underlies math anxiety. Therefore, we propose that a deficient ANS does not constitute a risk factor for the development of math anxiety. Moreover, our results suggest that previous interpretations regarding the interaction of math anxiety and the symbolic distance effect have to be updated. We suggest that impaired number comparison processes in high math anxious individuals might account for the results rather than deficient ANS representations. Finally, impaired number comparison processes might constitute a risk factor for the development of math anxiety. Implications for current models regarding the origins of math anxiety are discussed.
Dynamical systems, attractors, and neural circuits.
Miller, Paul
2016-01-01
Biology is the study of dynamical systems. Yet most of us working in biology have limited pedagogical training in the theory of dynamical systems, an unfortunate historical fact that can be remedied for future generations of life scientists. In my particular field of systems neuroscience, neural circuits are rife with nonlinearities at all levels of description, rendering simple methodologies and our own intuition unreliable. Therefore, our ideas are likely to be wrong unless informed by good models. These models should be based on the mathematical theories of dynamical systems since functioning neurons are dynamic-they change their membrane potential and firing rates with time. Thus, selecting the appropriate type of dynamical system upon which to base a model is an important first step in the modeling process. This step all too easily goes awry, in part because there are many frameworks to choose from, in part because the sparsely sampled data can be consistent with a variety of dynamical processes, and in part because each modeler has a preferred modeling approach that is difficult to move away from. This brief review summarizes some of the main dynamical paradigms that can arise in neural circuits, with comments on what they can achieve computationally and what signatures might reveal their presence within empirical data. I provide examples of different dynamical systems using simple circuits of two or three cells, emphasizing that any one connectivity pattern is compatible with multiple, diverse functions.
Symbolic PathFinder: Symbolic Execution of Java Bytecode
NASA Technical Reports Server (NTRS)
Pasareanu, Corina S.; Rungta, Neha
2010-01-01
Symbolic Pathfinder (SPF) combines symbolic execution with model checking and constraint solving for automated test case generation and error detection in Java programs with unspecified inputs. In this tool, programs are executed on symbolic inputs representing multiple concrete inputs. Values of variables are represented as constraints generated from the analysis of Java bytecode. The constraints are solved using off-the shelf solvers to generate test inputs guaranteed to achieve complex coverage criteria. SPF has been used successfully at NASA, in academia, and in industry.
Symbolic Computation Using Cellular Automata-Based Hyperdimensional Computing.
Yilmaz, Ozgur
2015-12-01
This letter introduces a novel framework of reservoir computing that is capable of both connectionist machine intelligence and symbolic computation. A cellular automaton is used as the reservoir of dynamical systems. Input is randomly projected onto the initial conditions of automaton cells, and nonlinear computation is performed on the input via application of a rule in the automaton for a period of time. The evolution of the automaton creates a space-time volume of the automaton state space, and it is used as the reservoir. The proposed framework is shown to be capable of long-term memory, and it requires orders of magnitude less computation compared to echo state networks. As the focus of the letter, we suggest that binary reservoir feature vectors can be combined using Boolean operations as in hyperdimensional computing, paving a direct way for concept building and symbolic processing. To demonstrate the capability of the proposed system, we make analogies directly on image data by asking, What is the automobile of air?
Information Processing Capacity of Dynamical Systems
Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Massar, Serge
2012-01-01
Many dynamical systems, both natural and artificial, are stimulated by time dependent external signals, somehow processing the information contained therein. We demonstrate how to quantify the different modes in which information can be processed by such systems and combine them to define the computational capacity of a dynamical system. This is bounded by the number of linearly independent state variables of the dynamical system, equaling it if the system obeys the fading memory condition. It can be interpreted as the total number of linearly independent functions of its stimuli the system can compute. Our theory combines concepts from machine learning (reservoir computing), system modeling, stochastic processes, and functional analysis. We illustrate our theory by numerical simulations for the logistic map, a recurrent neural network, and a two-dimensional reaction diffusion system, uncovering universal trade-offs between the non-linearity of the computation and the system's short-term memory. PMID:22816038
TRADES: TRAnsits and Dynamics of Exoplanetary Systems
NASA Astrophysics Data System (ADS)
Borsato, Luca
2016-01-01
TRADES (TRAnsits and Dynamics of Exoplanetary Systems) simultaneously fits observed radial velocities and transit times data to determine the orbital parameters of exoplanetary systems from observational data. It uses a dynamical simulator for N-body systems that also fits the available data during the orbital integration and determines the best combination of the orbital parameters using grid search, χ2 minimization, genetic algorithms, particle swarm optimization, and bootstrap analysis.
Session 6: Dynamic Modeling and Systems Analysis
NASA Technical Reports Server (NTRS)
Csank, Jeffrey; Chapman, Jeffryes; May, Ryan
2013-01-01
These presentations cover some of the ongoing work in dynamic modeling and dynamic systems analysis. The first presentation discusses dynamic systems analysis and how to integrate dynamic performance information into the systems analysis. The ability to evaluate the dynamic performance of an engine design may allow tradeoffs between the dynamic performance and operability of a design resulting in a more efficient engine design. The second presentation discusses the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a Simulation system with a library containing the basic building blocks that can be used to create dynamic Thermodynamic Systems. Some of the key features include Turbo machinery components, such as turbines, compressors, etc., and basic control system blocks. T-MAT is written in the Matlab-Simulink environment and is open source software. The third presentation focuses on getting additional performance from the engine by allowing the limit regulators only to be active when a limit is danger of being violated. Typical aircraft engine control architecture is based on MINMAX scheme, which is designed to keep engine operating within prescribed mechanical/operational safety limits. Using a conditionally active min-max limit regulator scheme, additional performance can be gained by disabling non-relevant limit regulators
Symbolic representation of probabilistic worlds.
Feldman, Jacob
2012-04-01
Symbolic representation of environmental variables is a ubiquitous and often debated component of cognitive science. Yet notwithstanding centuries of philosophical discussion, the efficacy, scope, and validity of such representation has rarely been given direct consideration from a mathematical point of view. This paper introduces a quantitative measure of the effectiveness of symbolic representation, and develops formal constraints under which such representation is in fact warranted. The effectiveness of symbolic representation hinges on the probabilistic structure of the environment that is to be represented. For arbitrary probability distributions (i.e., environments), symbolic representation is generally not warranted. But in modal environments, defined here as those that consist of mixtures of component distributions that are narrow ("spiky") relative to their spreads, symbolic representation can be shown to represent the environment with a relatively negligible loss of information. Modal environments support propositional forms, logical relations, and other familiar features of symbolic representation. Hence the assumption that our environment is, in fact, modal is a key tacit assumption underlying the use of symbols in cognitive science. PMID:22270145
Partial Dynamical Symmetry in Nuclear Systems
Escher, J E
2003-06-02
Partial dynamical symmetry (PDS) extends and complements the concepts of exact and dynamical symmetry. It allows one to remove undesired constraints from an algebraic theory, while preserving some of the useful aspects of a dynamical symmetry, and to study the effects of symmetry breaking in a controlled manner. An example of a PDS in an interacting fermion system is presented. The associated PDS Hamiltonians are closely related with a realistic quadrupole-quadrupole interaction and provide new insights into this important interaction.
Categorizing dynamic textures using a bag of dynamical systems.
Ravichandran, Avinash; Chaudhry, Rizwan; Vidal, René
2013-02-01
We consider the problem of categorizing video sequences of dynamic textures, i.e., nonrigid dynamical objects such as fire, water, steam, flags, etc. This problem is extremely challenging because the shape and appearance of a dynamic texture continuously change as a function of time. State-of-the-art dynamic texture categorization methods have been successful at classifying videos taken from the same viewpoint and scale by using a Linear Dynamical System (LDS) to model each video, and using distances or kernels in the space of LDSs to classify the videos. However, these methods perform poorly when the video sequences are taken under a different viewpoint or scale. In this paper, we propose a novel dynamic texture categorization framework that can handle such changes. We model each video sequence with a collection of LDSs, each one describing a small spatiotemporal patch extracted from the video. This Bag-of-Systems (BoS) representation is analogous to the Bag-of-Features (BoF) representation for object recognition, except that we use LDSs as feature descriptors. This choice poses several technical challenges in adopting the traditional BoF approach. Most notably, the space of LDSs is not euclidean; hence, novel methods for clustering LDSs and computing codewords of LDSs need to be developed. We propose a framework that makes use of nonlinear dimensionality reduction and clustering techniques combined with the Martin distance for LDSs to tackle these issues. Our experiments compare the proposed BoS approach to existing dynamic texture categorization methods and show that it can be used for recognizing dynamic textures in challenging scenarios which could not be handled by existing methods. PMID:23257470
Inferring directional interactions from transient signals with symbolic transfer entropy
NASA Astrophysics Data System (ADS)
Martini, Marcel; Kranz, Thorsten A.; Wagner, Tobias; Lehnertz, Klaus
2011-01-01
We extend the concept of symbolic transfer entropy to enable the time-resolved investigation of directional relationships between coupled dynamical systems from short and transient noisy time series. For our approach, we consider an observed ensemble of a sufficiently large number of time series as multiple realizations of a process. We derive an index that quantifies the preferred direction of transient interactions and assess its significance using a surrogate-based testing scheme. Analyzing time series from noisy chaotic systems, we demonstrate numerically the applicability and limitations of our approach. Our findings obtained from an analysis of event-related brain activities underline the importance of our method to improve understanding of gross neural interactions underlying cognitive processes.
SIAM conference on applications of dynamical systems
Not Available
1992-01-01
A conference (Oct.15--19, 1992, Snowbird, Utah; sponsored by SIAM (Society for Industrial and Applied Mathematics) Activity Group on Dynamical Systems) was held that highlighted recent developments in applied dynamical systems. The main lectures and minisymposia covered theory about chaotic motion, applications in high energy physics and heart fibrillations, turbulent motion, Henon map and attractor, integrable problems in classical physics, pattern formation in chemical reactions, etc. The conference fostered an exchange between mathematicians working on theoretical issues of modern dynamical systems and applied scientists. This two-part document contains abstracts, conference program, and an author index.
Dynamic stability experiment of Maglev systems
Cai, Y.; Mulcahy, T.M.; Chen, S.S.
1995-04-01
This report summarizes the research performed on Maglev vehicle dynamic stability at Argonne National Laboratory during the past few years. It also documents magnetic-force data obtained from both measurements and calculations. Because dynamic instability is not acceptable for any commercial Maglev system, it is important to consider this phenomenon in the development of all Maglev systems. This report presents dynamic stability experiments on Maglev systems and compares their numerical simulation with predictions calculated by a nonlinear dynamic computer code. Instabilities of an electrodynamic system (EDS)-type vehicle model were obtained from both experimental observations and computer simulations for a five-degree-of-freedom Maglev vehicle moving on a guideway consisting of double L-shaped aluminum segments attached to a rotating wheel. The experimental and theoretical analyses developed in this study identify basic stability characteristics and future research needs of Maglev systems.
Symbolic Vector Analysis in Plasma Physics
Qin, H.; Rewoldt, G.; Tang, W.M.
1997-10-01
Many problems in plasma physics involve substantial amounts of analytical vector calculation. The complexity usually originates from both the vector operations themselves and the choice of underlying coordinate system. A computer algebra package for symbolic vector analysis in general coordinate systems, GeneralVectorAnalysis (GVA), is developed using Mathematica. The modern viewpoint for 3D vector calculus, differential forms on 3-manifolds, is adopted to unify and systematize the vector calculus operations in general coordinate systems. This package will benefit physicists and applied mathematicians in their research where complicated vector analysis is required. It will not only save a huge amount of human brain-power and dramatically improve accuracy, but this package will also be an intelligent tool to assist researchers in finding the right approaches to their problems. Several applications of this symbolic vector analysis package to plasma physics are also given.
Symbolic Vector Analysis in Plasma Physics
Qin, H.; Tang, W.M.; Rewoldt, G.
1997-10-09
Many problems in plasma physics involve substantial amounts of analytical vector calculation. The complexity usually originates from both the vector operations themselves and the choice of underlying coordinate system. A computer algebra package for symbolic vector analysis in general coordinate systems, General Vector Analysis (GVA), is developed using Mathematica. The modern viewpoint for 3D vector calculus, differential forms on 3-manifolds, is adopted to unify and systematize the vector calculus operations in general coordinate systems. This package will benefit physicists and applied mathematicians in their research where complicated vector analysis is required. It will not only save a huge amount of human brain-power and dramatically improve accuracy, but this package will also be an intelligent tool to assist researchers in finding the right approaches to their problems. Several applications of this symbolic vector analysis package to plasma physics are also given.
Functional systems with orthogonal dynamic covalent bonds.
Wilson, Adam; Gasparini, Giulio; Matile, Stefan
2014-03-21
This review summarizes the use of orthogonal dynamic covalent bonds to build functional systems. Dynamic covalent bonds are unique because of their dual nature. They can be as labile as non-covalent interactions or as permanent as covalent bonds, depending on conditions. Examples from nature, reaching from the role of disulfides in protein folding to thioester exchange in polyketide biosynthesis, indicate how dynamic covalent bonds are best used in functional systems. Several synthetic functional systems that employ a single type of dynamic covalent bonds have been reported. Considering that most functional systems make simultaneous use of several types of non-covalent interactions together, one would expect the literature to contain many examples in which different types of dynamic covalent bonds are similarly used in tandem. However, the incorporation of orthogonal dynamic covalent bonds into functional systems is a surprisingly rare and recent development. This review summarizes the available material comprehensively, covering a remarkably diverse collection of functions. However, probably more revealing than the specific functions addressed is that the questions asked are consistently quite unusual, very demanding and highly original, focusing on molecular systems that can self-sort, self-heal, adapt, exchange, replicate, transcribe, or even walk and "think" (logic gates). This focus on adventurous chemistry off the beaten track supports the promise that with orthogonal dynamic covalent bonds we can ask questions that otherwise cannot be asked. The broad range of functions and concepts covered should appeal to the supramolecular organic chemist but also to the broader community. PMID:24287608
Dynamical systems, attractors, and neural circuits
Miller, Paul
2016-01-01
Biology is the study of dynamical systems. Yet most of us working in biology have limited pedagogical training in the theory of dynamical systems, an unfortunate historical fact that can be remedied for future generations of life scientists. In my particular field of systems neuroscience, neural circuits are rife with nonlinearities at all levels of description, rendering simple methodologies and our own intuition unreliable. Therefore, our ideas are likely to be wrong unless informed by good models. These models should be based on the mathematical theories of dynamical systems since functioning neurons are dynamic—they change their membrane potential and firing rates with time. Thus, selecting the appropriate type of dynamical system upon which to base a model is an important first step in the modeling process. This step all too easily goes awry, in part because there are many frameworks to choose from, in part because the sparsely sampled data can be consistent with a variety of dynamical processes, and in part because each modeler has a preferred modeling approach that is difficult to move away from. This brief review summarizes some of the main dynamical paradigms that can arise in neural circuits, with comments on what they can achieve computationally and what signatures might reveal their presence within empirical data. I provide examples of different dynamical systems using simple circuits of two or three cells, emphasizing that any one connectivity pattern is compatible with multiple, diverse functions. PMID:27408709
Symbols for the General British English Vowel Sounds
ERIC Educational Resources Information Center
Lewis, J. Windsor
1975-01-01
Deals with the critique of Hans G. Hoffmann saying that the new phonetic symbols contained in A. S. Hornby's "Advanced Learner's Dictionary" (Oxford University Press, London, 1974) are harder to learn than the older system of transcription. (IFS/WGA)
TIME DELAY SYSTEMS WITH DISTRIBUTION DEPENDENT DYNAMICS
Banks, H. T.; Dediu, Sava; Nguyen, Hoan K.
2009-01-01
General delay dynamical systems in which uncertainty is present in the form of probability measure dependent dynamics are considered. Several motivating examples arising in biology are discussed. A functional analytic framework for investigating well–posedness (existence, uniqueness and continuous dependence of solutions), inverse problems, sensitivity analysis and approximations of the measures for computational purposes is surveyed. PMID:19865602
TIME DELAY SYSTEMS WITH DISTRIBUTION DEPENDENT DYNAMICS.
Banks, H T; Dediu, Sava; Nguyen, Hoan K
2007-01-01
General delay dynamical systems in which uncertainty is present in the form of probability measure dependent dynamics are considered. Several motivating examples arising in biology are discussed. A functional analytic framework for investigating well-posedness (existence, uniqueness and continuous dependence of solutions), inverse problems, sensitivity analysis and approximations of the measures for computational purposes is surveyed.
Dynamic testing of docking system hardware
NASA Technical Reports Server (NTRS)
Dorland, W. D.
1972-01-01
Extensive dynamic testing was conducted to verify the flight readiness of the Apollo docking hardware. Testing was performed on a unique six degree-of-freedom motion simulator controlled by a computer that calculated the associated spacecraft motions. The test system and the results obtained by subjecting flight-type docking hardware to actual impact loads and resultant spacecraft dynamics are described.
Wavelet Analysis on Symbolic Sequences and Two-Fold de Bruijn Sequences
NASA Astrophysics Data System (ADS)
Osipov, V. Al.
2016-07-01
The concept of symbolic sequences play important role in study of complex systems. In the work we are interested in ultrametric structure of the set of cyclic sequences naturally arising in theory of dynamical systems. Aimed at construction of analytic and numerical methods for investigation of clusters we introduce operator language on the space of symbolic sequences and propose an approach based on wavelet analysis for study of the cluster hierarchy. The analytic power of the approach is demonstrated by derivation of a formula for counting of two-fold de Bruijn sequences, the extension of the notion of de Bruijn sequences. Possible advantages of the developed description is also discussed in context of applied problem of construction of efficient DNA sequence assembly algorithms.
NASA Technical Reports Server (NTRS)
Dermott, Stanley F.
2002-01-01
The ongoing aim of the research is to investigate the dynamical and physical evolution of interplanetary dust particles in order to produce a detailed global model of the zodiacal cloud and its constituent components that is capable of predicting thermal fluxes in mid-infrared wave bands to an accuracy of 1% or better; with the additional aim of exploiting this research as a basis for predicting structure in exozodiacal clouds that may be signatures of unseen planets.
Dynamical genetic programming in XCSF.
Preen, Richard J; Bull, Larry
2013-01-01
A number of representation schemes have been presented for use within learning classifier systems, ranging from binary encodings to artificial neural networks. This paper presents results from an investigation into using a temporally dynamic symbolic representation within the XCSF learning classifier system. In particular, dynamical arithmetic networks are used to represent the traditional condition-action production system rules to solve continuous-valued reinforcement learning problems and to perform symbolic regression, finding competitive performance with traditional genetic programming on a number of composite polynomial tasks. In addition, the network outputs are later repeatedly sampled at varying temporal intervals to perform multistep-ahead predictions of a financial time series.
Constraint Embedding for Multibody System Dynamics
NASA Technical Reports Server (NTRS)
Jain, Abhinandan
2009-01-01
This paper describes a constraint embedding approach for the handling of local closure constraints in multibody system dynamics. The approach uses spatial operator techniques to eliminate local-loop constraints from the system and effectively convert the system into tree-topology systems. This approach allows the direct derivation of recursive O(N) techniques for solving the system dynamics and avoiding the expensive steps that would otherwise be required for handling the closedchain dynamics. The approach is very effective for systems where the constraints are confined to small-subgraphs within the system topology. The paper provides background on the spatial operator O(N) algorithms, the extensions for handling embedded constraints, and concludes with some examples of such constraints.
Structural Identifiability of Dynamic Systems Biology Models
Villaverde, Alejandro F.
2016-01-01
A powerful way of gaining insight into biological systems is by creating a nonlinear differential equation model, which usually contains many unknown parameters. Such a model is called structurally identifiable if it is possible to determine the values of its parameters from measurements of the model outputs. Structural identifiability is a prerequisite for parameter estimation, and should be assessed before exploiting a model. However, this analysis is seldom performed due to the high computational cost involved in the necessary symbolic calculations, which quickly becomes prohibitive as the problem size increases. In this paper we show how to analyse the structural identifiability of a very general class of nonlinear models by extending methods originally developed for studying observability. We present results about models whose identifiability had not been previously determined, report unidentifiabilities that had not been found before, and show how to modify those unidentifiable models to make them identifiable. This method helps prevent problems caused by lack of identifiability analysis, which can compromise the success of tasks such as experiment design, parameter estimation, and model-based optimization. The procedure is called STRIKE-GOLDD (STRuctural Identifiability taKen as Extended-Generalized Observability with Lie Derivatives and Decomposition), and it is implemented in a MATLAB toolbox which is available as open source software. The broad applicability of this approach facilitates the analysis of the increasingly complex models used in systems biology and other areas. PMID:27792726
The investigation of tethered satellite system dynamics
NASA Technical Reports Server (NTRS)
Lorenzini, E.
1984-01-01
Tethered satellite system (TSS) dynamics were studied. The dynamic response of the TSS during the entire stationkeeping phase for the first electrodynamic mission was investigated. An out of plane swing amplitude and the tether's bowing were observed. The dynamics of the slack tether was studied and computer code, SLACK2, was improved both in capabilities and computational speed. Speed hazard related to tether breakage or plasma contactor failure was examined. Preliminary values of the potential difference after the failure and of the drop of the electric field along the tether axis have been computed. The update of the satellite rotational dynamics model is initiated.
Dynamics and controls in MAGLEV systems
NASA Astrophysics Data System (ADS)
Cai, Y.; Chen, S. S.; Rote, D. M.
1992-09-01
The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, and vehicle stability is an important safety-related element. To design a proper guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore, the trade-off between guideway smoothness and the levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. In this study, the role of dynamics and controls in maglev vehicle/guideway interactions is discussed, and the literature on modeling the dynamic interactions of vehicle/guideway and suspension controls for ground vehicles is reviewed.
System Dynamics Models and Institutional Pricing Decisions.
ERIC Educational Resources Information Center
Chen, Fiona
1986-01-01
A system dynamics model for the pricing of tuition is presented, illustrating how such models enable decision-makers to anticipate cause-and-effect relationships and test alternative courses of action. (Author)
Constructing minimal models for complex system dynamics
NASA Astrophysics Data System (ADS)
Barzel, Baruch; Liu, Yang-Yu; Barabási, Albert-László
2015-05-01
One of the strengths of statistical physics is the ability to reduce macroscopic observations into microscopic models, offering a mechanistic description of a system's dynamics. This paradigm, rooted in Boltzmann's gas theory, has found applications from magnetic phenomena to subcellular processes and epidemic spreading. Yet, each of these advances were the result of decades of meticulous model building and validation, which are impossible to replicate in most complex biological, social or technological systems that lack accurate microscopic models. Here we develop a method to infer the microscopic dynamics of a complex system from observations of its response to external perturbations, allowing us to construct the most general class of nonlinear pairwise dynamics that are guaranteed to recover the observed behaviour. The result, which we test against both numerical and empirical data, is an effective dynamic model that can predict the system's behaviour and provide crucial insights into its inner workings.
Dynamic Impregnator Reactor System (Poster)
Not Available
2012-09-01
IBRF poster developed for the IBRF showcase. Describes the multifarious system designed for complex feedstock impregnation and processing. IBRF feedstock system has several unit operations combined into one robust system that provides for flexible and staged process configurations, such as spraying, soaking, low-severity pretreatment, enzymatic hydrolysis, fermentation, concentration/evaporation, and distillation.
The origins of symbolic racism.
Sears, David O; Henry, P J
2003-08-01
The theory of symbolic racism places its origins in a blend of anti-Black affect and conservative values, particularly individualism. We clarify that hypothesis, test it directly, and report several findings consistent with it. Study 1 shows that racial prejudice and general political conservatism fall into 2 separate factors, with symbolic racism loading about equally on both. Study 2 found that the anti-Black affect and individualism significantly explain symbolic racism. The best-fitting model both fuses those 2 elements into a single construct (Black individualism) and includes them separately. The effects of Black individualism on racial policy preferences are mostly mediated by symbolic racism. Study 3 shows that Black individualism is distinctively racial, with effects distinctly different from either an analogous gender individualism or race-neutral individualism.
Dynamics and kinematics of simple neural systems
Rabinovich, M. |; Selverston, A.; Rubchinsky, L.; Huerta, R.
1996-09-01
The dynamics of simple neural systems is of interest to both biologists and physicists. One of the possible roles of such systems is the production of rhythmic patterns, and their alterations (modification of behavior, processing of sensory information, adaptation, control). In this paper, the neural systems are considered as a subject of modeling by the dynamical systems approach. In particular, we analyze how a stable, ordinary behavior of a small neural system can be described by simple finite automata models, and how more complicated dynamical systems modeling can be used. The approach is illustrated by biological and numerical examples: experiments with and numerical simulations of the stomatogastric central pattern generators network of the California spiny lobster. {copyright} {ital 1996 American Institute of Physics.}
Model systems for single molecule polymer dynamics
Latinwo, Folarin
2012-01-01
Double stranded DNA (dsDNA) has long served as a model system for single molecule polymer dynamics. However, dsDNA is a semiflexible polymer, and the structural rigidity of the DNA double helix gives rise to local molecular properties and chain dynamics that differ from flexible chains, including synthetic organic polymers. Recently, we developed single stranded DNA (ssDNA) as a new model system for single molecule studies of flexible polymer chains. In this work, we discuss model polymer systems in the context of “ideal” and “real” chain behavior considering thermal blobs, tension blobs, hydrodynamic drag and force–extension relations. In addition, we present monomer aspect ratio as a key parameter describing chain conformation and dynamics, and we derive dynamical scaling relations in terms of this molecular-level parameter. We show that asymmetric Kuhn segments can suppress monomer–monomer interactions, thereby altering global chain dynamics. Finally, we discuss ssDNA in the context of a new model system for single molecule polymer dynamics. Overall, we anticipate that future single polymer studies of flexible chains will reveal new insight into the dynamic behavior of “real” polymers, which will highlight the importance of molecular individualism and the prevalence of non-linear phenomena. PMID:22956980
Irreversible thermodynamics in multiscale stochastic dynamical systems.
Santillán, Moisés; Qian, Hong
2011-04-01
This work extends the results of a recently developed theory of a rather complete thermodynamic formalism for discrete-state, continuous-time Markov processes with and without detailed balance. We investigate whether and in what way the thermodynamic structure is invariant in a multiscale stochastic system, that is, whether the relations between thermodynamic functions of state and process variables remain unchanged when the system is viewed at different time scales and resolutions. Our results show that the dynamics on a fast time scale contribute an entropic term to the internal energy function u(S)(x) for the slow dynamics. Based on the conditional free energy u(S)(x), we can then treat the slow dynamics as if the fast dynamics is nonexistent. Furthermore, we show that the free energy, which characterizes the spontaneous organization in a system without detailed balance, is invariant with or without the fast dynamics: The fast dynamics is assumed to reach stationarity instantaneously on the slow time scale; it has no effect on the system's free energy. The same cannot be said for the entropy and the internal energy, both of which contain the same contribution from the fast dynamics. We also investigate the consequences of time-scale separation in connection to the concepts of quasi-stationarity and steady adiabaticity introduced in the phenomenological steady-state thermodynamics.
Dynamics and controls in maglev systems
Cai, Y.; Chen, S.S.; Rote, D.M.
1992-09-01
The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, and vehicle stability is an important safety-related element. To design a proper guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore the trade-off between guideway smoothness and the levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. In this study, the role of dynamics and controls in maglev vehicle/guideway interactions is discussed, and the literature on modeling the dynamic interactions of vehicle/guideway and suspension controls for ground vehicles is reviewed. Particular emphasis is placed on modeling vehicle/guideway interactions and response characteristics of maglev systems for a multicar, multiload vehicle traveling on a single- or doublespan flexible guideway, including coupling effects of vehicle/guideway, comparison of concentrated and distributed loads, and ride comfort. Different control-law designs are introduced into vehicle suspensions when a simple two-degree-of-freedom vehicle model is applied. Active and semiactive control designs for primary and secondary suspensions do improve the response of vehicle and provide acceptable ride comfort. Finally, future research associated with dynamics and controls of vehicle/guideway systems is identified.
Dynamic modeling of solar dynamic components and systems
NASA Astrophysics Data System (ADS)
Hochstein, John I.; Korakianitis, T.
1992-09-01
The purpose of this grant was to support NASA in modeling efforts to predict the transient dynamic and thermodynamic response of the space station solar dynamic power generation system. In order to meet the initial schedule requirement of providing results in time to support installation of the system as part of the initial phase of space station, early efforts were executed with alacrity and often in parallel. Initially, methods to predict the transient response of a Rankine as well as a Brayton cycle were developed. Review of preliminary design concepts led NASA to select a regenerative gas-turbine cycle using a helium-xenon mixture as the working fluid and, from that point forward, the modeling effort focused exclusively on that system. Although initial project planning called for a three year period of performance, revised NASA schedules moved system installation to later and later phases of station deployment. Eventually, NASA selected to halt development of the solar dynamic power generation system for space station and to reduce support for this project to two-thirds of the original level.
Dynamic Modeling of Solar Dynamic Components and Systems
NASA Technical Reports Server (NTRS)
Hochstein, John I.; Korakianitis, T.
1992-01-01
The purpose of this grant was to support NASA in modeling efforts to predict the transient dynamic and thermodynamic response of the space station solar dynamic power generation system. In order to meet the initial schedule requirement of providing results in time to support installation of the system as part of the initial phase of space station, early efforts were executed with alacrity and often in parallel. Initially, methods to predict the transient response of a Rankine as well as a Brayton cycle were developed. Review of preliminary design concepts led NASA to select a regenerative gas-turbine cycle using a helium-xenon mixture as the working fluid and, from that point forward, the modeling effort focused exclusively on that system. Although initial project planning called for a three year period of performance, revised NASA schedules moved system installation to later and later phases of station deployment. Eventually, NASA selected to halt development of the solar dynamic power generation system for space station and to reduce support for this project to two-thirds of the original level.
Numerical Modeling of Compliant-Moored System Dynamics with Applications to Marine Energy Converters
NASA Astrophysics Data System (ADS)
Nichol, Tyler
The development of a numerical model simulating the dynamic response of compliant-moored submerged systems to non-uniform fluid flow is presented. The model is meant to serve as a computational tool with applications to compliant-moored marine energy converters by time-domain representation of the mooring dynamics. The scope of the initial code is restricted to full-submerged moored tidal turbines, though the model can be readily expanded to analyze wave energy converters as well. The system is modeled in a Lagrangian frame treating tidal turbines and structural elements as rigid bodies. Mooring lines are modeled as a series of discrete elastic segments, with parameters and force contributions lumped to point-mass nodes joining each segment. Full-range of motion is achieved using the alpha-beta-gamma Euler Angle method. The governing equations of motion of the system are derived computationally through implementation of Lagrange's Equation of Motion. The techniques employed to develop the symbolic expressions for the total kinetic, potential, and damping energies of the system and the forces acting on each element of the system are discussed. The system of differential equations obtained from evaluation of Lagrange's Equation with the developed symbolic expressions is solved numerically using a built-in MATLAB ordinary differential equation solver called ODE15i.m with the user defined initial condition of the system. Several validation tests are presented and their results discussed. Finally, an explanation of future plans for development of the model and application to existing tidal energy systems are presented.
Dynamic stability of electrodynamic maglev systems
Cai, Y.; Chen, S.S.; Mulcahy, T.M.; Rote, D.M.
1997-01-01
Because dynamic instabilities are not acceptable in any commercial maglev system, it is important to consider dynamic instability in the development of all maglev systems. This study considers the stability of maglev systems based on mathematical models and experimental data. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments. The theory and analysis for motion-dependent magnetic-force-induced instability developed in this study provides basic stability characteristics and identifies future research needs for maglev systems.
Coupled dynamics analysis of wind energy systems
NASA Technical Reports Server (NTRS)
Hoffman, J. A.
1977-01-01
A qualitative description of all key elements of a complete wind energy system computer analysis code is presented. The analysis system addresses the coupled dynamics characteristics of wind energy systems, including the interactions of the rotor, tower, nacelle, power train, control system, and electrical network. The coupled dynamics are analyzed in both the frequency and time domain to provide the basic motions and loads data required for design, performance verification and operations analysis activities. Elements of the coupled analysis code were used to design and analyze candidate rotor articulation concepts. Fundamental results and conclusions derived from these studies are presented.
Multiple Bifurcations of a Cylindrical Dynamical System
NASA Astrophysics Data System (ADS)
Han, Ning; Cao, Qingjie
2016-03-01
This paper focuses on multiple bifurcations of a cylindrical dynamical system, which is evolved from a rotating pendulum with SD oscillator. The rotating pendulum system exhibits the coupling dynamics property of the bistable state and conventional pendulum with the ho- moclinic orbits of the first and second type. A double Andronov-Hopf bifurcation, two saddle-node bifurcations of periodic orbits and a pair of homoclinic bifurcations are detected by using analytical analysis and nu- merical calculation. It is found that the homoclinic orbits of the second type can bifurcate into a pair of rotational limit cycles, coexisting with the oscillating limit cycle. Additionally, the results obtained herein, are helpful to explore different types of limit cycles and the complex dynamic bifurcation of cylindrical dynamical system.
22 CFR 42.11 - Classification symbols.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Classification symbols. 42.11 Section 42.11... NATIONALITY ACT, AS AMENDED Classification and Foreign State Chargeability § 42.11 Classification symbols. A... visa symbol to show the classification of the alien. Immigrants Symbol Class Section of law...
Modular interdependency in complex dynamical systems.
Watson, Richard A; Pollack, Jordan B
2005-01-01
Herbert A. Simon's characterization of modularity in dynamical systems describes subsystems as having dynamics that are approximately independent of those of other subsystems (in the short term). This fits with the general intuition that modules must, by definition, be approximately independent. In the evolution of complex systems, such modularity may enable subsystems to be modified and adapted independently of other subsystems, whereas in a nonmodular system, modifications to one part of the system may result in deleterious side effects elsewhere in the system. But this notion of modularity and its effect on evolvability is not well quantified and is rather simplistic. In particular, modularity need not imply that intermodule dependences are weak or unimportant. In dynamical systems this is acknowledged by Simon's suggestion that, in the long term, the dynamical behaviors of subsystems do interact with one another, albeit in an "aggregate" manner--but this kind of intermodule interaction is omitted in models of modularity for evolvability. In this brief discussion we seek to unify notions of modularity in dynamical systems with notions of how modularity affects evolvability. This leads to a quantifiable measure of modularity and a different understanding of its effect on evolvability. PMID:16197673
Dynamics of Multibody Systems Near Lagrangian Points
NASA Astrophysics Data System (ADS)
Wong, Brian
This thesis examines the dynamics of a physically connected multi-spacecraft system in the vicinity of the Lagrangian points of a Circular Restricted Three-Body System. The spacecraft system is arranged in a wheel-spoke configuration with smaller and less massive satellites connected to a central hub using truss/beams or tether connectors. The kinematics of the system is first defined, and the kinetic, gravitational potential energy and elastic potential energy of the system are derived. The Assumed Modes Method is used to discretize the continuous variables of the system, and a general set of ordinary differential equations describing the dynamics of the connectors and the central hub are obtained using the Lagrangian method. The flexible body dynamics of the tethered and truss connected systems are examined using numerical simulations. The results show that these systems experienced only small elastic deflections when they are naturally librating or rotating at moderate angular velocities, and these deflections have relatively small effect on the attitude dynamics of the systems. Based on these results, it is determined that the connectors can be modeled as rigid when only the attitude dynamics of the system is of interest. The equations of motion of rigid satellites stationed at the Lagrangian points are linearized, and the stability conditions of the satellite are obtained from the linear equations. The required conditions are shown to be similar to those of geocentric satellites. Study of the linear equations also revealed the resonant conditions of rigid Lagrangian point satellites, when a librational natural frequency of the satellite matches the frequency of its station-keeping orbit leading to large attitude motions. For tethered satellites, the linear analysis shows that the tethers are in stable equilibrium when they lie along a line joining the two primary celestial bodies of the Three-Body System. Numerical simulations are used to study the long term
Alchemical hermeneutics of the Vesica Piscis: Symbol of depth psychology
NASA Astrophysics Data System (ADS)
O'Dell, Linda Kay
The purpose of this study was to develop an understanding of the Vesica Piscis as the symbolic frame for depth psychology and the therapeutic relationship. The method of inquiry was hermeneutics and alchemical hermeneutics, informed theoretically by depth psychology. A theoretical description of the nature of the Vesica Piscis as a dynamic template and symbol for depth psychology and the therapeutic relationship resulted. Gathering the components of the therapeutic relationship into the shape of the Vesica Piscis, gave opportunity to explore what might be happening while treatment is taking place: somatically, psychologically, and emotionally. An investigation into the study of Soul placed the work of psychology within the central, innermost sacred space between—known symbolically as the Vesica Piscis. Imbued with a connectedness and relational welcoming, this symbol images the Greek goddess Hekate (Soul), as mediatrix between mind and matter. Psyche (soul), namesake of "psychology," continues her journey of finding meaning making, restitution, and solace in the therapeutic space as imaged by the Vesica Piscis. Her journey, moving through the generations, becomes the journey of the therapeutic process—one that finds resolution in relationship. Psyche is sought out in the macrocosmic archetypal realm of pure energy, the prima material that forms and coalesces both in response and likewise, creates a response through symbols, images, and imagination. The field was explored from the depth psychological perspective as: the unconscious, consciousness, and archetypal, and in physics as: the quantum field, morphic resonance, and the holographic field. Gaining an understanding of the underlying qualities of the field placed the symbol in its embedded context, allowing for further definition as to how the symbol potentially was either an extension of the field, or served as a constellating factor. Depth psychology, as a scientific discipline, is in need of a symbol that
Noncoherent DTTLs for Symbol Synchronization
NASA Technical Reports Server (NTRS)
Simon, Marvin; Tkacenko, Andre
2007-01-01
Noncoherent data-transition tracking loops (DTTLs) have been proposed for use as symbol synchronizers in digital communication receivers. [Communication- receiver subsystems that can perform their assigned functions in the absence of synchronization with the phases of their carrier signals ( carrier synchronization ) are denoted by the term noncoherent, while receiver subsystems that cannot function without carrier synchronization are said to be coherent. ] The proposal applies, more specifically, to receivers of binary phase-shift-keying (BPSK) signals generated by directly phase-modulating binary non-return-to-zero (NRZ) data streams onto carrier signals having known frequencies but unknown phases. The proposed noncoherent DTTLs would be modified versions of traditional DTTLs, which are coherent. The symbol-synchronization problem is essentially the problem of recovering symbol timing from a received signal. In the traditional, coherent approach to symbol synchronization, it is necessary to establish carrier synchronization in order to recover symbol timing. A traditional DTTL effects an iterative process in which it first generates an estimate of the carrier phase in the absence of symbol-synchronization information, then uses the carrier-phase estimate to obtain an estimate of the symbol-synchronization information, then feeds the symbol-synchronization estimate back to the carrier-phase-estimation subprocess. In a noncoherent symbol-synchronization process, there is no need for carrier synchronization and, hence, no need for iteration between carrier-synchronization and symbol- synchronization subprocesses. The proposed noncoherent symbolsynchronization process is justified theoretically by a mathematical derivation that starts from a maximum a posteriori (MAP) method of estimation of symbol timing utilized in traditional, coherent DTTLs. In that MAP method, one chooses the value of a variable of interest (in this case, the offset in the estimated symbol
Nonequilibrium quantum dynamics in optomechanical systems
NASA Astrophysics Data System (ADS)
Patil, Yogesh Sharad; Cheung, Hil F. H.; Shaffer, Airlia; Wang, Ke; Vengalattore, Mukund
2016-05-01
The thermalization dynamics of isolated quantum systems has so far been explored in the context of cold atomic systems containing a large number of particles and modes. Quantum optomechanical systems offer prospects of studying such dynamics in a qualitatively different regime - with few individually addressable modes amenable to continuous quantum measurement and thermalization times that vastly exceed those observed in cold atomic systems. We have experimentally realized a dynamical continuous phase transition in a quantum compatible nondegenerate mechanical parametric oscillator. This system is formally equivalent to the optical parametric amplifiers whose dynamics have been a subject of intense theoretical study. We experimentally verify its phase diagram and observe nonequilibrium behavior that was only theorized, but never directly observed, in the context of optical parametric amplifiers. We discuss prospects of using nonequilibrium protocols such as quenches in optomechanical systems to amplify weak nonclassical correlations and to realize macroscopic nonclassical states. This work was supported by the DARPA QuASAR program through a Grant from the ARO and the ARO MURI on non-equilibrium manybody dynamics.
Fusing Symbolic and Numerical Diagnostic Computations
NASA Technical Reports Server (NTRS)
James, Mark
2007-01-01
X-2000 Anomaly Detection Language denotes a developmental computing language, and the software that establishes and utilizes the language, for fusing two diagnostic computer programs, one implementing a numerical analysis method, the other implementing a symbolic analysis method into a unified event-based decision analysis software system for realtime detection of events (e.g., failures) in a spacecraft, aircraft, or other complex engineering system. The numerical analysis method is performed by beacon-based exception analysis for multi-missions (BEAMs), which has been discussed in several previous NASA Tech Briefs articles. The symbolic analysis method is, more specifically, an artificial-intelligence method of the knowledge-based, inference engine type, and its implementation is exemplified by the Spacecraft Health Inference Engine (SHINE) software. The goal in developing the capability to fuse numerical and symbolic diagnostic components is to increase the depth of analysis beyond that previously attainable, thereby increasing the degree of confidence in the computed results. In practical terms, the sought improvement is to enable detection of all or most events, with no or few false alarms.
Similarity Metrics for Closed Loop Dynamic Systems
NASA Technical Reports Server (NTRS)
Whorton, Mark S.; Yang, Lee C.; Bedrossian, Naz; Hall, Robert A.
2008-01-01
To what extent and in what ways can two closed-loop dynamic systems be said to be "similar?" This question arises in a wide range of dynamic systems modeling and control system design applications. For example, bounds on error models are fundamental to the controller optimization with modern control design methods. Metrics such as the structured singular value are direct measures of the degree to which properties such as stability or performance are maintained in the presence of specified uncertainties or variations in the plant model. Similarly, controls-related areas such as system identification, model reduction, and experimental model validation employ measures of similarity between multiple realizations of a dynamic system. Each area has its tools and approaches, with each tool more or less suited for one application or the other. Similarity in the context of closed-loop model validation via flight test is subtly different from error measures in the typical controls oriented application. Whereas similarity in a robust control context relates to plant variation and the attendant affect on stability and performance, in this context similarity metrics are sought that assess the relevance of a dynamic system test for the purpose of validating the stability and performance of a "similar" dynamic system. Similarity in the context of system identification is much more relevant than are robust control analogies in that errors between one dynamic system (the test article) and another (the nominal "design" model) are sought for the purpose of bounding the validity of a model for control design and analysis. Yet system identification typically involves open-loop plant models which are independent of the control system (with the exception of limited developments in closed-loop system identification which is nonetheless focused on obtaining open-loop plant models from closed-loop data). Moreover the objectives of system identification are not the same as a flight test and
Dynamic stability experiment of Maglev systems
Cai, Y.; Chen, S.S.; Zhu, S.; Rote, D.M.
1995-12-31
This paper presents dynamic stability experiments on maglev systems and compares with predictions calculated by a nonlinear dynamic computer code. Instabilities of an electrodynamic system (EDS)-type vehicle model were obtained from both experimental observations and computer simulations for a five-degree-of-freedom maglev vehicle moving on a guideway consisting of double L-shaped aluminum segments attached to a rotating wheel. The experimental and theoretical analyses developed in this study identify basic stability characteristics and future research needs of maglev systems.
Solar dynamic space power system heat rejection
NASA Technical Reports Server (NTRS)
Carlson, A. W.; Gustafson, E.; Mclallin, K. L.
1986-01-01
A radiator system concept is described that meets the heat rejection requirements of the NASA Space Station solar dynamic power modules. The heat pipe radiator is a high-reliability, high-performance approach that is capable of erection in space and is maintainable on orbit. Results are present of trade studies that compare the radiator system area and weight estimates for candidate advanced high performance heat pipes. The results indicate the advantages of the dual-slot heat pipe radiator for high temperature applications as well as its weight-reduction potential over the range of temperatures to be encountered in the solar dynamic heat rejection systems.
Dimensionality reduction of dynamical systems with parameters
NASA Astrophysics Data System (ADS)
Welshman, Ch.; Brooke, J.
2013-01-01
We describe a method for reproducing the dynamical behaviour observed in systems of very high dimension in a state space of much lower dimension. The method is designed for systems where the solution evolves onto an attractor of dimension m which is much lower than that of the state space of the full system, n. Whitney's embedding theorem guarantees that the attractor can be embedded in a space of dimension d = 2m+1. We describe how such methods can be extended to reproducing the vector field on the attractor so that the dynamics of a parameterized family of attractors can be explored in the low dimensional space Rd.
Efficient dynamic models of tensegrity systems
NASA Astrophysics Data System (ADS)
Skelton, Robert
2009-03-01
The multi-body dynamics appear in a new form, as a matrix differential equation, rather than the traditional vector differential equation. The model has a constant mass matrix, and the equations are non-minimal. A specific focus of this paper is tensegrity systems. A tensegrity system requires prestress for stabilization of the configuration of rigid bodies and tensile members. This paper provides an efficient model for both static and dynamic behavior of such systems, specialized for the case when the rigid bodies are axi-symmetric rods.
Biomechanics of Posterior Dynamic Stabilization Systems
Erbulut, D. U.; Zafarparandeh, I.; Ozer, A. F.; Goel, V. K.
2013-01-01
Spinal rigid instrumentations have been used to fuse and stabilize spinal segments as a surgical treatment for various spinal disorders to date. This technology provides immediate stability after surgery until the natural fusion mass develops. At present, rigid fixation is the current gold standard in surgical treatment of chronic back pain spinal disorders. However, such systems have several drawbacks such as higher mechanical stress on the adjacent segment, leading to long-term degenerative changes and hypermobility that often necessitate additional fusion surgery. Dynamic stabilization systems have been suggested to address adjacent segment degeneration, which is considered to be a fusion-associated phenomenon. Dynamic stabilization systems are designed to preserve segmental stability, to keep the treated segment mobile, and to reduce or eliminate degenerative effects on adjacent segments. This paper aimed to describe the biomechanical aspect of dynamic stabilization systems as an alternative treatment to fusion for certain patients. PMID:23606975
A dynamic dosimetry system for prostate brachytherapy
NASA Astrophysics Data System (ADS)
Kuo, Nathanael; Dehghan, Ehsan; Deguet, Anton; Song, Danny Y.; Prince, Jerry L.; Lee, Junghoon
2013-03-01
The lack of dynamic dosimetry tools for permanent prostate brachytherapy causes otherwise avoidable problems in prostate cancer patient care. The goal of this work is to satisfy this need in a readily adoptable manner. Using the ubiquitous ultrasound scanner and mobile non-isocentric C-arm, we show that dynamic dosimetry is now possible with only the addition of an arbitrarily configured marker-based fiducial. Not only is the system easily configured from accessible hardware, but it is also simple and convenient, requiring little training from technicians. Furthermore, the proposed system is built upon robust algorithms of seed segmentation, fiducial detection, seed reconstruction, and image registration. All individual steps of the pipeline have been thoroughly tested, and the system as a whole has been validated on a study of 25 patients. The system has shown excellent results of accurately computing dose, and does so with minimal manual intervention, therefore showing promise for widespread adoption of dynamic dosimetry.
Stirling Convertor System Dynamic Model Developed
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Regan, Timothy F.
2005-01-01
Free-piston Stirling convertors are being developed for potential use on NASA exploration missions. In support of this effort, the NASA Glenn Research Center has developed the Stirling convertor System Dynamic Model (SDM). The SDM models the Stirling cycle thermodynamics; heat flow; gas, mechanical, and mounting dynamics; the linear alternator; and the controller. The SDM s scope extends from the thermal energy input to thermal, mechanical, and electrical energy output, allowing one to study complex system interactions among subsystems. Thermal, mechanical, fluid, magnetic, and electrical subsystems can be studied in one model. The SDM is a nonlinear time-domain model containing sub-cycle dynamics, which simulates transient and dynamic phenomena that other models cannot. The entire range of convertor operation is modeled, from startup to full-power conditions.
Reaction dynamics in polyatomic molecular systems
Miller, W.H.
1993-12-01
The goal of this program is the development of theoretical methods and models for describing the dynamics of chemical reactions, with specific interest for application to polyatomic molecular systems of special interest and relevance. There is interest in developing the most rigorous possible theoretical approaches and also in more approximate treatments that are more readily applicable to complex systems.
Modelling Information System Dynamics: A Perspective.
ERIC Educational Resources Information Center
Oswitch, Pauline
1983-01-01
Describes British Library's work on Systems Dynamics, a set of techniques for building simulation models based on analysis of information feedback loops. Highlights include macro-simulation modelling activities of social science disciplines, systems analyses and models of information retrieval processes and library services, policy models, and…
Dynamics, stability, and control of maglev systems
Cai, Y.; Chen, S.S.; Rote, D.M.; Coffey, H.T.
1993-01-01
The dynamic response of maglev systems is important in several respects: Safety and ride quality, guideway design, and system costs. The dynamic response of vehicles is the key element in the determination of ride quality, and vehicle stability is one of the important elements relative to safety. To design a proper guideway that provides acceptable ride quality in the stable region, the vehicle dynamics must be understood. The trade-off between guideway smoothness and the levitation and control systems must be considered if maglev systems are to be economically feasible. This paper is a summary of our previous work on dynamics, stability and control of maglev systems. First of all, the importance of dynamics of vehicle/guideway of maglev systems is discussed. Emphasis is placed on the modeling vehicle/guideway interactions of maglev systems with a multicar, or multiload vehicle traversing on a single or double-span flexible guideway. Coupled effects of vehicle/guideway interactions in wide range of vehicle speeds with various vehicle and guideway parameters for maglev systems are investigated. Secondly, the alternative control designs of maglev vehicle suspension systems are investigated in this study to achieve safe, stable operation and acceptable ride comfort requires some form of vehicle motion control. Active and semi-active control law designs are introduced into primary and secondary suspensions of maglev vehicles. Finally, this paper discusses the stability of maglev systems based on experimental data, scoping calculations, and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments. The theory and analysis developed in this study provides basic stability characteristics and identifies future research needs for maglev systems.
Dynamics, stability, and control of maglev systems
Cai, Y.; Chen, S.S.; Rote, D.M.; Coffey, H.T.
1993-06-01
The dynamic response of maglev systems is important in several respects: Safety and ride quality, guideway design, and system costs. The dynamic response of vehicles is the key element in the determination of ride quality, and vehicle stability is one of the important elements relative to safety. To design a proper guideway that provides acceptable ride quality in the stable region, the vehicle dynamics must be understood. The trade-off between guideway smoothness and the levitation and control systems must be considered if maglev systems are to be economically feasible. This paper is a summary of our previous work on dynamics, stability and control of maglev systems. First of all, the importance of dynamics of vehicle/guideway of maglev systems is discussed. Emphasis is placed on the modeling vehicle/guideway interactions of maglev systems with a multicar, or multiload vehicle traversing on a single or double-span flexible guideway. Coupled effects of vehicle/guideway interactions in wide range of vehicle speeds with various vehicle and guideway parameters for maglev systems are investigated. Secondly, the alternative control designs of maglev vehicle suspension systems are investigated in this study to achieve safe, stable operation and acceptable ride comfort requires some form of vehicle motion control. Active and semi-active control law designs are introduced into primary and secondary suspensions of maglev vehicles. Finally, this paper discusses the stability of maglev systems based on experimental data, scoping calculations, and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments. The theory and analysis developed in this study provides basic stability characteristics and identifies future research needs for maglev systems.
Solar dynamic power system definition study
NASA Technical Reports Server (NTRS)
Wallin, Wayne E.; Friefeld, Jerry M.
1988-01-01
The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.
Near Identifiability of Dynamical Systems
NASA Technical Reports Server (NTRS)
Hadaegh, F. Y.; Bekey, G. A.
1987-01-01
Concepts regarding approximate mathematical models treated rigorously. Paper presents new results in analysis of structural identifiability, equivalence, and near equivalence between mathematical models and physical processes they represent. Helps establish rigorous mathematical basis for concepts related to structural identifiability and equivalence revealing fundamental requirements, tacit assumptions, and sources of error. "Structural identifiability," as used by workers in this field, loosely translates as meaning ability to specify unique mathematical model and set of model parameters that accurately predict behavior of corresponding physical system.
Human systems dynamics: Toward a computational model
NASA Astrophysics Data System (ADS)
Eoyang, Glenda H.
2012-09-01
A robust and reliable computational model of complex human systems dynamics could support advancements in theory and practice for social systems at all levels, from intrapersonal experience to global politics and economics. Models of human interactions have evolved from traditional, Newtonian systems assumptions, which served a variety of practical and theoretical needs of the past. Another class of models has been inspired and informed by models and methods from nonlinear dynamics, chaos, and complexity science. None of the existing models, however, is able to represent the open, high dimension, and nonlinear self-organizing dynamics of social systems. An effective model will represent interactions at multiple levels to generate emergent patterns of social and political life of individuals and groups. Existing models and modeling methods are considered and assessed against characteristic pattern-forming processes in observed and experienced phenomena of human systems. A conceptual model, CDE Model, based on the conditions for self-organizing in human systems, is explored as an alternative to existing models and methods. While the new model overcomes the limitations of previous models, it also provides an explanatory base and foundation for prospective analysis to inform real-time meaning making and action taking in response to complex conditions in the real world. An invitation is extended to readers to engage in developing a computational model that incorporates the assumptions, meta-variables, and relationships of this open, high dimension, and nonlinear conceptual model of the complex dynamics of human systems.
The symbolic economy of drugs.
Lentacker, Antoine
2016-02-01
This essay reviews four recent studies representing a new direction in the history of pharmaceuticals and pharmaceutical science. To this end, it introduces the notion of a symbolic economy of drugs, defined as the production, circulation, and reception of signs that convey information about drugs and establish trust in them. Each of the studies under review focuses on one key signifier in this symbolic economy, namely the brand, the patent, the clinical trial, and the drug itself. Drawing on Pierre Bourdieu's theory of the economy of symbolic goods, I conceptualize these signifiers as symbolic assets, that is, as instruments of communication and credit, delivering knowledge, carrying value, and producing authority. The notion of a symbolic economy is offered with a threefold intention. First, I introduce it in order to highlight the implications of historical and anthropological work for a broader theory of the economy of drugs, thus suggesting a language for interdisciplinary conversations in the study of pharmaceuticals. Second, I deploy it in an attempt to emphasize the contributions of the recent scholarship on drugs to a critical understanding of our own contemporary ways of organizing access to drugs and information about drugs. Finally, I suggest ways in which it might be of use to scholars of other commodities and technologies.
The symbolic economy of drugs.
Lentacker, Antoine
2016-02-01
This essay reviews four recent studies representing a new direction in the history of pharmaceuticals and pharmaceutical science. To this end, it introduces the notion of a symbolic economy of drugs, defined as the production, circulation, and reception of signs that convey information about drugs and establish trust in them. Each of the studies under review focuses on one key signifier in this symbolic economy, namely the brand, the patent, the clinical trial, and the drug itself. Drawing on Pierre Bourdieu's theory of the economy of symbolic goods, I conceptualize these signifiers as symbolic assets, that is, as instruments of communication and credit, delivering knowledge, carrying value, and producing authority. The notion of a symbolic economy is offered with a threefold intention. First, I introduce it in order to highlight the implications of historical and anthropological work for a broader theory of the economy of drugs, thus suggesting a language for interdisciplinary conversations in the study of pharmaceuticals. Second, I deploy it in an attempt to emphasize the contributions of the recent scholarship on drugs to a critical understanding of our own contemporary ways of organizing access to drugs and information about drugs. Finally, I suggest ways in which it might be of use to scholars of other commodities and technologies. PMID:26983175
Practical Power System Aggregation Considering Dynamic Loads
NASA Astrophysics Data System (ADS)
Yamagishi, Yoshio; Komami, Shintaro
This paper presents a practical method for creating power system equivalents that can be used in power system stability analysis. The proposed method uses three branches to connect the boundary bus, generator, and load. The method is suitable to consider reactance from the boundary bus to the load for power system stability studies using a dynamic load model. Furthermore, this paper presents a practical procedure to determine the parameters of the aggregated generator, including control devices such as excitation systems, PSS (power system stabilizer), and speed governors. The quality of the various aggregation models is verified using power system stability simulations.
Dynamics Explorer Science Data Processing System
NASA Technical Reports Server (NTRS)
Smith, P. H.; Freeman, C. H.; Hoffman, R. A.
1981-01-01
The Dynamics Explorer project has acquired the ground data processing system from the Atmosphere Explorer project to provide a central computer facility for the data processing, data management and data analysis activities of the investigators. Access to this system is via remote terminals at the investigators' facilities, which provide ready access to the data sets derived from groups of instruments on both spacecraft. The original system has been upgraded with both new hardware and enhanced software systems. These new systems include color and grey scale graphics terminals, an augmentation computer, micrographics facility, a versatile data base with a directory and data management system, and graphics display software packages.
Stirling Engine Dynamic System Modeling
NASA Technical Reports Server (NTRS)
Nakis, Christopher G.
2004-01-01
The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.
Dynamical entropy for systems with stochastic perturbation
Ostruszka; Pakonski; Slomczynski; Zyczkowski
2000-08-01
Dynamics of deterministic systems perturbed by random additive noise is characterized quantitatively. Since for such systems the Kolmogorov-Sinai (KS) entropy diverges if the diameter of the partition tends to zero, we analyze the difference between the total entropy of a noisy system and the entropy of the noise itself. We show that this quantity is finite and non-negative and we call it the dynamical entropy of the noisy system. In the weak noise limit this quantity is conjectured to tend to the KS entropy of the deterministic system. In particular, we consider one-dimensional systems with noise described by a finite-dimensional kernel for which the Frobenius-Perron operator can be represented by a finite matrix.
Energy efficiency of a dynamic glazing system
Lollini, R.; Danza, L.; Meroni, I.
2010-04-15
The reduction of air-conditioning energy consumptions is one of the main indicators to act on when improving the energy efficiency in buildings. In the case of advanced technological buildings, a meaningful contribution to the thermal loads and the energy consumptions reduction could depend on the correct configuration and management of the envelope systems. In recent years, the architectural trend toward highly transparent all-glass buildings presents a unique challenge and opportunity to advance the market for emerging, smart, dynamic window and dimmable daylighting control technologies (). A prototype dynamic glazing system was developed and tested at ITC-CNR; it is aimed at actively responding to the external environmental loads. Both an experimental campaign and analyses by theoretical models were carried out, aimed at evaluating the possible configurations depending on different weather conditions in several possible places. Therefore, the analytical models of the building-plant system were defined by using a dynamic energy simulation software (EnergyPlus). The variables that determine the system performance, also influenced by the boundary conditions, were analysed, such as U- and g-value; they concern both the morphology of the envelope system, such as dimensions, shading and glazing type, gap airflow thickness, in-gap airflow rate, and management, in terms of control algorithm parameters tuning fan and shading systems, as a function of the weather conditions. The configuration able to provide the best performances was finally identified by also assessing such performances, integrating the dynamic system in several building types and under different weather conditions. The dynamic envelope system prototype has become a commercial product with some applications in facade systems, curtain walls and windows. The paper describes the methodological approach to prototype development and the main results obtained, including simulations of possible applications on
Dynamic-Type Ice Thermal Storage Systems
NASA Astrophysics Data System (ADS)
Ohira, Akiyoshi
This paper deals with reviews for research and development of a dynamic-type ice thermal storage system. This system has three main features. First, the ice thermal storage tank and the ice generator are separate. Second, ice is transported to the tank from the ice generator by water or air. Third, the ice making and melting processes are operated at the same time. Outlet water temperature from the dynamic-type ice thermal storage tank remains low for a longer time. In this paper, dynamic-Type ice thermal storage systems are divided into three parts: the ice making part, the ice transport part, and the cold energy release part. Each part is reviewed separately.
Geometric phases in discrete dynamical systems
NASA Astrophysics Data System (ADS)
Cartwright, Julyan H. E.; Piro, Nicolas; Piro, Oreste; Tuval, Idan
2016-10-01
In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their parameters, we consider discrete versions of adiabatically-rotated rotators. Parallelling the studies in continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number of the system. For the discrete version of the rotated rotator considered by Berry, the rotated standard map, we further explore this connection as well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent.
Uncertain dynamical systems: A differential game approach
NASA Technical Reports Server (NTRS)
Gutman, S.
1976-01-01
A class of dynamical systems in a conflict situation is formulated and discussed, and the formulation is applied to the study of an important class of systems in the presence of uncertainty. The uncertainty is deterministic and the only assumption is that its value belongs to a known compact set. Asymptotic stability is fully discussed with application to variable structure and model reference control systems.
Spectral monitoring of power system dynamic performances
Ostojic, D.R. . School of Electrical Engineering)
1993-05-01
This paper presents a nonparametric method for the direct spectral analysis of power system dynamic performances after a disturbance. The developed monitoring technique uses a signal processing procedure for determining the time-frequency distribution of energy of electromechanical oscillations. The quantities obtained from this distribution enable a robust monitoring of frequency, damping, energy content and interaction mechanisms of system oscillatory modes. The performances of the proposed method are studied on the example of 10-machine, 39-bus test system.
Montani, Fernando; Rosso, Osvaldo A; Matias, Fernanda S; Bressler, Steven L; Mirasso, Claudio R
2015-12-13
The phenomenon of synchronization between two or more areas of the brain coupled asymmetrically is a relevant issue for understanding mechanisms and functions within the cerebral cortex. Anticipated synchronization (AS) refers to the situation in which the receiver system synchronizes to the future dynamics of the sender system while the intuitively expected delayed synchronization (DS) represents exactly the opposite case. AS and DS are investigated in the context of causal information formalism. More specifically, we use a multi-scale symbolic information-theory approach for discriminating the time delay displayed between two areas of the brain when they exchange information.
Nonlinear Dynamics, Chaotic and Complex Systems
NASA Astrophysics Data System (ADS)
Infeld, E.; Zelazny, R.; Galkowski, A.
2011-04-01
Part I. Dynamic Systems Bifurcation Theory and Chaos: 1. Chaos in random dynamical systems V. M. Gunldach; 2. Controlling chaos using embedded unstable periodic orbits: the problem of optimal periodic orbits B. R. Hunt and E. Ott; 3. Chaotic tracer dynamics in open hydrodynamical flows G. Karolyi, A. Pentek, T. Tel and Z. Toroczkai; 4. Homoclinic chaos L. P. Shilnikov; Part II. Spatially Extended Systems: 5. Hydrodynamics of relativistic probability flows I. Bialynicki-Birula; 6. Waves in ionic reaction-diffusion-migration systems P. Hasal, V. Nevoral, I. Schreiber, H. Sevcikova, D. Snita, and M. Marek; 7. Anomalous scaling in turbulence: a field theoretical approach V. Lvov and I. Procaccia; 8. Abelian sandpile cellular automata M. Markosova; 9. Transport in an incompletely chaotic magnetic field F. Spineanu; Part III. Dynamical Chaos Quantum Physics and Foundations Of Statistical Mechanics: 10. Non-equilibrium statistical mechanics and ergodic theory L. A. Bunimovich; 11. Pseudochaos in statistical physics B. Chirikov; 12. Foundations of non-equilibrium statistical mechanics J. P. Dougherty; 13. Thermomechanical particle simulations W. G. Hoover, H. A. Posch, C. H. Dellago, O. Kum, C. G. Hoover, A. J. De Groot and B. L. Holian; 14. Quantum dynamics on a Markov background and irreversibility B. Pavlov; 15. Time chaos and the laws of nature I. Prigogine and D. J. Driebe; 16. Evolutionary Q and cognitive systems: dynamic entropies and predictability of evolutionary processes W. Ebeling; 17. Spatiotemporal chaos information processing in neural networks H. Szu; 18. Phase transitions and learning in neural networks C. Van den Broeck; 19. Synthesis of chaos A. Vanecek and S. Celikovsky; 20. Computational complexity of continuous problems H. Wozniakowski; Part IV. Complex Systems As An Interface Between Natural Sciences and Environmental Social and Economic Sciences: 21. Stochastic differential geometry in finance studies V. G. Makhankov; Part V. Conference Banquet
Quantum Simulation for Open-System Dynamics
NASA Astrophysics Data System (ADS)
Wang, Dong-Sheng; de Oliveira, Marcos Cesar; Berry, Dominic; Sanders, Barry
2013-03-01
Simulations are essential for predicting and explaining properties of physical and mathematical systems yet so far have been restricted to classical and closed quantum systems. Although forays have been made into open-system quantum simulation, the strict algorithmic aspect has not been explored yet is necessary to account fully for resource consumption to deliver bounded-error answers to computational questions. An open-system quantum simulator would encompass classical and closed-system simulation and also solve outstanding problems concerning, e.g. dynamical phase transitions in non-equilibrium systems, establishing long-range order via dissipation, verifying the simulatability of open-system dynamics on a quantum Turing machine. We construct an efficient autonomous algorithm for designing an efficient quantum circuit to simulate many-body open-system dynamics described by a local Hamiltonian plus decoherence due to separate baths for each particle. The execution time and number of gates for the quantum simulator both scale polynomially with the system size. DSW funded by USARO. MCO funded by AITF and Brazilian agencies CNPq and FAPESP through Instituto Nacional de Ciencia e Tecnologia-Informacao Quantica (INCT-IQ). DWB funded by ARC Future Fellowship (FT100100761). BCS funded by AITF, CIFAR, NSERC and USARO.
Unified optical symbolic substitution processor
NASA Astrophysics Data System (ADS)
Casasent, David P.
1990-07-01
Symbolic substitution operations can be realized optically on a correlator. This is a very attractive and efficient architecture for symbolic substitution. It allows parallel multichannel realization with a fixed set of filters (on film or easily realized on low space bandwidth product spatial light modulators) using space and frequency-multiplexing or sequential filters. All basic logic, numeric and morphological image processing functions can be achieved by symbolic substitution. Moreover, all operations are possible on one multifunctional optical processor. Morphological operations are felt to be essential for ATR and pattern recognition preprocessing in clutter. They greatly improve the role for optics by allowing the same optical architecture to be used for low, medium and high level vision.
Global dynamic modeling of a transmission system
NASA Technical Reports Server (NTRS)
Choy, F. K.; Qian, W.
1993-01-01
The work performed on global dynamic simulation and noise correlation of gear transmission systems at the University of Akron is outlined. The objective is to develop a comprehensive procedure to simulate the dynamics of the gear transmission system coupled with the effects of gear box vibrations. The developed numerical model is benchmarked with results from experimental tests at NASA Lewis Research Center. The modal synthesis approach is used to develop the global transient vibration analysis procedure used in the model. Modal dynamic characteristics of the rotor-gear-bearing system are calculated by the matrix transfer method while those of the gear box are evaluated by the finite element method (NASTRAN). A three-dimensional, axial-lateral coupled bearing model is used to couple the rotor vibrations with the gear box motion. The vibrations between the individual rotor systems are coupled through the nonlinear gear mesh interactions. The global equations of motion are solved in modal coordinates and the transient vibration of the system is evaluated by a variable time-stepping integration scheme. The relationship between housing vibration and resulting noise of the gear transmission system is generated by linear transfer functions using experimental data. A nonlinear relationship of the noise components to the fundamental mesh frequency is developed using the hypercoherence function. The numerically simulated vibrations and predicted noise of the gear transmission system are compared with the experimental results from the gear noise test rig at NASA Lewis Research Center. Results of the comparison indicate that the global dynamic model developed can accurately simulate the dynamics of a gear transmission system.
Global dynamic modeling of a transmission system
NASA Astrophysics Data System (ADS)
Choy, F. K.; Qian, W.
1993-04-01
The work performed on global dynamic simulation and noise correlation of gear transmission systems at the University of Akron is outlined. The objective is to develop a comprehensive procedure to simulate the dynamics of the gear transmission system coupled with the effects of gear box vibrations. The developed numerical model is benchmarked with results from experimental tests at NASA Lewis Research Center. The modal synthesis approach is used to develop the global transient vibration analysis procedure used in the model. Modal dynamic characteristics of the rotor-gear-bearing system are calculated by the matrix transfer method while those of the gear box are evaluated by the finite element method (NASTRAN). A three-dimensional, axial-lateral coupled bearing model is used to couple the rotor vibrations with the gear box motion. The vibrations between the individual rotor systems are coupled through the nonlinear gear mesh interactions. The global equations of motion are solved in modal coordinates and the transient vibration of the system is evaluated by a variable time-stepping integration scheme. The relationship between housing vibration and resulting noise of the gear transmission system is generated by linear transfer functions using experimental data. A nonlinear relationship of the noise components to the fundamental mesh frequency is developed using the hypercoherence function. The numerically simulated vibrations and predicted noise of the gear transmission system are compared with the experimental results from the gear noise test rig at NASA Lewis Research Center. Results of the comparison indicate that the global dynamic model developed can accurately simulate the dynamics of a gear transmission system.
Robust control synthesis for uncertain dynamical systems
NASA Technical Reports Server (NTRS)
Byun, Kuk-Whan; Wie, Bong; Sunkel, John
1989-01-01
This paper presents robust control synthesis techniques for uncertain dynamical systems subject to structured parameter perturbation. Both QFT (quantitative feedback theory) and H-infinity control synthesis techniques are investigated. Although most H-infinity-related control techniques are not concerned with the structured parameter perturbation, a new way of incorporating the parameter uncertainty in the robust H-infinity control design is presented. A generic model of uncertain dynamical systems is used to illustrate the design methodologies investigated in this paper. It is shown that, for a certain noncolocated structural control problem, use of both techniques results in nonminimum phase compensation.
Very Large System Dynamics Models - Lessons Learned
Jacob J. Jacobson; Leonard Malczynski
2008-10-01
This paper provides lessons learned from developing several large system dynamics (SD) models. System dynamics modeling practice emphasize the need to keep models small so that they are manageable and understandable. This practice is generally reasonable and prudent; however, there are times that large SD models are necessary. This paper outlines two large SD projects that were done at two Department of Energy National Laboratories, the Idaho National Laboratory and Sandia National Laboratories. This paper summarizes the models and then discusses some of the valuable lessons learned during these two modeling efforts.
FAST TRACK COMMUNICATION: Complexified dynamical systems
NASA Astrophysics Data System (ADS)
Bender, Carl M.; Holm, Darryl D.; Hook, Daniel W.
2007-08-01
Many dynamical systems, such as the Lotka-Volterra predator-prey model and the Euler equations for the free rotation of a rigid body, are {{\\cal P}}{{\\cal T}} symmetric. The standard and well-known real solutions to such dynamical systems constitute an infinitessimal subclass of the full set of complex solutions. This paper examines a subset of the complex solutions that contains the real solutions, namely those having {{\\cal P}}{{\\cal T}} symmetry. The condition of {{\\cal P}}{{\\cal T}} symmetry selects out complex solutions that are periodic.
Dynamics of biosonar systems in Horseshoe bats
NASA Astrophysics Data System (ADS)
Müller, R.
2015-12-01
Horseshoe bats have an active ultrasonic sonar system that allows the animals to navigate and hunt prey in structure-rich natural environments. The physical components of this biosonar system contain an unusual dynamics that could play a key role in achieving the animals' superior sensory performance. Horseshoe bat biosonar employs elaborate baffle shapes to diffract the outgoing and incoming ultrasonic wave packets; ultrasound is radiated from nostrils that are surrounded by noseleaves and received by large outer ears. Noseleaves and pinnae can be actuated while ultrasonic diffraction takes place. On the emission side, two noseleaf parts, the anterior leaf and the sella, have been shown to be in motion in synchrony with sound emission. On the reception side, the pinnae have been shown to change their shapes by up to 20% of their total length within ˜100 milliseconds. Due to these shape changes, diffraction of the incoming and outgoing waves is turned into a dynamic physical process. The dynamics of the diffraction process results in likewise dynamic device characteristics. If this additional dynamic dimension was found to enhance the encoding of sensory information substantially, horseshoe bat biosonar could be a model for the use of dynamic physical processes in sensing technology.
ERIC Educational Resources Information Center
Wilkinson, Krista M.; Snell, Julie
2011-01-01
Purpose: Communication about feelings is a core element of human interaction. Aided augmentative and alternative communication systems must therefore include symbols representing these concepts. The symbols must be readily distinguishable in order for users to communicate effectively. However, emotions are represented within most systems by…
Microfluidic systems for single DNA dynamics
Mai, Danielle J.; Brockman, Christopher
2012-01-01
Recent advances in microfluidics have enabled the molecular-level study of polymer dynamics using single DNA chains. Single polymer studies based on fluorescence microscopy allow for the direct observation of non-equilibrium polymer conformations and dynamical phenomena such as diffusion, relaxation, and molecular stretching pathways in flow. Microfluidic devices have enabled the precise control of model flow fields to study the non-equilibrium dynamics of soft materials, with device geometries including curved channels, cross-slots, and microfabricated obstacles and structures. This review explores recent microfluidic systems that have advanced the study of single polymer dynamics, while identifying new directions in the field that will further elucidate the relationship between polymer microstructure and bulk rheological properties. PMID:23139700
The investigation of tethered satellite system dynamics
NASA Technical Reports Server (NTRS)
Lorenzini, E.
1985-01-01
A progress report is presented that deals with three major topics related to Tethered Satellite System Dynamics. The SAO rotational dynamics computer code was updated. The program is now suitable to deal with inclined orbits. The output has been also modified in order to show the satellite Euler angles referred to the rotating orbital frame. The three-dimensional high resolution computer program SLACK3 was developed. The code simulates the three-dimensional dynamics of a tether going slack taking into account the effect produced by boom rotations. Preliminary simulations on the three-dimensional dynamics of a recoiling slack tether are shown in this report. A program to evaluate the electric potential around a severed tether is immersed in a plasma. The potential is computed on a three-dimensional grid axially symmetric with respect to the tether longitudinal axis. The electric potential variations due to the plasma are presently under investigation.
Constraint Embedding Technique for Multibody System Dynamics
NASA Technical Reports Server (NTRS)
Woo, Simon S.; Cheng, Michael K.
2011-01-01
Multibody dynamics play a critical role in simulation testbeds for space missions. There has been a considerable interest in the development of efficient computational algorithms for solving the dynamics of multibody systems. Mass matrix factorization and inversion techniques and the O(N) class of forward dynamics algorithms developed using a spatial operator algebra stand out as important breakthrough on this front. Techniques such as these provide the efficient algorithms and methods for the application and implementation of such multibody dynamics models. However, these methods are limited only to tree-topology multibody systems. Closed-chain topology systems require different techniques that are not as efficient or as broad as those for tree-topology systems. The closed-chain forward dynamics approach consists of treating the closed-chain topology as a tree-topology system subject to additional closure constraints. The resulting forward dynamics solution consists of: (a) ignoring the closure constraints and using the O(N) algorithm to solve for the free unconstrained accelerations for the system; (b) using the tree-topology solution to compute a correction force to enforce the closure constraints; and (c) correcting the unconstrained accelerations with correction accelerations resulting from the correction forces. This constraint-embedding technique shows how to use direct embedding to eliminate local closure-loops in the system and effectively convert the system back to a tree-topology system. At this point, standard tree-topology techniques can be brought to bear on the problem. The approach uses a spatial operator algebra approach to formulating the equations of motion. The operators are block-partitioned around the local body subgroups to convert them into aggregate bodies. Mass matrix operator factorization and inversion techniques are applied to the reformulated tree-topology system. Thus in essence, the new technique allows conversion of a system with
Cardea: Dynamic Access Control in Distributed Systems
NASA Technical Reports Server (NTRS)
Lepro, Rebekah
2004-01-01
Modern authorization systems span domains of administration, rely on many different authentication sources, and manage complex attributes as part of the authorization process. This . paper presents Cardea, a distributed system that facilitates dynamic access control, as a valuable piece of an inter-operable authorization framework. First, the authorization model employed in Cardea and its functionality goals are examined. Next, critical features of the system architecture and its handling of the authorization process are then examined. Then the S A M L and XACML standards, as incorporated into the system, are analyzed. Finally, the future directions of this project are outlined and connection points with general components of an authorization system are highlighted.
Operationalizing sustainability in urban coastal systems: a system dynamics analysis.
Mavrommati, Georgia; Bithas, Kostas; Panayiotidis, Panayiotis
2013-12-15
We propose a system dynamics approach for Ecologically Sustainable Development (ESD) in urban coastal systems. A systematic analysis based on theoretical considerations, policy analysis and experts' knowledge is followed in order to define the concept of ESD. The principles underlying ESD feed the development of a System Dynamics Model (SDM) that connects the pollutant loads produced by urban systems' socioeconomic activities with the ecological condition of the coastal ecosystem that it is delineated in operational terms through key biological elements defined by the EU Water Framework Directive. The receiving waters of the Athens Metropolitan area, which bears the elements of typical high population density Mediterranean coastal city but which currently has also new dynamics induced by the ongoing financial crisis, are used as an experimental system for testing a system dynamics approach to apply the concept of ESD. Systems' thinking is employed to represent the complex relationships among the components of the system. Interconnections and dependencies that determine the potentials for achieving ESD are revealed. The proposed system dynamics analysis can facilitate decision makers to define paths of development that comply with the principles of ESD. PMID:24200010
Made to Symbolize: Intentionality and Children's Early Understanding of Symbols
ERIC Educational Resources Information Center
Sharon, Tanya
2005-01-01
This experiment tested whether children's insight into a difficult symbolic relation could be increased by explicitly emphasizing the intentionality surrounding the artifact's creation and use. Specifically, I explicitly emphasized (a) the adult's intent to communicate information via the artifact and (b) the artifact's intentional origins and…
Solar dynamic power systems for space station
NASA Technical Reports Server (NTRS)
Irvine, Thomas B.; Nall, Marsha M.; Seidel, Robert C.
1986-01-01
The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied.
A dynamic 3D foot reconstruction system.
Thabet, Ali K; Trucco, Emanuele; Salvi, Joaquim; Wang, Weijie; Abboud, Rami J
2011-01-01
Foot problems are varied and range from simple disorders through to complex diseases and joint deformities. Wherever possible, the use of insoles, or orthoses, is preferred over surgery. Current insole design techniques are based on static measurements of the foot, despite the fact that orthoses are prevalently used in dynamic conditions while walking or running. This paper presents the design and implementation of a structured-light prototype system providing dense three dimensional (3D) measurements of the foot in motion, and its use to show that foot measurements in dynamic conditions differ significantly from their static counterparts. The input to the system is a video sequence of a foot during a single step; the output is a 3D reconstruction of the plantar surface of the foot for each frame of the input. Engineering and clinical tests were carried out for the validation of the system. The accuracy of the system was found to be 0.34 mm with planar test objects. In tests with real feet, the system proved repeatable, with reconstruction differences between trials one week apart averaging 2.44 mm (static case) and 2.81 mm (dynamic case). Furthermore, a study was performed to compare the effective length of the foot between static and dynamic reconstructions using the 4D system. Results showed an average increase of 9 mm for the dynamic case. This increase is substantial for orthotics design, cannot be captured by a static system, and its subject-specific measurement is crucial for the design of effective foot orthoses.
Constrained multibody system dynamics - An automated approach
NASA Astrophysics Data System (ADS)
Kamman, J. W.; Huston, R. L.
The governing equations for constrained multibody systems are formulated in a manner suitable for their automated, numerical development and solution. Specifically, the 'closed loop' problem of multibody chain systems is addressed. The governing equations are developed by modifying dynamical equations obtained from Lagrange's form of d'Alembert's principle. This modification, which is based upon a solution of the constraint equations obtained through a 'zero eigenvalues theorem', is, in effect, a contraction of the dynamical equations. It is observed that, for a system with n generalized coordinates and m constraint equations, the coefficients in the constraint equations may be viewed as 'constraint vectors' in n-dimensional space. Then, in this setting the system itself is free to move in the n-m directions which are 'orthogonal' to the constraint vectors.
Design tools for complex dynamic security systems.
Byrne, Raymond Harry; Rigdon, James Brian; Rohrer, Brandon Robinson; Laguna, Glenn A.; Robinett, Rush D. III; Groom, Kenneth Neal; Wilson, David Gerald; Bickerstaff, Robert J.; Harrington, John J.
2007-01-01
The development of tools for complex dynamic security systems is not a straight forward engineering task but, rather, a scientific task where discovery of new scientific principles and math is necessary. For years, scientists have observed complex behavior but have had difficulty understanding it. Prominent examples include: insect colony organization, the stock market, molecular interactions, fractals, and emergent behavior. Engineering such systems will be an even greater challenge. This report explores four tools for engineered complex dynamic security systems: Partially Observable Markov Decision Process, Percolation Theory, Graph Theory, and Exergy/Entropy Theory. Additionally, enabling hardware technology for next generation security systems are described: a 100 node wireless sensor network, unmanned ground vehicle and unmanned aerial vehicle.
Collisional and Dynamical Evolution of Planetary Systems
NASA Technical Reports Server (NTRS)
Weidenschilling, Stuart J.
2004-01-01
Senior Scientst S. J. Weidenschilling presents his final administrative report in the research program entitled "Collisional and Dynamical Evolution of Planetary Systems," on which he was the Principal Investigator. This research program produced the following publications: 1) "Jumping Jupiters" in binary star systems. F. Marzari, S. J. Weidenschilling, M. Barbieri and V. Granata. Astrophys. J., in press, 2005; 2) Formation of the cores of the outer planets. To appear in "The Outer Planets" (R. Kallenbach, ED), ISSI Conference Proceedings (Space Sci. Rev.), in press, 2005; 3) Accretion dynamics and timescales: Relation to chondrites. S. J. Weidenschilling and J. Cuzzi. In Meteorites and the Early Solar System LI (D. Lauretta et al., Eds.), Univ. of Arizona Press, 2005; 4) Asteroidal heating and thermal stratification of the asteroid belt. A. Ghosh, S. J.Weidenschilling, H. Y. McSween, Jr. and A. Rubin. In Meteorites and the Early Solar System I1 (D. Lauretta et al., Eds.), Univ. of Arizona Press, 2005.
Dynamical Systems Perspective of Wolfram's Cellular Automata
NASA Astrophysics Data System (ADS)
Courbage, M.; Kamiński, B.
2013-01-01
Leon Chua, following Wolfram, devoted a big effort to understand deeply the wealth of complexity of the rules of all elementary one-dimensional cellular automata from the point of view of the nonlinear dynamicist. Here we complete this point of view by a dynamical system perspective, extending them to the limit of infinite number of sites.
Induced topological pressure for topological dynamical systems
Xing, Zhitao; Chen, Ercai
2015-02-15
In this paper, inspired by the article [J. Jaerisch et al., Stochastics Dyn. 14, 1350016, pp. 1-30 (2014)], we introduce the induced topological pressure for a topological dynamical system. In particular, we prove a variational principle for the induced topological pressure.
Final Report Computational Analysis of Dynamical Systems
Guckenheimer, John
2012-05-08
This is the final report for DOE Grant DE-FG02-93ER25164, initiated in 1993. This grant supported research of John Guckenheimer on computational analysis of dynamical systems. During that period, seventeen individuals received PhD degrees under the supervision of Guckenheimer and over fifty publications related to the grant were produced. This document contains copies of these publications.
Computational dynamics of acoustically driven microsphere systems.
Glosser, Connor; Piermarocchi, Carlo; Li, Jie; Dault, Dan; Shanker, B
2016-01-01
We propose a computational framework for the self-consistent dynamics of a microsphere system driven by a pulsed acoustic field in an ideal fluid. Our framework combines a molecular dynamics integrator describing the dynamics of the microsphere system with a time-dependent integral equation solver for the acoustic field that makes use of fields represented as surface expansions in spherical harmonic basis functions. The presented approach allows us to describe the interparticle interaction induced by the field as well as the dynamics of trapping in counter-propagating acoustic pulses. The integral equation formulation leads to equations of motion for the microspheres describing the effect of nondissipative drag forces. We show (1) that the field-induced interactions between the microspheres give rise to effective dipolar interactions, with effective dipoles defined by their velocities and (2) that the dominant effect of an ultrasound pulse through a cloud of microspheres gives rise mainly to a translation of the system, though we also observe both expansion and contraction of the cloud determined by the initial system geometry. PMID:26871188
Invariant of dynamical systems: A generalized entropy
Meson, A.M.; Vericat, F. |
1996-09-01
In this work the concept of entropy of a dynamical system, as given by Kolmogorov, is generalized in the sense of Tsallis. It is shown that this entropy is an isomorphism invariant, being complete for Bernoulli schemes. {copyright} {ital 1996 American Institute of Physics.}
Detection of abrupt changes in dynamic systems
NASA Technical Reports Server (NTRS)
Willsky, A. S.
1984-01-01
Some of the basic ideas associated with the detection of abrupt changes in dynamic systems are presented. Multiple filter-based techniques and residual-based method and the multiple model and generalized likelihood ratio methods are considered. Issues such as the effect of unknown onset time on algorithm complexity and structure and robustness to model uncertainty are discussed.
Computational dynamics of acoustically driven microsphere systems.
Glosser, Connor; Piermarocchi, Carlo; Li, Jie; Dault, Dan; Shanker, B
2016-01-01
We propose a computational framework for the self-consistent dynamics of a microsphere system driven by a pulsed acoustic field in an ideal fluid. Our framework combines a molecular dynamics integrator describing the dynamics of the microsphere system with a time-dependent integral equation solver for the acoustic field that makes use of fields represented as surface expansions in spherical harmonic basis functions. The presented approach allows us to describe the interparticle interaction induced by the field as well as the dynamics of trapping in counter-propagating acoustic pulses. The integral equation formulation leads to equations of motion for the microspheres describing the effect of nondissipative drag forces. We show (1) that the field-induced interactions between the microspheres give rise to effective dipolar interactions, with effective dipoles defined by their velocities and (2) that the dominant effect of an ultrasound pulse through a cloud of microspheres gives rise mainly to a translation of the system, though we also observe both expansion and contraction of the cloud determined by the initial system geometry.
A dissociation between symbolic number knowledge and analogue magnitude information.
Polk, T A; Reed, C L; Keenan, J M; Hogarth, P; Anderson, C A
2001-12-01
Semantic understanding of numbers and related concepts can be dissociated from rote knowledge of arithmetic facts. However, distinctions among different kinds of semantic representations related to numbers have not been fully explored. Working with numbers and arithmetic requires representing semantic information that is both analogue (e.g., the approximate magnitude of a number) and symbolic (e.g., what / means). In this article, the authors describe a patient (MC) who exhibits a dissociation between tasks that require symbolic number knowledge (e.g., knowledge of arithmetic symbols including numbers, knowledge of concepts related to numbers such as rounding) and tasks that require an analogue magnitude representation (e.g., comparing size or frequency). MC is impaired on a variety of tasks that require symbolic number knowledge, but her ability to represent and process analogue magnitude information is intact. Her deficit in symbolic number knowledge extends to a variety of concepts related to numbers (e.g., decimal points, Roman numerals, what a quartet is) but not to any other semantic categories that we have tested. These findings suggest that symbolic number knowledge is a functionally independent component of the number processing system, that it is category specific, and that it is anatomically and functionally distinct from magnitude representations. PMID:11748908
Diagnosis of dynamical systems with fluctuating parameters
NASA Astrophysics Data System (ADS)
Ruelle, D.
1987-09-01
The applicability of mathematical models of chaos to physical, biological, and economic systems is discussed. The fundamental principles of the ergodic approach to chaos are briefly reviewed, and it is pointed out that in some natural phenomena the time evolution has adiabatically fluctuating parameters. It is suggested that these phenomena may be analyzable even though they are not represented by autonomous dynamical systems. The kinds of results to be expected from such an analysis are considered.
Earth and ocean dynamics satellites and systems
NASA Technical Reports Server (NTRS)
Vonbun, F. O.
1975-01-01
An overview is presented of the present state of satellite and ground systems making observations of the dynamics of the solid earth and the oceans. Emphasis is placed on applications of space technology for practical use. Topics discussed include: satellite missions and results over the last two decades in the areas of earth gravity field, polar motions, earth tides, magnetic anomalies, and satellite-to-satellite tracking; laser ranging systems; development of the Very Long Baseline Interferometer; and Skylab radar altimeter data applications.
Automated Design of Complex Dynamic Systems
Hermans, Michiel; Schrauwen, Benjamin; Bienstman, Peter; Dambre, Joni
2014-01-01
Several fields of study are concerned with uniting the concept of computation with that of the design of physical systems. For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear dynamics to achieve more efficient signal processing. The underlying goal of these and similar research efforts is to internalize a large part of the necessary computations within the physical system itself by exploiting its inherent non-linear dynamics. This, however, often requires the optimization of large numbers of system parameters, related to both the system's structure as well as its material properties. In addition, many of these parameters are subject to fabrication variability or to variations through time. In this paper we apply a machine learning algorithm to optimize physical dynamic systems. We show that such algorithms, which are normally applied on abstract computational entities, can be extended to the field of differential equations and used to optimize an associated set of parameters which determine their behavior. We show that machine learning training methodologies are highly useful in designing robust systems, and we provide a set of both simple and complex examples using models of physical dynamical systems. Interestingly, the derived optimization method is intimately related to direct collocation a method known in the field of optimal control. Our work suggests that the application domains of both machine learning and optimal control have a largely unexplored overlapping area which envelopes a novel design methodology of smart and highly complex physical systems. PMID:24497969
Dynamic Analysis of Nuclear Energy System Strategies
Den Durpel, Luc Van
2004-06-17
DANESS is an integrated process model for nuclear energy systems allowing the simulation of multiple reactors and fuel cycles in a continuously changing nuclear reactor park configuration. The model is energy demand driven and simulates all nuclear fuel cycle facilites, up to 10 reactors and fuels. Reactor and fuel cycle facility history are traced and the cost of generating energy is calculated per reactor and for total nuclear energy system. The DANESS model aims at performing dynamic systems analysis of nuclear energy development used for integrated analysis of development paths for nuclear energy, parameter scoping for new nuclear energy systems, economic analysis of nuclear energy, government role analysis, and education.
Nonlinear dynamic macromodeling techniques for audio systems
NASA Astrophysics Data System (ADS)
Ogrodzki, Jan; Bieńkowski, Piotr
2015-09-01
This paper develops a modelling method and a models identification technique for the nonlinear dynamic audio systems. Identification is performed by means of a behavioral approach based on a polynomial approximation. This approach makes use of Discrete Fourier Transform and Harmonic Balance Method. A model of an audio system is first created and identified and then it is simulated in real time using an algorithm of low computational complexity. The algorithm consists in real time emulation of the system response rather than in simulation of the system itself. The proposed software is written in Python language using object oriented programming techniques. The code is optimized for a multithreads environment.
Stability precision dynamic testing system on artillery
NASA Astrophysics Data System (ADS)
Wang, Chunyan; Li, Bo
2014-12-01
Dynamic feature of Weapon equipments is one of important performance index for evaluating the performance of the whole weapon system. The construction of target range in our country in fire control dynamic testing is relatively backward; therefore, it has greatly influenced the evaluation on the fire control system. In order to solve this problem, it's urgent to develop a new testing instrument so as to adjust to the armament research process and promote weapon system working more efficiently and thereby meeting the needs of modernization in national defense. This paper proposes a new measure which is used to test the stability precision of the fire control system, and it is installed on the moving base. Using the method, we develop a testing system which can test the stability precision of the fire control system and achieve a high precision results after testing. The innovation of the system is we can receive the image not only by CCD, but our eyes. It also adopts digital image-forming and image processing technique for real-time measurement and storing of the target information; it simultaneously adopts the method adjusting the platform and the corresponding fixture mounted on a sample to measure the stable precision and the precision of corner of stabilizator. In this paper, we make a description on the construction of the system and the idea of the designing of the optical system. Finally, we introduce the actual application of the system and testing results.
Bütschli dynamic droplet system.
Armstrong, Rachel; Hanczyc, Martin
2013-01-01
Dynamical oil-water systems such as droplets display lifelike properties and may lend themselves to chemical programming to perform useful work, specifically with respect to the built environment. We present Bütschli water-in-oil droplets as a model for further investigation into the development of a technology with living properties. Otto Bütschli first described the system in 1898, when he used alkaline water droplets in olive oil to initiate a saponification reaction. This simple recipe produced structures that moved and exhibited characteristics that resembled, at least superficially, the amoeba. We reconstructed the Bütschli system and observed its life span under a light microscope, observing chemical patterns and droplet behaviors in nearly three hundred replicate experiments. Self-organizing patterns were observed, and during this dynamic, embodied phase the droplets provided a means of introducing temporal and spatial order in the system with the potential for chemical programmability. The authors propose that the discrete formation of dynamic droplets, characterized by their lifelike behavior patterns, during a variable window of time (from 30 s to 30 min after the addition of alkaline water to the oil phase), qualify this system as an example of living technology. The analysis of the Bütschli droplets suggests that a set of conditions may precede the emergence of lifelike characteristics and exemplifies the richness of this rudimentary chemical system, not only for artificial life investigations but also for possible real-world applications in architectural practice. PMID:23834593
Symbolic Representation of Probabilistic Worlds
ERIC Educational Resources Information Center
Feldman, Jacob
2012-01-01
Symbolic representation of environmental variables is a ubiquitous and often debated component of cognitive science. Yet notwithstanding centuries of philosophical discussion, the efficacy, scope, and validity of such representation has rarely been given direct consideration from a mathematical point of view. This paper introduces a quantitative…
BASIN: Beowulf Analysis Symbolic INterface
NASA Astrophysics Data System (ADS)
Vesperini, Enrico; Goldberg, David M.; McMillan, Stephen L. W.; Dura, James; Jones, Douglas
2013-08-01
BASIN (Beowulf Analysis Symbolic INterface) is a flexible, integrated suite of tools for multiuser parallel data analysis and visualization that allows researchers to harness the power of Beowulf PC clusters and multi-processor machines without necessarily being experts in parallel programming. It also includes general tools for data distribution and parallel operations on distributed data for developing libraries for specific tasks.
Dream Symbol or Dream Process?
ERIC Educational Resources Information Center
Himelstein, Philip
1984-01-01
Discusses the relationship of the symbolic content of dreams to the theory of the dream in psychoanalysis and Gestalt therapy. Points out that the utility of the dream depends upon the techniques of the therapist and not on the validity of the underlying theory of the dream. (LLL)
Organizational Commitment as Symbolic Process.
ERIC Educational Resources Information Center
Larkey, Linda; Morrill, Calvin
1995-01-01
Offers a processual (sic) approach suited to the complex nature of organizational commitment during times of radical change. Emphasizes commitment as communication processes that are integrally tied to the creation of organizational cultures, involve identification via symbolic processes, and encompass various degrees of linkages between…
Allegories and Symbols in Counseling
ERIC Educational Resources Information Center
Alvarado, Victor I.; Cavazos, Lionel J.
2007-01-01
This manuscript describes how counselors can facilitate self-awareness in clients and counselors-in-training through the use of metaphors. The use of metaphors and others symbols provide a creative, non-intrusive, and non-confrontational approach to counseling. Examples of stories and fables used during counseling sessions and instructional…
Symbolic Power, Robotting, and Surveilling
ERIC Educational Resources Information Center
Skovsmose, Ole
2012-01-01
Symbolic power is discussed with reference to mathematics and formal languages. Two distinctions are crucial for establishing mechanical and formal perspectives: one between appearance and reality, and one between sense and reference. These distinctions include a nomination of what to consider primary and secondary. They establish the grammatical…
Online reinforcement learning for dynamic multimedia systems.
Mastronarde, Nicholas; van der Schaar, Mihaela
2010-02-01
In our previous work, we proposed a systematic cross-layer framework for dynamic multimedia systems, which allows each layer to make autonomous and foresighted decisions that maximize the system's long-term performance, while meeting the application's real-time delay constraints. The proposed solution solved the cross-layer optimization offline, under the assumption that the multimedia system's probabilistic dynamics were known a priori, by modeling the system as a layered Markov decision process. In practice, however, these dynamics are unknown a priori and, therefore, must be learned online. In this paper, we address this problem by allowing the multimedia system layers to learn, through repeated interactions with each other, to autonomously optimize the system's long-term performance at run-time. The two key challenges in this layered learning setting are: (i) each layer's learning performance is directly impacted by not only its own dynamics, but also by the learning processes of the other layers with which it interacts; and (ii) selecting a learning model that appropriately balances time-complexity (i.e., learning speed) with the multimedia system's limited memory and the multimedia application's real-time delay constraints. We propose two reinforcement learning algorithms for optimizing the system under different design constraints: the first algorithm solves the cross-layer optimization in a centralized manner and the second solves it in a decentralized manner. We analyze both algorithms in terms of their required computation, memory, and interlayer communication overheads. After noting that the proposed reinforcement learning algorithms learn too slowly, we introduce a complementary accelerated learning algorithm that exploits partial knowledge about the system's dynamics in order to dramatically improve the system's performance. In our experiments, we demonstrate that decentralized learning can perform equally as well as centralized learning, while
Nonlinear dynamical system approaches towards neural prosthesis
Torikai, Hiroyuki; Hashimoto, Sho
2011-04-19
An asynchronous discrete-state spiking neurons is a wired system of shift registers that can mimic nonlinear dynamics of an ODE-based neuron model. The control parameter of the neuron is the wiring pattern among the registers and thus they are suitable for on-chip learning. In this paper an asynchronous discrete-state spiking neuron is introduced and its typical nonlinear phenomena are demonstrated. Also, a learning algorithm for a set of neurons is presented and it is demonstrated that the algorithm enables the set of neurons to reconstruct nonlinear dynamics of another set of neurons with unknown parameter values. The learning function is validated by FPGA experiments.
Preparation of dynamic gravity testing system
NASA Astrophysics Data System (ADS)
Bowin, Carl
Bowin's interest at WHOI is to obtain the most accurate gravity and gravity gradient measurements possible. The Navy's interest is to have the most accurate navigation possible. Neither can have one without the other. Through Zarak Corporation, Bowin has proposed to the Navy Air System Command to develop a dynamic navigational gravity/gravity gradient (NAV/GRAV) system utilizing superconducting squid gravity and tensor gravity gradient sensors for high precision performance. The proposed system development incorporates that inter-dependency, not only to provide the best estimates of both, but also to provide estimates of the quality of the results obtained. Zarak is pursuing funds for the development of superconducting gravity and gravity gradient sensors. Such sensors, when available, will then be utilized in this palletized system for higher accuracy navigation, gravity and gravity gradient determination. It is desired that initial testing utilize Vibrating String Accelerometers (VSA) gravity sensors and readout systems available at WHOI. This way the development and testing of the NAV/GRAV system can proceed using the VSA sensors while the superconducting gravity sensors are being fabricated. Initial dynamic systems tests will be in a van vehicle for convenience and practicality. The system units will be palletized, and therefore they shall be easily transferable, and thus also be usable in aircraft and ships. It is planned that WHOI will have loan of prototype systems for about two months each year for earth research use.
Perspectives on Symbolic Leadership and Political Fragmentation in Sub-Saharan Africa.
ERIC Educational Resources Information Center
Schneider, Michael J.
In "The Symbolic Uses of Politics," Edelman presents the thesis that the symbolic output of a political system is a primary force in the development of the system's legitimacy. An examination of this thesis in the context of the political systems of several emerging nations in Sub-Saharan Africa reveals that it must be refined. Because the problem…
Symbolic Action in India: Gandhi's Nonverbal Persuasion
ERIC Educational Resources Information Center
Merriam, Allen H.
1975-01-01
Examines symbolic action as a method of exerting public influence nonverbally through nonviolent behavior. Discusses Gandhi's persuasive tactics including fasting, propaganda tours, silence, clothing and adoption of symbols. (MH)
The internal dynamics of international migration systems.
Waldorf, B
1996-04-01
"In this paper I provide a conceptualization of international migration networks, which can be used to identify and integrate the internal components of migration systems, and formalize the relationships in an analytic model of the internal network dynamic. With the use of the operationalized model, and microlevel and macrolevel data for guestworkers in Germany during the period 1970 to 1989, we can empirically test the relative influence of internal network variables versus external forces on the attraction of immigrants over time. The empirical results suggest that--as the system matures--network variables have an increasing impact on the attraction of immigrants, while the impact of economic factors declines. The research is concluded with a series of simulations that further highlight the internal dynamic of international migration systems."
Dynamic graph system for a semantic database
Mizell, David
2015-01-27
A method and system in a computer system for dynamically providing a graphical representation of a data store of entries via a matrix interface is disclosed. A dynamic graph system provides a matrix interface that exposes to an application program a graphical representation of data stored in a data store such as a semantic database storing triples. To the application program, the matrix interface represents the graph as a sparse adjacency matrix that is stored in compressed form. Each entry of the data store is considered to represent a link between nodes of the graph. Each entry has a first field and a second field identifying the nodes connected by the link and a third field with a value for the link that connects the identified nodes. The first, second, and third fields represent the rows, column, and elements of the adjacency matrix.
Stability threshold approach for complex dynamical systems
NASA Astrophysics Data System (ADS)
Klinshov, Vladimir V.; Nekorkin, Vladimir I.; Kurths, Jürgen
2016-01-01
A new measure to characterize the stability of complex dynamical systems against large perturbations is suggested, the stability threshold (ST). It quantifies the magnitude of the weakest perturbation capable of disrupting the system and switch it to an undesired dynamical regime. In the phase space, the ST corresponds to the ‘thinnest site’ of the attraction basin and therefore indicates the most ‘dangerous’ direction of perturbations. We introduce a computational algorithm for quantification of the ST and demonstrate that the suggested approach is effective and provides important insights. The generality of the obtained results defines their vast potential for application in such fields as engineering, neuroscience, power grids, Earth science and many others where the robustness of complex systems is studied.
Dynamic graph system for a semantic database
Mizell, David
2016-04-12
A method and system in a computer system for dynamically providing a graphical representation of a data store of entries via a matrix interface is disclosed. A dynamic graph system provides a matrix interface that exposes to an application program a graphical representation of data stored in a data store such as a semantic database storing triples. To the application program, the matrix interface represents the graph as a sparse adjacency matrix that is stored in compressed form. Each entry of the data store is considered to represent a link between nodes of the graph. Each entry has a first field and a second field identifying the nodes connected by the link and a third field with a value for the link that connects the identified nodes. The first, second, and third fields represent the rows, column, and elements of the adjacency matrix.
Keystroke Dynamics-Based Credential Hardening Systems
NASA Astrophysics Data System (ADS)
Bartlow, Nick; Cukic, Bojan
abstract Keystroke dynamics are becoming a well-known method for strengthening username- and password-based credential sets. The familiarity and ease of use of these traditional authentication schemes combined with the increased trustworthiness associated with biometrics makes them prime candidates for application in many web-based scenarios. Our keystroke dynamics system uses Breiman’s random forests algorithm to classify keystroke input sequences as genuine or imposter. The system is capable of operating at various points on a traditional ROC curve depending on application-specific security needs. As a username/password authentication scheme, our approach decreases the system penetration rate associated with compromised passwords up to 99.15%. Beyond presenting results demonstrating the credential hardening effect of our scheme, we look into the notion that a user’s familiarity to components of a credential set can non-trivially impact error rates.
The dynamical crossover in attractive colloidal systems.
Mallamace, Francesco; Corsaro, Carmelo; Stanley, H Eugene; Mallamace, Domenico; Chen, Sow-Hsin
2013-12-01
We study the dynamical arrest in an adhesive hard-sphere colloidal system. We examine a micellar suspension of the Pluronic-L64 surfactant in the temperature (T) and volume fraction (φ) phase diagram. According to mode-coupling theory (MCT), this system is characterized by a cusp-like singularity and two glassy phases: an attractive glass (AG) phase and a repulsive glass (RG) phase. The T - φ phase diagram of this system as confirmed by a previous series of scattering data also exhibits a Percolation Threshold (PT) line, a reentrant behavior (AG-liquid-RG), and a glass-to-glass transition. The AG phase can be generated out of the liquid phase by using T and φ as control parameters. We utilize viscosity and nuclear magnetic resonance (NMR) techniques. NMR data confirm all the characteristic properties of the colloidal system phase diagram and give evidence of the onset of a fractal-like percolating structure at a precise threshold. The MCT scaling laws used to study the shear viscosity as a function of φ and T show in both cases a fragile-to-strong liquid glass-forming dynamic crossover (FSC) located near the percolation threshold where the clustering process is fully developed. These results suggest a larger thermodynamic generality for this phenomenon, which is usually studied only as a function of the temperature. We also find that the critical values of the control parameters, coincident with the PT line, define the locus of the FSC. In the region between the FSC and the glass transition lines the system dynamics are dominated by clustering effects. We thus demonstrate that it is possible, using the conceptual framework provided by extended mode-coupling theory, to describe the way a system approaches dynamic arrest, taking into account both cage and hopping effects.
The dynamical crossover in attractive colloidal systems
Mallamace, Francesco; Corsaro, Carmelo; Stanley, H. Eugene; Mallamace, Domenico; Chen, Sow-Hsin
2013-12-07
We study the dynamical arrest in an adhesive hard-sphere colloidal system. We examine a micellar suspension of the Pluronic-L64 surfactant in the temperature (T) and volume fraction (ϕ) phase diagram. According to mode-coupling theory (MCT), this system is characterized by a cusp-like singularity and two glassy phases: an attractive glass (AG) phase and a repulsive glass (RG) phase. The T − ϕ phase diagram of this system as confirmed by a previous series of scattering data also exhibits a Percolation Threshold (PT) line, a reentrant behavior (AG-liquid-RG), and a glass-to-glass transition. The AG phase can be generated out of the liquid phase by using T and ϕ as control parameters. We utilize viscosity and nuclear magnetic resonance (NMR) techniques. NMR data confirm all the characteristic properties of the colloidal system phase diagram and give evidence of the onset of a fractal-like percolating structure at a precise threshold. The MCT scaling laws used to study the shear viscosity as a function of ϕ and T show in both cases a fragile-to-strong liquid glass-forming dynamic crossover (FSC) located near the percolation threshold where the clustering process is fully developed. These results suggest a larger thermodynamic generality for this phenomenon, which is usually studied only as a function of the temperature. We also find that the critical values of the control parameters, coincident with the PT line, define the locus of the FSC. In the region between the FSC and the glass transition lines the system dynamics are dominated by clustering effects. We thus demonstrate that it is possible, using the conceptual framework provided by extended mode-coupling theory, to describe the way a system approaches dynamic arrest, taking into account both cage and hopping effects.
Overcoming Dynamic Disturbances in Imaging Systems
NASA Technical Reports Server (NTRS)
Young, Eric W.; Dente, Gregory C.; Lyon, Richard G.; Chesters, Dennis; Gong, Qian
2000-01-01
We develop and discuss a methodology with the potential to yield a significant reduction in complexity, cost, and risk of space-borne optical systems in the presence of dynamic disturbances. More robust systems almost certainly will be a result as well. Many future space-based and ground-based optical systems will employ optical control systems to enhance imaging performance. The goal of the optical control subsystem is to determine the wavefront aberrations and remove them. Ideally reducing an aberrated image of the object under investigation to a sufficiently clear (usually diffraction-limited) image. Control will likely be distributed over several elements. These elements may include telescope primary segments, telescope secondary, telescope tertiary, deformable mirror(s), fine steering mirror(s), etc. The last two elements, in particular, may have to provide dynamic control. These control subsystems may become elaborate indeed. But robust system performance will require evaluation of the image quality over a substantial range and in a dynamic environment. Candidate systems for improvement in the Earth Sciences Enterprise could include next generation Landsat systems or atmospheric sensors for dynamic imaging of individual, severe storms. The technology developed here could have a substantial impact on the development of new systems in the Space Science Enterprise; such as the Next Generation Space Telescope(NGST) and its follow-on the Next NGST. Large Interferometric Systems of non-zero field, such as Planet Finder and Submillimeter Probe of the Evolution of Cosmic Structure, could benefit. These systems most likely will contain large, flexible optormechanical structures subject to dynamic disturbance. Furthermore, large systems for high resolution imaging of planets or the sun from space may also benefit. Tactical and Strategic Defense systems will need to image very small targets as well and could benefit from the technology developed here. We discuss a novel
Overcoming Dynamic Disturbances in Imaging Systems
NASA Technical Reports Server (NTRS)
Young, Eric W.; Dente, Gregory C.; Lyon, Richard G.; Chesters, Dennis; Gong, Qian
2000-01-01
We develop and discuss a methodology with the potential to yield a significant reduction in complexity, cost, and risk of space-borne optical systems in the presence of dynamic disturbances. More robust systems almost certainly will be a result as well. Many future space-based and ground-based optical systems will employ optical control systems to enhance imaging performance. The goal of the optical control subsystem is to determine the wavefront aberrations and remove them. Ideally reducing an aberrated image of the object under investigation to a sufficiently clear (usually diffraction-limited) image. Control will likely be distributed over several elements. These elements may include telescope primary segments, telescope secondary, telescope tertiary, deformable mirror(s), fine steering mirror(s), etc. The last two elements, in particular, may have to provide dynamic control. These control subsystems may become elaborate indeed. But robust system performance will require evaluation of the image quality over a substantial range and in a dynamic environment. Candidate systems for improvement in the Earth Sciences Enterprise could include next generation Landsat systems or atmospheric sensors for dynamic imaging of individual, severe storms. The technology developed here could have a substantial impact on the development of new systems in the Space Science Enterprise; such as the Next Generation Space Telescope(NGST) and its follow-on the Next NGST. Large Interferometric Systems of non-zero field, such as Planet Finder and Submillimeter Probe of the Evolution of Cosmic Structure, could benefit. These systems most likely will contain large, flexible optomechanical structures subject to dynamic disturbance. Furthermore, large systems for high resolution imaging of planets or the sun from space may also benefit. Tactical and Strategic Defense systems will need to image very small targets as well and could benefit from the technology developed here. We discuss a novel
Passive dynamic controllers for nonlinear mechanical systems
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Wu, Shih-Chin; Phan, Minh; Longman, Richard W.
1991-01-01
A methodology for model-independant controller design for controlling large angular motion of multi-body dynamic systems is outlined. The controlled system may consist of rigid and flexible components that undergo large rigid body motion and small elastic deformations. Control forces/torques are applied to drive the system and at the same time suppress the vibration due to flexibility of the components. The proposed controller consists of passive second-order systems which may be designed with little knowledge of the system parameter, even if the controlled system is nonlinear. Under rather general assumptions, the passive design assures that the closed loop system has guaranteed stability properties. Unlike positive real controller design, stabilization can be accomplished without direct velocity feedback. In addition, the second-order passive design allows dynamic feedback controllers with considerable freedom to tune for desired system response, and to avoid actuator saturation. After developing the basic mathematical formulation of the design methodology, simulation results are presented to illustrate the proposed approach to a flexible six-degree-of-freedom manipulator.
NASA Astrophysics Data System (ADS)
Tian, Bo; Li, Wei; Gao, Yi-Tian
The direct reduction method and computerized symbolic computation are extended to the Brusselator reaction-diffusion model, which describes a biochemical system and consists of two coupled nonlinear partial differential equations. New similarity reductions are obtained, which could be of biochemical interest. The resulting nonlinear ordinary differential equation in one dynamical variable cannot be transformed into any of the six standard forms which have solutions in terms of the Painlevé transcendents. Thus, the Brusselator model is not integrable according to the Painlevé conjecture.
ERIC Educational Resources Information Center
Chiariello, Michael S.
2007-01-01
Carved from cedar trees by the Native people of the Northwest Coast, totems are outgrowths of the region's aboriginal art forms. Originally an important part of the pot-latch ceremony--a feast with deep meaning to coastal First Nations--totem poles were once raised to represent a family clan, its kinship system, dignity, accomplishments, prestige,…
Dynamics of vaccination strategies via projected dynamical systems.
Cojocaru, Monica-Gabriela; Bauch, Chris T; Johnston, Matthew D
2007-07-01
Previous game theoretical analyses of vaccinating behaviour have underscored the strategic interaction between individuals attempting to maximise their health states, in situations where an individual's health state depends upon the vaccination decisions of others due to the presence of herd immunity. Here, we extend such analyses by applying the theories of variational inequalities (VI) and projected dynamical systems (PDS) to vaccination games. A PDS provides a dynamics that gives the conditions for existence, uniqueness and stability properties of Nash equilibria. In this paper, it is used to analyse the dynamics of vaccinating behaviour in a population consisting of distinct social groups, where each group has different perceptions of vaccine and disease risks. In particular, we study populations with two groups, where the size of one group is strictly larger than the size of the other group (a majority/minority population). We find that a population with a vaccine-inclined majority group and a vaccine-averse minority group exhibits higher average vaccine coverage than the corresponding homogeneous population, when the vaccine is perceived as being risky relative to the disease. Our model also reproduces a feature of real populations: In certain parameter regimes, it is possible to have a majority group adopting high vaccination rates and simultaneously a vaccine-averse minority group adopting low vaccination rates. Moreover, we find that minority groups will tend to exhibit more extreme changes in vaccinating behaviour for a given change in risk perception, in comparison to majority groups. These results emphasise the important role played by social heterogeneity in vaccination behaviour, while also highlighting the valuable role that can be played by PDS and VI in mathematical epidemiology.
Sound Symbolic Word Learning in Written Context
ERIC Educational Resources Information Center
Parault, Susan J.
2006-01-01
Sound symbolism is the notion that the relation between word sounds and word meaning is not arbitrary for all words, but rather there is a subset of words in the world's languages for which sounds and their symbols have some degree of correspondence. This research investigates sound symbolism as a possible means of gaining semantic knowledge of…
Electrical Words and Symbols: A Brief History
ERIC Educational Resources Information Center
Auty, Geoff
2012-01-01
Finding an old notice on a canal towpath inspired a consultation with colleagues and search for evidence in an old book to help people look into how the words and symbols used in the teaching of electricity have evolved, including the apparent oddity of the symbol "I" for current. It is easy to explain that people use the symbol "Q" for what is…
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Symbol (S). 29.1066 Section 29.1066 Agriculture... INSPECTION Standards Official Standard Grades for Flue-Cured Tobacco (u.s. Types 11, 12, 13, 14 and Foreign Type 92) § 29.1066 Symbol (S). As applied to Flue-cured tobacco the symbol (S) when used (a) as...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Symbol (S). 29.1066 Section 29.1066 Agriculture... INSPECTION Standards Official Standard Grades for Flue-Cured Tobacco (u.s. Types 11, 12, 13, 14 and Foreign Type 92) § 29.1066 Symbol (S). As applied to Flue-cured tobacco the symbol (S) when used (a) as...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Symbol (S). 29.1066 Section 29.1066 Agriculture... INSPECTION Standards Official Standard Grades for Flue-Cured Tobacco (u.s. Types 11, 12, 13, 14 and Foreign Type 92) § 29.1066 Symbol (S). As applied to Flue-cured tobacco the symbol (S) when used (a) as...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Symbol (S). 29.1066 Section 29.1066 Agriculture... INSPECTION Standards Official Standard Grades for Flue-Cured Tobacco (u.s. Types 11, 12, 13, 14 and Foreign Type 92) § 29.1066 Symbol (S). As applied to Flue-cured tobacco the symbol (S) when used (a) as...
7 CFR 29.3510 - Color symbols.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Color symbols. 29.3510 Section 29.3510 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3510 Color symbols. As applied to Dark Air-cured tobacco, color symbols are L—light...
7 CFR 29.2259 - Color symbols.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Color symbols. 29.2259 Section 29.2259 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2259 Color symbols. As applied to this type, color symbols are: L—light brown, F—medium brown, D—dark brown,...
7 CFR 29.2259 - Color symbols.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Color symbols. 29.2259 Section 29.2259 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2259 Color symbols. As applied to this type, color symbols are: L—light brown, F—medium brown, D—dark brown,...
7 CFR 29.3012 - Color symbols.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Color symbols. 29.3012 Section 29.3012 Agriculture... Color symbols. As applied to Burley, single color symbols are as follows: L—buff, F—tan, R—red, D—dark red, K—variegated, M—mixed color, V—greenish, and G—green....
7 CFR 29.2259 - Color symbols.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Color symbols. 29.2259 Section 29.2259 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2259 Color symbols. As applied to this type, color symbols are: L—light brown, F—medium brown, D—dark brown,...
7 CFR 29.3510 - Color symbols.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Color symbols. 29.3510 Section 29.3510 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3510 Color symbols. As applied to Dark Air-cured tobacco, color symbols are L—light...
7 CFR 29.3510 - Color symbols.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Color symbols. 29.3510 Section 29.3510 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3510 Color symbols. As applied to Dark Air-cured tobacco, color symbols are L—light...
7 CFR 29.3012 - Color symbols.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Color symbols. 29.3012 Section 29.3012 Agriculture... Color symbols. As applied to Burley, single color symbols are as follows: L—buff, F—tan, R—red, D—dark red, K—variegated, M—mixed color, V—greenish, and G—green....
7 CFR 29.3012 - Color symbols.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Color symbols. 29.3012 Section 29.3012 Agriculture... Color symbols. As applied to Burley, single color symbols are as follows: L—buff, F—tan, R—red, D—dark red, K—variegated, M—mixed color, V—greenish, and G—green....
7 CFR 29.2259 - Color symbols.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Color symbols. 29.2259 Section 29.2259 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2259 Color symbols. As applied to this type, color symbols are: L—light brown, F—medium brown, D—dark brown,...
7 CFR 29.3510 - Color symbols.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Color symbols. 29.3510 Section 29.3510 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3510 Color symbols. As applied to Dark Air-cured tobacco, color symbols are L—light...
7 CFR 29.3510 - Color symbols.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Color symbols. 29.3510 Section 29.3510 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3510 Color symbols. As applied to Dark Air-cured tobacco, color symbols are L—light...
7 CFR 29.3012 - Color symbols.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Color symbols. 29.3012 Section 29.3012 Agriculture... Color symbols. As applied to Burley, single color symbols are as follows: L—buff, F—tan, R—red, D—dark red, K—variegated, M—mixed color, V—greenish, and G—green....
7 CFR 29.3012 - Color symbols.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Color symbols. 29.3012 Section 29.3012 Agriculture... Color symbols. As applied to Burley, single color symbols are as follows: L—buff, F—tan, R—red, D—dark red, K—variegated, M—mixed color, V—greenish, and G—green....
7 CFR 29.2259 - Color symbols.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Color symbols. 29.2259 Section 29.2259 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2259 Color symbols. As applied to this type, color symbols are: L—light brown, F—medium brown, D—dark brown,...
Sound-Symbolism Boosts Novel Word Learning
ERIC Educational Resources Information Center
Lockwood, Gwilym; Dingemanse, Mark; Hagoort, Peter
2016-01-01
The existence of sound-symbolism (or a non-arbitrary link between form and meaning) is well-attested. However, sound-symbolism has mostly been investigated with nonwords in forced choice tasks, neither of which are representative of natural language. This study uses ideophones, which are naturally occurring sound-symbolic words that depict sensory…
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Symbol (S). 29.1066 Section 29.1066 Agriculture... INSPECTION Standards Official Standard Grades for Flue-Cured Tobacco (u.s. Types 11, 12, 13, 14 and Foreign Type 92) § 29.1066 Symbol (S). As applied to Flue-cured tobacco the symbol (S) when used (a) as...
A numerical method to study the dynamics of capillary fluid systems
NASA Astrophysics Data System (ADS)
Herrada, M. A.; Montanero, J. M.
2016-02-01
We propose a numerical approach to study both the nonlinear dynamics and linear stability of capillary fluid systems. In the nonlinear analysis, the time-dependent fluid region is mapped onto a fixed numerical domain through a coordinate transformation. The hydrodynamic equations are spatially discretized with the Chebyshev spectral collocation technique, while an implicit time advancement is performed using second-order backward finite differences. The resulting algebraic equations are solved with the iterative Newton-Raphson technique. The most novel aspect of the method is the fact that the elements of the Jacobian of the discretized system of equations are symbolic functions calculated before running the simulation. These functions are evaluated numerically in the Newton-Raphson iterations to find the solution at each time step, which reduces considerably the computing time. Besides, this numerical procedure can be easily adapted to solve the eigenvalue problem which determines the linear global modes of the capillary system. Therefore, both the nonlinear dynamics and the linear stability analysis can be conducted with essentially the same algorithm. We validate this numerical approach by studying the dynamics of a liquid bridge close to its minimum volume stability limit. The results are virtually the same as those obtained with other methods. The proposed approach proves to be much more computationally efficient than those other methods. Finally, we show the versatility of the method by calculating the linear global modes of a gravitational jet.
Network Physiology: How Organ Systems Dynamically Interact.
Bartsch, Ronny P; Liu, Kang K L; Bashan, Amir; Ivanov, Plamen Ch
2015-01-01
We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems. PMID:26555073
Network Physiology: How Organ Systems Dynamically Interact
Bartsch, Ronny P.; Liu, Kang K. L.; Bashan, Amir; Ivanov, Plamen Ch.
2015-01-01
We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems. PMID:26555073
Dynamics of Coulombic and gravitational periodic systems.
Kumar, Pankaj; Miller, Bruce N
2016-04-01
We study the dynamics and the phase-space structures of Coulombic and self-gravitating versions of the classical one-dimensional three-body system with periodic boundary conditions. We demonstrate that such a three-body system may be reduced isomorphically to a spatially periodic system of a single particle experiencing a two-dimensional potential on a rhombic plane. For the case of both Coulombic and gravitational versions, exact expressions of the Hamiltonian have been derived in rhombic coordinates. We simulate the phase-space evolution through an event-driven algorithm that utilizes analytic solutions to the equations of motion. The simulation results show that the motion exhibits chaotic, quasiperiodic, and periodic behaviors in segmented regions of the phase space. While there is no evidence of global chaos in either the Coulombic or the gravitational system, the former exhibits a transition from a completely nonchaotic phase space at low energies to a mixed behavior. Gradual yet striking transitions from mild to intense chaos are indicated with changing energy, a behavior that differentiates the spatially periodic systems studied in this Rapid Communication from the well-understood free-boundary versions of the three-body problem. Our treatment of the three-body systems opens avenues for analysis of the dynamical properties exhibited by spatially periodic versions of various classes of systems studied in plasma and gravitational physics as well as in cosmology. PMID:27176238
Dynamics of Coulombic and gravitational periodic systems
NASA Astrophysics Data System (ADS)
Kumar, Pankaj; Miller, Bruce N.
2016-04-01
We study the dynamics and the phase-space structures of Coulombic and self-gravitating versions of the classical one-dimensional three-body system with periodic boundary conditions. We demonstrate that such a three-body system may be reduced isomorphically to a spatially periodic system of a single particle experiencing a two-dimensional potential on a rhombic plane. For the case of both Coulombic and gravitational versions, exact expressions of the Hamiltonian have been derived in rhombic coordinates. We simulate the phase-space evolution through an event-driven algorithm that utilizes analytic solutions to the equations of motion. The simulation results show that the motion exhibits chaotic, quasiperiodic, and periodic behaviors in segmented regions of the phase space. While there is no evidence of global chaos in either the Coulombic or the gravitational system, the former exhibits a transition from a completely nonchaotic phase space at low energies to a mixed behavior. Gradual yet striking transitions from mild to intense chaos are indicated with changing energy, a behavior that differentiates the spatially periodic systems studied in this Rapid Communication from the well-understood free-boundary versions of the three-body problem. Our treatment of the three-body systems opens avenues for analysis of the dynamical properties exhibited by spatially periodic versions of various classes of systems studied in plasma and gravitational physics as well as in cosmology.
Math expression retrieval using an inverted index over symbol pairs
NASA Astrophysics Data System (ADS)
Stalnaker, David; Zanibbi, Richard
2015-01-01
We introduce a new method for indexing and retrieving mathematical expressions, and a new protocol for evaluating math formula retrieval systems. The Tangent search engine uses an inverted index over pairs of symbols in math expressions. Each key in the index is a pair of symbols along with their relative distance and vertical displacement within an expression. Matched expressions are ranked by the harmonic mean of the percentage of symbol pairs matched in the query, and the percentage of symbol pairs matched in the candidate expression. We have found that our method is fast enough for use in real time and finds partial matches well, such as when subexpressions are re-arranged (e.g. expressions moved from the left to the right of an equals sign) or when individual symbols (e.g. variables) differ from a query expression. In an experiment using expressions from English Wikipedia, student and faculty participants (N=20) found expressions returned by Tangent significantly more similar than those from a text-based retrieval system (Lucene) adapted for mathematical expressions. Participants provided similarity ratings using a 5-point Likert scale, evaluating expressions from both algorithms one-at-a-time in a randomized order to avoid bias from the position of hits in search result lists. For the Lucene-based system, precision for the top 1 and 10 hits averaged 60% and 39% across queries respectively, while for Tangent mean precision at 1 and 10 were 99% and 60%. A demonstration and source code are publicly available.
Dynamically variable spot size laser system
NASA Technical Reports Server (NTRS)
Gradl, Paul R. (Inventor); Hurst, John F. (Inventor); Middleton, James R. (Inventor)
2012-01-01
A Dynamically Variable Spot Size (DVSS) laser system for bonding metal components includes an elongated housing containing a light entry aperture coupled to a laser beam transmission cable and a light exit aperture. A plurality of lenses contained within the housing focus a laser beam from the light entry aperture through the light exit aperture. The lenses may be dynamically adjusted to vary the spot size of the laser. A plurality of interoperable safety devices, including a manually depressible interlock switch, an internal proximity sensor, a remotely operated potentiometer, a remotely activated toggle and a power supply interlock, prevent activation of the laser and DVSS laser system if each safety device does not provide a closed circuit. The remotely operated potentiometer also provides continuous variability in laser energy output.
A dynamical system for interacting flapping swimmers
NASA Astrophysics Data System (ADS)
Oza, Anand; Ramananarivo, Sophie; Ristroph, Leif; Shelley, Michael
2015-11-01
We present the results of a theoretical investigation into the dynamics of interacting flapping swimmers. Our study is motivated by the recent experiments of Becker et al., who studied a one-dimensional array of self-propelled flapping wings that swim within each other's wakes in a water tank. They discovered that the system adopts certain ``schooling modes'' characterized by specific spatial phase relationships between swimmers. To rationalize these phenomena, we develop a discrete dynamical system in which the swimmers are modeled as heaving airfoils that shed point vortices during each flapping cycle. We then apply our model to recent experiments in the Applied Math Lab, in which two tandem flapping airfoils are free to choose both their speed and relative positions. We expect that our model may be used to understand how schooling behavior is influenced by hydrodynamics in more general contexts. Thanks to the NSF for its support.
Systemic risk: the dynamics of model banking systems
May, Robert M.; Arinaminpathy, Nimalan
2010-01-01
The recent banking crises have made it clear that increasingly complex strategies for managing risk in individual banks have not been matched by corresponding attention to overall systemic risks. We explore some simple mathematical caricatures for ‘banking ecosystems’, with emphasis on the interplay between the characteristics of individual banks (capital reserves in relation to total assets, etc.) and the overall dynamical behaviour of the system. The results are discussed in relation to potential regulations aimed at reducing systemic risk. PMID:19864264
Code System for Static and Dynamic Piping System Analysis.
2000-07-07
EPIPE is used for design or design evaluation of complex large piping systems. The piping systems can be viewed as a network of straight pipe elements (or tangents) and curved elements (pipe bends) interconnected at joints (or nodes) with intermediate supports and anchors. The system may be subject to static loads such as thermal, dead weight, internal pressure, or dynamic loads such as earthquake motions and flow-induced vibrations, or any combination of these.
Park, Joonkoo; Li, Rosa; Brannon, Elizabeth M
2014-03-01
In early childhood, humans learn culturally specific symbols for number that allow them entry into the world of complex numerical thinking. Yet little is known about how the brain supports the development of the uniquely human symbolic number system. Here, we use functional magnetic resonance imaging along with an effective connectivity analysis to investigate the neural substrates for symbolic number processing in young children. We hypothesized that, as children solidify the mapping between symbols and underlying magnitudes, important developmental changes occur in the neural communication between the right parietal region, important for the representation of non-symbolic numerical magnitudes, and other brain regions known to be critical for processing numerical symbols. To test this hypothesis, we scanned children between 4 and 6 years of age while they performed a magnitude comparison task with Arabic numerals (numerical, symbolic), dot arrays (numerical, non-symbolic), and lines (non-numerical). We then identified the right parietal seed region that showed greater blood-oxygen-level-dependent signal in the numerical versus the non-numerical conditions. A psychophysiological interaction method was used to find patterns of effective connectivity arising from this parietal seed region specific to symbolic compared to non-symbolic number processing. Two brain regions, the left supramarginal gyrus and the right precentral gyrus, showed significant effective connectivity from the right parietal cortex. Moreover, the degree of this effective connectivity to the left supramarginal gyrus was correlated with age, and the degree of the connectivity to the right precentral gyrus predicted performance on a standardized symbolic math test. These findings suggest that effective connectivity underlying symbolic number processing may be critical as children master the associations between numerical symbols and magnitudes, and that these connectivity patterns may serve as an
Entropic Fluctuations in Gaussian Dynamical Systems
NASA Astrophysics Data System (ADS)
Jakšić, V.; Pillet, C.-A.; Shirikyan, A.
2016-06-01
We study nonequilibrium statistical mechanics of a Gaussian dynamical system and compute in closed form the large deviation functionals describing the fluctuations of the entropy production observable with respect to the reference state and the nonequilibrium steady state. The entropy production observable of this model is an unbounded function on the phase space, and its large deviation functionals have a surprisingly rich structure. We explore this structure in some detail.
Machné, Rainer; Finney, Andrew; Müller, Stefan; Lu, James; Widder, Stefanie; Flamm, Christoph
2006-06-01
The SBML ODE Solver Library (SOSlib) is a programming library for symbolic and numerical analysis of chemical reaction network models encoded in the Systems Biology Markup Language (SBML). It is written in ISO C and distributed under the open source LGPL license. The package employs libSBML structures for formula representation and associated functions to construct a system of ordinary differential equations, their Jacobian matrix and other derivatives. SUNDIALS' CVODES is incorporated for numerical integration and sensitivity analysis. Preliminary benchmarking results give a rough overview on the behavior of different tools and are discussed in the Supplementary Material. The native application program interface provides fine-grained interfaces to all internal data structures, symbolic operations and numerical routines, enabling the construction of very efficient analytic applications and hybrid or multi-scale solvers with interfaces to SBML and non SBML data sources. Optional modules based on XMGrace and Graphviz allow quick inspection of structure and dynamics. PMID:16527832
Tidal Dynamics of Transiting Extrasolar Planetary Systems
NASA Astrophysics Data System (ADS)
Fabrycky, Daniel C.
2008-05-01
The transits of extrasolar planets have revealed a wealth of information about their structures and atmospheres. Because of increased transit likelihood, these planets have small semi-major axes; therefore the planets we know the best are those which are tidally evolved. Transiting planets have not yet been found in multiple-planet systems, but will eventually be an excellent probe of their dynamics. This talk addresses both sides of the coin: theories of tidal dynamics on the one side, clever observations to constrain those theories on the other. On the theory side: Small orbits may be established via eccentricity pumping by a third body (e.g., Kozai cycles) plus tidal dissipation; (b) Oblique spins (Cassini states) may be created and maintained through a secular resonance between orbital precession and spin precession; and (c) Second planets may evolve out of coorbital configurations (near Lagrange points) and mean motion resonance (e.g., the Laplace resonance among Jupiter's satellites) by tidal dissipation. On the observation side: (a) Spectroscopic transit measurements assess the spin orientation of the host star relative to the orbit of the transiting planet; (b) Transit timing measurements can discover second planets and characterize the dynamics of resonant planetary systems; (c) The instantaneous orbital configuration of two-planet systems can indicate the precession rate of the transiting planet, yielding its Love number and probing its internal structure. I gratefully acknowledge funding by the Michelson Fellowship, supported by the National Aeronautics and Space Administration and administered by the Michelson Science Center.
Increasingly automated procedure acquisition in dynamic systems
NASA Technical Reports Server (NTRS)
Mathe, Nathalie; Kedar, Smadar
1992-01-01
Procedures are widely used by operators for controlling complex dynamic systems. Currently, most development of such procedures is done manually, consuming a large amount of paper, time, and manpower in the process. While automated knowledge acquisition is an active field of research, not much attention has been paid to the problem of computer-assisted acquisition and refinement of complex procedures for dynamic systems. The Procedure Acquisition for Reactive Control Assistant (PARC), which is designed to assist users in more systematically and automatically encoding and refining complex procedures. PARC is able to elicit knowledge interactively from the user during operation of the dynamic system. We categorize procedure refinement into two stages: diagnosis - diagnose the failure and choose a repair - and repair - plan and perform the repair. The basic approach taken in PARC is to assist the user in all steps of this process by providing increased levels of assistance with layered tools. We illustrate the operation of PARC in refining procedures for the control of a robot arm.
Trajectories of Symbolic and Nonsymbolic Magnitude Processing in the First Year of Formal Schooling.
Matejko, Anna A; Ansari, Daniel
2016-01-01
Sensitivity to numerical magnitudes is thought to provide a foundation for higher-level mathematical skills such as calculation. It is still unclear how symbolic (e.g. Arabic digits) and nonsymbolic (e.g. Dots) magnitude systems develop and how the two formats relate to one another. Some theories propose that children learn the meaning of symbolic numbers by scaffolding them onto a pre-existing nonsymbolic system (Approximate Number System). Others suggest that symbolic and nonsymbolic magnitudes have distinct and non-overlapping representations. In the present study, we examine the developmental trajectories of symbolic and nonsymbolic magnitude processing skills and how they relate to each other in the first year of formal schooling when children are becoming more fluent with symbolic numbers. Thirty Grade 1 children completed symbolic and nonsymbolic magnitude processing tasks at three time points in Grade 1. We found that symbolic and nonsymbolic magnitude processing skills had distinct developmental trajectories, where symbolic magnitude processing was characterized by greater gains than nonsymbolic skills over the one-year period in Grade 1. We further found that the development of the two formats only related to one another in the first half of the school year where symbolic magnitude processing skills influenced later nonsymbolic skills. These findings indicate that symbolic and nonsymbolic abilities have different developmental trajectories and that the development of symbolic abilities is not strongly linked to nonsymbolic representations by Grade 1. These findings also suggest that the relationship between symbolic and nonsymbolic processing is not as unidirectional as previously thought.
Trajectories of Symbolic and Nonsymbolic Magnitude Processing in the First Year of Formal Schooling.
Matejko, Anna A; Ansari, Daniel
2016-01-01
Sensitivity to numerical magnitudes is thought to provide a foundation for higher-level mathematical skills such as calculation. It is still unclear how symbolic (e.g. Arabic digits) and nonsymbolic (e.g. Dots) magnitude systems develop and how the two formats relate to one another. Some theories propose that children learn the meaning of symbolic numbers by scaffolding them onto a pre-existing nonsymbolic system (Approximate Number System). Others suggest that symbolic and nonsymbolic magnitudes have distinct and non-overlapping representations. In the present study, we examine the developmental trajectories of symbolic and nonsymbolic magnitude processing skills and how they relate to each other in the first year of formal schooling when children are becoming more fluent with symbolic numbers. Thirty Grade 1 children completed symbolic and nonsymbolic magnitude processing tasks at three time points in Grade 1. We found that symbolic and nonsymbolic magnitude processing skills had distinct developmental trajectories, where symbolic magnitude processing was characterized by greater gains than nonsymbolic skills over the one-year period in Grade 1. We further found that the development of the two formats only related to one another in the first half of the school year where symbolic magnitude processing skills influenced later nonsymbolic skills. These findings indicate that symbolic and nonsymbolic abilities have different developmental trajectories and that the development of symbolic abilities is not strongly linked to nonsymbolic representations by Grade 1. These findings also suggest that the relationship between symbolic and nonsymbolic processing is not as unidirectional as previously thought. PMID:26930195
Trajectories of Symbolic and Nonsymbolic Magnitude Processing in the First Year of Formal Schooling
Matejko, Anna A.; Ansari, Daniel
2016-01-01
Sensitivity to numerical magnitudes is thought to provide a foundation for higher-level mathematical skills such as calculation. It is still unclear how symbolic (e.g. Arabic digits) and nonsymbolic (e.g. Dots) magnitude systems develop and how the two formats relate to one another. Some theories propose that children learn the meaning of symbolic numbers by scaffolding them onto a pre-existing nonsymbolic system (Approximate Number System). Others suggest that symbolic and nonsymbolic magnitudes have distinct and non-overlapping representations. In the present study, we examine the developmental trajectories of symbolic and nonsymbolic magnitude processing skills and how they relate to each other in the first year of formal schooling when children are becoming more fluent with symbolic numbers. Thirty Grade 1 children completed symbolic and nonsymbolic magnitude processing tasks at three time points in Grade 1. We found that symbolic and nonsymbolic magnitude processing skills had distinct developmental trajectories, where symbolic magnitude processing was characterized by greater gains than nonsymbolic skills over the one-year period in Grade 1. We further found that the development of the two formats only related to one another in the first half of the school year where symbolic magnitude processing skills influenced later nonsymbolic skills. These findings indicate that symbolic and nonsymbolic abilities have different developmental trajectories and that the development of symbolic abilities is not strongly linked to nonsymbolic representations by Grade 1. These findings also suggest that the relationship between symbolic and nonsymbolic processing is not as unidirectional as previously thought. PMID:26930195
Solar System dynamics with the Gaia mission
NASA Astrophysics Data System (ADS)
Hestroffer, D.; Berthier, J.; Carry, B.; David, P.; Lainey, V.; Rambaux, N.; Thuillot, W.; Arlot, J.-E.; Bancelin, D.; Colas, F.; Desmars, J.; Devillepoix, H.; Fouchard, M.; Ivantsov, A.; Kovalenko, I.; Robert, V.
2014-12-01
The Gaia mission is to be launched on December 19th, 2013 by the European Space Agency (ESA). Solar System science is well covered by the mission and has been included since the early stages of its concept and development. We present here some aspects on the astrometry and dynamics of Solar System Objects (SSO) - in particular asteroids, comets and satellites - as well as ground-based support. We also touch upon the future of SSO astrometry that will be achieved indirectly, after mission completion, from the Gaia astrometric catalogue.
Testing relativity with solar system dynamics
NASA Technical Reports Server (NTRS)
Hellings, R. W.
1984-01-01
A major breakthrough is described in the accuracy of Solar System dynamical tests of relativistic gravity. The breakthrough was achieved by factoring in ranging data from Viking Landers 1 and 2 from the surface of Mars. Other key data sources included optical transit circle observations, lunar laser ranging, planetary radar, and spacecraft (Mariner 9 to Mars and Mariner 10 to Mercury). The Solar System model which is used to fit the data and the process by which such fits are performed are explained and results are discussed. The results are fully consistent with the predictions of General Relativity.
Exceptional points in coupled dissipative dynamical systems.
Ryu, Jung-Wan; Son, Woo-Sik; Hwang, Dong-Uk; Lee, Soo-Young; Kim, Sang Wook
2015-05-01
We study the transient behavior in coupled dissipative dynamical systems based on the linear analysis around the steady state. We find that the transient time is minimized at a specific set of system parameters and show that at this parameter set, two eigenvalues and two eigenvectors of the Jacobian matrix coalesce at the same time; this degenerate point is called the exceptional point. For the case of coupled limit-cycle oscillators, we investigate the transient behavior into the amplitude death state, and clarify that the exceptional point is associated with a critical point of frequency locking, as well as the transition of the envelope oscillation.
Symbolic representation and visual querying of left ventricular image sequences.
Baroni, M; Del Bimbo, A; Evangelist, A; Vicario, E
1999-01-01
In the evaluation of regional left ventricular function, relevant cardiac disorders manifest themselves not only in static features, such as shape descriptors and motion excursion in end-diastolic and end-systolic frames, but also in their temporal evolution. In common diagnostic practice, such dynamic patterns are analysed by direct inspection of frame sequences through the use of a moviola. This permits only a subjective and poorly defined evaluation of functional parameters, and definitely prevents a systematic and reproducible analysis of large sets of reports. Retrieval by contents techniques may overcome this limitation by permitting the automatic comparison of the reports in a database against queries expressing descriptive properties related to significant pathological conditions. A system is presented which is aimed at investigating the potential of this approach by supporting retrieval by contents from a database of cineangiographic or echocardiographic images. The system relies on a symbolic description of both geometrical and temporal properties of left ventricular contours. This is derived automatically by an image processing and interpretation module and associated with the report at its storage time. In the retrieval stage, queries are expressed by means of an iconic visual language which describes searched content properties over a computer screen. The system automatically interprets iconic statements and compares them against concrete descriptions in the database. This enables medical users to interact with the system to search for motion and shape abnormalities on a regional basis, in single or homogeneous groups of reports, so as to enable both prospective and retrospective diagnosis.
Introduction to Dynamical Systems and Geometric Mechanics
NASA Astrophysics Data System (ADS)
Maruskin, Jared M.
2012-01-01
Introduction to Dynamical Systems and Geometric Mechanics provides a comprehensive tour of two fields that are intimately entwined: dynamical systems is the study of the behavior of physical systems that may be described by a set of nonlinear first-order ordinary differential equations in Euclidean space, whereas geometric mechanics explores similar systems that instead evolve on differentiable manifolds. In the study of geometric mechanics, however, additional geometric structures are often present, since such systems arise from the laws of nature that govern the motions of particles, bodies, and even galaxies. In the first part of the text, we discuss linearization and stability of trajectories and fixed points, invariant manifold theory, periodic orbits, PoincarÃ© maps, Floquet theory, the PoincarÃ©-Bendixson theorem, bifurcations, and chaos. The second part of the text begins with a self-contained chapter on differential geometry that introduces notions of manifolds, mappings, vector fields, the Jacobi-Lie bracket, and differential forms. The final chapters cover Lagrangian and Hamiltonian mechanics from a modern geometric perspective, mechanics on Lie groups, and nonholonomic mechanics via both moving frames and fiber bundle decompositions. The text can be reasonably digested in a single-semester introductory graduate-level course. Each chapter concludes with an application that can serve as a springboard project for further investigation or in-class discussion.
Visualization of system dynamics using phasegrams
Herbst, Christian T.; Herzel, Hanspeter; Švec, Jan G.; Wyman, Megan T.; Fitch, W. Tecumseh
2013-01-01
A new tool for visualization and analysis of system dynamics is introduced: the phasegram. Its application is illustrated with both classical nonlinear systems (logistic map and Lorenz system) and with biological voice signals. Phasegrams combine the advantages of sliding-window analysis (such as the spectrogram) with well-established visualization techniques from the domain of nonlinear dynamics. In a phasegram, time is mapped onto the x-axis, and various vibratory regimes, such as periodic oscillation, subharmonics or chaos, are identified within the generated graph by the number and stability of horizontal lines. A phasegram can be interpreted as a bifurcation diagram in time. In contrast to other analysis techniques, it can be automatically constructed from time-series data alone: no additional system parameter needs to be known. Phasegrams show great potential for signal classification and can act as the quantitative basis for further analysis of oscillating systems in many scientific fields, such as physics (particularly acoustics), biology or medicine. PMID:23697715
Functional Network Dynamics of the Language System
Chai, Lucy R.; Mattar, Marcelo G.; Blank, Idan Asher; Fedorenko, Evelina; Bassett, Danielle S.
2016-01-01
During linguistic processing, a set of brain regions on the lateral surfaces of the left frontal, temporal, and parietal cortices exhibit robust responses. These areas display highly correlated activity while a subject rests or performs a naturalistic language comprehension task, suggesting that they form an integrated functional system. Evidence suggests that this system is spatially and functionally distinct from other systems that support high-level cognition in humans. Yet, how different regions within this system might be recruited dynamically during task performance is not well understood. Here we use network methods, applied to fMRI data collected from 22 human subjects performing a language comprehension task, to reveal the dynamic nature of the language system. We observe the presence of a stable core of brain regions, predominantly located in the left hemisphere, that consistently coactivate with one another. We also observe the presence of a more flexible periphery of brain regions, predominantly located in the right hemisphere, that coactivate with different regions at different times. However, the language functional ROIs in the angular gyrus and the anterior temporal lobe were notable exceptions to this trend. By highlighting the temporal dimension of language processing, these results suggest a trade-off between a region's specialization and its capacity for flexible network reconfiguration. PMID:27550868
Literature Review on Dynamic Cellular Manufacturing System
NASA Astrophysics Data System (ADS)
Nouri Houshyar, A.; Leman, Z.; Pakzad Moghadam, H.; Ariffin, M. K. A. M.; Ismail, N.; Iranmanesh, H.
2014-06-01
In previous decades, manufacturers faced a lot of challenges because of globalization and high competition in markets. These problems arise from shortening product life cycle, rapid variation in demand of products, and also rapid changes in manufcaturing technologies. Nowadays most manufacturing companies expend considerable attention for improving flexibility and responsiveness in order to overcome these kinds of problems and also meet customer's needs. By considering the trend toward the shorter product life cycle, the manufacturing environment is towards manufacturing a wide variety of parts in small batches [1]. One of the major techniques which are applied for improving manufacturing competitiveness is Cellular Manufacturing System (CMS). CMS is type of manufacturing system which tries to combine flexibility of job shop and also productivity of flow shop. In addition, Dynamic cellular manufacturing system which considers different time periods for the manufacturing system becomes an important topic and attracts a lot of attention to itself. Therefore, this paper made attempt to have a brief review on this issue and focused on all published paper on this subject. Although, this topic gains a lot of attention to itself during these years, none of previous researchers focused on reviewing the literature of that which can be helpful and useful for other researchers who intend to do the research on this topic. Therefore, this paper is the first study which has focused and reviewed the literature of dynamic cellular manufacturing system.
Are We Taking Symbolic Language for Granted?
NASA Astrophysics Data System (ADS)
Marais, Paul; Jordaan, Faan
2000-10-01
This study formed part of a broader investigation into the role of language in teaching and learning chemical equilibrium. First-year technikon students were tested for their understanding of 25 words and five symbols commonly used in connection with chemical equilibrium. Each word or symbol was used in a short sentence. For each word or symbol five possible meanings were given, of which any number could be correct. This test showed that most of the students had an inadequate grasp of the meaning of all five symbols. It also showed that, on the average, their understanding of symbols was more problematic than their understanding of words. It is concluded that chemistry teachers, at all levels, should be alert to the fact that students may have problems with the meaning of symbols and purposefully "teach" symbolism to ensure that their students understand it the same way that they as teachers do.
Obstacle penetrating dynamic radar imaging system
Romero, Carlos E.; Zumstein, James E.; Chang, John T.; Leach, Jr.. Richard R.
2006-12-12
An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.
Dynamic Analysis of Nuclear Energy System Strategies
2004-06-17
DANESS is an integrated process model for nuclear energy systems allowing the simulation of multiple reactors and fuel cycles in a continuously changing nuclear reactor park configuration. The model is energy demand driven and simulates all nuclear fuel cycle facilites, up to 10 reactors and fuels. Reactor and fuel cycle facility history are traced and the cost of generating energy is calculated per reactor and for total nuclear energy system. The DANESS model aims atmore » performing dynamic systems analysis of nuclear energy development used for integrated analysis of development paths for nuclear energy, parameter scoping for new nuclear energy systems, economic analysis of nuclear energy, government role analysis, and education.« less
Mathematical simulation of Earth system dynamics
NASA Astrophysics Data System (ADS)
Dymnikov, V. P.; Lykosov, V. N.; Volodin, E. M.
2015-05-01
The mathematical simulation of the Earth system, the dynamics of which depends on physical, chemical, biological, and other processes and which requires interdisciplinary approaches to studying this problem, is considered. The term "the Earth system" extends the concept "the climatic system," since additional geospheres (lithosphere, heliosphere, etc.) are taken into account and a wider range of physical, chemical, biological, and social interactions is described. The present-day level of climate modeling is discussed, and some data obtained at the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), are presented for this purpose. The prospects for further development of climate models toward the creation of the Earth system models based on a seamless approach, according to which a unified model is used to make short-term (several days) and long-term (climatic) prediction, are considered.
Dynamically programmable electronic pill dispenser system.
Boquete, Luciano; Rodriguez-Ascariz, Jose Manuel; Artacho, Irene; Cantos-Frontela, Joaquin; Peixoto, Nathalia
2010-06-01
Compliance in medicine dispensation has proven critical for dosage control, diagnosis, and treatment. We have designed, manufactured, and characterized a novel dynamically programmable e-pill dispensing system. Our system is initially programmed remotely through a cell phone. After programming, the system may be reconfigured in order to adapt pill dispensation to new conditions. In this paper we describe the mechanics, electronics, control, and communication protocols implemented. Our dyn-e-pill devices can be actuated for over 350 h with two pill retrievals per hour. We challenged the charging circuit and demonstrated that the system has a lifetime longer than 6 h with a 30 min charging cycle, while it lasts for 14 h of uninterrupted use with a full charge. PMID:20503621
A symbolic/subsymbolic interface protocol for cognitive modeling
Simen, Patrick; Polk, Thad
2009-01-01
Researchers studying complex cognition have grown increasingly interested in mapping symbolic cognitive architectures onto subsymbolic brain models. Such a mapping seems essential for understanding cognition under all but the most extreme viewpoints (namely, that cognition consists exclusively of digitally implemented rules; or instead, involves no rules whatsoever). Making this mapping reduces to specifying an interface between symbolic and subsymbolic descriptions of brain activity. To that end, we propose parameterization techniques for building cognitive models as programmable, structured, recurrent neural networks. Feedback strength in these models determines whether their components implement classically subsymbolic neural network functions (e.g., pattern recognition), or instead, logical rules and digital memory. These techniques support the implementation of limited production systems. Though inherently sequential and symbolic, these neural production systems can exploit principles of parallel, analog processing from decision-making models in psychology and neuroscience to explain the effects of brain damage on problem solving behavior. PMID:20711520
Non-Symbolic Halving in an Amazonian Indigene Group
ERIC Educational Resources Information Center
McCrink, Koleen; Spelke, Elizabeth S.; Dehaene, Stanislas; Pica, Pierre
2013-01-01
Much research supports the existence of an Approximate Number System (ANS) that is recruited by infants, children, adults, and non-human animals to generate coarse, non-symbolic representations of number. This system supports simple arithmetic operations such as addition, subtraction, and ordering of amounts. The current study tests whether an…
Persistent topological features of dynamical systems.
Maletić, Slobodan; Zhao, Yi; Rajković, Milan
2016-05-01
Inspired by an early work of Muldoon et al., Physica D 65, 1-16 (1993), we present a general method for constructing simplicial complex from observed time series of dynamical systems based on the delay coordinate reconstruction procedure. The obtained simplicial complex preserves all pertinent topological features of the reconstructed phase space, and it may be analyzed from topological, combinatorial, and algebraic aspects. In focus of this study is the computation of homology of the invariant set of some well known dynamical systems that display chaotic behavior. Persistent homology of simplicial complex and its relationship with the embedding dimensions are examined by studying the lifetime of topological features and topological noise. The consistency of topological properties for different dynamic regimes and embedding dimensions is examined. The obtained results shed new light on the topological properties of the reconstructed phase space and open up new possibilities for application of advanced topological methods. The method presented here may be used as a generic method for constructing simplicial complex from a scalar time series that has a number of advantages compared to the mapping of the same time series to a complex network.
Zeno dynamics in quantum open systems
Zhang, Yu-Ran; Fan, Heng
2015-01-01
Quantum Zeno effect shows that frequent observations can slow down or even stop the unitary time evolution of an unstable quantum system. This effect can also be regarded as a physical consequence of the statistical indistinguishability of neighboring quantum states. The accessibility of quantum Zeno dynamics under unitary time evolution can be quantitatively estimated by quantum Zeno time in terms of Fisher information. In this work, we investigate the accessibility of quantum Zeno dynamics in quantum open systems by calculating noisy Fisher information when a trace preserving and completely positive map is assumed. We firstly study the consequences of non-Markovian noise on quantum Zeno effect and give the exact forms of the dissipative Fisher information and the quantum Zeno time. Then, for the operator-sum representation, an achievable upper bound of the quantum Zeno time is given with the help of the results in noisy quantum metrology. It is of significance that the noise reducing the accuracy in the entanglement-enhanced parameter estimation can conversely be favorable for the accessibility of quantum Zeno dynamics of entangled states. PMID:26099840
Computation in Dynamically Bounded Asymmetric Systems
Rutishauser, Ueli; Slotine, Jean-Jacques; Douglas, Rodney
2015-01-01
Previous explanations of computations performed by recurrent networks have focused on symmetrically connected saturating neurons and their convergence toward attractors. Here we analyze the behavior of asymmetrical connected networks of linear threshold neurons, whose positive response is unbounded. We show that, for a wide range of parameters, this asymmetry brings interesting and computationally useful dynamical properties. When driven by input, the network explores potential solutions through highly unstable ‘expansion’ dynamics. This expansion is steered and constrained by negative divergence of the dynamics, which ensures that the dimensionality of the solution space continues to reduce until an acceptable solution manifold is reached. Then the system contracts stably on this manifold towards its final solution trajectory. The unstable positive feedback and cross inhibition that underlie expansion and divergence are common motifs in molecular and neuronal networks. Therefore we propose that very simple organizational constraints that combine these motifs can lead to spontaneous computation and so to the spontaneous modification of entropy that is characteristic of living systems. PMID:25617645
Persistent topological features of dynamical systems
NASA Astrophysics Data System (ADS)
Maletić, Slobodan; Zhao, Yi; Rajković, Milan
2016-05-01
Inspired by an early work of Muldoon et al., Physica D 65, 1-16 (1993), we present a general method for constructing simplicial complex from observed time series of dynamical systems based on the delay coordinate reconstruction procedure. The obtained simplicial complex preserves all pertinent topological features of the reconstructed phase space, and it may be analyzed from topological, combinatorial, and algebraic aspects. In focus of this study is the computation of homology of the invariant set of some well known dynamical systems that display chaotic behavior. Persistent homology of simplicial complex and its relationship with the embedding dimensions are examined by studying the lifetime of topological features and topological noise. The consistency of topological properties for different dynamic regimes and embedding dimensions is examined. The obtained results shed new light on the topological properties of the reconstructed phase space and open up new possibilities for application of advanced topological methods. The method presented here may be used as a generic method for constructing simplicial complex from a scalar time series that has a number of advantages compared to the mapping of the same time series to a complex network.
Zeno dynamics in quantum open systems.
Zhang, Yu-Ran; Fan, Heng
2015-06-23
Quantum Zeno effect shows that frequent observations can slow down or even stop the unitary time evolution of an unstable quantum system. This effect can also be regarded as a physical consequence of the statistical indistinguishability of neighboring quantum states. The accessibility of quantum Zeno dynamics under unitary time evolution can be quantitatively estimated by quantum Zeno time in terms of Fisher information. In this work, we investigate the accessibility of quantum Zeno dynamics in quantum open systems by calculating noisy Fisher information when a trace preserving and completely positive map is assumed. We firstly study the consequences of non-Markovian noise on quantum Zeno effect and give the exact forms of the dissipative Fisher information and the quantum Zeno time. Then, for the operator-sum representation, an achievable upper bound of the quantum Zeno time is given with the help of the results in noisy quantum metrology. It is of significance that the noise reducing the accuracy in the entanglement-enhanced parameter estimation can conversely be favorable for the accessibility of quantum Zeno dynamics of entangled states.
Pseudorotational Dynamics of Small Molecular Systems
NASA Astrophysics Data System (ADS)
Hagelberg, Frank
2001-03-01
A variety of dynamic effects related to the pseudorotation of triatomic singly charged species is explored using the Electron Nuclear Dynamics(END)Theory. The concepts relevant to the motion studied are developed through the analysis of the simplest polyatomic molecule, namely H3+. It is shown that the limiting situation of circular pseudorotation is unattainable for this case. This observation is explained by the anisotropy of the ground state potential energy surface caused by the interaction between the D3h ground state of the molecule and its twofold degenerate first excited state. Further, pseudorotational motion is demonstrated to induce a rotational mode which in turn couples the two shape oscillation modes by action of the Coriolis force. Analogous phenomena are found for Li3+. The Jahn-Teller system C3+ exhibits a range of new motional effects. Particularly, a characteristic frequency shift between the two shape oscillation modes is obtained, resulting from the anisotropy in the curvature of the C2v minimum of C3+. The Jahn-Teller parameters of the system are determined from Electron Nuclear Dynamics simulations.
Leibovich, Tali; Ansari, Daniel
2016-03-01
How do numerical symbols, such as number words, acquire semantic meaning? This question, also referred to as the "symbol-grounding problem," is a central problem in the field of numerical cognition. Present theories suggest that symbols acquire their meaning by being mapped onto an approximate system for the nonsymbolic representation of number (Approximate Number System or ANS). In the present literature review, we first asked to which extent current behavioural and neuroimaging data support this theory, and second, to which extent the ANS, upon which symbolic numbers are assumed to be grounded, is numerical in nature. We conclude that (a) current evidence that has examined the association between the ANS and number symbols does not support the notion that number symbols are grounded in the ANS and (b) given the strong correlation between numerosity and continuous variables in nonsymbolic number processing tasks, it is next to impossible to measure the pure association between symbolic and nonsymbolic numerosity. Instead, it is clear that significant cognitive control resources are required to disambiguate numerical from continuous variables during nonsymbolic number processing. Thus, if there exists any mapping between the ANS and symbolic number, then this process of association must be mediated by cognitive control. Taken together, we suggest that studying the role of both cognitive control and continuous variables in numerosity comparison tasks will provide a more complete picture of the symbol-grounding problem.
Leibovich, Tali; Ansari, Daniel
2016-03-01
How do numerical symbols, such as number words, acquire semantic meaning? This question, also referred to as the "symbol-grounding problem," is a central problem in the field of numerical cognition. Present theories suggest that symbols acquire their meaning by being mapped onto an approximate system for the nonsymbolic representation of number (Approximate Number System or ANS). In the present literature review, we first asked to which extent current behavioural and neuroimaging data support this theory, and second, to which extent the ANS, upon which symbolic numbers are assumed to be grounded, is numerical in nature. We conclude that (a) current evidence that has examined the association between the ANS and number symbols does not support the notion that number symbols are grounded in the ANS and (b) given the strong correlation between numerosity and continuous variables in nonsymbolic number processing tasks, it is next to impossible to measure the pure association between symbolic and nonsymbolic numerosity. Instead, it is clear that significant cognitive control resources are required to disambiguate numerical from continuous variables during nonsymbolic number processing. Thus, if there exists any mapping between the ANS and symbolic number, then this process of association must be mediated by cognitive control. Taken together, we suggest that studying the role of both cognitive control and continuous variables in numerosity comparison tasks will provide a more complete picture of the symbol-grounding problem. PMID:26913782
A dynamical system view of cerebellar function
NASA Astrophysics Data System (ADS)
Keeler, James D.
1990-06-01
First some previous theories of cerebellar function are reviewed, and deficiencies in how they map onto the neurophysiological structure are pointed out. I hypothesize that the cerebellar cortex builds an internal model, or prediction, of the dynamics of the animal. A class of algorithms for doing prediction based on local reconstruction of attractors are described, and it is shown how this class maps very well onto the structure of the cerebellar cortex. I hypothesize that the climbing fibers multiplex between different trajectories corresponding to different modes of operation. Then the vestibulo-ocular reflex is examined, and experiments to test the proposed model are suggested. The purpose of the presentation here is twofold: (1) To enlighten physiologists to the mathematics of a class of prediction algorithms that map well onto cerebellar architecture. (2) To enlighten dynamical system theorists to the physiological and anatomical details of the cerebellum.
On Mean Field Limits for Dynamical Systems
NASA Astrophysics Data System (ADS)
Boers, Niklas; Pickl, Peter
2016-07-01
We present a purely probabilistic proof of propagation of molecular chaos for N-particle systems in dimension 3 with interaction forces scaling like 1/\\vert q\\vert ^{3λ - 1} with λ smaller but close to one and cut-off at q = N^{-1/3}. The proof yields a Gronwall estimate for the maximal distance between exact microscopic and approximate mean-field dynamics. This can be used to show weak convergence of the one-particle marginals to solutions of the respective mean-field equation without cut-off in a quantitative way. Our results thus lead to a derivation of the Vlasov equation from the microscopic N-particle dynamics with force term arbitrarily close to the physically relevant Coulomb- and gravitational forces.
Robust optimization with transiently chaotic dynamical systems
NASA Astrophysics Data System (ADS)
Sumi, R.; Molnár, B.; Ercsey-Ravasz, M.
2014-05-01
Efficiently solving hard optimization problems has been a strong motivation for progress in analog computing. In a recent study we presented a continuous-time dynamical system for solving the NP-complete Boolean satisfiability (SAT) problem, with a one-to-one correspondence between its stable attractors and the SAT solutions. While physical implementations could offer great efficiency, the transiently chaotic dynamics raises the question of operability in the presence of noise, unavoidable on analog devices. Here we show that the probability of finding solutions is robust to noise intensities well above those present on real hardware. We also developed a cellular neural network model realizable with analog circuits, which tolerates even larger noise intensities. These methods represent an opportunity for robust and efficient physical implementations.
System and mathematical modeling of quadrotor dynamics
NASA Astrophysics Data System (ADS)
Goodman, Jacob M.; Kim, Jinho; Gadsden, S. Andrew; Wilkerson, Stephen A.
2015-05-01
Unmanned aerial systems (UAS) are becoming increasingly visible in our daily lives; and range in operation from search and rescue, monitoring hazardous environments, and to the delivery of goods. One of the most popular UAS are based on a quad-rotor design. These are typically small devices that rely on four propellers for lift and movement. Quad-rotors are inherently unstable, and rely on advanced control methodologies to keep them operating safely and behaving in a predictable and desirable manner. The control of these devices can be enhanced and improved by making use of an accurate dynamic model. In this paper, we examine a simple quadrotor model, and note some of the additional dynamic considerations that were left out. We then compare simulation results of the simple model with that of another comprehensive model.
Dynamically stable magnetic suspension/bearing system
Post, R.F.
1996-02-27
A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium. However, owing to the limitations imposed by Earnshaw`s Theorem, the magnetic bearing systems to be described do not possess a stable equilibrium at zero rotational speed. Therefore, mechanical stabilizers are provided, in each case, to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. The magnetic forces exerted by these elements, when taken together, levitate the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations. At the same time, this equilibrium is made stable against displacements of the rotating object from its equilibrium position by using combinations of elements that possess force derivatives of such magnitudes and signs that they can satisfy the conditions required for a rotating body to be stably supported by a magnetic bearing system over a finite range of those displacements. 32 figs.
Dynamically stable magnetic suspension/bearing system
Post, Richard F.
1996-01-01
A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium. However, owing to the limitations imposed by Earnshaw's Theorem, the magnetic bearing systems to be described do not possess a stable equilibrium at zero rotational speed. Therefore, mechanical stabilizers are provided, in each case, to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. The magnetic forces exerted by these elements, when taken together, levitate the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations. At the same time, this equilibrium is made stable against displacements of the rotating object from its equilibrium position by using combinations of elements that possess force derivatives of such magnitudes and signs that they can satisfy the conditions required for a rotating body to be stably supported by a magnetic bearing system over a finite range of those displacements.
A dynamical systems view of network centrality
Grindrod, Peter; Higham, Desmond J.
2014-01-01
To gain insights about dynamic networks, the dominant paradigm is to study discrete snapshots, or timeslices, as the interactions evolve. Here, we develop and test a new mathematical framework where network evolution is handled over continuous time, giving an elegant dynamical systems representation for the important concept of node centrality. The resulting system allows us to track the relative influence of each individual. This new setting is natural in many digital applications, offering both conceptual and computational advantages. The novel differential equations approach is convenient for modelling and analysis of network evolution and gives rise to an interesting application of the matrix logarithm function. From a computational perspective, it avoids the awkward up-front compromises between accuracy, efficiency and redundancy required in the prevalent discrete-time setting. Instead, we can rely on state-of-the-art ODE software, where discretization takes place adaptively in response to the prevailing system dynamics. The new centrality system generalizes the widely used Katz measure, and allows us to identify and track, at any resolution, the most influential nodes in terms of broadcasting and receiving information through time-dependent links. In addition to the classical static network notion of attenuation across edges, the new ODE also allows for attenuation over time, as information becomes stale. This allows ‘running measures’ to be computed, so that networks can be monitored in real time over arbitrarily long intervals. With regard to computational efficiency, we explain why it is cheaper to track good receivers of information than good broadcasters. An important consequence is that the overall broadcast activity in the network can also be monitored efficiently. We use two synthetic examples to validate the relevance of the new measures. We then illustrate the ideas on a large-scale voice call network, where key features are discovered that are
Technology reviews: Dynamic curtain wall systems
Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.
1992-09-01
We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize die state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology. Determine the performance range of available technologies. Identify the most promising technologies and promising trends in technology advances. Examine market forces and market trends. Develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fall into that class.
Description of the grout system dynamic simulation
Zimmerman, B.D.
1993-07-01
The grout system dynamic computer simulation was created to allow investigation of the ability of the grouting system to meet established milestones, for various assumed system configurations and parameters. The simulation simulates the movement of tank waste through the system versus time, from initial storage tanks, through feed tanks and the grout plant, then finally to a grout vault. The simulation properly accounts for the following (1) time required to perform various actions or processes, (2) delays involved in gaining regulatory approval, (3) random system component failures, (4) limitations on equipment capacities, (5) available parallel components, and (6) different possible strategies for vault filling. The user is allowed to set a variety of system parameters for each simulation run. Currently, the output of a run primarily consists of a plot of projected grouting campaigns completed versus time, for comparison with milestones. Other outputs involving any model component can also be quickly created or deleted as desired. In particular, sensitivity runs where the effect of varying a model parameter (flow rates, delay times, number of feed tanks available, etc.) on the ability of the system to meet milestones can be made easily. The grout system simulation was implemented using the ITHINK* simulation language for Macintosh** computers.
Stuart, J.G.; Wright, A.D.; Butterfield, C.P.
1996-10-01
Mitigating the effects of damaging wind turbine loads and responses extends the lifetime of the turbine and, consequently, reduces the associated Cost of Energy (COE). Active control of aerodynamic devices is one option for achieving wind turbine load mitigation. Generally speaking, control system design and analysis requires a reasonable dynamic model of {open_quotes}plant,{close_quotes} (i.e., the system being controlled). This paper extends the wind turbine aileron control research, previously conducted at the National Wind Technology Center (NWTC), by presenting a more detailed development of the wind turbine dynamic model. In prior research, active aileron control designs were implemented in an existing wind turbine structural dynamics code, FAST (Fatigue, Aerodynamics, Structures, and Turbulence). In this paper, the FAST code is used, in conjunction with system identification, to generate a wind turbine dynamic model for use in active aileron control system design. The FAST code is described and an overview of the system identification technique is presented. An aileron control case study is used to demonstrate this modeling technique. The results of the case study are then used to propose ideas for generalizing this technique for creating dynamic models for other wind turbine control applications.
Extensions to Dynamic System Simulation of Fissile Solution Systems
Klein, Steven Karl; Bernardin, John David; Kimpland, Robert Herbert; Spernjak, Dusan
2015-08-24
Previous reports have documented the results of applying dynamic system simulation (DSS) techniques to model a variety of fissile solution systems. The SUPO (Super Power) aqueous homogeneous reactor (AHR) was chosen as the benchmark for comparison of model results to experimental data for steadystate operation.1 Subsequently, DSS was applied to additional AHR to verify results obtained for SUPO and extend modeling to prompt critical excursions, ramp reactivity insertions of various magnitudes and rate, and boiling operations in SILENE and KEWB (Kinetic Experiment Water Boiler).2 Additional models for pressurized cores (HRE: Homogeneous Reactor Experiment), annular core geometries, and accelerator-driven subcritical systems (ADAHR) were developed and results reported.3 The focus of each of these models is core dynamics; neutron kinetics, thermal hydraulics, radiolytic gas generation and transport are coupled to examine the time-based evolution of these systems from start-up through transition to steady-state. A common characteristic of these models is the assumption that (a) core cooling system inlet temperature and flow and (b) plenum gas inlet pressure and flow are held constant; no external (to core) component operations that may result in dynamic change to these parameters are considered. This report discusses extension of models to include explicit reference to cooling structures and radiolytic gas handling. The accelerator-driven subcritical generic system model described in References 3 and 4 is used as a basis for this extension.
Dynamic Systems Analysis for Turbine Based Aero Propulsion Systems
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.
2016-01-01
The aircraft engine design process seeks to optimize the overall system-level performance, weight, and cost for a given concept. Steady-state simulations and data are used to identify trade-offs that should be balanced to optimize the system in a process known as systems analysis. These systems analysis simulations and data may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic systems analysis provides the capability for assessing the dynamic tradeoffs at an earlier stage of the engine design process. The dynamic systems analysis concept, developed tools, and potential benefit are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed to provide the user with an estimate of the closed-loop performance (response time) and operability (high pressure compressor surge margin) for a given engine design and set of control design requirements. TTECTrA along with engine deterioration information, can be used to develop a more generic relationship between performance and operability that can impact the engine design constraints and potentially lead to a more efficient engine.
Electron Dynamics in Finite Quantum Systems
NASA Astrophysics Data System (ADS)
McDonald, Christopher R.
The multiconfiguration time-dependent Hartree-Fock (MCTDHF) and multiconfiguration time-dependent Hartree (MCTDH) methods are employed to investigate nonperturbative multielectron dynamics in finite quantum systems. MCTDHF is a powerful tool that allows for the investigation of multielectron dynamics in strongly perturbed quantum systems. We have developed an MCTDHF code that is capable of treating problems involving three dimensional (3D) atoms and molecules exposed to strong laser fields. This code will allow for the theoretical treatment of multielectron phenomena in attosecond science that were previously inaccessible. These problems include complex ionization processes in pump-probe experiments on noble gas atoms, the nonlinear effects that have been observed in Ne atoms in the presence of an x-ray free-electron laser (XFEL) and the molecular rearrangement of cations after ionization. An implementation of MCTDH that is optimized for two electrons, each moving in two dimensions (2D), is also presented. This implementation of MCTDH allows for the efficient treatment of 2D spin-free systems involving two electrons; however, it does not scale well to 3D or to systems containing more that two electrons. Both MCTDHF and MCTDH were used to treat 2D problems in nanophysics and attosecond science. MCTDHF is used to investigate plasmon dynamics and the quantum breathing mode for several electrons in finite lateral quantum dots. MCTDHF is also used to study the effects of manipulating the potential of a double lateral quantum dot containing two electrons; applications to quantum computing are discussed. MCTDH is used to examine a diatomic model molecular system exposed to a strong laser field; nonsequential double ionization and high harmonic generation are studied and new processes identified and explained. An implementation of MCTDHF is developed for nonuniform tensor product grids; this will allow for the full 3D implementation of MCTDHF and will provide a means to
Intrinsic information carriers in combinatorial dynamical systems.
Harmer, Russ; Danos, Vincent; Feret, Jérôme; Krivine, Jean; Fontana, Walter
2010-09-01
Many proteins are composed of structural and chemical features--"sites" for short--characterized by definite interaction capabilities, such as noncovalent binding or covalent modification of other proteins. This modularity allows for varying degrees of independence, as the behavior of a site might be controlled by the state of some but not all sites of the ambient protein. Independence quickly generates a startling combinatorial complexity that shapes most biological networks, such as mammalian signaling systems, and effectively prevents their study in terms of kinetic equations-unless the complexity is radically trimmed. Yet, if combinatorial complexity is key to the system's behavior, eliminating it will prevent, not facilitate, understanding. A more adequate representation of a combinatorial system is provided by a graph-based framework of rewrite rules where each rule specifies only the information that an interaction mechanism depends on. Unlike reactions, which deal with molecular species, rules deal with patterns, i.e., multisets of molecular species. Although the stochastic dynamics induced by a collection of rules on a mixture of molecules can be simulated, it appears useful to capture the system's average or deterministic behavior by means of differential equations. However, expansion of the rules into kinetic equations at the level of molecular species is not only impractical, but conceptually indefensible. If rules describe bona fide patterns of interaction, molecular species are unlikely to constitute appropriate units of dynamics. Rather, we must seek aggregate variables reflective of the causal structure laid down by the rules. We call these variables "fragments" and the process of identifying them "fragmentation." Ideally, fragments are aspects of the system's microscopic population that the set of rules can actually distinguish on average; in practice, it may only be feasible to identify an approximation to this. Most importantly, fragments are