Sample records for sympathetic nervous function

  1. Central and peripheral nervous systems: master controllers in cancer metastasis.

    PubMed

    Shi, Ming; Liu, Dan; Yang, Zhengyan; Guo, Ning

    2013-12-01

    Central and sympathetic nervous systems govern functional activities of many organs. Solid tumors like organs are also innervated by sympathetic nerve fibers. Neurotransmitters released from sympathetic nerve fibers can modulate biological behaviors of tumor cells. Multiple physiologic processes of tumor development may be dominated by central and sympathetic nervous systems as well. Recent studies suggest that dysfunction of central and sympathetic nervous systems and disorder of the hormone network induced by psychological stress may influence malignant progression of cancer by inhibiting the functions of immune system, regulating metabolic reprogramming of tumor cells, and inducing interactions between tumor and stromal cells. Over-release of inflammatory cytokines by tumors may aggravate emotional disorder, triggering the vicious cycles in tumor microenvironment and host macroenvironment. It is reasonable to hypothesize that cancer progression may be controlled by central and sympathetic nervous systems. In this review, we will focus on the recent information about the impacts of central and sympathetic nervous systems on tumor invasion and metastasis.

  2. Regulation of sympathetic nervous system function after cardiovascular deconditioning

    NASA Technical Reports Server (NTRS)

    Hasser, E. M.; Moffitt, J. A.

    2001-01-01

    Humans subjected to prolonged periods of bed rest or microgravity undergo deconditioning of the cardiovascular system, characterized by resting tachycardia, reduced exercise capability, and a predisposition for orthostatic intolerance. These changes in cardiovascular function are likely due to a combination of factors, including changes in control of body fluid balance or cardiac alterations resulting in inadequate maintenance of stroke volume, altered arterial or venous vascular function, reduced activation of cardiovascular hormones, and diminished autonomic reflex function. There is evidence indicating a role for each of these mechanisms. Diminished reflex activation of the sympathetic nervous system and subsequent vasoconstriction appear to play an important role. Studies utilizing the hindlimb-unloaded (HU) rat, an animal model of deconditioning, evaluated the potential role of altered arterial baroreflex control of the sympathetic nervous system. These studies indicate that HU results in blunted baroreflex-mediated activation of both renal and lumbar sympathetic nerve activity in response to a hypotensive stimulus. HU rats are less able to maintain arterial pressure during hemorrhage, suggesting that diminished ability to increase sympathetic activity has functional consequences for the animal. Reflex control of vasopressin secretion appears to be enhanced following HU. Blunted baroreflex-mediated sympathoexcitation appears to involve altered central nervous system function. Baroreceptor afferent activity in response to changes in arterial pressure is unaltered in HU rats. However, increases in efferent sympathetic nerve activity for a given decrease in afferent input are blunted after HU. This altered central nervous system processing of baroreceptor inputs appears to involve an effect at the rostral ventrolateral medulla (RVLM). Specifically, it appears that tonic GABAA-mediated inhibition of the RVLM is enhanced after HU. Augmented inhibition apparently arises from sources other than the caudal ventrolateral medulla. If similar alterations in control of the sympathetic nervous system occur in humans in response to cardiovascular deconditioning, it is likely that they play an important role in the observed tendency for orthostatic intolerance. Combined with potential changes in vascular function, cardiac function, and hypovolemia, the predisposition for orthostatic intolerance following cardiovascular deconditioning would be markedly enhanced by blunted ability to reflexly activate the sympathetic nervous system.

  3. Temperament affects sympathetic nervous function in a normal population.

    PubMed

    Kim, Bora; Lee, Jae-Hon; Kang, Eun-Ho; Yu, Bum-Hee

    2012-09-01

    Although specific temperaments have been known to be related to autonomic nervous function in some psychiatric disorders, there are few studies that have examined the relationship between temperaments and autonomic nervous function in a normal population. In this study, we examined the effect of temperament on the sympathetic nervous function in a normal population. Sixty eight healthy subjects participated in the present study. Temperament was assessed using the Korean version of the Cloninger Temperament and Character Inventory (TCI). Autonomic nervous function was determined by measuring skin temperature in a resting state, which was recorded for 5 minutes from the palmar surface of the left 5th digit using a thermistor secured with a Velcro® band. Pearson's correlation analysis and multiple linear regression were used to examine the relationship between temperament and skin temperature. A higher harm avoidance score was correlated with a lower skin temperature (i.e. an increased sympathetic tone; r=-0.343, p=0.004) whereas a higher persistence score was correlated with a higher skin temperature (r=0.433, p=0.001). Hierarchical linear regression analysis revealed that harm avoidance was able to predict the variance of skin temperature independently, with a variance of 7.1% after controlling for sex, blood pressure and state anxiety and persistence was the factor predicting the variance of skin temperature with a variance of 5.0%. These results suggest that high harm avoidance is related to an increased sympathetic nervous function whereas high persistence is related to decreased sympathetic nervous function in a normal population.

  4. Temperament Affects Sympathetic Nervous Function in a Normal Population

    PubMed Central

    Kim, Bora; Lee, Jae-Hon; Kang, Eun-Ho

    2012-01-01

    Objective Although specific temperaments have been known to be related to autonomic nervous function in some psychiatric disorders, there are few studies that have examined the relationship between temperaments and autonomic nervous function in a normal population. In this study, we examined the effect of temperament on the sympathetic nervous function in a normal population. Methods Sixty eight healthy subjects participated in the present study. Temperament was assessed using the Korean version of the Cloninger Temperament and Character Inventory (TCI). Autonomic nervous function was determined by measuring skin temperature in a resting state, which was recorded for 5 minutes from the palmar surface of the left 5th digit using a thermistor secured with a Velcro® band. Pearson's correlation analysis and multiple linear regression were used to examine the relationship between temperament and skin temperature. Results A higher harm avoidance score was correlated with a lower skin temperature (i.e. an increased sympathetic tone; r=-0.343, p=0.004) whereas a higher persistence score was correlated with a higher skin temperature (r=0.433, p=0.001). Hierarchical linear regression analysis revealed that harm avoidance was able to predict the variance of skin temperature independently, with a variance of 7.1% after controlling for sex, blood pressure and state anxiety and persistence was the factor predicting the variance of skin temperature with a variance of 5.0%. Conclusion These results suggest that high harm avoidance is related to an increased sympathetic nervous function whereas high persistence is related to decreased sympathetic nervous function in a normal population. PMID:22993530

  5. Clinical utility of sympathetic blockade in cardiovascular disease management.

    PubMed

    Park, Chan Soon; Lee, Hae-Young

    2017-04-01

    A dysregulated sympathetic nervous system is a major factor in the development and progression of cardiovascular disease; thus, understanding the mechanism and function of the sympathetic nervous system and appropriately regulating sympathetic activity to treat various cardiovascular diseases are crucial. Areas covered: This review focused on previous studies in managing hypertension, atrial fibrillation, coronary artery disease, heart failure, and perioperative management with sympathetic blockade. We reviewed both pharmacological and non-pharmacological management. Expert commentary: Chronic sympathetic nervous system activation is related to several cardiovascular diseases mediated by various pathways. Advancement in measuring sympathetic activity makes visualizing noninvasively and evaluating the activation level even in single fibers possible. Evidence suggests that sympathetic blockade still has a role in managing hypertension and controlling the heart rate in atrial fibrillation. For ischemic heart disease, beta-adrenergic receptor antagonists have been considered a milestone drug to control symptoms and prevent long-term adverse effects, although its clinical implication has become less potent in the era of successful revascularization. Owing to pathologic involvement of sympathetic nervous system activation in heart failure progression, sympathetic blockade has proved its value in improving the clinical course of patients with heart failure.

  6. The role of sympathetic nervous system in the progression of chronic kidney disease in the era of catheter based sympathetic renal denervation.

    PubMed

    Petras, Dimitrios; Koutroutsos, Konstantinos; Kordalis, Athanasios; Tsioufis, Costas; Stefanadis, Christodoulos

    2013-08-01

    The kidney has been shown to be critically involved as both trigger and target of sympathetic nervous system overactivity in both experimental and clinical studies. Renal injury and ischemia, activation of renin angiotensin system and dysfunction of nitric oxide system have been implicated in adrenergic activation from kidney. Conversely, several lines of evidence suggest that sympathetic overactivity, through functional and morphological alterations in renal physiology and structure, may contribute to kidney injury and chronic kidney disease progression. Pharmacologic modulation of sympathetic nervous system activity has been found to have a blood pressure independent renoprotective effect. The inadequate normalization of sympathoexcitation by pharmacologic treatment asks for novel treatment options. Catheter based renal denervation targets selectively both efferent and afferent renal nerves and functionally denervates the kidney providing blood pressure reduction in clinical trials and renoprotection in experimental models by ameliorating the effects of excessive renal sympathetic drive. This review will focus on the role of sympathetic overactivity in the pathogenesis of kidney injury and CKD progression and will speculate on the effect of renal denervation to these conditions.

  7. Autonomic control of cardiac function and myocardial oxygen consumption during hypoxic hypoxia.

    NASA Technical Reports Server (NTRS)

    Erickson, H. H.; Stone, H. L.

    1972-01-01

    Investigation in 19 conscious dogs of the importance of the sympathetic nervous system in the coronary and cardiac response to altitude (hypoxic) hypoxia. Beta-adrenergic blockade was used to minimize the cardiac effect associated with sympathetic receptors. It is shown that the autonomic nervous system, and particularly the sympathetic nervous system, is responsible for the increase in ventricular function and myocardial oxygen consumption that occurs during hypoxia. Minimizing this response through appropriate conditioning and training may improve the operating efficiency of the heart and reduce the hazard of hypoxia and other environmental stresses, such as acceleration, which are encountered in advanced aircraft systems.

  8. Sympathetic activity in patients with panic disorder at rest, under laboratory mental stress, and during panic attacks.

    PubMed

    Wilkinson, D J; Thompson, J M; Lambert, G W; Jennings, G L; Schwarz, R G; Jefferys, D; Turner, A G; Esler, M D

    1998-06-01

    The sympathetic nervous system has long been believed to be involved in the pathogenesis of panic disorder, but studies to date, most using peripheral venous catecholamine measurements, have yielded conflicting and equivocal results. We tested sympathetic nervous function in patients with panic disorder by using more sensitive methods. Sympathetic nervous and adrenal medullary function was measured by using direct nerve recording (clinical microneurography) and whole-body and cardiac catecholamine kinetics in 13 patients with panic disorder as defined by the DSM-IV, and 14 healthy control subjects. Measurements were made at rest, during laboratory stress (forced mental arithmetic), and, for 4 patients, during panic attacks occurring spontaneously in the laboratory setting. Muscle sympathetic activity, arterial plasma concentration of norepinephrine, and the total and cardiac norepinephrine spillover rates to plasma were similar in patients and control subjects at rest, as was whole-body epinephrine secretion. Epinephrine spillover from the heart was elevated in patients with panic disorder (P=.01). Responses to laboratory mental stress were almost identical in patient and control groups. During panic attacks, there were marked increases in epinephrine secretion and large increases in the sympathetic activity in muscle in 2 patients but smaller changes in the total norepinephrine spillover to plasma. Whole-body and regional sympathetic nervous activity are not elevated at rest in patients with panic disorder. Epinephrine is released from the heart at rest in patients with panic disorder, possibly due to loading of cardiac neuronal stores by uptake from plasma during surges of epinephrine secretion in panic attacks. Contrary to popular belief, the sympathetic nervous system is not globally activated during panic attacks.

  9. [Effects of inflammation and stimulant diets on functions of autonomic nervous system (author's transl)].

    PubMed

    Akaeda, H; Nagai, K; Okuda, Y; Shinoto, M; Okuda, H

    1981-06-01

    In usual medical consultation, we have been met a lot of female patients suffering from disturbances of autonomic nervous system such as headache, shoulder-ache and so on. Experiments were designed to elucidate whether or not these disturbances of autonomic nervous system were induced by inflammation and accelerated by stimulant diets. Functions of autonomic nervous system were examined by lipolysis in rat epididymal adipose tissue which was partly controlled by sympathetic nervous system. It was found that free fatty acid release from the epididymal adipose tissue was considerably elevated by inflammation which was formed in abdominal wall or in abdominal cavity or oral administration of stimulant diets such as red pepper and white pepper, and that such elevation of lipolysis was significantly reduced by resection of the autonomic nerve. These results indicated that the inflammation and the stimulant diets induced excitement of sympathetic nerve which controlled the epididymal adipose tissue. Experiments were now in progress to clarify relationship between such excitement of sympathetic nervous system induced by the inflammation or by the stimulant diet and irregular complaints due to disturbances of autonomic nervous system.

  10. The crosstalk between autonomic nervous system and blood vessels

    PubMed Central

    Sheng, Yulan; Zhu, Li

    2018-01-01

    The autonomic nervous system (ANS), comprised of two primary branches, sympathetic and parasympathetic nervous system, plays an essential role in the regulation of vascular wall contractility and tension. The sympathetic and parasympathetic nerves work together to balance the functions of autonomic effector organs. The neurotransmitters released from the varicosities in the ANS can regulate the vascular tone. Norepinephrine (NE), adenosine triphosphate (ATP) and Neuropeptide Y (NPY) function as vasoconstrictors, whereas acetylcholine (Ach) and calcitonin gene-related peptide (CGRP) can mediate vasodilation. On the other hand, vascular factors, such as endothelium-derived relaxing factor nitric oxide (NO), and constriction factor endothelin, play an important role in the autonomic nervous system in physiologic conditions. Endothelial dysfunction and inflammation are associated with the sympathetic nerve activity in the pathological conditions, such as hypertension, heart failure, and diabetes mellitus. The dysfunction of the autonomic nervous system could be a risk factor for vascular diseases and the overactive sympathetic nerve is detrimental to the blood vessel. In this review, we summarize findings concerning the crosstalk between ANS and blood vessels in both physiological and pathological conditions and hope to provide insight into the development of therapeutic interventions of vascular diseases. PMID:29593847

  11. New horizons in cardiac innervation imaging: introduction of novel 18F-labeled PET tracers.

    PubMed

    Kobayashi, Ryohei; Chen, Xinyu; Werner, Rudolf A; Lapa, Constantin; Javadi, Mehrbod S; Higuchi, Takahiro

    2017-12-01

    Cardiac sympathetic nervous activity can be uniquely visualized by non-invasive radionuclide imaging techniques due to the fast growing and widespread application of nuclear cardiology in the last few years. The norepinephrine analogue 123 I-meta-iodobenzylguanidine ( 123 I-MIBG) is a single photon emission computed tomography (SPECT) tracer for the clinical implementation of sympathetic nervous imaging for both diagnosis and prognosis of heart failure. Meanwhile, positron emission tomography (PET) imaging has become increasingly attractive because of its higher spatial and temporal resolution compared to SPECT, which allows regional functional and dynamic kinetic analysis. Nevertheless, wider use of cardiac sympathetic nervous PET imaging is still limited mainly due to the demand of costly on-site cyclotrons, which are required for the production of conventional 11 C-labeled (radiological half-life, 20 min) PET tracers. Most recently, more promising 18 F-labeled (half-life, 110 min) PET radiopharmaceuticals targeting sympathetic nervous system have been introduced. These tracers optimize PET imaging and, by using delivery networks, cost less to produce. In this article, the latest advances of sympathetic nervous imaging using 18 F-labeled radiotracers along with their possible applications are reviewed.

  12. Nervous kidney. Interaction between renal sympathetic nerves and the renin-angiotensin system in the control of renal function.

    PubMed

    DiBona, G F

    2000-12-01

    Increases in renal sympathetic nerve activity regulate the functions of the nephron, the vasculature, and the renin-containing juxtaglomerular granular cells. Because increased activity of the renin-angiotensin system can also influence nephron and vascular function, it is important to understand the interactions between the renal sympathetic nerves and the renin-angiotensin system in the control of renal function. These interactions can be intrarenal, for example, the direct (by specific innervation) and indirect (by angiotensin II) contributions of increased renal sympathetic nerve activity to the regulation of renal function. The effects of increased renal sympathetic nerve activity on renal function are attenuated when the activity of the renin-angiotensin system is suppressed or antagonized with ACE inhibitors or angiotensin II-type AT(1)-receptor antagonists. The effects of intrarenal administration of angiotensin II are attenuated after renal denervation. These interactions can also be extrarenal, for example, in the central nervous system, wherein renal sympathetic nerve activity and its arterial baroreflex control are modulated by changes in activity of the renin-angiotensin system. In addition to the circumventricular organs, whose permeable blood-brain barrier permits interactions with circulating angiotensin II, there are interactions at sites behind the blood-brain barrier that depend on the influence of local angiotensin II. The responses to central administration of angiotensin II-type AT(1)-receptor antagonists into the ventricular system or microinjected into the rostral ventrolateral medulla are modulated by changes in activity of the renin-angiotensin system produced by physiological changes in dietary sodium intake. Similar modulation is observed in pathophysiological models wherein activity of both the renin-angiotensin and sympathetic nervous systems is increased (eg, congestive heart failure). Thus, both renal and extrarenal sites of interaction between the renin-angiotensin system and renal sympathetic nerve activity are involved in influencing the neural control of renal function.

  13. Serotonin and Serotonin Transporters in the Adrenal Medulla: A Potential Hub for Modulation of the Sympathetic Stress Response.

    PubMed

    Brindley, Rebecca L; Bauer, Mary Beth; Blakely, Randy D; Currie, Kevin P M

    2017-05-17

    Serotonin (5-HT) is an important neurotransmitter in the central nervous system where it modulates circuits involved in mood, cognition, movement, arousal, and autonomic function. The 5-HT transporter (SERT; SLC6A4) is a key regulator of 5-HT signaling, and genetic variations in SERT are associated with various disorders including depression, anxiety, and autism. This review focuses on the role of SERT in the sympathetic nervous system. Autonomic/sympathetic dysfunction is evident in patients with depression, anxiety, and other diseases linked to serotonergic signaling. Experimentally, loss of SERT function (SERT knockout mice or chronic pharmacological block) has been reported to augment the sympathetic stress response. Alterations to serotonergic signaling in the CNS and thus central drive to the peripheral sympathetic nervous system are presumed to underlie this augmentation. Although less widely recognized, SERT is robustly expressed in chromaffin cells of the adrenal medulla, the neuroendocrine arm of the sympathetic nervous system. Adrenal chromaffin cells do not synthesize 5-HT but accumulate small amounts by SERT-mediated uptake. Recent evidence demonstrated that 5-HT 1A receptors inhibit catecholamine secretion from adrenal chromaffin cells via an atypical mechanism that does not involve modulation of cellular excitability or voltage-gated Ca 2+ channels. This raises the possibility that the adrenal medulla is a previously unrecognized peripheral hub for serotonergic control of the sympathetic stress response. As a framework for future investigation, a model is proposed in which stress-evoked adrenal catecholamine secretion is fine-tuned by SERT-modulated autocrine 5-HT signaling.

  14. Modulation of vascular function by diet and exercise.

    PubMed

    Jennings, G L; Chin-Dusting, J P; Kingwell, B A; Dart, A M; Cameron, J; Esler, M; Lewis, T V

    1997-01-01

    Clinical research is conducted in free living individuals who are always subject to the influences on vascular function and the major cardiovascular regulators of their lifestyle. The purpose of this paper is to review some lifestyle influences on cardiovascular function, particularly the sympathetic nervous system and endothelially mediated vasodilatation. There are highly differentiated sympathetic responses to feeding, and to acute exercise. Over a longer period obesity has a typical pattern of sympathetic activity. Reduced dietary salt intake elicits profound localised increases in sympathetic activity to the kidney. Marine oil supplementation attenuates the sympathetic responses to psychological stress and improves endothelially mediated vasodilatation in hypercholesterolaemics. Exercise training reduced total noradrenaline spillover, the major beds affected being the renal and skeletal muscle. These examples illustrate the dynamic nature of vascular dilatation and that, like the sympathetic nervous system, it is modulated by short, medium and long term influences. In both cases there is regulation both at a local and systemic level. Habitual, and recent, lifestyle can exert important cardiovascular effects which must be taken into account in clinical and epidemiological research.

  15. The Human Sympathetic Nervous System Response to Spaceflight

    NASA Technical Reports Server (NTRS)

    Ertl, Andrew C.; Diedrich, Andre; Paranjape, Sachin Y.; Biaggioni, Italo; Robertson, Rose Marie; Lane, Lynda D.; Shiavi, Richard; Robertson, David

    2003-01-01

    The sympathetic nervous system is an important part of the autonomic (or automatic) nervous system. When an individual stands up, the sympathetic nervous system speeds the heart and constricts blood vessels to prevent a drop in blood pressure. A significant number of astronauts experience a drop in blood pressure when standing for prolonged periods after they return from spaceflight. Difficulty maintaining blood pressure with standing is also a daily problem for many patients. Indirect evidence available before the Neurolab mission suggested the problem in astronauts while in space might be due partially to reduced sympathetic nervous system activity. The purpose of this experiment was to identify whether sympathetic activity was reduced during spaceflight. Sympathetic nervous system activity can be determined in part by measuring heart rate, nerve activity going to blood vessels, and the release of the hormone norepinephrine into the blood. Norepinephrine is a neurotransmitter discharged from active sympathetic nerve terminals, so its rate of release can serve as a marker of sympathetic nervous system action. In addition to standard cardiovascular measurements (heart rate, blood pressure), we determined sympathetic nerve activity as well as norepinephrine release and clearance on four crewmembers on the Neurolab mission. Contrary to our expectation, the results demonstrated that the astronauts had mildly elevated resting sympathetic nervous system activity in space. Sympathetic nervous system responses to stresses that simulated the cardiovascular effects of standing (lower body negative pressure) were brisk both during and after spaceflight. We concluded that, in the astronauts tested, the activity and response of the sympathetic nervous system to cardiovascular stresses appeared intact and mildly elevated both during and after spaceflight. These changes returned to normal within a few days.

  16. Clinical application of noradrenaline spillover methodology: delineation of regional human sympathetic nervous responses.

    PubMed

    Esler, M

    1993-11-01

    The proportionality which in general exists between rates of sympathetic nerve firing and the overflow of noradrenaline into the venous drainage of an organ provides the experimental justification for the use of measurements of noradrenaline in plasma as a biochemical measure of sympathetic nervous function. Static measurements of noradrenaline plasma concentration have several limitations. One is the confounding influence of noradrenaline plasma clearance on plasma concentration. Other drawbacks include the distortion arising from antecubital venous sampling (this represents but one venous drainage, that of the forearm), and the inability to detect regional differentiation of sympathetic responses. Clinical regional noradrenaline spillover measurements, performed with infusions of radiolabelled noradrenaline and sampling from centrally placed catheters, and derived from regional isotope dilution, overcome these deficiencies. The strength of the methodology is that sympathetic nervous function may be studied in the internal organs not accessible to nerve recording with microneurography. Examples of the regionalization of human sympathetic responses disclosed include the preferential activation of the cardiac sympathetic outflow with mental stress, cigarette smoking, aerobic exercise, cardiac failure, coronary insufficiency, essential hypertension and in ventricular arrhythmias, and the preferential stimulation or inhibition of the renal sympathetic nerves with low salt diets and mental stress, and with exercise training, respectively. By application of the same principles, regional release of the sympathetic cotransmitters neuropeptide Y and adrenaline can be studied in humans. Cotransmitter release, however, is detected only with some difficulty. In restricted circumstances we find evidence of regional cotransmitter release to plasma, such as the release of neuropeptide Y from the heart at the very high rates of sympathetic nerve firing occurring with aerobic exercise, and cardiac adrenaline release also with exercise and after loading of the neuronal adrenaline pool by intravenous infusion of adrenaline.

  17. Effect of working hours on cardiovascular-autonomic nervous functions in engineers in an electronics manufacturing company.

    PubMed

    Sasaki, T; Iwasaki, K; Oka, T; Hisanaga, N; Ueda, T; Takada, Y; Fujiki, Y

    1999-01-01

    A field survey of 147 engineers (23-49 years) in an electronics manufacturing company was conducted to investigate the effect of working hours on cardiovascular-autonomic nervous functions (urinary catecholamines, heart rate variability and blood pressure). The subjects were divided into 3 groups by age: 23-29 (n = 49), 30-39 (n = 74) and 40-49 (n = 24) year groups. Subjects in each age group were further divided into shorter (SWH) and longer (LWH) working hour subgroups according to the median of weekly working hours. In the 30-39 year group, urinary noradrenaline in the afternoon for LWH was significantly lower than that for SWH and a similar tendency was found in the LF/HF ratio of heart rate variability at rest. Because these two autonomic nervous indices are related to sympathetic nervous activity, the findings suggested that sympathetic nervous activity for LWH was lower than that for SWH in the 30-39 year group. Furthermore, there were significant relationships both between long working hours and short sleeping hours, and between short sleeping hours and high complaint rates of "drowsiness and dullness" in the morning in this age group. Summarizing these results, it appeared that long working hours might lower sympathetic nervous activity due to chronic sleep deprivation.

  18. UBC-Nepal Expedition: acute alterations in sympathetic nervous activity do not influence brachial artery endothelial function at sea level and high altitude.

    PubMed

    Tymko, Michael M; Tremblay, Joshua C; Steinback, Craig D; Moore, Jonathan P; Hansen, Alex B; Patrician, Alexander; Howe, Connor A; Hoiland, Ryan L; Green, Daniel J; Ainslie, Philip N

    2017-11-01

    Evidence indicates that increases in sympathetic nervous activity (SNA), and acclimatization to high altitude (HA), may reduce endothelial function as assessed by brachial artery flow-mediated dilatation (FMD); however, it is unclear whether such changes in FMD are due to direct vascular constraint, or consequential altered hemodynamics (e.g., shear stress) associated with increased SNA as a consequence of exposure to HA. We hypothesized that 1 ) at rest, SNA would be elevated and FMD would be reduced at HA compared with sea-level (SL); and 2 ) at SL and HA, FMD would be reduced when SNA was acutely increased, and elevated when SNA was acutely decreased. Using a novel, randomized experimental design, brachial artery FMD was assessed at SL (344 m) and HA (5,050 m) in 14 participants during mild lower-body negative pressure (LBNP; -10 mmHg) and lower-body positive pressure (LBPP; +10 mmHg). Blood pressure (finger photoplethysmography), heart rate (electrocardiogram), oxygen saturation (pulse oximetry), and brachial artery blood flow and shear rate (Duplex ultrasound) were recorded during LBNP, control, and LBPP trials. Muscle SNA was recorded (via microneurography) in a subset of participants ( n = 5). Our findings were 1 ) at rest, SNA was elevated ( P < 0.01), and absolute FMD was reduced ( P = 0.024), but relative FMD remained unaltered ( P = 0.061), at HA compared with SL; and 2 ) despite significantly altering SNA with LBNP (+60.3 ± 25.5%) and LBPP (-37.2 ± 12.7%) ( P < 0.01), FMD was unaltered at SL ( P = 0.448) and HA ( P = 0.537). These data indicate that acute and mild changes in SNA do not directly influence brachial artery FMD at SL or HA. NEW & NOTEWORTHY The role of the sympathetic nervous system on endothelial function remains unclear. We used lower-body negative and positive pressure to manipulate sympathetic nervous activity at sea level and high altitude and measured brachial endothelial function via flow-mediated dilation. We found that acutely altering sympathetic nervous activity had no effect on endothelial function. Copyright © 2017 the American Physiological Society.

  19. Does dysfunction of the autonomic nervous system affect success of renal denervation in reducing blood pressure?

    PubMed

    Fricke, Lisa; Petroff, David; Desch, Steffen; Lurz, Philipp; Reinhardt, Sebastian; Sonnabend, Melanie; Classen, Joseph; Baum, Petra

    2017-01-01

    Renal denervation is an interventional approach aiming to reduce high blood pressure. Its efficacy is subject of controversial debate. We analyzed autonomic function in patients undergoing renal denervation to identify responders. A total of 21 patients with treatment-resistant hypertension scheduled for renal denervation were included. Heart rate variability, pupillary function and sympathetic skin response were examined prior to intervention. Before and 1 or 3 months after intervention, 24-h ambulatory blood pressure readings were taken. Patients were stratified according to sympathetic nervous system function. Sympathetic activity was reduced in 12 participants (group 1) and normal or enhanced in nine patients (group 2). The mean of daytime systolic blood pressure decreased in groups 1 and 2 from 168 to 157 mmHg (95% confidence interval for difference, 1-21 mmHg, p = 0.035) and from 166 to 145 mmHg (8-34 mmHg, p = 0.005), respectively. In a linear model, blood pressure reduction was 11.3 mmHg (0.3-22 mmHg) greater in group 2 than in group 1 (p = 0.045). Patients with preexisting reduced activity of the sympathetic nervous system benefited less from renal denervation.

  20. Sympathetic nervous system and the kidney in hypertension.

    PubMed

    DiBona, Gerald F

    2002-03-01

    Long-term control of arterial pressure has been attributed to the kidney by virtue of its ability to couple the regulation of blood volume to the maintenance of sodium and water balance by the mechanisms of pressure natriuresis and diuresis. In the presence of a defect in renal excretory function, hypertension arises as the consequence of the need for an increase in arterial pressure to offset the abnormal pressure natriuresis and diuresis mechanisms, and to maintain sodium and water balance. There is growing evidence that an important cause of the defect in renal excretory function in hypertension is an increase in renal sympathetic nerve activity (RSNA). First, increased RSNA is found in animal models of hypertension and hypertensive humans. Second, renal denervation prevents or alleviates hypertension in virtually all animal models of hypertension. Finally, increased RSNA results in reduced renal excretory function by virtue of effects on the renal vasculature, the tubules, and the juxtaglomerular granular cells. The increase in RSNA is of central nervous system origin, with one of the stimuli being the action of angiotensin II, probably of central origin. By acting on brain stem nuclei that are important in the control of peripheral sympathetic vasomotor tone (e.g. rostral ventrolateral medulla), angiotensin II increases the basal level of RSNA and impairs its arterial baroreflex regulation. Therefore, the renal sympathetic nerves may serve as the link between central sympathetic nervous system regulatory sites and the kidney in contributing to the renal excretory defect in the development of hypertension.

  1. Nervous control of photophores in luminescent fishes.

    PubMed

    Zaccone, Giacomo; Abelli, Luigi; Salpietro, Lorenza; Zaccone, Daniele; Macrì, Battesimo; Marino, Fabio

    2011-07-01

    Functional studies of the autonomic innervation in the photophores of luminescent fishes are scarce. The majority of studies have involved either the stimulation of isolated photophores or the modulatory effects of adrenaline-induced light emission. The fish skin is a highly complex organ that performs a wide variety of physiological processes and receives extensive nervous innervations. The latter includes autonomic nerve fibers of spinal sympathetic origin having a secretomotor function. More recent evidence indicates that neuropeptide-containing nerve fibers, such as those that express tachykinin and its NK1 receptor, neuropeptide Y, or nitric oxide, may also play an important role in the nervous control of photophores. There is no anatomical evidence that shows that nNOS positive (nitrergic) neurons form a population distinct from the secretomotor neurons with perikarya in the sympathetic ganglia. The distribution and function of the nitrergic nerves in the luminous cells, however, is less clear. It is likely that the chemical properties of the sympathetic postganglionic neurons in the ganglia of luminescent fishes are target-specific, such as observed in mammals. Copyright © 2010 Elsevier GmbH. All rights reserved.

  2. Recurrent postoperative CRPS I in patients with abnormal preoperative sympathetic function.

    PubMed

    Ackerman, William E; Ahmad, Mahmood

    2008-02-01

    A complex regional pain syndrome of an extremity that has previously resolved can recur after repeat surgery at the same anatomic site. Complex regional pain syndrome is described as a disease of the autonomic nervous system. The purpose of this study was to evaluate preoperative and postoperative sympathetic function and the recurrence of complex regional pain syndrome type I (CRPS I) in patients after repeat carpal tunnel surgery. Thirty-four patients who developed CRPS I after initial carpal tunnel releases and required repeat open carpal tunnel surgeries were studied. Laser Doppler imaging (LDI) was used to assess preoperative sympathetic function 5-7 days prior to surgery and to assess postoperative sympathetic function 19-22 days after surgery or 20-22 days after resolution of the CRPS I. Sympathetic nervous system function was prospectively examined by testing reflex-evoked vasoconstrictor responses to sympathetic stimuli recorded with LDI of both hands. Patients were assigned to 1 of 2 groups based on LDI responses to sympathetic provocation. Group I (11 of 34) patients had abnormal preoperative LDI studies in the hands that had prior surgeries, whereas group II (23 of 34) patients had normal LDI studies. Each patient in this study had open repeat carpal tunnel surgery. In group I, 8 of 11 patients had recurrent CRPS I, whereas in group II, 3 of 23 patients had recurrent CRPS I. All of the recurrent CRPS I patients were successfully treated with sympathetic blockade, occupational therapy, and pharmacologic modalities. Repeat LDI after recurrent CRPS I resolution was abnormal in 8 of 8 group I patients and in 1 of 3 group II patients. CRPS I can recur after repeat hand surgery. Our study results may, however, identify those individuals who may readily benefit from perioperative therapies. Prognostic I.

  3. THE SYMPATHETIC NERVOUS SYSTEM ALTERATIONS IN HUMAN HYPERTENSION

    PubMed Central

    Grassi, Guido; Mark, Allyn; Esler, Murray

    2015-01-01

    A number of articles have dealt with the importance and mechanisms of the sympathetic nervous system alterations in experimental animal models of hypertension. This review addresses the role of the sympathetic nervous system in the pathophysiology and therapy of human hypertension. We first discuss the strengths and limitations of various techniques for assessing the sympathetic nervous system in humans, with a focus on heart rate, plasma norepinephrine, microneurographic recording of sympathetic nerve traffic, and measurements of radiolabeled norepinephrine spillover. We then examine the evidence supporting the importance of neuroadrenergic factors as “promoters” and “amplifiers” of human hypertension. We expand on the role of the sympathetic nervous system in two increasingly common forms of secondary hypertension, namely hypertension associated with obesity and with renal disease. With this background, we examine interventions of sympathetic deactivation as a mode of antihypertensive treatment. Particular emphasis is given to the background and results of recent therapeutic approaches based on carotid baroreceptor stimulation and radiofrequency ablation of the renal nerves. PMID:25767284

  4. [Autonomic nervous function in patients with vertigo--evaluation for static function, variation and dynamic change using power spectral analysis of RR intervals].

    PubMed

    Seki, S

    1997-04-01

    Power spectral analysis of RR intervals (PSA) of 94 vertiginous patients with associated autonomic nervous dysfunction (AND group), 31 patients with vertebro-basilar insufficiency (VBI group) and 25 controls were analyzed in supine and upright positions. In addition static function, variation from the supine to the upright position and dynamic change in autonomic nervous function (ANF) from the supine to the upright position were examined. Heart rate was recorded for 120 seconds in the supine and 40 seconds in the upright position. RR intervals for each 20-second period were computed using FFT (Fast Fourier Transformation), and the ratio of low frequency power (0.05-0.15 Hz) to high frequency power (0.15-0.4 Hz) (L/H) of PSA were analyzed as an index of sympathetic activity. The PSA was examined by the following three parameters; L/H at rest during the 80-second period from 20 to 100 seconds (static function), the L/H variation between each 20-second period from 0 to 160 seconds (variation) and the ratio of L/H to that in the upright position (dynamic change). The results of PSA were compared with those of pulse wave velocity (PWV) and the coefficient of variation of the RR interval (CVRR), and association between attacks of vertigo and ANF was determined. The results of static function of PSA and the results of PWV and CVRR were very similar, indicating that both methods are useful for evaluating ANF in vertiginous patients. In the AND group the variation in sympathetic activity tended to be larger in patients with sympathetic hyperfunction and parasympathetic hypofunction and in the patients with sympathetic hypofunction and parasympathetic hyperfunction resulting from PWV and CVRR, than in the controls. The dynamic change in patients with sympathetic hyperfunction and parasympathetic hypofunction resulting from PWV and CVRR was also significantly lower than that in the controls (p < 0.01). Some patients in the AND group already showed excessive sympathetic hyperfunction at rest, and changing the position from supine to upright might trigger sympathetic hypofunction, causing an attack of vertigo. The PSA results in the VBI group were similar to those in the controls, suggesting that sympathetic dysfunction did not affect VBI induced vertigo.

  5. Autonomic nervous function in patients with Meniere's disease evaluated by power spectral analysis of heart rate variability.

    PubMed

    Yamada, M; Mizuta, K; Ito, Y; Furuta, M; Sawai, S; Miyata, H

    1999-10-01

    A hypothesis has been advanced that the autonomic nervous dysfunction (AND) relates to the development of vertigo in Meniere's disease (MD). We also studied the causal relationship between AND and vertigo in MD. We evaluated autonomic nervous function in 17 patients with MD (five men and 12 women ranging in age from 16 to 70 years) by classifying them by their stages of attack and interval of vertigo and with power spectral analysis (PSA) of heart rate variability. Fourteen healthy volunteers were also tested as controls. At the interval stage, parasympathetic nervous hypofunction and significant depression of sympathetic response due to postural changes from the supine to the standing position were observed in many of those patients. At the attack stage, sympathetic nervous hypofunction was observed in some of the patients. These findings lead us to the conclusion that AND relates to vertigo in MD as a predisposing factor. However, the question of whether AND relates as a trigger or as a consequence of vertigo in MD has not been adequately solved in this study. We will make further studies on circadian variation of autonomic nervous function.

  6. Leptin regulation of bone resorption by the sympathetic nervous system and CART.

    PubMed

    Elefteriou, Florent; Ahn, Jong Deok; Takeda, Shu; Starbuck, Michael; Yang, Xiangli; Liu, Xiuyun; Kondo, Hisataka; Richards, William G; Bannon, Tony W; Noda, Masaki; Clement, Karine; Vaisse, Christian; Karsenty, Gerard

    2005-03-24

    Bone remodelling, the mechanism by which vertebrates regulate bone mass, comprises two phases, namely resorption by osteoclasts and formation by osteoblasts; osteoblasts are multifunctional cells also controlling osteoclast differentiation. Sympathetic signalling via beta2-adrenergic receptors (Adrb2) present on osteoblasts controls bone formation downstream of leptin. Here we show, by analysing Adrb2-deficient mice, that the sympathetic nervous system favours bone resorption by increasing expression in osteoblast progenitor cells of the osteoclast differentiation factor Rankl. This sympathetic function requires phosphorylation (by protein kinase A) of ATF4, a cell-specific CREB-related transcription factor essential for osteoblast differentiation and function. That bone resorption cannot increase in gonadectomized Adrb2-deficient mice highlights the biological importance of this regulation, but also contrasts sharply with the increase in bone resorption characterizing another hypogonadic mouse with low sympathetic tone, the ob/ob mouse. This discrepancy is explained, in part, by the fact that CART ('cocaine amphetamine regulated transcript'), a neuropeptide whose expression is controlled by leptin and nearly abolished in ob/ob mice, inhibits bone resorption by modulating Rankl expression. Our study establishes that leptin-regulated neural pathways control both aspects of bone remodelling, and demonstrates that integrity of sympathetic signalling is necessary for the increase in bone resorption caused by gonadal failure.

  7. Mood states, sympathetic activity, and in vivo beta-adrenergic receptor function in a normal population.

    PubMed

    Yu, Bum-Hee; Kang, Eun-Ho; Ziegler, Michael G; Mills, Paul J; Dimsdale, Joel E

    2008-01-01

    The purpose of this study was to examine the relationship between mood states and beta-adrenergic receptor function in a normal population. We also examined if sympathetic nervous system activity is related to mood states or beta-adrenergic receptor function. Sixty-two participants aged 25-50 years were enrolled in this study. Mood states were assessed using the Profile of Mood States (POMS). Beta-adrenergic receptor function was determined using the chronotropic 25 dose isoproterenol infusion test. Level of sympathetic nervous system activity was estimated from 24-hr urine norepinephrine excretion. Higher tension-anxiety, depression-dejection, and anger-hostility were related to decreased beta-adrenergic receptor sensitivity (i.e., higher chronotropic 25 dose values), but tension-anxiety was the only remaining independent predictor of beta-adrenergic receptor function after controlling for age, gender, ethnicity, and body mass index (BMI). Urinary norepinephrine excretion was unrelated to either mood states or beta-adrenergic receptor function. These findings replicate previous reports that anxiety is related to decreased (i.e., desensitized) beta-adrenergic receptor sensitivity, even after controlling for age, gender, ethnicity, and body mass index.

  8. Vascular dysfunctions following spinal cord injury

    PubMed Central

    Popa, F; Grigorean, VT; Onose, G; Sandu, AM; Popescu, M; Burnei, G; Strambu, V; Sinescu, C

    2010-01-01

    The aim of this article is to analyze the vascular dysfunctions occurring after spinal cord injury (SCI). Vascular dysfunctions are common complications of SCI. Cardiovascular disturbances are the leading causes of morbidity and mortality in both acute and chronic stages of SCI. Neuroanatomy and physiology of autonomic nervous system, sympathetic and parasympathetic, is reviewed. SCI implies disruption of descendent pathways from central centers to spinal sympathetic neurons, originating in intermediolateral nuclei of T1–L2 cord segments. Loss of supraspinal control over sympathetic nervous system results in reduced overall sympathetic activity below the level of injury and unopposed parasympathetic outflow through intact vagal nerve. SCI associates significant vascular dysfunction. Spinal shock occurs during the acute phase following SCI and it is a transitory suspension of function and reflexes below the level of the injury. Neurogenic shock, part of spinal shock, consists of severe arterial hypotension and bradycardia. Autonomic dysreflexia appears during the chronic phase, after spinal shock resolution, and it is a life–threatening syndrome of massive imbalanced reflex sympathetic discharge occurring in patients with SCI above the splanchnic sympathetic outflow (T5–T6). Arterial hypotension with orthostatic hypotension occurs in both acute and chronic phases. The etiology is multifactorial. We described a few factors influencing the orthostatic hypotension occurrence in SCI: sympathetic nervous system dysfunction, low plasma catecholamine levels, rennin–angiotensin–aldosterone activity, peripheral alpha–adrenoceptor hyperresponsiveness, impaired function of baroreceptors, hyponatremia and low plasmatic volume, cardiovascular deconditioning, morphologic changes in sympathetic neurons, plasticity within spinal circuits, and motor deficit leading to loss of skeletal muscle pumping activity. Additional associated cardiovascular concerns in SCI, such as deep vein thrombosis and long–term risk for coronary heart disease and systemic atherosclerosis are also described. Proper prophylaxis, including non–pharmacologic and pharmacological strategies, diminishes the occurrence of the vascular dysfunction following SCI. Each vascular disturbance requires a specific treatment. PMID:20945818

  9. Paring down on Descartes: a review of brain noradrenaline and sympathetic nervous function.

    PubMed

    Lambert, G W

    2001-12-01

    1. The conceptual framework of mind-body interaction can be traced back to the seminal observations of the French philosopher and mathematician René Descartes (1596-1650). Descartes succeeded in eliminating the soul's apparent physiological role and established the brain as the body's control centre. 2. While the pivotal role played by the central nervous system (CNS) in the maintenance of physiological and psychological health has long been recognized, the development of methods designed for the direct examination of human CNS processes has only recently come to fruition. 3. There exists a substantial body of evidence derived from clinical and experimental studies indicating that CNS monoaminergic cell groups, in particular those using noradrenaline as their neurotransmitter, participate in the excitatory regulation of the sympathetic nervous system and the development and maintenance of the hypertensive state. 4. In essential hypertension, particularly in younger patients, there occurs an activation of sympathetic nervous outflows to the kidneys, heart and skeletal muscle. The existence of a correlation between subcortical brain noradrenaline turnover and total body noradrenaline spillover to plasma, resting blood pressure and heart rate provides further support for the observation that elevated subcortical noradrenergic activity subserves a sympathoexcitatory role in the regulation of sympathetic preganglionic neurons of the thorocolumbar cord.

  10. A Sympathetic Neuron Autonomous Role for Egr3-Mediated Gene Regulation in Dendrite Morphogenesis and Target Tissue Innervation

    PubMed Central

    Quach, David H.; Oliveira-Fernandes, Michelle; Gruner, Katherine A.; Tourtellotte, Warren G.

    2013-01-01

    Egr3 is a nerve growth factor (NGF)-induced transcriptional regulator that is essential for normal sympathetic nervous system development. Mice lacking Egr3 in the germline have sympathetic target tissue innervation abnormalities and physiologic sympathetic dysfunction similar to humans with dysautonomia. However, since Egr3 is widely expressed and has pleiotropic function, it has not been clear whether it has a role within sympathetic neurons and if so, what target genes it regulates to facilitate target tissue innervation. Here, we show that Egr3 expression within sympathetic neurons is required for their normal innervation since isolated sympathetic neurons lacking Egr3 have neurite outgrowth abnormalities when treated with NGF and mice with sympathetic neuron-restricted Egr3 ablation have target tissue innervation abnormalities similar to mice lacking Egr3 in all tissues. Microarray analysis performed on sympathetic neurons identified many target genes deregulated in the absence of Egr3, with some of the most significantly deregulated genes having roles in axonogenesis, dendritogenesis, and axon guidance. Using a novel genetic technique to visualize axons and dendrites in a subpopulation of randomly labeled sympathetic neurons, we found that Egr3 has an essential role in regulating sympathetic neuron dendrite morphology and terminal axon branching, but not in regulating sympathetic axon guidance to their targets. Together, these results indicate that Egr3 has a sympathetic neuron autonomous role in sympathetic nervous system development that involves modulating downstream target genes affecting the outgrowth and branching of sympathetic neuron dendrites and axons. PMID:23467373

  11. Sympathetic nervous system influences on the kidney. Role in hypertension.

    PubMed

    DiBona, G F

    1989-03-01

    Efferent renal sympathetic nerve activity (ERSNA) is elevated in human essential hypertension as well as several forms of experimental hypertension in animals. In addition, bilateral complete renal denervation delays the development and/or attenuates the magnitude of the hypertension in several different forms of experimental hypertension in animals. Efferent renal sympathetic nerve activity is known to have dose-dependent effects on renal blood flow and glomerular filtration rate, renal tubular sodium and water reabsorption, and renin secretion rate that are capable of contributing, singly or in combination, to the development, maintenance, and exacerbation of the hypertensive state. Of the many factors known to influence the central nervous system integrative regulation of ERSNA, two environmental factors, dietary sodium intake and environmental stress, are capable of significant interaction. This resultant increase in ERSNA and subsequent renal functional alterations can participate in the hypertensive process. This is especially evident in the presence of an underlying genetic predisposition to the development of hypertension. Thus, interactions between environmental and genetic influences can produce alterations in the sympathetic neural control of renal function that play an important role in hypertension.

  12. Physiological and Mood Changes Induced by Exercise Withdrawal

    DTIC Science & Technology

    2004-01-01

    parasympathetic nervous system and a shift towards increased sympathetic activity (Dekker et al., 2000; Task Force of the European Society of Cardiology and...HR response will be important. HR is controlled by both the sympathetic and parasympathetic nervous systems . Heart rate variability (HRV) is a... sympathetic and parasympathetic nervous systems plays an important role in cardiovascular homeostasis. Heart rate variability has been used as an

  13. Rilmenidine sympatholytic activity preserves mental stress, orthostatic sympathetic responses and adrenaline secretion.

    PubMed

    Esler, Murray; Lux, Alan; Jennings, Garry; Hastings, Jacqui; Socratous, Flora; Lambert, Gavin

    2004-08-01

    Heightened central sympathetic nervous outflow is common in essential hypertension, contributing to hypertension development and possibly also to complications. Acute sympathetic nervous activation is a proven trigger for adverse cardiovascular events. Accordingly, antihypertensive drugs inhibiting sympathetic outflow represent a theoretically attractive therapeutic option. To study the sympatholytic and blood pressure-lowering activity of the imidazoline binding agent rilmenidine at rest and during reflex sympathetic activation. We used a randomized, double-blind, 6-week cross-over study, with a 1-week placebo run-in period, two 2-week active treatment intervals (rilmenidine 1 mg twice daily or placebo) and intervening 1-week placebo washout. In 15 hypertensive patients, noradrenaline and adrenaline plasma kinetics and intra-arterial blood pressure measurements were performed at rest, after mental stress (difficult mental arithmetic) and during head-up tilting, at the end of the 2-week dosing periods. The noradrenaline spillover rate, indicative of whole body sympathetic activity, was reduced 35% by rilmenidine at rest (P < 0.01) and remained significantly lower during mental stress and tilting, although the increases in noradrenaline spillover with both stimuli were preserved. The effects on intra-arterial blood pressure ran in parallel, a fall in supine resting pressure, but no reduction in blood pressure rise during mental stress and a lack of fall in blood pressure with tilting. On placebo, adrenaline secretion was 0.88 +/- 0.15 nmol/min (mean +/- SE) at rest, increased by 0.42 +/- 0.23 nmol/min with mental stress (P = 0.019) and was unchanged with tilting. Rilmenidine left adrenaline secretion untouched under all conditions. The present study confirms a sympatholytic effect of rilmenidine during supine rest but preservation of sympathetic responses during mental stress and tilting, with the latter underlying a freedom from postural hypotension on the drug. The absence of suppression of reflexive sympathetic responses contrasts with the described effects of rilmenidine in experimental animals, and emphasizes the previously demonstrated unique importance in humans of suprabulbar noradrenergic neuronal projections from the brainstem in regulating tonic sympathetic activity, with these being inhibited by imidazoline binding agents. Sympathetic nervous inhibition with rilmenidine contrasted with an absence of suppression of adrenaline secretion, affirming that sympathetic nervous and adrenal medullary function can be disconnected.

  14. Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity.

    PubMed

    Nogueiras, Ruben; Pérez-Tilve, Diego; Veyrat-Durebex, Christelle; Morgan, Donald A; Varela, Luis; Haynes, William G; Patterson, James T; Disse, Emmanuel; Pfluger, Paul T; López, Miguel; Woods, Stephen C; DiMarchi, Richard; Diéguez, Carlos; Rahmouni, Kamal; Rohner-Jeanrenaud, Françoise; Tschöp, Matthias H

    2009-05-06

    We investigated a possible role of the central glucagon-like peptide (GLP-1) receptor system as an essential brain circuit regulating adiposity through effects on nutrient partitioning and lipid metabolism independent from feeding behavior. Both lean and diet-induced obesity mice were used for our experiments. GLP-1 (7-36) amide was infused in the brain for 2 or 7 d. The expression of key enzymes involved in lipid metabolism was measured by real-time PCR or Western blot. To test the hypothesis that the sympathetic nervous system may be responsible for informing adipocytes about changes in CNS GLP-1 tone, we have performed direct recording of sympathetic nerve activity combined with experiments in genetically manipulated mice lacking beta-adrenergic receptors. Intracerebroventricular infusion of GLP-1 in mice directly and potently decreases lipid storage in white adipose tissue. These effects are independent from nutrient intake. Such CNS control of adipocyte metabolism was found to depend partially on a functional sympathetic nervous system. Furthermore, the effects of CNS GLP-1 on adipocyte metabolism were blunted in diet-induced obese mice. The CNS GLP-1 system decreases fat storage via direct modulation of adipocyte metabolism. This CNS GLP-1 control of adipocyte lipid metabolism appears to be mediated at least in part by the sympathetic nervous system and is independent of parallel changes in food intake and body weight. Importantly, the CNS GLP-1 system loses the capacity to modulate adipocyte metabolism in obese states, suggesting an obesity-induced adipocyte resistance to CNS GLP-1.

  15. Baroreflex Function in Rats after Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Hasser, Eileen M.

    1997-01-01

    Prolonged exposure of humans to decreased gravitational forces during spaceflight results in a number of adverse cardiovascular consequences, often referred to as cardiovascular deconditioning. Prominent among these negative cardiovascular effects are orthostatic intolerance and decreased exercise capacity. Rat hindlimb unweighting is an animal model which simulates weightlessness, and results in similar cardiovascular consequences. Cardiovascular reflexes, including arterial and cardiopulmonary baroreflexes, are required for normal adjustment to both orthostatic challenges and exercise. Therefore, the orthostatic intolerance and decreased exercise capacity associated with exposure to microgravity may be due to cardiovascular reflex dysfunction. The proposed studies will test the general hypothesis that hindlimb unweighting in rats results in impaired autonomic reflex control of the sympathetic nervous system. Specifically, we hypothesize that the ability to reflexly increase sympathetic nerve activity in response to decreases in arterial pressure or blood volume will be blunted due to hindlimb unweighting. There are 3 specific aims: (1) To evaluate arterial and cardiopulmonary baroreflex control of renal and lumbar sympathetic nerve activity in conscious rats subjected to 14 days of hindlimb unweighting; (2) To examine the interaction between arterial and cardiopulmonary baroreflex control of sympathetic nerve activity in conscious hindlimb unweighted rats; (3) to evaluate changes in afferent and/or central nervous system mechanisms in baroreflex regulation of the sympathetic nervous system. These experiments will provide information related to potential mechanisms for orthostatic and exercise intolerance due to microgravity.

  16. The Association between Baseline Subjective Anxiety Rating and Changes in Cardiac Autonomic Nervous Activity in Response to Tryptophan Depletion in Healthy Volunteers

    PubMed Central

    Hsiao, Chih Yin; Tsai, Hsin Chun; Chi, Mei Hung; Chen, Kao Chin; Chen, Po See; Lee, I Hui; Yeh, Tzung Lieh; Yang, Yen Kuang

    2016-01-01

    Abstract The aim of this study was to investigate the influence of serotonin on anxiety and autonomic nervous system (ANS) function; the correlation between subjective anxiety rating and changes of ANS function following tryptophan depletion (TD) in healthy volunteers was examined. Twenty-eight healthy participants, consisting of 15 females and 13 males, with an average age of 33.3 years, were recruited. Baseline Chinese Symptom Checklist-90-Revised and ANS function measurements were taken. TD was carried out on the testing day, and participants provided blood samples right before and 5 hours after TD. ANS function, somatic symptoms, and Visual Analogue Scales (VASs) were determined after TD. Wilcoxon signed rank test and Spearman ρ correlation were adapted for analyses of the results. The TD procedure reduced total and free plasma tryptophan effectively. After TD, the sympathetic nervous activity increased and parasympathetic nervous activity decreased. Baseline anxiety ratings positively correlated with post-TD changes in sympathetic nervous activity, VAS ratings, and physical symptoms. However, a negative correlation with post-TD changes in parasympathetic nervous activity was found. The change in ANS function after TD was associated with the severity of anxiety in healthy volunteers. This supports the fact that the effect of anxiety on heart rate variability is related to serotonin vulnerability. Furthermore, it also shows that the subjective anxiety rating has a biological basis related to serotonin. PMID:27175645

  17. The Association between Baseline Subjective Anxiety Rating and Changes in Cardiac Autonomic Nervous Activity in Response to Tryptophan Depletion in Healthy Volunteers.

    PubMed

    Hsiao, Chih Yin; Tsai, Hsin Chun; Chi, Mei Hung; Chen, Kao Chin; Chen, Po See; Lee, I Hui; Yeh, Tzung Lieh; Yang, Yen Kuang

    2016-05-01

    The aim of this study was to investigate the influence of serotonin on anxiety and autonomic nervous system (ANS) function; the correlation between subjective anxiety rating and changes of ANS function following tryptophan depletion (TD) in healthy volunteers was examined. Twenty-eight healthy participants, consisting of 15 females and 13 males, with an average age of 33.3 years, were recruited.Baseline Chinese Symptom Checklist-90-Revised and ANS function measurements were taken. TD was carried out on the testing day, and participants provided blood samples right before and 5 hours after TD. ANS function, somatic symptoms, and Visual Analogue Scales (VASs) were determined after TD. Wilcoxon signed rank test and Spearman ρ correlation were adapted for analyses of the results.The TD procedure reduced total and free plasma tryptophan effectively. After TD, the sympathetic nervous activity increased and parasympathetic nervous activity decreased. Baseline anxiety ratings positively correlated with post-TD changes in sympathetic nervous activity, VAS ratings, and physical symptoms. However, a negative correlation with post-TD changes in parasympathetic nervous activity was found.The change in ANS function after TD was associated with the severity of anxiety in healthy volunteers. This supports the fact that the effect of anxiety on heart rate variability is related to serotonin vulnerability. Furthermore, it also shows that the subjective anxiety rating has a biological basis related to serotonin.

  18. Peripheral chemoreceptors and cardiorespiratory coupling: a link to sympatho-excitation.

    PubMed

    Zoccal, Daniel B

    2015-02-01

    What is the topic of this review? Chronic intermittent hypoxia (CIH), as observed in patients with obstructive sleep apnoea, is associated with the development of sympathetically mediated arterial hypertension. Nevertheless, the mechanisms underpinning the augmented sympathetic outflow in CIH still remain under investigation. What advances does it highlight? In this report, I present experimental evidence supporting the hypothesis that changes in the function of the respiratory network and coupling with the sympathetic nervous system may be considered as a novel and relevant mechanism for the increase in baseline sympathetic outflow in animals submitted to CIH. Chronic intermittent hypoxia (CIH) has been identified as a relevant risk factor for the development of enhanced sympathetic outflow and arterial hypertension. Several studies have highlighted the importance of peripheral chemoreceptors for the cardiovascular changes elicited by CIH. However, the effects of CIH on the central mechanisms regulating sympathetic outflow are not fully elucidated. Our research group has explored the hypothesis that the enhanced sympathetic drive following CIH exposure is, at least in part, dependent on alterations in the respiratory network and its interaction with the sympathetic nervous system. In this report, I discuss the changes in the discharge profile of baseline sympathetic activity in rats exposed to CIH, their association with the generation of active expiration and the interactions between expiratory and sympathetic neurones after CIH conditioning. Together, these findings are consistent with the theory that mechanisms of central respiratory-sympathetic coupling are a novel factor in the development of neurogenic hypertension. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  19. Measuring Cardiac Autonomic Nervous System (ANS) Activity in Toddlers - Resting and Developmental Challenges.

    PubMed

    Bush, Nicole R; Caron, Zoe K; Blackburn, Katherine S; Alkon, Abbey

    2016-02-25

    The autonomic nervous system (ANS) consists of two branches, the parasympathetic and sympathetic nervous systems, and controls the function of internal organs (e.g., heart rate, respiration, digestion) and responds to everyday and adverse experiences (1). ANS measures in children have been found to be related to behavior problems, emotion regulation, and health (2-7). Therefore, understanding the factors that affect ANS development during early childhood is important. Both branches of the ANS affect young children's cardiovascular responses to stimuli and have been measured noninvasively, via external monitoring equipment, using valid and reliable measures of physiological change (8-11). However, there are few studies of very young children with simultaneous measures of the parasympathetic and sympathetic nervous systems, which limits understanding of the integrated functioning of the two systems. In addition, the majority of existing studies of young children report on infants' resting ANS measures or their reactivity to commonly used mother-child interaction paradigms, and less is known about ANS reactivity to other challenging conditions. We present a study design and standardized protocol for a non-invasive and rapid assessment of cardiac autonomic control in 18 month old children. We describe methods for continuous monitoring of the parasympathetic and sympathetic branches of the ANS under resting and challenge conditions during a home or laboratory visit and provide descriptive findings from our sample of 140 ethnically diverse toddlers using validated equipment and scoring software. Results revealed that this protocol can produce a range of physiological responses to both resting and developmentally challenging conditions, as indicated by changes in heart rate and indices of parasympathetic and sympathetic activity. Individuals demonstrated variability in resting levels, responses to challenges, and challenge reactivity, which provides additional evidence that this protocol is useful for the examination of ANS individual differences for toddlers.

  20. Water immersion decreases sympathetic skin response during color–word Stroop test

    PubMed Central

    Yamazaki, Yudai; Takahashi, Akari; Uetake, Yoshihito; Nakano, Saki; Iguchi, Kaho; Baba, Yasuhiro; Nara, Rio; Shimoyama, Yoshimitsu

    2017-01-01

    Water immersion alters the autonomic nervous system (ANS) response in humans. The effect of water immersion on executive function and ANS responses related to executive function tasks was unknown. Therefore, this study aimed to determine whether water immersion alters ANS response during executive tasks. Fourteen healthy participants performed color–word-matching Stroop tasks before and after non-immersion and water immersion intervention for 15 min in separate sessions. The Stroop task-related skin conductance response (SCR) was measured during every task. In addition, the skin conductance level (SCL) and electrocardiograph signals were measured over the course of the experimental procedure. The main findings of the present study were as follows: 1) water immersion decreased the executive task-related sympathetic nervous response, but did not affect executive function as evaluated by Stroop tasks, and 2) decreased SCL induced by water immersion was maintained for at least 15 min after water immersion. In conclusion, the present results suggest that water immersion decreases the sympathetic skin response during the color–word Stroop test without altering executive performance. PMID:28742137

  1. Water immersion decreases sympathetic skin response during color-word Stroop test.

    PubMed

    Sato, Daisuke; Yamazaki, Yudai; Takahashi, Akari; Uetake, Yoshihito; Nakano, Saki; Iguchi, Kaho; Baba, Yasuhiro; Nara, Rio; Shimoyama, Yoshimitsu

    2017-01-01

    Water immersion alters the autonomic nervous system (ANS) response in humans. The effect of water immersion on executive function and ANS responses related to executive function tasks was unknown. Therefore, this study aimed to determine whether water immersion alters ANS response during executive tasks. Fourteen healthy participants performed color-word-matching Stroop tasks before and after non-immersion and water immersion intervention for 15 min in separate sessions. The Stroop task-related skin conductance response (SCR) was measured during every task. In addition, the skin conductance level (SCL) and electrocardiograph signals were measured over the course of the experimental procedure. The main findings of the present study were as follows: 1) water immersion decreased the executive task-related sympathetic nervous response, but did not affect executive function as evaluated by Stroop tasks, and 2) decreased SCL induced by water immersion was maintained for at least 15 min after water immersion. In conclusion, the present results suggest that water immersion decreases the sympathetic skin response during the color-word Stroop test without altering executive performance.

  2. Effects of AHCC® on Immune and Stress Responses in Healthy Individuals.

    PubMed

    Takanari, Jun; Sato, Atsuya; Waki, Hideaki; Miyazaki, Shogo; Uebaba, Kazuo; Hisajima, Tatsuya

    2018-01-01

    AHCC® is a functional food from the basidiomycete Lentinula edodes. We evaluated the effects of AHCC® on subjects under different kinds of stress and at rest. Physical stress was imposed using an active standing test, known as Schellong's test. Sympathetic nervous activity in the standing position was significantly greater in AHCC®-treated subjects than in a placebo group. In contrast, AHCC® significantly increased parasympathetic nervous activity at rest. Under mental stress, AHCC® increased sympathetic nervous activity, with no difference in the parasympathetic nervous system. In subjects with chronic mental stress, self-reported "initiation and maintenance of sleep" was significantly greater in the AHCC®-intake period than in the placebo intake period, and natural killer cell activity also increased after AHCC® intake, suggesting a possible mechanism of action of AHCC®. Our findings indicate that AHCC® is potentially effective in stress management and may be useful in the treatment of depression.

  3. Mechanisms of insulin action on sympathetic nerve activity

    NASA Technical Reports Server (NTRS)

    Muntzel, Martin S.; Anderson, Erling A.; Johnson, Alan Kim; Mark, Allyn L.

    1996-01-01

    Insulin resistance and hyperinsulinemia may contribute to the development of arterial hypertension. Although insulin may elevate arterial pressure, in part, through activation of the sympathetic nervous system, the sites and mechanisms of insulin-induced sympathetic excitation remain uncertain. While sympathoexcitation during insulin may be mediated by the baroreflex, or by modulation of norepinephrine release from sympathetic nerve endings, it has been shown repeatedly that insulin increases sympathetic outflow by actions on the central nervous system. Previous studies employing norepinephrine turnover have suggested that insulin causes sympathoexcitation by acting in the hypothalamus. Recent experiments from our laboratory involving direct measurements of regional sympathetic nerve activity have provided further evidence that insulin acts in the central nervous system. For example, administration of insulin into the third cerebralventricle increased lumbar but not renal or adrenal sympathetic nerve activity in normotensive rats. Interestingly, this pattern of regional sympathetic nerve responses to central neural administration of insulin is similar to that seen with systemic administration of insulin. Further, lesions of the anteroventral third ventricle hypothalamic (AV3V) region abolished increases in sympathetic activity to systemic administration of insulin with euglycemic clamp, suggesting that AV3V-related structures are critical for insulin-induced elevations in sympathetic outflow.

  4. Circulatory response and autonomic nervous activity during gum chewing.

    PubMed

    Hasegawa, Yoko; Sakagami, Joe; Ono, Takahiro; Hori, Kazuhiro; Zhang, Min; Maeda, Yoshinobu

    2009-08-01

    Mastication has been proven to enhance the systemic circulation, with circulatory responses seeming to be largely regulated by autonomic nervous activity via a more complex regulatory system than those of other activities. However, few studies have examined the relationships between changes in autonomic nervous activity and the systemic circulation that are induced by masticatory movement. We investigated changes in the systemic circulation and autonomic nervous activity during gum chewing to clarify the influence of mastication. Electrocardiograms, arterial blood pressure, and masseter electromyograms were taken while chewing gum continuously as indicators of systemic circulation in 10 healthy subjects with normal dentition. Cardiac sympathetic activity and vagus nervous activity, as well as vasomotor sympathetic nervous activity, were evaluated by fluctuation analysis of heart rate and blood pressure. Repeated analysis of variance and multiple comparisons were performed to determine chronological changes in each indicator during gum chewing. Gum chewing increased the heart rate and the mean arterial pressure. Although cardiac sympathetic activity and vagus nervous activity showed significant changes, vasomotor sympathetic nervous activity did not. These results suggest that changes in the autonomic nervous activity of the heart are mainly involved in the enhancement of systemic circulation with gum chewing. This explains some characteristics of autonomic nervous regulation in masticatory movement.

  5. Neuron-Glia Crosstalk in the Autonomic Nervous System and Its Possible Role in the Progression of Metabolic Syndrome: A New Hypothesis

    PubMed Central

    Del Rio, Rodrigo; Quintanilla, Rodrigo A.; Orellana, Juan A.; Retamal, Mauricio A.

    2015-01-01

    Metabolic syndrome (MS) is characterized by the following physiological alterations: increase in abdominal fat, insulin resistance, high concentration of triglycerides, low levels of HDL, high blood pressure, and a generalized inflammatory state. One of the pathophysiological hallmarks of this syndrome is the presence of neurohumoral activation, which involve autonomic imbalance associated to hyperactivation of the sympathetic nervous system. Indeed, enhanced sympathetic drive has been linked to the development of endothelial dysfunction, hypertension, stroke, myocardial infarct, and obstructive sleep apnea. Glial cells, the most abundant cells in the central nervous system, control synaptic transmission, and regulate neuronal function by releasing bioactive molecules called gliotransmitters. Recently, a new family of plasma membrane channels called hemichannels has been described to allow the release of gliotransmitters and modulate neuronal firing rate. Moreover, a growing amount of evidence indicates that uncontrolled hemichannel opening could impair glial cell functions, affecting synaptic transmission and neuronal survival. Given that glial cell functions are disturbed in various metabolic diseases, we hypothesize that progression of MS may relies on hemichannel-dependent impairment of glial-to-neuron communication by a mechanism related to dysfunction of inflammatory response and mitochondrial metabolism of glial cells. In this manuscript, we discuss how glial cells may contribute to the enhanced sympathetic drive observed in MS, and shed light about the possible role of hemichannels in this process. PMID:26648871

  6. Attenuated baroreflex control of sympathetic nerve activity after cardiovascular deconditioning in rats

    NASA Technical Reports Server (NTRS)

    Moffitt, J. A.; Foley, C. M.; Schadt, J. C.; Laughlin, M. H.; Hasser, E. M.

    1998-01-01

    The effect of cardiovascular deconditioning on baroreflex control of the sympathetic nervous system was evaluated after 14 days of hindlimb unloading (HU) or the control condition. Rats were chronically instrumented with catheters and sympathetic nerve recording electrodes for measurement of mean arterial pressure (MAP) and heart rate (HR) and recording of lumbar (LSNA) or renal (RSNA) sympathetic nerve activity. Experiments were conducted 24 h after surgery, with the animals in a normal posture. Baroreflex function was assessed using a logistic function that related HR and LSNA or RSNA to MAP during infusion of phenylephrine and nitroprusside. Baroreflex influence on HR was not affected by HU. Maximum baroreflex-elicited LSNA was significantly reduced in HU rats (204 +/- 11.9 vs. 342 +/- 30.6% baseline LSNA), as was maximum reflex gain (-4.0 +/- 0.6 vs. -7.8 +/- 1.3 %LSNA/mmHg). Maximum baroreflex-elicited RSNA (259 +/- 10.8 vs. 453 +/- 28.0% baseline RSNA), minimum baroreflex-elicited RSNA (-2 +/- 2.8 vs. 13 +/- 4.5% baseline RSNA), and maximum gain (-5.8 +/- 0.5 vs. -13.6 +/- 3.1 %RSNA/mmHg) were significantly decreased in HU rats. Results demonstrate that baroreflex modulation of sympathetic nervous system activity is attenuated after cardiovascular deconditioning in rodents. Data suggest that alterations in the arterial baroreflex may contribute to orthostatic intolerance after a period of bedrest or spaceflight in humans.

  7. Regulation of transepithelial ion transport in the rat late distal colon by the sympathetic nervous system.

    PubMed

    Zhang, X; Li, Y; Zhang, X; Duan, Z; Zhu, J

    2015-01-01

    The colorectum (late distal colon) is innervated by the sympathetic nervous system, and many colorectal diseases are related to disorders of the sympathetic nervous system. The sympathetic regulation of colorectal ion transport is rarely reported. The present study aims to investigate the effect of norepinephrine (NE) in the normal and catecholamine-depleted condition to clarify the regulation of the sympathetic adrenergic system in ion transport in the rat colorectum. NE-induced ion transport in the rats colorectum was measured by short-circuit current (I(sc)) recording; the expression of beta-adrenoceptors and NE transporter (NET) were quantified by real-time PCR, and western blotting. When the endogenous catecholamine was depleted by reserpine, the baseline I(sc) in the colorectum was increased significantly comparing to controls. NE evoked downward deltaI(sc) in colorectum of treated rats was 1.8-fold of controls. The expression of beta(2)-adrenoceptor protein in the colorectal mucosa was greater than the control, though the mRNA level was reduced. However, NET expression was significantly lower in catecholamine-depleted rats compared to the controls. In conclusion, the sympathetic nervous system plays an important role in regulating basal ion transport in the colorectum. Disorders of sympathetic neurotransmitters result in abnormal ion transport, beta-adrenoceptor and NET are involved in the process.

  8. Differentiation in the effects of the angiotensin II receptor blocker class on autonomic function.

    PubMed

    Esler, Murray

    2002-06-01

    Measurement of regional sympathetic activity with nerve recording and noradrenaline spillover isotope dilution techniques demonstrates activation of the sympathetic nerves of the heart, kidneys and skeletal muscle vasculature in younger patients with essential hypertension. Sympathetic overactivity in the renal sympathetic outflow is a prominent pathophysiological feature in obesity-related hypertensives of any age. This increase in sympathetic activity is thought to both initiate and sustain the blood pressure elevation, and, in addition, contributes to adverse cardiovascular events. Sympathetic overactivity seems to particularly influence systolic pressure, by increasing the rate of left ventricular ejection, by reducing arterial compliance through increasing neural arterial tone, and via arteriolar vasoconstriction, by promoting rebound of the reflected arterial wave from the periphery. Inhibition of the renin-angiotensin system in certain circumstances appears to be able to reduce sympathetic nervous activity. Claims have been made for such an action at virtually every site in the sympathetic neuraxis. In reality, renin-angiotensin actions on the sympathetic nervous system are probably much more circumscribed than this, with the case perhaps being strongest for a presynaptic action of angiotensin on sympathetic nerves, to augment noradrenaline release. The ability of angiotensin receptor blockers to antagonize neural presynaptic angiotensin AT1 receptors appears to differ markedly between the individual agents in this drug class. In experimental models, such as the pithed rat, neural presynaptic actions are particularly evident with eprosartan. In a blinded study of crossover design, the effects of eprosartan and losartan on sympathetic nerve firing, measured by microneurography, and whole body noradrenaline spillover to plasma is currently being measured in patients with essential hypertension. A reduction in noradrenaline spillover disproportionate to any possible fall in nerve firing would document the presence of presynaptic antagonism of noradrenaline release.

  9. [Stress and autonomic dysregulation in patients with fibromyalgia syndrome].

    PubMed

    Friederich, H-C; Schellberg, D; Mueller, K; Bieber, C; Zipfel, S; Eich, W

    2005-06-01

    The aim of the present study was to evaluate to what extent the orthostatic dysregulation of FMS patients can be attributed primarily to reduced baroreceptor-mediated activation of the sympathetic nervous system and whether a hyporeactive sympathetic nervous system can also be confirmed for mental stress. A total of 28 patients with primary FMS were examined and compared with 15 healthy subjects. Diagnostic investigations of the autonomic nervous system were based on measuring HRV in frequency range and assessing spontaneous baroreflex sensitivity (sBRS) under mental stress and passive orthostatism. Both under orthostatic and mental stress FMS patients exhibited reduced activation of the sympathetic nervous system as measured by the spectral power of HRV in the low-frequency range and the mean arterial blood pressure or heart rate. The present study provided no indications for dysregulation of sBRS. The results obtained confirm the hypothesis of a hyporeactive stress system in FMS patients for both peripherally and centrally mediated stimulation of the sympathetic nervous system.

  10. Dynamic characteristics of heart rate control by the autonomic nervous system in rats.

    PubMed

    Mizuno, Masaki; Kawada, Toru; Kamiya, Atsunori; Miyamoto, Tadayoshi; Shimizu, Shuji; Shishido, Toshiaki; Smith, Scott A; Sugimachi, Masaru

    2010-09-01

    We estimated the transfer function of autonomic heart rate (HR) control by using random binary sympathetic or vagal nerve stimulation in anaesthetized rats. The transfer function from sympathetic stimulation to HR response approximated a second-order, low-pass filter with a lag time (gain, 4.29 +/- 1.55 beats min(1) Hz(1); natural frequency, 0.07 +/- 0.03 Hz; damping coefficient, 1.96 +/- 0.64; and lag time, 0.73 +/- 0.12 s). The transfer function from vagal stimulation to HR response approximated a first-order, low-pass filter with a lag time (gain, 8.84 +/- 4.51 beats min(1) Hz(1); corner frequency, 0.12 +/- 0.06 Hz; and lag time, 0.12 +/- 0.08 s). These results suggest that the dynamic characteristics of HR control by the autonomic nervous system in rats are similar to those of larger mammals.

  11. Cardiac dysfunctions following spinal cord injury

    PubMed Central

    Sandu, AM; Popescu, M; Iacobini, MA; Stoian, R; Neascu, C; Popa, F

    2009-01-01

    The aim of this article is to analyze cardiac dysfunctions occurring after spinal cord injury (SCI). Cardiac dysfunctions are common complications following SCI. Cardiovascular disturbances are the leading causes of morbidity and mortality in both acute and chronic stages of SCI. We reviewed epidemiology of cardiac disturbances after SCI, and neuroanatomy and pathophysiology of autonomic nervous system, sympathetic and parasympathetic. SCI causes disruption of descendent pathways from central control centers to spinal sympathetic neurons, originating into intermediolateral nuclei of T1–L2 spinal cord segments. Loss of supraspinal control over sympathetic nervous system results in reduced overall sympathetic activity below the level of injury and unopposed parasympathetic outflow through intact vagal nerve. SCI associates significant cardiac dysfunction. Impairment of autonomic nervous control system, mostly in patients with cervical or high thoracic SCI, causes cardiac dysrrhythmias, especially bradycardia and, rarely, cardiac arrest, or tachyarrhytmias and hypotension. Specific complication dependent on the period of time after trauma like spinal shock and autonomic dysreflexia are also reviewed. Spinal shock occurs during the acute phase following SCI and is a transitory suspension of function and reflexes below the level of the injury. Neurogenic shock, part of spinal shock, consists of severe bradycardia and hypotension. Autonomic dysreflexia appears during the chronic phase, after spinal shock resolution, and it is a life–threatening syndrome of massive imbalanced reflex sympathetic discharge occurring in patients with SCI above the splanchnic sympathetic outflow (T5–T6). Besides all this, additional cardiac complications, such as cardiac deconditioning and coronary heart disease may also occur. Proper prophylaxis, including nonpharmacologic and pharmacological strategies and cardiac rehabilitation diminish occurrence of the cardiac dysfunction following SCI. Each type of cardiac disturbance requires specific treatment. PMID:20108532

  12. The central mechanism underlying hypertension: a review of the roles of sodium ions, epithelial sodium channels, the renin–angiotensin–aldosterone system, oxidative stress and endogenous digitalis in the brain

    PubMed Central

    Takahashi, Hakuo; Yoshika, Masamichi; Komiyama, Yutaka; Nishimura, Masato

    2011-01-01

    The central nervous system has a key role in regulating the circulatory system by modulating the sympathetic and parasympathetic nervous systems, pituitary hormone release, and the baroreceptor reflex. Digoxin- and ouabain-like immunoreactive materials were found >20 years ago in the hypothalamic nuclei. These factors appeared to localize to the paraventricular and supraoptic nuclei and the nerve fibers at the circumventricular organs and supposed to affect electrolyte balance and blood pressure. The turnover rate of these materials increases with increasing sodium intake. As intracerebroventricular injection of ouabain increases blood pressure via sympathetic activation, an endogenous digitalis-like factor (EDLF) was thought to regulate cardiovascular system-related functions in the brain, particularly after sodium loading. Experiments conducted mainly in rats revealed that the mechanism of action of ouabain in the brain involves sodium ions, epithelial sodium channels (ENaCs) and the renin–angiotensin–aldosterone system (RAAS), all of which are affected by sodium loading. Rats fed a high-sodium diet develop elevated sodium levels in their cerebrospinal fluid, which activates ENaCs. Activated ENaCs and/or increased intracellular sodium in neurons activate the RAAS; this releases EDLF in the brain, activating the sympathetic nervous system. The RAAS promotes oxidative stress in the brain, further activating the RAAS and augmenting sympathetic outflow. Angiotensin II and aldosterone of peripheral origin act in the brain to activate this cascade, increasing sympathetic outflow and leading to hypertension. Thus, the brain Na+–ENaC–RAAS–EDLF axis activates sympathetic outflow and has a crucial role in essential and secondary hypertension. This report provides an overview of the central mechanism underlying hypertension and discusses the use of antihypertensive agents. PMID:21814209

  13. Adrenoceptor Polymorphisms in Hypertension and Diabetes with obesity-update in 2014.

    PubMed

    Masuo, K

    2014-08-12

    Hypertension, diabetes mellitus (especially type 2 diabetes mellitus) and metabolic syndrome associated with obesity are rapidly growing public health problems. Sympathetic nerve activation is well documented in hypertension, diabetes mellitus, and obesity, hypertension and diabetes are determined by genetic background and environmental factors. Reduced energy expenditure and resting metabolic rate are predictive of weight gain, and the sympathetic nervous system participates in regulating energy balance through thermogenesis. The thermogenic effects of sympathetic nervous system in obesity have been mainly mediated via the β2 and β3-adrenergic receptors in humans. Further, β2-adrenoceptors importantly influence vascular reactivity and may regulate blood pressure. Genetic polymorphisms of the -adrenoceptor gene have been shown to alter the function of several adrenoceptor subtype and thus to modify the response to catecholamine. Among β2-adrenoceptor polymorphisms, Arg16Gly, Gln27Glu, and Thr164Ile are considered the most functionally important. β2-adrenoceptor genes have been studied in relation to hypertension. Genetic variations in the β3-adrenoceptor, such as the Try64Arg variant, are also associated with both obesity and hypertension. This review is an update of several versions published of the relationships between adrenoceptor polymorphisms and hypertension, diabetes and obesiy based on the my own review on the relationship with obesity in 2011 in "Journal of Obesity" [1], and another of my own reviews on the relationships with hypertension in 2010 in "International journal of Hypertension" [2], with 37 articles provided by the "PubMed" with the keywords of "adrenoceptor polymorphisms, obesity, hypertension and diabetes" searched on December 2013. However, the relationships of the polymorphisms of β2- and β3-adrenoceptor genes with sympathetic nervous system activity, hypertension and metabolic syndrome have been still discordant, it might be related to the ethnicity, gender, severeity of obesity, duration of hypertension or obesity, etc (refer the "Possible confounding variable affecting the relationships" section and Table 4). Therefore, this review may not be so much different from the previous ones, but, of importance, currently most investigations have shown that the β-adrenoceptor polymorphisms accompanying sympathetic nervous activity contribute to the onset and maintenance of hypertension, diabetes and obesity.

  14. The facial massage reduced anxiety and negative mood status, and increased sympathetic nervous activity.

    PubMed

    Hatayama, Tomoko; Kitamura, Shingo; Tamura, Chihiro; Nagano, Mayumi; Ohnuki, Koichiro

    2008-12-01

    The aim of this study was to clarify the effects of 45 min of facial massage on the activity of autonomic nervous system, anxiety and mood in 32 healthy women. Autonomic nervous activity was assessed by heart rate variability (HRV) with spectral analysis. In the spectral analysis of HRV, we evaluated the high-frequency components (HF) and the low- to high-frequency ratio (LF/HF ratio), reflecting parasympathetic nervous activity and sympathetic nervous activity, respectively. The State Trait Anxiety Inventory (STAI) and the Profile of Mood Status (POMS) were administered to evaluate psychological status. The score of STAI and negative scale of POMS were significantly reduced following the massage, and only the LF/HF ratio was significantly enhanced after the massage. It was concluded that the facial massage might refresh the subjects by reducing their psychological distress and activating the sympathetic nervous system.

  15. [Hygienic estimation of functional reserves and adaptive capabilities of students].

    PubMed

    Setko, N P; Bulycheva, E V; Beilina, E B

    In the article there are presented data on characteristics ofpeculiarities of the functional state of medical 1-6 years students of higher educational institutions. The results were obtained with the aid of variation pulsometry. Students were shown to have typical elevated tone of the sympathetic nervous system, especially for students of the 1, 3, 5 and 6 courses, that is confirmed by the amplitude mode (AMo), characterizing the sympathetic activity of autonomous nervous system (ANS), which is an average of the students 1 year accounted for 38.6 ± 1.89%, for students of the 3 course - 38.5 ± 1.72%, for students of the 5 year (40.9 ± 3.25 %) and the students of 6 course (46.7 ± 2.59%). There was determined the trend to the centralization of the heart rate control, as evidenced by a reduced proportion of high-frequency waves (HF) by 29.2% to 35.2%, exceeding by 3.6 to 14.4 times in waves of the very low frequency (VLF) relative to the average standard values; the high proportion of students from 41% to 52%, with a mismatch of the sympathetic and parasympathetic compartments of the autonomic nervous system in the regulation of biological processes of adaptation. For medical students of higher education institutions there are typical functional reserves reduced from 20.5 % to 97.6% and a decrease in the proportion of students with a satisfactory adaptation by 40.4% from the 1 to the 6th year.

  16. Alpha-1 adrenoceptor hyperresponsiveness in three neuropathic pain states: complex regional pain syndrome 1, diabetic peripheral neuropathic pain and central pain states following spinal cord injury.

    PubMed

    Teasell, Robert W; Arnold, J Malcolm O

    2004-01-01

    The pathophysiology of the pain associated with complex regional pain syndrome, spinal cord injury and diabetic peripheral neuropathy is not known. The pain of complex regional pain syndrome has often been attributed to abnormal sympathetic nervous system activity based on the presence of vasomotor instability and a frequently reported positive response, albeit a temporary response, to sympathetic blockade. In contrast, the pain below the level of spinal cord injury and diabetic peripheral neuropathy are generally seen as deafferentation phenomena. Each of these pain states has been associated with abnormal sympathetic nervous system function and increased peripheral alpha-1 adrenoceptor activity. This increased responsiveness may be a consequence of alpha-1 adrenoceptor postsynaptic hypersensitivity, or alpha-2 adrenoceptor presynaptic dysfunction with diminished noradrenaline reuptake, increased concentrations of noradrenaline in the synaptic cleft and increased stimulation of otherwise normal alpha-1 adrenoceptors. Plausible mechanisms based on animal research by which alpha-1 adrenoceptor hyperresponsiveness can lead to chronic neuropathic-like pain have been reported. This raises the intriguing possibility that sympathetic nervous system dysfunction may be an important factor in the generation of pain in many neuropathic pain states. Although results to date have been mixed, there may be a greater role for new drugs which target peripheral alpha-2 adrenoceptors (agonists) or alpha-1 adrenoceptors (antagonists).

  17. 38 CFR 4.119 - Schedule of ratings-endocrine system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... minute), eye involvement, muscular weakness, loss of weight, and sympathetic nervous system..., loss of weight, and sympathetic nervous system, cardiovascular, or gastrointestinal symptoms 100...-endocrine system. 4.119 Section 4.119 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS...

  18. 38 CFR 4.119 - Schedule of ratings-endocrine system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... minute), eye involvement, muscular weakness, loss of weight, and sympathetic nervous system..., loss of weight, and sympathetic nervous system, cardiovascular, or gastrointestinal symptoms 100...-endocrine system. 4.119 Section 4.119 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS...

  19. 38 CFR 4.119 - Schedule of ratings-endocrine system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... minute), eye involvement, muscular weakness, loss of weight, and sympathetic nervous system..., loss of weight, and sympathetic nervous system, cardiovascular, or gastrointestinal symptoms 100...-endocrine system. 4.119 Section 4.119 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS...

  20. 38 CFR 4.119 - Schedule of ratings-endocrine system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... minute), eye involvement, muscular weakness, loss of weight, and sympathetic nervous system..., loss of weight, and sympathetic nervous system, cardiovascular, or gastrointestinal symptoms 100...-endocrine system. 4.119 Section 4.119 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS...

  1. Assessment of cardiac sympathetic neuronal function using PET imaging.

    PubMed

    Bengel, Frank M; Schwaiger, Markus

    2004-01-01

    The autonomic nervous system plays a key role for regulation of cardiac performance, and the importance of alterations of innervation in the pathophysiology of various heart diseases has been increasingly emphasized. Nuclear imaging techniques have been established that allow for global and regional investigation of the myocardial nervous system. The guanethidine analog iodine 123 metaiodobenzylguanidine (MIBG) has been introduced for scintigraphic mapping of presynaptic sympathetic innervation and is available today for imaging on a broad clinical basis. Not much later than MIBG, positron emission tomography (PET) has also been established for characterizing the cardiac autonomic nervous system. Although PET is methodologically demanding and less widely available, it provides substantial advantages. High spatial and temporal resolution along with routinely available attenuation correction allows for detailed definition of tracer kinetics and makes noninvasive absolute quantification a reality. Furthermore, a series of different radiolabeled catecholamines, catecholamine analogs, and receptor ligands are available. Those are often more physiologic than MIBG and well understood with regard to their tracer physiologic properties. PET imaging of sympathetic neuronal function has been successfully applied to gain mechanistic insights into myocardial biology and pathology. Available tracers allow dissection of processes of presynaptic and postsynaptic innervation contributing to cardiovascular disease. This review summarizes characteristics of currently available PET tracers for cardiac neuroimaging along with the major findings derived from their application in health and disease.

  2. ROLE OF SYMPATHETIC NERVOUS SYSTEM IN OBESITY RELATED HYPERTENSION

    PubMed Central

    da Silva, Alexandre; doCarmo, Jussara; Dubinion, John; Hall, John E.

    2010-01-01

    Obesity is recognized as a major, worldwide, health problem. Excess weight is a major cause of increased blood pressure in most patients with essential hypertension, and greatly increases the risk for diabetes, cardiovascular diseases, and end stage renal disease. Although the mechanisms by which obesity raises blood pressure are not completely understood, increased renal sodium reabsorption, impaired pressure natriuresis, and volume expansion appear to play important roles. Several potential mechanisms have been suggested to contribute to altered kidney function and hypertension in obesity, including activation of the sympathetic nervous system (SNS) and the renin-angiotensin-aldosterone system (RAAS), and physical compression of the kidneys, especially when visceral obesity is present. Activation of the SNS in obesity may be due, in part, to hyperleptinemia and other factors secreted by adipocytes and the gastrointestinal tract, activation of the central nervous melanocortin pathway, and baroreceptor dysfunction. PMID:19442330

  3. Renal neural mechanisms in salt-sensitive hypertension.

    PubMed

    DiBona, G F

    1995-01-01

    Genetic forms of salt (NaCl)-sensitive hypertension are characterized by increased renal sympathetic nerve activity responses to environmental stimuli. The increases in renal sympathetic nerve activity produce marked changes in renal function with renal vasoconstriction and sodium and water retention which can contribute to the initiation, development and maintenance of hypertension. In genetic forms of NaCl-sensitive hypertension, increased dietary NaCl intake produces alterations in norepinephrine kinetics with decreased concentrations of norepinephrine in regions of the anterior hypothalamus which are critical for the regulation of peripheral sympathetic nerve activity. This local central decrease in tonic alpha 2 adrenoceptor sympathoinhibitory input leads to increased peripheral (renal) sympathetic nerve activity and hypertension. Similarly, with increased dietary NaCl intake, patients with NaCl-sensitive hypertension develop increased arterial pressure, renal vasoconstriction, increased glomerular capillary pressure and increased urinary albumin excretion. Thus, increased dietary NaCl intake can, via central nervous system actions, produce increases in renal sympathetic nerve activity whose renal functional effects contribute to the pathophysiology of hypertension.

  4. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System.

    PubMed

    Wehrwein, Erica A; Orer, Hakan S; Barman, Susan M

    2016-06-13

    Comprised of the sympathetic nervous system, parasympathetic nervous system, and enteric nervous system, the autonomic nervous system (ANS) provides the neural control of all parts of the body except for skeletal muscles. The ANS has the major responsibility to ensure that the physiological integrity of cells, tissues, and organs throughout the entire body is maintained (homeostasis) in the face of perturbations exerted by both the external and internal environments. Many commonly prescribed drugs, over-the-counter drugs, toxins, and toxicants function by altering transmission within the ANS. Autonomic dysfunction is a signature of many neurological diseases or disorders. Despite the physiological relevance of the ANS, most neuroscience textbooks offer very limited coverage of this portion of the nervous system. This review article provides both historical and current information about the anatomy, physiology, and pharmacology of the sympathetic and parasympathetic divisions of the ANS. The ultimate aim is for this article to be a valuable resource for those interested in learning the basics of these two components of the ANS and to appreciate its importance in both health and disease. Other resources should be consulted for a thorough understanding of the third division of the ANS, the enteric nervous system. © 2016 American Physiological Society. Compr Physiol 6:1239-1278, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  5. The ALK receptor in sympathetic neuron development and neuroblastoma.

    PubMed

    Janoueix-Lerosey, Isabelle; Lopez-Delisle, Lucille; Delattre, Olivier; Rohrer, Hermann

    2018-05-01

    The ALK gene encodes a tyrosine kinase receptor characterized by an expression pattern mainly restricted to the developing central and peripheral nervous systems. In 2008, the discovery of ALK activating mutations in neuroblastoma, a tumor of the sympathetic nervous system, represented a breakthrough in the understanding of the pathogenesis of this pediatric cancer and established mutated ALK as a tractable therapeutic target for precision medicine. Subsequent studies addressed the identity of ALK ligands, as well as its physiological function in the sympathoadrenal lineage, its role in neuroblastoma development and the signaling pathways triggered by mutated ALK. This review focuses on these different aspects of the ALK biology and summarizes the various therapeutic strategies relying on ALK inhibition in neuroblastoma, either as monotherapies or combinatory treatments.

  6. Effect of Mindfulness Meditation on Perceived Stress Scores and Autonomic Function Tests of Pregnant Indian Women.

    PubMed

    Muthukrishnan, Shobitha; Jain, Reena; Kohli, Sangeeta; Batra, Swaraj

    2016-04-01

    Various pregnancy complications like hypertension, preeclampsia have been strongly correlated with maternal stress. One of the connecting links between pregnancy complications and maternal stress is mind-body intervention which can be part of Complementary and Alternative Medicine (CAM). Biologic measures of stress during pregnancy may get reduced by such interventions. To evaluate the effect of Mindfulness meditation on perceived stress scores and autonomic function tests of pregnant Indian women. Pregnant Indian women of 12 weeks gestation were randomised to two treatment groups: Test group with Mindfulness meditation and control group with their usual obstetric care. The effect of Mindfulness meditation on perceived stress scores and cardiac sympathetic functions and parasympathetic functions (Heart rate variation with respiration, lying to standing ratio, standing to lying ratio and respiratory rate) were evaluated on pregnant Indian women. There was a significant decrease in perceived stress scores, a significant decrease of blood pressure response to cold pressor test and a significant increase in heart rate variability in the test group (p< 0.05, significant) which indicates that mindfulness meditation is a powerful modulator of the sympathetic nervous system and can thereby reduce the day-to-day perceived stress in pregnant women. The results of this study suggest that mindfulness meditation improves parasympathetic functions in pregnant women and is a powerful modulator of the sympathetic nervous system during pregnancy.

  7. Individual Differences in Adolescents' Sympathetic and Parasympathetic Functioning Moderate Associations between Family Environment and Psychosocial Adjustment

    ERIC Educational Resources Information Center

    Diamond, Lisa M.; Fagundes, Christopher P.; Cribbet, Matthew R.

    2012-01-01

    The present study tested whether individual differences in autonomic nervous system functioning interact with environmental risk factors to predict adolescents' psychosocial functioning. The authors assessed skin conductance and respiratory sinus arrhythmia at rest and during laboratory stressors in 110 14-year-olds. Subsequently, adolescents and…

  8. Responses of sympathetic nervous system to cold exposure in vibration syndrome subjects and age-matched healthy controls.

    PubMed

    Nakamoto, M

    1990-01-01

    Plasma norepinephrine and epinephrine in vibration syndrome subjects and age-matched healthy controls were measured for the purpose of estimating the responsibility of the sympathetic nervous system to cold exposure. In preliminary experiment, it was confirmed that cold air exposure of the whole body was more suitable than one-hand immersion in cold water. In the main experiment, 195 subjects were examined. Sixty-five subjects had vibration syndrome with vibration-induced white finger (VWF + group) and 65 subjects had vibration syndrome without VWF (VWF- group) and 65 controls had no symptoms (control group). In the three groups, plasma norepinephrine levels increased during cold air exposure of whole body at 7 degrees +/- 1.5 degrees C. Blood pressure increased and skin temperature decreased during cold exposure. Percent increase of norepinephrine in the VWF+ group was the highest while that in VWF- group followed and that in the control group was the lowest. This whole-body response of the sympathetic nervous system to cold conditions reflected the VWF which are characteristic symptoms of vibration syndrome. Excluding the effects of shivering and a cold feeling under cold conditions, it was confirmed that the sympathetic nervous system in vibration syndrome is activated more than in the controls. These results suggest that vibration exposure to hand and arm affects the sympathetic nervous system.

  9. The Beauty and the Beast: Aspects of the Autonomic Nervous System.

    PubMed

    Corti, Roberto; Binggeli, Christian; Sudano, Isabella; Spieker, Lukas E.; Wenzel, René R.; Lüscher, Thomas F.; Noll, Georg

    2000-06-01

    Sympathetic nerve activity is altered and is a prognostic factor for many cardiovascular diseases such as hypertension, coronary syndromes, and congestive heart failure. Therefore, the selection of vasoactive drugs for the treatment of these diseases should also take into consideration their effects on the sympathetic nervous system.

  10. Role of the Sympathetic Nervous System and Its Modulation in Renal Hypertension

    PubMed Central

    Sata, Yusuke; Head, Geoffrey A.; Denton, Kate; May, Clive N.; Schlaich, Markus P.

    2018-01-01

    The kidneys are densely innervated with renal efferent and afferent nerves to communicate with the central nervous system. Innervation of major structural components of the kidneys, such as blood vessels, tubules, the pelvis, and glomeruli, forms a bidirectional neural network to relay sensory and sympathetic signals to and from the brain. Renal efferent nerves regulate renal blood flow, glomerular filtration rate, tubular reabsorption of sodium and water, as well as release of renin and prostaglandins, all of which contribute to cardiovascular and renal regulation. Renal afferent nerves complete the feedback loop via central autonomic nuclei where the signals are integrated and modulate central sympathetic outflow; thus both types of nerves form integral parts of the self-regulated renorenal reflex loop. Renal sympathetic nerve activity (RSNA) is commonly increased in pathophysiological conditions such as hypertension and chronic- and end-stage renal disease. Increased RSNA raises blood pressure and can contribute to the deterioration of renal function. Attempts have been made to eliminate or interfere with this important link between the brain and the kidneys as a neuromodulatory treatment for these conditions. Catheter-based renal sympathetic denervation has been successfully applied in patients with resistant hypertension and was associated with significant falls in blood pressure and renal protection in most studies performed. The focus of this review is the neural contribution to the control of renal and cardiovascular hemodynamics and renal function in the setting of hypertension and chronic kidney disease, as well as the specific roles of renal efferent and afferent nerves in this scenario and their utility as a therapeutic target. PMID:29651418

  11. Role of the Sympathetic Nervous System and Its Modulation in Renal Hypertension.

    PubMed

    Sata, Yusuke; Head, Geoffrey A; Denton, Kate; May, Clive N; Schlaich, Markus P

    2018-01-01

    The kidneys are densely innervated with renal efferent and afferent nerves to communicate with the central nervous system. Innervation of major structural components of the kidneys, such as blood vessels, tubules, the pelvis, and glomeruli, forms a bidirectional neural network to relay sensory and sympathetic signals to and from the brain. Renal efferent nerves regulate renal blood flow, glomerular filtration rate, tubular reabsorption of sodium and water, as well as release of renin and prostaglandins, all of which contribute to cardiovascular and renal regulation. Renal afferent nerves complete the feedback loop via central autonomic nuclei where the signals are integrated and modulate central sympathetic outflow; thus both types of nerves form integral parts of the self-regulated renorenal reflex loop. Renal sympathetic nerve activity (RSNA) is commonly increased in pathophysiological conditions such as hypertension and chronic- and end-stage renal disease. Increased RSNA raises blood pressure and can contribute to the deterioration of renal function. Attempts have been made to eliminate or interfere with this important link between the brain and the kidneys as a neuromodulatory treatment for these conditions. Catheter-based renal sympathetic denervation has been successfully applied in patients with resistant hypertension and was associated with significant falls in blood pressure and renal protection in most studies performed. The focus of this review is the neural contribution to the control of renal and cardiovascular hemodynamics and renal function in the setting of hypertension and chronic kidney disease, as well as the specific roles of renal efferent and afferent nerves in this scenario and their utility as a therapeutic target.

  12. Autonomic nervous system profile in fibromyalgia patients and its modulation by exercise: a mini review.

    PubMed

    Kulshreshtha, Poorvi; Deepak, Kishore K

    2013-03-01

    This review imparts an impressionistic tone to our current understanding of autonomic nervous system abnormalities in fibromyalgia. In the wake of symptoms present in patients with fibromyalgia (FM), autonomic dysfunction seems plausible in fibromyalgia. A popular notion is that of a relentless sympathetic hyperactivity and hyporeactivity based on heart rate variability (HRV) analyses and responses to various physiological stimuli. However, some exactly opposite findings suggesting normal/hypersympathetic reactivity in patients with fibromyalgia do exist. This heterogeneous picture along with multiple comorbidities accounts for the quantitative and qualitative differences in the degree of dysautonomia present in patients with FM. We contend that HRV changes in fibromyalgia may not actually represent increased cardiac sympathetic tone. Normal muscle sympathetic nerve activity (MSNA) and normal autonomic reactivity tests in patients with fibromyalgia suggest defective vascular end organ in fibromyalgia. Previously, we proposed a model linking deconditioning with physical inactivity resulting from widespread pain in patients with fibromyalgia. Deconditioning also modulates the autonomic nervous system (high sympathetic tone and a low parasympathetic tone). A high peripheral sympathetic tone causes regional ischaemia, which in turn results in widespread pain. Thus, vascular dysregulation and hypoperfusion in patients with FM give rise to ischaemic pain leading to physical inactivity. Microvascular abnormalities are also found in patients with FM. Therapeutic interventions (e.g. exercise) that result in vasodilatation and favourable autonomic alterations have proven to be effective. In this review, we focus on the vascular end organ in patients with fibromyalgia in particular and its modulation by exercise in general. © 2012 The Authors Clinical Physiology and Functional Imaging © 2012 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  13. Neural control of the kidney: functionally specific renal sympathetic nerve fibers.

    PubMed

    DiBona, G F

    2000-11-01

    The sympathetic nervous system provides differentiated regulation of the functions of various organs. This differentiated regulation occurs via mechanisms that operate at multiple sites within the classic reflex arc: peripherally at the level of afferent input stimuli to various reflex pathways, centrally at the level of interconnections between various central neuron pools, and peripherally at the level of efferent fibers targeted to various effectors within the organ. In the kidney, increased renal sympathetic nerve activity regulates the functions of the intrarenal effectors: the tubules, the blood vessels, and the juxtaglomerular granular cells. This enables a physiologically appropriate coordination between the circulatory, filtration, reabsorptive, excretory, and renin secretory contributions to overall renal function. Anatomically, each of these effectors has a dual pattern of innervation consisting of a specific and selective innervation by unmyelinated slowly conducting C-type renal sympathetic nerve fibers in addition to an innervation that is shared among all the effectors. This arrangement permits the maximum flexibility in the coordination of physiologically appropriate responses of the tubules, the blood vessels, and the juxtaglomerular granular cells to a variety of homeostatic requirements.

  14. Functionally specific renal sympathetic nerve fibers: role in cardiovascular regulation.

    PubMed

    DiBona, G F

    2001-06-01

    The sympathetic nervous system provides differentiated regulation of the functions of various organs. This differentiated regulation occurs through mechanisms that operate at multiple sites within the classic reflex arc: peripherally at the level of afferent input stimuli to various reflex pathways, centrally at the level of interconnections between various central neuron pools, and peripherally at the level of efferent fibers targeted to various effectors within the organ. In the kidney, increased renal sympathetic nerve activity regulates the functions of the intrarenal effectors: the tubules, the blood vessels, and the juxtaglomerular granular cells. This enables a physiologically appropriate coordination between the circulatory, filtration, reabsorptive, excretory, and renin secretory contributions to overall renal function. Anatomically, each of these effectors has a dual pattern of innervation consisting of a specific and selective innervation by unmyelinated slowly conducting C-type renal sympathetic nerve fibers and an innervation that is shared among all the effectors. This arrangement facilitates maximum flexibility in the coordination of the tubules, the blood vessels, and the juxtaglomerular granular cells so as to produce physiologically appropriate responses to a variety of homeostatic requirements.

  15. Neurotoxic impact of mercury on the central nervous system evaluated by neuropsychological tests and on the autonomic nervous system evaluated by dynamic pupillometry.

    PubMed

    Milioni, Ana Luiza V; Nagy, Balázs V; Moura, Ana Laura A; Zachi, Elaine C; Barboni, Mirella T S; Ventura, Dora F

    2017-03-01

    Mercury vapor is highly toxic to the human body. The present study aimed to investigate the occurrence of neuropsychological dysfunction in former workers of fluorescent lamps factories that were exposed to mercury vapor (years after cessation of exposure), diagnosed with chronic mercurialism, and to investigate the effects of such exposure on the Autonomic Nervous System (ANS) using the non-invasive method of dynamic pupillometry. The exposed group and a control group matched by age and educational level were evaluated by the Beck Depression Inventory and with the computerized neuropsychological battery CANTABeclipse - subtests of working memory (Spatial Span), spatial memory (Spatial Recognition Memory), visual memory (Pattern Recognition Memory) and action planning (Stockings of Cambridge). The ANS was assessed by dynamic pupillometry, which provides information on the operation on both the sympathetic and parasympathetic functions. Depression scores were significantly higher among the former workers when compared with the control group. The exposed group also showed significantly worse performance in most of the cognitive functions assessed. In the dynamic pupillometry test, former workers showed significantly lower response than the control group in the sympathetic response parameter (time of 75% of pupillary recovery at 10cd/m 2 luminance). Our study found indications that are suggestive of cognitive deficits and losses in sympathetic autonomic activity among patients occupationally exposed to mercury vapor. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Impaired Memory Retrieval Correlates with Individual Differences in Cortisol Response but Not Autonomic Response

    ERIC Educational Resources Information Center

    Tranel, Daniel; Adolphs, Ralph; Buchanan, Tony W.

    2006-01-01

    Stress can enhance or impair memory performance. Both cortisol release and sympathetic nervous system responses have been implicated in these differential effects. Here we investigated how memory retrieval might be affected by stress-induced cortisol release, independently of sympathetic nervous system stress responses. Thirty-two healthy…

  17. Marital Conflict and Children's Externalizing Behavior: Interactions between Parasympathetic and Sympathetic Nervous System Activity

    ERIC Educational Resources Information Center

    El-Sheikh, Mona; Kouros, Chrystyna D.; Erath, Stephen; Cummings, E. Mark; Keller, Peggy; Staton, Lori

    2009-01-01

    Toward greater specificity in the prediction of externalizing problems in the context of interparental conflict, interactions between children's parasympathetic and sympathetic nervous system (PNS and SNS) activity were examined as moderators. PNS activity was indexed by respiratory sinus arrhythmia (RSA) and RSA reactivity (RSA-R) to lab…

  18. Cortisol and Children's Adjustment: The Moderating Role of Sympathetic Nervous System Activity

    ERIC Educational Resources Information Center

    El-Sheikh, Mona; Erath, Stephen A.; Buckhalt, Joseph A.; Granger, Douglas A.; Mize, Jacquelyn

    2008-01-01

    We examined relations among cortisol, markers of sympathetic nervous system (SNS) activity (including salivary alpha-amylase and skin conductance level), and children's adjustment. We also tested the Bauer et al. ("Journal of Developmental and Behavioral Pediatrics," 23(2), 102-113, 2002) hypothesis that interactions between the SNS and cortisol…

  19. Sympathetic neural control of the kidney in hypertension.

    PubMed

    DiBona, G F

    1992-01-01

    Efferent renal sympathetic nerve activity is elevated in human essential hypertension as well as in several forms of experimental hypertension in animals. In addition, bilateral complete renal denervation delays the development and/or attenuates the magnitude of the hypertension in several different forms of experimental hypertension in animals. Efferent renal sympathetic nerve activity is known to have dose-dependent effects on renal blood flow, the glomerular filtration rate, renal tubular sodium and water reabsorption, and the renin secretion rate, which are capable of contributing, singly or in combination, to the development, maintenance, and exacerbation of the hypertensive state. Of the many factors known to influence the central nervous system integrative regulation of efferent renal sympathetic nerve activity, two environmental factors, a high dietary sodium intake and environmental stress, are capable of significant interaction. This resultant increase in efferent renal sympathetic nerve activity and subsequent renal functional alterations can participate in the hypertensive process. This is especially evident in the presence of an underlying genetic predisposition to the development of hypertension. Thus, interactions between environmental and genetic influences can produce alterations in the sympathetic neural control of renal function that play an important role in hypertension.

  20. Sex Differences in Salivary Cortisol, Alpha-Amylase, and Psychological Functioning Following Hurricane Katrina

    ERIC Educational Resources Information Center

    Vigil, Jacob M.; Geary, David C.; Granger, Douglas A.; Flinn, Mark V.

    2010-01-01

    The study examines group and individual differences in psychological functioning and hypothalamic-pituitary-adrenal and sympathetic nervous system (SNS) activity among adolescents displaced by Hurricane Katrina and living in a U.S. government relocation camp (n = 62, ages 12-19 years) 2 months postdisaster. Levels of salivary cortisol, salivary…

  1. Excessive daytime sleepiness does not correlate with sympathetic nervous system activation and arterial stiffening in patients with mild-to-moderate obstructive sleep apnoea: A proof-of-principle study.

    PubMed

    Bisogni, Valeria; Pengo, Martino F; Drakatos, Panagis; Maiolino, Giuseppe; Kent, Brian; Rossitto, Giacomo; Steier, Joerg; Rossi, Gian Paolo

    2017-06-01

    Increased arterial stiffness and sympathetic nervous system activity, independent markers of cardiovascular risk, are common in patients with severe obstructive sleep apnoea, who have excessive daytime sleepiness. Among patients with mild-to-moderate obstructive sleep apnoea, however, it remains unknown whether arterial stiffness and/or increased sympathetic nervous system activity correlate with excessive daytime sleepiness. We measured heart rate variability, as an index of autonomic nervous system activity, and arterial stiffness index, as a marker of vascular damage and cardiovascular risk, in 56 men aged 18 to 75years, with mild-to-moderate obstructive sleep apnoea, and matched into two groups, "sleepy" (Epworth Sleepiness Scale≥10) and "non-sleepy" (Epworth Sleepiness Scale<10). We found no association of excessive daytime sleepiness with sympathetic nervous system activation (very low frequency power 18,947±11,207ms 2 vs 15,893±8,272ms 2 , p=0.28; low frequency (LH) power 17,753±8,441ms 2 vs 15,414±5,666ms 2 , p=0.26; high frequency (HF) power 7,527±1,979ms 2 vs 8,257±3,416ms 2 , p=0.36; LF/HF ratio 3.04±1.37 vs 2.55±1.01, p=0.15) and mean arterial stiffness index (6.97±0.83 vs 7.26±0.66, p=0.18) in mild-to-moderate obstructive sleep apnoea patients. Symptoms of excessive daytime sleepiness are not associated with sympathetic nervous system activation and arterial stiffness in male subjects with mild-to-moderate obstructive sleep apnoea. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A clinician's perspective of the role of renal sympathetic nerves in hypertension

    PubMed Central

    Briasoulis, Alexandros; Bakris, George L.

    2015-01-01

    The renal sympathetic nerves have significant contribution to the control of different aspects of kidney function. Early animal studies of renal denervation in a large number of different models of hypertension showed that that RDN improved BP control. Recently, data from prospective cohorts and randomized studies showed that renal denervation therapy (RDN) is a safe procedure but is associated with only modest reduction of ambulatory blood pressure (BP) in patients on intensive medical therapy. The main goal of this article is to review the results of preclinical and clinical studies on the contribution of the renal sympathetic nervous system to hypertension and the therapeutic applications of catheter-based renal denervation. PMID:25859218

  3. Polyphenols, Antioxidants and the Sympathetic Nervous System.

    PubMed

    Bruno, Rosa Maria; Ghiadoni, Lorenzo

    2018-01-01

    A high dietary intake of polyphenols has been associated with a reduced cardiovascular mortality, due to their antioxidant properties. However, growing evidence suggests that counteracting oxidative stress in cardiovascular disease might also reduce sympathetic nervous system overactivity. This article reviews the most commonly used techniques to measure sympathetic activity in humans; the role of sympathetic activation in the pathophysiology of cardiovascular diseases; current evidence demonstrating that oxidative stress is involved in the regulation of sympathetic activity and how antioxidants and polyphenols might counteract sympathetic overactivity, particularly focusing on preliminary data from human studies. The main mechanisms by which polyphenols are cardioprotective are related to the improvement of vascular function and their anti-atherogenic effect. Furthermore, a blood pressure-lowering effect was consistently demonstrated in randomized controlled trials in humans, when the effect of flavonoid-rich foods, such as tea and chocolate, was tested. More recent studies suggest that inhibition of sympathetic overactivity might be one of the mechanisms by which these substances exert their cardioprotective effects. Indeed, an increased adrenergic traffic to the vasculature is a major mechanism of disease in a number of cardiovascular and extra-cardiac diseases, including hypertension, obesity, metabolic syndrome and heart failure. A considerable body of evidence, mostly from experimental studies, support the hypothesis that reactive oxygen species might exert sympathoexcitatory effects both at the central and at the peripheral level. Accordingly, supplementation with antioxidants might reduce adrenergic overdrive to the vasculature and blunt cardiovascular reactivity to stress. While supplementation with "classical" antioxidants such as ROS-scavengers has many limitations, increasing the intake of polyphenol-rich foods seems to be a promising novel therapeutic strategy to reduce the deleterious effects of increased adrenergic tone, particularly in essential hypertension. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. When do the symptoms of autonomic nervous system malfunction appear in patients with Parkinson's disease?

    PubMed

    De Luka, Silvio R; Svetel, Marina; Pekmezović, Tatjana; Milovanović, Branislav; Kostić, Vladimir S

    2014-04-01

    Dysautonomia appears in almost all patients with Parkinson's disease (PD) in a certain stage of their condition. The aim of our study was to detect the development and type of autonomic disorders, find out the factors affecting their manifestation by analyzing the potential association with demographic variables related to clinical presentation, as well as the symptoms of the disease in a PD patient cohort. The patients with PD treated at the Clinic of Neurology in Belgrade during a 2-year period, divided into 3 groups were studied: 25 de novo patients, 25 patients already treated and had no long-term levodopa therapy-related complications and 22 patients treated with levodopa who manifested levodopa-induced motor complications. Simultaneously, 35 healthy control subjects, matched by age and sex, were also analyzed. Autonomic nervous system malfunction was defined by Ewing diagnostic criteria. The tests, indicators of sympathetic and parasympathetic nervous systems, were significantly different in the PD patients as compared with the controls, suggesting the failure of both systems. However, it was shown, in the selected groups of patients, that the malfunction of both systems was present in two treated groups of PD patients, while de novo group manifested only sympathetic dysfunction. For this reason, the complete autonomic neuropathy was diagnosed only in the treated PD patients, while de novo patients were defined as those with the isolated sympathetic dysfunction. The patients with the complete autonomic neuropathy differed from the subjects without such neuropathy in higher cumulative and motor unified Parkinson's disease rating score (UPDRS) (p < 0.01), activities of daily living scores (p < 0.05), Schwab-England scale (p < 0.001) and Hoehn-Yahr scale. There was no difference between the patients in other clinical-demographic characteristics (sex, age at the time of diagnosis, actual age, duration of disease, involved side of the body, pain and freezing), but mini mental status (MMS) score and Hamilton depression and anxiety rating scale were significantly lower (p < 0.05). Our results confirm a high prevalence of autonomic nervous system disturbances among PD patients from the near onset of disease, with a predominant sympathetic nervous system involvement. The patients who developed complete autonomic neuropathy (both sympathetic and parasympathetic) were individuals with considerable level of functional failure, more severe clinical presentation and the existing anxiety and depression.

  5. Regulation of axonal and dendritic growth by the extracellular calcium-sensing receptor (CaSR)

    PubMed Central

    Vizard, Thomas N.; O'Keeffe, Gerard W.; Gutierrez, Humberto; Kos, Claudine H.; Riccardi, Daniela; Davies, Alun M.

    2009-01-01

    The extracellular calcium-sensing receptor (CaSR) monitors the systemic extracellular free ionized calcium level ([Ca2+]o) in organs involved in systemic [Ca2+]o homeostasis. However, the CaSR is also expressed in the nervous system where its role is unknown. Here we find high levels of the CaSR in perinatal mouse sympathetic neurons when their axons are innervating and branching extensively in their targets. Manipulating CaSR function in these neurons by varying [Ca2+]o, using CaSR agonists and antagonists or expressing a dominant-negative CaSR markedly affects neurite growth in vitro Sympathetic neurons lacking the CaSR have smaller neurite arbors in vitro, and sympathetic innervation density is reduced in CaSR-deficient mice in vivo. Hippocampal pyramidal neurons, which also express the CaSR, have smaller dendrites when transfected with dominant-negative CaSR in postnatal organotypic cultures. Our findings reveal a crucial role for the CaSR in regulating the growth of neural processes in the peripheral and central nervous systems. PMID:18223649

  6. The characteristics of autonomic nervous system disorders in burning mouth syndrome and Parkinson disease.

    PubMed

    Koszewicz, Magdalena; Mendak, Magdalena; Konopka, Tomasz; Koziorowska-Gawron, Ewa; Budrewicz, Sławomir

    2012-01-01

    To conduct a clinical electrophysiologic evaluation of autonomic nervous system functions in patients with burning mouth syndrome and Parkinson disease and estimate the type and intensity of the autonomic dysfunction. The study involved 83 subjects-33 with burning mouth syndrome, 20 with Parkinson disease, and 30 controls. The BMS group included 27 women and 6 men (median age, 60.0 years), and the Parkinson disease group included 15 women and 5 men (median age, 66.5 years). In the control group, there were 20 women and 10 men (median age, 59.0 years). All patients were subjected to autonomic nervous system testing. In addition to the Low autonomic disorder questionnaire, heart rate variability (HRV), deep breathing (exhalation/inspiration [E/I] ratio), and sympathetic skin response (SSR) tests were performed in all cases. Parametric and nonparametric tests (ANOVA, Kruskal-Wallis, and Scheffe tests) were used in the statistical analysis. The mean values for HRV and E/I ratios were significantly lower in the burning mouth syndrome and Parkinson disease groups. Significant prolongation of SSR latency in the foot was revealed in both burning mouth syndrome and Parkinson disease patients, and lowering of the SSR amplitude occurred in only the Parkinson disease group. The autonomic questionnaire score was significantly higher in burning mouth syndrome and Parkinson disease patients than in the control subjects, with the Parkinson disease group having the highest scores. In patients with burning mouth syndrome, a significant impairment of both the sympathetic and parasympathetic nervous systems was found but sympathetic/parasympathetic balance was preserved. The incidence and intensity of autonomic nervous system dysfunction was similar in patients with burning mouth syndrome and Parkinson disease, which may suggest some similarity in their pathogeneses.

  7. Role of neuropeptide Y in renal sympathetic vasoconstriction: studies in normal and congestive heart failure rats.

    PubMed

    DiBona, G F; Sawin, L L

    2001-08-01

    Sympathetic nerve activity, including that in the kidney, is increased in heart failure with increased plasma concentrations of norepinephrine and the vasoconstrictor cotransmitter neuropeptide Y (NPY). We examined the contribution of NPY to sympathetically mediated alterations in kidney function in normal and heart failure rats. Heart failure rats were created by left coronary ligation and myocardial infarction. In anesthetized normal rats, the NPY Y(1) receptor antagonist, H 409/22, at two doses, had no effect on heart rate, arterial pressure, or renal hemodynamic and excretory function. In conscious severe heart failure rats, high-dose H 409/22 decreased mean arterial pressure by 8 +/- 2 mm Hg but had no effect in normal and mild heart failure rats. During graded frequency renal sympathetic nerve stimulation (0 to 10 Hz), high-dose H 409/22 attenuated the decreases in renal blood flow only at 10 Hz (-36% +/- 5%, P <.05) in normal rats but did so at both 4 (-29% +/- 4%, P <.05) and 10 Hz (-33% +/- 5%, P <.05) in heart failure rats. The glomerular filtration rate, urinary flow rate, and sodium excretion responses to renal sympathetic nerve stimulation were not affected by high-dose H 409/22 in either normal or heart failure rats. NPY does not participate in the regulation of kidney function and arterial pressure in normal conscious or anesthetized rats. When sympathetic nervous system activity is increased, as in heart failure and intense renal sympathetic nerve stimulation, respectively, a small contribution of NPY to maintenance of arterial pressure and to sympathetic renal vasoconstrictor responses may be identified.

  8. Local sympathetic denervation attenuates myocardial inflammation and improves cardiac function after myocardial infarction in mice

    PubMed Central

    Ziegler, Karin A; Ahles, Andrea; Wille, Timo; Kerler, Julia; Ramanujam, Deepak; Engelhardt, Stefan

    2018-01-01

    Abstract Aims Cardiac inflammation has been suggested to be regulated by the sympathetic nervous system (SNS). However, due to the lack of methodology to surgically eliminate the myocardial SNS in mice, neuronal control of cardiac inflammation remains ill-defined. Here, we report a procedure for local cardiac sympathetic denervation in mice and tested its effect in a mouse model of heart failure post-myocardial infarction. Methods and results Upon preparation of the carotid bifurcation, the right and the left superior cervical ganglia were localized and their pre- and postganglionic branches dissected before removal of the ganglion. Ganglionectomy led to an almost entire loss of myocardial sympathetic innervation in the left ventricular anterior wall. When applied at the time of myocardial infarction (MI), cardiac sympathetic denervation did not affect acute myocardial damage and infarct size. In contrast, cardiac sympathetic denervation significantly attenuated chronic consequences of MI, including myocardial inflammation, myocyte hypertrophy, and overall cardiac dysfunction. Conclusion These data suggest a critical role for local sympathetic control of cardiac inflammation. Our model of myocardial sympathetic denervation in mice should prove useful to further dissect the molecular mechanisms underlying cardiac neural control. PMID:29186414

  9. Measures of Autonomic Nervous System Regulation

    DTIC Science & Technology

    2011-04-01

    and most often used measures of ANS activation encompass non-invasive tools, which measure cardiac, skin conductance, respiratory , and vascular...regulation, osmotic balance, metabolism, digestion, excretion, and cardiac and respiratory activity. The ANS consists of the sympathetic and...modulate heart rate, as a function of the respiratory cycles. Generally, these two systems should be seen as permanently modulating vital functions to

  10. Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy

    PubMed Central

    2009-01-01

    Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS), screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1) the thoracospinal concept for right thoracic AIS in girls; (2) the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3) white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4) central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively), with asymmetry as an adverse response (hormesis); this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept). In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF) axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic implications. In the somatic nervous system, dysfunction of a postural mechanism involving the CNS body schema fails to control, or may induce, the spinal deformity of AIS in girls (escalator concept). Biomechanical factors affecting ribs and/or vertebrae and spinal cord during growth may localize AIS to the thoracic spine and contribute to sagittal spinal shape alterations. The developmental disharmony in spine and trunk is compounded by any osteopenia, biomechanical spinal growth modulation, disc degeneration and platelet calmodulin dysfunction. Methods for testing the theory are outlined. Implications are discussed for neuroendocrine dysfunctions, osteopontin, sympathoactivation, medical therapy, Rett and Prader-Willi syndromes, infantile idiopathic scoliosis, and human evolution. AIS pathogenesis in girls is predicated on two putative normal mechanisms involved in trunk growth, each acquired in evolution and unique to humans. PMID:19878575

  11. Peak heart rates and sympathetic function in tetraplegic nonathletes and athletes.

    PubMed

    Currie, Katharine D; West, Christopher R; Hubli, Michéle; Gee, Cameron M; Krassioukov, Andrei V

    2015-06-01

    To examine differences in peak heart rate (HR) and measures of sympathetic function between nonathletes and athletes with chronic, motor-complete, cervical spinal cord injury (SCI). Eight nonathletic men with SCI (C4-C7; age 47 ± 9 yr, with injury duration of 16 ± 9 yr) and 13 athletic men with SCI (C5-C8; age 37 ± 8 yr, with injury duration of 16 ± 6 yr) participated in the study. Measures of sympathetic function included palmar sympathetic skin responses (SSR) to median nerve stimulation, and systolic (SBP) and diastolic (DBP) blood pressure responses to a passive sit-up test. Peak HR responses were assessed during a maximal exercise test. Compared to the athletic group, the nonathletic group exhibited lower peak HR (102 ± 34 vs 161 ± 20 bpm, P < 0.001) and average SSR scores (0.13 ± 0.35 vs 2.41 ± 1.97, P = 0.008), along with greater reductions in SBP and DBP in response to passive sit-up (SBP: -22 ± 10 vs -9 ± 12 mm Hg, P = 0.019; DBP: -18 ± 8 mm Hg vs -4 ± 9 mm Hg, P = 0.003). On the basis of the criteria for orthostatic hypotension (OH) (drop in SBP ≥ 20 mm Hg or DBP ≥ 10 mm Hg), 88% and 23% of nonathletes and athletes had OH. Attenuated peak HR in nonathletic individuals with tetraplegia may be secondary to impairments in sympathetic function including absent SSR and OH. Furthermore, the degree of preserved sympathetic function documented in tetraplegic athletes may suggest a predisposition to engage in high-performance sports. Collectively, our findings provide novel insight into the importance of the sympathetic nervous system for exercise performance.

  12. Postnatal Cardiac Autonomic Nervous Control in Pediatric Congenital Heart Disease

    PubMed Central

    Nederend, Ineke; Jongbloed, Monique R. M.; de Geus, Eco J. C.; Blom, Nico A.; ten Harkel, Arend D. J.

    2016-01-01

    Congenital heart disease is the most common congenital defect. During childhood, survival is generally good but, in adulthood, late complications are not uncommon. Abnormal autonomic control in children with congenital heart disease may contribute considerably to the pathophysiology of these long term sequelae. This narrative review of 34 studies aims to summarize current knowledge on function of the autonomic nervous system in children with a congenital heart defect. Large scale studies that measure both branches of the nervous system for prolonged periods of time in well-defined patient cohorts in various phases of childhood and adolescence are currently lacking. Pending such studies, there is not yet a good grasp on the extent and direction of sympathetic and parasympathetic autonomic function in pediatric congenital heart disease. Longitudinal studies in homogenous patient groups linking autonomic nervous system function and clinical outcome are warranted. PMID:29367565

  13. Compassionate love buffers stress-reactive mothers from fight-or-flight parenting.

    PubMed

    Miller, Jonas G; Kahle, Sarah; Lopez, Monica; Hastings, Paul D

    2015-01-01

    The links among mothers' compassionate love for their child, autonomic nervous system activity, and parenting behavior during less and more challenging mother-child interactions were examined. Mothers expressed and reported less negative affect when they exhibited autonomic patterns of increased parasympathetic dominance (high parasympathetic and low sympathetic activation) or autonomic coactivation (high parasympathetic and high sympathetic activation) during the less challenging interaction and autonomic coactivation during the more challenging interaction. Compassionate love predicted less reported and observed negativity in mothers who showed increased sympathetic nervous system dominance (high sympathetic and low parasympathetic activation). Compassionate love appeared to help mothers, and particularly those who experienced strong physiological arousal during difficult parenting situations, establish positive socialization contexts for their children and avoid stress-induced adverse parenting.

  14. Evaluation of the Circulatory Dynamics by using the Windkessel Model in Different Body Positions

    NASA Astrophysics Data System (ADS)

    Kotani, Kiyoshi; Iida, Fumiaki; Ogawa, Yutaro; Takamasu, Kiyoshi; Jimbo, Yasuhiko

    Autonomic nervous system is important in maintaining homeostasis by the opposing effects of sympathetic and parasympathetic nervous activity on organs. However, it is known that they are at times simultaneously increased or decreased in cases of strong fear or depression. Therefore, it is required to evaluate sympathetic and parasympathetic nervous activity independently. In this paper, we propose a method to evaluate sympathetic nervous activity by analyzing the decreases in blood pressure by utilizing the Windkessel model. Experiments are performed in sitting and standing positions for 380 s, respectively. First, we evaluate the effects of length for analysis on the Windkessel time constant. We shorten the length for analysis by multiplying constant coefficients (1.0, 0.9, and 0.8) to the length of blood pressure decrease and then cut-out the waveform for analysis. Then it is found that the Windkessel time constant is decreased as the length for analysis is shortened. This indicates that the length for analysis should be matched when the different experiments are compared. Second, we compare the Windkessel time constant of sitting to that of standing by matching their length for analysis. With statistically significant difference (P<0.05) the results indicate that the Windkessel time constant is larger in the sitting position. Through our observations this difference in the Windkessel time constant is caused by sympathetic nervous activity on vascular smooth muscle.

  15. The modulation of visceral functions by somatic afferent activity.

    PubMed

    Sato, A; Schmidt, R F

    1987-01-01

    We began by briefly reviewing the historical background of neurophysiological studies of the somato-autonomic reflexes and then discussed recent studies on somatic-visceral reflexes in combination with autonomic efferent nerve activity and effector organ responses. Most of the studies that have advanced our knowledge in this area have been carried out on anesthetized animals, thus eliminating emotional factors. We would like to emphasize again that the functions of many, or perhaps all visceral organs can be modulated by somato-sympathetic or somato-parasympathetic reflex activity induced by a appropriate somatic afferent stimulation in anesthetized animals. As mentioned previously, some autonomic nervous outflow, e.g. the adrenal sympathetic nerve activity, is involved in the control of hormonal secretion. John F. Fulton wrote in his famous textbook "Physiology of the Nervous System" (1949) that the posterior pituitary neurosecretion system (i.e. for oxytocin and vasopressin) could be considered a part of the parasympathetic nervous system. In the study of body homeostasis and environmental adaptation it would seem very important to further analyze the contribution of somatic afferent input to the autonomic nervous and hormonal regulation of visceral organ activity. Also, some immunological functions have been found to be influenced by autonomic nerves or hormones (e.g. adrenal cortical hormone and catecholamines). Finally, we must take into account, as we have briefly discussed, that visceral functions can be modulated by somatic afferent input via various degrees of integration of autonomic nerves, hormones, and immunological processes. We trust that such research will be expanded to higher species of mammals, and that ultimately this knowledge of somato-visceral reflexes obtained in the physiological laboratory will become clinically useful in influencing visceral functions.

  16. Neural mechanisms in nitric-oxide-deficient hypertension

    NASA Technical Reports Server (NTRS)

    Sander, M.; Victor, R. G.; Blomqvist, C. G. (Principal Investigator)

    1999-01-01

    Nitric oxide is hypothesized to be an inhibitory modulator of central sympathetic nervous outflow, and deficient neuronal nitric oxide production to cause sympathetic overactivity, which then contributes to nitric-oxide-deficient hypertension. The biochemical and neuroanatomical basis for this concept revolves around nitric oxide modulation of glutamatergic neurotransmission within brainstem vasomotor centers. The functional consequence of neuronal nitric oxide in blood pressure regulation is, however, marked by an apparent conflict in the literature. On one hand, conscious animal studies using sympathetic blockade suggest a significant role for neuronal nitric oxide deficiency in the development of nitric-oxide-deficient hypertension, and on the other hand, there is evidence against such a role derived from 'knock-out' mice lacking nitric-oxide synthase 1, the major source of neuronal nitric oxide.

  17. THE EFFECTS OF NON-FUNCTIONAL OVERREACHING AND OVERTRAINING ON AUTONOMIC NERVOUS SYSTEM FUNCTION IN HIGHLY TRAINED ATHLETES.

    PubMed

    Kajaia, T; Maskhulia, L; Chelidze, K; Akhalkatsi, V; Kakhabrishvili, Z

    2017-03-01

    Aim of the study was to compare the ANS functioning, as measured by heart rate variability (HRV), in athletes with non-functional overreaching (NFO) and overtraining syndrome (OTS) and in athletes without NFO/OTS. In 43 athletes with NFO/OTS, 40 athletes without NFO/OTS, as well as in 35 sedentary subjects the ANS function was evaluated with the Autonomic Balance Test, based on the HRV analysis of resting heart rate recordings. Results of the study show lower HRV and lower vagal influence along with increased sympathetic cardiovascular control in athletes with non-functional overreaching and particularly in athletes with overtraining, than in highly trained athletes without NFO/OTS. "Stress Response" in athletes with NFO, as well as in some athletes with OTS, showing sympathetic dominance, considered as a sign of physical or mental fatigue and chronic stress, whereas "Total Autonomic Dystonia" in most of the athletes with OTS (67%) reflects more advanced stage of maladaptation associated with depressed regulatory function of the ANS, both sympathetic, as well as vagal influences. Most frequently NFO and OTS were seen in wrestling, which needs further investigation and regular medical monitoring. Thus, results of the study show progression of autonomic imbalance and depression of regulatory function of the autonomic nervous system in athletes with OTS. The cardiac autonomic imbalance observed in overtrained athletes implies changes in HRV and therefore would consider that heart rate variability may provide useful information in detection of overtraining in athletes and can be a valuable adjacent tool for optimising athlete's training program as well as for timely diagnosis and prevention of progression of NFO/OTS.

  18. Dynamic cerebral autoregulation in stroke patients with a central sympathetic deficit.

    PubMed

    Gierthmühlen, J; Allardt, A; Sawade, M; Baron, R; Wasner, G

    2011-05-01

    To investigate the functional role of the sympathetic innervation on cerebral autoregulation. Seventeen patients with infarction of the dorsolateral medulla oblongata affecting central sympathetic pathways (Wallenberg's syndrome) and 21 healthy controls were included in the study. Cerebral blood flow velocity (CBFV) in the medial cerebral artery was investigated using transcranial Doppler ultrasound during decrease in cerebral perfusion pressure induced by leg-cuff test and tilt table. Upon leg-cuff test, changes of cerebral blood flow and mean arterial blood pressure as well as autoregulatory index did not differ between patients or controls. No differences were found in changes of CBFV, mean arterial blood pressure and heart rate between patients or controls during the tilt table test. We suggest that the sympathetic nervous system does not have an influence on cerebral autoregulation after decrease in perfusion pressure under normotonous conditions. © 2010 John Wiley & Sons A/S.

  19. [The influence of single moderate exercise on the sympathetic nervous system activity in patients with essential hypertension].

    PubMed

    Gajek, Jacek; Zyśko, Dorota

    2002-12-01

    Sympathetic nervous system may play an important role in development and maintenance of hypertension. Its activity can be assessed by plasma levels of catecholamines, neuropeptide Y (NPY) and adrenergic receptor density. Hypertensive subjects may be more prone to reveal overactivity of sympathetic nervous system, for instance as a result of physical stress. The aim of the study was to determine the activity of sympathetic nervous system in young patients with newly recognized, untreated mild hypertension. The study was carried out in 22 patients (age 38.5 +/- 10.3 years) and 20 normotensive volunteers (age 38.5 +/- 8.6 years) as a control group, matched for sex. Density of alpha 2- and beta-adrenergic receptors using 3H-yohimbine and 125I-cyanopindolol respectively, total catecholamines and plasma renin activity using radioenzymatic assay, neuropeptide Y and aldosterone using radioimmunoassay were assessed in the blood taken in the supine position and after moderate bicycle ergometer exercise. Plasma concentration of NPY at rest did not differ between the groups, but increased significantly after exercise and was greater in hypertensive patients (p < 0.05). The density of alpha 2- and beta-adrenergic receptors at rest and after exercise in hypertensive subjects was unchanged when comparing to healthy individuals. The plasma concentrations of endogenous catecholamines, plasma renin activity and aldosterone level increase during exercise in both studied groups (p < 0.05). Aldosterone level was higher in hypertensive patients at rest (p < 0.05). There was a negative correlation between baseline aldosterone and NPY levels in hypertensive patients (r = -0.44, p < 0.05). Moderate exercise in hypertensive subjects causes the hyperactivity of sympathetic nervous system expressed as increase of NPY plasma level.

  20. Inhibitory neurotransmission regulates vagal efferent activity and gastric motility

    PubMed Central

    McMenamin, Caitlin A; Travagli, R Alberto

    2016-01-01

    The gastrointestinal tract receives extrinsic innervation from both the sympathetic and parasympathetic nervous systems, which regulate and modulate the function of the intrinsic (enteric) nervous system. The stomach and upper gastrointestinal tract in particular are heavily influenced by the parasympathetic nervous system, supplied by the vagus nerve, and disruption of vagal sensory or motor functions results in disorganized motility patterns, disrupted receptive relaxation and accommodation, and delayed gastric emptying, amongst others. Studies from several laboratories have shown that the activity of vagal efferent motoneurons innervating the upper GI tract is inhibited tonically by GABAergic synaptic inputs from the adjacent nucleus tractus solitarius. Disruption of this influential central GABA input impacts vagal efferent output, hence gastric functions, significantly. The purpose of this review is to describe the development, physiology, and pathophysiology of this functionally dominant inhibitory synapse and its role in regulating vagally determined gastric functions. PMID:27302177

  1. Investigating Autonomic Control of the Cardiovascular System: A Battery of Simple Tests

    ERIC Educational Resources Information Center

    Johnson, Christopher D.; Roe, Sean; Tansey, Etain A.

    2013-01-01

    Sympathetic and parasympathetic divisions of the autonomic nervous system constantly control the heart (sympathetic and parasympathetic divisions) and blood vessels (predominantly the sympathetic division) to maintain appropriate blood pressure and organ blood flow over sometimes widely varying conditions. This can be adversely affected by…

  2. Compassionate Love Buffers Stress-Reactive Mothers From Fight-or-Flight Parenting

    PubMed Central

    Miller, Jonas G.; Kahle, Sarah; Lopez, Monica; Hastings, Paul D.

    2015-01-01

    The links among mothers’ compassionate love for their child, autonomic nervous system activity, and parenting behavior during less and more challenging mother–child interactions were examined. Mothers expressed and reported less negative affect when they exhibited autonomic patterns of increased parasympathetic dominance (high parasympathetic and low sympathetic activation) or autonomic coactivation (high parasympathetic and high sympathetic activation) during the less challenging interaction and autonomic coactivation during the more challenging interaction. Compassionate love predicted less reported and observed negativity in mothers who showed increased sympathetic nervous system dominance (high sympathetic and low parasympathetic activation). Compassionate love appeared to help mothers, and particularly those who experienced strong physiological arousal during difficult parenting situations, establish positive socialization contexts for their children and avoid stress-induced adverse parenting. PMID:25329554

  3. Evidence for a curvilinear relationship between sympathetic nervous system activation and women's physiological sexual arousal.

    PubMed

    Lorenz, Tierney Ahrold; Harte, Christopher B; Hamilton, Lisa Dawn; Meston, Cindy M

    2012-01-01

    There is increasing evidence that women's physiological sexual arousal is facilitated by moderate sympathetic nervous system (SNS) activation. Literature also suggests that the level of SNS activation may play a role in the degree to which SNS activity affects sexual arousal. We provide the first empirical examination of a possible curvilinear relationship between SNS activity and women's genital arousal using a direct measure of SNS activation in 52 sexually functional women. The relationship between heart rate variability (HRV), a specific and sensitive marker of SNS activation, and vaginal pulse amplitude (VPA), a measure of genital arousal, was analyzed. Moderate increases in SNS activity were associated with higher genital arousal, while very low or very high SNS activation was associated with lower genital arousal. These findings imply that there is an optimal level of SNS activation for women's physiological sexual arousal. Copyright © 2011 Society for Psychophysiological Research.

  4. Eyeing up the Future of the Pupillary Light Reflex in Neurodiagnostics

    PubMed Central

    Hall, Charlotte A.; Chilcott, Robert P.

    2018-01-01

    The pupillary light reflex (PLR) describes the constriction and subsequent dilation of the pupil in response to light as a result of the antagonistic actions of the iris sphincter and dilator muscles. Since these muscles are innervated by the parasympathetic and sympathetic nervous systems, respectively, different parameters of the PLR can be used as indicators for either sympathetic or parasympathetic modulation. Thus, the PLR provides an important metric of autonomic nervous system function that has been exploited for a wide range of clinical applications. Measurement of the PLR using dynamic pupillometry is now an established quantitative, non-invasive tool in assessment of traumatic head injuries. This review examines the more recent application of dynamic pupillometry as a diagnostic tool for a wide range of clinical conditions, varying from neurodegenerative disease to exposure to toxic chemicals, as well as its potential in the non-invasive diagnosis of infectious disease. PMID:29534018

  5. Control of Bone Remodeling by the Peripheral Sympathetic Nervous System

    PubMed Central

    Campbell, Preston; Ma, Yun

    2013-01-01

    The skeleton is no longer seen as a static, isolated, and mostly structural organ. Over the last two decades, a more complete picture of the multiple functions of the skeleton has emerged, and its interactions with a growing number of apparently unrelated organs have become evident. The skeleton not only reacts to mechanical loading and inflammatory, hormonal, and mineral challenges, but also acts of its own accord by secreting factors controlling the function of other tissues, including the kidney and possibly the pancreas and gonads. It is thus becoming widely recognized that it is by nature an endocrine organ, in addition to a structural organ and site of mineral storage and hematopoiesis. Consequently and by definition, bone homeostasis must be tightly regulated and integrated with the biology of other organs to maintain whole body homeostasis, and data uncovering the involvement of the central nervous system (CNS) in the control of bone remodeling support this concept. The sympathetic nervous system (SNS) represents one of the main links between the CNS and the skeleton, based on a number of anatomic, pharmacologic, and genetic studies focused on β-adrenergic receptor (βAR) signaling in bone cells. The goal of this report was to review the data supporting the role of the SNS and βAR signaling in the regulation of skeletal homeostasis. PMID:23765388

  6. Myocardial ischaemia and the cardiac nervous system.

    PubMed

    Armour, J A

    1999-01-01

    The intrinsic cardiac nervous system has been classically considered to contain only parasympathetic efferent postganglionic neurones which receive inputs from medullary parasympathetic efferent preganglionic neurones. In such a view, intrinsic cardiac ganglia act as simple relay stations of parasympathetic efferent neuronal input to the heart, the major autonomic control of the heart purported to reside solely in the brainstem and spinal cord. Data collected over the past two decades indicate that processing occurs within the mammalian intrinsic cardiac nervous system which involves afferent neurones, local circuit neurones (interconnecting neurones) as well as both sympathetic and parasympathetic efferent postganglionic neurones. As such, intrinsic cardiac ganglionic interactions represent the organ component of the hierarchy of intrathoracic nested feedback control loops which provide rapid and appropriate reflex coordination of efferent autonomic neuronal outflow to the heart. In such a concept, the intrinsic cardiac nervous system acts as a distributive processor, integrating parasympathetic and sympathetic efferent centrifugal information to the heart in addition to centripetal information arising from cardiac sensory neurites. A number of neurochemicals have been shown to influence the interneuronal interactions which occur within the intrathoracic cardiac nervous system. For instance, pharmacological interventions that modify beta-adrenergic or angiotensin II receptors affect cardiomyocyte function not only directly, but indirectly by influencing the capacity of intrathoracic neurones to regulate cardiomyocytes. Thus, current pharmacological management of heart disease may influence cardiomyocyte function directly as well as indirectly secondary to modifying the cardiac nervous system. This review presents a brief summary of developing concepts about the role of the cardiac nervous system in regulating the normal heart. In addition, it provides some tentative ideas concerning the importance of this nervous system in cardiac disease states with a view to stimulating further interest in neural control of the heart so that appropriate neurocardiological strategies can be devised for the management of heart disease.

  7. Does leptin cause an increase in blood pressure in animals and humans?

    PubMed

    Simonds, Stephanie E; Pryor, Jack T; Cowley, Michael A

    2017-01-01

    Cardiovascular diseases (CVDs) are the number one cause of death globally. The risk for the development of CVDs is significantly increased in obesity. Leptin, the product of white adipose tissue, appears to contribute to the development of CVDs in obesity. Here, we discuss the premise that leptin engages the sympathetic nervous system and contributes to elevated blood pressure (BP) developing in obesity. The long-term regulation of BP is dependent on the activity of the autonomic nervous system and specifically the sympathetic nervous system. Sympathetic nerve activity is significantly increased in obese rodents and humans. Leptin increases sympathetic nerve activity in rodents and humans; however, leptin only consistently increases BP chronically in rodents. The ability of leptin to increase BP in rodents is via both hypothalamic and extrahypothalamic regions. In leptin-deficient and leptin receptor-deficient humans, leptin appears to be the key reason for decreased systolic BP. However, in other research conducted in humans, chronic administration of leptin does not elevate BP. Further research into the role of leptin in the development of CVDs, especially in humans, needs to be conducted.

  8. Renal sympathetic nervous system and the effects of denervation on renal arteries

    PubMed Central

    Kannan, Arun; Medina, Raul Ivan; Nagajothi, Nagapradeep; Balamuthusamy, Saravanan

    2014-01-01

    Resistant hypertension is associated with chronic activation of the sympathetic nervous system resulting in various comorbidities. The prevalence of resistant hypertension is often under estimated due to various reasons. Activation of sympathetic nervous system at the renal- as well as systemic- level contributes to the increased level of catecholamines and resulting increase in the blood pressure. This increased activity was demonstrated by increased muscle sympathetic nerve activity and renal and total body noradrenaline spillover. Apart from the hypertension, it is hypothesized to be associated with insulin resistance, congestive heart failure and obstructive sleep apnea. Renal denervation is a novel procedure where the sympathetic afferent and efferent activity is reduced by various techniques and has been used successfully to treat drug-resistant hypertension improvement of various metabolic derangements. Renal denervation has the unique advantage of offering the denervation at the renal level, thus mitigating the systemic side effects. Renal denervation can be done by various techniques including radiofrequency ablation, ultrasound guided ablation and chemical ablation. Various trials evaluated the role of renal denervation in the management of resistant hypertension and have found promising results. More studies are underway to evaluate the role of renal denervation in patients presenting with resistant hypertension in different scenarios. Appropriate patient selection might be the key in determining the effectiveness of the procedure. PMID:25228960

  9. Renal sympathetic nervous system and the effects of denervation on renal arteries.

    PubMed

    Kannan, Arun; Medina, Raul Ivan; Nagajothi, Nagapradeep; Balamuthusamy, Saravanan

    2014-08-26

    Resistant hypertension is associated with chronic activation of the sympathetic nervous system resulting in various comorbidities. The prevalence of resistant hypertension is often under estimated due to various reasons. Activation of sympathetic nervous system at the renal- as well as systemic- level contributes to the increased level of catecholamines and resulting increase in the blood pressure. This increased activity was demonstrated by increased muscle sympathetic nerve activity and renal and total body noradrenaline spillover. Apart from the hypertension, it is hypothesized to be associated with insulin resistance, congestive heart failure and obstructive sleep apnea. Renal denervation is a novel procedure where the sympathetic afferent and efferent activity is reduced by various techniques and has been used successfully to treat drug-resistant hypertension improvement of various metabolic derangements. Renal denervation has the unique advantage of offering the denervation at the renal level, thus mitigating the systemic side effects. Renal denervation can be done by various techniques including radiofrequency ablation, ultrasound guided ablation and chemical ablation. Various trials evaluated the role of renal denervation in the management of resistant hypertension and have found promising results. More studies are underway to evaluate the role of renal denervation in patients presenting with resistant hypertension in different scenarios. Appropriate patient selection might be the key in determining the effectiveness of the procedure.

  10. Infant Parasympathetic and Sympathetic Activity during Baseline, Stress and Recovery: Interactions with Prenatal Adversity Predict Physical Aggression in Toddlerhood.

    PubMed

    Suurland, J; van der Heijden, K B; Huijbregts, S C J; van Goozen, S H M; Swaab, H

    2018-05-01

    Exposure to prenatal adversity is associated with aggression later in life. Individual differences in autonomic nervous system (ANS) functioning, specifically nonreciprocal activation of the parasympathetic (PNS) and sympathetic (SNS) nervous systems, increase susceptibility to aggression, especially in the context of adversity. Previous work examining interactions between early adversity and ANS functioning in infancy is scarce and has not examined interaction between PNS and SNS. This study examined whether the PNS and SNS moderate the relation between cumulative prenatal risk and early physical aggression in 124 children (57% male). Cumulative risk (e.g., maternal psychiatric disorder, substance (ab)use, and social adversity) was assessed during pregnancy. Parasympathetic respiratory sinus arrhythmia (RSA) and sympathetic pre-ejection period (PEP) at baseline, in response to and during recovery from emotional challenge were measured at 6 months. Physical aggression and non-physical aggression/oppositional behavior were measured at 30 months. The results showed that cumulative prenatal risk predicted elevated physical aggression and non-physical aggression/oppositional behavior in toddlerhood; however, the effects on physical aggression were moderated by PNS and SNS functioning. Specifically, the effects of cumulative risk on physical aggression were particularly evident in children characterized by low baseline PNS activity and/or by nonreciprocal activity of the PNS and SNS, characterized by decreased activity (i.e., coinhibition) or increased activity (i.e., coactivation) of both systems at baseline and/or in response to emotional challenge. These findings extend our understanding of the interaction between perinatal risk and infant ANS functioning on developmental outcome.

  11. Sympatho-renal axis in chronic disease.

    PubMed

    Sobotka, Paul A; Mahfoud, Felix; Schlaich, Markus P; Hoppe, Uta C; Böhm, Michael; Krum, Henry

    2011-12-01

    Essential hypertension, insulin resistance, heart failure, congestion, diuretic resistance, and functional renal disease are all characterized by excessive central sympathetic drive. The contribution of the kidney's somatic afferent nerves, as an underlying cause of elevated central sympathetic drive, and the consequences of excessive efferent sympathetic signals to the kidney itself, as well as other organs, identify the renal sympathetic nerves as a uniquely logical therapeutic target for diseases linked by excessive central sympathetic drive. Clinical studies of renal denervation in patients with resistant hypertension using an endovascular radiofrequency ablation methodology have exposed the sympathetic link between these conditions. Renal denervation could be expected to simultaneously affect blood pressure, insulin resistance, sleep disorders, congestion in heart failure, cardiorenal syndrome and diuretic resistance. The striking epidemiologic evidence for coexistence of these disorders suggests common causal pathways. Chronic activation of the sympathetic nervous system has been associated with components of the metabolic syndrome, such as blood pressure elevation, obesity, dyslipidemia, and impaired fasting glucose with hyperinsulinemia. Over 50% of patients with essential hypertension are hyperinsulinemic, regardless of whether they are untreated or in a stable program of treatment. Insulin resistance is related to sympathetic drive via a bidirectional mechanism. In this manuscript, we review the data that suggests that selective impairment of renal somatic afferent and sympathetic efferent nerves in patients with resistant hypertension both reduces markers of central sympathetic drive and favorably impacts diseases linked through central sympathetics-insulin resistance, heart failure, congestion, diuretic resistance, and cardiorenal disorders.

  12. Dependence of palmar sweating response and central nervous system activity on the frequency of whole-body vibration.

    PubMed

    Ando, Hideo; Noguchi, Ryo

    2003-06-01

    This study was carried out to determine the effects of the frequency of whole-body vibration on palmar sweating response and the activity of the central sympathetic nervous system. Palmar sweating volume was measured on the right palm of six healthy men before and during 3 minutes of exposure to sinusoidal whole-body vibration at three different frequencies (16, 31.5, and 63 Hz). The whole-body vibration had a frequency-weighted, root mean square (rms) acceleration magnitude of 2.0 m/s2. As the index of the activated central sympathetic nervous system, saliva level of 3-methoxy-4-hydroxyphenylglycol (MHPG) was analyzed before and immediately after each vibration exposure. Each vibration frequency induced a palmar sweating response, that of 31.5 Hz being the largest. However, no significant difference was found between the three vibration conditions. Saliva MHPG increased in all the vibration exposures, and the largest change was observed at 31.5 Hz, the difference being significant. Acute exposure to whole-body vibration induced a palmar sweating response and activated the central sympathetic nervous system. The effects on the central nervous system were found to be dependent on the frequency of the vibration.

  13. Relationship between cardiac autonomic function and cognitive function in Alzheimer's disease.

    PubMed

    Nonogaki, Zen; Umegaki, Hiroyuki; Makino, Taeko; Suzuki, Yusuke; Kuzuya, Masafumi

    2017-01-01

    Alzheimer's disease (AD) affects many central nervous structures and neurotransmitter systems. These changes affect not only cognitive function, but also cardiac autonomic function. However, the functional relationship between cardiac autonomic function and cognition in AD has not yet been investigated. The objective of the present study was to evaluate the association between cardiac autonomic function measured by heart rate variability and cognitive function in AD. A total of 78 AD patients were recruited for this study. Cardiac autonomic function was evaluated using heart rate variability analysis. Multiple linear regression analysis was used to model the association between heart rate variability and cognitive function (global cognitive function, memory, executive function and processing speed), after adjustment for covariates. Global cognitive function was negatively associated with sympathetic modulation (low-to-high frequency power ratio). Memory performance was positively associated with parasympathetic modulation (high frequency power) and negatively associated with sympathetic modulation (low-to-high frequency power ratio). These associations were independent of age, sex, educational years, diabetes, hypertension and cholinesterase inhibitor use. Cognitive function, especially in the areas of memory, is associated with cardiac autonomic function in AD. Specifically, lower cognitive performance was found to be associated with significantly higher cardiac sympathetic and lower parasympathetic function in AD. Geriatr Gerontol Int 2017; 17: 92-98. © 2015 Japan Geriatrics Society.

  14. Agmatine suppresses peripheral sympathetic tone by inhibiting N-type Ca(2+) channel activity via imidazoline I2 receptor activation.

    PubMed

    Kim, Young-Hwan; Jeong, Ji-Hyun; Ahn, Duck-Sun; Chung, Seungsoo

    2016-08-26

    Agmatine, a putative endogenous ligand of imidazoline receptors, suppresses cardiovascular function by inhibiting peripheral sympathetic tone. However, the molecular identity of imidazoline receptor subtypes and its cellular mechanism underlying the agmatine-induced sympathetic suppression remains unknown. Meanwhile, N-type Ca(2+) channels are important for the regulation of NA release in the peripheral sympathetic nervous system. Therefore, it is possible that agmatine suppresses NA release in peripheral sympathetic nerve terminals by inhibiting Ca(2+) influx through N-type Ca(2+) channels. We tested this hypothesis by investigating agmatine effect on electrical field stimulation (EFS)-evoked contraction and NA release in endothelium-denuded rat superior mesenteric arterial strips. We also investigated the effect of agmatine on the N-type Ca(2+) current in superior cervical ganglion (SCG) neurons in rats. Our study demonstrates that agmatine suppresses peripheral sympathetic outflow via the imidazoline I2 receptor in rat mesenteric arteries. In addition, the agmatine-induced suppression of peripheral vascular sympathetic tone is mediated by modulating voltage-dependent N-type Ca(2+) channels in sympathetic nerve terminals. These results suggest a potential cellular mechanism for the agmatine-induced suppression of peripheral sympathetic tone. Furthermore, they provide basic and theoretical information regarding the development of new agents to treat hypertension. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Effects of Head Trauma and Brain Injury on Neuroendocrinologic Function.

    DTIC Science & Technology

    1985-09-06

    our central hypothesis, i.e. the determination of sympathetic nervous system activation in traumatic injury, will provide important and useful...Studies of pituitary gonadal function. During the second year of this project, investigation of our observations that hypogonadism develops...following acute severe illness was brought to a close. Our initial studies investigating the specificity of the etiology of the hypogonadism and the site

  16. Effect of sodium intake on sympathetic and hemodynamic response to thermal receptor stimulation.

    PubMed

    DiBona, Gerald F; Jones, Susan Y

    2003-02-01

    Low dietary sodium intake increases central nervous system angiotensin activity, which increases basal renal sympathetic nerve activity and shifts its arterial baroreflex control to a higher level of arterial pressure. This results in a higher level of renal sympathetic nerve activity for a given level of arterial pressure during low dietary sodium intake than during either normal or high dietary sodium intake, in which there is less central angiotensin activity. Peripheral thermal receptor stimulation overrides arterial baroreflex control and produces a pressor response, tachycardia, increased renal sympathetic nerve activity, and renal vasoconstriction. To test the hypothesis that increased central angiotensin activity would enhance the responses to peripheral thermal receptor stimulation, anesthetized normal rats in balance on low, normal, and high dietary sodium intake were subjected to acute peripheral thermal receptor stimulation. Low sodium rats had greater increases in renal sympathetic nerve activity, greater decreases in RBF, and greater increases in renal vascular resistance than high sodium rats. Responses of normal sodium rats were between those of low and high sodium rats. Arterial pressure and heart rate responses were not different among dietary groups. Spontaneously hypertensive rats, known to have increased central nervous system angiotensin activity, also had greater renal sympathoexcitatory and vasoconstrictor responses than normotensive Wistar-Kyoto rats. These results support the view that increased central nervous system angiotensin activity alters arterial baroreflex control of renal sympathetic nerve activity such that the renal sympathoexcitatory and vasoconstrictor responses to peripheral thermoreceptor stimulation are enhanced.

  17. Magnitude of Cerebral Asymmetry at Rest: Covariation with Baseline Cardiovascular Activity

    ERIC Educational Resources Information Center

    Foster, Paul S.; Harrison, David W.

    2006-01-01

    The cerebral regulation of cardiovascular functioning varies along both a lateral and a longitudinal axis. The parasympathetic and sympathetic nervous systems are lateralized to the left and right cerebral hemispheres, respectively. Further, the frontal lobes are known to be inhibitory in nature, whereas the temporal lobes are excitatory. However,…

  18. Beta Adrenergic Blocking Medications for Aggressive or Self-Injurious Mentally Retarded Persons.

    ERIC Educational Resources Information Center

    Ruedrich, Stephen L.; And Others

    1990-01-01

    Literature is reviewed and a case report is presented concerning blockers of the beta-adrenergic function of the sympathetic nervous system, postulated to have efficacy in treatment of aggressive or self-injurious syndromes in persons with mental retardation. Concerns are raised regarding endorsement of beta-blocking medications before they have…

  19. Responses of Six-Weeks Aquatic Exercise on the Autonomic Nervous System, Peak Nasal Inspiratory Flow and Lung Functions in Young Adults with Allergic Rhinitis.

    PubMed

    Janyacharoen, Taweesak; Kunbootsri, Narupon; Arayawichanon, Preeda; Chainansamit, Seksun; Sawanyawisuth, Kittisak

    2015-06-01

    Allergic rhinitis is a chronic respiratory disease. Sympathetic hypofunction is identified in all of the allergic rhinitis patients. Moreover, allergic rhinitis is associated with decreased peak nasal inspiratory flow (PNIF) and impaired lung functions. The aim of this study was to investigate effects of six-week of aquatic exercise on the autonomic nervous system function, PNIF and lung functions in allergic rhinitis patients. Twenty-six allergic rhinitis patients, 12 males and 14 females were recruited in this study. Subjects were diagnosed by a physician based on history, physical examination, and positive reaction to a skin prick test. Subjects were randomly assigned to two groups. The control allergic rhinitis group received education and maintained normal life. The aquatic group performed aquatic exercise for 30 minutes a day, three days a week for six weeks. Heart rate variability, PNIF and lung functions were measured at the beginning, after three weeks and six weeks. There were statistically significant increased low frequency normal units (LF n.u.), PNIF and showed decreased high frequency normal units (HF n.u.) at six weeks after aquatic exercise compared with the control group. Six weeks of aquatic exercise could increase sympathetic activity and PNIF in allergic rhinitis patients.

  20. Impact of sympathetic nervous system activity on post-exercise flow-mediated dilatation in humans.

    PubMed

    Atkinson, Ceri L; Lewis, Nia C S; Carter, Howard H; Thijssen, Dick H J; Ainslie, Philip N; Green, Daniel J

    2015-12-01

    Transient reduction in vascular function following systemic large muscle group exercise has previously been reported in humans. The mechanisms responsible are currently unknown. We hypothesised that sympathetic nervous system activation, induced by cycle ergometer exercise, would contribute to post-exercise reductions in flow-mediated dilatation (FMD). Ten healthy male subjects (28 ± 5 years) undertook two 30 min sessions of cycle exercise at 75% HR(max). Prior to exercise, individuals ingested either a placebo or an α1-adrenoreceptor blocker (prazosin; 0.05 mg kg(-1)). Central haemodynamics, brachial artery shear rate (SR) and blood flow profiles were assessed throughout each exercise bout and in response to brachial artery FMD, measured prior to, immediately after and 60 min after exercise. Cycle exercise increased both mean and antegrade SR (P < 0.001) with retrograde SR also elevated under both conditions (P < 0.001). Pre-exercise FMD was similar on both occasions, and was significantly reduced (27%) immediately following exercise in the placebo condition (t-test, P = 0.03). In contrast, FMD increased (37%) immediately following exercise in the prazosin condition (t-test, P = 0.004, interaction effect P = 0.01). Post-exercise FMD remained different between conditions after correction for baseline diameters preceding cuff deflation and also post-deflation SR. No differences in FMD or other variables were evident 60 min following recovery. Our results indicate that sympathetic vasoconstriction competes with endothelium-dependent dilator activity to determine post-exercise arterial function. These findings have implications for understanding the chronic impacts of interventions, such as exercise training, which affect both sympathetic activity and arterial shear stress. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  1. The treatment with pyridostigmine improves the cardiocirculatory function in rats with chronic heart failure.

    PubMed

    Sabino, João Paulo J; da Silva, Carlos Alberto Aguiar; de Melo, Rubens Fernando; Fazan, Rubens; Salgado, Helio C

    2013-01-01

    Sympathetic hyperactivity and its outcome in heart failure have been thoroughly investigated to determine the focus of pharmacologic approaches targeting the sympathetic nervous system in the treatment of this pathophysiological condition. On the other hand, therapeutic approaches aiming to protect the reduced cardiac parasympathetic function have not received much attention. The present study evaluated rats with chronic heart failure (six to seven weeks after coronary artery ligation) and the effects of an increased parasympathetic function by pyridostigmine (an acetylcholinesterase inhibitor) on the following aspects: arterial pressure (AP), heart rate (HR), baroreceptor and Bezold-Jarisch reflex, pulse interval (PI) and AP variability, cardiac sympathetic and parasympathetic tonus, intrinsic heart rate (i-HR) and cardiac function. Conscious rats with heart failure exhibited no change in HR, Bezold-Jarisch reflex, PI variability and cardiac sympathetic tonus. On the other hand, these animals presented hypotension and reduced baroreflex sensitivity, power in the low frequency (LF) band of the systolic AP spectrum, cardiac parasympathetic tonus and i-HR, while anesthetized rats exhibited reduced cardiac performance. Pyridostigmine prevented the attenuation of all the parameters examined, except basal AP and cardiac performance. In conclusion, the blockade of acetylcholinesterase with pyridostigmine was revealed to be an important pharmacological approach, which could be used to increase parasympathetic function and to improve a number of cardiocirculatory parameters in rats with heart failure. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Effect of autogenic training on cardiac autonomic nervous activity in high-risk fire service workers for posttraumatic stress disorder.

    PubMed

    Mitani, Satoko; Fujita, Masatoshi; Sakamoto, Satoko; Shirakawa, Taro

    2006-05-01

    We investigated the effect of autogenic training (AT) on cardiac autonomic nervous activity in fire services workers with the use of the questionnaire of the Japanese-language version of Impact of Event Scale-Revised (IES-R-J) and indexes of heart rate variability. We studied 22 male fire services workers who were divided into posttraumatic stress disorder (PTSD)-related stress group (n=10) and control group (n=12). They underwent AT twice or three times a week for 2 months. Posttraumatic stress disorder-related stress group showed a significantly higher cardiac sympathetic nervous activity and a significantly lower cardiac parasympathetic nervous activity than control group at baseline. Autogenic training significantly decreased cardiac sympathetic nervous activity and significantly increased cardiac parasympathetic nervous activity in both groups. These changes were accompanied by a significant decrease in the total points of IES-R-J. Autogenic training is effective for ameliorating the disturbance of cardiac autonomic nervous activity and psychological issues secondary to PTSD.

  3. AUTONOMIC AXONS IN THE HUMAN ENDOCRINE PANCREAS SHOW UNIQUE INNERVATION PATTERNS

    PubMed Central

    Rodriguez-Diaz, Rayner; Abdulreda, Midhat H.; Formoso, Alexander L.; Gans, Itai; Ricordi, Camillo; Berggren, Per-Olof; Caicedo, Alejandro

    2011-01-01

    SUMMARY The autonomic nervous system regulates hormone secretion from the endocrine pancreas, the islets of Langerhans, and thus impacts glucose metabolism. The parasympathetic and sympathetic nerves innervate the pancreatic islet, but the precise innervation patterns are not known, particularly in human islets. Here we demonstrate that the innervation of human islets is different from that of mouse islets and that it does not conform to existing models of autonomic control of islet function. By visualizing axons in three dimensions and quantifying axonal densities and contacts within pancreatic islets, we found that, in contrast to mouse endocrine cells, human endocrine cells are sparsely contacted by autonomic axons. Few parasympathetic cholinergic axons penetrate the human islet and the invading sympathetic fibers preferentially innervate smooth muscle cells of blood vessels located within the islet. Thus, rather than modulating endocrine cell function directly, sympathetic nerves may regulate hormone secretion in human islets by controlling local blood flow or by acting on islet regions located downstream. PMID:21723503

  4. Central Fibroblast Growth Factor 21 Browns White Fat via Sympathetic Action in Male Mice.

    PubMed

    Douris, Nicholas; Stevanovic, Darko M; Fisher, Ffolliott M; Cisu, Theodore I; Chee, Melissa J; Nguyen, Ngoc L; Zarebidaki, Eleen; Adams, Andrew C; Kharitonenkov, Alexei; Flier, Jeffrey S; Bartness, Timothy J; Maratos-Flier, Eleftheria

    2015-07-01

    Fibroblast growth factor 21 (FGF21) has multiple metabolic actions, including the induction of browning in white adipose tissue. Although FGF21 stimulated browning results from a direct interaction between FGF21 and the adipocyte, browning is typically associated with activation of the sympathetic nervous system through cold exposure. We tested the hypothesis that FGF21 can act via the brain, to increase sympathetic activity and induce browning, independent of cell-autonomous actions. We administered FGF21 into the central nervous system via lateral ventricle infusion into male mice and found that the central treatment increased norepinephrine turnover in target tissues that include the inguinal white adipose tissue and brown adipose tissue. Central FGF21 stimulated browning as assessed by histology, expression of uncoupling protein 1, and the induction of gene expression associated with browning. These effects were markedly attenuated when mice were treated with a β-blocker. Additionally, neither centrally nor peripherally administered FGF21 initiated browning in mice lacking β-adrenoceptors, demonstrating that an intact adrenergic system is necessary for FGF21 action. These data indicate that FGF21 can signal in the brain to activate the sympathetic nervous system and induce adipose tissue thermogenesis.

  5. Eppur Si Muove: The Dynamic Nature of Physiological Control of Renal Blood Flow by the Renal Sympathetic Nerves

    PubMed Central

    Schiller, Alicia M.; Pellegrino, Peter Ricci; Zucker, Irving H.

    2016-01-01

    Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. PMID:27514571

  6. Eppur Si Muove: The dynamic nature of physiological control of renal blood flow by the renal sympathetic nerves.

    PubMed

    Schiller, Alicia M; Pellegrino, Peter Ricci; Zucker, Irving H

    2017-05-01

    Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Baroreflex failure in a patient with central nervous system lesions involving the nucleus tractus solitarii

    NASA Technical Reports Server (NTRS)

    Biaggioni, I.; Whetsell, W. O.; Jobe, J.; Nadeau, J. H.

    1994-01-01

    Animal studies have shown the importance of the nucleus tractus solitarii, a collection of neurons in the brain stem, in the acute regulation of blood pressure. Impulses arising from the carotid and aortic baroreceptors converge in this center, where the first synapse of the baroreflex is located. Stimulation of the nucleus tractus solitarii provides an inhibitory signal to other brain stem structures, particularly the rostral ventrolateral medulla, resulting in a reduction in sympathetic outflow and a decrease in blood pressure. Conversely, experimental lesions of the nucleus tractus solitarii lead to loss of baroreflex control of blood pressure, sympathetic activation, and severe hypertension in animals. In humans, baroreflex failure due to deafferentation of baroreceptors has been previously reported and is characterized by episodes of severe hypertension and tachycardia. We present a patient with an undetermined process of the central nervous system characterized pathologically by ubiquitous infarctions that were particularly prominent in the nucleus tractus solitarii bilaterally but spared the rostral ventrolateral medulla. Absence of a functioning baroreflex was evidenced by the lack of reflex tachycardia to the hypotensive effects of sodium nitroprusside, exaggerated pressor responses to handgrip and cold pressor test, and exaggerated depressor responses to meals and centrally acting alpha 2-agonists. This clinicopathological correlate suggests that the patient's baroreflex failure can be explained by the unique combination of the destruction of sympathetic inhibitory centers (ie, the nucleus tractus solitarii) and preservation of centers that exert a positive modulation on sympathetic tone (ie, the rostral ventrolateral medulla).

  8. Receptor mechanisms in fish chromatophores--VII. Muscarinic cholinoceptors and alpha adrenoceptors, both mediating pigment aggregation, strangely coexist in Corydoras melanophores.

    PubMed

    Kasukawa, H; Fujii, R

    1985-01-01

    Both acetylcholine and catecholamines showed melanin-aggregating action within melanophores on an isolated bony plate of the mailed catfish Corydoras paleatus. Chromatic nervous stimulation either by an electrical field or by an elevation of [K+]0 brought about melanosome aggregation. Alpha adrenolytic agents antagonized the melanin-aggregating effects either of catecholamines or of nervous stimuli. Muscarinic cholinolytics interfered with the action of acetylcholine, but did not have any effect on the responses to nervous stimuli. In addition to the alpha adrenoceptors which participate in sympathetic-melanophore transmission, muscarinic cholinoceptors of unknown functional significance, which also mediate melanosome aggregation in the cell, exist in Corydoras melanophores.

  9. Measures of Autonomic Nervous System

    DTIC Science & Technology

    2011-04-01

    activation encompass non-invasive tools, which measure cardiac, skin conductance, respiratory , and vascular activity. Choice of tools is dependent upon...digestion, excretion, and cardiac and respiratory activity. The ANS consists of the sympathetic and parasympathetic divisions and acts through a... respiratory cycles. Generally, these two systems should be seen as permanently modulating vital functions to achieve homeostasis. Since both systems are

  10. A Systematic Review Concerning the Relation between the Sympathetic Nervous System and Heart Failure with Preserved Left Ventricular Ejection Fraction

    PubMed Central

    Verloop, Willemien L.; Beeftink, Martine M. A.; Santema, Bernadet T.; Bots, Michiel L.; Blankestijn, Peter J.; Cramer, Maarten J.; Doevendans, Pieter A.; Voskuil, Michiel

    2015-01-01

    Background Heart failure with preserved left ventricular ejection fraction (HFPEF) affects about half of all patients diagnosed with heart failure. The pathophysiological aspect of this complex disease state has been extensively explored, yet it is still not fully understood. Since the sympathetic nervous system is related to the development of systolic HF, we hypothesized that an increased sympathetic nerve activation (SNA) is also related to the development of HFPEF. This review summarizes the available literature regarding the relation between HFPEF and SNA. Methods and Results Electronic databases and reference lists through April 2014 were searched resulting in 7722 unique articles. Three authors independently evaluated citation titles and abstracts, resulting in 77 articles reporting about the role of the sympathetic nervous system and HFPEF. Of these 77 articles, 15 were included for critical appraisal: 6 animal and 9 human studies. Based on the critical appraisal, we selected 9 articles (3 animal, 6 human) for further analysis. In all the animal studies, isoproterenol was administered to mimic an increased sympathetic activity. In human studies, different modalities for assessment of sympathetic activity were used. The studies selected for further evaluation reported a clear relation between HFPEF and SNA. Conclusion Current literature confirms a relation between increased SNA and HFPEF. However, current literature is not able to distinguish whether enhanced SNA results in HFPEF, or HFPEF results in enhanced SNA. The most likely setting is a vicious circle in which HFPEF and SNA sustain each other. PMID:25658630

  11. Cardiovascular consequences of sympathetic hyperactivity.

    PubMed

    Leenen, F H

    1999-03-01

    The sympathetic nervous system plays an integral role in many aspects of cardiovascular homeostasis. However, intermittent or chronic sympathetic hyperactivity can also initiate or accelerate cardiovascular pathology and provoke clinical events in the presence of cardiovascular disease. Both alpha- and beta-receptors mediate these responses. In the case of the heart, alpha- and beta- receptors contribute to ventricular arrhythmias and cardiac hypertrophy. Moreover, cardiac beta2-receptors mediate not only chronotropic and inotropic responses at the postsynaptic level, but also noradrenalin release at the presynaptic level. To block the adverse effects of sympathetic hyperactivity optimally, one would therefore need both alpha- and nonselective beta-receptor blockade. On the other hand, prevention or reversal of sympathetic hyperactivity at the central level appears to be an attractive alternative. Alpha2-agonists such as clonidine and alpha-methyldopa are clearly effective in this regard but are associated with side effects. More recent research indicates that in the central nervous systen (CNS) other classes such as dihydropyridines (eg, nifedipine) or angiotensin II type 1 receptor blockers (eg, losartan) also can decrease elevated sympathetic nerve activity. The therapeutic relevance of these CNS effects and differences between lipophilic and hydrophilic compounds provide intriguing new avenues for research in disorders such as hypertension and congestive heart failure.

  12. Sympathetic control of bone mass regulated by osteopontin

    PubMed Central

    Nagao, Masashi; Feinstein, Timothy N.; Ezura, Yoichi; Hayata, Tadayoshi; Notomi, Takuya; Saita, Yoshitomo; Hanyu, Ryo; Hemmi, Hiroaki; Izu, Yayoi; Takeda, Shu; Wang, Kathryn; Rittling, Susan; Nakamoto, Tetsuya; Kaneko, Kazuo; Kurosawa, Hisashi; Karsenty, Gerard; Denhardt, David T.; Vilardaga, Jean-Pierre; Noda, Masaki

    2011-01-01

    The sympathetic nervous system suppresses bone mass by mechanisms that remain incompletely elucidated. Using cell-based and murine genetics approaches, we show that this activity of the sympathetic nervous system requires osteopontin (OPN), a cytokine and one of the major members of the noncollagenous extracellular matrix proteins of bone. In this work, we found that the stimulation of the sympathetic tone by isoproterenol increased the level of OPN expression in the plasma and bone and that mice lacking OPN (OPN-KO) suppressed the isoproterenol-induced bone loss by preventing reduced osteoblastic and enhanced osteoclastic activities. In addition, we found that OPN is necessary for changes in the expression of genes related to bone resorption and bone formation that are induced by activation of the sympathetic tone. At the cellular level, we showed that intracellular OPN modulated the capacity of the β2-adrenergic receptor to generate cAMP with a corresponding modulation of cAMP-response element binding (CREB) phosphorylation and associated transcriptional events inside the cell. Our results indicate that OPN plays a critical role in sympathetic tone regulation of bone mass and that this OPN regulation is taking place through modulation of the β2-adrenergic receptor/cAMP signaling system. PMID:21990347

  13. Differentiation in the angiotensin II receptor 1 blocker class on autonomic function.

    PubMed

    Krum, H

    2001-09-01

    Autonomic function is disordered in cardiovascular disease states such as chronic heart failure (CHF) and hypertension. Interactions between the renin-angiotensin-aldosterone system (RAAS) and the sympathetic nervous system (SNS) may potentially occur at a number of sites. These include central sites (eg, rostral ventrolateral medulla), at the level of baroreflex control, and at the sympathetic prejunctional angiotensin II receptor 1 (AT(1)) receptor, which is facilitatory for norepinephrine release from the sympathetic nerve terminal. Therefore, drugs that block the RAAS may be expected to improve autonomic dysfunction in cardiovascular disease states. In order to test the hypothesis that RAAS inhibition directly reduces SNS activity, a pithed rat model of sympathetic stimulation has been established. In this model, an increase in frequency of stimulation results in a pressor response that is sympathetically mediated and highly reproducible. This pressor response is enhanced in the presence of angiotensin II and is reduced in the presence of nonselective AIIRAs that block both AT(1) and AT(2) receptor subtypes (eg, saralasin). AT(1)-selective antagonists have also been studied in this model, at pharmacologically relevant doses. In one such study, only the AT(1) blocker eprosartan reduced sympathetically stimulated increases in blood pressure, whereas comparable doses of losartan, valsartan, and irbesartan did not. The reason(s) for the differences between eprosartan and other agents of this class on sympathetic modulation are not clear, but may relate to the chemical structure of the drug (a non- biphenyl tetrazole structure that is chemically distinct from the structure of other AIIRAs), receptor binding characteristics (competitive), or unique effects on presynaptic AT(1) receptors.

  14. Is there anything "autonomous" in the nervous system?

    PubMed

    Rasia-Filho, Alberto A

    2006-03-01

    The terms "autonomous" or "vegetative" are currently used to identify one part of the nervous system composed of sympathetic, parasympathetic, and gastrointestinal divisions. However, the concepts that are under the literal meaning of these words can lead to misconceptions about the actual nervous organization. Some clear-cut examples indicate that no element shows "autonomy" in an integrated body. Nor are they solely "passive" or generated "without mental elaboration." In addition, to be "not consciously controlled" is not a unique attribute of these components. Another term that could be proposed is "homeostatic nervous system" for providing conditions to the execution of behaviors and maintenance of the internal milieu within normal ranges. But, not all homeostatic conditions are under the direct influence of these groups of neurons, and some situations clearly impose different ranges for some variables that are adaptative (or hazardous) in the tentative of successfully coping with challenging situations. Finally, the name "nervous system for visceral control" emerges as another possibility. Unfortunately, it is not only "viscera" that represent end targets for this specific innervation. Therefore, it is commented that no quite adequate term for the sympathetic, parasympathetic, and gastrointestinal divisions has already been coined. The basic condition for a new term is that it should clearly imply the whole integrated and collaborative functions that the components have in an indivisible organism, including the neuroendocrine, immunological, and respiratory systems. Until that, we can call these parts simply by their own names and avoid terms that are more "convenient" than appropriate.

  15. Role of neurotrophins in the development and function of neural circuits that regulate energy homeostasis.

    PubMed

    Fargali, Samira; Sadahiro, Masato; Jiang, Cheng; Frick, Amy L; Indall, Tricia; Cogliani, Valeria; Welagen, Jelle; Lin, Wei-Jye; Salton, Stephen R

    2012-11-01

    Members of the neurotrophin family, including nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5, and other neurotrophic growth factors such as ciliary neurotrophic factor and artemin, regulate peripheral and central nervous system development and function. A subset of the neurotrophin-dependent pathways in the hypothalamus, brainstem, and spinal cord, and those that project via the sympathetic nervous system to peripheral metabolic tissues including brown and white adipose tissue, muscle and liver, regulate feeding, energy storage, and energy expenditure. We briefly review the role that neurotrophic growth factors play in energy balance, as regulators of neuronal survival and differentiation, neurogenesis, and circuit formation and function, and as inducers of critical gene products that control energy homeostasis.

  16. Renal Denervation for Chronic Heart Failure: Background and Pathophysiological Rationale.

    PubMed

    Böhm, Michael; Ewen, Sebastian; Mahfoud, Felix

    2017-01-01

    The activation of the sympathetic nervous system is associated with cardiovascular hospitalizations and death in heart failure. Renal denervation has been shown to effectively reduce sympathetic overdrive in certain patients with uncontrolled hypertension. Pilot trials investigating renal denervation as a potential treatment approach for heart failure were initiated. Heart failure comorbidities like obstructive sleep apnea, metabolic syndrome and arrhythmias could also be targets for renal denervation, because these occurrences are also mediated by the activation of the sympathetic nervous system. Therefore, renal denervation in heart failure is worthy of further investigation, although its effectiveness still has to be proven. Herein, we describe the pathophysiological rationale and the effect of renal denervation on surrogates of the heart failure syndrome.

  17. Renal Denervation for Chronic Heart Failure: Background and Pathophysiological Rationale

    PubMed Central

    Ewen, Sebastian; Mahfoud, Felix

    2017-01-01

    The activation of the sympathetic nervous system is associated with cardiovascular hospitalizations and death in heart failure. Renal denervation has been shown to effectively reduce sympathetic overdrive in certain patients with uncontrolled hypertension. Pilot trials investigating renal denervation as a potential treatment approach for heart failure were initiated. Heart failure comorbidities like obstructive sleep apnea, metabolic syndrome and arrhythmias could also be targets for renal denervation, because these occurrences are also mediated by the activation of the sympathetic nervous system. Therefore, renal denervation in heart failure is worthy of further investigation, although its effectiveness still has to be proven. Herein, we describe the pathophysiological rationale and the effect of renal denervation on surrogates of the heart failure syndrome. PMID:28154583

  18. Delta 9 -tetrahydrocannabinol and ethanol: differential effects on sympathetic activity in differing environmental setting.

    PubMed

    Ng, L K; Lamprecht, F; Williams, R B; Kopin, I J

    1973-06-29

    Serum dopamine beta-hydroxylase activity, a useful biochemical index of peripheral sympathetic nervous activity, was measured in rats treated with Delta(9)-tetrahydrocannabinol or ethanol or both substances. After 7 days of treatment with either substance, serum dopamine beta-hydroxylase activity decreased significantly. Combined treatment with both agents enhanced the effects of each given alone. In rats subjected to immobilization stress, treatment with Delta(9)- tetrahydrocannabinol appeared to potentiate the stress-induced increase in serum enzyme activity. Treatment with ethanol, with or without Delta(9)-tetrahydrocannabinol, effectively blocked this increase in enzyme activity. These results show that both substances have significant effects on the sympathetic nervous system which are critically influenced by environmental setting.

  19. Obesity and adipokines: effects on sympathetic overactivity

    PubMed Central

    Smith, Michael M; Minson, Christopher T

    2012-01-01

    Excess body weight is a major risk factor for cardiovascular disease, increasing the risk of hypertension, hyperglycaemia and dyslipidaemia, recognized as the metabolic syndrome. Adipose tissue acts as an endocrine organ by producing various signalling cytokines called adipokines (including leptin, free fatty acids, tumour necrosis factor-α, interleukin-6, C-reactive protein, angiotensinogen and adiponectin). A chronic dysregulation of certain adipokines can have deleterious effects on insulin signalling. Chronic sympathetic overactivity is also known to be present in central obesity, and recent findings demonstrate the consequence of an elevated sympathetic outflow to organs such as the heart, kidneys and blood vessels. Chronic sympathetic nervous system overactivity can also contribute to a further decline of insulin sensitivity, creating a vicious cycle that may contribute to the development of the metabolic syndrome and hypertension. The cause of this overactivity is not clear, but may be driven by certain adipokines. The purpose of this review is to summarize how obesity, notably central or visceral as observed in the metabolic syndrome, leads to adipokine expression contributing to changes in insulin sensitivity and overactivity of the sympathetic nervous system. PMID:22351630

  20. Blood pressure long term regulation: A neural network model of the set point development

    PubMed Central

    2011-01-01

    Background The notion of the nucleus tractus solitarius (NTS) as a comparator evaluating the error signal between its rostral neural structures (RNS) and the cardiovascular receptor afferents into it has been recently presented. From this perspective, stress can cause hypertension via set point changes, so offering an answer to an old question. Even though the local blood flow to tissues is influenced by circulating vasoactive hormones and also by local factors, there is yet significant sympathetic control. It is well established that the state of maturation of sympathetic innervation of blood vessels at birth varies across animal species and it takes place mostly during the postnatal period. During ontogeny, chemoreceptors are functional; they discharge when the partial pressures of oxygen and carbon dioxide in the arterial blood are not normal. Methods The model is a simple biological plausible adaptative neural network to simulate the development of the sympathetic nervous control. It is hypothesized that during ontogeny, from the RNS afferents to the NTS, the optimal level of each sympathetic efferent discharge is learned through the chemoreceptors' feedback. Its mean discharge leads to normal oxygen and carbon dioxide levels in each tissue. Thus, the sympathetic efferent discharge sets at the optimal level if, despite maximal drift, the local blood flow is compensated for by autoregulation. Such optimal level produces minimum chemoreceptor output, which must be maintained by the nervous system. Since blood flow is controlled by arterial blood pressure, the long-term mean level is stabilized to regulate oxygen and carbon dioxide levels. After development, the cardiopulmonary reflexes play an important role in controlling efferent sympathetic nerve activity to the kidneys and modulating sodium and water excretion. Results Starting from fixed RNS afferents to the NTS and random synaptic weight values, the sympathetic efferents converged to the optimal values. When learning was completed, the output from the chemoreceptors became zero because the sympathetic efferents led to normal partial pressures of oxygen and carbon dioxide. Conclusions We introduce here a simple simulating computational theory to study, from a neurophysiologic point of view, the sympathetic development of cardiovascular regulation due to feedback signals sent off by cardiovascular receptors. The model simulates, too, how the NTS, as emergent property, acts as a comparator and how its rostral afferents behave as set point. PMID:21693057

  1. Effects of celiac superior mesenteric ganglionectomy on glucose homeostasis and hormonal changes during oral glucose tolerance testing in rats.

    PubMed

    Kumakura, Atsushi; Shikuma, Junpei; Ogihara, Norikazu; Eiki, Jun-ichi; Kanazawa, Masao; Notoya, Yōko; Kikuchi, Masatoshi; Odawara, Masato

    2013-01-01

    The liver plays an important role in maintaining glucose homeostasis in the body. In the prandial state, some of the glucose which is absorbed by the gastrointestinal tract is converted into glycogen and stored in the liver. In contrast, the liver produces glucose by glycogenolysis and gluconeogenesis while fasting. Thus, the liver contributes to maintaining blood glucose level within normoglycemic range. Glycogenesis and glycogenolysis are regulated by various mechanisms including hormones, the sympathetic and parasympathetic nervous systems and the hepatic glucose content. In this study, we examined a rat model in which the celiac superior mesenteric ganglion (CSMG) was resected. We attempted to elucidate how the celiac sympathetic nervous system is involved in regulating glucose homeostasis by assessing the effects of CSMG resection on glucose excursion during an oral glucose tolerance test, and by examining hepatic glycogen content and hepatic glycogen phosphorylase (GP) activity. On the oral glucose tolerance test, CSMG-resected rats demonstrated improved glucose tolerance and significantly increased GP activity compared with sham-operated rats, whereas there were no significant differences in insulin, glucagon or catecholamine levels between the 2 groups. These results suggest that the celiac sympathetic nervous system is involved in regulating the rate of glycogen consumption through GP activity. In conclusion, the examined rat model showed that the celiac sympathetic nervous system regulates hepatic glucose metabolism in conjunction with vagal nerve innervations and is a critical component in the maintenance of blood glucose homeostasis.

  2. Leptin regulates bone formation via the sympathetic nervous system

    NASA Technical Reports Server (NTRS)

    Takeda, Shu; Elefteriou, Florent; Levasseur, Regis; Liu, Xiuyun; Zhao, Liping; Parker, Keith L.; Armstrong, Dawna; Ducy, Patricia; Karsenty, Gerard

    2002-01-01

    We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.

  3. Peripheral and central interactions between the renin-angiotensin system and the renal sympathetic nerves in control of renal function.

    PubMed

    DiBona, G F

    2001-06-01

    Increases in renal sympathetic nerve activity (RSNA) regulate the functions of the nephron, the vasculature, and the renin-containing juxtaglomerular granular cells. As increased activity of the renin-angiotensin system can also influence nephron and vascular function, it is important to understand the interactions between RSNA and the renin-angiotensin system in the control of renal function. These interactions can be intrarenal, that is, the direct (via specific innervation) and indirect (via angiotensin II) contributions of increased RSNA to the regulation of renal function. The effects of increased RSNA on renal function are attenuated when the activity of the renin-angiotensin system is suppressed or antagonized with angiotensin-converting enzyme inhibitors or angiotensin II-type AT1 receptor antagonists. The effects of intrarenal administration of angiotensin II are attenuated following renal denervation. These interactions can also be extrarenal, that is, in the central nervous system, wherein RSNA and its arterial baroreflex control are modulated by changes in activity of the renin-angiotensin system. In addition to the circumventricular organs, the permeable blood-brain barrier of which permits interactions with circulating angiotensin II, there are interactions at sites behind the blood-brain barrier that depend on the influence of local angiotensin II. The responses to central administration of angiotensin II type AT1 receptor antagonists, into the ventricular system or microinjected into the rostral ventrolateral medulla, are modulated by changes in activity of the renin-angiotensin system produced by physiological changes in dietary sodium intake. Similar modulation is observed in pathophysiological models wherein activity of both the renin-angiotensin and sympathetic nervous systems is increased (e.g., congestive heart failure). Thus, both renal and extrarenal sites of interaction between the renin-angiotensin system and RSNA are involved in influencing the neural control of renal function.

  4. Neural Control of the Circulation: How Sex and Age Differences Interact in Humans

    PubMed Central

    Joyner, Michael J.; Barnes, Jill N.; Hart, Emma C.; Wallin, B. Gunnar; Charkoudian, Nisha

    2015-01-01

    The autonomic nervous system is a key regulator of cardiovascular system. In this review we focus on how sex and aging influence autonomic regulation of blood pressure in humans in an effort to understand general issues related to how the autonomic nervous system regulates blood pressure, and the cardiovascular system as a whole. Younger women generally have lower blood pressure and sympathetic activity than younger men. However, both sexes show marked inter-individual variability across age groups with significant overlap seen. Additionally, while men across the lifespan show a clear relationship between markers of whole body sympathetic activity and vascular resistance, such a relationship is not seen in young women. In this context, the ability of the sympathetic nerves to evoke vasoconstriction is lower in young women likely as a result of concurrent β2 mediated vasodilation that offsets α-adrenergic vasoconstriction. These differences reflect both central sympatho-inhibitory effects of estrogen and also its influence on peripheral vasodilation at the level of the vascular smooth muscle and endothelium. By contrast post-menopausal women show a clear relationship between markers of whole body sympathetic traffic and vascular resistance, and sympathetic activity rises progressively in both sexes with aging. These central findings in humans are discussed in the context of differences in population-based trends in blood pressure and orthostatic intolerance. The many areas where there is little sex-specific data on how the autonomic nervous system participates in the regulation of the human cardiovascular system are highlighted. PMID:25589269

  5. Altered central nervous system processing of baroreceptor input following hindlimb unloading in rats

    NASA Technical Reports Server (NTRS)

    Moffitt, J. A.; Schadt, J. C.; Hasser, E. M.

    1999-01-01

    The effect of cardiovascular deconditioning on central nervous system processing of baroreceptor afferent activity was evaluated following 14 days of hindlimb unloading (HU). Inactin-anesthetized rats were instrumented with catheters, renal sympathetic nerve electrodes, and aortic depressor nerve electrodes for measurement of mean arterial pressure, heart rate, renal sympathetic nerve activity (RSNA), and aortic depressor nerve activity (ADNA). Baroreceptor and baroreflex functions were assessed during infusion of phenylephrine and sodium nitroprusside. Central processing of baroreceptor afferent input was evaluated by linear regression relating RSNA to ADNA. The maximum baroreflex-elicited increase in RSNA was significantly reduced in HU rats (122 +/- 3.8 vs. 144 +/- 4.9% of baseline RSNA), whereas ADNA was not altered. The slope (-0.18 +/- 0.04 vs. -0.40 +/- 0.04) and y-intercept (121 +/- 3.2 vs. 146 +/- 4.3) of the linear regression relating increases in efferent RSNA to decreases in afferent ADNA during hypotension were significantly reduced in HU rats. There were no differences during increases in arterial pressure. Results demonstrate that the attenuation in baroreflex-mediated increases in RSNA following HU is due to changes in central processing of baroreceptor afferent information rather than aortic baroreceptor function.

  6. The sympathetic nervous system in polycystic ovary syndrome: a novel therapeutic target?

    PubMed

    Lansdown, Andrew; Rees, D Aled

    2012-12-01

    Polycystic ovary syndrome (PCOS) is a common endocrine condition associated with long-term health risks, including type 2 diabetes and vascular dysfunction in addition to reproductive sequelae. Many of the common features of PCOS, such as central obesity, hyperinsulinaemia and obstructive sleep apnoea (OSA), are associated with chronic sympathetic overactivity, suggesting that sympathoexcitation may be involved in the pathogenesis of this condition. Rodent models of polycystic ovaries have shown that ovarian sympathetic outflow may be increased, accompanied by elevated intra-ovarian synthesis of nerve growth factor (NGF) which may be involved in initiation of ovarian pathology. Patients with PCOS have evidence of increased muscle sympathetic nerve activity (MSNA), altered heart rate variability and attenuated heart rate recovery postexercise, compared with age- and BMI-matched controls, suggesting a generalized increase in sympathetic nerve activity. Active weight loss can reduce MSNA and whole body noradrenaline spillover, whereas low-frequency electroacupuncture decreased MSNA in overweight women with PCOS. Treatment of OSA with continuous positive airways pressure may reduce plasma noradrenaline levels and diastolic blood pressure and improve cardiac sympathovagal balance. Renal sympathetic denervation also reduced MSNA, noradrenaline spillover and blood pressure in two PCOS subjects with hypertension, accompanied by improved insulin sensitivity. The sympathetic nervous system may thus offer a new therapeutic target in PCOS but larger and longer-term studies are needed before these treatments can be considered in clinical practice. © 2012 Blackwell Publishing Ltd.

  7. Frequency-Dependent Activation of Glucose Utilization in the Superior Cervical Ganglion by Electrical Stimulation of Cervical Sympathetic Trunk

    NASA Astrophysics Data System (ADS)

    Yarowsky, Paul; Kadekaro, Massako; Sokoloff, Louis

    1983-07-01

    Electrical stimulation of the distal stump of the transected cervical sympathetic trunk produces a frequency-dependent activation of glucose utilization, measured by the deoxy[14C]glucose method, in the superior cervical ganglion of the urethane-anesthetized rat. The frequency dependence falls between 0-15 Hz; at 20 Hz the activation of glucose utilization is no greater than at 15 Hz. Deafferentation of the superior cervical ganglion by transection of the cervical sympathetic trunk does not diminish the rate of glucose utilization in the ganglion in the urethane-anesthetized rat. These results indicate that the rate of energy metabolism in an innervated neural structure is, at least in part, regulated by the impulse frequency of the electrical input to the structure, and this regulation may be an essential component of the mechanism of the coupling of metabolic activity to functional activity in the nervous system.

  8. Is There Anything "Autonomous" in the Nervous System?

    ERIC Educational Resources Information Center

    Rasia-Filho, Alberto A.

    2006-01-01

    The terms "autonomous" or "vegetative" are currently used to identify one part of the nervous system composed of sympathetic, parasympathetic, and gastrointestinal divisions. However, the concepts that are under the literal meaning of these words can lead to misconceptions about the actual nervous organization. Some clear-cut examples indicate…

  9. Marital Conflict and Growth in Children's Internalizing Symptoms: The Role of Autonomic Nervous System Activity

    ERIC Educational Resources Information Center

    El-Sheikh, Mona; Keiley, Margaret; Erath, Stephen; Dyer, W. Justin

    2013-01-01

    We assessed trajectories of children's internalizing symptoms, indexed through anxiety and depression, with a focus on the role of interactions between interparental marital conflict, children's sympathetic nervous system activity indexed by skin conductance level (SCL), and parasympathetic nervous system activity indexed by respiratory sinus…

  10. Influence of cigarette smoking on human autonomic function

    NASA Technical Reports Server (NTRS)

    Niedermaier, O. N.; Smith, M. L.; Beightol, L. A.; Zukowska-Grojec, Z.; Goldstein, D. S.; Eckberg, D. L.

    1993-01-01

    BACKGROUND. Although cigarette smoking is known to lead to widespread augmentation of sympathetic nervous system activity, little is known about the effects of smoking on directly measured human sympathetic activity and its reflex control. METHODS AND RESULTS. We studied the acute effects of smoking two research-grade cigarettes on muscle sympathetic nerve activity and on arterial baroreflex-mediated changes of sympathetic and vagal neural cardiovascular outflows in eight healthy habitual smokers. Measurements were made during frequency-controlled breathing, graded Valsalva maneuvers, and carotid baroreceptor stimulation with ramped sequences of neck pressure and suction. Smoking provoked the following changes: Arterial pressure increased significantly, and RR intervals, RR interval spectral power at the respiratory frequency, and muscle sympathetic nerve activity decreased. Plasma nicotine levels increased significantly, but plasma epinephrine, norepinephrine, and neuropeptide Y levels did not change. Peak sympathetic nerve activity during and systolic pressure overshoots after Valsalva straining increased significantly in proportion to increases of plasma nicotine levels. The average carotid baroreceptor-cardiac reflex relation shifted rightward and downward on arterial pressure and RR interval axes; average gain, operational point, and response range did not change. CONCLUSIONS. In habitual smokers, smoking acutely reduces baseline levels of vagal-cardiac nerve activity and completely resets vagally mediated arterial baroreceptor-cardiac reflex responses. Smoking also reduces muscle sympathetic nerve activity but augments increases of sympathetic activity triggered by brief arterial pressure reductions. This pattern of autonomic changes is likely to influence smokers' responses to acute arterial pressure reductions importantly.

  11. R1 autonomic nervous system in acute kidney injury.

    PubMed

    Hering, Dagmara; Winklewski, Pawel J

    2017-02-01

    Acute kidney injury (AKI) is a rapid loss of kidney function resulting in accumulation of end metabolic products and associated abnormalities in fluid, electrolyte and acid-base homeostasis. The pathophysiology of AKI is complex and multifactorial involving numerous vascular, tubular and inflammatory pathways. Neurohumoral activation with heightened activity of the sympathetic nervous system and renin-angiotensin-aldosterone system play a critical role in this scenario. Inflammation and/or local renal ischaemia are underlying mechanisms triggering renal tissue hypoxia and resultant renal microcirculation dysfunction; a common feature of AKI occurring in numerous clinical conditions leading to a high morbidity and mortality rate. The contribution of renal nerves to the pathogenesis of AKI has been extensively demonstrated in a series of experimental models over the past decades. While this has led to better knowledge of the pathogenesis of human AKI, therapeutic approaches to improve patient outcomes are scarce. Restoration of autonomic regulatory function with vagal nerve stimulation resulting in anti-inflammatory effects and modulation of centrally-mediated mechanisms could be of clinical relevance. Evidence from experimental studies suggests that a therapeutic splenic ultrasound approach may prevent AKI via activation of the cholinergic anti-inflammatory pathway. This review briefly summarizes renal nerve anatomy, basic insights into neural control of renal function in the physiological state and the involvement of the autonomic nervous system in the pathophysiology of AKI chiefly due to sepsis, cardiopulmonary bypass and ischaemia/reperfusion experimental model. Finally, potentially preventive experimental pre-clinical approaches for the treatment of AKI aimed at sympathetic inhibition and/or parasympathetic stimulation are presented. © 2016 John Wiley & Sons Australia, Ltd.

  12. Neuropeptide y gates a stress-induced, long-lasting plasticity in the sympathetic nervous system.

    PubMed

    Wang, Qian; Wang, Manqi; Whim, Matthew D

    2013-07-31

    Acute stress evokes the fight-or-flight reflex, which via release of the catecholamine hormones affects the function of every major organ. Although the reflex is transient, it has lasting consequences that produce an exaggerated response when stress is reexperienced. How this change is encoded is not known. We investigated whether the reflex affects the adrenal component of the sympathetic nervous system, a major branch of the stress response. Mice were briefly exposed to the cold-water forced swim test (FST) which evoked an increase in circulating catecholamines. Although this hormonal response was transient, the FST led to a long-lasting increase in the catecholamine secretory capacity measured amperometrically from chromaffin cells and in the expression of tyrosine hydroxylase. A variety of approaches indicate that these changes are regulated postsynaptically by neuropeptide Y (NPY), an adrenal cotransmitter. Using immunohistochemistry, RT-PCR, and NPY(GFP) BAC mice, we find that NPY is synthesized by all chromaffin cells. Stress failed to increase secretory capacity in NPY knock-out mice. Genetic or pharmacological interference with NPY and Y1 (but not Y2 or Y5) receptor signaling attenuated the stress-induced change in tyrosine hydroxylase expression. These results indicate that, under basal conditions, adrenal signaling is tonically inhibited by NPY, but stress overrides this autocrine negative feedback loop. Because acute stress leads to a lasting increase in secretory capacity in vivo but does not alter sympathetic tone, these postsynaptic changes appear to be an adaptive response. We conclude that the sympathetic limb of the stress response exhibits an activity-dependent form of long-lasting plasticity.

  13. Stomach distension increases efferent muscle sympathetic nerve activity and blood pressure in healthy humans.

    PubMed

    Rossi, P; Andriesse, G I; Oey, P L; Wieneke, G H; Roelofs, J M; Akkermans, L M

    1998-12-11

    Although the enteric nervous system is usually described as a separate and independent entity, animal studies show that gastric distension causes a reflex increase in arterial pressure and a sympathetically mediated increase in heart rate and peripheral vascular resistance. To assess the influence of gastric distension on sympathetic outflow and blood pressure, we recorded muscle sympathetic nerve activity (MSNA) from the peroneal nerve by microneurography in eight healthy volunteers. The stomach was distended by means of a barostat, using a single staircase protocol by which pressure was increased by 2 mmHg every 3 min. Gastric sensory function was assessed at each distension step by using a visual analog scale (VAS) for sensations of fullness, nausea and pain. For comparison, we also performed a cold pressor test. The MSNA increased on barostat-induced gastric distension with an almost concomitant elevation of blood pressure. The increase in both was proportional to the intragastric pressure and both decreased towards initial values after the end of distension. Heart rate increased inconsistently and only at higher distension pressures that were associated with high VAS scores. The opposite was found for the cold pressor test. The results of this study confirm the existence of a functional relationship between gastrointestinal distension and cardiovascular function. Decrease in this gastrovascular response may play a role in postprandial hypotension in the elderly, since the MSNA responses to simulated microgravity decrease with age.

  14. Children's patterns of emotional reactivity to conflict as explanatory mechanisms in links between interpartner aggression and child physiological functioning.

    PubMed

    Davies, Patrick T; Sturge-Apple, Melissa L; Cicchetti, Dante; Manning, Liviah G; Zale, Emily

    2009-11-01

    This paper examined children's fearful, sad, and angry reactivity to interparental conflict as mediators of associations between their exposure to interparental aggression and physiological functioning. Participants included 200 toddlers and their mothers. Assessments of interparental aggression and children's emotional reactivity were derived from maternal surveys and a semi-structured interview. Cortisol levels and cardiac indices of sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) activity were used to assess toddler physiological functioning. Results indicated that toddler exposure to interparental aggression was associated with greater cortisol levels and PNS activity and diminished SNS activity. Toddler angry emotional reactivity mediated associations between interparental aggression and cortisol and PNS functioning. Fearful emotional reactivity was a mediator of the link between interparental aggression and SNS functioning. The results are interpreted within conceptualizations of how exposure and reactivity to family risk organize individual differences in physiological functioning.

  15. Autonomic nervous responses according to preference for the odor of jasmine tea.

    PubMed

    Inoue, Naohiko; Kuroda, Kyoko; Sugimoto, Akio; Kakuda, Takami; Fushiki, Tohru

    2003-06-01

    The effect of jasmine tea odor on the autonomic nervous system was investigated by a power spectral analysis of the heart rate variability. We assigned eight volunteers to two groups with either a predilection for or antipathy toward the jasmine tea odor. We tested both high- and low-intensity jasmine tea odors. The low-intensity odor was produced by diluting 20-fold the jasmine tea used for the high-intensity odor test. The low-intensity odor produced an increase in parasympathetic nervous activity in both the predilection and antipathy groups. The high-intensity odor produced an increase in parasympathetic nervous activity in the predilection group, but an increase in sympathetic nervous activity in the antipathy group. The odor of Chinese green tea, a basic ingredient of jasmine tea, produced no effects similar to those of the jasmine tea odor. These results suggest that the jasmine tea odor activated the parasympathetic nerve, whereas the higher-intensity odor activated the sympathetic nerve in those subjects who disliked the odor.

  16. Central sympathoexcitatory actions of angiotensin II: role of type 1 angiotensin II receptors.

    PubMed

    DiBona, G F

    1999-01-01

    The role of the renin-angiotensin system in the control of sympathetic nerve activity is reviewed. Two general mechanisms are considered, one that involves the effects of circulating angiotensin II (AngII) on the central nervous system and a second that involves the central nervous system effects of AngII that originates within the central nervous system. The role of type 1 AngII receptors in discrete brain sites that mediate the sympathoexcitatory actions of AngII of either circulating or central nervous system origin is examined. AngII of circulating origin has ready access to the subfornical organ and area postrema, where it can bind to type 1 AngII receptors on neurons whose connections to the nucleus tractus solitarius and rostral ventrolateral medulla result in sympathoexcitation. In the rostral ventrolateral medulla, angiotensin peptides of central nervous system origin, likely involving angiotensin species in addition to AngII and binding to receptors other than type 1 or 2 AngII receptors, tonically support sympathetic nerve activity.

  17. Neural control of renal function: role of renal alpha adrenoceptors.

    PubMed

    DiBona, G F

    1985-01-01

    Adrenoceptors of various subtypes mediate the renal functional responses to alterations in efferent renal sympathetic nerve activity, the neural component, and renal arterial plasma catecholamine concentrations, the humoral component, of the sympathoadrenergic nervous system. Under normal physiologic as well as hypertensive conditions, the influence of the renal sympathetic nerves predominates over that of circulating plasma catecholamines. In most mammalian species, increases in efferent renal sympathetic nerve activity elicit renal vasoconstrictor responses mediated predominantly by renal vascular alpha-1 adrenoceptors, increases in renin release mediated largely by renal juxtaglomerular granular cell beta-1 adrenoceptors with involvement of renal vascular alpha-1 adrenoceptors only when renal vasoconstriction occurs, and direct increases in renal tubular sodium and water reabsorption mediated predominantly by renal tubular alpha-1 adrenoceptors. In most mammalian species, alpha-2 adrenoceptors do not play a significant role in the renal vascular or renin release responses to renal sympathoadrenergic stimulation. Although renal tubular alpha-2 adrenoceptors do not mediate the increases in renal tubular sodium and water reabsorption produced by increases in efferent renal sympathetic nerve activity, they may be involved through their inhibitory effect on adenylate cyclase in modulating the response to other hormonal agents that influence renal tubular sodium and water reabsorption via stimulation of adenylate cyclase.

  18. Putting together the clues of the everlasting neuro-cardiac liaison.

    PubMed

    Franzoso, Mauro; Zaglia, Tania; Mongillo, Marco

    2016-07-01

    Starting from the late embryonic development, the sympathetic nervous system extensively innervates the heart and modulates its activity during the entire lifespan. The distribution of myocardial sympathetic processes is finely regulated by the secretion of limiting amounts of pro-survival neurotrophic factors by cardiac cells. Norepinephrine release by the neurons rapidly modulates myocardial electrophysiology, and increases the rate and force of cardiomyocyte contractions. Sympathetic processes establish direct interaction with cardiomyocytes, characterized by the presence of neurotransmitter vesicles and reduced cell-cell distance. Whether such contacts have a functional role in both neurotrophin- and catecholamine-dependent communication between the two cell types, is poorly understood. In this review we will address the effects of the sympathetic neuron activity on the myocardium and the hypothesis that the direct neuro-cardiac contact might have a key role both in norepinephrine and neurotrophin mediated signaling. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Role of the autonomic nervous system in activation of human brown adipose tissue: A review of the literature.

    PubMed

    Bahler, L; Molenaars, R J; Verberne, H J; Holleman, F

    2015-12-01

    Brown adipose tissue (BAT) is able to convert calories into heat rather than storing them. Therefore, activated BAT could be a potential target in the battle against obesity and type 2 diabetes. This review focuses on the role of the autonomic nervous system in the activation of human BAT. Although the number of studies focusing on BAT in humans is limited, involvement of the sympathetic nervous system (SNS) in BAT activation is evident. Metabolic BAT activity can be visualized with (18)F-fluorodeoxyglucose, whereas sympathetic activation of BAT can be visualized with nuclear-medicine techniques using different radiopharmaceuticals. Also, interruption of the sympathetic nerves leading to BAT activation diminishes sympathetic stimulation, resulting in reduced metabolic BAT activity. Furthermore, both β- and α-adrenoceptors might be important in the stimulation process of BAT, as pretreatment with propranolol or α-adrenoceptor blockade also diminishes BAT activity. In contrast, high catecholamine levels are known to activate and recruit BAT. There are several interventional studies in which BAT was successfully inhibited, whereas only one interventional study aiming to activate BAT resulted in the intended outcome. Most studies have focused on the SNS for activating BAT, although the parasympathetic nervous system might also be a target of interest. To better define the possible role of BAT in strategies to combat the obesity epidemic, it seems likely that future studies focusing on both histology and imaging are essential for identifying the factors and receptors critical for activation of human BAT. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Moderate pressure massage elicits a parasympathetic nervous system response.

    PubMed

    Diego, Miguel A; Field, Tiffany

    2009-01-01

    Twenty healthy adults were randomly assigned to a moderate pressure or a light pressure massage therapy group, and EKGs were recorded during a 3-min baseline, during the 15-min massage period and during a 3-min postmassage period. EKG data were then used to derive the high frequency (HF), low frequency (LF) components of heart rate variability and the low to high frequency ratio (LF/HF) as noninvasive markers of autonomic nervous system activity. The participants who received the moderate pressure massage exhibited a parasympathetic nervous system response characterized by an increase in HF, suggesting increased vagal efferent activity and a decrease in the LF/HF ratio, suggesting a shift from sympathetic to parasympathetic activity that peaked during the first half of the massage period. On the other hand, those who received the light pressure massage exhibited a sympathetic nervous system response characterized by decreased HF and increased LF/HF.

  1. Effects of Head Trauma and Brain Injury on Neuroendocrinologic Function

    DTIC Science & Technology

    1986-10-31

    severity of hypogonadism is dependent upon the degree of neurologic impairment, that there is a significant negative correlation between changes in...A. Gonadal studies. Our investigation of the transient hypogonadotropic hypogonadism occurring in the post-injury setting is complete. In our...sympathetic nervous system activation. We found that the severity of the hypogonadism is dependent on the magnitude of the neurologic impairment since

  2. Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis

    PubMed Central

    Hall, Jessica M. F.; Cruser, desAnges; Podawiltz, Alan; Mummert, Diana I.; Jones, Harlan; Mummert, Mark E.

    2012-01-01

    Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides) can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity) and alters antigen presentation by epidermal Langerhans cells (adaptive immunity). Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis. PMID:22969795

  3. Autonomic correlates at rest and during evoked attention in children with attention-deficit/hyperactivity disorder and effects of methylphenidate.

    PubMed

    Negrao, Bianca Lee; Bipath, Priyesh; van der Westhuizen, Deborah; Viljoen, Margaretha

    2011-01-01

    The aim of this study was to assess autonomic nervous system functioning in children with attention-deficit/hyperactivity disorder (ADHD) and to examine the effects of methylphenidate and focussed attention. Children with ADHD (n = 19) were tested while they were stimulant free and during a period in which they were on stimulants. On both occasions, autonomic nervous system functioning was tested at baseline and during focussed attention. Autonomic nervous system functioning of control subjects was also tested at baseline and during focussed attention. Autonomic nervous system activity was determined by means of heart rate variability (HRV) and skin conductivity analyses. Attention was evoked by means of the BioGraph Infiniti biofeedback apparatus. HRV was determined by time domain, frequency domain and Poincaré analysis of RR interval data. Skin conductivity was determined by the BioGraph Infiniti biofeedback apparatus. The main findings of this study were (a) that stimulant-free children with ADHD showed a sympathetic underarousal and parasympathetic overarousal of the sympathovagal balance relative to control subjects; (b) methylphenidate shifted the autonomic balance of children with ADHD towards normal levels; however, a normal autonomic balance was not reached, and (c) stimulant-free children with ADHD exhibited a shift in the sympathovagal balance towards the sympathetic nervous system from baseline to focussed attention; however, methylphenidate appeared to abolish this shift. Stimulant-free children with ADHD have a parasympathetic dominance of the autonomic balance, relative to control subjects. Methylphenidate attempts to restore the normal autonomic balance in children with ADHD, but inhibits the normal autonomic nervous system response to a cognitive challenge. These results indicate that methylphenidate may have a suppressive effect on the normal stress response. Although this may be of benefit to those who interact with children who suffer from ADHD, the implications for the physiological and psychological well-being of the children themselves are debatable. Further research is needed. Only 19 children with ADHD and 18 control subjects were tested. Further studies should include prior testing in order to exclude children with possible co-existing learning disabilities. Cognitive function and emotional responses of children with ADHD were not tested. © 2010 S. Karger AG, Basel.

  4. Diabetic and sympathetic influences on the water permeability barrier function of human skin as measured using transepidermal water loss: A case-control study.

    PubMed

    Han, Seung Hoon; Park, Ji Woong

    2017-11-01

    The presence of long-standing hyperglycemic conditions has been suggested to lead to many skin problems associated with an impaired skin barrier function. However, the relationship between impaired skin barrier status and altered peripheral nervous system function has not yet been determined. The purpose of this study was to investigate the water evaporation rate as a measure of the permeability barrier function of diabetic skin and its relationship to diabetic sensorimotor polyneuropathy (DSPN) and peripheral autonomic neuropathy (PAN) using well-controlled confounding variables.This case-control study included 42 participants with chronic diabetes and 43 matched healthy controls. The diabetic group underwent a nerve conduction study and sympathetic skin response (SSR) test to confirm the presence of DSPN and PAN, respectively. Different skin regions were analyzed using the noninvasive Tewameter instrument (Courage + Khazaka Electronic GmbH, Cologne, Germany). The impacts of PAN, DSPN, age, and diabetes duration on the values of transepidermal water loss (TEWL) were each analyzed and compared between the groups.Regardless of the presence of DSPN or PAN, the TEWL values as measured on the distal extremities were significantly lower in the diabetic group than in the control group. In the diabetic group, participants with abnormal SSR test results showed decreased TEWL values in the finger, sole, and first toe, as compared with participants with normal SSR test results. In the control group, age showed a negative correlation with the TEWL values with respect to some measured regions. However, in the diabetic group, there was no significant correlation between either patient age or diabetes duration and TEWL values.The presence of a long-term hyperglycemic state can reduce the permeability barrier function of the skin, a phenomenon that might be related to the presence of an impaired peripheral sympathetic nervous system, rather than peripheral sensorimotor denervation.

  5. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature

    PubMed Central

    Alawi, Khadija M.; Aubdool, Aisah A.; Liang, Lihuan; Wilde, Elena; Vepa, Abhinav; Psefteli, Maria-Paraskevi; Brain, Susan D.; Keeble, Julie E.

    2015-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is involved in sensory nerve nociceptive signaling. Recently, it has been discovered that TRPV1 receptors also regulate basal body temperature in multiple species from mice to humans. In the present study, we investigated whether TRPV1 modulates basal sympathetic nervous system (SNS) activity. C57BL6/J wild-type (WT) mice and TRPV1 knockout (KO) mice were implanted with radiotelemetry probes for measurement of core body temperature. AMG9810 (50 mg/kg) or vehicle (2% DMSO/5% Tween 80/10 ml/kg saline) was injected intraperitoneally. Adrenoceptor antagonists or vehicle (5 ml/kg saline) was injected subcutaneously. In WT mice, the TRPV1 antagonist, AMG9810, caused significant hyperthermia, associated with increased noradrenaline concentrations in brown adipose tissue. The hyperthermia was significantly attenuated by the β-adrenoceptor antagonist propranolol, the mixed α-/β-adrenoceptor antagonist labetalol, and the α1-adrenoceptor antagonist prazosin. TRPV1 KO mice have a normal basal body temperature, indicative of developmental compensation. d-Amphetamine (potent sympathomimetic) caused hyperthermia in WT mice, which was reduced in TRPV1 KO mice, suggesting a decreased sympathetic drive in KOs. This study provides new evidence that TRPV1 controls thermoregulation upstream of the SNS, providing a potential therapeutic target for sympathetic hyperactivity thermoregulatory disorders.—Alawi, K. M., Aubdool, A. A., Liang, L., Wilde, E., Vepa, A., Psefteli, M.-P., Brain, S. D., Keeble, J. E. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature. PMID:26136480

  6. Hypercapnia-Induced Amelioration of the Intestinal Microvascular Oxygenation in Sepsis is Independent of the Endogenous Sympathetic Nervous System.

    PubMed

    Schulz, Jan; Schöneborn, Sabrina; Vollmer, Christian; Truse, Richard; Herminghaus, Anna; Bauer, Inge; Beck, Christopher; Picker, Olaf

    2018-03-01

    Insufficient microvascular oxygenation (μHBO2) of the intestinal mucosa worsens outcome of septic patients. Hypercapnia ameliorates μHBO2, mediated via endogenous vasopressin release. Under physiological conditions, blockade of the endogenous sympathetic nervous system abolishes this protective effect of hypercapnia. The aim of our study was therefore to evaluate the role of the endogenous sympathetic nervous system during hypercapnia on intestinal μHBO2 under septic conditions. We randomized 80 male Wistar rats into eight groups. Sepsis was induced via colon ascendens stent peritonitis. The animals were subjected to 120 min of normocapnic (pCO2 35 mm Hg-45 mm Hg) or moderate hypercapnic (pCO2 65 mm Hg-75 mm Hg) ventilation 24 h after surgery. Animals received sympathetic blockade (hexamethonium 15 mg · kg (bolus) followed by 15 mg · kg · h (infusion) intravenously) or the same volume as vehicle (NaCl 0.9%). Microcirculatory oxygenation (μHBO2) and perfusion (μflow) were recorded using tissue reflectance spectrophotometry and laser Doppler. In septic animals, μHBO2 decreased during normocapnia (-8.9 ± 4%) and increased during hypercapnia (+7.8 ± 7.5%). The additional application of hexamethonium did not influence these effects. μHBO2 declined in normocapnic septic animals treated with hexamethonium similar to normocapnia alone (-6.1 ± 5.4%) and increased in hypercapnic animals treated with hexamethonium similar to hypercapnia alone (+7.9 ± 11.7%). Furthermore, hypercapnic ventilation ameliorated microcirculatory perfusion (μflow) irrespective of whether animals received hexamethonium (from 113 ± 54 [AU] to 206 ± 87 [AU]) or vehicle (from 97 ± 37 [AU]-169 ± 52 [AU]). The amelioration of the intestinal microcirculation during hypercapnia in sepsis is independent of the endogenous sympathetic nervous system.

  7. Interactions between the Central Nervous System and Pancreatic Islet Secretions: A Historical Perspective

    ERIC Educational Resources Information Center

    Begg, Denovan P.; Woods, Stephen C.

    2013-01-01

    The endocrine pancreas is richly innervated with sympathetic and parasympathetic projections from the brain. In the mid-20th century, it was established that alpha-adrenergic activation inhibits, whereas cholinergic stimulation promotes, insulin secretion; this demonstrated the importance of the sympathetic and parasympathetic systems in…

  8. Effects of short-term continuous positive airway pressure on myocardial sympathetic nerve function and energetics in patients with heart failure and obstructive sleep apnea: a randomized study.

    PubMed

    Hall, Allison B; Ziadi, Maria C; Leech, Judith A; Chen, Shin-Yee; Burwash, Ian G; Renaud, Jennifer; deKemp, Robert A; Haddad, Haissam; Mielniczuk, Lisa M; Yoshinaga, Keiichiro; Guo, Ann; Chen, Li; Walter, Olga; Garrard, Linda; DaSilva, Jean N; Floras, John S; Beanlands, Rob S B

    2014-09-09

    Heart failure with reduced ejection fraction and obstructive sleep apnea (OSA), 2 states of increased metabolic demand and sympathetic nervous system activation, often coexist. Continuous positive airway pressure (CPAP), which alleviates OSA, can improve ventricular function. It is unknown whether this is due to altered oxidative metabolism or presynaptic sympathetic nerve function. We hypothesized that short-term (6-8 weeks) CPAP in patients with OSA and heart failure with reduced ejection fraction would improve myocardial sympathetic nerve function and energetics. Forty-five patients with OSA and heart failure with reduced ejection fraction (left ventricular ejection fraction 35.8±9.7% [mean±SD]) were evaluated with the use of echocardiography and 11C-acetate and 11C-hydroxyephedrine positron emission tomography before and ≈6 to 8 weeks after randomization to receive short-term CPAP (n=22) or no CPAP (n=23). Work metabolic index, an estimate of myocardial efficiency, was calculated as follows: (stroke volume index×heart rate×systolic blood pressure÷Kmono), where Kmono is the monoexponential function fit to the myocardial 11C-acetate time-activity data, reflecting oxidative metabolism. Presynaptic sympathetic nerve function was measured with the use of the 11C-hydroxyephedrine retention index. CPAP significantly increased hydroxyephedrine retention versus no CPAP (Δretention: +0.012 [0.002, 0.021] versus -0.006 [-0.013, 0.005] min(-1); P=0.003). There was no significant change in work metabolic index between groups. However, in those with more severe OSA (apnea-hypopnea index>20 events per hour), CPAP significantly increased both work metabolic index and systolic blood pressure (P<0.05). In patients with heart failure with reduced ejection fraction and OSA, short-term CPAP increased hydroxyephedrine retention, indicating improved myocardial sympathetic nerve function, but overall did not affect energetics. In those with more severe OSA, CPAP may improve cardiac efficiency. Further outcome-based investigation of the consequences of CPAP is warranted. http://www.clinicaltrials.gov. Unique identifier: NCT00756366. © 2014 American Heart Association, Inc.

  9. Higher sympathetic nerve activity during ventricular (VVI) than during dual-chamber (DDD) pacing

    NASA Technical Reports Server (NTRS)

    Taylor, J. A.; Morillo, C. A.; Eckberg, D. L.; Ellenbogen, K. A.

    1996-01-01

    OBJECTIVES: We determined the short-term effects of single-chamber ventricular pacing and dual-chamber atrioventricular (AV) pacing on directly measured sympathetic nerve activity. BACKGROUND: Dual-chamber AV cardiac pacing results in greater cardiac output and lower systemic vascular resistance than does single-chamber ventricular pacing. However, it is unclear whether these hemodynamic advantages result in less sympathetic nervous system outflow. METHODS: In 13 patients with a dual-chamber pacemaker, we recorded the electrocardiogram, noninvasive arterial pressure (Finapres), respiration and muscle sympathetic nerve activity (microneurography) during 3 min of underlying basal heart rate and 3 min of ventricular and AV pacing at rates of 60 and 100 beats/min. RESULTS: Arterial pressure was lowest and muscle sympathetic nerve activity was highest at the underlying basal heart rate. Arterial pressure increased with cardiac pacing and was greater with AV than with ventricular pacing (change in mean blood pressure +/- SE: 10 +/- 3 vs. 2 +/- 2 mm Hg at 60 beats/min; 21 +/- 5 vs. 14 +/- 2 mm Hg at 100 beats/min; p < 0.05). Sympathetic nerve activity decreased with cardiac pacing and the decline was greater with AV than with ventricular pacing (60 beats/min -40 +/- 11% vs. -17 +/- 7%; 100 beats/min -60 +/- 9% vs. -48 +/- 10%; p < 0.05). Although most patients showed a strong inverse relation between arterial pressure and muscle sympathetic nerve activity, three patients with severe left ventricular dysfunction (ejection fraction < or = 30%) showed no relation between arterial pressure and sympathetic activity. CONCLUSIONS: Short-term AV pacing results in lower sympathetic nerve activity and higher arterial pressure than does ventricular pacing, indicating that cardiac pacing mode may influence sympathetic outflow simply through arterial baroreflex mechanisms. We speculate that the greater incidence of adverse outcomes in patients treated with single-chamber ventricular rather than dual-chamber pacing may be due in part to increased sympathetic nervous outflow.

  10. Heart rate variability of human in hypoxic oxygen-argon environment

    NASA Astrophysics Data System (ADS)

    Khayrullina, Rezeda; Smoleevskiy, Alexandr; Bubeev, Yuri

    Human adaptive capacity, reliability and stability in extreme environments depend primarily on the individual resistance to stresses, includes both innate and acquired components. We have conducted studies in six healthy subjects - men aged between 24 to 42 years who psychophysiological indicators acterizing the severity of stress reactions studied directly during an emergency situation, before and after it. The subjects were in a hypoxic oxygen-argon atmosphere 10 days. Cardiovascular system is one of the first to respond to stressful reaction. The method of heart rate variability (HRV) allows us to estimate balance of sympathetic and parasympathetic parts of vegetative nervous system. In the course of the baseline study it was found that resting heart rate (HR) in the examined individuals is within normal limits. During the experiment in all subjects there was a trend towards more frequent heartbeat. Each subject at one stage or another stay in a hypoxic oxygen-argon environment heart rate go beyond the group norm, but the extent and duration of these abnormalities were significantly different. Marked increase in middle heart rate during of subjects experiment, fluctuating within a wide range (from 2.3% to 29.1%). Marked increase in middle heart rate during of subjects experiment, fluctuating within a wide range (from 2.3% to 29.1%). This suggests that the ability to adapt to living in the investigated gas environment have marked individual differences. SDNN (mean square deviation of all R-R intervals) is the integral indicator of the total effect of the sinus node to the sympathetic and parasympathetic parts of vegetative nervous system, as well as indicating the higher functional reserves of the cardiovascular systems. Increase in heart rate in the majority of subject was accompanied by an increase in individual SDNN. This suggests that the parasympathetic system is able to balance the increase in activity of the sympathetic system, and functional reserves are sufficient. However, the opposite dynamic test 02 - accompanied by a decrease heart rate increase SDNN. The survey detected that all subjects marked signs of increased activity of the sympathetic nervous system. Besides when short-term exposure (up to 10 days) in most researched factor in the majority of patients was enough functional reserves to adapt to the conditions of a changed atmosphere. However, the adaptation process was accompanied by severe stress and compensatory mechanisms for longer stay in hypoxic conditions, oxygen-argon environment may develop adverse effects associated with sympathicotony.

  11. Variability in cardiovascular control: the baroreflex reconsidered.

    PubMed

    Karemaker, John M; Wesseling, Karel H

    2008-03-01

    Although blood pressure control is often viewed as a paradigmatic example of a "homeostatic" biological control system, blood pressure levels can fluctuate considerably over shorter and longer time scales. In modern signal analysis, coherence between heart rate and blood pressure variability is used to estimate baroreflex gain. However, the shorter the measurement period, the more variability this gain factor reveals. We review evidence that this variability is not due to the technique used for the estimation, but may be an intrinsic property of the circulatory control mechanisms. The baroreflex is reviewed from its evolutionary origin, starting in fishes as a reflex mechanism to protect the gills from excessively high pressures by slowing the heart via the (parasympathetic) vagus nerve. Baroreflex inhibition of cardiovascular sympathetic nervous outflow is a later development; the maximally possible extent of sympathetic activity probably being set in the central nervous system by mechanisms other than blood pressure per se. In the sympathetic outflow tract not only baroreflex inhibition but also as yet unidentified, stochastic mechanisms decide to pass or not pass on the sympathetic activity to the periphery. In this short essay, the "noisiness" of the baroreflex as nervous control system is stressed. This property is observed in all elements of the reflex, even at the--supposedly--most basic relation between afferent receptor nerve input and efferent--vagus--nerve output signal.

  12. Combined effect of prefrontal transcranial direct current stimulation and a working memory task on heart rate variability

    PubMed Central

    Boonstra, Tjeerd W.; Loo, Colleen K.; Martin, Donel

    2017-01-01

    Prefrontal cortex activity has been associated with changes to heart rate variability (HRV) via mediation of the cortico-subcortical pathways that regulate the parasympathetic and sympathetic branches of the autonomic nervous system. Changes in HRV due to altered prefrontal cortex functioning can be predicted using the neurovisceral integration model, which suggests that prefrontal hyperactivity increases parasympathetic tone and decreases contributions from the sympathetic nervous system. Working memory (WM) tasks and transcranial direct current stimulation (tDCS) have been used independently to modulate brain activity demonstrating changes to HRV in agreement with the model. We investigated the combined effects of prefrontal tDCS and a WM task on HRV. Bifrontal tDCS was administered for 15 minutes at 2mA to 20 participants in a sham controlled, single-blind study using parallel groups. A WM task was completed by participants at three time points; pre-, during-, and post-tDCS, with resting state data collected at similar times. Frequency-domain HRV was computed for high frequency (HF; 0.15–0.4Hz) and low frequency (LF; 0.04–0.15Hz) power reflecting parasympathetic and sympathetic branch activity, respectively. Response time on the WM task, but not accuracy, improved from baseline to during-tDCS and post-tDCS with sham, but not active, stimulation. HF-HRV was significantly increased in the active tDCS group compared to sham, lasting beyond cessation of stimulation. Additionally, HF-HRV showed a task-related reduction in power during performance on the WM task. Changes in LF-HRV were moderately inversely correlated (r > 0.4) with changes in WM accuracy during and following tDCS compared to baseline levels. Stimulation of the prefrontal cortex resulted in changes to the parasympathetic branch of the nervous system in agreement with a linearly additive interpretation of effects. Sympathetic activity was not directly altered by tDCS, but was correlated with changes in WM performance. This suggests that the parasympathetic and sympathetic branches respond differentially due to similar, but distinct neural pathways. Given the ease of HRV data collection, studies of prefrontal tDCS would benefit from collection of this data as it provides unique insight into tDCS effects resulting from propagation through brain networks. PMID:28771509

  13. Multifractal Analysis of Human Heartbeat in Sleep

    NASA Astrophysics Data System (ADS)

    Ding, Liang-Jing; Peng, Hu; Cai, Shi-Min; Zhou, Pei-Ling

    2007-07-01

    We study the dynamical properties of heart rate variability (HRV) in sleep by analysing the scaling behaviour with the multifractal detrended fluctuation analysis method. It is well known that heart rate is regulated by the interaction of two branches of the autonomic nervous system: the parasympathetic and sympathetic nervous systems. By investigating the multifractal properties of light, deep, rapid-eye-movement (REM) sleep and wake stages, we firstly find an increasing multifractal behaviour during REM sleep which may be caused by augmented sympathetic activities relative to non-REM sleep. In addition, the investigation of long-range correlations of HRV in sleep with second order detrended fluctuation analysis presents irregular phenomena. These findings may be helpful to understand the underlying regulating mechanism of heart rate by autonomic nervous system during wake-sleep transitions.

  14. Inflammation in CRPS: role of the sympathetic supply.

    PubMed

    Schlereth, Tanja; Drummond, Peter D; Birklein, Frank

    2014-05-01

    Acute Complex Regional Pain Syndrome (CRPS) is associated with signs of inflammation such as increased skin temperature, oedema, skin colour changes and pain. Pro-inflammatory cytokines (tumour necrosis factor-α (TNF-α), interleukin-2 (IL-2), IL-1beta, IL-6) are up-regulated, whereas anti-inflammatory cytokines (IL-4, IL-10) are diminished. Adaptive immunity seems to be involved in CRPS pathophysiology as many patients have autoantibodies directed against β2 adrenergic and muscarinic-2 receptors. In an animal tibial fracture model changes in the innate immune response such as up-regulation of keratinocytes are also found. Additionally, CRPS is accompanied by increased neurogenic inflammation which depends mainly on neuropeptides such as CGRP and Substance P. Besides inflammatory signs, sympathetic nervous system involvement in CRPS results in cool skin, increased sweating and sympathetically-maintained pain. The norepinephrine level is lower in the CRPS-affected than contralateral limb, but sympathetic sprouting and up-regulation of alpha-adrenoceptors may result in an adrenergic supersensitivity. The sympathetic nervous system and inflammation interact: norepinephrine influences the immune system and the production of cytokines. There is substantial evidence that this interaction contributes to the pathophysiology and clinical presentation of CRPS, but this interaction is not straightforward. How inflammation in CRPS might be exaggerated by sympathetic transmitters requires further elucidation. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Sympathetic regulation and anterior cingulate cortex volume are altered in a rat model of chronic back pain.

    PubMed

    Touj, Sara; Houle, Sébastien; Ramla, Djamel; Jeffrey-Gauthier, Renaud; Hotta, Harumi; Bronchti, Gilles; Martinoli, Maria-Grazia; Piché, Mathieu

    2017-06-03

    Chronic pain is associated with autonomic disturbance. However, specific effects of chronic back pain on sympathetic regulation remain unknown. Chronic pain is also associated with structural changes in the anterior cingulate cortex (ACC), which may be linked to sympathetic dysregulation. The aim of this study was to determine whether sympathetic regulation and ACC surface and volume are affected in a rat model of chronic back pain, in which complete Freund Adjuvant (CFA) is injected in back muscles. Sympathetic regulation was assessed with renal blood flow (RBF) changes induced by electrical stimulation of a hind paw, while ACC structure was examined by measuring cortical surface and volume. RBF changes and ACC volume were compared between control rats and rats injected with CFA in back muscles segmental (T10) to renal sympathetic innervation or not (T2). In rats with CFA, chronic inflammation was observed in the affected muscles in addition to increased nuclear factor-kappa B (NF-kB) protein expression in corresponding spinal cord segments (p=0.01) as well as decreased ACC volume (p<0.05). In addition, intensity-dependent decreases in RBF during hind paw stimulation were attenuated by chronic pain at T2 (p's<0.05) and T10 (p's<0.05), but less so at T10 compared with T2 (p's<0.05). These results indicate that chronic back pain alters sympathetic functions through non-segmental mechanisms, possibly by altering descending regulatory pathways from ACC. Yet, segmental somato-sympathetic reflexes may compete with non-segmental processes depending on the back region affected by pain and according to the segmental organization of the sympathetic nervous system. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Role of Neurotrophins in the Development and Function of Neural Circuits that Regulate Energy Homeostasis

    PubMed Central

    Fargali, Samira; Sadahiro, Masato; Jiang, Cheng; Frick, Amy L.; Indall, Tricia; Cogliani, Valeria; Welagen, Jelle; Lin, Wei-jye; Salton, Stephen R.

    2012-01-01

    Members of the neurotrophin family, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5), and other neurotrophic growth factors such as ciliary neurotrophic factor (CNTF) and artemin, regulate peripheral and central nervous system development and function. A subset of the neurotrophin-dependent pathways in the hypothalamus, brainstem, and spinal cord, and those that project via the sympathetic nervous system to peripheral metabolic tissues including brown and white adipose tissue (BAT and WAT), muscle and liver, regulate feeding, energy storage, and energy expenditure. We briefly review the role that neurotrophic growth factors play in energy balance, as regulators of neuronal survival and differentiation, neurogenesis, and circuit formation and function, and as inducers of critical gene products that control energy homeostasis. PMID:22581449

  17. Influence of cardiac nerve status on cardiovascular regulation and cardioprotection

    PubMed Central

    Kingma, John G; Simard, Denys; Rouleau, Jacques R

    2017-01-01

    Neural elements of the intrinsic cardiac nervous system transduce sensory inputs from the heart, blood vessels and other organs to ensure adequate cardiac function on a beat-to-beat basis. This inter-organ crosstalk is critical for normal function of the heart and other organs; derangements within the nervous system hierarchy contribute to pathogenesis of organ dysfunction. The role of intact cardiac nerves in development of, as well as protection against, ischemic injury is of current interest since it may involve recruitment of intrinsic cardiac ganglia. For instance, ischemic conditioning, a novel protection strategy against organ injury, and in particular remote conditioning, is likely mediated by activation of neural pathways or by endogenous cytoprotective blood-borne substances that stimulate different signalling pathways. This discovery reinforces the concept that inter-organ communication, and maintenance thereof, is key. As such, greater understanding of mechanisms and elucidation of treatment strategies is imperative to improve clinical outcomes particularly in patients with comorbidities. For instance, autonomic imbalance between sympathetic and parasympathetic nervous system regulation can initiate cardiovascular autonomic neuropathy that compromises cardiac stability and function. Neuromodulation therapies that directly target the intrinsic cardiac nervous system or other elements of the nervous system hierarchy are currently being investigated for treatment of different maladies in animal and human studies. PMID:28706586

  18. Role of the renin-angiotensin system in cardiac hypertrophy induced in rats by hyperthyroidism

    PubMed Central

    KOBORI, HIROYUKI; ICHIHARA, ATSUHIRO; SUZUKI, HIROMICHI; TAKENAKA, TSUNEO; MIYASHITA, YUTAKA; HAYASHI, MATSUHIKO; SARUTA, TAKAO

    2008-01-01

    This study was conducted to examine whether the renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy without involving the sympathetic nervous system. Sprague-Dawley rats were divided into control-innervated, control-denervated, hyperthyroid-innervated, and hyperthyroid-denervated groups using intraperitoneal injections of thyroxine and 6-hydroxydopamine. After 8 wk, the heart-to-body weight ratio increased in hyperthyroid groups (63%), and this increase was only partially inhibited by sympathetic denervation. Radioimmunoassays and reverse transcription-polymerase chain reaction revealed increased cardiac levels of renin (33%) and angiotensin II (53%) and enhanced cardiac expression of renin mRNA (225%) in the hyperthyroid groups. These increases were unaffected by sympathetic denervation or 24-h bilateral nephrectomy. In addition, losartan and nicardipine decreased systolic blood pressure to the same extent, but only losartan caused regression of thyroxine-induced cardiac hypertrophy. These results suggest that thyroid hormone activates the cardiac renin-angiotensin system without involving the sympathetic nervous system or the circulating renin-angiotensin system; the activated renin-angiotensin system contributes to cardiac hypertrophy in hyperthyroidism. PMID:9277473

  19. Role of the renin-angiotensin system in cardiac hypertrophy induced in rats by hyperthyroidism.

    PubMed

    Kobori, H; Ichihara, A; Suzuki, H; Takenaka, T; Miyashita, Y; Hayashi, M; Saruta, T

    1997-08-01

    This study was conducted to examine whether the renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy without involving the sympathetic nervous system. Sprague-Dawley rats were divided into control-innervated, control-denervated, hyperthyroid-innervated, and hyperthyroid-denervated groups using intraperitoneal injections of thyroxine and 6-hydroxydopamine. After 8 wk, the heart-to-body weight ratio increased in hyperthyroid groups (63%), and this increase was only partially inhibited by sympathetic denervation. Radioimmunoassays and reverse transcription-polymerase chain reaction revealed increased cardiac levels of renin (33%) and angiotensin II (53%) and enhanced cardiac expression of renin mRNA (225%) in the hyperthyroid groups. These increases were unaffected by sympathetic denervation or 24-h bilateral nephrectomy. In addition, losartan and nicardipine decreased systolic blood pressure to the same extent, but only losartan caused regression of thyroxine-induced cardiac hypertrophy. These results suggest that thyroid hormone activates the cardiac renin-angiotensin system without involving the sympathetic nervous system or the circulating renin-angiotensin system; the activated renin-angiotensin system contributes to cardiac hypertrophy in hyperthyroidism.

  20. Latino children's body mass index at 2-3.5 years predicts sympathetic nervous system activity at 5 years.

    PubMed

    Alkon, Abbey; Harley, Kim G; Neilands, Torsten B; Tambellini, Katelyn; Lustig, Robert H; Boyce, W Thomas; Eskenazi, Brenda

    2014-06-01

    To understand whether the relationship between young children's autonomic nervous system (ANS) responses predicted their BMI, or vice versa, the association between standardized BMI (zBMI) at 2, 3.5, and 5 years of age and ANS reactivity at 3.5-5 years of age, and whether zBMI predicts later ANS reactivity or whether early ANS reactivity predicts later zBMI, was studied. Low-income, primarily Latino children (n=112) were part of a larger cohort study of mothers recruited during early pregnancy. Study measures included maternal prenatal weight, children's health behaviors (i.e., time watching television, fast food consumption, and time playing outdoors), children's height and weight at 2, 3.5, and 5 years, and children's ANS reactivity at 3.5 and 5 years. ANS measures of sympathetic nervous system (i.e., pre-ejection period) and parasympathetic nervous system (i.e., respiratory sinus arrhythmia) activity were monitored during rest and four challenges. Reactivity was calculated as the difference between mean challenge response and rest. Structural equation models analyzed the relationship between children's zBMI at 2, 3.5, and 5 years and ANS reactivity at 3.5 and 5 years, adjusting for mother's BMI, children's behaviors, and changes in height. There was no association between zBMI and ANS cross-sectionally. Children with high zBMI at 2 or 3.5 years or large zBMI increases from 2 to 3.5 years of age had decreased sympathetic activity at 5 years. Neither sympathetic nor parasympathetic reactivity at 3.5 years predicted later zBMI. Increased zBMI early in childhood may dampen young children's SNS responses later in life.

  1. Dehydroepiandrosterone and Dehydroepiandrosterone Sulfate: Anabolic, Neuroprotective, and Neuroexcitatory Properties in Military Men

    DTIC Science & Technology

    2013-01-01

    in olfactory bulbectomized mice. J Neurochem 2011; 117(5); 879-91. 14. Gubba EM Fawcett JW, Herbert J; The effects of corticosterone and...Newman AE, MacDougall-Shackleton SA, An YS, Kriengwatana B. Soma KK: Corticosterone and dehydroepiandrosterone have opposing effects on adult...supports nerve cell proliferation), and salivary alpha amylase (sAA; a proxy of sympathetic nervous system function). Separate regression analyses were

  2. Acupuncture's Cardiovascular Actions: A Mechanistic Perspective.

    PubMed

    Longhurst, John

    2013-04-01

    Over the last several decades, there has been an explosion of articles on acupuncture, including studies that have begun to explore mechanisms underlying its analgesic and cardiovascular actions. Modulation of cardiovascular function is most effective during manual and low-frequency, low-intensity electroacupuncture (EA) at a select set of acupoints situated along meridians located over deep somatic nerves on the upper and lower extremities. Stimulation at these acupoints activates underlying sensory neural pathways that project to a number of regions in the central nervous system (CNS) that ultimately regulate autonomic outflow and hence cardiovascular function. A long-loop pathway involving the hypothalamus, midbrain, and medulla underlies EA modulation of reflex increases in blood pressure (BP). Actions of excitatory and inhibitory neurotransmitters in the supraspinal CNS underlie processing of the somatic input and adjustment of autonomic outflow during EA. Acupuncture also decreases elevated blood pressure through actions in the thoracic spinal cord. Reflexes that lower BP likewise are modulated by EA through its actions on sympathetic and parasympathetic nuclei in the medulla. The autonomic influence of acupuncture is slow in onset but prolonged in duration, typically lasting beyond the period of stimulation. Clinical studies suggest that acupuncture can be used to treat cardiac diseases, such as myocardial ischemia and hypertension, associated with overactivity of the sympathetic nervous system.

  3. Acupuncture's Cardiovascular Actions: A Mechanistic Perspective

    PubMed Central

    2013-01-01

    Abstract Over the last several decades, there has been an explosion of articles on acupuncture, including studies that have begun to explore mechanisms underlying its analgesic and cardiovascular actions. Modulation of cardiovascular function is most effective during manual and low-frequency, low-intensity electroacupuncture (EA) at a select set of acupoints situated along meridians located over deep somatic nerves on the upper and lower extremities. Stimulation at these acupoints activates underlying sensory neural pathways that project to a number of regions in the central nervous system (CNS) that ultimately regulate autonomic outflow and hence cardiovascular function. A long-loop pathway involving the hypothalamus, midbrain, and medulla underlies EA modulation of reflex increases in blood pressure (BP). Actions of excitatory and inhibitory neurotransmitters in the supraspinal CNS underlie processing of the somatic input and adjustment of autonomic outflow during EA. Acupuncture also decreases elevated blood pressure through actions in the thoracic spinal cord. Reflexes that lower BP likewise are modulated by EA through its actions on sympathetic and parasympathetic nuclei in the medulla. The autonomic influence of acupuncture is slow in onset but prolonged in duration, typically lasting beyond the period of stimulation. Clinical studies suggest that acupuncture can be used to treat cardiac diseases, such as myocardial ischemia and hypertension, associated with overactivity of the sympathetic nervous system. PMID:24761168

  4. Hypothalamic orexin stimulates feeding-associated glucose utilization in skeletal muscle via sympathetic nervous system.

    PubMed

    Shiuchi, Tetsuya; Haque, Mohammad Shahidul; Okamoto, Shiki; Inoue, Tsuyoshi; Kageyama, Haruaki; Lee, Suni; Toda, Chitoku; Suzuki, Atsushi; Bachman, Eric S; Kim, Young-Bum; Sakurai, Takashi; Yanagisawa, Masashi; Shioda, Seiji; Imoto, Keiji; Minokoshi, Yasuhiko

    2009-12-01

    Hypothalamic neurons containing orexin (hypocretin) are activated during motivated behaviors and active waking. We show that injection of orexin-A into the ventromedial hypothalamus (VMH) of mice or rats increased glucose uptake and promoted insulin-induced glucose uptake and glycogen synthesis in skeletal muscle, but not in white adipose tissue, by activating the sympathetic nervous system. These effects of orexin were blunted in mice lacking beta-adrenergic receptors but were restored by forced expression of the beta(2)-adrenergic receptor in both myocytes and nonmyocyte cells of skeletal muscle. Orexin neurons are activated by conditioned sweet tasting and directly excite VMH neurons, thereby increasing muscle glucose metabolism and its insulin sensitivity. Orexin and its receptor in VMH thus play a key role in the regulation of muscle glucose metabolism associated with highly motivated behavior by activating muscle sympathetic nerves and beta(2)-adrenergic signaling.

  5. Pneumatic antishock garment inflation activates the human sympathetic nervous system by abdominal compression.

    PubMed

    Garvin, Nathan M; Levine, Benjamin D; Raven, Peter B; Pawelczyk, James A

    2014-01-01

    Pneumatic antishock garments (PASG) have been proposed to exert their blood pressure-raising effect mechanically, i.e. by increasing venous return and vascular resistance of the lower body. We tested whether, alternatively, PASG inflation activates the sympathetic nervous system. Five men and four women wore PASG while mean arterial pressure (MAP), muscle sympathetic nerve activity (MSNA), heart rate and stroke volume were measured. One leg bladder (LEG) and the abdominal bladder (ABD) of the trousers were inflated individually and in combination (ABD+LEG), at 60 or 90 mmHg for 3 min. By the end of 3 min of inflation, conditions that included the ABD region caused significant increases in MAP in a dose-dependent fashion (7 ± 2, 8 ± 3, 14 ± 4 and 13 ± 5 mmHg for ABD60, ABD+LEG60, ABD90 and ABD+LEG90, respectively, P < 0.05). Likewise, inflation that included ABD caused significant increases in total MSNA compared with control values [306 ± 70, 426 ± 98 and 247 ± 79 units for ABD60, ABD90 and ABD+LEG90, respectively, P < 0.05 (units = burst frequency × burst amplitude]. There were no changes in MAP or MSNA in the LEG-alone conditions. The ABD inflation also caused a significant decrease in stroke volume (-11 ± 3 and -10 ± 3 ml per beat in ABD90 and ABD+LEG90, respectively, P < 0.05) with no change in cardiac output. Neither cardiopulmonary receptor deactivation nor mechanical effects can account for a slowly developing rise in both sympathetic activity and blood pressure during ABD inflation. Rather, these data provide direct evidence that PASG inflation activates the sympathetic nervous system secondarily to abdominal, but not leg, compression.

  6. Propofol-induced increase in vascular capacitance is due to inhibition of sympathetic vasoconstrictive activity.

    PubMed

    Hoka, S; Yamaura, K; Takenaka, T; Takahashi, S

    1998-12-01

    Venodilation is thought to be one of the mechanisms underlying propofol-induced hypotension. The purpose of this study is to test two hypotheses: (1) propofol increases systemic vascular capacitance, and (2) the capacitance change produced by propofol is a result of an inhibition of sympathetic vasoconstrictor activity. In 33 Wistar rats previously anesthetized with urethane and ketamine, vascular capacitance was examined before and after propofol infusion by measuring mean circulatory filling pressure (Pmcf). The Pmcf was measured during a brief period of circulatory arrest produced by inflating an indwelling balloon in the right atrium. Rats were assigned into four groups: an intact group, a sympathetic nervous system (SNS)-block group produced by hexamethonium infusion, a SNS-block + noradrenaline (NA) group, and a hypovolemic group. The Pmcf was measured at a control state and 2 min after a bolus administration of 2, 10, and 20 mg/kg of propofol. The mean arterial pressure (MAP) was decreased by propofol dose-dependently in intact, hypovolemic, and SNS-block groups, but the decrease in MAP was less in the SNS-block group (-25%) than in the intact (-50%) and hypovolemic (-61%) groups. In the SNS-block + NA group, MAP decreased only at 20 mg/kg of propofol (-18%). The Pmcf decreased in intact and hypovolemic groups in a dose-dependent fashion but was unchanged in the SNS-block and SNS-block + NA groups. The results have provided two principal findings: (1) propofol decreases Pmcf dose-dependently, and (2) the decrease in Pmcf by propofol is elicited only when the sympathetic nervous system is intact, suggesting that propofol increases systemic vascular capacitance as a result of an inhibition of sympathetic nervous system.

  7. Recurrent postural vasovagal syncope: sympathetic nervous system phenotypes.

    PubMed

    Vaddadi, Gautam; Guo, Ling; Esler, Murray; Socratous, Florentia; Schlaich, Markus; Chopra, Reena; Eikelis, Nina; Lambert, Gavin; Trauer, Thomas; Lambert, Elisabeth

    2011-10-01

    The pathophysiology of vasovagal syncope is poorly understood, and the treatment usually ineffective. Our clinical experience is that patients with vasovagal syncope fall into 2 groups, based on their supine systolic blood pressure, which is either normal (>100 mm Hg) or low (70-100 mm Hg). We investigated neural circulatory control in these 2 phenotypes. Sympathetic nervous testing was at 3 levels: electric, measuring sympathetic nerve firing (microneurography); neurochemical, quantifying norepinephrine spillover to plasma; and cellular, with Western blot analysis of sympathetic nerve proteins. Testing was done during head-up tilt (HUT), simulating the gravitational stress of standing, in 18 healthy control subjects and 36 patients with vasovagal syncope, 15 with the low blood pressure phenotype and 21 with normal blood pressure. Microneurography and norepinephrine spillover increased significantly during HUT in healthy subjects. The microneurography response during HUT was normal in normal blood pressure and accentuated in low blood pressure phenotype (P=0.05). Norepinephrine spillover response was paradoxically subnormal during HUT in both patient groups (P=0.001), who thus exhibited disjunction between nerve firing and neurotransmitter release; this lowered norepinephrine availability, impairing the neural circulatory response. Subnormal norepinephrine spillover in low blood pressure phenotype was linked to low tyrosine hydroxylase (43.7% normal, P=0.001), rate-limiting in norepinephrine synthesis, and in normal blood pressure to increased levels of the norepinephrine transporter (135% normal, P=0.019), augmenting transmitter reuptake. Patients with recurrent vasovagal syncope, when phenotyped into 2 clinical groups based on their supine blood pressure, show unique sympathetic nervous system abnormalities. It is predicted that future therapy targeting the specific mechanisms identified in the present report should translate into more effective treatment.

  8. Molecular Mechanisms Underlying β-Adrenergic Receptor-Mediated Cross-Talk between Sympathetic Neurons and Immune Cells

    PubMed Central

    Lorton, Dianne; Bellinger, Denise L.

    2015-01-01

    Cross-talk between the sympathetic nervous system (SNS) and immune system is vital for health and well-being. Infection, tissue injury and inflammation raise firing rates of sympathetic nerves, increasing their release of norepinephrine (NE) in lymphoid organs and tissues. NE stimulation of β2-adrenergic receptors (ARs) in immune cells activates the cAMP-protein kinase A (PKA) intracellular signaling pathway, a pathway that interfaces with other signaling pathways that regulate proliferation, differentiation, maturation and effector functions in immune cells. Immune–SNS cross-talk is required to maintain homeostasis under normal conditions, to develop an immune response of appropriate magnitude after injury or immune challenge, and subsequently restore homeostasis. Typically, β2-AR-induced cAMP is immunosuppressive. However, many studies report actions of β2-AR stimulation in immune cells that are inconsistent with typical cAMP–PKA signal transduction. Research during the last decade in non-immune organs, has unveiled novel alternative signaling mechanisms induced by β2-AR activation, such as a signaling switch from cAMP–PKA to mitogen-activated protein kinase (MAPK) pathways. If alternative signaling occurs in immune cells, it may explain inconsistent findings of sympathetic regulation of immune function. Here, we review β2-AR signaling, assess the available evidence for alternative signaling in immune cells, and provide insight into the circumstances necessary for “signal switching” in immune cells. PMID:25768345

  9. Focal Reduction in Cardiac 123I-Metaiodobenzylguanidine Uptake in Patients With Anderson-Fabry Disease.

    PubMed

    Yamamoto, Saori; Suzuki, Hideaki; Sugimura, Koichiro; Tatebe, Shunsuke; Aoki, Tatsuo; Miura, Masanobu; Yaoita, Nobuhiro; Sato, Haruka; Kozu, Katuya; Ota, Hideki; Takanami, Kentaro; Takase, Kei; Shimokawa, Hiroaki

    2016-11-25

    It remains to be elucidated whether cardiac sympathetic nervous activity is impaired in patients with Anderson-Fabry disease (AFD).Methods and Results:We performed 123 I-meta-iodobenzylguanidine (MIBG) scintigraphy and gadolinium-enhanced cardiovascular magnetic resonance (CMR) in 5 AFD patients. MIBG uptake in the inferolateral wall, where wall thinning and delayed enhancement were noted on CMR, was significantly lower compared with the anteroseptal wall. The localized reduction in MIBG uptake was also noted in 2 patients with no obvious abnormal findings on CMR. Cardiac sympathetic nervous activity is impaired in AFD before development of structural myocardial abnormalities. (Circ J 2016; 80: 2550-2551).

  10. Alterations in electrodermal activity and cardiac parasympathetic tone during hypnosis.

    PubMed

    Kekecs, Zoltán; Szekely, Anna; Varga, Katalin

    2016-02-01

    Exploring autonomic nervous system (ANS) changes during hypnosis is critical for understanding the nature and extent of the hypnotic phenomenon and for identifying the mechanisms underlying the effects of hypnosis in different medical conditions. To assess ANS changes during hypnosis, electrodermal activity and pulse rate variability (PRV) were measured in 121 young adults. Participants either received hypnotic induction (hypnosis condition) or listened to music (control condition), and both groups were exposed to test suggestions. Blocks of silence and experimental sound stimuli were presented at baseline, after induction, and after de-induction. Skin conductance level (SCL) and high frequency (HF) power of PRV measured at each phase were compared between groups. Hypnosis decreased SCL compared to the control condition; however, there were no group differences in HF power. Furthermore, hypnotic suggestibility did not moderate ANS changes in the hypnosis group. These findings indicate that hypnosis reduces tonic sympathetic nervous system activity, which might explain why hypnosis is effective in the treatment of disorders with strong sympathetic nervous system involvement, such as rheumatoid arthritis, hot flashes, hypertension, and chronic pain. Further studies with different control conditions are required to examine the specificity of the sympathetic effects of hypnosis. © 2015 Society for Psychophysiological Research.

  11. Comparative anatomy of the autonomic nervous system.

    PubMed

    Nilsson, Stefan

    2011-11-16

    This short review aims to point out the general anatomical features of the autonomic nervous systems of non-mammalian vertebrates. In addition it attempts to outline the similarities and also the increased complexity of the autonomic nervous patterns from fish to tetrapods. With the possible exception of the cyclostomes, perhaps the most striking feature of the vertebrate autonomic nervous system is the similarity between the vertebrate classes. An evolution of the complexity of the system can be seen, with the segmental ganglia of elasmobranchs incompletely connected longitudinally, while well developed paired sympathetic chains are present in teleosts and the tetrapods. In some groups the sympathetic chains may be reduced (dipnoans and caecilians), and have yet to be properly described in snakes. Cranial autonomic pathways are present in the oculomotor (III) and vagus (X) nerves of gnathostome fish and the tetrapods, and with the evolution of salivary and lachrymal glands in the tetrapods, also in the facial (VII) and glossopharyngeal (IX) nerves. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. [Role of the sympathetic nervous system in vasovagal syncope and rationale for beta-blockers and norepinephrine transporter inhibitors].

    PubMed

    Márquez, Manlio F; Gómez-Flores, Jorge Rafael; González-Hermosillo, Jesús A; Ruíz-Siller, Teresita de Jesús; Cárdenas, Manuel

    2016-12-29

    Vasovagal or neurocardiogenic syncope is a common clinical situation and, as with other entities associated with orthostatic intolerance, the underlying condition is a dysfunction of the autonomic nervous system. This article reviews various aspects of vasovagal syncope, including its relationship with orthostatic intolerance and the role of the autonomic nervous system in it. A brief history of the problem is given, as well as a description of how the names and associated concepts have evolved. The response of the sympathetic system to orthostatic stress, the physiology of the baroreflex system and the neurohumoral changes that occur with standing are analyzed. Evidence is presented of the involvement of the autonomic nervous system, including studies of heart rate variability, microneurography, cardiac innervation, and molecular genetic studies. Finally, we describe different studies on the use of beta-blockers and norepinephrine transporter inhibitors (sibutramine, reboxetine) and the rationality of their use to prevent this type of syncope. Creative Commons

  13. Ovarian function and reproductive senescence in the rat: role of ovarian sympathetic innervation.

    PubMed

    Cruz, Gonzalo; Fernandois, Daniela; Paredes, Alfonso H

    2017-02-01

    Successful reproduction is the result of a myriad interactions in which the ovary and the ovarian follicular reserve play a fundamental role. At present, women who delay maternity until after 30 years of age have a decreased fertility rate due to various causes, including damaged follicles and a reduction in the reserve pool of follicles. Therefore, the period just prior to menopause, also known as the subfertile period, is important. The possibility of modulating the follicular pool and the health of follicles during this period to improve fertility is worth exploring. We have developed an animal model to study the ovarian ageing process during this subfertile period to understand the mechanisms responsible for reproductive senescence. In the rat model, we have shown that the sympathetic nervous system participates in regulating the follicular development during ovarian ageing. This article reviews the existing evidence on the presence and functional role of sympathetic nerve activity in regulating the follicular development during ovarian ageing, with a focus on the subfertile period.Free Spanish abstract: A Spanish translation of this abstract is freely available at http://www.reproduction-online.org/content/153/2/R61/suppl/DC1. © 2017 Society for Reproduction and Fertility.

  14. Cholinergic Signaling Exerts Protective Effects in Models of Sympathetic Hyperactivity-Induced Cardiac Dysfunction

    PubMed Central

    Gavioli, Mariana; Lara, Aline; Almeida, Pedro W. M.; Lima, Augusto Martins; Damasceno, Denis D.; Rocha-Resende, Cibele; Ladeira, Marina; Resende, Rodrigo R.; Martinelli, Patricia M.; Melo, Marcos Barrouin; Brum, Patricia C.; Fontes, Marco Antonio Peliky; Souza Santos, Robson A.; Prado, Marco A. M.; Guatimosim, Silvia

    2014-01-01

    Cholinergic control of the heart is exerted by two distinct branches; the autonomic component represented by the parasympathetic nervous system, and the recently described non-neuronal cardiomyocyte cholinergic machinery. Previous evidence has shown that reduced cholinergic function leads to deleterious effects on the myocardium. Yet, whether conditions of increased cholinergic signaling can offset the pathological remodeling induced by sympathetic hyperactivity, and its consequences for these two cholinergic axes are unknown. Here, we investigated two models of sympathetic hyperactivity: i) the chronic beta-adrenergic receptor stimulation evoked by isoproterenol (ISO), and ii) the α2A/α2C-adrenergic receptor knockout (KO) mice that lack pre-synaptic adrenergic receptors. In both models, cholinergic signaling was increased by administration of the cholinesterase inhibitor, pyridostigmine. First, we observed that isoproterenol produces an autonomic imbalance characterized by increased sympathetic and reduced parasympathetic tone. Under this condition transcripts for cholinergic proteins were upregulated in ventricular myocytes, indicating that non-neuronal cholinergic machinery is activated during adrenergic overdrive. Pyridostigmine treatment prevented the effects of ISO on autonomic function and on the ventricular cholinergic machinery, and inhibited cardiac remodeling. α2A/α2C-KO mice presented reduced ventricular contraction when compared to wild-type mice, and this dysfunction was also reversed by cholinesterase inhibition. Thus, the cardiac parasympathetic system and non-neuronal cardiomyocyte cholinergic machinery are modulated in opposite directions under conditions of increased sympathetic drive or ACh availability. Moreover, our data support the idea that pyridostigmine by restoring ACh availability is beneficial in heart disease. PMID:24992197

  15. Albumin infusion improves renal blood flow autoregulation in patients with acute decompensation of cirrhosis and acute kidney injury.

    PubMed

    Garcia-Martinez, Rita; Noiret, Lorette; Sen, Sambit; Mookerjee, Rajeshwar; Jalan, Rajiv

    2015-02-01

    In cirrhotic patients with renal failure, renal blood flow autoregulation curve is shifted to the right, which is consequent upon sympathetic nervous system activation and endothelial dysfunction. Albumin infusion improves renal function in cirrhosis by mechanisms that are incompletely understood. We aimed to determine the effect of albumin infusion on systemic haemodynamics, renal blood flow, renal function and endothelial function in patients with acute decompensation of cirrhosis and acute kidney injury. Twelve patients with refractory ascites and 10 patients with acute decompensation of cirrhosis and acute kidney injury were studied. Both groups were treated with intravenous albumin infusion, 40-60 g/days over 3-4 days. Cardiac and renal haemodynamics were measured. Endothelial activation/dysfunction was assessed using von Willebrand factor and serum nitrite levels. F2α Isoprostanes, resting neutrophil burst and noradrenaline levels were quantified as markers of oxidative stress, endotoxemia and sympathetic activation respectively. Albumin infusion leads to a shift in the renal blood flow autoregulation curve towards normalization, which resulted in a significant increase in renal blood flow. Accordingly, improvement of renal function was observed. In parallel, a significant decrease in sympathetic activation, inflammation/oxidative stress and endothelial activation/dysfunction was documented. Improvement of renal blood flow correlated with improvement in endothelial activation (r = 0.741, P < 0.001). The data suggest that albumin infusion improves renal function in acutely decompensated cirrhotic patients with acute kidney injury by impacting on renal blood flow autoregulation. This is possibly achieved through endothelial stabilization and a reduction in the sympathetic tone, endotoxemia and oxidative stress. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Neurotrophin responsiveness of sympathetic neurons is regulated by rapid mobilization of the p75 receptor to the cell surface through TrkA activation of Arf6.

    PubMed

    Edward Hickman, F; Stanley, Emily M; Carter, Bruce D

    2018-05-22

    The p75 neurotrophin receptor (p75NTR) plays an integral role in patterning the sympathetic nervous system during development. Initially, p75NTR is expressed at low levels as sympathetic axons project toward their targets, which enables neurotrophin-3 (NT3) to activate TrkA receptors and promote growth. Upon reaching nerve growth factor (NGF) producing tissues, p75NTR is up regulated resulting in formation of TrkA-p75 complexes, which are high affinity binding sites selective for NGF, thereby blunting NT3 signaling. The level of p75NTR expressed on the neuron surface is instrumental in regulating trophic factor response; however, the mechanisms by which p75NTR expression is regulated are poorly understood. Here, we demonstrate a rapid, translation independent increase in surface expression of p75NTR in response to NGF in rat sympathetic neurons. p75NTR was mobilized to the neuron surface from GGA3-postitive vesicles through activation of the GTPase Arf6, which was stimulated by NGF, but not NT3 binding to TrkA. Arf6 activation required PI3 kinase activity and was prevented by an inhibitor of the cytohesin family of Arf6 GEFs. Overexpression of a constitutively active Arf6 mutant (Q67L) was sufficient to significantly increase surface expression of p75NTR even in the absence of NGF. Functionally, expression of active Arf6 markedly attenuated the ability of NT3 to promote neuronal survival and neurite outgrowth while the NGF response was unaltered. These data suggest that NGF activation of Arf6 through TrkA is critical for the increase in p75NTR surface expression that enables the switch in neurotrophin responsiveness during development in the sympathetic nervous system. SIGNIFICANCE STATEMENT p75NTR is instrumental in the regulation of neuronal survival and apoptosis during development and is also implicated as a contributor to aberrant neurodegeneration in numerous conditions. Therefore, a better understanding of the mechanisms that mediate p75NTR surface availability, may provide insight into how and why neurodegenerative processes manifest and reveal new therapeutic targets. Results from this study indicate a novel mechanism by which p75NTR can be rapidly shuttled to the cell surface from existing intracellular pools and explores a unique pathway by which NGF regulates the sympathetic innervation of target tissues, which has profound consequences for the function of these organs. Copyright © 2018 the authors.

  17. Children’s Patterns of Emotional Reactivity to Conflict as Explanatory Mechanisms in Links Between Interpartner Aggression and Child Physiological Functioning

    PubMed Central

    Davies, Patrick T.; Sturge-Apple, Melissa L.; Cicchetti, Dante; Manning, Liviah G.; Zale, Emily

    2009-01-01

    Background This paper examined children’s fearful, sad, and angry reactivity to interparental conflict as mediators of associations between their exposure to interparental aggression and physiological functioning. Methods Participants included 200 toddlers and their mothers. Assessments of interparental aggression and children’s emotional reactivity were derived from maternal surveys and a semi-structured interview. Cortisol levels and cardiac indices of sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) activity were used to assess toddler physiological functioning. Results Results indicated that toddler exposure to interparental aggression was associated with greater cortisol levels and PNS activity and diminished SNS activity. Toddler angry emotional reactivity mediated associations between interparental aggression and cortisol and PNS functioning. Fearful emotional reactivity was a mediator of the link between interparental aggression and SNS functioning. Conclusions The results are interpreted within conceptualizations of how exposure and reactivity to family risk organizing individual differences in physiological functioning. PMID:19744183

  18. Increased auditory startle reflex in children with functional abdominal pain.

    PubMed

    Bakker, Mirte J; Boer, Frits; Benninga, Marc A; Koelman, Johannes H T M; Tijssen, Marina A J

    2010-02-01

    To test the hypothesis that children with abdominal pain-related functional gastrointestinal disorders have a general hypersensitivity for sensory stimuli. Auditory startle reflexes were assessed in 20 children classified according to Rome III classifications of abdominal pain-related functional gastrointestinal disorders (13 irritable bowel syndrome [IBS], 7 functional abdominal pain syndrome; mean age, 12.4 years; 15 girls) and 23 control subjects (14 girls; mean age, 12.3 years) using a case-control design. The activity of 6 left-sided muscles and the sympathetic skin response were obtained by an electromyogram. We presented sudden loud noises to the subjects through headphones. Both the combined response of 6 muscles and the blink response proved to be significantly increased in patients with abdominal pain compared with control subjects. A significant increase of the sympathetic skin response was not found. Comorbid anxiety disorders (8 patients with abdominal pain) or Rome III subclassification did not significantly affect these results. This study demonstrates an objective hyperresponsivity to nongastrointestinal stimuli. Children with abdominal pain-related functional gastrointestinal disorders may have a generalized hypersensitivity of the central nervous system. Copyright 2010 Mosby, Inc. All rights reserved.

  19. Operator State Estimation for Adaptive Aiding in Uninhabited Combat Air Vehicles

    DTIC Science & Technology

    2005-09-01

    1992). Van Boxtel, A., W. Waterink, and I.J.T. Veldhuizen . “Tonic Facial EMG Activity As An Index of Mental Effort: Effects of Work Rate, Time-On...the ‘normal’ functioning of brain activity (Beaumont, Burov, Carter, Cheuvront, Sawka, Wilson, Van Orden, Hockey, Balkin and Gundel, 2004). For...by the sympathetic nervous system. Electromyographic activity has been shown to predict arousal accurately ( Veldhuizen , Gaillard, and de Vries, 2003

  20. Role of the autonomic nervous system and baroreflex in stress-evoked cardiovascular responses in rats.

    PubMed

    Dos Reis, Daniel Gustavo; Fortaleza, Eduardo Albino Trindade; Tavares, Rodrigo Fiacadori; Corrêa, Fernando Morgan Aguiar

    2014-07-01

    Restraint stress (RS) is an experimental model to study stress-related cardiovascular responses, characterized by sustained pressor and tachycardiac responses. We used pharmacologic and surgical procedures to investigate the role played by sympathetic nervous system (SNS) and parasympathetic nervous system (PSNS) in the mediation of stress-evoked cardiovascular responses. Ganglionic blockade with pentolinium significantly reduced RS-evoked pressor and tachycardiac responses. Intravenous treatment with homatropine methyl bromide did not affect the pressor response but increased tachycardia. Pretreatment with prazosin reduced the pressor and increased the tachycardiac response. Pretreatment with atenolol did not affect the pressor response but reduced tachycardia. The combined treatment with atenolol and prazosin reduced both pressor and tachycardiac responses. Adrenal demedullation reduced the pressor response without affecting tachycardia. Sinoaortic denervation increased pressor and tachycardiac responses. The results indicate that: (1) the RS-evoked cardiovascular response is mediated by the autonomic nervous system without an important involvement of humoral factors; (2) hypertension results primarily from sympathovascular and sympathoadrenal activation, without a significant involvement of the cardiac sympathetic component (CSNS); (3) the abrupt initial peak in the hypertensive response to restraint is sympathovascular-mediated, whereas the less intense but sustained hypertensive response observed throughout the remaining restraint session is mainly mediated by sympathoadrenal activation and epinephrine release; (4) tachycardia results from CSNS activation, and not from PSNS inhibition; (5) RS evokes simultaneous CSNS and PSNS activation, and heart rate changes are a vector of both influences; (6) the baroreflex is functional during restraint, and modulates both the vascular and cardiac responses to restraint.

  1. Sympathetic nerve dysfunction is common in patients with chronic intestinal pseudo-obstruction.

    PubMed

    Mattsson, Tomas; Roos, Robert; Sundkvist, Göran; Valind, Sven; Ohlsson, Bodil

    2008-02-01

    To clarify whether disturbances in the autonomic nervous system, reflected in abnormal cardiovascular reflexes, could explain symptoms of impaired heat regulation in patients with intestinal pseudo-obstruction. Chronic intestinal pseudo-obstruction is a clinical syndrome characterized by diffuse, unspecific gastrointestinal symptoms due to damage to the enteric nervous system or the smooth muscle cells. These patients often complain of excessive sweating or feeling cold, suggesting disturbances in the autonomic nervous system. Earlier studies have pointed to a coexistence of autonomic disturbances in the enteric and cardiovascular nervous system. Thirteen consecutive patients (age range 23 to 79, mean 44 y) fulfilling the criteria for chronic intestinal pseudo-obstruction were investigated. Six of them complained of sweating or a feeling of cold. Examination of autonomic reflexes included heart rate variation to deep-breathing (expiration/inspiration index), heart rate reaction to tilt (acceleration index, brake index), and vasoconstriction (VAC) due to indirect cooling by laser doppler (VAC-index; high index indicates impaired VAC). Test results in patients were compared with healthy individuals. Patients had significantly higher (more abnormal) median VAC-index compared with healthy controls [1.79 (interquartile ranges 1.89) vs. 0.08 (interquartile ranges 1.29); P=0.0007]. However, symptoms of impaired heat regulation were not related to the VAC-index. There were no differences in expiration/inspiration, acceleration index, or brake index between patients and controls. The patients with severe gastrointestinal dysmotility showed impaired sympathetic nerve function which, however, did not seem to be associated with symptoms of impaired heat regulation.

  2. Feeling good: autonomic nervous system responding in five positive emotions.

    PubMed

    Shiota, Michelle N; Neufeld, Samantha L; Yeung, Wan H; Moser, Stephanie E; Perea, Elaine F

    2011-12-01

    Although dozens of studies have examined the autonomic nervous system (ANS) aspects of negative emotions, less is known about ANS responding in positive emotion. An evolutionary framework was used to define five positive emotions in terms of fitness-enhancing function, and to guide hypotheses regarding autonomic responding. In a repeated measures design, participants viewed sets of visual images eliciting these positive emotions (anticipatory enthusiasm, attachment love, nurturant love, amusement, and awe) plus an emotionally neutral state. Peripheral measures of sympathetic and vagal parasympathetic activation were assessed. Results indicated that the emotion conditions were characterized by qualitatively distinct profiles of autonomic activation, suggesting the existence of multiple, physiologically distinct positive emotions. (c) 2011 APA, all rights reserved.

  3. Obesity-Induced Hypertension: Brain Signaling Pathways

    PubMed Central

    da Silva, Alexandre A.; Wang, Zhen; Fang, Taolin; Aberdein, Nicola; de Lara Rodriguez, Cecilia E. P.; Hall, John E.

    2017-01-01

    Obesity greatly increases the risk for cardiovascular, metabolic, and renal diseases and is one of the most significant and preventable causes of increased blood pressure (BP) in patients with essential hypertension. This review high-lights recent advances in our understanding of central nervous system (CNS) signaling pathways that contribute to the etiology and pathogenesis of obesity-induced hypertension. We discuss the role of excess adiposity and activation of the brain leptin-melanocortin system in causing increased sympathetic activity in obesity. In addition, we highlight other potential brain mechanisms by which increased weight gain modulates metabolic and cardiovascular functions. Unraveling the CNS mechanisms responsible for increased sympathetic activation and hypertension and how circulating hormones activate brain signaling pathways to control BP offer potentially important therapeutic targets for obesity and hypertension. PMID:27262997

  4. A deletion in the alpha2B-adrenergic receptor gene and autonomic nervous function in central obesity.

    PubMed

    Sivenius, Katariina; Niskanen, Leo; Laakso, Markku; Uusitupa, Matti

    2003-08-01

    We investigated the impact of a three-amino acid deletion (12Glu9) polymorphism in the alpha(2B)-adrenergic receptor gene on autonomic nervous function. The short form (Glu(9)/Glu(9)) of the polymorphism has previously been associated with a reduced basal metabolic rate in obese subjects. Because autonomic nervous function participates in the regulation of energy metabolism, there could be a link between this polymorphism and autonomic nervous function. Data of a 10-year follow-up study with 126 nondiabetic control subjects and 84 type 2 diabetic patients were used to determine the effects of the 12Glu9 polymorphism on autonomic nervous function. A deep breathing test and an orthostatic test were used to investigate parasympathetic and sympathetic autonomic nervous function. In addition, cardiovascular autonomic function was studied using power spectral analysis of heart rate variability. No significant differences were found in the frequency of the 12Glu9 deletion polymorphism between nondiabetic and diabetic subjects. The nondiabetic men with the Glu(9)/Glu(9) genotype, especially those with abdominal obesity, had significantly lower total and low-frequency power values in the power spectral analysis when compared with other men. Furthermore, in a longitudinal analysis of 10 years, the decrease in parasympathetic function was greater in nondiabetic men with the Glu(9)/Glu(9) genotype than in the men with the Glu(9)/Glu(12) or Glu(12)/Glu(12) genotypes. The results of the present study suggest that the 12Glu9 polymorphism of the alpha(2B)-adrenergic receptor gene modulates autonomic nervous function in Finnish nondiabetic men. In the nondiabetic men with the Glu(9)/Glu(9) genotype, the general autonomic tone is depressed, and vagal activity especially becomes impaired with time. Furthermore, this association is accentuated by central obesity.

  5. Sympathetic skin responses in patients with hyperthyroidism.

    PubMed

    Gozke, E; Ozyurt, Z; Dortcan, N; Ore, O; Kocer, A; Ozer, E

    2007-01-01

    The aim of this study was to investigate the disorders of sympathetic nervous system in patients with hyperthyroidism using sympathetic skin response (SSR). Twenty-two newly diagnosed cases with hyperthyroidism were included in the study. The results were compared with those of 20 healthy controls. SSR was recorded with the contralateral electrical stimulation of the median nerve (of the upper extremities) and tibial nerve (of the lower extremities) with active electrodes placed on palms and soles and reference electrodes attached on the dorsal aspects of hands and feet. Ages of the cases with hyperthyroidism and controls ranged between 15-65 years (mean: 46.7 +/- 15.0 years) and 24-62 years (mean: 39.6 +/- 9.8 years) respectively (p > 0.05). In all the control subjects SSR could be obtained, while from the lower extremities of 4 cases with hyperthyroidism (18.0%) SSR could not be elicited. Mean SSR latencies of lower extremities were found significantly longer than control group (p < 0. 05). No difference was detected between mean amplitudes of SSR in upper and lower extremities. These findings suggest that SSR is useful for investigation of sympathetic nervous system involvement in cases with hyperthyroidism.

  6. Mechanical ventilation increases substance P concentration in the vagus, sympathetic, and phrenic nerves.

    PubMed

    Balzamo, E; Joanny, P; Steinberg, J G; Oliver, C; Jammes, Y

    1996-01-01

    Substance P (SP), a neurotransmitter localized to primary sensory neurons, is found in the vagus nerve, nodose ganglion, sympathetic chain, and phrenic nerve in various animal species. However, the changes in endogeneous SP concentration under various circumstances that involve the participation of cardiorespiratory afferent nerves are still unexplored. In the present study, attention was focused on the variations in SP content measured by radioimmunoassay (RIA) in respiratory afferent nerves (vagus nerve, cervical sympathetic chain, phrenic nerve) and respiratory muscles (diaphragm, intercostal muscles) during positive inspiratory pressure (PIP) breathing alone or PIP with an expiratory threshold load (ETL) in rabbits. SP was found in all sampled structures in spontaneously breathing control animals, prevailing in the nodose ganglion. Left-versus right-sided differences were noticed in nerves. As compared with that in control animals, the SP concentration was markedly higher in vagal and sympathetic nervous structures during PIP or PIP with ETL, and also in the phrenic nerve during ETL breathing. The SP content did not vary in respiratory muscles. These observations suggest that two very common circumstances of mechanical ventilation are associated with an increased SP concentration in nervous structures participating in the control of breathing.

  7. Macaque Cardiac Physiology Is Sensitive to the Valence of Passively Viewed Sensory Stimuli

    PubMed Central

    Bliss-Moreau, Eliza; Machado, Christopher J.; Amaral, David G.

    2013-01-01

    Autonomic nervous system activity is an important component of affective experience. We demonstrate in the rhesus monkey that both the sympathetic and parasympathetic branches of the autonomic nervous system respond differentially to the affective valence of passively viewed video stimuli. We recorded cardiac impedance and an electrocardiogram while adult macaques watched a series of 300 30-second videos that varied in their affective content. We found that sympathetic activity (as measured by cardiac pre-ejection period) increased and parasympathetic activity (as measured by respiratory sinus arrhythmia) decreased as video content changes from positive to negative. These findings parallel the relationship between autonomic nervous system responsivity and valence of stimuli in humans. Given the relationship between human cardiac physiology and affective processing, these findings suggest that macaque cardiac physiology may be an index of affect in nonverbal animals. PMID:23940712

  8. Effects of gender and game type on autonomic nervous system physiological parameters in long-hour online game players.

    PubMed

    Lin, Tung-Cheng

    2013-11-01

    Online game playing may induce physiological effects. However, the physical mechanisms that cause these effects remain unclear. The purpose of this study was to examine the physiological effects of long-hour online gaming from an autonomic nervous system (ANS) perspective. Heart rate variability (HRV), a valid and noninvasive electrocardiographic method widely used to investigate ANS balance, was used to measure physiological effect parameters. This study used a five-time, repeated measures, mixed factorial design. Results found that playing violent games causes significantly higher sympathetic activity and diastolic blood pressure than playing nonviolent games. Long-hour online game playing resulted in the gradual dominance of the parasympathetic nervous system due to physical exhaustion. Gaming workload was found to modulate the gender effects, with males registering significantly higher sympathetic activity and females significantly higher parasympathetic activity in the higher gaming workload group.

  9. Role of the Sympathetic Nervous System in Carbon Tetrachloride-Induced Hepatotoxicity and Systemic Inflammation

    PubMed Central

    Lin, Jung-Chun; Peng, Yi-Jen; Wang, Shih-Yu; Young, Ton-Ho; Salter, Donald M.; Lee, Herng-Sheng

    2015-01-01

    Carbon tetrachloride (CCl4) is widely used as an animal model of hepatotoxicity and the mechanisms have been arduously studied, however, the contribution of the sympathetic nervous system (SNS) in CCl4-induced acute hepatotoxicity remains controversial. It is also known that either CCl4 or SNS can affect systemic inflammatory responses. The aim of this study was to establish the effect of chemical sympathectomy with 6-hydroxydopamine (6-OHDA) in a mouse model of CCl4-induced acute hepatotoxicity and systemic inflammatory response. Mice exposed to CCl4 or vehicle were pretreated with 6-OHDA or saline. The serum levels of aminotransferases and alkaline phosphatase in the CCl4-poisoning mice with sympathetic denervation were significantly lower than those without sympathetic denervation. With sympathetic denervation, hepatocellular necrosis and fat infiltration induced by CCl4 were greatly decreased. Sympathetic denervation significantly attenuated CCl4-induced lipid peroxidation in liver and serum. Acute CCl4 intoxication showed increased expression of inflammatory cytokines/chemokines [eotaxin-2/CCL24, Fas ligand, interleukin (IL)-1α, IL-6, IL-12p40p70, monocyte chemoattractant protein-1 (MCP-1/CCL2), and tumor necrosis factor-α (TNF-α)], as well as decreased expression of granulocyte colony-stimulating factor and keratinocyte-derived chemokine. The overexpressed levels of IL-1α, IL-6, IL-12p40p70, MCP-1/CCL2, and TNF-α were attenuated by sympathetic denervation. Pretreatment with dexamethasone significantly reduced CCl4-induced hepatic injury. Collectively, this study demonstrates that the SNS plays an important role in CCl4-induced acute hepatotoxicity and systemic inflammation and the effect may be connected with chemical- or drug-induced hepatotoxicity and circulating immune response. PMID:25799095

  10. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41).

    PubMed

    Kimura, Ikuo; Inoue, Daisuke; Maeda, Takeshi; Hara, Takafumi; Ichimura, Atsuhiko; Miyauchi, Satoshi; Kobayashi, Makio; Hirasawa, Akira; Tsujimoto, Gozoh

    2011-05-10

    The maintenance of energy homeostasis is essential for life, and its dysregulation leads to a variety of metabolic disorders. Under a fed condition, mammals use glucose as the main metabolic fuel, and short-chain fatty acids (SCFAs) produced by the colonic bacterial fermentation of dietary fiber also contribute a significant proportion of daily energy requirement. Under ketogenic conditions such as starvation and diabetes, ketone bodies produced in the liver from fatty acids are used as the main energy sources. To balance energy intake, dietary excess and starvation trigger an increase or a decrease in energy expenditure, respectively, by regulating the activity of the sympathetic nervous system (SNS). The regulation of metabolic homeostasis by glucose is well recognized; however, the roles of SCFAs and ketone bodies in maintaining energy balance remain unclear. Here, we show that SCFAs and ketone bodies directly regulate SNS activity via GPR41, a Gi/o protein-coupled receptor for SCFAs, at the level of the sympathetic ganglion. GPR41 was most abundantly expressed in sympathetic ganglia in mouse and humans. SCFA propionate promoted sympathetic outflow via GPR41. On the other hand, a ketone body, β-hydroxybutyrate, produced during starvation or diabetes, suppressed SNS activity by antagonizing GPR41. Pharmacological and siRNA experiments indicated that GPR41-mediated activation of sympathetic neurons involves Gβγ-PLCβ-MAPK signaling. Sympathetic regulation by SCFAs and ketone bodies correlated well with their respective effects on energy consumption. These findings establish that SCFAs and ketone bodies directly regulate GPR41-mediated SNS activity and thereby control body energy expenditure in maintaining metabolic homeostasis.

  11. [Effect of substance P on cardiac autonomic nervous function in rats].

    PubMed

    Deng, Lijun; Li, Jing; Yan, Fuping; Lu, Jie

    2009-12-01

    Forty SD rats were divided into 5 groups: control group, SP groups (5 microg/kg,10 microg/kg, 20 microg/kg) and spantide II plus SP group. An analysis of heart rate variability (HRV) was used to detect the changes of HRV parameters before and after intravenous injection of SP in order to investigate the effect of substance P on cardiac autonomic nervous function and the corresponding mechanism. (1) There were significant differences in most HRV parameters for the three different doses of SP. Mean heart period (MHP), absolute power of ultra-low frequency and high frequency band (APU, APH), total power (TPV) and ratio of power in ultra-low to high frequency band (RUH) increased, while mean heart rate (MHR) and chaos intensity (HCC) decreased during the 30 minutes. Each peak amplitude of HRV parameters went higher and showed up ahead of the upward doses of SP. (2) Significant change was seen in each of the parameters between spantide II plus SP group and high-dose SP group. These data idicate that, after intravenous injection of different doses of SP, both cardiac sympathetic nervous system activity and parasympathetic nervous system activity increase, and the function of cardiac autonomic nervous becomes instable and unbalanced. The effect of SP may be dose dependent, and it is possibly mediated by neurokinin-1(NK-1) receptor.

  12. Mechanisms underpinning sympathetic nervous activity and its modulation using transcutaneous vagus nerve stimulation.

    PubMed

    Deuchars, Susan A; Lall, Varinder K; Clancy, Jennifer; Mahadi, Mohd; Murray, Aaron; Peers, Lucy; Deuchars, Jim

    2018-03-01

    What is the topic of this review? This review briefly considers what modulates sympathetic nerve activity and how it may change as we age or in pathological conditions. It then focuses on transcutaneous vagus nerve stimulation, a method of neuromodulation in autonomic cardiovascular control. What advances does it highlight? The review considers the pathways involved in eliciting the changes in autonomic balance seen with transcutaneous vagus nerve stimulation in relationship to other neuromodulatory techniques. The autonomic nervous system, consisting of the sympathetic and parasympathetic branches, is a major contributor to the maintenance of cardiovascular variables within homeostatic limits. As we age or in certain pathological conditions, the balance between the two branches changes such that sympathetic activity is more dominant, and this change in dominance is negatively correlated with prognosis in conditions such as heart failure. We have shown that non-invasive stimulation of the tragus of the ear increases parasympathetic activity and reduces sympathetic activity and that the extent of this effect is correlated with the baseline cardiovascular parameters of different subjects. The effects could be attributable to activation of the afferent branch of the vagus and, potentially, other sensory nerves in that region. This indicates that tragus stimulation may be a viable treatment in disorders where autonomic activity to the heart is compromised. © 2017 The Authors. Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  13. Therapeutic options of Angiotensin Receptor Neprilysin inhibitors (ARNis) in chronic heart failure with reduced ejection fraction: Beyond RAAS and sympathetic nervous system inhibition.

    PubMed

    Volterrani, Maurizio; Iellamo, Ferdinando; Senni, Michele; Piepoli, Massimo F

    2017-01-01

    In heart failure, in addition to the renin-angiotensin-aldosterone system and sympathetic nervous system, the natriuretic peptide (NP) system plays a fundamental role among compensating mechanisms. The NPs undergo rapid enzymatic degradation that limits their vasorelaxant, natriuretic, and diuretic actions. Degradation of NPs is partially due to the action of neprilysin, which is a membrane-bound endopeptidase found in many tissues. This article summarizes recent findings on a new natriuretic peptide-enhancing drug and their implication for future pharmacological treatment of patients suffering from heart failure with reduced ejection fraction. Copyright © 2016. Published by Elsevier Ireland Ltd.

  14. Renal Sympathetic Denervation – A Review of Applications in Current Practice

    PubMed Central

    Kapil, Vikas; Jain, Ajay K

    2014-01-01

    Resistant hypertension is associated with high morbidity and mortality despite numerous pharmacological strategies. A wealth of preclinical and clinical data have demonstrated that resistant hypertension is associated with elevated renal and central sympathetic tone. The development of interventional therapies to modulate the sympathetic nervous system potentially represents a paradigm shift in the strategy for blood pressure control in this subset of patients. Initial first-in-man and pivotal, randomised controlled trials of endovascular, radio-frequency renal sympathetic denervation have spawned numerous iterations of similar technology, as well as many novel concepts for achieving effective renal sympatholysis. This review details the current knowledge of these devices and the evidence base behind each technology. PMID:29588780

  15. Renal denervation for resistant hypertension.

    PubMed

    Almeida, Manuel de Sousa; Gonçalves, Pedro de Araújo; Oliveira, Eduardo Infante de; Carvalho, Henrique Cyrne de

    2015-02-01

    There is a marked contrast between the high prevalence of hypertension and the low rates of adequate control. A subset of patients with suboptimal blood pressure control have drug-resistant hypertension, in the pathophysiology of which chronic sympathetic hyperactivation is significantly involved. Sympathetic renal denervation has recently emerged as a device-based treatment for resistant hypertension. In this review, the pathophysiological mechanisms linking the sympathetic nervous system and cardiovascular disease are reviewed, focusing on resistant hypertension and the role of sympathetic renal denervation. An update on experimental and clinical results is provided, along with potential future indications for this device-based technique in other cardiovascular diseases. Copyright © 2014 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  16. Renal BOLD-MRI relates to kidney function and activity of the renin-angiotensin-aldosterone system in hypertensive patients.

    PubMed

    Vink, Eva E; de Boer, Anneloes; Hoogduin, Hans J M; Voskuil, Michiel; Leiner, Tim; Bots, Michiel L; Joles, Jaap A; Blankestijn, Peter J

    2015-03-01

    The renin-angiotensin-aldosterone system (RAAS) and the sympathetic nervous system are key factors in the pathophysiology of hypertension. Renal hypoxia is the putative mechanism stimulating both systems. Blood oxygen level-dependent MRI (BOLD-MRI) provides a noninvasive tool to determine renal oxygenation in humans. The aim of the current study was to investigate the relation between blood pressure (BP) and kidney function with renal BOLD-MRI. Moreover, the relation between direct and indirect variables of the RAAS and sympathetic nervous system and renal BOLD-MRI was studied. Seventy-five hypertensive patients (38 men) were included. Antihypertensive medication was temporarily stopped. Patients collected urine during 24 h (sodium, catecholamines), blood samples were taken (creatinine, renin, aldosterone), a captopril challenge test was performed, and ambulatory BP was measured. Mean age was 58 (±11) years, day-time BP was 167 (±19)/102 (±16) mmHg, and estimated glomerular filtration rate was 75 (±18) ml/min per 1.73 m). In multivariable regression analysis, renal medullary R2*-values inversely related to estimated glomerular filtration rate (P = 0.02). Moreover, the BP-lowering effect of captopril positively related to cortical (P = 0.02) and medullary (P = 0.008) R2*-values, as well as to P90 (P = 0.02). In patients with hypertension, kidney function relates to medullary R2*-values. Activation of the RAAS is also positively related to the renal R2*-values.

  17. Parental overcontrol x OPRM1 genotype interaction predicts school-aged children's sympathetic nervous system activation in response to performance challenge.

    PubMed

    Partington, Lindsey C; Borelli, Jessica L; Smiley, Patricia; Jarvik, Ella; Rasmussen, Hannah F; Seaman, Lauren C; Nurmi, Erika L

    2018-04-26

    Parental overcontrol (OC), the excessive regulation of a child's behavior, cognition, and emotion, is associated with the development of child anxiety. While studies have shown that genetic factors may increase sensitivity to stress, genetic vulnerability to parental OC has not been examined in anxiety etiology. A functional polymorphism in the mu opioid receptor OPRM1 (A118G, rs1799971) has been shown to impact stress reactivity. Using a community sample of children (N = 85, 9-12 years old), we examined the main and interactive effects of maternal OC and child OPRM1 genotype in predicting children's sympathetic nervous system reactivity during a performance stressor. Neither OC nor genotype predicted children's electrodermal activity (EDA); however, the interaction between OC and child genotype significantly predicted stress reactivity, as indexed by EDA, during the challenging task. Among children with the minor G-allele, higher maternal OC was associated with higher reactivity. In A homozygotes, maternal OC was not associated with EDA, suggesting a diathesis-stress pattern of gene x environment interaction. We discuss implications for anxiety etiology and intervention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. A search for activation of C-nociceptors by sympathetic fibers in complex regional pain syndrome

    PubMed Central

    Campero, Mario; Bostock, Hugh; Baumann, Thomas K.; Ochoa, José L.

    2010-01-01

    Objective Although the term ‘reflex sympathetic dystrophy’ has been replaced by ‘complex regional pain syndrome’ (CRPS) type I, there remains a widespread presumption that the sympathetic nervous system is actively involved in mediating chronic neuropathic pain [“sympathetically maintained pain” (SMP)], even in the absence of detectable neuropathophysiology. Methods We have used microneurography to evaluate possible electrophysiological interactions in 24 patients diagnosed with CRPS I (n=13), or CRPS II (n=11) by simultaneously recording from single identified sympathetic efferent fibers and C nociceptors, while provoking sympathetic neural discharges in cutaneous nerves. Results We assessed potential effects of sympathetic activity upon 35 polymodal nociceptors and 19 mechano-insensitive nociceptors, recorded in CRPS I (26 nociceptors) and CRPS II patients (28 nociceptors). No evidence of activation of nociceptors related to sympathetic discharge was found, although nociceptors in 6 CRPS II patients exhibited unrelated spontaneous pathological nerve impulse activity. Conclusion We conclude that activation of nociceptors by sympathetic efferent discharges is not a cardinal pathogenic event in either CRPS I or CRPS II patients. Significance This study shows that sympathetic-nociceptor interactions, if they exist in patients communicating chronic neuropathic pain, must be the exception. PMID:20359942

  19. Chemistry and biology of radiotracers that target changes in sympathetic and parasympathetic nervous systems in heart disease.

    PubMed

    Eckelman, William C; Dilsizian, Vasken

    2015-06-01

    Following the discovery of the sympathetic and parasympathetic nervous system, numerous adrenoceptor drugs were radiolabeled and potent radioligands were prepared in order to image the β-adrenergic and the muscarinic systems. But the greatest effort has been in preparing noradrenaline analogs, such as norepinephrine, (11)C-metahydroxyephedrine, and (123)I-metaiodobenzylguanidine that measure cardiac sympathetic nerve varicosities. Given the technical and clinical challenges in designing and validating targeted adrenoceptor-binding radiotracers, namely the heavily weighted flow dependence and relatively low target-to-background ratio, both requiring complicated mathematic analysis, and the inability of targeted adrenoceptor radioligands to have an impact on clinical care of heart disease, the emphasis has been on radioligands monitoring the norepinephrine pathway. The chemistry and biology of such radiotracers, and the clinical and prognostic impact of these innervation imaging studies in patients with heart disease, are examined. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  20. Does the sympathetic nervous system contribute to the pathophysiology of metabolic syndrome?

    PubMed Central

    Moreira, Marina C. dos Santos; Pinto, Izabella S. de Jesus; Mourão, Aline A.; Fajemiroye, James O.; Colombari, Eduardo; Reis, Ângela A. da Silva; Freiria-Oliveira, André H.; Ferreira-Neto, Marcos L.; Pedrino, Gustavo R.

    2015-01-01

    The metabolic syndrome (MS), formally known as syndrome X, is a clustering of several risk factors such as obesity, hypertension, insulin resistance, and dislypidemia which could lead to the development of diabetes and cardiovascular diseases (CVD). The frequent changes in the definition and diagnostic criteria of MS are indications of the controversy and the challenges surrounding the understanding of this syndrome among researchers. Obesity and insulin resistance are leading risk factors of MS. Moreover, obesity and hypertension are closely associated to the increase and aggravation of oxidative stress. The recommended treatment of MS frequently involves change of lifestyles to prevent weight gain. MS is not only an important screening tool for the identification of individuals at high risk of CVD and diabetes but also an indicator of suitable treatment. As sympathetic disturbances and oxidative stress are often associated with obesity and hypertension, the present review summarizes the role of sympathetic nervous system and oxidative stress in the MS. PMID:26379553

  1. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans.

    PubMed

    Kox, Matthijs; van Eijk, Lucas T; Zwaag, Jelle; van den Wildenberg, Joanne; Sweep, Fred C G J; van der Hoeven, Johannes G; Pickkers, Peter

    2014-05-20

    Excessive or persistent proinflammatory cytokine production plays a central role in autoimmune diseases. Acute activation of the sympathetic nervous system attenuates the innate immune response. However, both the autonomic nervous system and innate immune system are regarded as systems that cannot be voluntarily influenced. Herein, we evaluated the effects of a training program on the autonomic nervous system and innate immune response. Healthy volunteers were randomized to either the intervention (n = 12) or control group (n = 12). Subjects in the intervention group were trained for 10 d in meditation (third eye meditation), breathing techniques (i.a., cyclic hyperventilation followed by breath retention), and exposure to cold (i.a., immersions in ice cold water). The control group was not trained. Subsequently, all subjects underwent experimental endotoxemia (i.v. administration of 2 ng/kg Escherichia coli endotoxin). In the intervention group, practicing the learned techniques resulted in intermittent respiratory alkalosis and hypoxia resulting in profoundly increased plasma epinephrine levels. In the intervention group, plasma levels of the anti-inflammatory cytokine IL-10 increased more rapidly after endotoxin administration, correlated strongly with preceding epinephrine levels, and were higher. Levels of proinflammatory mediators TNF-α, IL-6, and IL-8 were lower in the intervention group and correlated negatively with IL-10 levels. Finally, flu-like symptoms were lower in the intervention group. In conclusion, we demonstrate that voluntary activation of the sympathetic nervous system results in epinephrine release and subsequent suppression of the innate immune response in humans in vivo. These results could have important implications for the treatment of conditions associated with excessive or persistent inflammation, such as autoimmune diseases.

  2. Increase in Operator's Sympathetic Nerve Activity during Complicated Hepatobiliary Surgery: Evidence for Surgeons' Mental Stress.

    PubMed

    Yamanouchi, Kosho; Hayashida, Naomi; Kuba, Sayaka; Sakimura, Chika; Kuroki, Tamotsu; Togo, Michita; Katayama, Noritada; Takamura, Noboru; Eguchi, Susumu

    2015-11-01

    Surgeons often experience stress during operations. The heart rate variability (HRV) is the variability in the beat-to-beat interval, which has been used as parameters of stress. The purpose of this study was to evaluate mental stress of surgeons before, during and after operations, especially during pancreaticoduodenectomy (PD) and living donor liver transplantation (LDLT). Additionally, the parameters were compared in various procedures during the operations. By frequency domain method using electrocardiograph, we measured the high frequency (HF) component, representing the parasympathetic activity, and the low frequency (LF)/HF ratio, representing the sympathetic activity. In all 5 cases of PD, the surgeon showed significantly lower HF component and higher LF/HF during operation, indicating predominance of sympathetic nervous system and increased stress, than those before the operation (p < 0.01) and these did not return to the baseline level one hour after the operation. Out of the 4 LDLT cases, the value of HF was decreased in two and the LF/HF increased in three cases (p < 0.01) during the operation compared to those before the operation. In all cases, the value of HF was decreased and/or the LF/HF increased significantly during the reconstruction of the vessels or bile ducts than during the removal of the liver. Thus, sympathetic nerve activity increased during hepatobiliary surgery compared with the level before the operation, and various procedures during the operations induced diverse changes in the autonomic nervous activities. The HRV analysis could assess the chronological changes of mental stress by measuring the autonomic nervous balances.

  3. Changes in Sympathetic Nervous System Activity are Associated with Changes in Sexual Wellbeing in Women with a History of Childhood Sexual Abuse

    PubMed Central

    Lorenz, Tierney K.; Harte, Christopher B.; Meston, Cindy M.

    2015-01-01

    Introduction Women with histories of childhood sexual abuse (CSA) have higher rates of sexual difficulties, as well as high sympathetic nervous system (SNS) response to sexual stimuli. Aim To examine whether treatment-related changes in autonomic balance, as indexed by heart rate variability (HRV), were associated with changes in sexual arousal and orgasm function. Methods In Study 1, we measured HRV while writing a sexual essay in 42 healthy, sexually functional women without any history of sexual trauma. These data, along with demographics, were used to develop HRV norms equations. In Study 2, 136 women with a history of CSA were randomized to one of three active expressive writing treatments that focused on their trauma, sexuality, or daily life (control condition). We recorded HRV while writing a sexual essay at pre-treatment, post-treatment, and 2 week, 1 month, and 6 month follow-ups; we also calculated the expected HRV for each participant based on the norms equations from Study 1. Main Outcome Measures Heart rate variability, Female Sexual Function Index (FSFI), Sexual Satisfaction Scale – Women (SSS-W) Results The difference between expected and observed HRV decreased over time, indicating that, post-treatment, CSA survivors displayed HRV closer to the expected HRV of a demographics-matched woman with no history of sexual trauma. Also, over time, participants whose HRV became less dysregulated showed the biggest gains in sexual arousal and orgasm function. These effects were consistent across condition. Conclusions Treatments that reduce autonomic imbalance may improve sexual wellbeing among CSA populations. PMID:25963394

  4. Inhibition of N-type Ca2+ channels ameliorates an imbalance in cardiac autonomic nerve activity and prevents lethal arrhythmias in mice with heart failure.

    PubMed

    Yamada, Yuko; Kinoshita, Hideyuki; Kuwahara, Koichiro; Nakagawa, Yasuaki; Kuwabara, Yoshihiro; Minami, Takeya; Yamada, Chinatsu; Shibata, Junko; Nakao, Kazuhiro; Cho, Kosai; Arai, Yuji; Yasuno, Shinji; Nishikimi, Toshio; Ueshima, Kenji; Kamakura, Shiro; Nishida, Motohiro; Kiyonaka, Shigeki; Mori, Yasuo; Kimura, Takeshi; Kangawa, Kenji; Nakao, Kazuwa

    2014-10-01

    Dysregulation of autonomic nervous system activity can trigger ventricular arrhythmias and sudden death in patients with heart failure. N-type Ca(2+) channels (NCCs) play an important role in sympathetic nervous system activation by regulating the calcium entry that triggers release of neurotransmitters from peripheral sympathetic nerve terminals. We have investigated the ability of NCC blockade to prevent lethal arrhythmias associated with heart failure. We compared the effects of cilnidipine, a dual N- and L-type Ca(2+) channel blocker, with those of nitrendipine, a selective L-type Ca(2+) channel blocker, in transgenic mice expressing a cardiac-specific, dominant-negative form of neuron-restrictive silencer factor (dnNRSF-Tg). In this mouse model of dilated cardiomyopathy leading to sudden arrhythmic death, cardiac structure and function did not significantly differ among the control, cilnidipine, and nitrendipine groups. However, cilnidipine dramatically reduced arrhythmias in dnNRSF-Tg mice, significantly improving their survival rate and correcting the imbalance between cardiac sympathetic and parasympathetic nervous system activity. A β-blocker, bisoprolol, showed similar effects in these mice. Genetic titration of NCCs, achieved by crossing dnNRSF-Tg mice with mice lacking CACNA1B, which encodes the α1 subunit of NCCs, improved the survival rate. With restoration of cardiac autonomic balance, dnNRSF-Tg;CACNA1B(+/-) mice showed fewer malignant arrhythmias than dnNRSF-Tg;CACNA1B(+/+) mice. Both pharmacological blockade of NCCs and their genetic titration improved cardiac autonomic balance and prevented lethal arrhythmias in a mouse model of dilated cardiomyopathy and sudden arrhythmic death. Our findings suggest that NCC blockade is a potentially useful approach to preventing sudden death in patients with heart failure. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  5. Sympathetic nerves: How do they affect angiogenesis, particularly during wound healing of soft tissues?

    PubMed

    Pan, Liangli; Tang, Jianbing; Liu, Hongwei; Cheng, Biao

    2016-01-01

    Angiogenesis is essential for wound healing, and angiogenesis impairment can result in chronic ulcers. Studies have shown that the sympathetic nervous system has an important role in angiogenesis. In recent years, researchers have focused on the roles of sympathetic nerves in tumor angiogenesis. In fact, sympathetic nerves can affect angiogenesis in the wound healing of soft tissues, and may have a similar mechanism of action as that seen in tumorigenesis. Sympathetic nerves act primarily through interactions between the neurotransmitters released from nerve endings and receptors present in target organs. Among this, activation or inhibition of adrenergic receptors (mainly β-adrenergic receptors) influence formation of new blood vessels considerably. As sympathetic nerves locate near pericytes in microvessel, go along the capillaries and there are adrenergic receptors present in endothelial cells and pericytes, sympathetic nerves may participate in angiogenesis by influencing the endothelial cells and pericytes of new capillaries. Studying the roles of sympathetic nerves on the angiogenesis of wound healing can contribute to understanding the mechanisms of tissue repair, tissue regeneration, and tumorigenesis, thereby providing new therapeutic perspectives.

  6. β-Hydroxybutyrate modulates N-type calcium channels in rat sympathetic neurons by acting as an agonist for the G-protein-coupled receptor FFA3.

    PubMed

    Won, Yu-Jin; Lu, Van B; Puhl, Henry L; Ikeda, Stephen R

    2013-12-04

    Free fatty acids receptor 3 (FFA3, GPR41) and 2 (FFA2, GPR43), for which the short-chain fatty acids (SCFAs) acetate and propionate are agonist, have emerged as important G-protein-coupled receptors influenced by diet and gut flora composition. A recent study (Kimura et al., 2011) demonstrated functional expression of FFA3 in the rodent sympathetic nervous system (SNS) providing a potential link between nutritional status and autonomic function. However, little is known of the source of endogenous ligands, signaling pathways, or effectors in sympathetic neurons. In this study, we found that FFA3 and FFA2 are unevenly expressed in the rat SNS with higher transcript levels in prevertebral (e.g., celiac-superior mesenteric and major pelvic) versus paravertebral (e.g., superior cervical and stellate) ganglia. FFA3, whether heterologously or natively expressed, coupled via PTX-sensitive G-proteins to produce voltage-dependent inhibition of N-type Ca(2+) channels (Cav2.2) in sympathetic neurons. In addition to acetate and propionate, we show that β-hydroxybutyrate (BHB), a metabolite produced during ketogenic conditions, is also an FFA3 agonist. This contrasts with previous interpretations of BHB as an antagonist at FFA3. Together, these results indicate that endogenous BHB levels, especially when elevated under certain conditions, such as starvation, diabetic ketoacidosis, and ketogenic diets, play a potentially important role in regulating the activity of the SNS through FFA3.

  7. A novel interaction between sympathetic overactivity and aberrant regulation of renin by miR-181a in BPH/2J genetically hypertensive mice.

    PubMed

    Jackson, Kristy L; Marques, Francine Z; Watson, Anna M D; Palma-Rigo, Kesia; Nguyen-Huu, Thu-Phuc; Morris, Brian J; Charchar, Fadi J; Davern, Pamela J; Head, Geoffrey A

    2013-10-01

    Genetically hypertensive mice (BPH/2J) are hypertensive because of an exaggerated contribution of the sympathetic nervous system to blood pressure. We hypothesize that an additional contribution to elevated blood pressure is via sympathetically mediated activation of the intrarenal renin-angiotensin system. Our aim was to determine the contribution of the renin-angiotensin system and sympathetic nervous system to hypertension in BPH/2J mice. BPH/2J and normotensive BPN/3J mice were preimplanted with radiotelemetry devices to measure blood pressure. Depressor responses to ganglion blocker pentolinium (5 mg/kg i.p.) in mice pretreated with the angiotensin-converting enzyme inhibitor enalaprilat (1.5 mg/kg i.p.) revealed a 2-fold greater sympathetic contribution to blood pressure in BPH/2J mice during the active and inactive period. However, the depressor response to enalaprilat was 4-fold greater in BPH/2J compared with BPN/3J mice, but only during the active period (P=0.01). This was associated with 1.6-fold higher renal renin messenger RNA (mRNA; P=0.02) and 0.8-fold lower abundance of micro-RNA-181a (P=0.03), identified previously as regulating human renin mRNA. Renin mRNA levels correlated positively with depressor responses to pentolinium (r=0.99; P=0.001), and BPH/2J mice had greater renal sympathetic innervation density as identified by tyrosine hydroxylase staining of cortical tubules. Although there is a major sympathetic contribution to hypertension in BPH/2J mice, the renin-angiotensin system also contributes, doing so to a greater extent during the active period and less during the inactive period. This is the opposite of the normal renin-angiotensin system circadian pattern. We suggest that renal hyperinnervation and enhanced sympathetically induced renin synthesis mediated by lower micro-RNA-181a contributes to hypertension in BPH/2J mice.

  8. Emotion Regulation via the Autonomic Nervous System in Children with Attention-Deficit/Hyperactivity Disorder (ADHD)

    ERIC Educational Resources Information Center

    Musser, Erica D.; Backs, Richard W.; Schmitt, Colleen F.; Ablow, Jennifer C.; Measelle, Jeffery R.; Nigg, Joel T.

    2011-01-01

    Despite growing interest in conceptualizing ADHD as involving disrupted emotion regulation, few studies have examined the physiological mechanisms related to emotion regulation in children with this disorder. This study examined parasympathetic and sympathetic nervous system reactivity via measures of respiratory sinus arrhythmia (RSA) and cardiac…

  9. Parental Management of Peers and Autonomic Nervous System Reactivity in Predicting Adolescent Peer Relationships

    ERIC Educational Resources Information Center

    Tu, Kelly M.; Erath, Stephen A.; El-Sheikh, Mona

    2017-01-01

    The present study examined sympathetic and parasympathetic indices of autonomic nervous system reactivity as moderators of the prospective association between parental management of peers via directing of youths' friendships and peer adjustment in a sample of typically developing adolescents. Participants included 246 adolescents at Time 1 (T1)…

  10. Mean 24-hours sympathetic nervous system activity decreases during head-down tilted bed rest but not during microgravity

    NASA Astrophysics Data System (ADS)

    Christensen, Nj; Heer, M.; Ivanova, K.; Norsk, P.

    Sympathetic nervous system activity is closely related to gravitational stress in ground based experiments. Thus a high activity is present in the standing-up position and a very low activity is observed during acute head-out water immersion. Adjustments in sympathetic activity are necessary to maintain a constant blood pressure during variations in venous return. Head-down tilted bed rest is applied as a model to simulate changes observed during microgravity. The aim of the present study was to test the hypothesis that mean 24-hours sympathetic activity was low and similar during space flight and in ground based observation obtained during long-term head-down tilted bed rest. Forearm venous plasma noradrenaline was measured by a radioenzymatic technique as an index of muscle sympathetic activity and thrombocyte noradrenaline and adrenaline were measured as indices of mean 24-hours sympathoadrenal activity. Previous results have indicated that thrombocyte noradrenaline level has a half-time of 2 days. Thus to reflect sympathetic activity during a specific experiment the study period must last for at least 6 days and a sample must be obtained within 12 hours after the experiment has ended. Ten normal healthy subjects were studied before and during a 14 days head-down tilted bed rest as well as during an ambulatory study period of a similar length. The whole experiment was repeated while the subjects were on a low calorie diet. Thrombocyte noradrenaline levels were studied in 4 cosmonauts before and within 12 hours after landing after more than 7 days in flight. Thrombocyte noradrenaline decreased markedly during the head-down tilted bed rest (p<0.001), whereas there were no significant changes in the ambulatory study. Plasma noradrenaline decreased in the adaptation period but not during the intervention. During microgravity thrombocyte noradrenaline increased in four cosmonauts and the percentage changes were significantly different in cosmonauts and in subjects participating in the head down tilted bed rest study (170± 29% (Mean± SEM) vs. 57± 7%, respectively; p<0.001). The elevated sympathetic nervous system activity is most likely a regulatory response to combined effects of a reduced plasma volume and an increased vascular capacity in flight.

  11. Mechanisms responsible for postmenopausal hypertension in a rat model: Roles of the renal sympathetic nervous system and the renin-angiotensin system.

    PubMed

    Maranon, Rodrigo O; Reckelhoff, Jane F

    2016-02-01

    Hypertension in postmenopausal women is less well controlled than in age-matched men. The aging female SHR is a model of postmenopausal hypertension that is mediated in part by activation of the renin-angiotensin system (RAS) and by the renal sympathetic nervous system. In this study, the hypothesis was tested that renal denervation would lower the blood pressure in old female SHR and would attenuate the antihypertensive effects of AT1 receptor antagonism. Retired breeder female SHR were subjected to right uninephrectomy (UNX) and left renal denervation (RD) or UNX and sham, and 2 weeks later, baseline mean arterial pressure (MAP; radiotelemetry) was measured for 4 days, and then rats were treated with angiotensin (AT1) receptor antagonist, losartan (40 mg/kg/day po) for 6 days. Renal denervation reduced MAP in old females compared to sham (172 ± 6 vs. 193 ± 6 mm Hg; P < 0.05). Losartan reduced MAP in both sham and RD rats similarly (numerically and by percentage) (142 ± 10 vs. 161 ± 6 mm Hg; P < 0.05 vs. RD, P < 0.05 vs. baseline). However, female SHR rats remained significantly hypertensive despite both pharmacological intervention and RD. The data suggest that both the renal sympathetic nervous system and the RAS have independent effects to control the blood pressure in old female SHR. Since the denervated rats treated with losartan remained hypertensive, the data also suggest that other mechanisms than the RAS and renal sympathetic nervous system contribute to the hypertension in old female SHR. The data also suggest that multiple mechanisms may mediate the elevated blood pressure in postmenopausal women. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  12. Regional sympathetic function in high spinal cord injury during mental stress and autonomic dysreflexia.

    PubMed

    Karlsson, A K; Friberg, P; Lönnroth, P; Sullivan, L; Elam, M

    1998-09-01

    Centrally mediated sympathetic stimulation of subjects who have suffered a spinal cord injury (SCI) does not activate the decentralized part of the body below the level of the lesion, whereas experimental data indicate an exaggerated response above the level of the lesion. SCI subjects may exhibit an autonomic dysreflexia reaction following afferent stimulation below the level of the lesion. In order to investigate the function of the sympathetic nervous system above and below the level of the lesion, regional noradrenaline spillover was measured by means of steady-state isotope dilution technique above (forearm) and below (leg) the level of the lesion at baseline, during mental stress and following bladder stimulation in nine SCI subjects (mean age 41 years; level of injury C7-T4; mean duration of injury 13.8 years). The results from the SCI subjects were also compared with those from 10 weight- and age-matched control subjects, both at rest and during mental stress. Body composition was determined by dual energy X-ray absorptiometry scanning and arm/leg blood flow by occlusion plethysmography. At baseline, total and regional noradrenaline spillover did not differ between the groups. Mental stress increased mean arterial pressure in both groups. Heart rate (76 versus 64 beats/min; P < 0.05) and arm noradrenaline spillover (2.73 versus 1.71 pmol/min/100 g; P < 0.05) increased more in spinal cord injury subjects than in control subjects, whereas total body (2826 versus 3783 pmol/min; P < 0.01) and leg noradrenaline spillover (0.23 versus 0.41 pmol/min/100 g; P < 0.05) increased only in the control group. During bladder stimulation, SCI subjects reacted with a marked increase in mean arterial pressure and leg noradrenaline spillover (from 0.06 to 0.91 pmol/min/100 g; P < 0.05) and their leg blood flow decreased. Regional and total noradrenaline clearance were similar in the two groups. In conclusion, peripheral afferent stimulation below the level of the lesion in spinal cord injury subjects gives rise to a marked noradrenaline spillover from the decentralized part of the sympathetic nervous system suggesting a remaining, but qualitatively altered, neuronal function. Centrally mediated stimulation induced an exaggerated response above the level of the lesion.

  13. Prenatal Adversities and Latino Children’s Autonomic Nervous System Reactivity Trajectories from 6 Months to 5 Years of Age

    PubMed Central

    Alkon, Abbey; Boyce, W. Thomas; Tran, Linh; Harley, Kim G.; Neuhaus, John; Eskenazi, Brenda

    2014-01-01

    The purpose of the study was to determine whether mothers’ adversities experienced during early pregnancy are associated with offspring’s autonomic nervous system (ANS) reactivity trajectories from 6 months to 5 years of age. This cohort study of primarily Latino families included maternal interviews at 13–14 weeks gestation about their experience of a range of adversities: father’s absence, general social support, poverty level, and household density. ANS measures of heart rate, respiratory sinus arrhythmia (parasympathetic nervous system) and preejection period (sympathetic nervous system) were collected during resting and challenging conditions on children at 6 months and 1, 3.5 and 5 years of age. Reactivity measures were calculated as the mean of the responses to challenging conditions minus a resting condition. Fixed effects models were conducted for the 212 children with two or more timepoints of ANS measures. Interactions between maternal prenatal adversity levels and child age at time of ANS protocol were included in the models, allowing the calculation of separate trajectories or slopes for each level of adversity. Results showed no significant relations between mothers’ prenatal socioeconomic or social support adversity and offspring’s parasympathetic nervous system trajectories, but there was a statistically significant relationship between social support adversity and offspring’s heart rate trajectories (p<.05) and a borderline significant relationship between socioeconomic adversity and offspring’s sympathetic nervous system trajectories (p = .05). Children whose mothers experienced one, not two, social support adversity had the smallest increases in heart rate reactivity compared to children whose mothers experienced no adversity. The children whose mothers experienced no social support and no socioeconomic adversity had the largest increases in heart rate and preejection period respectively from 6 months to 5 years showing the most plasticity. Mothers’ prenatal adverse experiences may program their children’s physiologic trajectory to dampen their heart rate or sympathetic responsivity to challenging conditions. PMID:24466003

  14. Developmentally Regulated Expression of the Nerve Growth Factor Receptor Gene in the Periphery and Brain

    NASA Astrophysics Data System (ADS)

    Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.

    1987-05-01

    Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.

  15. Breast feeding, bottle feeding, and maternal autonomic responses to stress.

    PubMed

    Mezzacappa, Elizabeth Sibolboro; Kelsey, Robert M; Katkin, Edward S

    2005-04-01

    The aim of this study was to examine the effects of breast feeding on autonomic nervous system (ANS) response to stressors. Sympathetic and parasympathetic activities were examined before, during, and after standard laboratory stressors in women who were either exclusively breast feeding (n=14) or nonexclusively breast feeding (n=14), and in non-postpartum controls (n=15). Mothers who breast fed exclusively showed greater levels of parasympathetic cardiac modulation and slower heart rate (HR) throughout the session and less HR increase and preejection period (PEP) shortening to mental arithmetic (MA) than did nonexclusive breast feeders and controls. Nonexclusive breast-feeders showed greater electrodermal reactivity to, and greater differences in skin conductance response (SCR) frequency between baseline and recovery from cold pressor (CP) than did either exclusive breast-feeders or controls. Sympathetic activity was negatively related to the number of breast feedings and positively related to bottle feedings. Breast feeding shifts maternal ANS balance toward relatively greater parasympathetic and lesser sympathetic activity; the opposite occurs with bottle feeding. The frequency of feeding also is a critical factor in determining breast feeding effects on maternal ANS function.

  16. Distinct functional and temporal requirements for zebrafish Hdac1 during neural crest-derived craniofacial and peripheral neuron development.

    PubMed

    Ignatius, Myron S; Unal Eroglu, Arife; Malireddy, Smitha; Gallagher, Glen; Nambiar, Roopa M; Henion, Paul D

    2013-01-01

    The regulation of gene expression is accomplished by both genetic and epigenetic means and is required for the precise control of the development of the neural crest. In hdac1(b382) mutants, craniofacial cartilage development is defective in two distinct ways. First, fewer hoxb3a, dlx2 and dlx3-expressing posterior branchial arch precursors are specified and many of those that are consequently undergo apoptosis. Second, in contrast, normal numbers of progenitors are present in the anterior mandibular and hyoid arches, but chondrocyte precursors fail to terminally differentiate. In the peripheral nervous system, there is a disruption of enteric, DRG and sympathetic neuron differentiation in hdac1(b382) mutants compared to wildtype embryos. Specifically, enteric and DRG-precursors differentiate into neurons in the anterior gut and trunk respectively, while enteric and DRG neurons are rarely present in the posterior gut and tail. Sympathetic neuron precursors are specified in hdac1(b382) mutants and they undergo generic neuronal differentiation but fail to undergo noradrenergic differentiation. Using the HDAC inhibitor TSA, we isolated enzyme activity and temporal requirements for HDAC function that reproduce hdac1(b382) defects in craniofacial and sympathetic neuron development. Our study reveals distinct functional and temporal requirements for zebrafish hdac1 during neural crest-derived craniofacial and peripheral neuron development.

  17. The Central Nervous System and Bone Metabolism: An Evolving Story.

    PubMed

    Dimitri, Paul; Rosen, Cliff

    2017-05-01

    Our understanding of the control of skeletal metabolism has undergone a dynamic shift in the last two decades, primarily driven by our understanding of energy metabolism. Evidence demonstrating that leptin not only influences bone cells directly, but that it also plays a pivotal role in controlling bone mass centrally, opened up an investigative process that has changed the way in which skeletal metabolism is now perceived. Other central regulators of bone metabolism have since been identified including neuropeptide Y (NPY), serotonin, endocannabinoids, cocaine- and amphetamine-regulated transcript (CART), adiponectin, melatonin and neuromedin U, controlling osteoblast and osteoclast differentiation, proliferation and function. The sympathetic nervous system was originally identified as the predominant efferent pathway mediating central signalling to control skeleton metabolism, in part regulated through circadian genes. More recent evidence points to a role of the parasympathetic nervous system in the control of skeletal metabolism either through muscarinic influence of sympathetic nerves in the brain or directly via nicotinic receptors on osteoclasts, thus providing evidence for broader autonomic skeletal regulation. Sensory innervation of bone has also received focus again widening our understanding of the complex neuronal regulation of bone mass. Whilst scientific advance in this field of bone metabolism has been rapid, progress is still required to understand how these model systems work in relation to the multiple confounders influencing skeletal metabolism, and the relative balance in these neuronal systems required for skeletal growth and development in childhood and maintaining skeletal integrity in adulthood.

  18. Semaphorin 3A is a retrograde cell death signal in developing sympathetic neurons

    PubMed Central

    Wehner, Amanda B.; Abdesselem, Houari; Dickendesher, Travis L.; Imai, Fumiyasu; Yoshida, Yutaka; Giger, Roman J.; Pierchala, Brian A.

    2016-01-01

    ABSTRACT During development of the peripheral nervous system, excess neurons are generated, most of which will be lost by programmed cell death due to a limited supply of neurotrophic factors from their targets. Other environmental factors, such as ‘competition factors' produced by neurons themselves, and axon guidance molecules have also been implicated in developmental cell death. Semaphorin 3A (Sema3A), in addition to its function as a chemorepulsive guidance cue, can also induce death of sensory neurons in vitro. The extent to which Sema3A regulates developmental cell death in vivo, however, is debated. We show that in compartmentalized cultures of rat sympathetic neurons, a Sema3A-initiated apoptosis signal is retrogradely transported from axon terminals to cell bodies to induce cell death. Sema3A-mediated apoptosis utilizes the extrinsic pathway and requires both neuropilin 1 and plexin A3. Sema3A is not retrogradely transported in older, survival factor-independent sympathetic neurons, and is much less effective at inducing apoptosis in these neurons. Importantly, deletion of either neuropilin 1 or plexin A3 significantly reduces developmental cell death in the superior cervical ganglia. Taken together, a Sema3A-initiated apoptotic signaling complex regulates the apoptosis of sympathetic neurons during the period of naturally occurring cell death. PMID:27143756

  19. [Characteristics of central nervous system activity in patients with complications of arterial hypertension and dependence on psychomotor status and treatment].

    PubMed

    Usenko, A G; Velichko, N P; Usenko, G A; Nishcheta, O V; Kozyreva, T Iu; Demin, A A

    2013-01-01

    Changes in certain CNS characteristics were used as indicators of the efficacy of antihypertensive therapy (AHT) both targeted (T-AHT) and empirical (E-AHT) designed to suppress activity of the sympathetic component of vegetative nervous system (VNS) and renin-angiotensin-aldosterone system (RAAS) in patients of different psychic status and AH. A group of 835 men (mean age 54.2+-1.8yr) was divided into cholerics, sanguinics, melancholics and phlegmatics with a high and low anxiety level (HA and LA). 416 healthy men served as controls. The following parameters were estimated: mobility of cortical processes, balance between sympathetic and parasympathetic activities, blood corrisol and aldosterone levels, oxygen utilization coefficient, resistance to breath holding, severity of dyscirculatory encephalopathy and the fraction of patients with AH complications during 12 month T-AHT for the suppression of sympathetic activity in cholerics and sanguinics by beta-adrenoblockers and PAA C- ACE inhibitors in phlegmatics and melancholics and during E-AHT (ACE inhibitors in cholerics and sanguinics, BAB in phlegmatics and melancholics). The functional activity of CNS in phlegmatics and melancholics before and during AHT was lower and severity of encephalopathy and the number ofAH complications higher than in cholerics and sanguinics. . The changes wiere more pronounced in patients with HA than in those with LA. Unlike E-AHT T-AHT (anxiolytics for cholerics and sanguinics with HA, antidepressants for phlegmatics and melancholics with HA) normalized the study parameters and decreased the frequency of complications by 2-3 times.

  20. Transient sixth cranial nerve palsy following orgasm abrogated by treatment with sympathomimetic amines.

    PubMed

    Check, J H; Katsoff, B

    2014-01-01

    To describe a unique disorder where a transient 6th nerve palsy leading to diploplia following orgasm developed in a 28-year-old woman. This coincided with a weight gain of 100 pounds in a short time without a corresponding change in dietary habits. She was treated with the sympathomimetic amine dextroamphetamine sulfate. Indeed she immediately responded to treatment with dextroamphetamine sulfate sustained release capsules with complete resolution of the episodes of 6th nerve palsy following orgasm. The main importance of this case is that it suggests that orgasm causes a transient generalized decrease in sympathetic nervous system activity and that the achievement of an orgasm may require an increase in the sympathetic nervous system activity.

  1. MicroRNA-133 modulates the β1-adrenergic receptor transduction cascade.

    PubMed

    Castaldi, Alessandra; Zaglia, Tania; Di Mauro, Vittoria; Carullo, Pierluigi; Viggiani, Giacomo; Borile, Giulia; Di Stefano, Barbara; Schiattarella, Gabriele Giacomo; Gualazzi, Maria Giovanna; Elia, Leonardo; Stirparo, Giuliano Giuseppe; Colorito, Maria Luisa; Pironti, Gianluigi; Kunderfranco, Paolo; Esposito, Giovanni; Bang, Marie-Louise; Mongillo, Marco; Condorelli, Gianluigi; Catalucci, Daniele

    2014-07-07

    The sympathetic nervous system plays a fundamental role in the regulation of myocardial function. During chronic pressure overload, overactivation of the sympathetic nervous system induces the release of catecholamines, which activate β-adrenergic receptors in cardiomyocytes and lead to increased heart rate and cardiac contractility. However, chronic stimulation of β-adrenergic receptors leads to impaired cardiac function, and β-blockers are widely used as therapeutic agents for the treatment of cardiac disease. MicroRNA-133 (miR-133) is highly expressed in the myocardium and is involved in controlling cardiac function through regulation of messenger RNA translation/stability. To determine whether miR-133 affects β-adrenergic receptor signaling during progression to heart failure. Based on bioinformatic analysis, β1-adrenergic receptor (β1AR) and other components of the β1AR signal transduction cascade, including adenylate cyclase VI and the catalytic subunit of the cAMP-dependent protein kinase A, were predicted as direct targets of miR-133 and subsequently validated by experimental studies. Consistently, cAMP accumulation and activation of downstream targets were repressed by miR-133 overexpression in both neonatal and adult cardiomyocytes following selective β1AR stimulation. Furthermore, gain-of-function and loss-of-function studies of miR-133 revealed its role in counteracting the deleterious apoptotic effects caused by chronic β1AR stimulation. This was confirmed in vivo using a novel cardiac-specific TetON-miR-133 inducible transgenic mouse model. When subjected to transaortic constriction, TetON-miR-133 inducible transgenic mice maintained cardiac performance and showed attenuated apoptosis and reduced fibrosis compared with control mice. miR-133 controls multiple components of the β1AR transduction cascade and is cardioprotective during heart failure. © 2014 American Heart Association, Inc.

  2. Transfer function analysis of the autonomic response to respiratory activity during random interval breathing

    NASA Technical Reports Server (NTRS)

    Chen, M. H.; Berger, R. D.; Saul, J. P.; Stevenson, K.; Cohen, R. J.

    1987-01-01

    We report a new method for the noninvasive characterization of the frequency response of the autonomic nervous system (ANS) in mediating fluctuations in heart rate (HR). The approach entails computation of the transfer function magnitude and phase between instantaneous lung volume and HR. Broad band fluctuations in lung volume were initiated when subjects breathed on cue to a sequence of beeps spaced randomly in time. We studied 10 subjects in both supine and standing positions. The transfer function, averaged among all the subjects, showed systematic differences between the two postures, reflecting the differing frequency responses of the sympathetic and parasympathetic divisions of the ANS.

  3. Mechanisms of Cardiopulmonary Adaptation to Microgravity. Part 2

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session TP1 contains short reports concerning: (1) Autonomic Regulation of Circulation and Mechanical Function of Heart at Different Stages of 14th Month Space Flight; (2) Cardiovascular Oxygen Transport in Exercising Humans in Microgravity; (3) Venous Hemodynamic Changes Assessed by Air Plethysmography During a 16-Day Space Flight; (4) Respiratory Mechanics After 180 Days Space Mission (EUROMIR'95); (5) Assessment of the Sympathetic and the Parasympathetic Nervous Activity During Parabolic Flight by Pupillary Light Reflex; and(6) Vascular Response to Different Gravity.

  4. Implication of altered autonomic control for orthostatic tolerance in SCI.

    PubMed

    Wecht, Jill Maria; Bauman, William A

    2018-01-01

    Neural output from the sympathetic and parasympathetic branches of the autonomic nervous system (ANS) are integrated to appropriately control cardiovascular responses during routine activities of daily living including orthostatic positioning. Sympathetic control of the upper extremity vasculature and the heart arises from the thoracic cord between T1 and T5, whereas splanchnic bed and lower extremity vasculature receive sympathetic neural input from the lower cord between segments T5 and L2. Although the vasculature is not directly innervated by the parasympathetic nervous system, the SA node is innervated by post-ganglionic vagal nerve fibers via cranial nerve X. Segmental differences in sympathetic cardiovascular innervation highlight the effect of lesion level on orthostatic cardiovascular control following spinal cord injury (SCI). Due to impaired sympathetic cardiovascular control, many individuals with SCI, particularly those with lesions above T6, are prone to orthostatic hypotension (OH) and orthostatic intolerance (OI). Symptomatic OH, which may result in OI, is a consequence of episodic reductions in cerebral perfusion pressure and the symptoms may include: dizziness, lightheadedness, nausea, blurred vision, ringing in the ears, headache and syncope. However, many, if not most, individuals with SCI who experience persistent and episodic hypotension and OH do not report symptoms of cerebral hypoperfusion and therefore do not raise clinical concern. This review will discuss the mechanism underlying OH and OI following SCI, and will review our knowledge to date regarding the prevalence, consequences and possible treatment options for these conditions in the SCI population. Published by Elsevier B.V.

  5. Time-varying analysis of electrodermal activity during exercise

    PubMed Central

    Reljin, Natasa; Mills, Craig; Mills, Ian; Florian, John P.; VanHeest, Jaci L.; Chon, Ki H.

    2018-01-01

    The electrodermal activity (EDA) is a useful tool for assessing skin sympathetic nervous activity. Using spectral analysis of EDA data at rest, we have previously found that the spectral band which is the most sensitive to central sympathetic control is largely confined to 0.045 to 0.25 Hz. However, the frequency band associated with sympathetic control in EDA has not been studied for exercise conditions. Establishing the band limits more precisely is important to ensure the accuracy and sensitivity of the technique. As exercise intensity increases, it is intuitive that the frequencies associated with the autonomic dynamics should also increase accordingly. Hence, the aim of this study was to examine the appropriate frequency band associated with the sympathetic nervous system in the EDA signal during exercise. Eighteen healthy subjects underwent a sub-maximal exercise test, including a resting period, walking, and running, until achieving 85% of maximum heart rate. Both EDA and ECG data were measured simultaneously for all subjects. The ECG was used to monitor subjects’ instantaneous heart rate, which was used to set the experiment’s end point. We found that the upper bound of the frequency band (Fmax) containing the EDA spectral power significantly shifted to higher frequencies when subjects underwent prolonged low-intensity (Fmax ~ 0.28) and vigorous-intensity exercise (Fmax ~ 0.37 Hz) when compared to the resting condition. In summary, we have found shifting of the sympathetic dynamics to higher frequencies in the EDA signal when subjects undergo physical activity. PMID:29856815

  6. Preventive mechanisms of agmatine against ischemic acute kidney injury in rats.

    PubMed

    Sugiura, Takahiro; Kobuchi, Shuhei; Tsutsui, Hidenobu; Takaoka, Masanori; Fujii, Toshihide; Hayashi, Kentaro; Matsumura, Yasuo

    2009-01-28

    The excitation of renal sympathetic nervous system plays an important role in the development of ischemic acute kidney injury in rats. Recently, we found that agmatine, an adrenaline alpha(2)/imidazoline I(1)-receptor agonist, has preventive effects on ischemic acute kidney injury by suppressing the enhanced renal sympathetic nerve activity during renal ischemia and by decreasing the renal venous norepinephrine overflow after reperfusion. In the present study, we investigated preventive mechanisms of agmatine against ischemic acute kidney injury in rats. Ischemic acute kidney injury was induced by clamping the left renal artery and vein for 45 min followed by reperfusion, 2 weeks after the contralateral nephrectomy. Pretreatment with efaroxan (30 mumol/kg, i.v.), an alpha(2)/I(1)-receptor antagonist, abolished the suppressive effects of agmatine on the enhanced renal sympathetic nerve activity during renal ischemia and on the elevated norepinephrine overflow after reperfusion, and eliminated the preventing effects of agmatine on the ischemia/reperfusion-induced renal dysfunction and histological damage. On the other hand, pretreatment with yohimbine (6 mumol/kg, i.v.), an alpha(2)-receptor antagonist, eliminated the preventing effects of agmatine on the ischemia/reperfusion-induced renal injury and norepinephrine overflow, without affecting the lowering effect of agmatine on renal sympathetic nerve activity. These results indicate that agmatine prevents the ischemic renal injury by sympathoinhibitory effect probably via I(1) receptors in central nervous system and by suppressing the norepinephrine overflow through alpha(2) or I(1) receptors on sympathetic nerve endings.

  7. The complex field of interplay between vasoactive agents.

    PubMed

    Hansen, Pernille B

    2009-11-01

    Lai et al. provide important new information regarding the interaction between the sympathetic and renin-angiotensin systems in the regulation of glomerular afferent arteriolar contractility. Their study demonstrates a calcium-independent enhanced contractile response to angiotensin II following norepinephrine administration. The interplay between the norepinephrine- and angiotensin II-stimulated pathways could potentially be important in physiological as well as pathophysiological situations with increased sympathetic nervous system activity, such as hypertension.

  8. BDNF - A key player in cardiovascular system.

    PubMed

    Pius-Sadowska, Ewa; Machaliński, Bogusław

    2017-09-01

    Neurotrophins (NTs) were first identified as target-derived survival factors for neurons of the central and peripheral nervous system (PNS). They are known to control neural cell fate, development and function. Independently of their neuronal properties, NTs exert unique cardiovascular activity. The heart is innervated by sensory, sympathetic and parasympathetic neurons, which require NTs during early development and in the establishment of mature properties, contributing to the maintenance of cardiovascular homeostasis. The identification of molecular mechanisms regulated by NTs and involved in the crosstalk between cardiac sympathetic nerves, cardiomyocytes, cardiac fibroblasts, and vascular cells, has a fundamental importance in both normal heart function and disease. The article aims to review the recent data on the effects of Brain-Derived Neurotrophic Factor (BDNF) on various cardiovascular neuronal and non-neuronal functions such as the modulation of synaptic properties of autonomic neurons, axonal outgrowth and sprouting, formation of the vascular and neural networks, smooth muscle migration, and control of endothelial cell survival and cardiomyocytes. Understanding these mechanisms may be crucial for developing novel therapeutic strategies, including stem cell-based therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Cohort Profile: Sympathetic activity and Ambulatory Blood Pressure in Africans (SABPA) prospective cohort study.

    PubMed

    Malan, Leoné; Hamer, Mark; Frasure-Smith, Nancy; Steyn, Hendrik S; Malan, Nicolaas T

    2015-12-01

    Adapting to an over-demanding stressful urban environment may exhaust the psychophysiological resources to cope with these demands, and lead to sympathetic nervous system dysfunction. The evidence that an urban-dwelling lifestyle may be detrimental to the cardiometabolic health of Africans motivated the design of the Sympathetic activity and Ambulatory Blood Pressure in African Prospective cohort study. We aimed to determine neural mechanistic pathways involved in emotional distress and vascular remodelling. The baseline sample included 409 teachers representing a bi-ethnic sex cohort from South Africa. The study was conducted in 2008-09 and repeated after 3-year follow-up in 2011-12, with an 87.8% successful follow-up rate. Seasonal changes were avoided and extensive clinical assessments were performed in a well-controlled setting. Data collection included sociodemographics, lifestyle habits, psychosocial battery and genetic analysis, mental stress responses mimicking daily life stress (blood pressure and haemostatic, cardiometabolic, endothelial and stress hormones). Target organ damage was assessed in the brain, heart, kidney, blood vessels and retina. A unique highly phenotyped cohort is presented that can address the role of a hyperactive sympathetic nervous system and neural response pathways contributing to the burden of cardiometabolic diseases in Africans. © The Author 2014. Published by Oxford University Press on behalf of the International Epidemiological Association.

  10. Final Progress Report, 1961-1976,

    DTIC Science & Technology

    1977-06-16

    shock. In addition, norepinephrine, prostaglandin E1, and carbachol were used to study changes in myocardial cyclic nucleotides, lipids, lipid turnover and sympathetic-parasympathetic nervous system interaction. (Author)

  11. Animal model of neuropathic tachycardia syndrome

    NASA Technical Reports Server (NTRS)

    Carson, R. P.; Appalsamy, M.; Diedrich, A.; Davis, T. L.; Robertson, D.

    2001-01-01

    Clinically relevant autonomic dysfunction can result from either complete or partial loss of sympathetic outflow to effector organs. Reported animal models of autonomic neuropathy have aimed to achieve complete lesions of sympathetic nerves, but incomplete lesions might be more relevant to certain clinical entities. We hypothesized that loss of sympathetic innervation would result in a predicted decrease in arterial pressure and a compensatory increase in heart rate. Increased heart rate due to loss of sympathetic innervation is seemingly paradoxical, but it provides a mechanistic explanation for clinical autonomic syndromes such as neuropathic postural tachycardia syndrome. Partially dysautonomic animals were generated by selectively lesioning postganglionic sympathetic neurons with 150 mg/kg 6-hydroxydopamine hydrobromide in male Sprague-Dawley rats. Blood pressure and heart rate were monitored using radiotelemetry. Systolic blood pressure decreased within hours postlesion (Delta>20 mm Hg). Within 4 days postlesion, heart rate rose and remained elevated above control levels. The severity of the lesion was determined functionally and pharmacologically by spectral analysis and responsiveness to tyramine. Low-frequency spectral power of systolic blood pressure was reduced postlesion and correlated with the diminished tyramine responsiveness (r=0.9572, P=0.0053). The tachycardia was abolished by treatment with the beta-antagonist propranolol, demonstrating that it was mediated by catecholamines acting on cardiac beta-receptors. Partial lesions of the autonomic nervous system have been hypothesized to underlie many disorders, including neuropathic postural tachycardia syndrome. This animal model may help us better understand the pathophysiology of autonomic dysfunction and lead to development of therapeutic interventions.

  12. Renal sympathetic denervation in therapy resistant hypertension - pathophysiological aspects and predictors for treatment success

    PubMed Central

    Fengler, Karl; Rommel, Karl Philipp; Okon, Thomas; Schuler, Gerhard; Lurz, Philipp

    2016-01-01

    Many forms of human hypertension are associated with an increased systemic sympathetic activity. Especially the renal sympathetic nervous system has been found to play a prominent role in this context. Therefore, catheter-interventional renal sympathetic denervation (RDN) has been established as a treatment for patients suffering from therapy resistant hypertension in the past decade. The initial enthusiasm for this treatment was markedly dampened by the results of the Symplicity-HTN-3 trial, although the transferability of the results into clinical practice to date appears to be questionable. In contrast to the extensive use of RDN in treating hypertensive patients within or without clinical trial settings over the past years, its effects on the complex pathophysiological mechanisms underlying therapy resistant hypertension are only partly understood and are part of ongoing research. Effects of RDN have been described on many levels in human trials: From altered systemic sympathetic activity across cardiac and metabolic alterations down to changes in renal function. Most of these changes could sustainably change long-term morbidity and mortality of the treated patients, even if blood pressure remains unchanged. Furthermore, a number of promising predictors for a successful treatment with RDN have been identified recently and further trials are ongoing. This will certainly help to improve the preselection of potential candidates for RDN and thereby optimize treatment outcomes. This review summarizes important pathophysiologic effects of renal denervation and illustrates the currently known predictors for therapy success. PMID:27621771

  13. Estrogen and female reproductive tract innervation: cellular and molecular mechanisms of autonomic neuroplasticity

    PubMed Central

    Brauer, M. Mónica; Smith, Peter G.

    2014-01-01

    The female reproductive tract undergoes remarkable functional and structural changes associated with cycling, conception and pregnancy, and it is likely advantageous to both individual and species to alter relationships between reproductive tissues and innervation. For several decades, it has been appreciated that the mammalian uterus undergoes massive sympathetic axon depletion in late pregnancy, possibly representing an adaptation to promote smooth muscle quiescence and sustained blood flow. Innervation to other structures such as cervix and vagina also undergo pregnancy-related changes in innervation that may facilitate parturition. These tissues provide highly tractable models for examining cellular and molecular mechanisms underlying peripheral nervous system plasticity. Studies show that estrogen elicits rapid degeneration of sympathetic terminal axons in myometrium, which regenerate under low-estrogen conditions. Degeneration is mediated by the target tissue: under estrogen's influence, the myometrium produces proteins repulsive to sympathetic axons including BDNF, neurotrimin, semaphorins, and pro-NGF, and extracellular matrix components are remodeled. Interestingly, nerve depletion does not involve diminished levels of classical sympathetic neurotrophins that promote axon growth. Estrogen also affects sympathetic neuron neurotrophin receptor expression in ways that appear to favor pro-degenerative effects of the target tissue. In contrast to the uterus, estrogen depletes vaginal autonomic and nociceptive axons, with the latter driven in part by estrogen-induced suppression BMP4 synthesis. These findings illustrate that hormonally mediated physiological plasticity is a highly complex phenomenon involving multiple, predominantly repulsive target-derived factors acting in concert to achieve rapid and selective reductions in innervation. PMID:25530517

  14. Three-Dimensional Adipose Tissue Imaging Reveals Regional Variation in Beige Fat Biogenesis and PRDM16-Dependent Sympathetic Neurite Density.

    PubMed

    Chi, Jingyi; Wu, Zhuhao; Choi, Chan Hee J; Nguyen, Lily; Tegegne, Saba; Ackerman, Sarah E; Crane, Audrey; Marchildon, François; Tessier-Lavigne, Marc; Cohen, Paul

    2018-01-09

    While the cell-intrinsic pathways governing beige adipocyte development and phenotype have been increasingly delineated, comparatively little is known about how beige adipocytes interact with other cell types in fat. Here, we introduce a whole-tissue clearing method for adipose that permits immunolabeling and three-dimensional profiling of structures including thermogenic adipocytes and sympathetic innervation. We found that tissue architecture and sympathetic innervation differ significantly between subcutaneous and visceral depots. Subcutaneous fat demonstrates prominent regional variation in beige fat biogenesis with localization of UCP1 + beige adipocytes to areas with dense sympathetic neurites. We present evidence that the density of sympathetic projections is dependent on PRDM16 in adipocytes, providing another potential mechanism underlying the metabolic benefits mediated by PRDM16. This powerful imaging tool highlights the interaction of tissue components during beige fat biogenesis and reveals a previously undescribed mode of regulation of the sympathetic nervous system by adipocytes. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Heart rate variability and sympathetic skin response in male patients suffering from acute alcohol withdrawal syndrome.

    PubMed

    Bär, Karl-Jürgen; Boettger, Michael Karl; Neubauer, Rene; Grotelüschen, Marei; Jochum, Thomas; Baier, Vico; Sauer, Heinrich; Voss, Andreas

    2006-09-01

    Many symptoms of alcohol withdrawal (AW) such as tachycardia or elevated blood pressure might be explained by increased peripheral and central adrenergic activity. In contrast to many neurochemical studies of sympathetic activation during AW, only very few studies investigated autonomic balance using neurophysiological methods. We investigated heart rate variability (HRV) and sympathetic skin response (SSR) in male patients suffering from mild AW syndrome (n = 20, no treatment required) and in patients with moderate to severe AW syndrome (n = 20, clomethiazole treatment) in the acute stage. Sympathovagal influence was quantified using measures of time and frequency domain of HRV as well as modern nonlinear parameters (compression entropy). Furthermore, we obtained latencies and amplitudes of SSR to quantify isolated sympathetic influence. Measures were obtained during the climax of withdrawal symptomatology before treatment, 1 day after climax, and shortly before discharge from hospital. Alcohol withdrawal scores were obtained and correlated to autonomic measures. Ambulatory blood pressure and AW scores revealed characteristic withdrawal symptoms in both patient groups. Apart from the nonlinear parameter compression entropy, Hc, measures of HRV revealed no sign of autonomic dysfunction in contrast to the significantly increased heart rates at the time of admission. Latencies and amplitudes of SSR did not indicate any increase of sympathetic activity. A negative correlation was found between Hc and mental withdrawal symptoms. We show here that classical measures for autonomic nervous system activity such as HRV and SSR are not suitable for describing the autonomic changes seen in acute AW, although a major role for the sympathetic nervous system has been proposed. This might be due to multiple dysregulation of metabolites in AWS or to subtle alcohol-induced damage to neuronal structures, issues that should be addressed in future studies.

  16. Baroreflex dysfunction and augmented sympathetic nerve responses during mental stress in veterans with post-traumatic stress disorder.

    PubMed

    Park, Jeanie; Marvar, Paul J; Liao, Peizhou; Kankam, Melanie L; Norrholm, Seth D; Downey, Ryan M; McCullough, S Ashley; Le, Ngoc-Anh; Rothbaum, Barbara O

    2017-07-15

    Patients with post-traumatic stress disorder (PTSD) are at a significantly higher risk of developing hypertension and cardiovascular disease. The mechanisms underlying this increased risk are not known. Studies have suggested that PTSD patients have an overactive sympathetic nervous system (SNS) that could contribute to cardiovascular risk; however, sympathetic function has not previously been rigorously evaluated in PTSD patients. Using direct measurements of sympathetic nerve activity and pharmacological manipulation of blood pressure, we show that veterans with PTSD have augmented SNS and haemodynamic reactivity during both combat-related and non-combat related mental stress, impaired sympathetic and cardiovagal baroreflex sensitivity, and increased inflammation. Identifying the mechanisms contributing to increased cardiovascular (CV) risk in PTSD will pave the way for developing interventions to improve sympathetic function and reduce CV risk in these patients. Post-traumatic stress disorder (PTSD) is associated with increased cardiovascular (CV) risk. We tested the hypothesis that PTSD patients have augmented sympathetic nervous system (SNS) and haemodynamic reactivity during mental stress, as well as impaired arterial baroreflex sensitivity (BRS). Fourteen otherwise healthy Veterans with combat-related PTSD were compared with 14 matched Controls without PTSD.  Muscle sympathetic nerve activity (MSNA), continuous blood pressure (BP) and electrocardiography were measured at baseline, as well as during two types of mental stress:  combat-related mental stress using virtual reality combat exposure (VRCE) and non-combat related stress using mental arithmetic (MA). A cold pressor test (CPT) was administered for comparison. BRS was tested using pharmacological manipulation of BP via the Modified Oxford technique at rest and during VRCE. Blood samples were analysed for inflammatory biomarkers. Baseline characteristics, MSNA and haemodynamics were similar between the groups. In PTSD vs. Controls, MSNA (+8.2 ± 1.0 vs. +1.2 ± 1.3 bursts min -1 , P < 0.001) and heart rate responses (+3.2 ± 1.1 vs. -2.3 ± 1.0 beats min -1 , P = 0.003) were significantly augmented during VRCE.  Similarly, in PTSD vs. Controls, MSNA (+21.0 ± 2.6 vs. +6.7 ± 1.5 bursts min -1 , P < 0.001) and diastolic BP responses (+6.3 ± 1.0 vs. +3.5 ± 1.0 mmHg, P = 0.011) were significantly augmented during MA but not during CPT (P = not significant). In the PTSD group, sympathetic BRS (-1.2 ± 0.2 vs. -2.0 ± 0.3 burst incidence mmHg -1 , P = 0.026) and cardiovagal BRS (9.5 ± 1.4 vs. 23.6 ± 4.3 ms mmHg -1 , P = 0.008) were significantly blunted at rest. PTSD patients had significantly higher highly sensitive-C-reactive protein levels compared to Controls (2.1 ± 0.4 vs. 1.0 ± 0.3 mg L -1 , P = 0.047). Augmented SNS and haemodynamic responses to mental stress, blunted BRS and inflammation may contribute to an increased CV risk in PTSD. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  17. Quantification of autonomic nervous activity by heart rate variability and approximate entropy in high ultrafiltration rate during hemodialysis.

    PubMed

    Tsuji, Yoshihiro; Suzuki, Naoki; Hitomi, Yasumasa; Yoshida, Toshiko; Mizuno-Matsumoto, Yuko

    2017-06-01

    Few studies have focused on the imbalance of the autonomic nervous system in ultrafiltration rate (UFR) subjects without blood pressure variation during maintenance hemodialysis (HD), although the role of autonomic nervous system activation during HD has been proposed to be an important factor for the maintenance of blood pressure. Variations over time in autonomic nervous activity due to differences in UFR were evaluated by measuring heart rate variability (HRV) and approximate entropy (ApEn) in 35 HD patients without blood pressure variations during HD session. The subjects were divided into 3 groups, those with UFR <10 ml/h/kg; ≥10 ml/h/kg but ≤15 ml/h/kg; and >15 ml/h/kg, and Holter ECG was recorded continuously during HD session using frequency analysis of RR intervals. High frequency (HF) and low frequency (LF) spectral components are found to be representative of the parasympathetic nervous system and sympathovagal balance, respectively, with the ratio of LF to HF of HRV providing a measure of sympathetic nervous system. In subjects with UFR >15 ml/h/kg, HF components were significantly lower, and LF/HF and ApEn values were significantly higher, in the latter half of an HD session than before starting HD. Removing water from these subjects would promote sustained sympathetic nervous overactivity. These findings indicate that the UFR during HD needs to be set at ≤15 ml/h/kg.

  18. Enhanced FGF23 production in mice expressing PI3K-insensitive GSK3 is normalized by β-blocker treatment.

    PubMed

    Fajol, Abul; Chen, Hong; Umbach, Anja T; Quarles, L Darryl; Lang, Florian; Föller, Michael

    2016-02-01

    Glycogen synthase kinase (GSK)-3 is a ubiquitously expressed kinase inhibited by insulin-dependent Akt/PKB/SGK. Mice expressing Akt/PKB/SGK-resistant GSK3α/GSK3β (gsk3(KI)) exhibit enhanced sympathetic nervous activity and phosphaturia with decreased bone density. Hormones participating in phosphate homeostasis include fibroblast growth factor (FGF)-23, a bone-derived hormone that inhibits 1,25-dihydroxyvitamin D3 (1,25(OH)2D3; calcitriol) formation and phosphate reabsorption in the kidney and counteracts vascular calcification and aging. FGF23 secretion is stimulated by the sympathetic nervous system. We studied the role of GSK3-controlled sympathetic activity in FGF23 production and phosphate metabolism. Serum FGF23, 1,25(OH)2D3, and urinary vanillylmandelic acid (VMA) were measured by ELISA, and serum and urinary phosphate and calcium were measured by photometry in gsk3(KI) and gsk3(WT) mice, before and after 1 wk of oral treatment with the β-blocker propranolol. Urinary VMA excretion, serum FGF23, and renal phosphate and calcium excretion were significantly higher, and serum 1,25(OH)2D3 and phosphate concentrations were lower in gsk3(KI) mice than in gsk3(WT) mice. Propranolol treatment decreased serum FGF23 and loss of renal calcium and phosphate and increased serum phosphate concentration in gsk3(KI) mice. We conclude that Akt/PKB/SGK-sensitive GSK3 inhibition participates in the regulation of FGF23 release, 1,25(OH)2D3 formation, and thus mineral metabolism, by controlling the activity of the sympathetic nervous system. © FASEB.

  19. Interacting influences of gender and chronic pain status on parasympathetically mediated heart rate variability in adolescents and young adults.

    PubMed

    Walker, Lynn S; Stone, Amanda L; Smith, Craig A; Bruehl, Stephen; Garber, Judy; Puzanovova, Martina; Diedrich, André

    2017-08-01

    Considerable research links chronic pain to autonomic nervous system (ANS) dysfunction, specifically low heart rate variability (HRV) mediated by reduced parasympathetic activity. However, little is known about factors that influence ANS function in chronic pain. The ANS is the primary pathway for brain-gut communication, making it of particular interest in gastrointestinal disorders, such as irritable bowel syndrome, characterized by functional abdominal pain (FAP). We evaluated the relation of sex, pain severity, and psychological stress to ANS function in adolescents/young adults from a database of pediatric FAP and control participants enrolled 8 years earlier in a prospective study of pain. At follow-up in adolescence/young adulthood (Mean age = 19.46, SD = 3.48), we classified participants as Pain-Remit (n = 130), Pain-Persist (n = 96), and pain-free controls (n = 123). We recorded electrocardiogram data at rest and during laboratory stressors. Results demonstrated significantly lower HRV in Pain-Persist females compared with Pain-Remit females, female controls, and all males regardless of pain category. Spectral analysis of electrocardiogram showed that Pain-Persist females had reduced power in the high frequency domain of cardiac activity, ie, reduced parasympathetic "braking" of sympathetic activity, both at rest and during stress. Pain-Remit females exhibited levels of autonomic imbalance intermediate between those of females with persistent FAP and all other participants. Parasympathetically mediated low HRV in young women with persistent FAP may reflect a peripheral mechanism (eg, gut dysfunction) or a central nervous system mechanism (eg, pain amplification or poor emotion self-regulation) involving prolonged sympathetic activation.

  20. Forearm training attenuates sympathetic responses to prolonged rhythmic forearm exercise

    NASA Technical Reports Server (NTRS)

    Sinoway, L.; Shenberger, J.; Leaman, G.; Zelis, R.; Gray, K.; Baily, R.; Leuenberger, U.

    1996-01-01

    We previously demonstrated that nonfatiguing rhythmic forearm exercise at 25% maximal voluntary contraction (12 2-s contractions/min) evokes sympathoexcitation without significant engagement of metabolite-sensitive muscle afferents (B.A. Batman, J.C. Hardy, U.A. Leuenberger, M.B. Smith, Q.X. Yang and L.I. Sinoway. J. Appl. Physiol. 76: 1077-1081, 1994). This is in contrast to the sympathetic nervous system responses observed during fatiguing static forearm exercise where metabolite-sensitive afferents are the key determinants of sympathetic activation. In this report we examined whether forearm exercise training would attenuate sympathetic nervous system responses to rhythmic forearm exercise. We measured heart rate, mean arterial blood pressure (MAP), muscle sympathetic nerve activity (microneurography), plasma norepinephrine (NE), and NE spillover and clearance (tritiated NE kinetics) during nonfatiguing rhythmic forearm exercise before and after a 4-wk unilateral forearm training paradigm. Training had no effect on forearm mass, maximal voluntary contraction, or heart rate but did attenuate the increase in MAP (increase in MAP: from 15.2 +/- 1.8 before training to 11.4 +/- 1.4 mmHg after training; P < 0.017), muscle sympathetic nerve activity (increase in bursts: from 10.8 +/- 1.4 before training to 6.2 +/- 1.1 bursts/min after training; P < 0.030), and the NE spillover (increases in arterial spillover: from 1.3 +/- 0.2 before training to 0.6 +/- 0.2 nmol.min-1.m-2 after training, P < 0.014; increase in venous spillover: from 2.0 +/- 0.6 before training to 1.0 +/- 0.5 nmol.min-1.m-2 after training, P < 0.037) seen in response to exercise performed by the trained forearm. Thus forearm training reduces sympathetic responses during a nonfatiguing rhythmic handgrip paradigm that does not engage muscle metaboreceptors. We speculate that this effect is due to a conditioning-induced reduction in mechanically sensitive muscle afferent discharge.

  1. Neuropeptide Y as an indicator of successful alterations in sympathetic nervous activity after renal sympathetic denervation.

    PubMed

    Dörr, Oliver; Ewen, Sebastian; Liebetrau, Christoph; Möllmann, Helge; Gaede, Luise; Linz, Dominik; Hohl, Mathias; Troidl, Christian; Bauer, Timm; Böhm, Michael; Hamm, Christian; Mahfoud, Felix; Nef, Holger

    2015-12-01

    Renal sympathetic denervation (RSD) represents a safe and effective treatment option for certain patients with resistant hypertension and has been shown to decrease sympathetic activity. Neuropeptide Y (NPY) is a neurotransmitter that is co-released with norepinephrine and is up-regulated during increased sympathetic activity. The aim of the present study was to examine the effect of RSD on NPY and to analyze the association between changes in NPY levels and blood pressure reduction after RSD. A total of 150 consecutive patients (age 64.9 ± 10.2 years) from three clinical centers undergoing RSD were included in this study. Response to RSD was defined as an office systolic blood pressure (SBP) reduction of >10 mmHg 6 months after RSD. Venous blood samples for measurement of NPY were collected prior to and 6 months after RSD. BP and NPY levels were significantly reduced by 23/9 mmHg (p = 0.001/0.001) and 0.24 mg/dL (p < 0.01) 6 months after RSD. There was a significant correlation between baseline SBP- and RSD-related systolic BP reduction (r = -0.43; p < 0.001) and between serum NPY baseline values and NPY level changes (r = -0.52; p < 0.001) at the 6-month follow-up. The BP response to RSD (>10 mmHg) was associated with a significantly greater reduction in NPY level when compared with BP non-responders (p = 0.001). This study demonstrates an effect of RSD on serum NPY levels, a specific marker for sympathetic activity. The association between RSD-related changes in SBP and NPY levels provides further evidence of the effect of RSD on the sympathetic nervous system.

  2. Adult cyclical vomiting syndrome: a disorder of allostatic regulation?

    PubMed

    Levinthal, D J; Bielefeldt, K

    2014-08-01

    Cyclic vomiting syndrome (CVS) is an idiopathic illness characterized by stereotypic and sudden-onset episodes of intense retching and repetitive vomiting that are often accompanied by severe abdominal pain. Many associated factors that predict CVS attacks, such as prolonged periods of fasting, sleep deprivation, physical and emotional stress, or acute anxiety, implicate sympathetic nervous system activation as a mechanism that may contribute to CVS pathogenesis. Furthermore, adult patients with CVS tend to have a history of early adverse life events, mood disorders, chronic stress, and drug abuse-all associations that may potentiate sympathetic neural activity. In this review, we set forth a conceptual model in which CVS is viewed as a brain disorder involving maladaptive plasticity within central neural circuits important for allostatic regulation of the sympathetic nervous system. This model not only can account for the varied clinical observations that are linked with CVS, but also has implications for potential therapeutic interventions. Thus, it is likely that cognitive behavioral therapy, stress management ("mind-body") interventions, regular exercise, improved sleep, and avoidance of cannabis and opiate use could have positive influences on the clinical course for patients with CVS.

  3. Nociception from blood vessels is independent of the sympathetic nervous system under physiological conditions in humans.

    PubMed

    Kindgen-Milles, D; Holthusen, H

    1997-06-05

    To test the hypothesis that vascular pain depends on sympathetic drive under physiological conditions we studied the effects of both alpha-adrenoceptor stimulation by noradrenaline and alpha-adrenoceptor blockade by phentolamine on the intensity of physicochemically evoked pain from veins in humans. In seven healthy volunteers, a vascularly isolated hand vein segment was perfused continuously with noradrenaline (6 x 10(-9)-6 x 10(-6) M), or phentolamine (1.24 x 10(-4) M). Pain was evoked by intraluminal electrostimulation or by injection of hyperosmolar saline during control perfusion of isoosmolar saline and after each noradrenaline concentration, as well as after perfusion of phentolamine. Subjects rated pain intensity continuously on an electronically controlled visual analogue scale (VAS) between 0% VAS (no pain) and 100% VAS (tolerance maximum). Intravenous electrostimulation as well as hyperosmolar solutions evoked pain in each subject. The intensity of pain was neither influenced by noradrenaline, nor by phentolamine, so that nociception from blood vessels is unlikely to be modulated by the sympathetic nervous system under physiological conditions in humans.

  4. Sympathetic nervous system activity measured by skin conductance quantifies the challenge of walking adaptability tasks after stroke.

    PubMed

    Clark, David J; Chatterjee, Sudeshna A; McGuirk, Theresa E; Porges, Eric C; Fox, Emily J; Balasubramanian, Chitralakshmi K

    2018-02-01

    Walking adaptability tasks are challenging for people with motor impairments. The construct of perceived challenge is typically measured by self-report assessments, which are susceptible to subjective measurement error. The development of an objective physiologically-based measure of challenge may help to improve the ability to assess this important aspect of mobility function. The objective of this study to investigate the use of sympathetic nervous system (SNS) activity measured by skin conductance to gauge the physiological stress response to challenging walking adaptability tasks in people post-stroke. Thirty adults with chronic post-stroke hemiparesis performed a battery of seventeen walking adaptability tasks. SNS activity was measured by skin conductance from the palmar surface of each hand. The primary outcome variable was the percent change in skin conductance level (ΔSCL) between the baseline resting and walking phases of each task. Task difficulty was measured by performance speed and by physical therapist scoring of performance. Walking function and balance confidence were measured by preferred walking speed and the Activities-specific Balance Confidence Scale, respectively. There was a statistically significant negative association between ΔSCL and task performance speed and between ΔSCL and clinical score, indicating that tasks with greater SNS activity had slower performance speed and poorer clinical scores. ΔSCL was significantly greater for low functioning participants versus high functioning participants, particularly during the most challenging walking adaptability tasks. This study supports the use of SNS activity measured by skin conductance as a valuable approach for objectively quantifying the perceived challenge of walking adaptability tasks in people post-stroke. Published by Elsevier B.V.

  5. Sympathetic nervous system activity measured by skin conductance quantifies the challenge of walking adaptability tasks after stroke

    PubMed Central

    Clark, David J.; Chatterjee, Sudeshna A.; McGuirk, Theresa E.; Porges, Eric C.; Fox, Emily J.; Balasubramanian, Chitralakshmi K.

    2018-01-01

    Background Walking adaptability tasks are challenging for people with motor impairments. The construct of perceived challenge is typically measured by self-report assessments, which are susceptible to subjective measurement error. The development of an objective physiologically-based measure of challenge may help to improve the ability to assess this important aspect of mobility function. The objective of this study to investigate the use of sympathetic nervous system (SNS) activity measured by skin conductance to gauge the physiological stress response to challenging walking adaptability tasks in people post-stroke. Methods Thirty adults with chronic post-stroke hemiparesis performed a battery of seventeen walking adaptability tasks. SNS activity was measured by skin conductance from the palmar surface of each hand. The primary outcome variable was the percent change in skin conductance level (ΔSCL) between the baseline resting and walking phases of each task. Task difficulty was measured by performance speed and by physical therapist grading of performance. Walking function and balance confidence were measured by preferred walking speed and the Activities Specific Balance Confidence Scale, respectively. Results There was a statistically significant negative association between ΔSCL and task performance speed and between ΔSCL and clinical score, indicating that tasks with greater SNS activity had slower performance speed and poorer clinical scores. ΔSCL was significantly greater for low functioning participants versus high functioning participants, particularly during the most challenging walking adaptability tasks. Conclusion This study supports the use of SNS activity measured by skin conductance as a valuable approach for objectively quantifying the perceived challenge of walking adaptability tasks in people post-stroke. PMID:29216598

  6. Intestinal PPARγ signalling is required for sympathetic nervous system activation in response to caloric restriction

    PubMed Central

    Duszka, Kalina; Picard, Alexandre; Ellero-Simatos, Sandrine; Chen, Jiapeng; Defernez, Marianne; Paramalingam, Eeswari; Pigram, Anna; Vanoaica, Liviu; Canlet, Cécile; Parini, Paolo; Narbad, Arjan; Guillou, Hervé; Thorens, Bernard; Wahli, Walter

    2016-01-01

    Nuclear receptor PPARγ has been proven to affect metabolism in multiple tissues, and has received considerable attention for its involvement in colon cancer and inflammatory disease. However, its role in intestinal metabolism has been largely ignored. To investigate this potential aspect of PPARγ function, we submitted intestinal epithelium-specific PPARγ knockout mice (iePPARγKO) to a two-week period of 25% caloric restriction (CR), following which iePPARγKO mice retained more fat than their wild type littermates. In attempting to explain this discrepancy, we analysed the liver, skeletal muscle, intestinal lipid trafficking, and the microbiome, none of which appeared to contribute to the adiposity phenotype. Interestingly, under conditions of CR, iePPARγKO mice failed to activate their sympathetic nervous system (SNS) and increase CR-specific locomotor activity. These KO mice also manifested a defective control of their body temperature, which was overly reduced. Furthermore, the white adipose tissue of iePPARγKO CR mice showed lower levels of both hormone-sensitive lipase, and its phosphorylated form. This would result from impaired SNS signalling and possibly cause reduced lipolysis. We conclude that intestinal epithelium PPARγ plays an essential role in increasing SNS activity under CR conditions, thereby contributing to energy mobilization during metabolically stressful episodes. PMID:27853235

  7. Sympathetic Nervous System Modulation of Inflammation and Remodeling in the Hypertensive Heart

    PubMed Central

    Levick, Scott P.; Murray, David B.; Janicki, Joseph S.; Brower, Gregory L.

    2010-01-01

    Chronic activation of the sympathetic nervous system (SNS) is a key component of cardiac hypertrophy and fibrosis. However, previous studies have provided evidence to also implicate inflammatory cells, including mast cells, in the development of cardiac fibrosis. The current study investigated the potential interaction of cardiac mast cells with the SNS. Eight week old male SHR were sympathectomized to establish the effect of the SNS on cardiac mast cell density, myocardial remodeling and cytokine production in the hypertensive heart. Age-matched WKY served as controls. Cardiac fibrosis and hypertension were significantly attenuated and left ventricular mass normalized while cardiac mast cell density was markedly increased in sympathectomized SHR. Sympathectomy normalized myocardial levels of IFN-γ, IL-6 and IL-10, but had no effect on IL-4. The effect of norepinephrine and substance P on isolated cardiac mast cell activation was investigated as potential mechanisms of interaction between the two. Only substance P elicited mast cell degranulation. Substance P was also shown to induce the production of angiotensin II by a mixed population of isolated cardiac inflammatory cells, including mast cells, lymphocytes and macrophages. These results demonstrate the ability of neuropeptides to regulate inflammatory cell function, providing a potential mechanism by which the SNS and afferent nerves may interact with inflammatory cells in the hypertensive heart. PMID:20048196

  8. Effects of Betel chewing on the central and autonomic nervous systems.

    PubMed

    Chu, N S

    2001-01-01

    Betel chewing has been claimed to produce a sense of well-being, euphoria, heightened alertness, sweating, salivation, a hot sensation in the body and increased capacity to work. Betel chewing also leads to habituation, addiction and withdrawal. However, the mechanisms underlying these effects remain poorly understood. Arecoline, the major alkaloid of Areca nut, has been extensively studied, and several effects of betel chewing are thought to be related to the actions of this parasympathomimetic constituent. However, betel chewing may produce complex reactions and interactions. In the presence of lime, arecoline and guvacoline in Areca nut are hydrolyzed into arecaidine and guvacine, respectively, which are strong inhibitors of GABA uptake. Piper betle flower or leaf contains aromatic phenolic compounds which have been found to stimulate the release of catecholamines in vitro. Thus, betel chewing may affect parasympathetic, GABAnergic and sympathetic functions. Betel chewing produces an increase in heart rate, blood pressure, sweating and body temperature. In addition, EEG shows widespread cortical desynchronization indicating a state of arousal. In autonomic function tests, both the sympathetic skin response and RR interval variation are affected. Betel chewing also increases plasma concentrations of norepinephrine and epinephrine. These results suggest that betel chewing mainly affects the central and autonomic nervous systems. Future studies should investigate both the acute and chronic effects of betel chewing. Such studies may further elucidate the psychoactive mechanisms responsible for the undiminished popularity of betel chewing since antiquity. Copyright 2001 National Science Council, ROC and S. Karger AG, Basel.

  9. The autonomic nervous system at high altitude

    PubMed Central

    Drinkhill, Mark J.; Rivera-Chira, Maria

    2007-01-01

    The effects of hypobaric hypoxia in visitors depend not only on the actual elevation but also on the rate of ascent. Sympathetic activity increases and there are increases in blood pressure and heart rate. Pulmonary vasoconstriction leads to pulmonary hypertension, particularly during exercise. The sympathetic excitation results from hypoxia, partly through chemoreceptor reflexes and partly through altered baroreceptor function. High pulmonary arterial pressures may also cause reflex systemic vasoconstriction. Most permanent high altitude dwellers show excellent adaptation although there are differences between populations in the extent of the ventilatory drive and the erythropoiesis. Some altitude dwellers, particularly Andeans, may develop chronic mountain sickness, the most prominent characteristic of which being excessive polycythaemia. Excessive hypoxia due to peripheral chemoreceptor dysfunction has been suggested as a cause. The hyperviscous blood leads to pulmonary hypertension, symptoms of cerebral hypoperfusion, and eventually right heart failure and death. PMID:17264976

  10. Ghrelin, a novel growth hormone-releasing peptide, in the treatment of cardiopulmonary-associated cachexia.

    PubMed

    Nagaya, Noritoshi; Kojima, Masakazu; Kangawa, Kenji

    2006-01-01

    Ghrelin is a novel growth hormone (GH)-releasing peptide, isolated from the stomach, which has been identified as an endogenous ligand for GH secretagogue receptor. The discovery of ghrelin indicates that the release of GH from the pituitary might be regulated not only by hypothalamic GH-releasing hormone, but also by ghrelin derived from the stomach. This peptide also stimulates food intake and induces adiposity through GH-independent mechanisms. In addition, ghrelin acts directly on the central nervous system to decrease sympathetic nerve activity. Thus, ghrelin plays important roles for maintaining GH release and energy homeostasis. Repeated administration of ghrelin improves body composition, muscle wasting, functional capacity, and sympathetic augmentation in cachectic patients with heart failure or chronic obstructive pulmonary disease. These results suggest that ghrelin has anti-cachectic effects through GH-dependent and independent mechanisms. Thus, administration of ghrelin may be a new therapeutic strategy for the treatment of cardiopulmonary-associated cachexia.

  11. Effect of training mode on post-exercise heart rate recovery of trained cyclists.

    PubMed

    McDonald, Kelia G; Grote, Silvie; Shoepe, Todd C

    2014-06-28

    The sympathetic nervous system dominates the regulation of body functions during exercise. Therefore after exercise, the sympathetic nervous system withdraws and the parasympathetic nervous system helps the body return to a resting state. In the examination of this relationship, the purpose of this study was to compare recovery heart rates (HR) of anaerobically versus aerobically trained cyclists. With all values given as means ± SD, anaerobically trained track cyclists (n=10, age=25.9 ± 6.0 yrs, body mass=82.7 ± 7.1 kg, body fat=10.0 ± 6.3%) and aerobically trained road cyclists (n=15, age=39.9 ± 8.5 yrs, body mass=75.3 ± 9.9 kg, body fat=13.1 ± 4.5%) underwent a maximal oxygen uptake test. Heart rate recovery was examined on a relative basis using heart rate reserve as well as the absolute difference between maximum HR and each of two recovery HRs. The post-exercise change in HR at minute one for the track cyclists and road cyclists respectively were 22 ± 8 bpm and 25 ± 12 bpm. At minute two, the mean drop for track cyclists was significantly (p<0.05) greater than the road cyclists (52 ± 15 bpm and 64 ± 11 bpm). Training mode showed statistically significant effects on the speed of heart rate recovery in trained cyclists. Greater variability in recovery heart rate at minute two versus minute one suggests that the heart rate should be monitored longer than one minute of recovery for a better analysis of post-exercise autonomic shift.

  12. Effects of linear ablation at the isthmus between the tricuspid annulus and inferior vena cava for atrial flutter on autonomic nervous activity: analysis of heart rate variability.

    PubMed

    Li, Aiyan; Kuga, Keisuke; Suzuki, Akihiro; Endo, Masae; Niho, Bumpei; Enomoto, Mami; Kanemoto, Miyako; Yamaguchi, Iwao

    2002-01-01

    Heart rate is largely affected by the autonomic nervous system. However, little is known about the anatomic pathway of autonomic nerve fibers innervating the sinus node. The present study: (1) evaluates the effects of cavotricuspid isthmus ablation for common atrial flutter (AFL) on autonomic nervous function by using heart rate variability analysis, and (2) investigates the distribution of autonomic nerve pathways innervating the sinus node. Twelve patients with paroxysmal common atrial flutter who maintained sinus rhythm both before and after radiofrequency ablation were selected for the study. Holter ambulatory recordings were performed before and after (2.3 +/- 1.0 days) radiofrequency ablation of cavotricuspid isthmus. Heart rate and time domain (SDANN, rMSSD, pNN50) and frequency domain (low frequency (LF), high frequency (HF), LF/HF) analysis of heart rate variability were compared before and after ablation. Mean heart rate did not change significantly after ablation (59 +/- 6 vs 61 +/- 9 beats/min); parasympathetic indices of heart rate variability (SDANN, rMSSD, pNN50, HF) did not change significantly (110 +/- 37 vs 117 +/- 20 ms; 32 +/- 21 vs 28 +/- 9 ms; 4.8 +/- 0.9 vs 4.7 +/- 0.71n(ms2)); and sympathetic indices of heart rate variability (LF/HF) did not change significantly (1.1 +/- 0.2 vs 1.2 +/- 0.1). Cavotricuspid isthmus ablation for atrial flutter did not significantly change heart rate and heart rate variability because parasympathetic and sympathetic fibers innervating the sinus node are scarce in this region.

  13. Activated Alk triggers prolonged neurogenesis and Ret upregulation providing a therapeutic target in ALK-mutated neuroblastoma

    PubMed Central

    Cazes, Alex; Lopez-Delisle, Lucille; Tsarovina, Konstantina; Pierre-Eugène, Cécile; De Preter, Katleen; Peuchmaur, Michel; Nicolas, André; Provost, Claire; Louis-Brennetot, Caroline; Daveau, Romain; Kumps, Candy; Cascone, Ilaria; Schleiermacher, Gudrun; Prignon, Aurélie; Speleman, Frank; Rohrer, Hermann; Delattre, Olivier; Janoueix-Lerosey, Isabelle

    2014-01-01

    Activating mutations of the ALK (Anaplastic lymphoma Kinase) gene have been identified in sporadic and familial cases of neuroblastoma, a cancer of early childhood arising from the sympathetic nervous system (SNS). To decipher ALK function in neuroblastoma predisposition and oncogenesis, we have characterized knock-in (KI) mice bearing the two most frequent mutations observed in neuroblastoma patients. A dramatic enlargement of sympathetic ganglia is observed in AlkF1178L mice from embryonic to adult stages associated with an increased proliferation of sympathetic neuroblasts from E14.5 to birth. In a MYCN transgenic context, the F1178L mutation displays a higher oncogenic potential than the R1279Q mutation as evident from a shorter latency of tumor onset. We show that tumors expressing the R1279Q mutation are sensitive to ALK inhibition upon crizotinib treatment. Furthermore, our data provide evidence that activated ALK triggers RET upregulation in mouse sympathetic ganglia at birth as well as in murine and human neuroblastoma. Using vandetanib, we show that RET inhibition strongly impairs tumor growth in vivo in both MYCN/KI AlkR1279Q and MYCN/KI AlkF1178L mice. Altogether, our findings demonstrate the critical role of activated ALK in SNS development and pathogenesis and identify RET as a therapeutic target in ALK mutated neuroblastoma. PMID:24811913

  14. 75 FR 10282 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    ... symptoms of those of sympathetic nervous system hyperactivity. Up to 36% of patients worldwide with... efficiency of chemotherapy in animal (mouse) model system. In addition, we can identify possible...

  15. Non-linear HRV indices under autonomic nervous system blockade.

    PubMed

    Bolea, Juan; Pueyo, Esther; Laguna, Pablo; Bailón, Raquel

    2014-01-01

    Heart rate variability (HRV) has been studied as a non-invasive technique to characterize the autonomic nervous system (ANS) regulation of the heart. Non-linear methods based on chaos theory have been used during the last decades as markers for risk stratification. However, interpretation of these nonlinear methods in terms of sympathetic and parasympathetic activity is not fully established. In this work we study linear and non-linear HRV indices during ANS blockades in order to assess their relation with sympathetic and parasympathetic activities. Power spectral content in low frequency (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz) bands of HRV, as well as correlation dimension, sample and approximate entropies were computed in a database of subjects during single and dual ANS blockade with atropine and/or propranolol. Parasympathetic blockade caused a significant decrease in the low and high frequency power of HRV, as well as in correlation dimension and sample and approximate entropies. Sympathetic blockade caused a significant increase in approximate entropy. Sympathetic activation due to postural change from supine to standing caused a significant decrease in all the investigated non-linear indices and a significant increase in the normalized power in the low frequency band. The other investigated linear indices did not show significant changes. Results suggest that parasympathetic activity has a direct relation with sample and approximate entropies.

  16. Heart rate variability is differentially altered in multiple sclerosis: implications for acute, worsening and progressive disability.

    PubMed

    Studer, Valeria; Rocchi, Camilla; Motta, Caterina; Lauretti, Benedetta; Perugini, Jacopo; Brambilla, Laura; Pareja-Gutierrez, Lorena; Camera, Giorgia; Barbieri, Francesca Romana; Marfia, Girolama A; Centonze, Diego; Rossi, Silvia

    2017-01-01

    Sympathovagal imbalance has been associated with poor prognosis in chronic diseases, but there is conflicting evidence in multiple sclerosis. The objective of this study was to investigate the autonomic nervous system dysfunction correlation with inflammation and progression in multiple sclerosis. Heart rate variability was analysed in 120 multiple sclerosis patients and 60 healthy controls during supine rest and head-up tilt test; the normalised units of low frequency and high frequency power were considered to assess sympathetic and vagal components, respectively. Correlation analyses with clinical and radiological markers of disease activity and progression were performed. Sympathetic dysfunction was closely related to the progression of disability in multiple sclerosis: progressive patients showed altered heart rate variability with respect to healthy controls and relapsing-remitting patients, with higher rest low frequency power and lacking the expected low frequency power increase during the head-up tilt test. In relapsing-remitting patients, disease activity, even subclinical, was associated with lower rest low frequency power, whereas stable relapsing-remitting patients did not differ from healthy controls. Less sympathetic reactivity and higher low frequency power at rest were associated with incomplete recovery from relapse. Autonomic balance appears to be intimately linked with both the inflammatory activity of multiple sclerosis, which is featured by an overall hypoactivity of the sympathetic nervous system, and its compensatory plastic processes, which appear inefficient in case of worsening and progressive multiple sclerosis.

  17. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature.

    PubMed

    Alawi, Khadija M; Aubdool, Aisah A; Liang, Lihuan; Wilde, Elena; Vepa, Abhinav; Psefteli, Maria-Paraskevi; Brain, Susan D; Keeble, Julie E

    2015-10-01

    Transient receptor potential vanilloid 1 (TRPV1) is involved in sensory nerve nociceptive signaling. Recently, it has been discovered that TRPV1 receptors also regulate basal body temperature in multiple species from mice to humans. In the present study, we investigated whether TRPV1 modulates basal sympathetic nervous system (SNS) activity. C57BL6/J wild-type (WT) mice and TRPV1 knockout (KO) mice were implanted with radiotelemetry probes for measurement of core body temperature. AMG9810 (50 mg/kg) or vehicle (2% DMSO/5% Tween 80/10 ml/kg saline) was injected intraperitoneally. Adrenoceptor antagonists or vehicle (5 ml/kg saline) was injected subcutaneously. In WT mice, the TRPV1 antagonist, AMG9810, caused significant hyperthermia, associated with increased noradrenaline concentrations in brown adipose tissue. The hyperthermia was significantly attenuated by the β-adrenoceptor antagonist propranolol, the mixed α-/β-adrenoceptor antagonist labetalol, and the α1-adrenoceptor antagonist prazosin. TRPV1 KO mice have a normal basal body temperature, indicative of developmental compensation. d-Amphetamine (potent sympathomimetic) caused hyperthermia in WT mice, which was reduced in TRPV1 KO mice, suggesting a decreased sympathetic drive in KOs. This study provides new evidence that TRPV1 controls thermoregulation upstream of the SNS, providing a potential therapeutic target for sympathetic hyperactivity thermoregulatory disorders. © FASEB.

  18. Developmental expression of VGF mRNA in the prenatal and postnatal rat.

    PubMed

    Snyder, S E; Pintar, J E; Salton, S R

    1998-04-27

    VGF is a developmentally regulated, secretory peptide precursor that is expressed by neurons and neuroendocrine cells and that has its transcription and secretion induced rapidly by neurotrophins and by depolarization. To gain insight into the possible functions and regulation of VGF in vivo, we have characterized the distribution of VGF mRNA in the developing rat nervous system. VGF expression was first detectable at embryonic day 11.5 in the primordia of cranial, sympathetic, and dorsal root ganglia, and its distribution expanded throughout development to include significant expression throughout the brain, spinal cord, and retina of the adult rat. The earliest expression of VGF, therefore, appeared in the peripheral nervous system as developing neurons settled in their designated ganglia. In many regions of the brain, VGF mRNA levels were found to be highest during periods when axonal outgrowth and synaptogenesis predominate. Areas of the central nervous system that contain predominantly dividing cells never displayed any VGF mRNA expression, nor did the vast majority of nonneural tissues.

  19. Influence of gravitational sympathetic stimulation on the Surgical Plethysmographic Index.

    PubMed

    Colombo, R; Marchi, A; Borghi, B; Fossali, T; Tobaldini, E; Guzzetti, S; Raimondi, F

    2015-01-01

    Surgical Plethysmographic Index (SPI), calculated from pulse photo-plethysmographic amplitude oscillations, has been proposed as a tool to measure nociception anti-nociception balance during general anesthesia, but it is affected by several confounding factor that alter the autonomic nervous system (ANS) modulation. We hypothesized that SPI may be mainly affected by sympathetic stimulation independently from nociception. We studied the effects of two sympathetic stimuli on SPI, delivered through passive head-up tilt at 45 and 90 degrees angles, in nine awake healthy adults. The sympathetic modulation was assessed by means of heart rate variability (HRV) analysis. Mean (SD) SPI significantly increased from baseline to 45 degrees [from 38.6 (13.7) to 60.8 (7.6), p<0.001)] and to 90 degrees angle tilt [82.3 (5.4), p<0.001]. The electrocardiographic mean R-to-R interval significantly shortened during both passive tilts, whereas systolic arterial pressure did not change during the study protocol. HRV changed significantly during the study protocol towards a predominance of sympathetic modulation during passive tilt. Gravitational sympathetic stimulation at two increasing angles, in absence of any painful stimuli, affects SPI in awake healthy volunteers. SPI seems to reflect the sympathetic outflow directed to peripheral vessels.

  20. Pilot Study of A Novel Biobehavioral Intervention’s Effect on Physiologic State, Perceived Stress and Affect: An Investigation of the Health Benefits of Laughter Yoga Participational

    DTIC Science & Technology

    2017-03-25

    the past 16 years of war. 1-3 McEwen’ s allostatic load model delineates how chronic stress up-regulates the sympathetic nervous system causing...physiologic and psychological sequela. Conversely, yogic breathing has been shown to up-regulate the parasympathetic nervous system due to the

  1. Alterations of sympathetic nerve fibers in avascular necrosis of femoral head.

    PubMed

    Li, Deqiang; Liu, Peilai; Zhang, Yuankai; Li, Ming

    2015-01-01

    Avascular necrosis of the femoral head (ANFH) was mainly due to alterations of bone vascularity. And noradrenaline (NA), as the neurotransmitter of the sympathetic nervous system (SNS), leads to the vasoconstriction by activating its α-Receptor. This study was to explore the nerve fiber density of the femoral head in the rabbit model of ANFH. Twenty New Zealand white rabbits were used in this study. The rabbit model of ANFH was established by the injection of methylprednisolone acetate. The nerve fiber density and distribution in the femoral head was determined using an Olympus BH2 microscope. Significant fewer sympathetic nerve fibers was found in the ANFH intertrochanteric bone samples (P = 0.036) with osteonecrosis. The number of sympathetic nerve fibers was compared between the two groups. And less sympathetic nerve fibers were found in later stage ANFH samples in comparison with those of early stages. ANFH might be preceded by an inflammatory reaction, and an inflammatory response might lead to arthritic changes in tissue samples, which in turn reduces the number of sympathetic nerve fibers.

  2. Sympathetic axonopathies and hyperinnervation in the small intestine smooth muscle of aged Fischer 344 rats

    PubMed Central

    Phillips, Robert J.; Hudson, Cherie N.; Powley, Terry L.

    2013-01-01

    It is well documented that the intrinsic enteric nervous system of the gastrointestinal (GI) tract sustains neuronal losses and reorganizes as it ages. In contrast, age-related remodeling of the extrinsic sympathetic projections to the wall of the gut is poorly characterized. The present experiment, therefore, surveyed the sympathetic projections to the aged small intestine for axonopathies. Furthermore, the experiment evaluated the specific prediction that catecholaminergic inputs undergo hyperplastic changes. Jejunal tissue was collected from 3-, 8-, 16-, and 24-month-old male Fischer 344 rats, prepared as whole mounts consisting of the muscularis, and processed immunohistochemically for tyrosine hydroxylase, the enzymatic marker for norepinephrine, and either the protein CD163 or the protein MHCII, both phenotypical markers for macrophages. Four distinctive sympathetic axonopathy profiles occurred in the small intestine of the aged rat: (1) swollen and dystrophic terminals, (2) tangled axons, (3) discrete hyperinnervated loci in the smooth muscle wall, including at the bases of Peyer's patches, and (4) ectopic hyperplastic or hyperinnervating axons in the serosa/subserosal layers. In many cases, the axonopathies occurred at localized and limited foci, involving only a few axon terminals, in a pattern consistent with incidences of focal ischemic, vascular, or traumatic insult. The present observations underscore the complexity of the processes of aging on the neural circuitry of the gut, with age-related GI functional impairments likely reflecting a constellation of adjustments that range from selective neuronal losses, through accumulation of cellular debris, to hyperplasias and hyperinnervation of sympathetic inputs. PMID:24104187

  3. Gaussian Mixture Model of Heart Rate Variability

    PubMed Central

    Costa, Tommaso; Boccignone, Giuseppe; Ferraro, Mario

    2012-01-01

    Heart rate variability (HRV) is an important measure of sympathetic and parasympathetic functions of the autonomic nervous system and a key indicator of cardiovascular condition. This paper proposes a novel method to investigate HRV, namely by modelling it as a linear combination of Gaussians. Results show that three Gaussians are enough to describe the stationary statistics of heart variability and to provide a straightforward interpretation of the HRV power spectrum. Comparisons have been made also with synthetic data generated from different physiologically based models showing the plausibility of the Gaussian mixture parameters. PMID:22666386

  4. Effect of sympathetic nervous system activation on the tonic vibration reflex in rabbit jaw closing muscles.

    PubMed

    Grassi, C; Deriu, F; Passatore, M

    1993-09-01

    1. In precollicular decerebrate rabbits we investigated the effect of sympathetic stimulation, at frequencies within the physiological range, on the tonic vibration reflex (TVR) elicited in jaw closing muscles by small amplitude vibrations applied to the mandible (15-50 microns, 150-180 Hz). The EMG activity was recorded bilaterally from masseter muscle and the force developed by the reflex was measured through an isometric transducer connected with the mandibular symphysis. 2. Unilateral stimulation of the peripheral stump of the cervical sympathetic by the TVR, and a marked decrease or disappearance of the ipsilateral EMG activity. No significant changes were detected in the EMG contralateral to the stimulated nerve. Bilateral CSN stimulation reduced by 60-90% the force reflexly produced by the jaw closing muscles and strongly decreased or suppressed EMG activity on both sides. This effect was often preceded by a transient TVR enhancement, very variable in amplitude and duration, which was concomitant with the modest increase in pulmonary ventilation induced by the sympathetic stimulation. 3. During bilateral CSN stimulation, an increase in the vibration amplitude by a factor of 1.5-2.5 was sufficient to restore the TVR reduced by sympathetic stimulation. 4. The depressant action exerted by sympathetic activation on the TVR is mediated by alpha-adrenergic receptors, since it was almost completely abolished by the I.V. administration of either phentolamine or prazosin, this last drug being a selective antagonist of alpha 1-adrenoceptors. The sympathetically induced decrease in the TVR was not mimicked by manoeuvres producing a large and sudden reduction or abolition of the blood flow to jaw muscles, such as unilateral or bilateral occlusion of the common carotid artery. 5. The effect of sympathetic stimulation was not significantly modified after denervation of the inferior dental arch and/or anaesthesia of the temporomandibular joint, i.e. after having reduced the afferent input from those receptors, potentially affected by CSN stimulation, which can elicit either a jaw opening reflex or a decrease in the activity of the jaw elevator muscle motoneurons. 6. These data suggest that, when the sympathetic nervous system is activated under physiological conditions, there is a marked depression of the stretch reflex which is independent of vasomotor changes and is probably due to a decrease in sensitivity of muscle spindle afferents.

  5. Sympathetic Nerve Injury in Thyroid Cancer.

    PubMed

    Diamantis, Evangelos; Farmaki, Paraskevi; Savvanis, Spyridon; Athanasiadis, Georgios; Troupis, Theodoros; Damaskos, Christos

    The double innervation of the thyroid comes from the sympathetic and parasympathetic nervous system. Injury rates during surgery are at 30% but can be minimized by upwardly preparing the thyroid vessels at the level of thyroid capsule. Several factors have been accused of increasing the risk of injury including age and tumor size. Our aim was to investigate of there is indeed any possible correlations between these factors and a possible increase in injury rates following thyroidectomy. Seven studies were included in the meta-analysis. Statistical correlation was observed for a positive relationship between injury of the sympathetic nerve and thyroid malignancy surgery (p 2 = 74%) No statistical correlations were observed for a negative or positive relationship between injury of the sympathetic nerve and tumor size. There was also no statistically significant value observed for the correlation of the patients' age with the risk of sympathetic nerve injury (p = 0.388). Lack of significant correlation reported could be due to the small number of studies and great heterogeneity between them.

  6. The sympathetic mechanism in the isolated pulmonary artery of the rabbit

    PubMed Central

    Bevan, J. A.; Su, C.

    1964-01-01

    The nature of postganglionic sympathetic nervous transmission to vascular muscle in vitro was studied using the recurrent cardiac nerve-pulmonary artery preparation of the rabbit. Experiments, similar to those which in other tissues have provided evidence to support a role for acetylcholine at the sympathetic postganglionic nerve-effector cell junction, were carried out. The contractile response of the isolated artery to acetylcholine was blocked completely by atropine. High concentrations of acetylcholine and of hemicholinium had no effect on the contractile response to sympathetic nerve stimulation. Physostigmine, atropine and hemicholinium were without influence on the relationship between nerve stimulus frequency and response. Yohimbine, bretylium and reserpine blocked completely the response to nerve stimulation but did not affect that to applied acetylcholine. These results support the view that transmission in this preparation at the sympathetic postganglionic nerve-effector cell junction is mediated by an adrenaline-like transmitter and provide no evidence for the view that acetylcholne is involved at this site. PMID:14126048

  7. Saliva amylase as a measure of sympathetic change elicited by autogenic training in patients with functional somatic syndromes.

    PubMed

    Kiba, Tadashi; Kanbara, Kenji; Ban, Ikumi; Kato, Fumie; Kawashima, Sadanobu; Saka, Yukie; Yamamoto, Kazumi; Nishiyama, Junji; Mizuno, Yasuyuki; Abe, Tetsuya; Fukunaga, Mikihiko

    2015-12-01

    The aim of this study was to discuss the effect of autogenic training (AT) on patients with functional somatic syndrome (FSS) using salivary amylase, the skin temperature of the finger, subjective severity of symptoms, and psychological characteristics as measures. We assessed 20 patients with FSS and 23 healthy controls before and after AT. Baseline levels of salivary amylase prior to an AT session were significantly higher in the FSS group than in the control group. However, this difference was not significant after AT. The skin temperature of the finger increased after AT in both the FSS and control groups. AT contributed to the improvement of somatic symptoms in patients with FSS. Our results regarding psychological characteristics suggest that mood disturbances are deeply involved in the pathology of FSS. Individuals with FSS exhibited elevated levels of sympathetic activity compared with healthy controls. Our data indicates that AT eased dysregulation of the autonomic nervous system in patients with FSS. Thus, salivary amylase may be a useful index of change induced by AT in patients with FSS.

  8. Autonomic nervous system activity of preschool-age children who stutter

    PubMed Central

    Jones, Robin M.; Buhr, Anthony P.; Conture, Edward G.; Tumanova, Victoria; Walden, Tedra A.; Porges, Stephen W.

    2014-01-01

    Purpose The purpose of this study was to investigate potential differences in autonomic nervous system (ANS) activity to emotional stimuli between preschool-age children who do (CWS) and do not stutter (CWNS). Methods Participants were 20 preschool-age CWS (15 male) and 21 preschool-age CWNS (11 male). Participants were exposed to two emotion-inducing video clips (negative and positive) with neutral clips used to establish pre-and post-arousal baselines, and followed by age-appropriate speaking tasks. Respiratory sinus arrhythmia (RSA) – often used as an index of parasympathetic activity – and skin conductance level (SCL) – often used as an index of sympathetic activity – were measured while participants listened to/watched the audio-video clip presentation and performed a speaking task. Results CWS, compared to CWNS, displayed lower amplitude RSA at baseline and higher SCL during a speaking task following the positive, compared to the negative, condition. During speaking, only CWS had a significant positive relation between RSA and SCL. Conclusion Present findings suggest that preschool-age CWS, when compared to their normally fluent peers, have a physiological state that is characterized by a greater vulnerability to emotional reactivity (i.e., lower RSA indexing less parasympathetic tone) and a greater mobilization of resources in support of emotional reactivity (i.e., higher SCL indexing more sympathetic activity) during positive conditions. Thus, while reducing stuttering to a pure physiological process is unwarranted, the present findings suggest that parasympathetic and sympathetic nervous system activity is involved. PMID:25087166

  9. The Role of Cardiovascular Muscle Cell Na+-K+ Pump Activity in the Development and Maintenance of Reduced Renal Mass Hypertension in Rats

    DTIC Science & Technology

    1981-09-28

    hypertension (Finch and Leach, 1970; Haeusler et al. 1972) depending on whether the peripheral or the central sympathetic nevous system was destroyed...Dissertation directed by: Motllal B. Pamnanl, M.D., Ph.D. Associate Professor, Department of Physiology The mechanism of the elevated systemic arterial...vascular Na"*"-K̂ pump activity and development of hypertension; and 4) investigate the role of the sympathetic nervous system and the AV3V region

  10. Physiologic Waveform Analysis for Early Detection of Hemorrhage during Transport and Higher Echelon Medical Care of Combat Casualties

    DTIC Science & Technology

    2012-11-01

    vagal and sympathetic stimulation to HR fluctuations that were experi- mentally determined by Berger et al. (8) in dogs with typical ILV3HR and ABP3HR...impulse responses relating pure vagal and sympathetic stimulation to HR fluctuations that were experimentally determined in dogs (middle; reproduced...shown in Fig. 1 effectively repre- sents an extrapolation of the efferent autonomic nervous limbs in dogs to the afferent, central, and efferent

  11. Differential changes and interactions of autonomic functioning and sleep architecture before and after 50 years of age.

    PubMed

    Kuo, T B J; Li, Jia-Yi; Kuo, Hsu-Ko; Chern, Chang-Ming; Yang, C C H

    2016-02-01

    We hypothesize that the time when age-related changes in autonomic functioning and in sleep structure occur are different and that autonomic functioning modulates sleep architecture differently before and after 50 years of age. Sixty-eight healthy subjects (aged 20 to 79 years old, 49 of them women) were enrolled. Correlation analysis revealed that wake after sleep onset, the absolute and relative value of stage 1 (S1; S1%), and relative value of stage 2 (S2) were positively correlated with age; however, sleep efficiency, stage 3 (S3), S3%, and rapid-eye-movement latency (REML) were negatively correlated with age. Significant degenerations of sleep during normal aging were occurred after 50 years of age; however, significant declines of autonomic activity were showed before 50 years of age. Before 50 years of age, vagal function during sleep was negatively correlated with arousal index; however, after 50 years of age, it was positively correlated with S1 and S1%. In addition, sympathetic activity during wake stage was positively related to S2% only after 50 years of age. Our results imply that the age-related changes in autonomic functioning decline promptly as individuals leave the younger part of their adult life span and that age-related changes in sleep slowly develop as individuals enter the older part of their adult life span. Furthermore, while various aspects of sleep architecture are modulated by both the sympathetic and vagal nervous systems during adult life span, the sleep quality is mainly correlated with the sympathetic division after 50 years of age.

  12. Psychological traits influence autonomic nervous system recovery following esophageal intubation in health and functional chest pain.

    PubMed

    Farmer, A D; Coen, S J; Kano, M; Worthen, S F; Rossiter, H E; Navqi, H; Scott, S M; Furlong, P L; Aziz, Q

    2013-12-01

    Esophageal intubation is a widely utilized technique for a diverse array of physiological studies, activating a complex physiological response mediated, in part, by the autonomic nervous system (ANS). In order to determine the optimal time period after intubation when physiological observations should be recorded, it is important to know the duration of, and factors that influence, this ANS response, in both health and disease. Fifty healthy subjects (27 males, median age 31.9 years, range 20-53 years) and 20 patients with Rome III defined functional chest pain (nine male, median age of 38.7 years, range 28-59 years) had personality traits and anxiety measured. Subjects had heart rate (HR), blood pressure (BP), sympathetic (cardiac sympathetic index, CSI), and parasympathetic nervous system (cardiac vagal tone, CVT) parameters measured at baseline and in response to per nasum intubation with an esophageal catheter. CSI/CVT recovery was measured following esophageal intubation. In all subjects, esophageal intubation caused an elevation in HR, BP, CSI, and skin conductance response (SCR; all p < 0.0001) but concomitant CVT and cardiac sensitivity to the baroreflex (CSB) withdrawal (all p < 0.04). Multiple linear regression analysis demonstrated that longer CVT recovery times were independently associated with higher neuroticism (p < 0.001). Patients had prolonged CSI and CVT recovery times in comparison to healthy subjects (112.5 s vs 46.5 s, p = 0.0001 and 549 s vs 223.5 s, p = 0.0001, respectively). Esophageal intubation activates a flight/flight ANS response. Future studies should allow for at least 10 min of recovery time. Consideration should be given to psychological traits and disease status as these can influence recovery. © 2013 John Wiley & Sons Ltd.

  13. Erythropoietin and its Carbamylated Derivative Prevent the Development of Experimental Diabetic Autonomic Neuropathy in STZ-Induced Diabetic NOD-SCID Mice

    PubMed Central

    Schmidt, Robert E.; Green, Karen G.; Feng, Dongyan; Dorsey, Denise A.; Parvin, Curtis A.; Lee, Jin-Moo; Xiao, Qinlgi; Brines, Michael

    2008-01-01

    Autonomic neuropathy is a significant diabetic complication resulting in increased morbidity and mortality. Studies of autopsied diabetic patients and several rodent models demonstrate that the neuropathologic hallmark of diabetic sympathetic autonomic neuropathy in prevertebral ganglia is the occurrence of synaptic pathology resulting in distinctive dystrophic neurites (“neuritic dystrophy”). Our prior studies show that neuritic dystrophy is reversed by exogenous IGF-I administration without altering the metabolic severity of diabetes, i.e. functioning as a neurotrophic substance. The description of erythropoietin (EPO) synergy with IGF-I function and the recent discovery of EPO’s multifaceted neuroprotective role suggested it might substitute for IGF-I in treatment of diabetic autonomic neuropathy. Our current studies demonstrate EPO receptor (EPO-R) mRNA in a cDNA set prepared from NGF-maintained rat sympathetic neuron cultures which decreased with NGF deprivation, a result which demonstrates clearly that sympathetic neurons express EPO-R, a result confirmed by immunohistochemistry. Treatment of STZ-diabetic NOD-SCID mice have demonstrated a dramatic preventative effect of EPO and carbamylated EPO (CEPO, which is neuroprotective but not hematopoietic) on the development of neuritic dystrophy. Neither EPO nor CEPO had a demonstrable effect on the metabolic severity of diabetes. Our results coupled with reported salutary effects of EPO on postural hypotension in a few clinical studies of EPO-treated anemic diabetic and non-diabetic patients may reflect a primary neurotrophic effect of EPO on the sympathetic autonomic nervous system, rather than a primary hematopoietic effect. These findings may represent a major clinical advance since EPO has been widely and safely used in anemic patients due to a variety of clinical conditions. PMID:17967455

  14. The Power of an Infant's Smile: Maternal Physiological Responses to Infant Emotional Expressions.

    PubMed

    Mizugaki, Sanae; Maehara, Yukio; Okanoya, Kazuo; Myowa-Yamakoshi, Masako

    2015-01-01

    Infant emotional expressions, such as distress cries, evoke maternal physiological reactions. Most of which involve accelerated sympathetic nervous activity. Comparatively little is known about effects of positive infant expressions, such as happy smiles, on maternal physiological responses. This study investigated how physiological and psychological maternal states change in response to infants' emotional expressions. Thirty first-time mothers viewed films of their own 6- to 7-month-old infants' affective behavior. Each observed a video of a distress cry followed by a video showing one of two expressions (randomly assigned): a happy smiling face (smile condition) or a calm neutral face (neutral condition). Both before and after the session, participants completed a self-report inventory assessing their emotional states. The results of the self-report inventory revealed no effects of exposure to the infant videos. However, the mothers in the smile condition, but not in the neutral condition, showed deceleration of skin conductance. These findings demonstrate that the mothers who observed their infants smiling showed decreased sympathetic activity. We propose that an infant's positive emotional expression may affect the branch of the maternal stress-response system that modulates the homeostatic balance of the sympathetic and parasympathetic nervous systems.

  15. Differential effects of dietary fats on sympathetic nervous system activity in the rat.

    PubMed

    Young, J B; Walgren, M C

    1994-01-01

    Fat feeding stimulates sympathetic nervous system (SNS) activity in rats. To determine if fats vary in their potency as stimulants of the SNS, [3H]norepinephrine ([3H]NE) turnover was measured in heart and interscapular brown adipose tissue (IBAT) of animals fed lab chow diets supplemented with safflower oil, coconut oil, or medium-chain triglycerides (MCT). At 5 days, all three fats accelerated [3H]NE turnover in heart and did so equally, but only when the fat supplement represented an increase in energy intake. However, after 14 days, safflower oil and coconut oil but not MCT increased [3H]NE turnover in heart compared with turnover rates obtained in animals fed isoenergetic amounts of chow. Furthermore, the stimulatory effect of safflower oil on [3H]NE turnover was statistically greater than that seen in animals fed equivalent amounts of coconut oil. In vivo synthesis of NE assessed by accumulation of dopamine (DA) in heart following inhibition of dopamine-beta-hydroxylase (D beta H) was likewise highest in safflower oil-fed rats and lowest in those fed MCT. Thus, sympathetic activation by dietary fat varies among different fats, suggesting a role for fatty acid intake in dietary regulation of the SNS.

  16. Renin-angiotensin and sympathetic nervous system contribution to high blood pressure in Schlager mice.

    PubMed

    Palma-Rigo, Kesia; Jackson, Kristy L; Davern, Pamela J; Nguyen-Huu, Thu-Phuc; Elghozi, Jean-Luc; Head, Geoffrey A

    2011-11-01

    Schlager hypertensive (BPH/2J) mice have been suggested to have high blood pressure (BP) due to an overactive sympathetic nervous system (SNS), but the contribution of the renin-angiotensin system (RAS) is unclear. In the present study, we examined the cardiovascular effects of chronically blocking the RAS in BPH/2J mice. Schlager normotensive (BPN/3J, n = 6) and BPH/2J mice (n = 8) received the angiotensin AT 1A-receptor antagonist losartan (150 mg/kg per day) in drinking water for 2 weeks. Pre-implanted telemetry devices were used to record mean arterial pressure (MAP), heart rate (HR) and locomotor activity. MAP was reduced by losartan treatment in BPN/3J (-23 mmHg, P < 0.01) and in BPH/2J mice (-25 mmHg, P < 0.001), whereas HR was increased. Losartan had little effect on initial pressor responses to feeding or to stress, but did attenuate the sustained pressor response to cage-switch stress. During the active period, the hypotension to sympathetic blockade with pentolinium was greater in BPH/2J than BPN/3J (suggesting neurogenic hypertension), but was not affected by losartan. During the inactive period, a greater depressor response to pentolinium was observed in losartan-treated animals. The hypotensive actions of losartan suggest that although the RAS provides an important contribution to BP, it contributes little, if at all, to the hypertension-induced or the greater stress-induced pressor responses in Schlager mice. The effects of pentolinium suggest that the SNS is mainly responsible for hypertension in BPH/2J mice. However, the RAS inhibits sympathetic vasomotor tone during inactivity and prolongs sympathetic activation during periods of adverse stress, indicating an important sympatho-modulatory role.

  17. The association of birth weight and infant growth with childhood autonomic nervous system activity and its mediating effects on energy-balance-related behaviours-the ABCD study.

    PubMed

    van Deutekom, Arend W; Chinapaw, Mai Jm; Gademan, Maaike Gj; Twisk, Jos Wr; Gemke, Reinoud Jbj; Vrijkotte, Tanja Gm

    2016-08-01

    The purpose of this study was to examine the association of birth weight and infant growth with childhood autonomic nervous system (ANS) activity and to assess whether ANS activity mediates the associations of birth weight and infant growth with energy-balance-related behaviours, including energy intake, satiety response, physical activity and screen time. In 2089 children, we prospectively collected birth weight, infant growth defined as conditional weight and height gain between birth and 12 months and-at 5 years-indices of cardiac ANS activity and parent-reported energy-balance-related behaviours. A mediation analysis was conducted, based on MacKinnon's multivariate extension of the product-of-coefficients strategy. Birth weight and infant height gain were inversely associated with sympathetic, but not parasympathetic, activity at age 5. Infant weight gain was not associated with childhood ANS activity. Infant weight gain was predictive of increased childhood screen time and infant height gain of diminished childhood energy intake, but sympathetic activity did not mediate these associations. Low-birth-weight children have higher sympathetic activity, which is considered a risk factor for cardiovascular disease. Height gain in infancy seems to be beneficial for childhood sympathetic activity. However, sympathetic activity was no mediator of the associations of infant growth with childhood energy-balance-related behaviours. As individual differences in ANS activity predict increased risk of cardiovascular disease, these differences may offer insight into the early-life origins of chronic diseases and provide further basis for public health strategies to optimize birth weight and infant growth. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.

  18. The morphological substrate for Renal Denervation: Nerve distribution patterns and parasympathetic nerves. A post-mortem histological study.

    PubMed

    van Amsterdam, Wouter A C; Blankestijn, Peter J; Goldschmeding, Roel; Bleys, Ronald L A W

    2016-03-01

    Renal Denervation as a possible treatment for hypertension has been studied extensively, but knowledge on the distribution of nerves surrounding the renal artery is still incomplete. While sympathetic and sensory nerves have been demonstrated, there is no mention of the presence of parasympathetic nerve fibers. To provide a description of the distribution patterns of the renal nerves in man, and, in addition, provide a detailed representation of the relative contribution of the sympathetic, parasympathetic and afferent divisions of the autonomic nervous system. Renal arteries of human cadavers were each divided into four longitudinal segments and immunohistochemically stained with specific markers for afferent, parasympathetic and sympathetic nerves. Nerve fibers were semi-automatically quantified by computerized image analysis, and expressed as cross-sectional area relative to the distance to the lumen. A total of 3372 nerve segments were identified in 8 arteries of 7 cadavers. Sympathetic, parasympathetic and afferent nerves contributed for 73.5% (95% CI: 65.4-81.5%), 17.9% (10.7-25.1%) and 8.7% (5.0-12.3%) of the total cross-sectional nerve area, respectively. Nerves are closer to the lumen in more distal segments and larger bundles that presumably innervate the kidney lie at 1-3.5mm distance from the lumen. The tissue-penetration depth of the ablation required to destroy 50% of the nerve fibers is 2.37 mm in the proximal segment and 1.78 mm in the most distal segments. Sympathetic, parasympathetic and afferent nerves exist in the vicinity of the renal artery. The results warrant further investigation of the role of the parasympathetic nervous system on renal physiology, and may contribute to refinement of the procedure by focusing the ablation on the most distal segment. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Micro-anatomy of the renal sympathetic nervous system: a human postmortem histologic study.

    PubMed

    Atherton, Daniel S; Deep, Nicholas L; Mendelsohn, Farrell O

    2012-07-01

    Hypertension remains an epidemic uncontrolled with pharmacologic therapies. A novel catheter inserted into the renal artery has been shown to lower blood pressure by ablating the renal sympathetic nerves with radiofrequency energy delivered through the arterial wall. We report a histologic study describing the anatomic substrate for this technique, specifically the renal sympathetic nervous system. Histological sections from proximal, middle, and distal renal artery segments from nine renal arteries (five human autopsies) were analyzed. Nerves were manually counted and their distance from the lumen-intima interface was measured using a micrometer. The nerves were then categorized by location into 0.5-mm-wide "rings" that were arranged circumferentially around the renal artery lumen. Of all nerves detected, 1.0% was in the 0-0.5 mm ring, 48.3% were in the 0.5-1.0 mm ring, 25.6% were in the 1.0-1.5 mm ring, 15.5% were in the 1.5-2.0 mm ring, and 9.5% were in the 2.0-2.5 mm ring. Beyond 0.5 mm, the proportion of nerves tended to decrease as the distance from the lumen increased. Totally, 90.5% of all nerves in this study existed within 2.0 mm of the renal artery lumen. Additionally, the number of nerves tended to increase along the length of the artery from proximal to distal segments (proximal = 216; middle = 323; distal = 417). In conclusion, our analysis indicates that a great proportion of renal sympathetic nerves have close proximity to the lumen-intima interface and should thus be accessible via renal artery interventional approaches such as catheter ablation. This data provides important anatomic information for the development of ablation and other type devices for renal sympathetic denervation. © 2011 Wiley Periodicals, Inc.

  20. Elevated blood pressure, heart rate and body temperature in mice lacking the XLαs protein of the Gnas locus is due to increased sympathetic tone.

    PubMed

    Nunn, Nicolas; Feetham, Claire H; Martin, Jennifer; Barrett-Jolley, Richard; Plagge, Antonius

    2013-10-01

    Imbalances of energy homeostasis are often associated with cardiovascular complications. Previous work has shown that Gnasxl-deficient mice have a lean and hypermetabolic phenotype, with increased sympathetic stimulation of adipose tissue. The Gnasxl transcript from the imprinted Gnas locus encodes the trimeric G-protein subunit XLαs, which is expressed in brain regions that regulate energy homeostasis and sympathetic nervous system (SNS) activity. To determine whether Gnasxl knock-out (KO) mice display additional SNS-related phenotypes, we have now investigated the cardiovascular system. The Gnasxl KO mice were ∼20 mmHg hypertensive in comparison to wild-type (WT) littermates (P ≤ 0.05) and hypersensitive to the sympatholytic drug reserpine. Using telemetry, we detected an increased waking heart rate in conscious KOs (630 ± 10 versus 584 ± 12 beats min(-1), KO versus WT, P ≤ 0.05). Body temperature was also elevated (38.1 ± 0.3 versus 36.9 ± 0.4°C, KO versus WT, P ≤ 0.05). To investigate autonomic nervous system influences, we used heart rate variability analyses. We empirically defined frequency power bands using atropine and reserpine and verified high-frequency (HF) power and low-frequency (LF) LF/HF power ratio to be indicators of parasympathetic and sympathetic activity, respectively. The LF/HF power ratio was greater in KOs and more sensitive to reserpine than in WTs, consistent with elevated SNS activity. In contrast, atropine and exendin-4, a centrally acting agonist of the glucagon-like peptide-1 receptor, which influences cardiovascular physiology and metabolism, reduced HF power equally in both genotypes. This was associated with a greater increase in heart rate in KOs. Mild stress had a blunted effect on the LF/HF ratio in KOs consistent with elevated basal sympathetic activity. We conclude that XLαs is required for the inhibition of sympathetic outflow towards cardiovascular and metabolically relevant tissues.

  1. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons.

    PubMed

    Fortuna, Vitor; Pardanaud, Luc; Brunet, Isabelle; Ola, Roxana; Ristori, Emma; Santoro, Massimo M; Nicoli, Stefania; Eichmann, Anne

    2015-06-23

    The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs) develop in close proximity to the dorsal aorta (DA) and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA) differentiation of SN precursors temporally coincides with vascular mural cell (VMC) recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR) signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Dimensions of Adversity, Physiological Reactivity, and Externalizing Psychopathology in Adolescence: Deprivation and Threat.

    PubMed

    Busso, Daniel S; McLaughlin, Katie A; Sheridan, Margaret A

    Dysregulation of autonomic nervous system and hypothalamic-pituitary-adrenal (HPA) axis function is a putative intermediate phenotype linking childhood adversity (CA) with later psychopathology. However, associations of CAs with autonomic nervous system and HPA-axis function vary widely across studies. Here, we test a novel conceptual model discriminating between distinct forms of CA (deprivation and threat) and examine their independent associations with physiological reactivity and psychopathology. Adolescents (N = 169; mean [SD] age, 14.9 [1.4] years) with a range of interpersonal violence (e.g., maltreatment, community violence) and poverty exposure participated in the Trier Social Stress test (TSST). During the TSST, electrocardiogram, impedance cardiograph, salivary cortisol, and dehydroepiandrosterone-sulfate data were collected. We compared the associations of poverty (an indicator of deprivation) and interpersonal violence (an indicator of threat) on sympathetic, parasympathetic, and HPA-axis reactivity to the TSST, and assessed whether these differences mediated the association of adversity with internalizing and externalizing symptoms. Exposure to poverty and interpersonal violence was associated with psychopathology. Interpersonal violence, adjusting for poverty, was associated with blunted sympathetic (b = 1.44, p = .050) and HPA-axis reactivity (b = -.09; p = .021). Blunted cortisol reactivity mediated the association of interpersonal violence with externalizing, but not internalizing, psychopathology. In contrast, poverty was not associated with physiological reactivity after adjusting for interpersonal violence. We provide evidence for distinct neurobiological mechanisms through which adversity related to poverty and interpersonal violence is associated with psychopathology in adolescence. Distinguishing distinct pathways through which adversity influences mental health has implications for preventive interventions targeting youths exposed to childhood adversity.

  3. Side effects of cocaine abuse: multiorgan toxicity and pathological consequences.

    PubMed

    Riezzo, I; Fiore, C; De Carlo, D; Pascale, N; Neri, M; Turillazzi, E; Fineschi, V

    2012-01-01

    Cocaine is a powerful stimulant of the sympathetic nervous system by inhibiting catecholamine reuptake, stimulating central sympathetic outflow, and increasing the sensitivity of adrenergic nerve endings to norepinephrine (NE). It is known, from numerous studies, that cocaine causes irreversible structural changes on the brain, heart, lung and other organs such as liver and kidney and there are many mechanisms involved in the genesis of these damages. Some effects are determined by the overstimulation of the adrenergic system. Most of the direct toxic effects are mediated by oxidative stress and by mitochondrial dysfunction produced during the metabolism of noradrenaline or during the metabolism of norcocaina, as in cocaine-induced hepathotoxicity. Cocaine is responsible for the coronary arteries vasoconstriction, atherosclerotic phenomena and thrombus formation. In this way, cocaine favors the myocardial infarction. While the arrhythmogenic effect of cocaine is mediated by the action on potassium channel (blocking), calcium channels (enhances the function) and inhibiting the flow of sodium during depolarization. Moreover chronic cocaine use is associated with myocarditis, ventricular hypertrophy, dilated cardiomyopathy and heart failure. A variety of respiratory problems temporally associated with crack inhalation have been reported. Cocaine may cause changes in the respiratory tract as a result of its pharmacologic effects exerted either locally or systemically, its method of administration (smoking, sniffing, injecting), or its alteration of central nervous system neuroregulation of pulmonary function. Renal failure resulting from cocaine abuse has been also well documented. A lot of studies demonstrated a high incidence of congenital cardiovascular and brain malformations in offspring born to mothers with a history of cocaine abuse.

  4. Heart rate variability during caregiving and sleep after massage therapy in preterm infants.

    PubMed

    Smith, Sandra L; Haley, Shannon; Slater, Hillarie; Moyer-Mileur, Laurie J

    2013-08-01

    Preterm birth impairs the infant's stress response due to interruption of autonomic nervous system (ANS) development. Preterm infants demonstrate a prolonged and aberrant sympathetic response to stressors. ANS development may be promoted by massage therapy (MT), which has been shown to improve stress response in preterm infants. The aim of this study was to compare preterm infant ANS function and stress response during sleep and caregiving epochs, as measured by heart rate variability (HRV), after two weeks of twice-daily MT. A subset of participants from a larger randomized, masked, controlled trial was used. Twenty-one infants (8 males and 13 females) from a larger study of 37 medically stable preterm infants were studied. The infants were receiving full volume enteral feedings with a mean post-menstrual age of 31.4 (MT) and 30.9 (control) weeks. Low to high frequency (LF:HF) ratio of HRV was the outcome of interest. There was a significant group×time×sex interaction effect (p<.05). Male control infants demonstrated a significant decline in LF:HF ratio from baseline to the second caregiving epoch, suggesting decreased mobilization of sympathetic nervous system response when exposed to stressors. Male MT infants demonstrated increased LF:HF ratio during caregiving and decreased LF:HF ratio during sleep epochs, suggesting improved ANS function, although this was not statistically significant. LF:HF ratio was similar in female MT and female control infants during caregiving and sleep. Control males had decreased HRV compared to MT males. There was no difference in HRV between MT and control females. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Autonomic dysfunction and osteoporosis after electrical burn.

    PubMed

    Roshanzamir, Sharareh; Dabbaghmanesh, Mohammad Hossein; Dabbaghmanesh, Alireza; Nejati, Solmaz

    2016-05-01

    Several studies have shown the importance of the sympathetic nervous system in bone metabolism. There is an evidence of sympathetic skin response (SSR) impairment in electrical burn patients up to 2 years after their injuries. The acute phase of burn is accompanied by increased bone resorption. Whether the prolonged dysfunction of sympathetic nervous system may result in bone metabolism derangement even after the acute phase of electrical burn is the inspiring question for this study. And we tried to find correlation between SSR abnormality and areal bone mineral density (BMD) in electrical burn patients 6 months or more after the incidents. 42 electrical burn patients (≥6 months prior to study) who did not have a known joint or bone disease, history of neuropathy (central or peripheral), diabetes mellitus or consumption of any drug affecting the autonomic nervous system or evidence of neuropathy in nerve conduction study were recruited. We also gathered a control group of 50 healthy subjects (without electrical burn or the exclusion criteria). They went under dual energy X-ray absorptiometry and SSR study. Data were analyzed statistically with SPSS 16.0 making use of independent t-test and Pearson correlation coefficient. P<0.05 was considered significant statistically. Areal BMD was significantly lower in electrical burn patients than control group (P<0.001). SSR latency was significantly prolonged and its amplitude was significantly reduced in burn patients compared to control group (P<0.001). In burn patients there was an inverse correlation of areal BMD of lumbar vertebrae, left femur neck and total femur with SSR latency and a direct correlation of areal BMD with SSR amplitude. In control group there was just direct correlation of areal BMD of lumbar vertebrae and left femur neck with SSR amplitude. Electrical burn patients are at risk of reduced areal BMD long after their injuries. Sympathetic derangement and impaired SSR are correlated with reduction in areal BMD in these patients. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  6. Social instability and immunity in rhesus monkeys: the role of the sympathetic nervous system.

    PubMed

    Capitanio, John P; Cole, Steven W

    2015-05-26

    Social instability can adversely affect endocrine, immune and health outcomes, and recent evidence suggests that the sympathetic nervous system (SNS) might mediate these effects. We conducted two studies with adult male rhesus monkeys (Macaca mulatta) to understand how social conditions affect measures of SNS activity and immune function. In Experiment 1, animals were socialized in stable social conditions, then were switched to unstable (stressful) social conditions, then were returned to stable conditions. Analysis revealed quadratic effects for measures of behaviour, urinary metabolites of epinephrine and norepinephrine, and expression of immune response genes: as expected, social instability adversely impacted most measures, and the effects remediated upon re-imposition of stable conditions. Cortisol levels were unaffected. In Experiment 2, we used the sympathomimetic drug methamphetamine to challenge the SNS; animals also underwent socialization in stable or unstable groups. Surprisingly, while methamphetamine elevated plasma catecholamines, responses in lymph nodes tracked the social, and not the drug, condition: social instability upregulated the density of SNS fibres in lymph nodes and downregulated Type I interferon gene expression. Together, these results indicate that the SNS is extremely sensitive to social conditions; full understanding of the adverse effects of social instability on health should therefore incorporate measures of this health-relevant system. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Altered autonomic nervous system activity in women with unexplained recurrent pregnancy loss.

    PubMed

    Kataoka, Kumie; Tomiya, Yumi; Sakamoto, Ai; Kamada, Yasuhiko; Hiramatsu, Yuji; Nakatsuka, Mikiya

    2015-06-01

    Autonomic nervous system activity was studied to evaluate the physical and mental state of women with unexplained recurrent pregnancy loss (RPL). Heart rate variability (HRV) is a measure of beat-to-beat temporal changes in heart rate and provides indirect insight into autonomic nervous system tone and can be used to assess sympathetic and parasympathetic tone. We studied autonomic nervous system activity by measuring HRV in 100 women with unexplained RPL and 61 healthy female volunteers as controls. The degree of mental distress was assessed using the Kessler 6 (K6) scale. The K6 score in women with unexplained RPL was significantly higher than in control women. HRV evaluated on standard deviation of the normal-to-normal interval (SDNN) and total power was significantly lower in women with unexplained RPL compared with control women. These indices were further lower in women with unexplained RPL ≥4. On spectral analysis, high-frequency (HF) power, an index of parasympathetic nervous system activity, was significantly lower in women with unexplained RPL compared with control women, but there was no significant difference in the ratio of low-frequency (LF) power to HF power (LF/HF), an index of sympathetic nervous system activity, between the groups. The physical and mental state of women with unexplained RPL should be evaluated using HRV to offer mental support. Furthermore, study of HRV may elucidate the risk of cardiovascular diseases and the mechanisms underlying unexplained RPL. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  8. Nervous glucose sensing regulates postnatal β cell proliferation and glucose homeostasis

    PubMed Central

    Tarussio, David; Metref, Salima; Seyer, Pascal; Mounien, Lourdes; Vallois, David; Magnan, Christophe; Foretz, Marc; Thorens, Bernard

    2013-01-01

    How glucose sensing by the nervous system impacts the regulation of β cell mass and function during postnatal development and throughout adulthood is incompletely understood. Here, we studied mice with inactivation of glucose transporter 2 (Glut2) in the nervous system (NG2KO mice). These mice displayed normal energy homeostasis but developed late-onset glucose intolerance due to reduced insulin secretion, which was precipitated by high-fat diet feeding. The β cell mass of adult NG2KO mice was reduced compared with that of WT mice due to lower β cell proliferation rates in NG2KO mice during the early postnatal period. The difference in proliferation between NG2KO and control islets was abolished by ganglionic blockade or by weaning the mice on a carbohydrate-free diet. In adult NG2KO mice, first-phase insulin secretion was lost, and these glucose-intolerant mice developed impaired glucagon secretion when fed a high-fat diet. Electrophysiological recordings showed reduced parasympathetic nerve activity in the basal state and no stimulation by glucose. Furthermore, sympathetic activity was also insensitive to glucose. Collectively, our data show that GLUT2-dependent control of parasympathetic activity defines a nervous system/endocrine pancreas axis that is critical for β cell mass establishment in the postnatal period and for long-term maintenance of β cell function. PMID:24334455

  9. [Research consortium Neuroimmunology and pain in the research network musculoskeletal diseases].

    PubMed

    Schaible, H-G; Chang, H-D; Grässel, S; Haibel, H; Hess, A; Kamradt, T; Radbruch, A; Schett, G; Stein, C; Straub, R H

    2018-05-01

    The research consortium Neuroimmunology and Pain (Neuroimpa) explores the importance of the relationships between the immune system and the nervous system in musculoskeletal diseases for the generation of pain and for the course of fracture healing and arthritis. The spectrum of methods includes analyses at the single cell level, in vivo models of arthritis and fracture healing, imaging studies on brain function in animals and humans and analysis of data from patients. Proinflammatory cytokines significantly contribute to the generation of joint pain through neuronal cytokine receptors. Immune cells release opioid peptides which activate opioid receptors at peripheral nociceptors and thereby evoke hypoalgesia. The formation of new bone after fractures is significantly supported by the nervous system. The sympathetic nervous system promotes the development of immune-mediated arthritis. The studies show a significant analgesic potential of the neutralization of proinflammatory cytokines and of opioids which selectively inhibit peripheral neurons. Furthermore, they show that the modulation of neuronal mechanisms can beneficially influence the course of musculoskeletal diseases. Interventions in the interactions between the immune system and the nervous system hold a great therapeutic potential for the treatment of musculoskeletal diseases and pain.

  10. Abnormal cardiac autonomic regulation in mice lacking ASIC3.

    PubMed

    Cheng, Ching-Feng; Kuo, Terry B J; Chen, Wei-Nan; Lin, Chao-Chieh; Chen, Chih-Cheng

    2014-01-01

    Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3) is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3(-/-) mice. Asic3(-/-) mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3(-/-) mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3(-/-) mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.

  11. Baroreflex function: determinants in healthy subjects and disturbances in diabetes, obesity and metabolic syndrome.

    PubMed

    Skrapari, Ioanna; Tentolouris, Nicholas; Katsilambros, Nicholas

    2006-08-01

    Arterial baroreceptors play an important role in the short-term regulation of arterial pressure, by reflex chronotropic effect on the heart and by reflex regulation of sympathetic outflow. Baroreflex sensitivity (BRS) represents an index of arterial baroreceptors function. Several methods of measuring BRS are available nowadays. Different factors influence BRS in the healthy population, including sex, age, blood pressure, heart rate, body fatness, arterial stiffness, blood glucose and insulin levels, as well as physical activity. Baroreceptors dysfunction is evident in diseases such as coronary artery disease, heart failure, arterial hypertension, diabetes mellitus and obesity. The underlying mechanism of BRS attenuation in diabetes or obesity is not yet well known; however, there is increasing evidence that it is at least partly related to autonomic nervous system dysfunction and particularly to sympathetic overactivity that accompanies these diseases. Blunted BRS provides prognostic information for cardiovascular diseases and possibly for diabetes, while its' prognostic information for obesity is not yet established. This review deals with the mechanisms affecting baroreflex function, the newer techniques of BRS estimation and the most recent insights of baroreflex function in the healthy population and in various diseases with emphasis on diabetes and obesity. In addition, the clinical implication of a reduced BRS in these disorders is discussed.

  12. The autonomic laboratory

    NASA Technical Reports Server (NTRS)

    Low, P. A.; Opfer-Gehrking, T. L.

    1999-01-01

    The autonomic nervous system can now be studied quantitatively, noninvasively, and reproducibly in a clinical autonomic laboratory. The approach at the Mayo Clinic is to study the postganglionic sympathetic nerve fibers of peripheral nerve (using the quantitative sudomotor axon reflex test [QSART]), the parasympathetic nerves to the heart (cardiovagal tests), and the regulation of blood pressure by the baroreflexes (adrenergic tests). Patient preparation is extremely important, since the state of the patient influences the results of autonomic function tests. The autonomic technologist in this evolving field needs to have a solid core of knowledge of autonomic physiology and autonomic function tests, followed by training in the performance of these tests in a standardized fashion. The range and utilization of tests of autonomic function will likely continue to evolve.

  13. Renal sympathetic nerve, blood flow, and epithelial transport responses to thermal stress.

    PubMed

    Wilson, Thad E

    2017-05-01

    Thermal stress is a profound sympathetic stress in humans; kidney responses involve altered renal sympathetic nerve activity (RSNA), renal blood flow, and renal epithelial transport. During mild cold stress, RSNA spectral power but not total activity is altered, renal blood flow is maintained or decreased, and epithelial transport is altered consistent with a sympathetic stress coupled with central volume loaded state. Hypothermia decreases RSNA, renal blood flow, and epithelial transport. During mild heat stress, RSNA is increased, renal blood flow is decreased, and epithelial transport is increased consistent with a sympathetic stress coupled with a central volume unloaded state. Hyperthermia extends these directional changes, until heat illness results. Because kidney responses are very difficult to study in humans in vivo, this review describes and qualitatively evaluates an in vivo human skin model of sympathetically regulated epithelial tissue compared to that of the nephron. This model utilizes skin responses to thermal stress, involving 1) increased skin sympathetic nerve activity (SSNA), decreased skin blood flow, and suppressed eccrine epithelial transport during cold stress; and 2) increased SSNA, skin blood flow, and eccrine epithelial transport during heat stress. This model appears to mimic aspects of the renal responses. Investigations of skin responses, which parallel certain renal responses, may aid understanding of epithelial-sympathetic nervous system interactions during cold and heat stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The Emerging Role of Chronic Low-Grade Inflammation in the Pathophysiology of Polycystic Ovary Syndrome.

    PubMed

    Shorakae, Soulmaz; Teede, Helena; de Courten, Barbora; Lambert, Gavin; Boyle, Jacqueline; Moran, Lisa J

    2015-07-01

    Polycystic ovary syndrome (PCOS) has become increasingly common over recent years and is associated with reproductive features as well as cardiometabolic risk factors, including visceral obesity, dyslipidemia and impaired glucose homeostasis, and potentially cardiovascular disease. Emerging evidence suggests that these long-term metabolic effects are linked to a low-grade chronic inflammatory state with the triad of hyperinsulinemia, hyperandrogenism, and low-grade inflammation acting together in a vicious cycle in the pathophysiology of PCOS. Dysregulation of the sympathetic nervous system may also act as an important component, potentially creating a tetrad in the pathophysiology of PCOS. The aim of this review is to examine the role of chronic inflammation and the sympathetic nervous system in the development of obesity and PCOS and review potential therapeutic options to alleviate low-grade inflammation in this setting. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  15. Peripheral nervous control of cold-induced reduction in the respiratory quotient of the rat

    NASA Astrophysics Data System (ADS)

    Refinetti, Roberto

    1990-03-01

    Cold-exposed rats show a reduction in the respiratory quotient which is indicative of a relative shift from carbohydrates to lipids as substrates for oxidative metabolism. In the present study, the effects of food deprivation and cold exposure on the respiratory quotient were observed. In addition, the involvement of the three main branches of the peripheral nervous system (sympathetic, parasympathetic, and somatic) was investigated by means of synaptic blockade with propranolol, atropine, and quinine, respectively. Both propranolol and quinine blocked the cold-induced decrease in respiratory quotient and increase in heat production, whereas atropine had only minor and very brief effects. It is concluded that both the sympathetic and somatic branches are involved in the metabolic changes associated with cold-induced thermogenesis and that the increase in metabolic heat production involves a shift from carbohydrate to lipid utilization irrespective of which of the two branches is activated.

  16. The pupil as a measure of emotional arousal and autonomic activation

    PubMed Central

    Bradley, Margaret M.; Miccoli, Laura; Escrig, Miguel A.; Lang, Peter J.

    2013-01-01

    Pupil diameter was monitored during picture viewing to assess effects of hedonic valence and emotional arousal on pupillary responses. Autonomic activity (heart rate and skin conductance) was concurrently measured to determine whether pupillary changes are mediated by parasympathetic or sympathetic activation. Following an initial light reflex, pupillary changes were larger when viewing emotionally arousing pictures, regardless of whether these were pleasant or unpleasant. Pupillary changes during picture viewing covaried with skin conductance change, supporting the interpretation that sympathetic nervous systemactivity modulates these changes in the context of affective picture viewing. Taken together, the data provide strong support for the hypothesis that the pupil’s response during affective picture viewing reflects emotional arousal associated with increased sympathetic activity. PMID:18282202

  17. The pattern of activation of the sympathetic nervous system during tilt-induced syncope.

    PubMed

    Zyśko, Dorota; Gajek, Jacek; Sciborski, Ryszard; Smereka, Jacek; Checiński, Igor; Mazurek, Walentyna

    2007-04-01

    A 49-year-old patient with a history of situational syncope and minimal electrocardiographic signs of accessory pathway is described. The evidence for pre-excitation was present only during the sympathetic activation caused by exercise testing and isoprenaline infusion. This phenomenon served as an indicator of significant adrenergic drive to the heart after the tilt-induced syncope. The meaning of the observed electrocardiographic changes in the course of neurocardiogenic reaction and its contribution to the understanding of the sympatho-vagal balance during vasovagal syncope is discussed. The lack of preexcitation signs during syncope and its appearance several seconds after the syncope-related sinus pause indicates sympathetic withdrawal before and shortly after the asystole. The possible pathophysiological mechanisms are discussed.

  18. Children with Autism Show Altered Autonomic Adaptation to Novel and Familiar Social Partners.

    PubMed

    Neuhaus, Emily; Bernier, Raphael A; Beauchaine, Theodore P

    2016-05-01

    Social deficits are fundamental to autism spectrum disorder (ASD), and a growing body of research implicates altered functioning of the autonomic nervous system (ANS), including both sympathetic and parasympathetic branches. However, few studies have explored both branches concurrently in ASD, particularly within the context of social interaction. The current study investigates patterns of change in indices of sympathetic (pre-ejection period; PEP) and parasympathetic (respiratory sinus arrhythmia; RSA) cardiac influence as boys (ages 8-11 years) with (N = 18) and without (N = 18) ASD engage in dyadic social interaction with novel and familiar social partners. Groups showed similar patterns of autonomic change during interaction with the novel partner, but differed in heart rate, PEP, and RSA reactivity while interacting with a familiar partner. Boys without ASD evinced decreasing sympathetic and increasing parasympathetic influence, whereas boys with ASD increased in sympathetic influence. Boys without ASD also demonstrated more consistent ANS responses across partners than those with ASD, with parasympathetic responding differentiating familiar and novel interaction partners. Finally, PEP slopes with a familiar partner correlated with boys' social skills. Implications include the importance of considering autonomic state during clinical assessment and treatment, and the potential value of regulation strategies as a complement to intervention programs aiming to support social cognition and behavior. Autism Res 2016, 9: 579-591. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  19. Misdirected Sympathy: The Role of Sympatholysis in Sepsis and Septic Shock.

    PubMed

    Ferreira, Jason A; Bissell, Brittany D

    2018-02-01

    The spectrum of sepsis and septic shock remains a highly prevalent disease state, carrying a high risk of morbidity and mortality. The sympathetic nervous system (SNS) plays an important role in this initial cascade, enabling the host to respond to invading pathogens; however, prolonged activation can become pathological. The potential for unregulated sympathetic tone to become of detriment in patients with sepsis has fueled interest in the role and impact of sympatholysis, the selective inhibition of sympathetic tone. The cornerstone of septic shock therapy for decades has been the supplementation of catecholamines and thus potential further perpetuation of this sympathetic dysregulation. Although the theory of sympatholysis circulates around cardiovascular effects and stroke volume optimization, the impact of augmenting the SNS may extend well beyond this, including the impacts on the immune system, inflammatory cascade, and even gene transcription. Presently, the most robust clinical evidence involves the use of the cardioselective β-blocker esmolol in patients with septic shock with persistent tachycardia secondary to catecholamine use. Evidence is isolated only to animal models with α-agonists. Future evidence stands to elucidate the balance of sympathetic and autonomic tone as well as the potential role of redirecting and maximizing sympathetic activity.

  20. The articulo-cardiac sympathetic reflex in spinalized, anesthetized rats.

    PubMed

    Nakayama, Tomohiro; Suzuki, Atsuko; Ito, Ryuzo

    2006-04-01

    Somatic afferent regulation of heart rate by noxious knee joint stimulation has been proven in anesthetized cats to be a reflex response whose reflex center is in the brain and whose efferent arc is a cardiac sympathetic nerve. In the present study we examined whether articular stimulation could influence heart rate by this efferent sympathetic pathway in spinalized rats. In central nervous system (CNS)-intact rats, noxious articular movement of either the knee or elbow joint resulted in an increase in cardiac sympathetic nerve activity and heart rate. However, although in acutely spinalized rats a noxious movement of the elbow joint resulted in a significant increase in cardiac sympathetic nerve activity and heart rate, a noxious movement of the knee joint had no such effect and resulted in only a marginal increase in heart rate. Because this marginal increase was abolished by adrenalectomy suggests that it was due to the release of adrenal catecholamines. In conclusion, the spinal cord appears to be capable of mediating, by way of cardiac sympathetic nerves, the propriospinally induced reflex increase in heart rate that follows noxious stimulation of the elbow joint, but not the knee joint.

  1. Sympathetic overactivity in hypertension and cardiovascular disease.

    PubMed

    Manolis, A J; Poulimenos, L E; Kallistratos, M S; Gavras, I; Gavras, H

    2014-01-01

    From the first description of its anatomy by T. Willis to the novel therapeutic manipulations, it is unanimously recognized that the sympathetic nervous system (SNS) holds a crucial role in cardiovascular homeostasis. The introduction of sophisticated techniques, as microneurography and regional norepinephrine spillover provided the evidence for the role of sympathetic overactivity in various cardiovascular disease entities. Sympathetic activation is common in patients with essential hypertension and contributes to initiation, maintenance and progression of the disease and it contributes to the manifestation of its major complications. A considerable body of evidence relates SNS overactivity with high sodium intake in experimental animals and humans and the underlying mechanisms have nowadays been elucidated. SNS activity is more pronounced in patients with resistant hypertension and there are several conditions that lead to this phenomenon, as older age, kidney disease, obesity and metabolic syndrome, mental stress and sleep apnea. SNS overactivity holds also a key physiopathological role in heart failure, acute coronary syndromes and arrhythmias. Moreover, inhibition of sympathetic overactivity by various means, including central SNS suppressing drugs, peripheral alpha- and beta- adrenergic receptor blockers, or novel approaches as renal sympathetic denervation have been used successfully in the treatment of all these disorders.

  2. Sympathetic activation and endothelial dysfunction in polycystic ovary syndrome are not explained by either obesity or insulin resistance.

    PubMed

    Lambert, Elisabeth A; Teede, Helena; Sari, Carolina Ika; Jona, Eveline; Shorakae, Soulmaz; Woodington, Kiri; Hemmes, Robyn; Eikelis, Nina; Straznicky, Nora E; De Courten, Barbora; Dixon, John B; Schlaich, Markus P; Lambert, Gavin W

    2015-12-01

    Polycystic ovary syndrome (PCOS) is a common endocrine condition underpinned by insulin resistance and associated with increased risk of obesity, type 2 diabetes and adverse cardiovascular risk profile. Previous data suggest autonomic imbalance [elevated sympathetic nervous system (SNS) activity and decreased heart rate variability (HRV)] as well as endothelial dysfunction in PCOS. However, it is not clear whether these abnormalities are driven by obesity and metabolic disturbance or whether they are independently related to PCOS. We examined multiunit and single-unit muscle SNS activity (by microneurography), HRV (time and frequency domain analysis) and endothelial function [ischaemic reactive hyperaemia index (RHI) using the EndoPAT device] in 19 overweight/obese women with PCOS (BMI: 31·3 ± 1·5 kg/m(2), age: 31·3 ± 1·6 years) and compared them with 21 control overweight/obese women (BMI: 33·0 ± 1·4 kg/m(2), age: 28·2 ± 1·6 years) presenting a similar metabolic profile (fasting total, HDL and LDL cholesterol, glucose, triglycerides, insulin sensitivity and blood pressure). Women with PCOS had elevated multiunit muscle SNS activity (41 ± 2 vs 33 ± 3 bursts per 100 heartbeats, P < 0·05). Single-unit analysis showed that vasoconstrictor neurons were characterized by elevated firing rate and probability and incidence of multiple spikes (P < 0·01 for all parameters). Women with PCOS also had impaired endothelial function (RHI: 1·77 ± 0·14 vs 2·18 ± 0·14, P < 0·05). HRV did not differ between the groups. Women with PCOS have increased sympathetic drive and impaired endothelial function independent of obesity and metabolic disturbances. Sympathetic activation and endothelial dysfunction may confer greater cardiovascular risk in women with PCOS. © 2015 John Wiley & Sons Ltd.

  3. Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance.

    PubMed

    Enriori, Pablo J; Sinnayah, Puspha; Simonds, Stephanie E; Garcia Rudaz, Cecilia; Cowley, Michael A

    2011-08-24

    Leptin regulates body weight in mice by decreasing appetite and increasing sympathetic nerve activity (SNA), which increases energy expenditure in interscapular brown adipose tissue (iBAT). Diet-induced obese mice (DIO) are resistant to the anorectic actions of leptin. We evaluated whether leptin still stimulated sympathetic outflow in DIO mice. We measured iBAT temperature as a marker of SNA. We found that obese hyperleptinemic mice have higher iBAT temperature than mice on regular diet. Conversely, obese leptin-deficient ob/ob mice have lower iBAT temperature. Additionally, leptin increased SNA in obese (DIO and ob/ob) and control mice, despite DIO mice being resistant to anorectic action of leptin. We demonstrated that neurons in the dorsomedial hypothalamus (DMH) of DIO mice mediate the thermogenic responses to hyperleptinemia in obese mammals because blockade of leptin receptors in the DMH prevented the thermogenic effects of leptin. Peripheral Melotan II (MTII) injection increased iBAT temperature, but it was blunted by blockade of DMH melanocortin receptors (MC4Rs) by injecting agouti-related peptide (AgRP) directly into the DMH, suggesting a physiological role of the DMH on temperature regulation in animals with normal body weight. Nevertheless, obese mice without a functional melanocortin system (MC4R KO mice) have an increased sympathetic outflow to iBAT compared with their littermates, suggesting that higher leptin levels drive sympathoexcitation to iBAT by a melanocortin-independent pathway. Because the sympathetic nervous system contributes in regulating blood pressure, heart rate, and hepatic glucose production, selective leptin resistance may be a crucial mechanism linking adiposity and metabolic syndrome.

  4. Sympathetic sprouting drives hippocampal cholinergic reinnervation that prevents loss of a muscarinic receptor-dependent long-term depression at CA3-CA1 synapses.

    PubMed

    Scheiderer, Cary L; McCutchen, Eve; Thacker, Erin E; Kolasa, Krystyna; Ward, Matthew K; Parsons, Dee; Harrell, Lindy E; Dobrunz, Lynn E; McMahon, Lori L

    2006-04-05

    Degeneration of septohippocampal cholinergic neurons results in memory deficits attributable to loss of cholinergic modulation of hippocampal synaptic circuits. A remarkable consequence of cholinergic degeneration is the sprouting of noradrenergic sympathetic fibers from the superior cervical ganglia into hippocampus. The functional impact of sympathetic ingrowth on synaptic physiology has never been investigated. Here, we report that, at CA3-CA1 synapses, a Hebbian form of long-term depression (LTD) induced by muscarinic M1 receptor activation (mLTD) is lost after medial septal lesion. Unexpectedly, expression of mLTD is rescued by sympathetic sprouting. These effects are specific because LTP and other forms of LTD are unaffected. The rescue of mLTD expression is coupled temporally with the reappearance of cholinergic fibers in hippocampus, as assessed by the immunostaining of fibers for VAChT (vesicular acetylcholine transporter). Both the cholinergic reinnervation and mLTD rescue are prevented by bilateral superior cervical ganglionectomy, which also prevents the noradrenergic sympathetic sprouting. The new cholinergic fibers likely originate from the superior cervical ganglia because unilateral ganglionectomy, performed when cholinergic reinnervation is well established, removes the reinnervation on the ipsilateral side. Thus, the temporal coupling of the cholinergic reinnervation with mLTD rescue, together with the absence of reinnervation and mLTD expression after ganglionectomy, demonstrate that the autonomic-driven cholinergic reinnervation is essential for maintaining mLTD after central cholinergic cell death. We have discovered a novel phenomenon whereby the autonomic and central nervous systems experience structural rearrangement to replace lost cholinergic innervation in hippocampus, with the consequence of preserving a form of LTD that would otherwise be lost as a result of cholinergic degeneration.

  5. New radionuclide agents for cardiac imaging: Description and application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahn, J.K.; Pippin, J.J.; Corbett, J.R.

    1989-08-01

    The introduction of three new radiopharmaceuticals into clinical research and practice has broadened the potential applications and scope of nuclear cardiology examinations. Technetium-99m labeled isonitrile perfusion agents have excellent imaging characteristics allowing the accurate identification of coronary artery disease. Simultaneous assessments of ventricular function are possible with these agents. Iodine-123 phenylpentadecanoic acid myocardial scintigraphy permits assessments of myocardial perfusion and fatty acid metabolism, and permits investigations of myocardial metabolism with conventional imaging equipment. Iodine-123 meta-iodobenzyl-guanidine serves as an indicator of the functional integrity of the sympathetic nervous system and permits evaluations of the effects of various disease states on catecholaminemore » handling by the heart. 58 references.« less

  6. Effect of an inhibitor of noradrenaline uptake, desipramine, on cell proliferation in the intestinal crypt epithelium.

    PubMed

    Tutton, P J; Barkla, D H

    1989-01-01

    The intestinal mucosa receives an adrenergic innervation for which there is no commonly accepted function. However, in recent years, cell kinetic studies have raised the possibility that this innervation may be an important regulator of crypt cell proliferation. The effects of noradrenaline released from adrenergic nerves is terminated principally by re-uptake of the amine into the nerve and this process can be inhibited by the antidepressant drug, desipramine. In this report desipramine is shown to accelerate crypt cell proliferation in intact, but not in chemically sympathectomized rats, thus adding support to the notion that regulation of crypt cell division is an important function of the sympathetic nervous system.

  7. MicroRNA-542-5p as a Novel Tumor Suppressor in Neuroblastoma

    PubMed Central

    Bray, Isabella; Tivnan, Amanda; Bryan, Kenneth; Foley, Niamh H; Watters, Karen M; Tracey, Lorraine; Davidoff, Andrew M; Stallings, Raymond L

    2011-01-01

    Several studies have implicated the dysregulation of microRNAs in neuroblastoma pathogenesis, an often fatal paediatric cancer arising from precursor cells of the sympathetic nervous system. Our group and others have demonstrated that lower expression of miR-542-5p is highly associated with poor patient survival, indicating a potential tumor suppressive function. Here, we demonstrate that ectopic over-expression of this miRNA decreases the invasive potential of neuroblastoma cell lines in vitro, along with primary tumor growth and metastases in an orthotopic mouse xenograft model, providing the first functional evidence for the involvement of miR-542-5p as a tumor suppressor in any type of cancer. PMID:21310526

  8. Roles for the sympathetic nervous system, renal nerves, and CNS melanocortin-4 receptor in the elevated blood pressure in hyperandrogenemic female rats.

    PubMed

    Maranon, Rodrigo; Lima, Roberta; Spradley, Frank T; do Carmo, Jussara M; Zhang, Howei; Smith, Andrew D; Bui, Elizabeth; Thomas, R Lucas; Moulana, Mohadetheh; Hall, John E; Granger, Joey P; Reckelhoff, Jane F

    2015-04-15

    Women with polycystic ovary syndrome (PCOS) have hyperandrogenemia and increased prevalence of risk factors for cardiovascular disease, including elevated blood pressure. We recently characterized a hyperandrogenemic female rat (HAF) model of PCOS [chronic dihydrotestosterone (DHT) beginning at 4 wk of age] that exhibits similar characteristics as women with PCOS. In the present studies we tested the hypotheses that the elevated blood pressure in HAF rats is mediated in part by sympathetic activation, renal nerves, and melanocortin-4 receptor (MC4R) activation. Adrenergic blockade with terazosin and propranolol or renal denervation reduced mean arterial pressure (MAP by telemetry) in HAF rats but not controls. Hypothalamic MC4R expression was higher in HAF rats than controls, and central nervous system MC4R antagonism with SHU-9119 (1 nmol/h icv) reduced MAP in HAF rats. Taking a genetic approach, MC4R null and wild-type (WT) female rats were treated with DHT or placebo from 5 to 16 wk of age. MC4R null rats were obese and had higher MAP than WT control rats, and while DHT increased MAP in WT controls, DHT failed to further increase MAP in MC4R null rats. These data suggest that increases in MAP with chronic hyperandrogenemia in female rats are due, in part, to activation of the sympathetic nervous system, renal nerves, and MC4R and may provide novel insights into the mechanisms responsible for hypertension in women with hyperandrogenemia such as PCOS. Copyright © 2015 the American Physiological Society.

  9. Hand-held monitor of sympathetic nervous system using salivary amylase activity and its validation by driver fatigue assessment.

    PubMed

    Yamaguchi, Masaki; Deguchi, Mitsuo; Wakasugi, Junichi; Ono, Shin; Takai, Noriyasu; Higashi, Tomoyuki; Mizuno, Yasufumi

    2006-01-15

    In order to realize a hand-held monitor of the sympathetic nervous system, we fabricated a completely automated analytical system for salivary amylase activity using a dry-chemistry system. This was made possible by the fabrication of a disposable test-strip equipped with built-in collecting and reagent papers and an automatic saliva transfer device. In order to cancel out the effects of variations in environmental temperature and pH of saliva, temperature- and pH-adjusted equations were experimentally determined, and each theoretical value was input into the memory of the hand-held monitor. Within a range of salivary amylase activity between 10 and 140 kU/l, the calibration curve for the hand-held monitor showed a coefficient with R(2)=0.97. Accordingly, it was demonstrated that the hand-held monitor enabled a user to automatically measure the salivary amylase activity with high accuracy with only 30 microl sample of saliva within a minute from collection to completion of the measurement. In order to make individual variations of salivary amylase activity negligible during driver fatigue assessment, a normalized equation was proposed. The normalized salivary amylase activity correlated with the mental and physical fatigue states. Thus, this study demonstrated that an excellent hand-held monitor with an algorithm for normalization of individuals' differences in salivary amylase activity, which could be easily and quickly used for evaluating the activity of the sympathetic nervous system at any time. Furthermore, it is suggested that the salivary amylase activity might be used as a better index for psychological research.

  10. Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries.

    PubMed

    Boeva, Valentina; Louis-Brennetot, Caroline; Peltier, Agathe; Durand, Simon; Pierre-Eugène, Cécile; Raynal, Virginie; Etchevers, Heather C; Thomas, Sophie; Lermine, Alban; Daudigeos-Dubus, Estelle; Geoerger, Birgit; Orth, Martin F; Grünewald, Thomas G P; Diaz, Elise; Ducos, Bertrand; Surdez, Didier; Carcaboso, Angel M; Medvedeva, Irina; Deller, Thomas; Combaret, Valérie; Lapouble, Eve; Pierron, Gaelle; Grossetête-Lalami, Sandrine; Baulande, Sylvain; Schleiermacher, Gudrun; Barillot, Emmanuel; Rohrer, Hermann; Delattre, Olivier; Janoueix-Lerosey, Isabelle

    2017-09-01

    Neuroblastoma is a tumor of the peripheral sympathetic nervous system, derived from multipotent neural crest cells (NCCs). To define core regulatory circuitries (CRCs) controlling the gene expression program of neuroblastoma, we established and analyzed the neuroblastoma super-enhancer landscape. We discovered three types of identity in neuroblastoma cell lines: a sympathetic noradrenergic identity, defined by a CRC module including the PHOX2B, HAND2 and GATA3 transcription factors (TFs); an NCC-like identity, driven by a CRC module containing AP-1 TFs; and a mixed type, further deconvoluted at the single-cell level. Treatment of the mixed type with chemotherapeutic agents resulted in enrichment of NCC-like cells. The noradrenergic module was validated by ChIP-seq. Functional studies demonstrated dependency of neuroblastoma with noradrenergic identity on PHOX2B, evocative of lineage addiction. Most neuroblastoma primary tumors express TFs from the noradrenergic and NCC-like modules. Our data demonstrate a previously unknown aspect of tumor heterogeneity relevant for neuroblastoma treatment strategies.

  11. The role of central noradrenergic dysregulation in anxiety disorders: evidence from clinical studies.

    PubMed

    Kalk, N J; Nutt, D J; Lingford-Hughes, A R

    2011-01-01

    The nature of the noradrenergic dysregulation in clinical anxiety disorders remains unclear. In panic disorder, the predominant view has been that central noradrenergic neuronal networks and/or the sympathetic nervous system was normal in patients at rest, but hyper-reactive to specific stimuli, for example carbon dioxide. These ideas have been extended to other anxiety disorders, which share with panic disorder characteristic subjective anxiety and physiological symptoms of excess sympathetic activity. For example, Generalized Anxiety Disorder is characterized by chronic free-floating anxiety, muscle tension, palpitation and insomnia. It has been proposed that there is chronic central hypersecretion of noradrenaline in Generalized Anxiety Disorder, with consequent hyporesponsiveness of central post-synaptic receptors. With regards to other disorders, it has been suggested that there is noradrenergic involvement or derangement, but a more specific hypothesis has not been enunciated. This paper reviews the evidence for noradrenergic dysfunction in anxiety disorders, derived from indirect measures of noradrenergic function in clinical populations.

  12. A collaboration investigating endocannabinoid signalling in brain and bone.

    PubMed

    Zimmer, Andreas

    2016-05-01

    Investigations into the cellular and molecular mechanisms underlying the psychoactive effects of cannabis preparations have led to the discovery of the endocannabinoid system. Interest in the central nervous system effects was initially the main focus of the research, but it soon became evident that the endocannabinoid system affects virtually every organ. The research field has therefore experienced a tremendous growth over the last decade and is now truly interdisciplinary. This short review provides a personal account of an interdisciplinary collaboration between Itai Bab from the Hebrew University of Jerusalem and the author. It describes the discovery of the endocannabinoid system in bone and the analysis of its functions. I am summarising the role of CB1 signalling as a modulator of sympathetic inhibition of bone formation. Thus, activation of CB1 receptors on sympathetic nerve terminals in bone, presumably from endocannabinoids released from apposing osteoblasts, reduces the inhibition of bone formation of sympathetic norepinephrine. CB2 receptors on osteoblasts and osteoclasts also modulate the proliferation and functions of these cells. Thus, activation of CB2 stimulates bone formation and represses bone resorption, whereas the genetic disruption of CB2 results in an osteoporosis-like phenotype. This signalling mechanism is clinically relevant, as shown by the association of polymorphisms in the CB2 receptor gene, CNR2, with bone density and osteoporosis. Finally, the review provides a summary of the recently discovered role of endocannabinoid signalling in one elongation. This review will also discuss the benefits of interdisciplinary and international collaborations.

  13. Regulation of skeletal muscle blood flow during exercise in ageing humans

    PubMed Central

    Hearon, Christopher M.

    2015-01-01

    Abstract The regulation of skeletal muscle blood flow and oxygen delivery to contracting skeletal muscle is complex and involves the mechanical effects of muscle contraction; local metabolic, red blood cell and endothelium‐derived substances; and the sympathetic nervous system (SNS). With advancing age in humans, skeletal muscle blood flow is typically reduced during dynamic exercise and this is due to a lower vascular conductance, which could ultimately contribute to age‐associated reductions in aerobic exercise capacity, a primary predictor of mortality in both healthy and diseased ageing populations. Recent findings have highlighted the contribution of endothelium‐derived substances to blood flow control in contracting muscle of older adults. With advancing age, impaired nitric oxide availability due to scavenging by reactive oxygen species, in conjunction with elevated vasoconstrictor signalling via endothelin‐1, reduces the local vasodilatory response to muscle contraction. Additionally, ageing impairs the ability of contracting skeletal muscle to blunt sympathetic vasoconstriction (i.e. ‘functional sympatholysis’), which is critical for the proper regulation of tissue blood flow distribution and oxygen delivery, and could further reduce skeletal muscle perfusion during high intensity and/or large muscle mass exercise in older adults. We propose that initiation of endothelium‐dependent hyperpolarization is the underlying signalling event necessary to properly modulate sympathetic vasoconstriction in contracting muscle, and that age‐associated impairments in red blood cell adenosine triphosphate release and stimulation of endothelium‐dependent vasodilatation may explain impairments in both local vasodilatation and functional sympatholysis with advancing age in humans. PMID:26332887

  14. Physiology in perspective: The Wisdom of the Body. Neural control of the kidney.

    PubMed

    DiBona, Gerald F

    2005-09-01

    Cannon equated the fluid matrix of the body with Bernard's concept of the internal environment and emphasized the importance of "the safe-guarding of an effective fluid matrix." He further emphasized the important role of the autonomic nervous system in the establishment and maintenance of homeostasis in the internal environment. This year's Cannon Lecture discusses the important role of the renal sympathetic nerves to regulate various aspects of overall renal function and to serve as one of the major "self-regulatory agencies which operate to preserve the constancy of the fluid matrix."

  15. The Theory is Out There: The Use of ALPHA-2 Agonists in Treatment of Septic Shock.

    PubMed

    Ferreira, Jason

    2018-04-01

    The sympathetic nervous system plays an important role in the initial response to sepsis. This response enables the host to respond to invading pathogens; however, prolonged activation can become pathological. The potential for unregulated sympathetic tone to become detrimental in the septic patient has fueled interest in the role and impact of sympathetic manipulation, including the selective inhibition of sympathetic tone to return and augment vascular reactivity. While conventional understanding of alpha 2 agonists activity is depletion of sympathetic outflow, novel evidence suggests mitigation rather than depletion. The mechanism by which these agents exert these properties remains controversial and appears to be condition-specific. The hypothesis by which alpha agonists affect the pathology of sepsis is multifactorial, but includes influence on inflammatory regulation, coagulopathy, dynamic flow, as well as vascular responsiveness and integrity. Theory and basic science evidence supports the use of α agonists in the septic population. The clinical evidence shedding light on this topic is limited and confounded by intention or trial design. Future evidence should focus on adjuvant therapy in patients progressing to or at high risk of shock development.

  16. Contemporary review on the pathogenesis of takotsubo syndrome: The heart shedding tears: Norepinephrine churn and foam at the cardiac sympathetic nerve terminals.

    PubMed

    Y-Hassan, Shams; De Palma, Rodney

    2017-02-01

    Takotsubo syndrome (TS), an increasingly recognized acute cardiac disease entity, is characterized by a unique pattern of circumferential and typically regional left ventricular wall motion abnormality resulting in a conspicuous transient ballooning of the left ventricle during systole. The mechanism of the disease remains elusive. However, the sudden onset of acute myocardial stunning in a systematic pattern extending beyond a coronary artery territory; the history of a preceding emotional or physical stress factor in two thirds of cases; the signs of sympathetic denervation at the regions of left ventricular dysfunction on sympathetic scintigraphy; the finding of myocardial edema and other signs consistent with (catecholamine-induced) myocarditis shown by cardiac magnetic resonance imaging; and the contraction band necrosis on histopathological examination all argue strongly for the involvement of the cardiac sympathetic nervous system in the pathogenesis of TS. In this narrative review, extensive evidence in support of local cardiac sympathetic nerve hyperactivation, disruption and norepinephrine spillover causing TS in predisposed patients is provided. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. [Structural-functional reserves of the vegetative nervous system in pilots flying high maneuver aircrafts].

    PubMed

    Sukhoterin, A F; Pashchenko, P S

    2014-01-01

    Purpose of the work was to analyze morbidity among pilots of different categories of aircraft, and to investigate reactivity of the vegetative nervous system (VNS) in pilots flying high maneuver aircrafts varying in age and flying time. Morbidity was deduced from the data of aviation medical exams. The VNS investigation involved 56 pilots of fighter and assault aircrafts both in the inter-flight periods and during duty shifts. Cytochemistry was used to measure glycogen in peripheral blood neutrophils in 77 pilots. It was shown that the pre-stress condition in pilots with the flying time more than 1000 hours may transform to chronic stress, provided that the flight duties remain heavy. According to the cytochemical data, concentration of neutrophilic glycogen indicating the energy potential of peripheral blood leukocytes is controlled by hormones secreted by the VNS sympathetic and parasympathetic components.

  18. Polyvagal Theory and Developmental Psychopathology: Emotion Dysregulation and Conduct Problems from Preschool to Adolescence

    PubMed Central

    Beauchaine, Theodore P.; Gatzke-Kopp, Lisa; Mead, Hilary K.

    2007-01-01

    In science, theories lend coherence to vast amounts of descriptive information. However, current diagnostic approaches in psychopathology are primarily atheoretical, emphasizing description over etiological mechanisms. We describe the importance of Polyvagal Theory toward understanding the etiology of emotion dysregulation, a hallmark of psychopathology. When combined with theories of social reinforcement and motivation, Polyvagal Theory specifies etiological mechanisms through which distinct patterns of psychopathology emerge. In this paper, we summarize three studies evaluating autonomic nervous system functioning in children with conduct problems, ages 4-18. At all age ranges, these children exhibit attenuated sympathetic nervous system responses to reward, suggesting deficiencies in approach motivation. By middle school, this reward insensitivity is met with inadequate vagal modulation of cardiac output, suggesting additional deficiencies in emotion regulation. We propose a biosocial developmental model of conduct problems in which inherited impulsivity is amplified through social reinforcement of emotional lability. Implications for early intervention are discussed. PMID:17045726

  19. [Ligation of the retrobulbar vascular-nervous bunch during performance of evisceration and enucleation using titanic clips in ophthalmic surgery].

    PubMed

    Rykov, S A; Torchinskaia, N V; Bakbardina, I I; Simchuk, I V

    2011-10-01

    The efficacy of hemostasis achievement during conduction of a retrobulbar vascular-nervous bunch ligation (RVNBL), using titanic clips while evisceroenucleation performance, was studied up. A comparative analysis of clinical and functional results of surgical treatment of 36 patients, suffering terminal dolorous glaucoma and disaster of a sympathetic ophthalmia complication after an eye penetrating wounding occurrence. In 16 patients (the first group) a standard method of a hemostasis achievement was used while doing evisceroenucleation - a deep orbital tamponade for 5 minutes. In 20 patients (the second group) a procedure of RVNBL was conducted, using titanic clips before the bunch transsection doing. There was established, that while doing a RVNPL using titanic clips, a hemorrhage never occurs, a retrobulbar hematoma do not formated, the soft tissues reaction in the early postoperative period is less pronounced, and the patients postoperative rehabilitation period shortens.

  20. Neuronal expression of glucosylceramide synthase in central nervous system regulates body weight and energy homeostasis.

    PubMed

    Nordström, Viola; Willershäuser, Monja; Herzer, Silke; Rozman, Jan; von Bohlen Und Halbach, Oliver; Meldner, Sascha; Rothermel, Ulrike; Kaden, Sylvia; Roth, Fabian C; Waldeck, Clemens; Gretz, Norbert; de Angelis, Martin Hrabě; Draguhn, Andreas; Klingenspor, Martin; Gröne, Hermann-Josef; Jennemann, Richard

    2013-01-01

    Hypothalamic neurons are main regulators of energy homeostasis. Neuronal function essentially depends on plasma membrane-located gangliosides. The present work demonstrates that hypothalamic integration of metabolic signals requires neuronal expression of glucosylceramide synthase (GCS; UDP-glucose:ceramide glucosyltransferase). As a major mechanism of central nervous system (CNS) metabolic control, we demonstrate that GCS-derived gangliosides interacting with leptin receptors (ObR) in the neuronal membrane modulate leptin-stimulated formation of signaling metabolites in hypothalamic neurons. Furthermore, ganglioside-depleted hypothalamic neurons fail to adapt their activity (c-Fos) in response to alterations in peripheral energy signals. Consequently, mice with inducible forebrain neuron-specific deletion of the UDP-glucose:ceramide glucosyltransferase gene (Ugcg) display obesity, hypothermia, and lower sympathetic activity. Recombinant adeno-associated virus (rAAV)-mediated Ugcg delivery to the arcuate nucleus (Arc) significantly ameliorated obesity, specifying gangliosides as seminal components for hypothalamic regulation of body energy homeostasis.

  1. Polyvagal Theory and developmental psychopathology: emotion dysregulation and conduct problems from preschool to adolescence.

    PubMed

    Beauchaine, Theodore P; Gatzke-Kopp, Lisa; Mead, Hilary K

    2007-02-01

    In science, theories lend coherence to vast amounts of descriptive information. However, current diagnostic approaches in psychopathology are primarily atheoretical, emphasizing description over etiological mechanisms. We describe the importance of Polyvagal Theory toward understanding the etiology of emotion dysregulation, a hallmark of psychopathology. When combined with theories of social reinforcement and motivation, Polyvagal Theory specifies etiological mechanisms through which distinct patterns of psychopathology emerge. In this paper, we summarize three studies evaluating autonomic nervous system functioning in children with conduct problems, ages 4-18. At all age ranges, these children exhibit attenuated sympathetic nervous system responses to reward, suggesting deficiencies in approach motivation. By middle school, this reward insensitivity is met with inadequate vagal modulation of cardiac output, suggesting additional deficiencies in emotion regulation. We propose a biosocial developmental model of conduct problems in which inherited impulsivity is amplified through social reinforcement of emotional lability. Implications for early intervention are discussed.

  2. A thermosensory pathway that controls body temperature

    PubMed Central

    Nakamura, Kazuhiro; Morrison, Shaun F.

    2008-01-01

    Defending body temperature against environmental thermal challenges is one of the most fundamental homeostatic functions governed by the nervous system. Here we show a novel somatosensory pathway, which essentially constitutes the afferent arm of the thermoregulatory reflex triggered by cutaneous sensation of environmental temperature changes. Using rat in vivo electrophysiological and anatomical approaches, we revealed that lateral parabrachial neurons play a pivotal role in this pathway by glutamatergically transmitting cutaneous thermosensory signals received from spinal somatosensory neurons directly to the thermoregulatory command center, preoptic area. This feedforward pathway mediates not only sympathetic and shivering thermogenic responses but also metabolic and cardiac responses to skin cooling challenges. Notably, this ‘thermoregulatory afferent’ pathway exists in parallel with the spinothalamocortical somatosensory pathway mediating temperature perception. These findings make an important contribution to our understanding of both the somatosensory system and thermal homeostasis—two mechanisms fundamental to the nervous system and to our survival. PMID:18084288

  3. A thermosensory pathway that controls body temperature.

    PubMed

    Nakamura, Kazuhiro; Morrison, Shaun F

    2008-01-01

    Defending body temperature against environmental thermal challenges is one of the most fundamental homeostatic functions that are governed by the nervous system. Here we describe a somatosensory pathway that essentially constitutes the afferent arm of the thermoregulatory reflex that is triggered by cutaneous sensation of environmental temperature changes. Using in vivo electrophysiological and anatomical approaches in the rat, we found that lateral parabrachial neurons are pivotal in this pathway by glutamatergically transmitting cutaneous thermosensory signals received from spinal somatosensory neurons directly to the thermoregulatory command center, the preoptic area. This feedforward pathway mediates not only sympathetic and shivering thermogenic responses but also metabolic and cardiac responses to skin cooling challenges. Notably, this 'thermoregulatory afferent' pathway exists in parallel with the spinothalamocortical somatosensory pathway that mediates temperature perception. These findings make an important contribution to our understanding of both the somatosensory system and thermal homeostasis -- two mechanisms that are fundamental to the nervous system and to our survival.

  4. Elevated blood pressure, heart rate and body temperature in mice lacking the XLαs protein of the Gnas locus is due to increased sympathetic tone

    PubMed Central

    Nunn, Nicolas; Feetham, Claire H; Martin, Jennifer; Barrett-Jolley, Richard; Plagge, Antonius

    2013-01-01

    New Findings What is the central question of this study? Previously, we showed that Gnasxl knock-out mice are lean and hypermetabolic, with increased sympathetic stimulation of adipose tissue. Do these mice also display elevated sympathetic cardiovascular tone? Is the brain glucagon-like peptide-1 system involved? What is the main finding and its importance? Gnasxl knock-outs have increased blood pressure, heart rate and body temperature. Heart rate variability analysis suggests an elevated sympathetic tone. The sympatholytic reserpine had stronger effects on blood pressure, heart rate and heart rate variability in knock-out compared with wild-type mice. Stimulation of the glucagon-like peptide-1 system inhibited parasympathetic tone to a similar extent in both genotypes, with a stronger associated increase in heart rate in knock-outs. Deficiency of Gnasxl increases sympathetic cardiovascular tone. Imbalances of energy homeostasis are often associated with cardiovascular complications. Previous work has shown that Gnasxl-deficient mice have a lean and hypermetabolic phenotype, with increased sympathetic stimulation of adipose tissue. The Gnasxl transcript from the imprinted Gnas locus encodes the trimeric G-protein subunit XLαs, which is expressed in brain regions that regulate energy homeostasis and sympathetic nervous system (SNS) activity. To determine whether Gnasxl knock-out (KO) mice display additional SNS-related phenotypes, we have now investigated the cardiovascular system. The Gnasxl KO mice were ∼20 mmHg hypertensive in comparison to wild-type (WT) littermates (P≤ 0.05) and hypersensitive to the sympatholytic drug reserpine. Using telemetry, we detected an increased waking heart rate in conscious KOs (630 ± 10 versus 584 ± 12 beats min−1, KO versus WT, P≤ 0.05). Body temperature was also elevated (38.1 ± 0.3 versus 36.9 ± 0.4°C, KO versus WT, P≤ 0.05). To investigate autonomic nervous system influences, we used heart rate variability analyses. We empirically defined frequency power bands using atropine and reserpine and verified high-frequency (HF) power and low-frequency (LF) LF/HF power ratio to be indicators of parasympathetic and sympathetic activity, respectively. The LF/HF power ratio was greater in KOs and more sensitive to reserpine than in WTs, consistent with elevated SNS activity. In contrast, atropine and exendin-4, a centrally acting agonist of the glucagon-like peptide-1 receptor, which influences cardiovascular physiology and metabolism, reduced HF power equally in both genotypes. This was associated with a greater increase in heart rate in KOs. Mild stress had a blunted effect on the LF/HF ratio in KOs consistent with elevated basal sympathetic activity. We conclude that XLαs is required for the inhibition of sympathetic outflow towards cardiovascular and metabolically relevant tissues. PMID:23748904

  5. The autonomic nervous system regulates postprandial hepatic lipid metabolism.

    PubMed

    Bruinstroop, Eveline; la Fleur, Susanne E; Ackermans, Mariette T; Foppen, Ewout; Wortel, Joke; Kooijman, Sander; Berbée, Jimmy F P; Rensen, Patrick C N; Fliers, Eric; Kalsbeek, Andries

    2013-05-15

    The liver is a key organ in controlling glucose and lipid metabolism during feeding and fasting. In addition to hormones and nutrients, inputs from the autonomic nervous system are also involved in fine-tuning hepatic metabolic regulation. Previously, we have shown in rats that during fasting an intact sympathetic innervation of the liver is essential to maintain the secretion of triglycerides by the liver. In the current study, we hypothesized that in the postprandial condition the parasympathetic input to the liver inhibits hepatic VLDL-TG secretion. To test our hypothesis, we determined the effect of selective surgical hepatic denervations on triglyceride metabolism after a meal in male Wistar rats. We report that postprandial plasma triglyceride concentrations were significantly elevated in parasympathetically denervated rats compared with control rats (P = 0.008), and VLDL-TG production tended to be increased (P = 0.066). Sympathetically denervated rats also showed a small rise in postprandial triglyceride concentrations (P = 0.045). On the other hand, in rats fed on a six-meals-a-day schedule for several weeks, a parasympathetic denervation resulted in >70% higher plasma triglycerides during the day (P = 0.001), whereas a sympathetic denervation had no effect. Our results show that abolishing the parasympathetic input to the liver results in increased plasma triglyceride levels during postprandial conditions.

  6. Brain Areas Controlling Heart Rate Variability in Tinnitus and Tinnitus-Related Distress

    PubMed Central

    Vanneste, Sven; De Ridder, Dirk

    2013-01-01

    Background Tinnitus is defined as an intrinsic sound perception that cannot be attributed to an external sound source. Distress in tinnitus patients is related to increased beta activity in the dorsal part of the anterior cingulate and the amount of distress correlates with network activity consisting of the amygdala-anterior cingulate cortex-insula-parahippocampus. Previous research also revealed that distress is associated to a higher sympathetic (OS) tone in tinnitus patients and tinnitus suppression to increased parasympathetic (PS) tone. Methodology The aim of the present study is to investigate the relationship between tinnitus distress and the autonomic nervous system and find out which cortical areas are involved in the autonomic nervous system influences in tinnitus distress by the use of source localized resting state electroencephalogram (EEG) recordings and electrocardiogram (ECG). Twenty-one tinnitus patients were included in this study. Conclusions The results indicate that the dorsal and subgenual anterior cingulate, as well as the left and right insula are important in the central control of heart rate variability in tinnitus patients. Whereas the sympathovagal balance is controlled by the subgenual and pregenual anterior cingulate cortex, the right insula controls sympathetic activity and the left insula the parasympathetic activity. The perceived distress in tinnitus patients seems to be sympathetically mediated. PMID:23533644

  7. Etiologic theories of idiopathic scoliosis. Somatic nervous system and the NOTOM escalator concept as one component in the pathogenesis of adolescent idiopathic scoliosis.

    PubMed

    Burwell, R G; Dangerfield, P H; Freeman, B J C

    2008-01-01

    There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS). In recent years encouraging advances thought to be related to the pathogenesis of AIS have been made in several fields. After reviewing concepts of AIS pathogenesis we formulated a collective model of pathogenesis. The central concept of this collective model is a normal neuro-osseous timing of maturation (NOTOM) system operating in a child's internal world during growth and maturation; this provides a dynamic physiological balance of postural equilibrium continuously renewed between two synchronous, polarized processes (NOTOM escalator) linked through sensory input and motor output, namely: 1) osseous escalator-increasing skeletal size and relative segmental mass, and 2) neural escalator - including the CNS body schema. The latter is recalibrated continuously as the body adjusts to biomechanical and kinematic changes resulting from skeletal enlargement, enabling it to coordinate motor actions. We suggest that AIS progression results from abnormality of the neural and/or osseous components of these normal escalator in time and/or space - as asynchrony and/or asymmetries - which cause a failure of neural systems to control asymmetric growth of a rapidly enlarging and moving adolescent spine. This putative initiating asymmetric growth in the spine is explained in separate papers as resulting from dysfunction of the hypothalamus expressed through the sympathetic nervous system (leptin-sympathetic nervous system concept for AIS pathogenesis). In girls, the expression of AIS may result from disharmony between the somatic and autonomic nervous systems - relative postural maturational delay in the somatic nervous system and hypothalamic dysfunction in the autonomic nervous system, with the conflict being fought out in the spine and trunk of the girl and compounded by biomechanical spinal growth modulation.

  8. Novel neural pathways for metabolic effects of thyroid hormone.

    PubMed

    Fliers, Eric; Klieverik, Lars P; Kalsbeek, Andries

    2010-04-01

    The relation between thyrotoxicosis, the clinical syndrome resulting from exposure to excessive thyroid hormone concentrations, and the sympathetic nervous system remains enigmatic. Nevertheless, beta-adrenergic blockers are widely used to manage severe thyrotoxicosis. Recent experiments show that the effects of thyrotoxicosis on hepatic glucose production and insulin sensitivity can be modulated by selective hepatic sympathetic and parasympathetic denervation. Indeed, thyroid hormone stimulates hepatic glucose production via a sympathetic pathway, a novel central pathway for thyroid hormone action. Rodent studies suggest that similar neural routes exist for thyroid hormone analogues (e.g. thyronamines). Further elucidation of central effects of thyroid hormone on autonomic outflow to metabolic organs, including the thyroid and brown adipose tissue, will add to our understanding of hyperthyroidism. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. Renal Sympathetic Denervation for Treatment of Hypertension.

    PubMed

    Pimenta, Eduardo; Oparil, Suzanne

    2012-02-01

    OPINION STATEMENT: Sympathetic nervous system activation of the heart, kidney and peripheral vasculature increases cardiac output, fluid retention and vascular resistance and plays an important role in acute and chronic BP elevation. Renal sympathetic denervation via a percutaneous radiofrequency catheter based approach is a safe and effective procedure that lowers BP in patients with resistant hypertension. Exploratory studies in patients with resistant hypertension and a variety of comorbidities, including insulin resistance/metabolic syndrome, obstructive sleep apnea and the polycystic ovary syndrome, have shown benefit of renal denervation in attenuating the severity of the comorbid conditions, as well as reducing BP. However, more studies are needed to further address the long term effects of renal denervation and its safety and effectiveness in other disease states such as congestive heart failure.

  10. Recurrent myocardial infarction: Mechanisms of free-floating adaptation and autonomic derangement in networked cardiac neural control.

    PubMed

    Kember, Guy; Ardell, Jeffrey L; Shivkumar, Kalyanam; Armour, J Andrew

    2017-01-01

    The cardiac nervous system continuously controls cardiac function whether or not pathology is present. While myocardial infarction typically has a major and catastrophic impact, population studies have shown that longer-term risk for recurrent myocardial infarction and the related potential for sudden cardiac death depends mainly upon standard atherosclerotic variables and autonomic nervous system maladaptations. Investigative neurocardiology has demonstrated that autonomic control of cardiac function includes local circuit neurons for networked control within the peripheral nervous system. The structural and adaptive characteristics of such networked interactions define the dynamics and a new normal for cardiac control that results in the aftermath of recurrent myocardial infarction and/or unstable angina that may or may not precipitate autonomic derangement. These features are explored here via a mathematical model of cardiac regulation. A main observation is that the control environment during pathology is an extrapolation to a setting outside prior experience. Although global bounds guarantee stability, the resulting closed-loop dynamics exhibited while the network adapts during pathology are aptly described as 'free-floating' in order to emphasize their dependence upon details of the network structure. The totality of the results provide a mechanistic reasoning that validates the clinical practice of reducing sympathetic efferent neuronal tone while aggressively targeting autonomic derangement in the treatment of ischemic heart disease.

  11. A non-human primate model for investigating drug-induced risk of orthostatic hypotension and sympathetic dysfunction: Preclinical correlate to a clinical test.

    PubMed

    Bhatt, Siddhartha; Foote, Stephen; Smith, Andrew; Butler, Paul; Steidl-Nichols, Jill

    2015-01-01

    Drug induced orthostatic hypotension (OH) is an important clinical concern and can be an unexpected hurdle during drug development. OH is defined as an abnormal decrease in blood pressure (BP) triggered by a rapid postural change. The sympathetic nervous system is critical for controlling normal cardiovascular function and compensatory responses to changes in posture. Thus, OH can also serve as a surrogate indicator of sympathetic dysfunction. However, preclinical conscious models for investigating risk of OH and/or sympathetic dysfunction are lacking. Herein, we describe a conscious nonhuman primate (NHP) model which mimics the widely used clinical tilt table test for OH. Male, Cynomolgus NHPs (n = 7-8) implanted with radio-telemetry transmitters were placed in modified tilt chairs in a supine position. Subsequently, a 90° head up tilt was performed for 3 min followed by return to the supine position. BP and heart rate were continuously monitored. Test compounds were administered either intravenously or via oral gavage in a crossover design, with blood samples collected at the end of the each tilt to assess total drug concentrations. Tilt responses were assessed following treatment with positive control compounds that cause sympathetic dysfunction; hexamethonium (ganglionic blocker) and prazosin (alpha-1 adrenergic receptor antagonist). Both compounds induced marked OH as evidenced by robust and sustained BP reduction in response to a head up tilt (decrease of 25-35 mmHg for hexamethonium, decrease of 21-44 mmHg for prazosin). OH incidence rates increased in a dose-dependent manner. OH incidences following treatment with minoxidil (vasodilator) were markedly lower to those observed with hexamethonium and prazosin indicating the role of sympathetic dysfunction in causing OH. These data demonstrate that the NHP tilt test is a valuable model for investigating OH risk. This model fills an important preclinical gap for assessing such a safety concern and can be applied to programs where a sympathetic deficit and/or OH are anticipated or clinically observed. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Autonomic functions in acrocyanosis assessed by heart rate variability

    PubMed Central

    Yılmaz, Sedat; Yokuşoğlu, Mehmet; Çınar, Muhammet; Şimşek, İsmail; Baysan, Oben; Öz, Bilgehan Savaş; Erdem, Hakan; Pay, Salih; Dinç, Ayhan

    2014-01-01

    Objective To evaluate the autonomic activity of patients with acrocyanosis by using heart rate variability indices. Material and Methods The study group consisted of 24 patients with acrocyanosis and the control group contained 22 sex- and age-matched healthy subjects. All subjects underwent 24-hour Holter monitoring. Among the heart rate variability (HRV) parameters, time-domain and frequency-domain indices were analysed. Results The time-domain indices of HRV indicating global autonomic functions were found to be increased, and indices indicating parasympathetic activity showed a significant decrease in the patient group. Power-spectral analysis of HRV revealed that the low frequency and high frequency power were higher in the patient group than in controls. However, the ratio of Low Frequency/High Frequency was found to be lower in the patient group than in controls. Conclusion In acrocyanosis, both sympathetic and parasympathetic systems seem to be disrupted. Therefore, we may conclude that acrocyanosis may be resulted of systemic autonomic imbalance rather than pure sympathetic over-activation. Also, these results suggest that acrocyanosis is not a localised disorder; on the contrary, it is associated with various abnormalities of the systemic autonomic nervous system. PMID:27708866

  13. Free fatty acid receptor 3 is a key target of short chain fatty acid. What is the impact on the sympathetic nervous system?

    PubMed

    López Soto, Eduardo Javier; Gambino, Luisina Ongaro; Mustafá, Emilio Román

    2014-01-01

    Nervous system (NS) activity participates in metabolic homeostasis by detecting peripheral signal molecules derived from food intake and energy balance. High quality diets are thought to include fiber-rich foods like whole grain rice, breads, cereals, and grains. Several studies have associated high consumption of fiber-enriched diets with a reduced risk of diabetes, obesity, and gastrointestinal disorders. In the lower intestine, anaerobic fermentation of soluble fibers by microbiota produces short chain fatty acids (SCFAs), key energy molecules that have a recent identified leading role in the intestinal gluconeogenesis, promoting beneficial effects on glucose tolerance and insulin resistance. SCFAs are also signaling molecules that bind to specific G-protein coupled receptors (GPCRs) named Free Fatty Acid Receptor 3 (FFA3, GPR41) and 2 (FFA2, GPR43). However, how SCFAs impact NS activity through their GPCRs is poorly understood. Recently, studies have demonstrated the presence of FFA2 and FFA3 in the sympathetic NS of rat, mouse and human. Two studies have showed that FFA3 activation by SCFAs increases firing and norepinephrine (NE) release from sympathetic neurons. However, the recent study from the Ikeda Laboratory revealed that activation of FFA3 by SCFAs impairs N-type calcium channel (NTCC) activity, which contradicts the idea of FFA3 activation leading to increased action potential evoked NE release. Here we will discuss the scope of the latter study and the putative physiological role of SCFAs and FFAs in the sympathetic NS.

  14. Fatalities after taking ibogaine in addiction treatment could be related to sudden cardiac death caused by autonomic dysfunction.

    PubMed

    Maas, U; Strubelt, S

    2006-01-01

    Ibogaine is the most important alkaloid of the Central African Iboga-shrub. It is the central drug in Gabonian initiation ceremonies in which it is used to cause a near-death experience. In Western countries it is used in private clinics to treat addiction. However, in the United States and most European countries it is classified as an illegal drug because at least eight persons have died after having taken Ibogaine. These fatalities occurred in most cases several days after ingestion or following the intake of very small doses. There is no conclusive explanation at the present time for these deaths. We hypothesize, that these deaths may be a result of cardiac arrhythmias, caused by a dysregulation of the autonomic nervous system. Ibogaine affects the autonomic nervous system by influencing several neurotransmitter-systems and the fastigial nucleus. The cerebellar nucleus responds to small doses with a stimulation of the sympathetic system, leading to a fight or flight reaction. High doses, however, lead to a vagal dominance: a "feigned death". The risk of cardiac arrhythmias is increased in situations of sympathetic stimulation or coincidence of a high parasympathetic tonus and a left-sided sympathetic stimulation. This could occur under influence of small doses of ibogaine and also at times of exhaustion with a high vagal tonus, when sudden fear reactions could cause a critical left-sided sympathetic stimulation. Gabonian healers prevent these risks by isolating their patients from normal life and by inducing a trance-state with right-hemispheric and vagal dominance for several days.

  15. Central infusion of leptin improves insulin resistance and suppresses beta-cell function, but not beta-cell mass, primarily through the sympathetic nervous system in a type 2 diabetic rat model.

    PubMed

    Park, Sunmin; Ahn, Il Sung; Kim, Da Sol

    2010-06-05

    We investigated whether hypothalamic leptin alters beta-cell function and mass directly via the sympathetic nervous system (SNS) or indirectly as the result of altered insulin resistant states. The 90% pancreatectomized male Sprague Dawley rats had sympathectomy into the pancreas by applying phenol into the descending aorta (SNSX) or its sham operation (Sham). Each group was divided into two sections, receiving either leptin at 300ng/kgbw/h or artificial cerebrospinal fluid (aCSF) via intracerebroventricular (ICV) infusion for 3h as a short-term study. After finishing the infusion study, ICV leptin (3mug/kg bw/day) or ICV aCSF (control) was infused in rats fed 30 energy % fat diets by osmotic pump for 4weeks. At the end of the long-term study, glucose-stimulated insulin secretion and islet morphometry were analyzed. Acute ICV leptin administration in Sham rats, but not in SNSX rats, suppressed the first- and second-phase insulin secretion at hyperglycemic clamp by about 48% compared to the control. Regardless of SNSX, the 4-week administration of ICV leptin improved glucose tolerance during oral glucose tolerance tests and insulin sensitivity at hyperglycemic clamp, compared to the control, while it suppressed second-phase insulin secretion in Sham rats but not in SNSX rats. However, the pancreatic beta-cell area and mass were not affected by leptin and SNSX, though ICV leptin decreased individual beta-cell size and concomitantly increased beta-cell apoptosis in Sham rats. Leptin directly decreases insulin secretion capacity mainly through the activation of SNS without modulating pancreatic beta-cell mass.

  16. Sudomotor and vasomotor activity during the menstrual cycle with global heating.

    PubMed

    Petrofsky, Jerrold; Lee, Haneul; Khowailed, Iman Akef

    2017-07-01

    Many studies have reported that there are changes in sympathetic activity throughout the menstrual cycle as there are oestrogen receptor in the hypothalamus and all other parts of the sympathetic nervous system. The purpose of this study was to see whether there were variations in sympathetic activity, skin vasomotor and sweat gland sudomotor rhythms during the menstrual cycle. Eight young female subjects with a regular menstrual cycle participated in the study. Subjects were tested once during the follicular phase and once during the luteal phase. Skin blood flow and sweat rate were significantly higher in the luteal phase compared with the follicular phase (p < .05), but the frequency and magnitude of sudomotor and vasomotor rhythms were significantly greater in the follicular phase (p < .05). In contrast, spectral data showed less sympathetic activity in the luteal phase. A significant finding here is that the sudomotor rhythm of sweat glands is altered by the menstrual cycle. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  17. Dysfunction of autonomic nervous system in childhood obesity: a cross-sectional study.

    PubMed

    Baum, Petra; Petroff, David; Classen, Joseph; Kiess, Wieland; Blüher, Susann

    2013-01-01

    To assess the distribution of autonomic nervous system (ANS) dysfunction in overweight and obese children. Parasympathetic and sympathetic ANS function was assessed in children and adolescents with no evidence of impaired glucose metabolism by analysis of heart rate variability (low frequency power ln(LF), high frequency power, ln(HF); ln(LF/HF) ratio, ratio of longest RR interval during expiration to shortest interval during inspiration (E/I ratio), root mean square of successive differences (RMSSD); sympathetic skin response (SSR); and quantitative pupillography (pupil diameter in darkness, light reflex amplitude, latency, constriction velocity, re-dilation velocity). The relationship of each ANS variable to the standard deviation score of body mass index (BMI-SDS) was assessed in a linear model considering age, gender and pubertal stage as co-variates and employing an F-statistic to compare the fit of nested models. Group comparisons between normal weight and obese children as well as an analysis of dependence on insulin resistance (as indexed by the Homeostasis Model Assessment of Insulin Resistance, HOMA-IR) were performed for parameters shown to correlate with BMI-SDS. Statistical significance was set at 5%. Measurements were performed in 149 individuals (mean age 12.0 y; 90 obese 45 boys; 59 normal weight, 34 boys). E/I ratio (p = 0.003), ln(HF) (p = 0.03), pupil diameter in darkness (p = 0.01) were negatively correlated with BMI-SDS, whereas ln(LF/HF) was positively correlated (p = 0.05). Early re-dilation velocity was in trend negatively correlated to BMI-SDS (p = 0.08). None of the parameters that depended significantly on BMI-SDS was found to be significantly correlated with HOMA-IR. These findings demonstrate extended ANS dysfunction in obese children and adolescents, affecting several organ systems. Both parasympathetic activity and sympathetic activity are reduced. The conspicuous pattern of ANS dysfunction raises the possibility that obesity may give rise to dysfunction of the peripheral autonomic nerves resembling that observed in normal-weight diabetic children and adolescents.

  18. Monitoring the autonomic nervous activity as the objective evaluation of music therapy for severely and multiply disabled children.

    PubMed

    Orita, Makiko; Hayashida, Naomi; Shinkawa, Tetsuko; Kudo, Takashi; Koga, Mikitoshi; Togo, Michita; Katayama, Sotetsu; Hiramatsu, Kozaburo; Mori, Shunsuke; Takamura, Noboru

    2012-07-01

    Severely and multiply disabled children (SMDC) are frequently affected in more than one area of development, resulting in multiple disabilities. The aim of the study was to evaluate the efficacy of music therapy in SMDC using monitoring changes in the autonomic nervous system, by the frequency domain analysis of heart rate variability. We studied six patients with SMDC (3 patients with cerebral palsy, 1 patient with posttraumatic syndrome after head injury, 1 patient with herpes encephalitis sequelae, and 1 patient with Lennox-Gastaut syndrome characterized by frequent seizures, developmental delay and psychological and behavioral problems), aged 18-26 (mean 22.5 ± 3.5). By frequency domain method using electrocardiography, we measured the high frequency (HF; with a frequency ranging from 0.15 to 0.4 Hz), which represents parasympathetic activity, the low frequency/high frequency ratio, which represents sympathetic activity between the sympathetic and parasympathetic activities, and heart rate. A music therapist performed therapy to all patients through the piano playing for 50 min. We monitored each study participant for 150 min before therapy, 50 min during therapy, and 10 min after therapy. Interestingly, four of 6 patients showed significantly lower HF components during music therapy than before therapy, suggesting that these four patients might react to music therapy through the suppression of parasympathetic nervous activities. Thus, music therapy can suppress parasympathetic nervous activities in some patients with SMDC. The monitoring changes in the autonomic nervous activities could be a powerful tool for the objective evaluation of music therapy in patients with SMDC.

  19. Localized Sympathectomy Reduces Mechanical Hypersensitivity by Restoring Normal Immune Homeostasis in Rat Models of Inflammatory Pain

    PubMed Central

    Xie, Wenrui; Chen, Sisi; Strong, Judith A.; Li, Ai-Ling; Lewkowich, Ian P.

    2016-01-01

    Some forms of chronic pain are maintained or enhanced by activity in the sympathetic nervous system (SNS), but attempts to model this have yielded conflicting findings. The SNS has both pro- and anti-inflammatory effects on immunity, confounding the interpretation of experiments using global sympathectomy methods. We performed a “microsympathectomy” by cutting the ipsilateral gray rami where they entered the spinal nerves near the L4 and L5 DRG. This led to profound sustained reductions in pain behaviors induced by local DRG inflammation (a rat model of low back pain) and by a peripheral paw inflammation model. Effects of microsympathectomy were evident within one day, making it unlikely that blocking sympathetic sprouting in the local DRGs or hindpaw was the sole mechanism. Prior microsympathectomy greatly reduced hyperexcitability of sensory neurons induced by local DRG inflammation observed 4 d later. Microsympathectomy reduced local inflammation and macrophage density in the affected tissues (as indicated by paw swelling and histochemical staining). Cytokine profiling in locally inflamed DRG showed increases in pro-inflammatory Type 1 cytokines and decreases in the Type 2 cytokines present at baseline, changes that were mitigated by microsympathectomy. Microsympathectomy was also effective in reducing established pain behaviors in the local DRG inflammation model. We conclude that the effect of sympathetic fibers in the L4/L5 gray rami in these models is pro-inflammatory. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some chronic inflammatory pain conditions. SIGNIFICANCE STATEMENT Sympathetic blockade is used for many pain conditions, but preclinical studies show both pro- and anti-nociceptive effects. The sympathetic nervous system also has both pro- and anti-inflammatory effects on immune tissues and cells. We examined effects of a very localized sympathectomy. By cutting the gray rami to the spinal nerves near the lumbar sensory ganglia, we avoided widespread sympathetic denervation. This procedure profoundly reduced mechanical pain behaviors induced by a back pain model and a model of peripheral inflammatory pain. One possible mechanism was reduction of inflammation in the sympathetically denervated regions. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some inflammatory conditions. PMID:27535916

  20. Resting sympathetic activity is associated with the sympathetically mediated component of energy expenditure following a meal.

    PubMed

    Limberg, Jacqueline K; Malterer, Katherine R; Matzek, Luke J; Levine, James A; Charkoudian, Nisha; Miles, John M; Joyner, Michael J; Curry, Timothy B

    2017-08-01

    Individuals with high plasma norepinephrine (NE) levels at rest have a smaller reduction in resting energy expenditure (REE) following β -adrenergic blockade. If this finding extends to the response to a meal, it could have important implications for the role of the sympathetic nervous system in energy balance and weight gain. We hypothesized high muscle sympathetic nerve activity (MSNA) would be associated with a low sympathetically mediated component of energy expenditure following a meal. Fourteen young, healthy adults completed two visits randomized to continuous saline (control) or intravenous propranolol to achieve systemic β -adrenergic blockade. Muscle sympathetic nerve activity and REE were measured (indirect calorimetry) followed by a liquid mixed meal (Ensure). Measures of energy expenditure continued every 30 min for 5 h after the meal and are reported as an area under the curve (AUC). Sympathetic support of energy expenditure was calculated as the difference between the AUC during saline and β -blockade (AUC P ropranolol -AUC S aline , β -REE) and as a percent (%) of control (AUC P ropranolol ÷AUC S aline  × 100). β -REE was associated with baseline sympathetic activity, such that individuals with high resting MSNA (bursts/100 heart beats) and plasma NE had the greatest sympathetically mediated component of energy expenditure following a meal (MSNA: β -REE R  =   -0.58, P =  0.03; %REE R  = -0.56, P =  0.04; NE: β -REE R  = -0.55, P  = 0.0535; %REE R  = -0.54, P  = 0.0552). Contrary to our hypothesis, high resting sympathetic activity is associated with a greater sympathetically mediated component of energy expenditure following a liquid meal. These findings may have implications for weight maintenance in individuals with varying resting sympathetic activity. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  1. Physiologic Waveform Analysis for Early Detection of Hemorrhage during Transport and Higher Echelon Medical Care of Combat Casualties

    DTIC Science & Technology

    2011-11-01

    stimulation to HR fluctuations that were experi- mentally determined by Berger et al. (8) in dogs with typical ILV3HR and ABP3HR impulse responses that were...pure vagal and sympathetic stimulation to HR fluctuations that were experimentally determined in dogs (middle; reproduced from Ref. 8) with typical...repre- sents an extrapolation of the efferent autonomic nervous limbs in dogs to the afferent, central, and efferent autonomic nervous limbs in humans

  2. Functional and anatomical characteristics of the nerve-brown adipose interaction in the rat

    NASA Technical Reports Server (NTRS)

    Flaim, K. E.; Horowitz, J. M.; Horwitz, B. A.

    1976-01-01

    Experiments were conducted on 12 male rats to study the coupling of signals from the sympathetic nervous system to the brown adipose tissue. Analysis of electron photomicrographs revealed considerable morphological heterogeneity among the nerves entering and leaving the interscapular fat pad. In response to electrical simulation of the nerves, the temperature of the brown fat increased following a rapid but transient temperature drop. Such changes were observed only on the ipsilateral side, indicating that the innervation to the interscapular brown fat of the rat is functionally bilateral rather than diffuse. The finding that brown fat is capable of responding in a graded fashion correlates well with observations suggesting that clusters of brown adipocytes may be electrically coupled.

  3. Circadian control of the daily plasma glucose rhythm: an interplay of GABA and glutamate.

    PubMed

    Kalsbeek, Andries; Foppen, Ewout; Schalij, Ingrid; Van Heijningen, Caroline; van der Vliet, Jan; Fliers, Eric; Buijs, Ruud M

    2008-09-15

    The mammalian biological clock, located in the hypothalamic suprachiasmatic nuclei (SCN), imposes its temporal structure on the organism via neural and endocrine outputs. To further investigate SCN control of the autonomic nervous system we focused in the present study on the daily rhythm in plasma glucose concentrations. The hypothalamic paraventricular nucleus (PVN) is an important target area of biological clock output and harbors the pre-autonomic neurons that control peripheral sympathetic and parasympathetic activity. Using local administration of GABA and glutamate receptor (ant)agonists in the PVN at different times of the light/dark-cycle we investigated whether daily changes in the activity of autonomic nervous system contribute to the control of plasma glucose and plasma insulin concentrations. Activation of neuronal activity in the PVN of non-feeding animals, either by administering a glutamatergic agonist or a GABAergic antagonist, induced hyperglycemia. The effect of the GABA-antagonist was time dependent, causing increased plasma glucose concentrations only when administered during the light period. The absence of a hyperglycemic effect of the GABA-antagonist in SCN-ablated animals provided further evidence for a daily change in GABAergic input from the SCN to the PVN. On the other hand, feeding-induced plasma glucose and insulin responses were suppressed by inhibition of PVN neuronal activity only during the dark period. These results indicate that the pre-autonomic neurons in the PVN are controlled by an interplay of inhibitory and excitatory inputs. Liver-dedicated sympathetic pre-autonomic neurons (responsible for hepatic glucose production) and pancreas-dedicated pre-autonomic parasympathetic neurons (responsible for insulin release) are controlled by inhibitory GABAergic contacts that are mainly active during the light period. Both sympathetic and parasympathetic pre-autonomic PVN neurons also receive excitatory inputs, either from the biological clock (sympathetic pre-autonomic neurons) or from non-clock areas (para-sympathetic pre-autonomic neurons), but the timing information is mainly provided by the GABAergic outputs of the biological clock.

  4. Circadian Control of the Daily Plasma Glucose Rhythm: An Interplay of GABA and Glutamate

    PubMed Central

    Kalsbeek, Andries; Foppen, Ewout; Schalij, Ingrid; Van Heijningen, Caroline; van der Vliet, Jan; Fliers, Eric; Buijs, Ruud M.

    2008-01-01

    The mammalian biological clock, located in the hypothalamic suprachiasmatic nuclei (SCN), imposes its temporal structure on the organism via neural and endocrine outputs. To further investigate SCN control of the autonomic nervous system we focused in the present study on the daily rhythm in plasma glucose concentrations. The hypothalamic paraventricular nucleus (PVN) is an important target area of biological clock output and harbors the pre-autonomic neurons that control peripheral sympathetic and parasympathetic activity. Using local administration of GABA and glutamate receptor (ant)agonists in the PVN at different times of the light/dark-cycle we investigated whether daily changes in the activity of autonomic nervous system contribute to the control of plasma glucose and plasma insulin concentrations. Activation of neuronal activity in the PVN of non-feeding animals, either by administering a glutamatergic agonist or a GABAergic antagonist, induced hyperglycemia. The effect of the GABA-antagonist was time dependent, causing increased plasma glucose concentrations only when administered during the light period. The absence of a hyperglycemic effect of the GABA-antagonist in SCN-ablated animals provided further evidence for a daily change in GABAergic input from the SCN to the PVN. On the other hand, feeding-induced plasma glucose and insulin responses were suppressed by inhibition of PVN neuronal activity only during the dark period. These results indicate that the pre-autonomic neurons in the PVN are controlled by an interplay of inhibitory and excitatory inputs. Liver-dedicated sympathetic pre-autonomic neurons (responsible for hepatic glucose production) and pancreas-dedicated pre-autonomic parasympathetic neurons (responsible for insulin release) are controlled by inhibitory GABAergic contacts that are mainly active during the light period. Both sympathetic and parasympathetic pre-autonomic PVN neurons also receive excitatory inputs, either from the biological clock (sympathetic pre-autonomic neurons) or from non-clock areas (para-sympathetic pre-autonomic neurons), but the timing information is mainly provided by the GABAergic outputs of the biological clock. PMID:18791643

  5. Therapeutic potential of stellate ganglion block in orofacial pain: a mini review.

    PubMed

    Jeon, Younghoon

    2016-09-01

    Orofacial pain is a common complaint of patients that causes distress and compromises the quality of life. It has many etiologies including trauma, interventional procedures, nerve injury, varicella-zoster (shingles), tumor, and vascular and idiopathic factors. It has been demonstrated that the sympathetic nervous system is usually involved in various orofacial pain disorders such as postherpetic neuralgia, complex regional pain syndromes, and atypical facial pain. The stellate sympathetic ganglion innervates the head, neck, and upper extremity. In this review article, the effect of stellate ganglion block and its mechanism of action in orofacial pain disorders are discussed.

  6. The Aqueous Calyx Extract of Hibiscus sabdariffa Lowers Blood Pressure and Heart Rate via Sympathetic Nervous System Dependent Mechanisms.

    PubMed

    Aliyu, B; Oyeniyi, Y J; Mojiminiyi, F B O; Isezuo, S A; Alada, A R A

    2014-12-29

    The antihypertensive effect of Hibiscus sabdariffa (HS) has been validated in animals and man. This study tested the hypothesis that its hypotensive effect may be sympathetically mediated. The cold pressor test (CPT) and handgrip exercise (HGE) were performed in 20 healthy subjects before and after the oral administration of 15mg/Kg HS. The blood pressure (BP) and heart rate (HR) responses were measured digitally. Mean arterial pressure (MAP; taken as representative BP) was calculated. Results are expressed as mean ±SEM. P<0.05 was considered significant. CPT without HS resulted in a significant rise in MAP and HR (111.1±2.1mmHg and 100.8±2.0/min) from the basal values (97.9±1.9mmHg and 87.8±2.1/min; P<0.0001 respectively). In the presence of HS, CPT-induced changes (ΔMAP=10.1±1.7mmHg; ΔHR= 8.4±1.0/min) were significantly reduced compared to its absence (ΔMAP= 13.2±1.2mmHg; ΔHR= 13.8±1.6/min; P<0.0001 respectively). The HGE done without HS also resulted in an increase in MAP and HR (116.3±2.1mmHg and 78.4±1.2/min) from the basal values (94.8±1.6mmHg and 76.1±1.0/min; p<0.0001 respectively). In the presence of HS the HGE-induced changes (ΔMAP= 11.5±1.0mmHg; ΔHR= 3.3±1.0/min) were significantly decreased compared to its absence (ΔMAP=21.4±1.2mmHg; ΔHR= 12.8±2.0/min; P<0.0001 respectively). The CPT and HGE -induced increases in BP and HR suggest Sympathetic nervous system activation. These increases were significantly dampened by HS suggesting, indirectly, that its hypotensive effect may be due to an attenuation of the discharge of the sympathetic nervous system.

  7. The cold pressor test in interictal migraine patients - different parasympathetic pupillary response indicates dysbalance of the cranial autonomic nervous system.

    PubMed

    Eren, Ozan E; Ruscheweyh, Ruth; Schankin, Christoph; Schöberl, Florian; Straube, Andreas

    2018-04-16

    Data on autonomic nervous system (ANS) activations in migraine patients are quite controversial, with previous studies reporting over- and underactivation of the sympathetic as well as parasympathetic nervous system. In the present study, we explicitly aimed to assess the cranial ANS in migraine patients compared to healthy controls by applying the cold pressor test to a cohort of migraine patients in the interictal phase and measuring the pupillary response. In this prospective observational study, a strong sympathetic stimulus was applied to 20 patients with episodic migraine in the interictal phase and 20 matched controls without migraine, whereby each participant dipped the left hand into ice-cold (4 °C) water for a maximum of 5 min (cold pressor test). At baseline, 2, and 5 min during the cold pressor test, infrared monocular pupillometry was applied to quantify pupil diameter and light reflex parameters. Simultaneously, heart rate and blood pressure were measured by the external brachial RR-method at distinct time intervals to look for at least clinically relevant changes of the cardiovascular ANS. There were no significant differences between the migraine patients and controls at baseline and after 2 min of sympathetic stimulation in all the measured pupillary and cardio-vascular parameters. However, at 5 min, pupillary light reflex (PLR) constriction velocity was significantly higher in migraineurs than in controls (5.59 ± 0.73 mm/s vs. 5.16 ± 0.53 mm/s; unpaired t-test p < 0.05), while both cardiovascular parameters and PLR dilatation velocity were similar in both groups at this time point. Our findings of an increased PLR constriction velocity after sustained sympathetic stimulation in interictal migraine patients suggest an exaggerated parasympathetic response of the cranial ANS. This indicates that brainstem parasympathetic dysregulation might play a significant role in migraine pathophysiology. More dedicated examination of the ANS in migraine patients might be of value for a deeper understanding of its pathophysiology.

  8. Autonomic Impairment in Borderline Personality Disorder: A Laboratory Investigation

    ERIC Educational Resources Information Center

    Weinberg, Anna; Klonsky, E. David; Hajcak, Greg

    2009-01-01

    Recent research suggests that emotional dysfunction in psychiatric disorders can be reflected in autonomic abnormalities. The present study examines sympathetic and parasympathetic autonomic nervous system activity in individuals with Borderline Personality Disorder (BPD) before, during, and following a social stressor task. Data were obtained…

  9. Association of autonomic nervous system and EEG scalp potential during playing 2D Grand Turismo 5.

    PubMed

    Subhani, Ahmad Rauf; Likun, Xia; Saeed Malik, Aamir

    2012-01-01

    Cerebral activation and autonomic nervous system have importance in studies such as mental stress. The aim of this study is to analyze variations in EEG scalp potential which may influence autonomic activation of heart while playing video games. Ten healthy participants were recruited in this study. Electroencephalogram (EEG) and electrocardiogram (ECG) signals were measured simultaneously during playing video game and rest conditions. Sympathetic and parasympathetic innervations of heart were evaluated from heart rate variability (HRV), derived from the ECG. Scalp potential was measured by the EEG. The results showed a significant upsurge in the value theta Fz/alpha Pz (p<0.001) while playing game. The results also showed tachycardia while playing video game as compared to rest condition (p<0.005). Normalized low frequency power and ratio of low frequency/high frequency power were significantly increased while playing video game and normalized high frequency power sank during video games. Results showed synchronized activity of cerebellum and sympathetic and parasympathetic innervation of heart.

  10. Sympathetic neural overactivity in healthy humans after prolonged exposure to hypobaric hypoxia

    PubMed Central

    Hansen, Jim; Sander, Mikael

    2003-01-01

    Acute exposure to hypoxia causes chemoreflex activation of the sympathetic nervous system. During acclimatization to high altitude hypoxia, arterial oxygen content recovers, but it is unknown to what degree sympathetic activation is maintained or normalized during prolonged exposure to hypoxia. We therefore measured sympathetic nerve activity directly by peroneal microneurography in eight healthy volunteers (24 ± 2 years of age) after 4 weeks at an altitude of 5260 m (Chacaltaya, Bolivian Andes) and at sea level (Copenhagen). The subjects acclimatized well to altitude, but in every subject sympathetic nerve activity was highly elevated at altitude vs. sea level (48 ± 5 vs. 16 ± 3 bursts min−1, respectively, P < 0.05), coinciding with increased mean arterial blood pressure (87 ± 3 vs. 77 ± 2 mmHg, respectively, P < 0.05). To examine the underlying mechanisms, we administered oxygen (to eliminate chemoreflex activation) and saline (to reduce cardiopulmonary baroreflex deactivation). These interventions had minor effects on sympathetic activity (48 ± 5 vs. 38 ± 4 bursts min−1, control vs. oxygen + saline, respectively, P < 0.05). Moreover, sympathetic activity was still markedly elevated (37 ± 5 bursts min−1) when subjects were re-studied under normobaric, normoxic and hypervolaemic conditions 3 days after return to sea level. In conclusion, acclimatization to high altitude hypoxia is accompanied by a striking and long-lasting sympathetic overactivity. Surprisingly, chemoreflex activation by hypoxia and baroreflex deactivation by dehydration together could account for only a small part of this response, leaving the major underlying mechanisms unexplained. PMID:12563015

  11. Central Nervous System Regulation of Brown Adipose Tissue

    PubMed Central

    Morrison, Shaun F.; Madden, Christopher J.

    2015-01-01

    Thermogenesis, the production of heat energy, in brown adipose tissue is a significant component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature in many species from mouse to man and plays a key role in elevating body temperature during the febrile response to infection. The sympathetic neural outflow determining brown adipose tissue (BAT) thermogenesis is regulated by neural networks in the CNS which increase BAT sympathetic nerve activity in response to cutaneous and deep body thermoreceptor signals. Many behavioral states, including wakefulness, immunologic responses, and stress, are characterized by elevations in core body temperature to which central command-driven BAT activation makes a significant contribution. Since energy consumption during BAT thermogenesis involves oxidation of lipid and glucose fuel molecules, the CNS network driving cold-defensive and behavioral state-related BAT activation is strongly influenced by signals reflecting the short and long-term availability of the fuel molecules essential for BAT metabolism and, in turn, the regulation of BAT thermogenesis in response to metabolic signals can contribute to energy balance, regulation of body adipose stores and glucose utilization. This review summarizes our understanding of the functional organization and neurochemical influences within the CNS networks that modulate the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolic alterations in BAT thermogenesis and BAT energy expenditure that contribute to overall energy homeostasis and the autonomic support of behavior. PMID:25428857

  12. Neuroblastoma | Office of Cancer Genomics

    Cancer.gov

    The TARGET Neuroblastoma projects elucidate comprehensive molecular characterization to determine the genetic changes that drive the initiation and progression of high-risk or hard-to-treat childhood cancers. Neuroblastoma (NBL) is a cancer that arises in immature nerve cells of the sympathetic nervous system, primarily affecting infants and children.

  13. A Demonstration of Sympathetic Cotransmission

    ERIC Educational Resources Information Center

    Johnson, Christopher D.

    2010-01-01

    Currently, most undergraduate textbooks that cover the autonomic nervous system retain the concept that autonomic nerves release either acetylcholine or norepinephrine. However, in recent years, a large volume of research has superseded this concept with one in which autonomic nerves normally release at least one cotransmitter along with a…

  14. Altered activity of the sympathetic nervous system and changes in the balance of hypophyseal, pituitary and adrenal hormones in patients with cluster headache.

    PubMed

    Strittmatter, M; Hamann, G F; Grauer, M; Fischer, C; Blaes, F; Hoffmann, K H; Schimrigk, K

    1996-05-17

    Twelve patients (age 43.4 +/- 6.3 years) with episodic cluster headache (CH) were examined during the cluster period. Plasma norepinephrine levels in patients suffering from CH were significantly decreased compared with the control group (p < 0.01). There were also statistically significant correlations between norepinephrine levels and clinical features of the pain attacks including duration (r = 0.75, p < 0.05), intensity (r = 0.64, p < 0.05) and frequency (r = 0.68, p < 0.06), thereby suggesting a pathophysiological involvement of the sympathetic nervous system in CH. Increased plasma levels of plasmacortisol and ACTH in patients with CH, especially in the morning and in the evening, suggest an alteration of the feedback circuit involving the hypothalamus, the pituitary and the adrenal gland, an imbalance in the hormones related to these structures, as well as an alteration of the circadian rhythm. In addition, CH patients demonstrated significantly decreased levels of norepinephrine (p < 0.05), HVA (p < 0.01) and 5-HIAA (p < 0.01) in the cerebrospinal fluid (CSF) consistent with a central genesis of CH. These significant relationships between neurochemical parameters and the clinical patterns suggest a complex interplay between the hypothalamus, neuroendocrinological parameters, activity of the autonomic nervous system and the pain of CH.

  15. Analysis of physiological responses associated with emotional changes induced by viewing video images of dental treatments.

    PubMed

    Sekiya, Taki; Miwa, Zenzo; Tsuchihashi, Natsumi; Uehara, Naoko; Sugimoto, Kumiko

    2015-03-30

    Since the understanding of emotional changes induced by dental treatments is important for dentists to provide a safe and comfortable dental treatment, we analyzed physiological responses during watching video images of dental treatments to search for the appropriate objective indices reflecting emotional changes. Fifteen healthy young adult subjects voluntarily participated in the present study. Electrocardiogram (ECG), electroencephalogram (EEG) and corrugator muscle electromyogram (EMG) were recorded and changes of them by viewing videos of dental treatments were analyzed. The subjective discomfort level was acquired by Visual Analog Scale method. Analyses of autonomic nervous activities from ECG and four emotional factors (anger/stress, joy/satisfaction, sadness/depression and relaxation) from EEG demonstrated that increases in sympathetic nervous activity reflecting stress increase and decreases in relaxation level were induced by the videos of infiltration anesthesia and cavity excavation, but not intraoral examination. The corrugator muscle activity was increased by all three images regardless of video contents. The subjective discomfort during watching infiltration anesthesia and cavity excavation was higher than intraoral examination, showing that sympathetic activities and relaxation factor of emotion changed in a manner consistent with subjective emotional changes. These results suggest that measurement of autonomic nervous activities estimated from ECG and emotional factors analyzed from EEG is useful for objective evaluation of subjective emotion.

  16. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade.

    PubMed

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-03-19

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors.

  17. The chronic infusion of hexamethonium and phenylephrine to effectively clamp sympathetic vasomotor tone. A novel approach.

    PubMed

    Collister, J P; Osborn, J W

    1999-11-01

    There are several ways to assess the sympathetic nervous system (i.e. , nerve recording, sympathectomy, etc.), each of which has its own limitations. The present study was conducted to establish a standard, testable chronic ganglionic blockade protocol with a fixed level of adrenergic vasomotor tone. Rats were instrumented with radio telemetry pressure transducers and venous catheters for continuous measurement of arterial pressure and infusion of pharmacologic agents, respectively. After 3 days of control measurements, rats were infused for 9 days with a continuous dose of the ganglionic blocking agent, hexamethonium and the alpha-adrenergic agonist, phenylephrine. In this way, sympathetic tone was effectively "clamped," which maintained a normal level of arterial pressure. Control pressure between hexamethonium + phenylephrine (HEX + PE) treated rats (101+/-2 mm Hg) and saline (VEHICLE) treated rats (101+/-2 mmHg) was not different. By day 9 of the infusion, there was no difference in arterial pressure between groups (VEHICLE: 101+/-3 mm Hg, HEX + PE: 103+/-3 mm Hg) or from the control period, although heart rate was significantly less in HEX + PE rats (VEHICLE: 406+/-9 beats/min vs. HEX + PE: 343+/-6 beats/min). The effectiveness of this technique was validated by measuring cardiac baroreceptor reflex sensitivity, as well as the pressor response to the direct ganglionic stimulating agent, 1, 1-dimethyl-4-phenylpiperazinium iodide (DMPP). Compared to VEHICLE rats, HEX + PE rats showed no tachycardic response to depressor stimuli and an absence of a pressor response to DMPP. We conclude that this protocol is a useful technique to chronically, yet reversibly, block the sympathetic nervous system in experimental settings.

  18. Central control of thermogenesis.

    PubMed

    Clapham, John C

    2012-07-01

    In mammals and birds, conservation of body heat at around 37 °C is vital to life. Thermogenesis is the production of this heat which can be obligatory, as in basal metabolic rate, or it can be facultative such as the response to cold. A complex regulatory system has evolved which senses environmental or core temperature and integrates this information in hypothalamic regions such as the preoptic area and dorsomedial hypothalamus. These areas then send the appropriate signals to generate and conserve heat (or dissipate it). In this review, the importance of the sympathetic nervous system is discussed in relation to its role in basal metabolic rate and adaptive thermogenesis with a particular emphasis to human obesity. The efferent sympathetic pathway does not uniformly act on all tissues; different tissues can receive different levels of sympathetic drive at the same time. This is an important concept in the discussion of the pharmacotherapy of obesity. Despite decades of work the medicine chest contains only one pill for the long term treatment of obesity, orlistat, a lipase inhibitor that prevents the absorption of lipid from the gut and is itself not systemically absorbed. The central controlling system for thermogenesis has many potential intervention points. Several drugs, previously marketed, awaiting approval or in the earlier stages of development may have a thermogenic effect via activation of the sympathetic nervous system at some point in the thermoregulatory circuit and are discussed in this review. If the balance is weighted to the "wrong" side there is the burden of increased cardiovascular risk while a shift to the "right" side, if possible, will afford a thermogenic benefit that is conducive to weight loss maintenance. This article is part of a Special Issue entitled 'Central Control Food Intake' Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB1 receptor blockade

    PubMed Central

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-01-01

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors. PMID:23487769

  20. Autonomic nervous system balance in children and adolescents with craniopharyngioma and hypothalamic obesity.

    PubMed

    Cohen, Michal; Syme, Catriona; McCrindle, Brian W; Hamilton, Jill

    2013-06-01

    Dysregulation of the autonomic nervous system is thought to be involved in craniopharyngioma-related hypothalamic obesity (CRHO). Increased parasympathetic activity and decreased sympathetic activity have been suggested. We aimed to study autonomic activity using heart rate variability (HRV) and biochemical measures in youth with CRHO compared with controls and to explore relationships between obesity and autonomic indices. A cross-sectional study of 16 youth with CRHO and 16 controls matched for sex, age, and BMI. Anthropometrics, fasting blood-work, resting energy expenditure (REE), 24-h HRV, and 24-h urine catecholamines were assessed. Quality of life, sleepiness, and autonomic symptoms were evaluated. Power spectral analysis of the HRV was performed. HRV power spectral analysis parameters of both parasympathetic activity (mean high frequency (HF (ms(2))) 611±504 vs 459±336, P=0.325) and sympathetic activity (median low frequency/HF 1.62 (1.37, 2.41) vs 1.89 (1.44, 2.99), P=0.650) did not differ between the groups. Parasympathetic activity negatively correlated with central adiposity in both groups (r=-0.53, P=0.034 and r=-0.54, P=0.029) and sympathetic activity positively correlated with central adiposity in CRHO (r=0.51, P=0.043). Youth with CRHO had significantly lower REE; lower health and activity scores in the quality of life questionnaires, and higher sleepiness scores. Autonomic activity was similar in CRHO and control subjects. The degree of central adiposity correlated negatively with parasympathetic activity and positively with sympathetic activity in children with CRHO. These results provide a new perspective regarding autonomic balance in this unique patient population.

  1. Involvement of sympathetic nervous system and brown fat in endotoxin-induced fever in rats.

    PubMed

    Jepson, M M; Millward, D J; Rothwell, N J; Stock, M J

    1988-11-01

    The object of this study was to assess the role of brown adipose tissue (BAT) and the sympathetic nervous system in the rise in heat production associated with endotoxin-induced fever. Oxygen consumption (VO2) was found to be significantly increased (28%) over a 4-h period after two doses of endotoxin (Escherichia coli lipopolysaccharide, 0.3 mg/100 g body wt) given 24 h apart. Injection of a mixed beta-adrenoceptor antagonist (propranolol) reduced VO2 by 14% in endotoxin-treated rats, whereas the selective beta 1- (atenolol) or beta 2- (ICI 118551) antagonists suppressed VO2 by 10%. These drugs did not affect VO2 in control animals. BAT thermogenic activity assessed from measurements of in vitro mitochondrial guanosine 5'-diphosphate (GDP) binding was elevated by 54% in interscapular BAT and by 171% in other BAT depots. Surgical denervation of one lobe of the interscapular depot prevented these responses. Endotoxin failed to stimulate GDP binding in rats fed protein-deficient diets. This may have been because BAT thermogenic activity was already elevated in control rats fed these diets or because endotoxin caused a marked suppression of food intake in the protein-deficient animals. The results indicate that sympathetic activation of BAT is involved in the thermogenic responses to endotoxin and that these can be modified by dietary manipulation.

  2. Attenuated or absent HRV response to postural change in subjects with primary insomnia.

    PubMed

    Jiang, Xiao-ling; Zhang, Zheng-gang; Ye, Cui-ping; Lei, Ying; Wu, Lei; Zhang, Ying; Chen, Yuan-yuan; Xiao, Zhong-ju

    2015-03-01

    Previous studies have compared rest heart rate variability (HRV) between insomniacs and good sleepers, but the results have not been consistent. The altered HRV behavior in response to postural change was considered useful as another sensitive measure for evaluating the autonomic nervous function, however, to our knowledge, no study was found using HRV response to postural change in primary insomnia. Our study aimed to examine HRV response to postural change maneuver (PCM) in both primary insomniacs and controls between 22 and 39 years of age to gain insights into the characteristics of the autonomic nervous system (ANS) function in primary insomnia subjects. HRV was recorded for 5 min at seated rest, and then, the subjects quickly stood up from a seated position in up to 3s and remained standing for 15 min. HRV was recorded at the following times: seated rest and 0-5 min, 5-10 min and 10-15 min in the standing position. In primary insomnia subjects, attenuated or absent HRV response to postural change was identified, the increase in LF/HF ratio and the decrease in HF and SD1 from seated to standing were much slower than in the normal controls. In conclusion, this study provided evidence of the possible bi-directional relationship between insomnia and autonomic nervous system (ANS) function, which will move us closer to developing a new sensitive method for measuring autonomic impairment and early sympathetic damage in primary insomnia subjects. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Vagal-immune interactions involved in cholinergic anti-inflammatory pathway.

    PubMed

    Zila, I; Mokra, D; Kopincova, J; Kolomaznik, M; Javorka, M; Calkovska, A

    2017-09-22

    Inflammation and other immune responses are involved in the variety of diseases and disorders. The acute response to endotoxemia includes activation of innate immune mechanisms as well as changes in autonomic nervous activity. The autonomic nervous system and the inflammatory response are intimately linked and sympathetic and vagal nerves are thought to have anti-inflammation functions. The basic functional circuit between vagus nerve and inflammatory response was identified and the neuroimmunomodulation loop was called cholinergic anti-inflammatory pathway. Unique function of vagus nerve in the anti-inflammatory reflex arc was found in many experimental and pre-clinical studies. They brought evidence on the cholinergic signaling interacting with systemic and local inflammation, particularly suppressing immune cells function. Pharmacological/electrical modulation of vagal activity suppressed TNF-alpha and other proinflammatory cytokines production and had beneficial therapeutic effects. Many questions related to mapping, linking and targeting of vagal-immune interactions have been elucidated and brought understanding of its basic physiology and provided the initial support for development of Tracey´s inflammatory reflex. This review summarizes and critically assesses the current knowledge defining cholinergic anti-inflammatory pathway with main focus on studies employing an experimental approach and emphasizes the potential of modulation of vagally-mediated anti-inflammatory pathway in the treatment strategies.

  4. Evoked Cavernous Activity: Normal Values

    PubMed Central

    Yang, Claire C.; Yilmaz, Ugur; Vicars, Brenda G.

    2009-01-01

    Purpose We present normative data for evoked cavernous activity (ECA), an electrodiagnostic test that evaluates the autonomic innervation of the corpora cavernosa. Material and Methods We enrolled 37 healthy, sexually active and potent men for the study. Each subject completed an IIEF questionnaire and underwent simultaneous ECA and hand and foot sympathetic skin response (SSR) testing. The sympathetic skin response tests were performed as autonomic controls. Results Thirty six men had discernible ECA and SSRs. The mean IIEF erectile domain score was 27. ECA is a low frequency wave that is morphologically and temporally similar in both corpora. The amplitudes of the responses were highly variable. The latencies, although variable, always occurred after the hand SSR. There was no change in the quality or the latency of the ECA with age. Conclusions ECA is measurable in healthy, potent men in a wide range of ages. Similar to other evoked responses of the autonomic nervous system, the measured waveform is highly variable, but its presence is consistent. The association between ECA and erectile function is to be determined. PMID:18423763

  5. Lower catecholamine activity is associated with greater levels of anger in adults.

    PubMed

    Schwartz, Joseph A; Portnoy, Jill

    2017-10-01

    Previous research has revealed a consistent association between heart rate at rest and during stress and behavioral problems, potentially implicating autonomic nervous system (ANS) functioning in the etiological development of antisocial behavior. A complementary line of research has focused on the potential independent and interactive role of the two subsystems that comprise the ANS, the parasympathetic nervous system (PNS) and the sympathetic nervous system (SNS), on behavioral problems. The current study aims to contribute to the existing literature by examining the influence of heart rate (HR) reactivity, high-frequency heart rate variability (HF-HRV) reactivity, and catecholamine activity on a comprehensive measure of anger in a large, nationally-representative sample of adults from the United States. Results from a series of structural equation models (SEMs) revealed that catecholamine activity was most consistently linked to anger, while associations involving HR and HF-HRV reactivity were nonsignificant. Additional analyses revealed that HF-HRV did not significantly moderate the association between catecholamine activity and anger. These findings highlight the importance of SNS activity in the development of more reactive forms of aggression such as anger. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Electrodermal Variability and Symptom Severity in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Fenning, Rachel M.; Baker, Jason K.; Baucom, Brian R.; Erath, Stephen A.; Howland, Mariann A.; Moffitt, Jacquelyn

    2017-01-01

    Associations between variability in sympathetic nervous system arousal and individual differences in symptom severity were examined for children with autism spectrum disorder (ASD). Thirty-four families participated in a laboratory visit that included continuous measurement of electrodermal activity (EDA) during a battery of naturalistic and…

  7. Adaptive Patterns of Stress Responsivity: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Del Giudice, Marco; Hinnant, J. Benjamin; Ellis, Bruce J.; El-Sheikh, Mona

    2012-01-01

    The adaptive calibration model (ACM) is an evolutionary-developmental theory of individual differences in stress responsivity. In this article, we tested some key predictions of the ACM in a middle childhood sample (N = 256). Measures of autonomic nervous system activity across the sympathetic and parasympathetic branches validated the 4-pattern…

  8. Neuroendocrine regulation of inflammation

    PubMed Central

    Padro, Caroline J.; Sanders, Virginia M.

    2014-01-01

    The interaction between the sympathetic nervous system and the immune system has been documented over the last several decades. In this review, the neuroanatomical, cellular, and molecular evidence for neuroimmune regulation in the maintenance of immune homeostasis will be discussed, as well as the potential impact of neuroimmune dysregulation in health and disease. PMID:24486056

  9. Losartan Potassium: A Review of Its Suitability for Use in Military Aircrew

    DTIC Science & Technology

    2001-06-01

    blood volume and/or sodium load to the kidney, and and diabetic nephropathy. Besides blocking the increased sympathetic nervous system activity...potassium levels, although no patient needed to left ventricular hypertrophy (LVH) similar to that discontinue the drug due to hyperkalemia . seen with ACE

  10. Recurrent myocardial infarction: Mechanisms of free-floating adaptation and autonomic derangement in networked cardiac neural control

    PubMed Central

    Ardell, Jeffrey L.; Shivkumar, Kalyanam; Armour, J. Andrew

    2017-01-01

    The cardiac nervous system continuously controls cardiac function whether or not pathology is present. While myocardial infarction typically has a major and catastrophic impact, population studies have shown that longer-term risk for recurrent myocardial infarction and the related potential for sudden cardiac death depends mainly upon standard atherosclerotic variables and autonomic nervous system maladaptations. Investigative neurocardiology has demonstrated that autonomic control of cardiac function includes local circuit neurons for networked control within the peripheral nervous system. The structural and adaptive characteristics of such networked interactions define the dynamics and a new normal for cardiac control that results in the aftermath of recurrent myocardial infarction and/or unstable angina that may or may not precipitate autonomic derangement. These features are explored here via a mathematical model of cardiac regulation. A main observation is that the control environment during pathology is an extrapolation to a setting outside prior experience. Although global bounds guarantee stability, the resulting closed-loop dynamics exhibited while the network adapts during pathology are aptly described as ‘free-floating’ in order to emphasize their dependence upon details of the network structure. The totality of the results provide a mechanistic reasoning that validates the clinical practice of reducing sympathetic efferent neuronal tone while aggressively targeting autonomic derangement in the treatment of ischemic heart disease. PMID:28692680

  11. Gut Microbiota-brain Axis

    PubMed Central

    Wang, Hong-Xing; Wang, Yu-Ping

    2016-01-01

    Objective: To systematically review the updated information about the gut microbiota-brain axis. Data Sources: All articles about gut microbiota-brain axis published up to July 18, 2016, were identified through a literature search on PubMed, ScienceDirect, and Web of Science, with the keywords of “gut microbiota”, “gut-brain axis”, and “neuroscience”. Study Selection: All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed, with no limitation of study design. Results: It is well-recognized that gut microbiota affects the brain's physiological, behavioral, and cognitive functions although its precise mechanism has not yet been fully understood. Gut microbiota-brain axis may include gut microbiota and their metabolic products, enteric nervous system, sympathetic and parasympathetic branches within the autonomic nervous system, neural-immune system, neuroendocrine system, and central nervous system. Moreover, there may be five communication routes between gut microbiota and brain, including the gut-brain's neural network, neuroendocrine-hypothalamic-pituitary-adrenal axis, gut immune system, some neurotransmitters and neural regulators synthesized by gut bacteria, and barrier paths including intestinal mucosal barrier and blood-brain barrier. The microbiome is used to define the composition and functional characteristics of gut microbiota, and metagenomics is an appropriate technique to characterize gut microbiota. Conclusions: Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain, which may provide a new way to protect the brain in the near future. PMID:27647198

  12. Affective decision-making and externalizing behaviors: the role of autonomic activity.

    PubMed

    Bubier, Jennifer L; Drabick, Deborah A G

    2008-08-01

    We tested a conceptual model involving the inter-relations among affective decision-making (indexed by a gambling task), autonomic nervous system (ANS) activity, and attention-deficit/hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD) symptoms in a largely impoverished, inner city sample of first through third grade children (N=63, 54% male). The present study hypothesized that impaired affective decision-making and decreased sympathetic and parasympathetic activation would be associated with higher levels of ADHD and ODD symptoms, and that low sympathetic and parasympathetic activation during an emotion-inducing task would mediate the relation between affective decision-making and child externalizing symptoms. In support of our model, disadvantageous decision-making on a gambling task was associated with ADHD hyperactivity/impulsivity symptoms among boys, and attenuated sympathetic activation during an emotion-inducing task mediated this relation. Support for the model was not found among girls.

  13. Acute effects of MDMA on autonomic cardiac activity and their relation to subjective prosocial and stimulant effects.

    PubMed

    Clark, Christine M; Frye, Charles G; Wardle, Margaret C; Norman, Greg J; de Wit, Harriet

    2015-03-01

    MDMA is a stimulant with unique "prosocial" effects, the physiological and pharmacological mechanisms of which are unknown. Here, we examine the relationship of measures of parasympathetic and sympathetic nervous system activity to the prosocial effects of MDMA. Parasympathetic activity was measured using respiratory sinus arrhythmia (RSA) and sympathetic activity using pre-ejection period (PEP). Over three sessions, 33 healthy volunteers received placebo, 0.75 mg/kg, and 1.5 mg/kg MDMA under counterbalanced, double-blind conditions, while we measured subjective feelings, RSA, and PEP. RSA and PEP data were available for 26 and 21 participants, respectively. MDMA increased prosocial and stimulated feelings, decreased RSA, and decreased PEP. At 1.5 mg/kg, subjective prosocial effects correlated with stimulated feelings and PEP, but not RSA. This suggests sympathetic, rather than parasympathetic, effects relate to the prosocial effects of MDMA. © 2014 Society for Psychophysiological Research.

  14. A peripheral blood transcriptome biomarker test to diagnose functional recovery potential in advanced heart failure.

    PubMed

    Deng, Mario C

    2018-05-08

    Heart failure (HF) is a complex clinical syndrome that causes systemic hypoperfusion and failure to meet the body's metabolic demands. In an attempt to compensate, chronic upregulation of the sympathetic nervous system and renin-angiotensin-aldosterone leads to further myocardial injury, HF progression and reduced O 2 delivery. This triggers progressive organ dysfunction, immune system activation and profound metabolic derangements, creating a milieu similar to other chronic systemic diseases and presenting as advanced HF with severely limited prognosis. We hypothesize that 1-year survival in advanced HF is linked to functional recovery potential (FRP), a novel clinical composite parameter that includes HF severity, secondary organ dysfunction, co-morbidities, frailty, disabilities as well as chronological age and that can be diagnosed by a molecular biomarker.

  15. Fasting induces a form of autonomic synaptic plasticity that prevents hypoglycemia

    PubMed Central

    Wang, Manqi; Wang, Qian; Whim, Matthew D.

    2016-01-01

    During fasting, activation of the counter-regulatory response (CRR) prevents hypoglycemia. A major effector arm is the autonomic nervous system that controls epinephrine release from adrenal chromaffin cells and, consequently, hepatic glucose production. However, whether modulation of autonomic function determines the relative strength of the CRR, and thus the ability to withstand food deprivation and maintain euglycemia, is not known. Here we show that fasting leads to altered transmission at the preganglionic → chromaffin cell synapse. The dominant effect is a presynaptic, long-lasting increase in synaptic strength. Using genetic and pharmacological approaches we show this plasticity requires neuropeptide Y, an adrenal cotransmitter and the activation of adrenal Y5 receptors. Loss of neuropeptide Y prevents a fasting-induced increase in epinephrine release and results in hypoglycemia in vivo. These findings connect plasticity within the sympathetic nervous system to a physiological output and indicate the strength of the final synapse in this descending pathway plays a decisive role in maintaining euglycemia. PMID:27092009

  16. Renal sympathetic denervation for resistant hypertension.

    PubMed

    Froeschl, Michael; Hadziomerovic, Adnan; Ruzicka, Marcel

    2013-05-01

    Resistant hypertension is an increasingly prevalent health problem associated with important adverse cardiovascular outcomes. The pathophysiology that underlies this condition involves increased function of both the sympathetic nervous system and the renin-angiotensin II-aldosterone system. A crucial link between these 2 systems is the web of sympathetic fibres that course within the adventitia of the renal arteries. These nerves can be targeted by applying radiofrequency energy from the lumen of the renal arteries to renal artery walls (percutaneous renal sympathetic denervation [RSD]), an approach that has attracted great interest. This paper critically reviews the evidence supporting the use of RSD. Small studies suggest that RSD can produce dramatic blood pressure reductions: In the randomized Symplicity HTN-2 trial of 106 patients, the mean fall in blood pressure at 6 months in patients who received the treatment was 32/12 mm Hg. However, there are limitations to the evidence for RSD in the treatment of resistant hypertension. These include the small number of patients studied; the lack of any placebo-controlled evidence; the fact that blood pressure outcomes were based on office assessments, as opposed to 24-hour ambulatory monitoring; the lack of longer-term efficacy data; and the lack of long-term safety data. Some of these concerns are being addressed in the ongoing Renal Denervation in Patients With Uncontrolled Hypertension (Symplicity HTN-3) trial. The first percutaneous RSD system was approved by Health Canada in the spring of 2012. But until more and better-quality data are available, this procedure should generally be reserved for those patients whose resistant hypertension is truly uncontrolled. Copyright © 2013 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  17. Glibenclamide treatment blocks metabolic dysfunctions and improves vagal activity in monosodium glutamate-obese male rats.

    PubMed

    Franco, Claudinéia C S; Prates, Kelly V; Previate, Carina; Moraes, Ana M P; Matiusso, Camila C I; Miranda, Rosiane A; de Oliveira, Júlio C; Tófolo, Laize P; Martins, Isabela P; Barella, Luiz F; Ribeiro, Tatiane A; Malta, Ananda; Pavanello, Audrei; Francisco, Flávio A; Gomes, Rodrigo M; Alves, Vander S; Moreira, Veridiana M; Rigo, Késia P; Almeida, Douglas L; de Sant Anna, Juliane R; Prado, Marialba A A C; Mathias, Paulo C F

    2017-05-01

    Autonomic nervous system imbalance is associated with metabolic diseases, including diabetes. Glibenclamide is an antidiabetic drug that acts by stimulating insulin secretion from pancreatic beta cells and is widely used in the treatment of type 2 diabetes. Since there is scarce data concerning autonomic nervous system activity and diabetes, the aim of this work was to test whether glibenclamide can improve autonomic nervous system activity and muscarinic acetylcholine receptor function in pre-diabetic obese male rats. Pre-diabetes was induced by treatment with monosodium L-glutamate in neonatal rats. The monosodium L-glutamate group was treated with glibenclamide (2 mg/kg body weight /day) from weaning to 100 days of age, and the control group was treated with water. Body weight, food intake, Lee index, fasting glucose, insulin levels, homeostasis model assessment of insulin resistance, omeostasis model assessment of β-cell function, and fat tissue accumulation were measured. The vagus and sympathetic nerve electrical activity were recorded. Insulin secretion was measured in isolated islets challenged with glucose, acetylcholine, and the selective muscarinic acetylcholine receptor antagonists by radioimmunoassay technique. Glibenclamide treatment prevented the onset of obesity and diminished the retroperitoneal (18%) and epididymal (25%) fat pad tissues. In addition, the glibenclamide treatment also reduced the parasympathetic activity by 28% and glycemia by 20% in monosodium L-glutamate-treated rats. The insulinotropic effect and unaltered cholinergic actions in islets from monosodium L-glutamate groups were increased. Early glibenclamide treatment prevents monosodium L-glutamate-induced obesity onset by balancing autonomic nervous system activity.

  18. Autonomic innervation of immune organs and neuroimmune modulation.

    PubMed

    Mignini, F; Streccioni, V; Amenta, F

    2003-02-01

    1. Increasing evidence indicates the occurrence of functional interconnections between immune and nervous systems, although data available on the mechanisms of this bi-directional cross-talking are frequently incomplete and not always focussed on their relevance for neuroimmune modulation. 2. Primary (bone marrow and thymus) and secondary (spleen and lymph nodes) lymphoid organs are supplied with an autonomic (mainly sympathetic) efferent innervation and with an afferent sensory innervation. Anatomical studies have revealed origin, pattern of distribution and targets of nerve fibre populations supplying lymphoid organs. 3. Classic (catecholamines and acetylcholine) and peptide transmitters of neural and non-neural origin are released in the lymphoid microenvironment and contribute to neuroimmune modulation. Neuropeptide Y, substance P, calcitonin gene-related peptide, and vasoactive intestinal peptide represent the neuropeptides most involved in neuroimmune modulation. 4. Immune cells and immune organs express specific receptors for (neuro)transmitters. These receptors have been shown to respond in vivo and/or in vitro to the neural substances and their manipulation can alter immune responses. Changes in immune function can also influence the distribution of nerves and the expression of neural receptors in lymphoid organs. 5. Data on different populations of nerve fibres supplying immune organs and their role in providing a link between nervous and immune systems are reviewed. Anatomical connections between nervous and immune systems represent the structural support of the complex network of immune responses. A detailed knowledge of interactions between nervous and immune systems may represent an important basis for the development of strategies for treating pathologies in which altered neuroimmune cross-talking may be involved.

  19. SYMPATHETIC INNERVATION, NOREPINEPHRINE CONTENT, AND NOREPINEPHRINE TURNOVER IN ORTHOTOPIC AND SPONTANEOUS MODELS OF BREAST CANCER

    PubMed Central

    Dawes, Ryan P.; Madden, Kelley S.

    2016-01-01

    Activation of the sympathetic nervous system (SNS) drives breast cancer progression in preclinical breast cancer models, but it has yet to be established if neoplastic and stromal cells residing in the tumor are directly targeted by locally released norepinephrine (NE). In murine orthotopic and spontaneous mammary tumors, tyrosine hydroxylase (TH)+ sympathetic nerves were limited to the periphery of the tumor. No TH+ staining was detected deeper within these tumors, even in regions with a high density of blood vessels. NE concentration was much lower in tumors compared to the more densely innervated spleen, reflecting the relative paucity of tumor TH+ innervation. Tumor and spleen NE concentration decreased with increased tissue mass. In mice treated with the neurotoxin 6-hydroxydopamine (6-OHDA) to selectively destroy sympathetic nerves, tumor NE concentration was reduced approximately 50%, suggesting that the majority of tumor NE is derived from local sympathetic nerves. To evaluate NE utilization, NE turnover in orthotopic 4T1 mammary tumors was compared to spleen under baseline and stress conditions. In non-stressed mice, NE turnover was equivalent between tumor and spleen. In mice exposed to a stressor, tumor NE turnover was increased compared to spleen NE turnover, and compared to non-stressed tumor NE turnover. Together, these results demonstrate that NE in mammary tumors is derived from local sympathetic nerves that synthesize and metabolize NE. However, differences between spleen and tumor NE turnover with stressor exposure suggest that sympathetic NE release is regulated differently within the tumor microenvironment compared to the spleen. Local mammary tumor sympathetic innervation, despite its limited distribution, is responsive to stressor exposure and therefore can contribute to stress-induced tumor progression. PMID:26718447

  20. Exposure to a high-fat diet alters leptin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits.

    PubMed

    Prior, Larissa J; Eikelis, Nina; Armitage, James A; Davern, Pamela J; Burke, Sandra L; Montani, Jean-Pierre; Barzel, Benjamin; Head, Geoffrey A

    2010-04-01

    The activation of the sympathetic nervous system through the central actions of the adipokine leptin has been suggested as a major mechanism by which obesity contributes to the development of hypertension. However, direct evidence for elevated sympathetic activity in obesity has been limited to muscle. The present study examined the renal sympathetic nerve activity and cardiovascular effects of a high-fat diet (HFD), as well as the changes in the sensitivity to intracerebroventricular leptin. New Zealand white rabbits fed a 13.5% HFD for 4 weeks showed modest weight gain but a 2- to 3-fold greater accumulation of visceral fat compared with control rabbits. Mean arterial pressure, heart rate, and plasma norepinephrine concentration increased by 8%, 26%, and 87%, respectively (P<0.05), after 3 weeks of HFD. Renal sympathetic nerve activity was 48% higher (P<0.05) in HFD compared with control diet rabbits and was correlated to plasma leptin (r=0.87; P<0.01). Intracerebroventricular leptin administration (5 to 100 microg) increased mean arterial pressure similarly in both groups, but renal sympathetic nerve activity increased more in HFD-fed rabbits. By contrast, intracerebroventricular leptin produced less neurons expressing c-Fos in HFD compared with control rabbits in regions important for appetite and sympathetic actions of leptin (arcuate: -54%, paraventricular: -69%, and dorsomedial hypothalamus: -65%). These results suggest that visceral fat accumulation through consumption of a HFD leads to marked sympathetic activation, which is related to increased responsiveness to central sympathoexcitatory effects of leptin. The paradoxical reduction in hypothalamic neuronal activation by leptin suggests a marked "selective leptin resistance" in these animals.

  1. Quantification of myocardial blood flow with 11C-hydroxyephedrine dynamic PET: comparison with 15O-H2O PET.

    PubMed

    Hiroshima, Yuji; Manabe, Osamu; Naya, Masanao; Tomiyama, Yuuki; Magota, Keiichi; Obara, Masahiko; Aikawa, Tadao; Oyama-Manabe, Noriko; Yoshinaga, Keiichiro; Hirata, Kenji; Kroenke, Markus; Tamaki, Nagara; Katoh, Chietsugu

    2017-12-21

    11 C-hydroxyephedrine (HED) PET has been used to evaluate the myocardial sympathetic nervous system (SNS). Here we sought to establish a simultaneous approach for quantifying both myocardial blood flow (MBF) and the SNS from a single HED PET scan. Ten controls and 13 patients with suspected cardiac disease were enrolled. The inflow rate of 11 C-HED (K1) was obtained using a one-tissue-compartment model. We compared this rate with the MBF derived from 15 O-H 2 O PET. In the controls, the relationship between K 1 from 11 C-HED PET and the MBF from 15 O-H 2 O PET was linked by the Renkin-Crone model. The relationship between K 1 from 11 C-HED PET and the MBF from 15 O-H 2 O PET from the controls' data was approximated as follows: K 1   =  (1 - 0.891 * exp(- 0.146/MBF)) * MBF. In the validation set, the correlation coefficient demonstrated a significantly high relationship for both the whole left ventricle (r = 0.95, P < 0.001) and three coronary territories (left anterior descending artery: r = 0.96, left circumflex artery: r = 0.81, right coronary artery: r =  0.86; P < 0.001, respectively). 11 C-HED can simultaneously estimate MBF and sympathetic nervous function without requiring an additional MBF scan for assessing mismatch areas between MBF and SNS.

  2. Effects of Sleep Fragmentation on Glucose Metabolism in Normal Subjects

    PubMed Central

    Stamatakis, Katherine A.

    2010-01-01

    Background: Sleep disorders are increasingly associated with insulin resistance, glucose intolerance, and type 2 diabetes mellitus. Whether the metabolic toll imposed by sleep-related disorders is caused by poor-quality sleep or due to other confounding factors is not known. The objective of this study was to examine whether experimental sleep fragmentation across all sleep stages would alter glucose metabolism, adrenocortical function, and sympathovagal balance. Methods: Sleep was experimentally fragmented across all stages in 11 healthy, normal volunteers for two nights using auditory and mechanical stimuli. Primary outcomes included insulin sensitivity (SI), glucose effectiveness (SG), and insulin secretion, as determined by the intravenous glucose tolerance test. Secondary outcomes included measures of sympathovagal balance and serum levels of inflammatory markers, adipokines, and cortisol. Results: Following two nights of sleep fragmentation, SI decreased from 5.02 to 3.76 (mU/L)−1min−1 (P < .0001). SG, which is the ability of glucose to mobilize itself independent of an insulin response, also decreased from 2.73 × 10−2 min−1 to 2.16 × 10−2 min−1 (P < .01). Sleep fragmentation led to an increase in morning cortisol levels and a shift in sympathovagal balance toward an increase in sympathetic nervous system activity. Markers of systemic inflammation and serum adipokines were unchanged with sleep fragmentation. Conclusions: Fragmentation of sleep across all stages is associated with a decrease in SI and SG. Increases in sympathetic nervous system and adrenocortical activity likely mediate the adverse metabolic effects of poor sleep quality. PMID:19542260

  3. Pituitary adenylate cyclase activating polypeptide and PAC1 receptor signaling increase Homer 1a expression in central and peripheral neurons.

    PubMed

    Girard, Beatrice M; Keller, Emily T; Schutz, Kristin C; May, Victor; Braas, Karen M

    2004-12-15

    Pituitary adenylate cyclase activating polypeptides (PACAP) and PAC1 receptor signaling have diverse roles in central and peripheral nervous system development and function. In recent microarray analyses for PACAP and PAC1 receptor modulation of neuronal transcripts, the mRNA of Homer 1a (H1a), which encodes the noncrosslinking and immediate early gene product isoform of Homer, was identified to be strongly upregulated in superior cervical ganglion (SCG) sympathetic neurons. Given the prominent roles of Homer in synaptogenesis, synaptic protein complex assembly and receptor/channel signaling, we have examined the ability for PACAP to induce H1a expression in sympathetic, cortical and hippocampal neurons to evaluate more comprehensively the roles of PACAP in synaptic function. In both central and peripheral neuronal cultures, PACAP peptides increased transiently H1a transcript levels approximately 3.5- to 6-fold. From real-time quantitative PCR measurements, the temporal patterns of PACAP-mediated H1a mRNA induction among the different neuronal cultures appeared similar although the onset of sympathetic H1a transcript expression appeared protracted. The increase in H1a transcripts was accompanied by increases in H1a protein levels. Comparative studies with VIP and PACAP(6-38) antagonist demonstrated that the PACAP effects reflected PAC1 receptor activation and signaling. The PAC1 receptor isoforms expressed in central and peripheral neurons can engage diverse intracellular second messenger systems, and studies using selective signaling pathway inhibitors demonstrated that the cyclic AMP/PKA and MEK/ERK cascades are principal mediators of the PACAP-mediated H1a induction response. In modulating H1a transcript and protein expression, these studies may implicate broad roles for PACAP and PAC1 receptor signaling in synaptic development and plasticity.

  4. Effect of Hinoki and Meniki Essential Oils on Human Autonomic Nervous System Activity and Mood States.

    PubMed

    Chen, Chi-Jung; Kumar, K J Senthil; Chen, Yu-Ting; Tsao, Nai-Wen; Chien, Shih-Chang; Chang, Shang-Tzen; Chu, Fang-Hua; Wang, Sheng-Yang

    2015-07-01

    Meniki (Chamecyparis formosensis) and Hinoki (C. obtusa) are precious conifers with excellent wood properties and distinctive fragrances that make these species popular in Taiwan for construction, interiors and furniture. In the present study, the compositions of essential oils prepared from Meniki and Hinoki were analyzed by gas chromatography-mass spectrometry (GC/MS). Thirty-six compounds were identified from the wood essential oil of Meniki, including Δ-cadinene, γ-cadinene, Δ-cadinol, α-muurolene, calamenene, linalyl acetate and myrtenol; 29 compounds were identified from Hinoki, including α-terpineol, α-pinene, Δ-cadinene, borneol, terpinolene, and limonene. Next, we examined the effect of Meniki and Hinoki essential oils on human autonomic nervous system activity. Sixteen healthy adults received Meniki or Hinoki by inhalation for 5 min, and the physiological and psychological effects were examined. After inhaling Meniki essential oil, participant's systolic blood pressure and heart rate (HR) were decreased, and diastolic blood pressure increased. In addition, sympathetic nervous activity (SNS) was significantly decreased, and parasympathetic activity (PSNS) was significantly increased. On the other hand, after inhaling Hinoki essential oil, systolic blood pressure, heart rate and PSNS were decreased, whereas SNA was increased. Indeed, both Meniki and Hinoki essential oils increased heart rate variability (HRV) in tested adults. Furthermore, in the Profile of Mood States (POMS) test, both Meniki and Hinoki wood essential oils stimulated a pleasant mood status. Our results strongly suggest that Meniki and Hinoki essential oils could be suitable agents for the development of regulators of sympathetic nervous system dysfunctions.

  5. Regulatory mechanisms in arterial hypertension: role of microRNA in pathophysiology and therapy.

    PubMed

    Klimczak, Dominika; Jazdzewski, Krystian; Kuch, Marek

    2017-02-01

    Multiple factors underlie the pathophysiology of hypertension, involving endothelial dysregulation, vascular smooth muscle dysfunction, increased oxidative stress, sympathetic nervous system activation and altered renin -angiotensin -aldosterone regulatory activity. A class of non-coding RNA called microRNA, consisting of 17-25 nucleotides, exert regulatory function over these processes. This paper summarizes the currently available data from preclinical and clinical studies on miRNA in the development of hypertension as well as the impact of anti-hypertensive treatment on their plasma expression. We present microRNAs' characteristics, their biogenesis and role in the regulation of blood pressure together with their potential diagnostic and therapeutic application in clinical practice.

  6. Diesel Exhaust-Induced Cardiac Dysfunction Is Mediated by Sympathetic Dominance in Heart Failure-Prone Rats

    EPA Science Inventory

    Short-term exposure to vehicular emissions is associated with adverse cardiac events. Diesel exhaust (DE) may provoke cardiac events through defective co-ordination of the two main autonomic nervous system (ANS) branches. We exposed heart failure-prone rats once to DE (500 g/m3 ...

  7. Provision of Auricular Acupuncture and Acupressure in a University Setting

    ERIC Educational Resources Information Center

    Oyola-Santiago, Tamara; Knopf, Rachel; Robin, Tracy; Harvey, Kristen

    2013-01-01

    Auricular acupuncture using the National Acupuncture Detoxification Association (NADA) protocol stimulates 5 points in each ear--the Shen Men, sympathetic nervous system, liver, kidney, and lung. This protocol is also known as Acu Detox, and has been used for recovery in community-based settings and drug use treatment programs. It has also been…

  8. Hypothalamic-Pituitary-Adrenal and Sympathetic Nervous System Activity and Children's Behavioral Regulation

    ERIC Educational Resources Information Center

    Lisonbee, Jared A.; Pendry, Patricia; Mize, Jacquelyn; Gwynn, Eugenia Parrett

    2010-01-01

    Self-regulation ability is an important component of children's academic success. Physiological reactivity may relate to brain activity governing attention and behavioral regulation. Saliva samples collected from 186 preschool children (101 boys, mean age = 53 months, 34% minority) before and after a series of mildly challenging games and again 30…

  9. Classroom Emotional Support Predicts Differences in Preschool Children's Cortisol and Alpha-Amylase Levels

    ERIC Educational Resources Information Center

    Hatfield, Bridget E.; Hestenes, Linda L.; Kintner-Duffy, Victoria L.; O'Brien, Marion

    2013-01-01

    Accumulating evidence suggests children enrolled in full-time child care often display afternoon elevations of the hormone cortisol, which is an indicator of stress. Recent advances in immunoassays allow for measurement of activity in the hypothalamic-pituitary-adrenal axis and the autonomic sympathetic nervous system from saliva, and measurement…

  10. University of California San Francisco (UCSF-2): Expression Analysis of Superior Cervical Ganglion from Backcrossed TH-MYCN Transgenic Mice | Office of Cancer Genomics

    Cancer.gov

    The CTD2 Center at University of California San Francisco (UCSF-2) used genetic analysis of the peripheral sympathetic nervous system to identify potential therapeutic targets in neuroblastoma. Read the abstract Experimental Approaches Read the detailed Experimental Approaches

  11. Stuttering, Emotions, and Heart Rate during Anticipatory Anxiety: A Critical Review

    ERIC Educational Resources Information Center

    Alm, Per A.

    2004-01-01

    Persons who stutter often report their stuttering is influenced by emotional reactions, yet the nature of such relation is still unclear. Psychophysiological studies of stuttering have failed to find any major association between stuttering and the activity of the sympathetic nervous system. A review of published studies of heart rate in relation…

  12. Catecholamine plasma levels, IFN-γ serum levels and antibodies production induced by rabies vaccine in dogs selected for their paw preference.

    PubMed

    Siniscalchi, Marcello; Cirone, Francesco; Guaricci, Antonio Ciro; Quaranta, Angelo

    2014-01-01

    To explore the possible role of the sympathetic nervous activity in the asymmetrical crosstalk between the brain and immune system, catecholamine (E, NE) plasma levels, Interferon-γ (IFN-γ) serum levels and production of antibodies induced by rabies vaccine in dogs selected for their paw preference were measured. The results showed that the direction of behavioural lateralization influenced both epinephrine levels and immune response in dogs. A different kinetic of epinephrine levels after immunization was observed in left-pawed dogs compared to both right-pawed and ambidextrous dogs. The titers of antirabies antibodies were lower in left-pawed dogs than in right-pawed and ambidextrous dogs. Similarly, the IFN-γ serum levels were lower in left-pawed dogs than in the other two groups. Taken together, these findings showed that the left-pawed group appeared to be consistently the different group stressing the fundamental role played by the sympathetic nervous system as a mechanistic basis for the crosstalk between the brain and the immune system.

  13. Role of leptin in energy expenditure: the hypothalamic perspective.

    PubMed

    Pandit, R; Beerens, S; Adan, R A H

    2017-06-01

    The adipocyte-derived hormone leptin is a peripheral signal that informs the brain about the metabolic status of an organism. Although traditionally viewed as an appetite-suppressing hormone, studies in the past decade have highlighted the role of leptin in energy expenditure. Leptin has been shown to increase energy expenditure in particular through its effects on the cardiovascular system and brown adipose tissue (BAT) thermogenesis via the hypothalamus. The current review summarizes the role of leptin signaling in various hypothalamic nuclei and its effects on the sympathetic nervous system to influence blood pressure, heart rate, and BAT thermogenesis. Specifically, the role of leptin signaling on three different hypothalamic nuclei, the dorsomedial hypothalamus, the ventromedial hypothalamus, and the arcuate nucleus, is reviewed. It is known that all of these brain regions influence the sympathetic nervous system activity and thereby regulate BAT thermogenesis and the cardiovascular system. Thus the current work focuses on how leptin signaling in specific neuronal populations within these hypothalamic nuclei influences certain aspects of energy expenditure. Copyright © 2017 the American Physiological Society.

  14. Video display terminal operation: a potential risk in the etiology and maintenance of temporomandibular disorders.

    PubMed

    Horowitz, L; Sarkin, J M

    1992-01-01

    Surveys indicate over 50 million Americans, mostly women, currently operate video display terminals (VDTs) at home or in the workplace. Recent epidemiological studies reveal more than 75% of approximately 30 million American temporomandibular disorder (TMD) sufferers are women. What does the VDT and TMD have in common besides an affinity for the female gender? TMD is associated with numerous risk factors that commonly initiate sympathetic nervous system and stress hormone response mechanisms resulting in muscle spasms, trigger point formation, and pain in the head and neck. Likewise VDT operation may be linked to three additional sympathetic nervous system irritants including: (1) electrostatic ambient air negative ion depletion, (2) electromagnetic radiation, and (3) eyestrain and postural stress associated with poor work habits and improper work station design. Additional research considering the roles these three factors may play in the etiology of TMD and other myofascial pain problems is indicated. Furthermore, dentists are advised to educate patients as to these possible risks, encourage preventive behaviors on the part of employers and employees, and recommend workplace health, safety, and ergonomic upgrades when indicated.

  15. Cardiovascular and respiratory dynamics during normal and pathological sleep

    NASA Astrophysics Data System (ADS)

    Penzel, Thomas; Wessel, Niels; Riedl, Maik; Kantelhardt, Jan W.; Rostig, Sven; Glos, Martin; Suhrbier, Alexander; Malberg, Hagen; Fietze, Ingo

    2007-03-01

    Sleep is an active and regulated process with restorative functions for physical and mental conditions. Based on recordings of brain waves and the analysis of characteristic patterns and waveforms it is possible to distinguish wakefulness and five sleep stages. Sleep and the sleep stages modulate autonomous nervous system functions such as body temperature, respiration, blood pressure, and heart rate. These functions consist of a sympathetic tone usually related to activation and to parasympathetic (or vagal) tone usually related to inhibition. Methods of statistical physics are used to analyze heart rate and respiration to detect changes of the autonomous nervous system during sleep. Detrended fluctuation analysis and synchronization analysis and their applications to heart rate and respiration during sleep in healthy subjects and patients with sleep disorders are presented. The observed changes can be used to distinguish sleep stages in healthy subjects as well as to differentiate normal and disturbed sleep on the basis of heart rate and respiration recordings without direct recording of brain waves. Of special interest are the cardiovascular consequences of disturbed sleep because they present a risk factor for cardiovascular disorders such as arterial hypertension, cardiac ischemia, sudden cardiac death, and stroke. New derived variables can help to find indicators for these health risks.

  16. Sympathetic baroreflex gain in normotensive pregnant women

    PubMed Central

    Usselman, Charlotte W.; Skow, Rachel J.; Matenchuk, Brittany A.; Chari, Radha S.; Julian, Colleen G.; Stickland, Michael K.; Davenport, Margie H.

    2015-01-01

    Muscle sympathetic nerve activity is increased during normotensive pregnancy while mean arterial pressure is maintained or reduced, suggesting baroreflex resetting. We hypothesized spontaneous sympathetic baroreflex gain would be reduced in normotensive pregnant women relative to nonpregnant matched controls. Integrated muscle sympathetic burst incidence and total sympathetic activity (microneurography), blood pressure (Finometer), and R-R interval (ECG) were assessed at rest in 11 pregnant women (33 ± 1 wk gestation, 31 ± 1 yr, prepregnancy BMI: 23.5 ± 0.9 kg/m2) and 11 nonpregnant controls (29 ± 1 yr; BMI: 25.2 ± 1.7 kg/m2). Pregnant women had elevated baseline sympathetic burst incidence (43 ± 2 vs. 33 ± 2 bursts/100 heart beats, P = 0.01) and total sympathetic activity (1,811 ± 148 vs. 1,140 ± 55 au, P < 0.01) relative to controls. Both mean (88 ± 3 vs. 91 ± 2 mmHg, P = 0.4) and diastolic (DBP) (72 ± 3 vs. 73 ± 2 mmHg, P = 0.7) pressures were similar between pregnant and nonpregnant women, respectively, indicating an upward resetting of the baroreflex set point with pregnancy. Baroreflex gain, calculated as the linear relationship between sympathetic burst incidence and DBP, was reduced in pregnant women relative to controls (−3.7 ± 0.5 vs. −5.4 ± 0.5 bursts·100 heart beats−1·mmHg−1, P = 0.03), as was baroreflex gain calculated with total sympathetic activity (−294 ± 24 vs. −210 ± 24 au·100 heart beats−1·mmHg−1; P = 0.03). Cardiovagal baroreflex gain (sequence method) was not different between nonpregnant controls and pregnant women (49 ± 8 vs. 36 ± 8 ms/mmHg; P = 0.2). However, sympathetic (burst incidence) and cardiovagal gains were negatively correlated in pregnant women (R = −0.7; P = 0.02). Together, these data indicate that the influence of the sympathetic nervous system over arterial blood pressure is reduced in normotensive pregnancy, in terms of both long-term and beat-to-beat regulation of arterial pressure, likely through a baroreceptor-dependent mechanism. PMID:26139215

  17. Sympathovagal response to orthostatism in overt and in subclinical hyperthyroidism.

    PubMed

    Goichot, B; Brandenberger, G; Vinzio, S; Perrin, A E; Geny, B; Schlienger, J L; Simon, C

    2004-04-01

    Heart rate variability (HRV) is a measure of the physiological variation of R-R intervals, reflecting the sympathovagal balance. In both overt and subclinical hyperthyroidism, a relative increase in sympathetic activity has been demonstrated, mainly due to a decrease in vagal activity. The modifications of HRV during orthostatism in normal subjects resemble those seen in hyperthyroidism. We have studied the response of 19 patients with overt hyperthyroidism and 12 with subclinical hyperthyroidism during orthostatism using HRV and compared the results to those of 32 healthy controls. In the three groups, the R-R intervals decreased in the same proportion after orthostatism. The low frequency power (LF)/[LF + high frequency power (HF)] ratio, which reflects the sympathetic tone, also increased in the same proportion in the three groups. However, the mechanisms of the modulation of the sympathovagal balance during orthostatism were different among the three groups. In controls, the relative increase of sympathetic tone after orthostatism was due principally to a decrease in vagal tone (reflected by decreased power in the HF band), while in overt hyperthyroidism, where the power in the HF band was already minimal in the lying position, there was a clear increase in the LF band power during orthostatism. The results were intermediate in the subclinical hyperthyroidism group, reflecting a continuum of effects of the thyroid hormone excess on the autonomic nervous system. Our study shows that despite an apparent normal cardiovascular adaptation to orthostatism in hyperthyroidism, the modulation of the autonomic nervous system is profoundly modified.

  18. The crosstalk between the kidney and the central nervous system: the role of renal nerves in blood pressure regulation.

    PubMed

    Nishi, Erika E; Bergamaschi, Cássia T; Campos, Ruy R

    2015-04-20

    What is the topic of this review? This review describes the role of renal nerves as the key carrier of signals from the kidneys to the CNS and vice versa; the brain and kidneys communicate through this carrier to maintain homeostasis in the body. What advances does it highlight? Whether renal or autonomic dysfunction is the predominant contributor to systemic hypertension is still debated. In this review, we focus on the role of the renal nerves in a model of renovascular hypertension. The sympathetic nervous system influences the renal regulation of arterial pressure and body fluid composition. Anatomical and physiological evidence has shown that sympathetic nerves mediate changes in urinary sodium and water excretion by regulating the renal tubular water and sodium reabsorption throughout the nephron, changes in the renal blood flow and the glomerular filtration rate by regulating the constriction of renal vasculature, and changes in the activity of the renin-angiotensin system by regulating the renin release from juxtaglomerular cells. Additionally, renal sensory afferent fibres project to the autonomic central nuclei that regulate blood pressure. Hence, renal nerves play a key role in the crosstalk between the kidneys and the CNS to maintain homeostasis in the body. Therefore, the increased sympathetic nerve activity to the kidney and the renal afferent nerve activity to the CNS may contribute to the outcome of diseases, such as hypertension. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  19. Osteopathic manipulative treatment and its relationship to autonomic nervous system activity as demonstrated by heart rate variability: a repeated measures study

    PubMed Central

    Henley, Charles E; Ivins, Douglas; Mills, Miriam; Wen, Frances K; Benjamin, Bruce A

    2008-01-01

    Background The relationship between osteopathic manipulative treatment (OMT) and the autonomic nervous system has long been acknowledged, but is poorly understood. In an effort to define this relationship, cervical myofascial release was used as the OMT technique with heart rate variability (HRV) as a surrogate for autonomic activity. This study quantifies that relationship and demonstrates a cause and effect. Methods Seventeen healthy subjects, nine males and eight females aged 19–50 years from the faculty, staff, and students at Oklahoma State University Center for Health Sciences College of Osteopathic Medicine, acted as their own controls and received interventions, administered in separate sessions at least 24 hours apart, of cervical myofascial OMT, touch-only sham OMT, and no-touch control while at a 50-degree head-up tilt. Each group was dichotomized into extremes of autonomic activity using a tilt table. Comparisons were made between measurements taken at tilt and those taken at pre- and post-intervention in the horizontal. The variance of the spectral components of HRV, expressed as frequencies, measured the response to change in position of the subjects. Normalized low frequency (LF) and high frequency (HF) values, including LF/HF ratio, were calculated and used to determine the effect of position change on HRV. Results Predominantly parasympathetic responses were observed with subjects in the horizontal position, while a 50-degree tilt provided a significantly different measure of maximum sympathetic tone (p < 0.001). Heart rate changed in all subjects with change in position; respirations remained constant. When OMT was performed in a sympathetic environment (tilt), a vagal response was produced that was strong enough to overcome the sympathetic tone. There was no HRV difference between sham and control in either the horizontal or tilt positions. Conclusion The vagal response produced by the myofascial release procedure in the maximally stimulated sympathetic environment could only have come from the application of the OMT. This demonstrates the association between OMT and the autonomic nervous system. The lack of significance between control and sham in all positions indicates that HRV may be a useful method of developing sham controls in future studies of OMT. Trial registration clinicaltrials.gov NCT00516984. PMID:18534024

  20. Effects of cilnidipine on sympathetic nerve activity and cardiorenal function in hypertensive patients with type 2 diabetes mellitus: association with BNP and aldosterone levels.

    PubMed

    Tanaka, Masami; Sekioka, Risa; Nishimura, Takeshi; Ichihara, Atsuhiro; Itoh, Hiroshi

    2014-12-01

    Hypertension stimulates the sympathetic nervous system and this phenomenon is exacerbated by diabetes mellitus. We investigated the effects of cilnidipine, an N/L-type calcium channel blocker, on aspects of this system in patients with type 2 diabetes mellitus. In 33 hypertensive patients with type 2 diabetes mellitus treated with a calcium channel blocker other than cilnidipine, we evaluated the influence of switching to cilnidipine on blood pressure, heart rate, catecholamine, plasma renin and aldosterone concentration, brain natriuretic peptide, urine liver-type fatty acid binding protein, and urinary albumin excretion ratio in the same patients by a cross-over design. Other biochemical parameters were also evaluated. Switching to cilnidipine did not change blood pressure but caused reduction in catecholamine concentrations in blood and urine and plasma aldosterone concentration, accompanied by significant reduction in brain natriuretic peptide, urine liver-type fatty acid binding protein, and albumin excretion ratio. These parameters other than brain natriuretic peptide were significantly increased after cilnidipine was changed to the original calcium channel blocker. In 33 hypertensive patients with type 2 diabetes mellitus, compared to other calcium channel blockers, cilnidipine suppressed sympathetic nerve activity and aldosterone, and significantly improved markers of cardiorenal disorders. Therefore, cilnidipine may be an important calcium channel blocker for use in combination with renin-angiotensin-aldosterone system inhibitors when dealing with hypertension complicated with diabetes mellitus. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. The (pro)renin receptor and body fluid homeostasis

    PubMed Central

    Cao, Theresa

    2013-01-01

    The renin-angiotensin system (RAS) has long been established as one of the major mechanisms of hypertension through the increased levels of angiotensin (ANG) II and its resulting effect on the sympathetic nerve activity, arterial vasoconstriction, water reabsorption, and retention, etc. In the central nervous system, RAS activation affects body fluid homeostasis through increases in sympathetic nerve activity, water intake, food intake, and arginine vasopressin secretion. Previous studies, however, have shown that ANG II can be made in the brain, and it could possibly be through a new component called the (pro)renin receptor. This review intends to summarize the central and peripheral effects of the PRR on body fluid homeostasis. PMID:23678024

  2. A BAT-Centric Approach to the Treatment of Diabetes: Turn on the Brain.

    PubMed

    Hankir, Mohammed K; Cowley, Michael A; Fenske, Wiebke K

    2016-07-12

    The marked (18)F-flurodeoxyglucose uptake by brown adipose tissue (BAT) enabled its identification in human positron emission tomography imaging studies. In this Perspective, we discuss how glucose extraction by BAT and beige adipose tissue (BeAT) sufficiently impacts on glycemic control. We then present a unique overview of the central circuits modulated by gluco-regulatory hormones, temperature, and glucose itself, which converge on sympathetic preganglionic neurons and whose activation syphon circulating glucose into BAT/BeAT. Targeted stimulation of the sympathetic nervous system at specific nodes to selectively recruit BAT/BeAT may represent a safe and effective means of treating diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Dynamic analysis of patterns of renal sympathetic nerve activity: implications for renal function.

    PubMed

    DiBona, Gerald F

    2005-03-01

    Methods of dynamic analysis are used to provide additional understanding of the renal sympathetic neural control of renal function. The concept of functionally specific subgroups of renal sympathetic nerve fibres conveying information encoded in the frequency domain is presented. Analog pulse modulation and pseudorandom binary sequence stimulation patterns are used for the determination of renal vascular frequency response. Transfer function analysis is used to determine the effects of non-renal vasoconstrictor and vasoconstrictor intensities of renal sympathetic nerve activity on dynamic autoregulation of renal blood flow.

  4. The Phantom in our opera - or the hidden ways of the autonomic nervous system in cardiac patients

    PubMed Central

    van Tellingen, C.

    2004-01-01

    The role of the autonomic nervous system in the understanding of pathophysiological mechanisms in a variety of cardiovascular clinico-pathological conditions is highlighted from a clinician's point of view with the focus on coronary mimicry, enhanced sympathetic tone and syndrome X. A unique case is presented where sinus node dysfunction in pandysautonomia seemed to be an early sign of hypothalamic glioblastoma. In addition, relevant literature on this topic is addressed to put distinct clinical patterns into a broader perspective. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6 PMID:25696275

  5. Reminiscence therapy using odor in alcohol-dependent patients--psychophysiological evaluation and psychological evaluation; power spectral analysis of heart rate variability.

    PubMed

    Arizono, H; Morita, N; Iizuka, S; Satoh, S; Nakatani, Y

    2000-12-01

    This research was based on the hypothesis that when alcohol-dependent patients describe themselves, awakening of emotion by affirmative odor stimulation may facilitate memory reframing focusing on more affirmative emotion and memories. To prove the hypothesis, physiological changes accompanied by emotional awakening were evaluated by measuring the autonomic activity. In addition, subjective evaluation by a self-report manner was examined to investigate the effectiveness of Reminiscence Therapy (RT) using odor in alcohol-dependent patients. Thirty-four patients who met the DSM-IV criteria of alcohol-related disorders and were hospitalized in a ward specialized to alcohol dependence therapy. Each patient underwent a one-to-one interview twice. For counterbalance, one interview was performed with odor stimulation using an odor with a relaxing effect that recall pleasant emotion, and the other was without odor stimulation. As the evaluation indices of physiological changes accompanied by emotional awakening, index of autonomic function (HRV; Heart rate variability) for objective evaluation and psychological indices (STAI; State-Trait Anxiety Inventory VAS; Visual Analog Scale) for subjective evaluation were measured. 1) Objective evaluation: Regarding the evaluation index of the autonomic function, the sympathetic nervous system activity (LF/HF; low frequency component/high frequency component ratio) was significantly inhibited by odor stimulation (p < 0.05). 2) Subjective evaluation: Compared to the state prior to interview, state anxiety judged by STAI was significantly decreased after interview (p < 0.01). The VAS score was significantly decreased after interview regardless of the presence or absence of odor stimulation (p < 0.0001). A reduction in state anxiety was observed. The effect of odor was not significant on the subjective evaluation, but the objective evaluation suggested that the odor inhibited the sympathetic nervous system. Thus, it was suggested that odor can be used in RT, that is, emotional changes due to stimulation of odor may be applicable in RT.

  6. Influence of simulated microgravity on the sympathetic response to exercise

    NASA Technical Reports Server (NTRS)

    Woodman, C. R.; Kregel, K. C.; Tipton, C. M.

    1997-01-01

    Rats exposed to simulated conditions of microgravity exhibit reductions in aerobic exercise capacity that may be due to an impaired ability of the sympathetic nervous system (SNS) to mediate an increase in cardiac output and to redistribute blood flow. The purpose of this study was to quantify the sympathetic response to exercise in rats after exposure to 14 days of simulated microgravity or control conditions. To achieve this aim, rats were exposed to 14 days of head-down suspension (HDS) or cage control (CC) conditions. On day 14, norepinephrine (NE) synthesis was blocked with alpha-methyl-p-tyrosine, and the rate of NE depletion after synthesis blockade was used to estimate SNS activity in the left ventricle, spleen, and soleus muscle during treadmill exercise at 75% of maximal oxygen uptake. When compared with CC rats, the sympathetic response to exercise in HDS rats was characterized by a lower rate of NE depletion in the left ventricle (-82%) and spleen (-42%). The rate of NE depletion in the soleus muscle was 47% higher. These differences could contribute to the decrement in aerobic capacity of HDS rats by impairing their ability to augment cardiac output and to redirect blood flow to actively contracting skeletal muscle during exercise.

  7. Anterior herniation of lumbar disc induces persistent visceral pain: discogenic visceral pain: discogenic visceral pain.

    PubMed

    Tang, Yuan-Zhang; Shannon, Moore-Langston; Lai, Guang-Hui; Li, Xuan-Ying; Li, Na; Ni, Jia-Xiang

    2013-01-01

    Visceral pain is a common cause for seeking medical attention. Afferent fibers innervating viscera project to the central nervous system via sympathetic nerves. The lumbar sympathetic nerve trunk lies in front of the lumbar spine. Thus, it is possible for patients to suffer visceral pain originating from sympathetic nerve irritation induced by anterior herniation of the lumbar disc. This study aimed to evaluate lumbar discogenic visceral pain and its treatment. Twelve consecutive patients with a median age of 56.4 years were enrolled for investigation between June 2012 and December 2012. These patients suffered from long-term abdominal pain unresponsive to current treatment options. Apart from obvious anterior herniation of the lumbar discs and high signal intensity anterior to the herniated disc on magnetic resonance imaging, no significant pathology was noted on gastroscopy, vascular ultrasound, or abdominal computed tomography (CT). To prove that their visceral pain originated from the anteriorly protruding disc, we evaluated whether pain was relieved by sympathetic block at the level of the anteriorly protruding disc. If the block was effective, CT-guided continuous lumbar sympathetic nerve block was finally performed. All patients were positive for pain relief by sympathetic block. Furthermore, the average Visual Analog Scale of visceral pain significantly improved after treatment in all patients (P < 0.05). Up to 11/12 patients had satisfactory pain relief at 1 week after discharge, 8/12 at 4 weeks, 7/12 at 8 weeks, 6/12 at 12 weeks, and 5/12 at 24 weeks. It is important to consider the possibility of discogenic visceral pain secondary to anterior herniation of the lumbar disc when forming a differential diagnosis for seemingly idiopathic abdominal pain. Continuous lumbar sympathetic nerve block is an effective and safe therapy for patients with discogenic visceral pain.

  8. Premature Ventricular Contraction Coupling Interval Variability Destabilizes Cardiac Neuronal and Electrophysiological Control: Insights From Simultaneous Cardioneural Mapping.

    PubMed

    Hamon, David; Rajendran, Pradeep S; Chui, Ray W; Ajijola, Olujimi A; Irie, Tadanobu; Talebi, Ramin; Salavatian, Siamak; Vaseghi, Marmar; Bradfield, Jason S; Armour, J Andrew; Ardell, Jeffrey L; Shivkumar, Kalyanam

    2017-04-01

    Variability in premature ventricular contraction (PVC) coupling interval (CI) increases the risk of cardiomyopathy and sudden death. The autonomic nervous system regulates cardiac electrical and mechanical indices, and its dysregulation plays an important role in cardiac disease pathogenesis. The impact of PVCs on the intrinsic cardiac nervous system, a neural network on the heart, remains unknown. The objective was to determine the effect of PVCs and CI on intrinsic cardiac nervous system function in generating cardiac neuronal and electric instability using a novel cardioneural mapping approach. In a porcine model (n=8), neuronal activity was recorded from a ventricular ganglion using a microelectrode array, and cardiac electrophysiological mapping was performed. Neurons were functionally classified based on their response to afferent and efferent cardiovascular stimuli, with neurons that responded to both defined as convergent (local reflex processors). Dynamic changes in neuronal activity were then evaluated in response to right ventricular outflow tract PVCs with fixed short, fixed long, and variable CI. PVC delivery elicited a greater neuronal response than all other stimuli ( P <0.001). Compared with fixed short and long CI, PVCs with variable CI had a greater impact on neuronal response ( P <0.05 versus short CI), particularly on convergent neurons ( P <0.05), as well as neurons receiving sympathetic ( P <0.05) and parasympathetic input ( P <0.05). The greatest cardiac electric instability was also observed after variable (short) CI PVCs. Variable CI PVCs affect critical populations of intrinsic cardiac nervous system neurons and alter cardiac repolarization. These changes may be critical for arrhythmogenesis and remodeling, leading to cardiomyopathy. © 2017 American Heart Association, Inc.

  9. [The relationship between the sympathetic nerves and immunocytes in the spleen].

    PubMed

    Saito, H

    1991-02-01

    Ever since Galen, the ancient Greek physician, said "Melancholic women develop disease more than sanguine women," it has been said that the mental condition affects the physical condition. However, there is hardly any scientific verification. About half a century ago, Selye (1936) proposed a relationship between stress and immune function, and it is becoming increasingly clear that the nervous system and immune system interact with each other. Also researchers have strongly hoped to demonstrate the existence of specific pathways by which immunocytes can be directly regulated by the nervous elements instead of by the humoral influence of immunomodulators. In this study, the author showed by electron microscopic observation how the immunocytes in the guinea pig spleen are directly innervated. The sustentacular supporting element of the guinea pig spleen is the connective tissue system which includes the capsulo-trabecular, peri-vascular and reticular systems. The latter system is composed of the outer sheath of the reticular cell or its cellular processes which have abundant microfilaments and the inner minute connective tissue space in which lamina densa-like material, collagenous fibrils, elastic fibers and nervous elements are present. The sympathetic adrenergic nerves for the spleen enter the organ, and scatter around the arterial walls. All components of the connective tissue system are continuous with each other, and the nervous elements appearing in the reticular system are the elongated ones from other connective tissue systems, especially peri-vascular connective tissue. Thus, the adrenergic nerves are more abundant in the white pulp, into which the central artery penetrates, than in the red pulp which arterioles or capillaries pass through. The minute connective tissue space of the reticular system may be called the noradrenalin (NA) canal because catecholamine released from the naked adrenergic nerve terminals in this tissue diffuses and is stored in this enclosed space. The reticular system in the spleen divides the parenchyma into small non-endothelial vascular spaces owing to its meshwork, and free mobile immunocytes, such as T-cells, B-cells and macrophages, stagnate in these spaces. This stagnation of the mobile immunocytes and the presence of the adrenergic nerves in the NA canals provide the chance for the immunocytes and nerves to meet each other in the following fashion; the reticular cell sheaths show the exposed phenomena owing to the contraction of the microfilament-rich reticular cell processes, caused by noradrenalin in the NA canal, and the nervous elements in the NA canals can face the nonendothelial vascular spaces where mobile immunocytes pass freely.(ABSTRACT TRUNCATED AT 400 WORDS)

  10. Non-Gaussianity of Low Frequency Heart Rate Variability and Sympathetic Activation: Lack of Increases in Multiple System Atrophy and Parkinson Disease

    PubMed Central

    Kiyono, Ken; Hayano, Junichiro; Kwak, Shin; Watanabe, Eiichi; Yamamoto, Yoshiharu

    2012-01-01

    The correlates of indices of long-term ambulatory heart rate variability (HRV) of the autonomic nervous system have not been completely understood. In this study, we evaluated conventional HRV indices, obtained from the daytime (12:00–18:00) Holter recording, and a recently proposed non-Gaussianity index (λ; Kiyono et al., 2008) in 12 patients with multiple system atrophy (MSA) and 10 patients with Parkinson disease (PD), known to have varying degrees of cardiac vagal and sympathetic dysfunction. Compared with the age-matched healthy control group, the MSA patients showed significantly decreased HRV, most probably reflecting impaired vagal heart rate control, but the PD patients did not show such reduced variability. In both MSA and PD patients, the low-to-high frequency (LF/HF) ratio and the short-term fractal exponent α1, suggested to reflect the sympathovagal balance, were significantly decreased, as observed in congestive heart failure (CHF) patients with sympathetic overdrive. In contrast, the analysis of the non-Gaussianity index λ showed that a marked increase in intermittent and non-Gaussian HRV observed in the CHF patients was not observed in the MSA and PD patients with sympathetic dysfunction. These findings provide additional evidence for the relation between the non-Gaussian intermittency of HRV and increased sympathetic activity. PMID:22371705

  11. Cardiac autonomic function in children with type 1 diabetes.

    PubMed

    Metwalley, Kotb Abbass; Hamed, Sherifa Ahmed; Farghaly, Hekma Saad

    2018-06-01

    Cardiovascular autonomic neuropathy (CAN) is a major complication of type 1 diabetes (T1D). This study aimed to evaluate cardiac autonomic nervous system (ANS) function in children with T1D and its relation to different demographic, clinical and laboratory variable. This cross-sectional study included 60 children with T1D (mean age = 15.1 ± 3.3 years; duration of diabetes = 7.95 ± 3.83 years). The following 8 non-invasive autonomic testing were used for evaluation: heart rate at rest and in response to active standing (30:15 ratio), deep breathing and Valsalva maneuver (indicating parasympathetic function); blood pressure response to standing (orthostatic hypotension or OH), sustained handgrip and cold; and heart rate response to standing or positional orthostatic tachycardia syndrome or POTs (indicating sympathetic function). None had clinically manifest CAN. Compared to healthy children (5%), 36.67% of children with T1D had ≥ 2 abnormal tests (i.e., CAN) (P = 0.0001) which included significantly abnormal heart rate response to standing (POTs) (P = 0.052), active standing (30:15 ratio) (P = 0.0001) and Valsalva maneuver (P = 0.0001), indicating parasympathetic autonomic dysfunction, and blood pressure response to cold (P = 0.01), indicating sympathetic autonomic dysfunction. 54.55, 27.27 and 18.18% had early, definite and severe dysfunction of ANS. All patients had sensorimotor peripheral neuropathy. The longer duration of diabetes (> 5 years), presence of diabetic complications and worse glycemic control were significantly associated with CAN. The study concluded that both parasympathetic and sympathetic autonomic dysfunctions are common in children with T1D particularly with longer duration of diabetes and presence of microvascular complications. What is Known: • Cardiovascular autonomic neuropathy (CAN) is a major complication of type 1 diabetes (T1D). • Limited studies evaluated CAN in children with T1D. What is New: • CAN is common in children with T1D. • Cardiac autonomic functions should be assessed in children with T1D particularly in presence of microvascular complications.

  12. Neural mechanisms in body fluid homeostasis.

    PubMed

    DiBona, G F

    1986-12-01

    Under steady-state conditions, urinary sodium excretion matches dietary sodium intake. Because extracellular fluid osmolality is tightly regulated, the quantity of sodium in the extracellular fluid determines the volume of this compartment. The left atrial volume receptor mechanism is an example of a neural mechanism of volume regulation. The left atrial mechanoreceptor, which functions as a sensor in the low-pressure vascular system, is located in the left atrial wall, which has a well-defined compliance relating intravascular volume to filling pressure. The left atrial mechanoreceptor responds to changes in wall left atrial tension by discharging into afferent vagal fibers. These fibers have suitable central nervous system representation whose related efferent neurohumoral mechanisms regulate thirst, renal excretion of water and sodium, and redistribution of the extracellular fluid volume. Efferent renal sympathetic nerve activity undergoes appropriate changes to facilitate renal sodium excretion during sodium surfeit and to facilitate renal sodium conservation during sodium deficit. By interacting with other important determinants of renal sodium excretion (e.g., renal arterial pressure), changes in efferent renal sympathetic nerve activity can significantly modulate the final renal sodium excretion response with important consequences in pathophysiological states (e.g., hypertension, edema-forming states).

  13. Contribution of Orexin to the Neurogenic Hypertension in BPH/2J Mice.

    PubMed

    Jackson, Kristy L; Dampney, Bruno W; Moretti, John-Luis; Stevenson, Emily R; Davern, Pamela J; Carrive, Pascal; Head, Geoffrey A

    2016-05-01

    BPH/2J mice are a genetic model of hypertension associated with an overactive sympathetic nervous system. Orexin is a neuropeptide which influences sympathetic activity and blood pressure. Orexin precursor mRNA expression is greater in hypothalamic tissue of BPH/2J compared with normotensive BPN/3J mice. To determine whether enhanced orexinergic signaling contributes to the hypertension, BPH/2J and BPN/3J mice were preimplanted with radiotelemetry probes to compare blood pressure 1 hour before and 5 hours after administration of almorexant, an orexin receptor antagonist. Mid frequency mean arterial pressure power and the depressor response to ganglion blockade were also used as indicators of sympathetic nervous system activity. Administration of almorexant at 100 (IP) and 300 mg/kg (oral) in BPH/2J mice during the dark-active period (2 hours after lights off) markedly reduced blood pressure (-16.1 ± 1.6 and -11.0 ± 1.1 mm Hg, respectively;P<0.001 compared with vehicle). However, when almorexant (100 mg/kg, IP) was administered during the light-inactive period (5 hours before lights off) no reduction from baseline was observed (P=0.64). The same dose of almorexant in BPN/3J mice had no effect on blood pressure during the dark (P=0.79) or light periods (P=0.24). Almorexant attenuated the depressor response to ganglion blockade (P=0.018) and reduced the mid frequency mean arterial pressure power in BPH/2J mice (P<0.001), but not BPN/3J mice (P=0.70). Immunohistochemical labeling revealed that BPH/2J mice have 29% more orexin neurons than BPN/3J mice which are preferentially located in the lateral hypothalamus. The results suggest that enhanced orexinergic signaling contributes to sympathetic overactivity and hypertension during the dark period in BPH/2J mice. © 2016 American Heart Association, Inc.

  14. External light activates hair follicle stem cells through eyes via an ipRGC-SCN-sympathetic neural pathway.

    PubMed

    Fan, Sabrina Mai-Yi; Chang, Yi-Ting; Chen, Chih-Lung; Wang, Wei-Hung; Pan, Ming-Kai; Chen, Wen-Pin; Huang, Wen-Yen; Xu, Zijian; Huang, Hai-En; Chen, Ting; Plikus, Maksim V; Chen, Shih-Kuo; Lin, Sung-Jan

    2018-06-29

    Changes in external light patterns can alter cell activities in peripheral tissues through slow entrainment of the central clock in suprachiasmatic nucleus (SCN). It remains unclear whether cells in otherwise photo-insensitive tissues can achieve rapid responses to changes in external light. Here we show that light stimulation of animals' eyes results in rapid activation of hair follicle stem cells with prominent hair regeneration. Mechanistically, light signals are interpreted by M1-type intrinsically photosensitive retinal ganglion cells (ipRGCs), which signal to the SCN via melanopsin. Subsequently, efferent sympathetic nerves are immediately activated. Increased norepinephrine release in skin promotes hedgehog signaling to activate hair follicle stem cells. Thus, external light can directly regulate tissue stem cells via an ipRGC-SCN autonomic nervous system circuit. Since activation of sympathetic nerves is not limited to skin, this circuit can also facilitate rapid adaptive responses to external light in other homeostatic tissues.

  15. Gender Differences in Autonomic Control of the Cardiovascular System.

    PubMed

    Pothineni, Naga Venkata; Shirazi, Lily F; Mehta, Jawahar L

    2016-01-01

    The autonomic nervous system (ANS) is a key regulator of the cardiovascular system. The two arms of the ANS, sympathetic and parasympathetic (vagal) have co-regulatory effects on cardiac homeostasis. ANS modulation and dysfunction are also believed to affect various cardiac disease states. Over the past decade, there has been increasing evidence suggesting gender differences in ANS activity. In multiple previous studies, ANS activity was primarily assessed using heart rate variability, muscle sympathetic nerve activity, coronary blood flow velocity, and plasma biomarkers. Heart rate variability is a non-invasive measure, which can be analyzed in terms of low frequency and high frequency oscillations, which indicate the sympathetic and parasympathetic tone, respectively. These measures have been studied between women and men in states of rest and stress, and in cardiac disease. Studies support the concept of a significant gender difference in ANS activity. Further studies are indicated to elucidate specific differences and mechanisms, which could guide targeted therapy of various cardiovascular disease states.

  16. Renal denervation in a patient with Alport syndrome and rejected renal allograft.

    PubMed

    Raju, Narayana; Lloyd, Vincent; Yalagudri, Sachin; Das, Bharati; Ravikishore, A G

    2015-12-01

    Renal denervation is a new intervention to treat resistant hypertension. By applying radiofrequency (RF) to renal arteries, sympathetic nerves in adventitia layer of vascular wall can be denervated. Sympathetic hyperactivity is an important contributory factor in hypertension of hemodialysis patients. Hyperactive sympathetic nervous system aggravates hypertension and it can cause complications like left ventricular hypertrophy, heart failure, arrhythmias and atherogenesis. Our report illustrates the use of renal denervation using conventional RF catheter for uncontrolled hypertension in a patient with Alport syndrome and rejected renal allograft. Progressive and sustained reduction of blood pressure was obtained post-procedure and at 24 months follow-up with antihypertensives decreased from 6 to 2 per day, thereby demonstrating the safety, feasibility, and efficacy of the procedure. There are some reports available on the usefulness of this technique in hemodialysis patients; however, there are no studies of renal denervation in patients with Alport syndrome and failed allograft situation. Copyright © 2015 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  17. Interaction between prenatal risk and infant parasympathetic and sympathetic stress reactivity predicts early aggression.

    PubMed

    Suurland, J; van der Heijden, K B; Huijbregts, S C J; van Goozen, S H M; Swaab, H

    2017-09-01

    Nonreciprocal action of the parasympathetic (PNS) and sympathetic (SNS) nervous systems, increases susceptibility to emotional and behavioral problems in children exposed to adversity. Little is known about the PNS and SNS in interaction with early adversity during infancy. Yet this is when the physiological systems involved in emotion regulation are emerging and presumably most responsive to environmental influences. We examined whether parasympathetic respiratory sinus arrhythmia (RSA) and sympathetic pre-ejection period (PEP) response and recovery at six months, moderate the association between cumulative prenatal risk and physical aggression at 20 months (N=113). Prenatal risk predicted physical aggression, but only in infants exhibiting coactivation of PNS and SNS (i.e., increase in RSA and decrease in PEP) in response to stress. These findings indicate that coactivation of the PNS and SNS in combination with prenatal risk is a biological marker for the development of aggression. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Bone marrow-CNS connections: Implications in the pathogenesis of diabetic retinopathy

    PubMed Central

    Douglas, Yellowlees; Bhatwadekar, Ashay D.; Shaw, Lynn C.; Carnegie, Debra; Caballero, Sergio; Li, Quihong; Calzi, Sergio Li; Raizada, Mohan K.; Stitt, Alan W.; Grant, Maria B.

    2013-01-01

    Diabetic retinopathy is the fourth most common cause of blindness in adults. Current therapies, including anti-VEGF therapy, have partial efficacy in arresting the progression of proliferative diabetic retinopathy and diabetic macular edema. This review provides an overview of a novel, innovative approach to viewing diabetic retinopathy as the result of an inflammatory cycle that affects the bone marrow (BM) and the central and sympathetic nervous systems. Diabetes associated inflammation may be the result of BM neuropathy which skews haematopoiesis towards generation of increased inflammatory cells but also reduced production of endothelial progenitor cells responsible for maintaining healthy endothelial function and renewal. The resulting systemic inflammation further impacts the hypothalamus, promoting insulin resistance and diabetes, and initiates an inflammatory cascade that adversely impacts both macrovascular and microvascular complications, including diabetic retinopathy (DR). This review examines the idea of using anti-inflammatory agents that cross not only the blood-retinal barrier to enter the retina but also have the capability to target the central nervous system and cross the blood-brain barrier to reduce neuroinflammation. This neuroinflammation in key sympathetic centers serves to not only perpetuate BM pathology but promote insulin resistance which is characteristic of type 2 diabetic patients (T2D) but is also seen in T1D. A case series of morbidly obese T2D patients with retinopathy and neuropathy treated with minocycline, a well-tolerated antibiotic that crosses both the blood-retina and blood-brain barrier is presented. Our results indicates that minocycine shows promise for improving visual acuity, reducing pain from peripheral neuropathy, promoting weight loss and improving blood pressure control and we postulate that these observed beneficial effects are due to a reduction of chronic inflammation. PMID:22609081

  19. Anterograde transneuronal viral tract tracing reveals central sensory circuits from brown fat and sensory denervation alters its thermogenic responses.

    PubMed

    Vaughan, Cheryl H; Bartness, Timothy J

    2012-05-01

    Brown adipose tissue (BAT) thermogenic activity and growth are controlled by its sympathetic nervous system (SNS) innervation, but nerve fibers containing sensory-associated neuropeptides [substance P, calcitonin gene-related peptide (CGRP)] also suggest sensory innervation. The central nervous system (CNS) projections of BAT afferents are unknown. Therefore, we used the H129 strain of the herpes simplex virus-1 (HSV-1), an anterograde transneuronal viral tract tracer used to delineate sensory nerve circuits, to define these projections. HSV-1 was injected into interscapular BAT (IBAT) of Siberian hamsters and HSV-1 immunoreactivity (ir) was assessed 24, 48, 72, 96, and 114 h postinjection. The 96- and 114-h groups had the most HSV-1-ir neurons with marked infections in the hypothalamic paraventricular nucleus, periaqueductal gray, olivary areas, parabrachial nuclei, raphe nuclei, and reticular areas. These sites also are involved in sympathetic outflow to BAT suggesting possible BAT sensory-SNS thermogenesis feedback circuits. We tested the functional contribution of IBAT sensory innervation on thermogenic responses to an acute (24 h) cold exposure test by injecting the specific sensory nerve toxin capsaicin directly into IBAT pads and then measuring core (T(c)) and IBAT (T(IBAT)) temperature responses. CGRP content was significantly decreased in capsaicin-treated IBAT demonstrating successful sensory nerve destruction. T(IBAT) and T(c) were significantly decreased in capsaicin-treated hamsters compared with the saline controls at 2 h of cold exposure. Thus the central sensory circuits from IBAT have been delineated for the first time, and impairment of sensory feedback from BAT appears necessary for the appropriate, initial thermogenic response to acute cold exposure.

  20. Hyperthyroidism is characterized by both increased sympathetic and decreased vagal modulation of heart rate: evidence from spectral analysis of heart rate variability.

    PubMed

    Chen, Jin-Long; Chiu, Hung-Wen; Tseng, Yin-Jiun; Chu, Woei-Chyn

    2006-06-01

    The clinical manifestations of hyperthyroidism resemble those of the hyperadrenergic state. This study was designed to evaluate the impact of hyperthyroidism on the autonomic nervous system (ANS) and to investigate the relationship between serum thyroid hormone concentrations and parameters of spectral heart rate variability (HRV) analysis in hyperthyroidism. Thirty-two hyperthyroid Graves' disease patients (mean age 31 years) and 32 sex-, age-, and body mass index (BMI)-matched normal control subjects were recruited to receive one-channel electrocardiogram (ECG) recording. The cardiac autonomic nervous function was evaluated by the spectral analysis of HRV, which indicates the autonomic modulation of the sinus node. The correlation coefficients between serum thyroid hormone concentrations and parameters of the spectral HRV analysis were also computed. The hyperthyroid patients revealed significant differences (P < 0.001) compared with the controls in the following HRV parameters: a decrease in total power (TP), very low frequency power (VLF), low frequency power (LF), high frequency power (HF), and HF in normalized units (HF%); and an increase in LF in normalized units (LF%) and in the ratio of LF to HF (LF/HF). After correction of hyperthyroidism in 28 patients, all of the above parameters were restored to levels comparable to those of the controls. In addition, serum thyroid hormone concentrations showed significant correlations with spectral HRV parameters. Hyperthyroidism is in a sympathovagal imbalanced state, characterized by both increased sympathetic and decreased vagal modulation of the heart rate. These autonomic dysfunctions can be detected simultaneously by spectral analysis of HRV, and the spectral HRV parameters could reflect the disease severity in hyperthyroid patients.

  1. MURC/Cavin-4 facilitates recruitment of ERK to caveolae and concentric cardiac hypertrophy induced by α1-adrenergic receptors.

    PubMed

    Ogata, Takehiro; Naito, Daisuke; Nakanishi, Naohiko; Hayashi, Yukiko K; Taniguchi, Takuya; Miyagawa, Kotaro; Hamaoka, Tetsuro; Maruyama, Naoki; Matoba, Satoaki; Ikeda, Koji; Yamada, Hiroyuki; Oh, Hidemasa; Ueyama, Tomomi

    2014-03-11

    The actions of catecholamines on adrenergic receptors (ARs) induce sympathetic responses, and sustained activation of the sympathetic nervous system results in disrupted circulatory homeostasis. In cardiomyocytes, α1-ARs localize to flask-shaped membrane microdomains known as "caveolae." Caveolae require both caveolin and cavin proteins for their biogenesis and function. However, the functional roles and molecular interactions of caveolar components in cardiomyocytes are poorly understood. Here, we showed that muscle-restricted coiled-coil protein (MURC)/Cavin-4 regulated α1-AR-induced cardiomyocyte hypertrophy through enhancement of ERK1/2 activation in caveolae. MURC/Cavin-4 was expressed in the caveolae and T tubules of cardiomyocytes. MURC/Cavin-4 overexpression distended the caveolae, whereas MURC/Cavin-4 was not essential for their formation. MURC/Cavin-4 deficiency attenuated cardiac hypertrophy induced by α1-AR stimulation in the presence of caveolae. Interestingly, MURC/Cavin-4 bound to α1A- and α1B-ARs as well as ERK1/2 in caveolae, and spatiotemporally modulated MEK/ERK signaling in response to α1-AR stimulation. Thus, MURC/Cavin-4 facilitates ERK1/2 recruitment to caveolae and efficient α1-AR signaling mediated by caveolae in cardiomyocytes, which provides a unique insight into the molecular mechanisms underlying caveola-mediated signaling in cardiac hypertrophy.

  2. MURC/Cavin-4 facilitates recruitment of ERK to caveolae and concentric cardiac hypertrophy induced by α1-adrenergic receptors

    PubMed Central

    Ogata, Takehiro; Naito, Daisuke; Nakanishi, Naohiko; Hayashi, Yukiko K.; Taniguchi, Takuya; Miyagawa, Kotaro; Hamaoka, Tetsuro; Maruyama, Naoki; Matoba, Satoaki; Ikeda, Koji; Yamada, Hiroyuki; Oh, Hidemasa; Ueyama, Tomomi

    2014-01-01

    The actions of catecholamines on adrenergic receptors (ARs) induce sympathetic responses, and sustained activation of the sympathetic nervous system results in disrupted circulatory homeostasis. In cardiomyocytes, α1-ARs localize to flask-shaped membrane microdomains known as “caveolae.” Caveolae require both caveolin and cavin proteins for their biogenesis and function. However, the functional roles and molecular interactions of caveolar components in cardiomyocytes are poorly understood. Here, we showed that muscle-restricted coiled-coil protein (MURC)/Cavin-4 regulated α1-AR–induced cardiomyocyte hypertrophy through enhancement of ERK1/2 activation in caveolae. MURC/Cavin-4 was expressed in the caveolae and T tubules of cardiomyocytes. MURC/Cavin-4 overexpression distended the caveolae, whereas MURC/Cavin-4 was not essential for their formation. MURC/Cavin-4 deficiency attenuated cardiac hypertrophy induced by α1-AR stimulation in the presence of caveolae. Interestingly, MURC/Cavin-4 bound to α1A- and α1B-ARs as well as ERK1/2 in caveolae, and spatiotemporally modulated MEK/ERK signaling in response to α1-AR stimulation. Thus, MURC/Cavin-4 facilitates ERK1/2 recruitment to caveolae and efficient α1-AR signaling mediated by caveolae in cardiomyocytes, which provides a unique insight into the molecular mechanisms underlying caveola-mediated signaling in cardiac hypertrophy. PMID:24567387

  3. Sympathetic denervation of one white fat depot changes norepinephrine content and turnover in intact white and brown fat depots

    PubMed Central

    Harris, Ruth B.S.

    2013-01-01

    It is well established that the sympathetic nervous system regulates adipocyte metabolism and recently it has been reported that sensory afferents from white fat overlap anatomically with sympathetic efferents to white fat. The studies described here characterize the response of intact fat pads to selective sympathectomy (local 6-hydroxydopamine injections) of inguinal (ING) or epididymal (EPI) fat in male NIH Swiss mice and provide in vivo evidence for communication between individual white and brown fat depots. The contralateral ING pad, both EPI pads, perirenal and mesenteric pads were significantly enlarged four weeks after denervating one ING pad, but only intrascapular brown fat (IBAT) increased when both ING pads were denervated. Denervation of one or both EPI pad had no effect on fat depot weights. In an additional experiment, NE turnover was inhibited in ING, retroperitoneal, mesenteric and IBAT two days after denervation of both EPI or of both ING pads. NE content was reduced to 10-30% of control values in all fat depots. There was no relation between early changes in NE turnover and fat pad weight 4 weeks after denervation, even though the reduction in NE content of intact fat pads was maintained. These data demonstrate that there is communication among individual fat pads, presumably through central integration of activity of sensory afferent and sympathetic efferent fibers,that changes sympathetic drive to white adipose tissue in a unified manner. In specific situations, removal of sympathetic efferents to one pad induces a compensatory enlargement of other intact depots. PMID:22513494

  4. Kisspeptin level in the aging ovary is regulated by the sympathetic nervous system.

    PubMed

    Fernandois, Daniela; Cruz, Gonzalo; Na, Eun Kyung; Lara, Hernán E; Paredes, Alfonso H

    2017-01-01

    Previous work has demonstrated that the increase in the activity of sympathetic nerves, which occurs during the subfertility period in female rats, causes an increase in follicular cyst development and impairs follicular development. In addition, the increase in ovarian sympathetic activity of aged rats correlates with an increased expression of kisspeptin (KISS1) in the ovary. This increase in KISS1 could participate in the decrease in follicular development that occurs during the subfertility period. We aimed to determine whether the blockade of ovarian sympathetic tone prevents the increase in KISS1 expression during reproductive aging and improves follicular development. We performed 2 experiments in rats: (1) an in vivo blockade of beta-adrenergic receptor with propranolol (5.0 mg/kg) and (2) an ovarian surgical denervation to modulate the sympathetic system at these ages. We measured Kisspeptin and follicle-stimulating hormone receptor (FSHR) mRNA and protein levels by qRT-PCR and western blot and counted primordial, primary and secondary follicles at 8, 10 and 12 months of age. The results showed that ovarian KISS1 decreased but FSHR increased after both propranolol administration and the surgical denervation in rats of 8, 10 and 12 months of age. An increase in FSHR was related to an increase in the number of smaller secondary follicles and a decreased number of primordial follicles at 8, 10 and 12 months of age. These results suggest that intraovarian KISS1 is regulated by sympathetic nerves via a beta-adrenergic receptor and participates locally in ovarian follicular development in reproductive aging. © 2017 Society for Endocrinology.

  5. The contribution of the sympathetic nervous system to the immunopathology of experimental pulmonary tuberculosis.

    PubMed

    Barrios-Payán, Jorge; Revuelta, Alberto; Mata-Espinosa, Dulce; Marquina-Castillo, Brenda; Villanueva, Enrique Becerril; Gutiérrez, María Eugenia Hernández; Pérez-Sánchez, Gilberto; Pavón, Lenin; Hernandez-Pando, Rogelio

    2016-09-15

    The role of norepinephrine (NE) in the immunopathology of experimental tuberculosis (TB) was studied by measuring pulmonary NE and determining its cellular sources and targets. Functional studies were performed administrating adrenergic and anti-adrenergic drugs at different TB phases. Results showed high production of NE during early infection by adrenergic nerve terminals and lymphocytes located in the lungs and mediastinal lymph nodes, these cells highly expressed β2 adreno-receptors (β2AR) which by an autocrine mechanism promote Th-1 cell differentiation favoring protection. During advanced infection, the production of NE and β2AR sharply decreased, suggesting that adrenergic activity is less important during late TB. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Human muscle sympathetic neural and haemodynamic responses to tilt following spaceflight

    NASA Technical Reports Server (NTRS)

    Levine, Benjamin D.; Pawelczyk, James A.; Ertl, Andrew C.; Cox, James F.; Zuckerman, Julie H.; Diedrich, Andre; Biaggioni, Italo; Ray, Chester A.; Smith, Michael L.; Iwase, Satoshi; hide

    2002-01-01

    Orthostatic intolerance is common when astronauts return to Earth: after brief spaceflight, up to two-thirds are unable to remain standing for 10 min. Previous research suggests that susceptible individuals are unable to increase their systemic vascular resistance and plasma noradrenaline concentrations above pre-flight upright levels. In this study, we tested the hypothesis that adaptation to the microgravity of space impairs sympathetic neural responses to upright posture on Earth. We studied six astronauts approximately 72 and 23 days before and on landing day after the 16 day Neurolab space shuttle mission. We measured heart rate, arterial pressure and cardiac output, and calculated stroke volume and total peripheral resistance, during supine rest and 10 min of 60 deg upright tilt. Muscle sympathetic nerve activity was recorded in five subjects, as a direct measure of sympathetic nervous system responses. As in previous studies, mean (+/- S.E.M.) stroke volume was lower (46 +/- 5 vs. 76 +/- 3 ml, P = 0.017) and heart rate was higher (93 +/- 1 vs. 74 +/- 4 beats min(-1), P = 0.002) during tilt after spaceflight than before spaceflight. Total peripheral resistance during tilt post flight was higher in some, but not all astronauts (1674 +/- 256 vs. 1372 +/- 62 dynes s cm(-5), P = 0.32). No crew member exhibited orthostatic hypotension or presyncopal symptoms during the 10 min of postflight tilting. Muscle sympathetic nerve activity was higher post flight in all subjects, in supine (27 +/- 4 vs. 17 +/- 2 bursts min(-1), P = 0.04) and tilted (46 +/- 4 vs. 38 +/- 3 bursts min(-1), P = 0.01) positions. A strong (r(2) = 0.91-1.00) linear correlation between left ventricular stroke volume and muscle sympathetic nerve activity suggested that sympathetic responses were appropriate for the haemodynamic challenge of upright tilt and were unaffected by spaceflight. We conclude that after 16 days of spaceflight, muscle sympathetic nerve responses to upright tilt are normal.

  7. Single-unit muscle sympathetic nervous activity and its relation to cardiac noradrenaline spillover

    PubMed Central

    Lambert, Elisabeth A; Schlaich, Markus P; Dawood, Tye; Sari, Carolina; Chopra, Reena; Barton, David A; Kaye, David M; Elam, Mikael; Esler, Murray D; Lambert, Gavin W

    2011-01-01

    Abstract Recent work using single-unit sympathetic nerve recording techniques has demonstrated aberrations in the firing pattern of sympathetic nerves in a variety of patient groups. We sought to examine whether nerve firing pattern is associated with increased noradrenaline release. Using single-unit muscle sympathetic nerve recording techniques coupled with direct cardiac catheterisation and noradrenaline isotope dilution methodology we examined the relationship between single-unit firing patterns and cardiac and whole body noradrenaline spillover to plasma. Participants comprised patients with hypertension (n = 6), depression (n = 7) and panic disorder (n = 9) who were drawn from our ongoing studies. The patient groups examined did not differ in their single-unit muscle sympathetic nerve firing characteristics nor in the rate of spillover of noradrenaline to plasma from the heart. The median incidence of multiple spikes per beat was 9%. Patients were stratified according to the firing pattern: low level of incidence (less than 9% incidence of multiple spikes per beat) and high level of incidence (greater than 9% incidence of multiple spikes per beat). High incidence of multiple spikes within a cardiac cycle was associated with higher firing rates (P < 0.0001) and increased probability of firing (P < 0.0001). Whole body noradrenaline spillover to plasma and (multi-unit) muscle sympathetic nerve activity in subjects with low incidence of multiple spikes was not different to that of those with high incidence of multiple spikes. In those with high incidence of multiple spikes there occurred a parallel activation of the sympathetic outflow to the heart, with cardiac noradrenaline spillover to plasma being two times that of subjects with low nerve firing rates (11.0 ± 1.5 vs. 22.0 ± 4.5 ng min−1, P < 0.05). This study indicates that multiple within-burst firing and increased single-unit firing rates of the sympathetic outflow to the skeletal muscle vasculature is associated with high cardiac noradrenaline spillover. PMID:21486790

  8. Human muscle sympathetic neural and haemodynamic responses to tilt following spaceflight

    PubMed Central

    Levine, Benjamin D; Pawelczyk, James A; Ertl, Andrew C; Cox, James F; Zuckerman, Julie H; Diedrich, André; Biaggioni, Italo; Ray, Chester A; Smith, Michael L; Iwase, Satoshi; Saito, Mitsuru; Sugiyama, Yoshiki; Mano, Tadaaki; Zhang, Rong; Iwasaki, Kenichi; Lane, Lynda D; Buckey, Jay C; Cooke, William H; Baisch, Friedhelm J; Robertson, David; Eckberg, Dwain L; Blomqvist, C Gunnar

    2002-01-01

    Orthostatic intolerance is common when astronauts return to Earth: after brief spaceflight, up to two-thirds are unable to remain standing for 10 min. Previous research suggests that susceptible individuals are unable to increase their systemic vascular resistance and plasma noradrenaline concentrations above pre-flight upright levels. In this study, we tested the hypothesis that adaptation to the microgravity of space impairs sympathetic neural responses to upright posture on Earth. We studied six astronauts ∼72 and 23 days before and on landing day after the 16 day Neurolab space shuttle mission. We measured heart rate, arterial pressure and cardiac output, and calculated stroke volume and total peripheral resistance, during supine rest and 10 min of 60 deg upright tilt. Muscle sympathetic nerve activity was recorded in five subjects, as a direct measure of sympathetic nervous system responses. As in previous studies, mean (± s.e.m.) stroke volume was lower (46 ± 5 vs. 76 ± 3 ml, P = 0.017) and heart rate was higher (93 ± 1 vs. 74 ± 4 beats min−1, P = 0.002) during tilt after spaceflight than before spaceflight. Total peripheral resistance during tilt post flight was higher in some, but not all astronauts (1674 ± 256 vs. 1372 ± 62 dynes s cm−5, P = 0.32). No crew member exhibited orthostatic hypotension or presyncopal symptoms during the 10 min of postflight tilting. Muscle sympathetic nerve activity was higher post flight in all subjects, in supine (27 ± 4 vs. 17 ± 2 bursts min−1, P = 0.04) and tilted (46 ± 4 vs. 38 ± 3 bursts min−1, P = 0.01) positions. A strong (r2 = 0.91–1.00) linear correlation between left ventricular stroke volume and muscle sympathetic nerve activity suggested that sympathetic responses were appropriate for the haemodynamic challenge of upright tilt and were unaffected by spaceflight. We conclude that after 16 days of spaceflight, muscle sympathetic nerve responses to upright tilt are normal. PMID:11773340

  9. [Dopamine receptor signaling regulates human osteoclastogenesis].

    PubMed

    Hanami, Kentaro; Nakano, Kazuhisa; Tanaka, Yoshiya

    2013-01-01

    Although the central nervous system and the neurotransmitters are known to control not only the immune system but also the homeostasis of bone mass, their pathological relevance to bone disorders remains unclear. Osteoclasts in the synovium of rheumatoid arthritis (RA) play an important role in bone destruction. It is known that increased sympathetic nervous activity increases both differentiation and function of osteoclasts, which leads to bone loss. Dopamine, a major neurotransmitter, transmits signals via five different seven-transmembrane G protein-coupled receptors termed D1 to D5. We previously reported that dopamine plays an important role in IL-6-IL-17 axis and subsequent joint destruction in RA. The major source of dopamine in the synovial tissue of RA was dendritic cells (DCs) that stored and secreted dopamine. Dopamine released by DCs bounded to D1-like dopamine receptors on T cells and induced activation of cAMP and differentiation to Th17 cells via IL-6 production We here overview the interplay among the immune system, bone metabolism and neurologic system shedding light upon dopaminergic signals upon osteoclastogenesis.

  10. Leucine deprivation stimulates fat loss via increasing CRH expression in the hypothalamus and activating the sympathetic nervous system.

    PubMed

    Cheng, Ying; Zhang, Qian; Meng, Qingshu; Xia, Tingting; Huang, Zhiying; Wang, Chunxia; Liu, Bin; Chen, Shanghai; Xiao, Fei; Du, Ying; Guo, Feifan

    2011-09-01

    We previously showed that leucine deprivation decreases abdominal fat mass largely by increasing energy expenditure, as demonstrated by increased lipolysis in white adipose tissue (WAT) and uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT). The goal of the present study was to investigate the possible involvement of central nervous system (CNS) in this regulation and elucidate underlying molecular mechanisms. For this purpose, levels of genes and proteins related to lipolysis in WAT and UCP1 expression in BAT were analyzed in wild-type mice after intracerebroventricular administration of leucine or corticotrophin-releasing hormone antibodies, or in mice deleted for three β-adrenergic receptors, after being maintained on a leucine-deficient diet for 7 d. Here, we show that intracerebroventricular administration of leucine significantly attenuates abdominal fat loss and blocks activation of hormone sensitive lipase in WAT and induction of UCP1 in BAT in leucine-deprived mice. Furthermore, we provide evidence that leucine deprivation stimulates fat loss by increasing expression of corticotrophin-releasing hormone in the hypothalamus via activation of stimulatory G protein/cAMP/protein kinase A/cAMP response element-binding protein pathway. Finally, we show that the effect of leucine deprivation on fat loss is mediated by activation of the sympathetic nervous system. These results suggest that CNS plays an important role in regulating fat loss under leucine deprivation and thereby provide novel and important insights concerning the importance of CNS leucine in the regulation of energy homeostasis.

  11. Gaskell revisited: new insights into spinal autonomics necessitate a revised motor neuron nomenclature.

    PubMed

    Fritzsch, Bernd; Elliott, Karen L; Glover, Joel C

    2017-11-01

    Several concepts developed in the nineteenth century have formed the basis of much of our neuroanatomical teaching today. Not all of these were based on solid evidence nor have withstood the test of time. Recent evidence on the evolution and development of the autonomic nervous system, combined with molecular insights into the development and diversification of motor neurons, challenges some of the ideas held for over 100 years about the organization of autonomic motor outflow. This review provides an overview of the original ideas and quality of supporting data and contrasts this with a more accurate and in depth insight provided by studies using modern techniques. Several lines of data demonstrate that branchial motor neurons are a distinct motor neuron population within the vertebrate brainstem, from which parasympathetic visceral motor neurons of the brainstem evolved. The lack of an autonomic nervous system in jawless vertebrates implies that spinal visceral motor neurons evolved out of spinal somatic motor neurons. Consistent with the evolutionary origin of brainstem parasympathetic motor neurons out of branchial motor neurons and spinal sympathetic motor neurons out of spinal motor neurons is the recent revision of the organization of the autonomic nervous system into a cranial parasympathetic and a spinal sympathetic division (e.g., there is no sacral parasympathetic division). We propose a new nomenclature that takes all of these new insights into account and avoids the conceptual misunderstandings and incorrect interpretation of limited and technically inferior data inherent in the old nomenclature.

  12. Taking Stress Response out of the Box: Stability, Discontinuity, and Temperament Effects on HPA and SNS across Social Stressors in Mother-Infant Dyads

    ERIC Educational Resources Information Center

    Laurent, Heidemarie K.; Ablow, Jennifer C.; Measelle, Jeffrey

    2012-01-01

    This study investigated continuity and stability of hypothalamic-pituitary-adrenal (HPA) and sympathetic nervous system (SNS) response measures in mother-infant dyads across 2 different types of social stress sessions. Synchrony of response trajectories across systems (SNS-HPA coordination) and partners (mother-infant attunement) was addressed, as…

  13. Lower Electrodermal Activity to Acute Stress in Caregivers of People with Autism Spectrum Disorder: An Adaptive Habituation to Stress

    ERIC Educational Resources Information Center

    Ruiz-Robledillo, Nicolás; Moya-Albiol, Luis

    2015-01-01

    Caring for a relative with autism spectrum disorder (ASD) entails being under chronic stress that could alter body homeostasis. Electrodermal activity (EDA) is an index of the sympathetic activity of the autonomic nervous system related to emotionality and homeostasis. This study compares EDA in response to acute stress in the laboratory between…

  14. Alcohol Intoxication Impact on Outcome from Traumatic Injury

    DTIC Science & Technology

    2009-05-01

    victim’s mean arterial blood pressure (MABP) at the time of admittance into the emergency department. Previously we have demonstrated that ICV choline ...increased basal MABP (+17%) and produced a similar increase in basal MABP in alcohol intoxicated, However, ICV choline did not alter the initial...intracerebroventricular (ICV) choline (acetylcholine precursor) administration produced a transient activation of sympathetic nervous system outflow

  15. Social Support and Heart Failure: Differing Effects by Race

    DTIC Science & Technology

    2015-05-11

    responses. These compensatory physiologic responses include increased sympathetic nervous system activity, inflammation, and constriction of blood vessels... physiological differences between African Americans and Caucasians. For instance the process by which sodium is processed in the body may vary between...associated cardiovascular and inflammatory diseases (76). One important hormone at work in the cardiovascular system is aldosterone and it may have a

  16. Cutaneous signs of thyroid disease.

    PubMed

    Mullin, G E; Eastern, J S

    1986-10-01

    Hyperactivity of the sympathetic nervous system produces many of the skin changes of hyperthyroidism, while the hypometabolic state and the accumulation of mucopolysaccharides in the dermis are responsible for hypothyroid cutaneous manifestations. Acropachy, atopic eczema, localized myxedema and nail changes are associated with thyrotoxicosis. Vitiligo may be seen in all three thyroid diseases of autoimmune origin. Hyperpigmentation, pruritus and urticaria are associated with hyperthyroidism.

  17. Effect of Muslim prayer (Salat) on α electroencephalography and its relationship with autonomic nervous system activity.

    PubMed

    Doufesh, Hazem; Ibrahim, Fatimah; Ismail, Noor Azina; Wan Ahmad, Wan Azman

    2014-07-01

    This study investigated the effect of Muslim prayer (salat) on the α relative power (RPα) of electroencephalography (EEG) and autonomic nervous activity and the relationship between them by using spectral analysis of EEG and heart rate variability (HRV). Thirty healthy Muslim men participated in the study. Their electrocardiograms and EEGs were continuously recorded before, during, and after salat practice with a computer-based data acquisition system (MP150, BIOPAC Systems Inc., Camino Goleta, California). Power spectral analysis was conducted to extract the RPα and HRV components. During salat, a significant increase (p<.05) was observed in the mean RPα in the occipital and parietal regions and in the normalized unit of high-frequency (nuHF) power of HRV (as a parasympathetic index). Meanwhile, the normalized unit of low-frequency (nuLF) power and LF/HF of HRV (as sympathetic indices) decreased according to HRV analyses. RPα showed a significant positive correlation in the occipital and parietal electrodes with nuHF and significant negative correlations with nuLF and LF/HF. During salat, parasympathetic activity increased and sympathetic activity decreased. Therefore, regular salat practices may help promote relaxation, minimize anxiety, and reduce cardiovascular risk.

  18. The FGF21-CCL11 Axis Mediates Beiging of White Adipose Tissues by Coupling Sympathetic Nervous System to Type 2 Immunity.

    PubMed

    Huang, Zhe; Zhong, Ling; Lee, Jimmy Tsz Hang; Zhang, Jialiang; Wu, Donghai; Geng, Leiluo; Wang, Yu; Wong, Chi-Ming; Xu, Aimin

    2017-09-05

    Type 2 cytokines are important signals triggering biogenesis of thermogenic beige adipocytes in white adipose tissue (WAT) during cold acclimation. However, how cold activates type 2 immunity in WAT remains obscure. Here we show that cold-induced type 2 immune responses and beiging in subcutaneous WAT (scWAT) are abrogated in mice with adipose-selective ablation of FGF21 or its co-receptor β-Klotho, whereas such impairments are reversed by replenishment with chemokine CCL11. Mechanistically, FGF21 acts on adipocytes in an autocrine manner to promote the expression and secretion of CCL11 via activation of ERK1/2, which drives recruitment of eosinophils into scWAT, leading to increases in accumulation of M2 macrophages, and proliferation and commitment of adipocyte precursors into beige adipocytes. These FGF21-elicited type 2 immune responses and beiging are blocked by CCL11 neutralization. Thus, the adipose-derived FGF21-CCL11 axis triggers cold-induced beiging and thermogenesis by coupling sympathetic nervous system to activation of type 2 immunity in scWAT. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Long-term moderate exercise accelerates the recovery of stress-evoked cardiovascular responses.

    PubMed

    Hsu, Yuan-Chang; Tsai, Sheng-Feng; Yu, Lung; Chuang, Jih-Ing; Wu, Fong-Sen; Jen, Chauying J; Kuo, Yu-Min

    2016-01-01

    Psychological stress is an important global health problem. It is well documented that stress increases the incidences of various cardiovascular disorders. Regular exercise is known to reduce resting blood pressure (BP) and heart rate (HR). This study was designed to clarify the effects of long-term exercise on stress-evoked cardiovascular responses and to emphasize post-stress recovery effects. Male Wistar rats underwent 8 weeks of moderate treadmill training, with cardiovascular responses, autonomic nervous system activities and local Fos reactivity changes in the cardiovascular regulation center were monitored before, during and after immobilization stress. A spectral analysis of cardiovascular parameters was used to examine autonomic nervous activities. We found that long-term exercise (i) lowered resting BP, HR and sympathetic activity, but increased resting parasympathetic activity and baroreflex sensitivity (BRS); (ii) accelerated post-stress recovery of stress-evoked cardiovascular and sympathetic responses along with increased BRS and (iii) accelerated post-stress recovery of stress-evoked neuron activations in the paraventricular nucleus, but delayed it in the nucleus of the tractus solitarius. We conclude that, in rats, long-term exercise accelerated recovery of stress-evoked cardiovascular responses differentially altering hypothalamic and medullar neuron activities.

  20. Interaction between sympathetic nervous system and renin angiotensin system on MMPs expression in juvenile rat aorta.

    PubMed

    Dab, Houcine; Hachani, Rafik; Hodroj, Wassim; Sakly, Mohsen; Bricca, Giampiero; Kacem, Kamel

    2011-09-01

    The aim of our present study is to investigate the interaction between angiotensin II (ANG II) and sympathetic nervous system (SNS) on matrix metalloproteinase MMP-2 and MMP-9 expression and activity in juvenile rat aorta under normal conditions. Sympathectomy with guanethidine and blockade of the ANG II receptors (AT1R) by losartan were performed alone or in combination on new-born rats. mRNA, protein expression and activity of MMP-2 and MMP-9 were examined by Q-RT-PCR, immunoblotting and zymography, respectively. MMP-2 mRNA and protein amount were decreased after sympathectomy or AT1R blockade and an additive effect was observed after combined treatment. However, MMP-9 expression was reduced to the same level in the three treated groups. There were some detectable gelatinolytic activity of the MMPs in both control and treated rats. We concluded that ANG II stimulates directly and indirectly (via sympathostimulator pathway) the MMP-2 expression but seems unable to affect MMP-9 expression through direct pathway. Combined inhibition of SNS and ANG II were more efficient than a single inhibition in reducing MMP amounts in rat vessels.

  1. Effects of fenoterol on the skeletal system depend on the androgen level.

    PubMed

    Śliwiński, Leszek; Cegieła, Urszula; Pytlik, Maria; Folwarczna, Joanna; Janas, Aleksandra; Zbrojkiewicz, Małgorzata

    2017-04-01

    The role of sympathetic nervous system in the osseous tissue remodeling is not clear enough. The effects of fenoterol, a selective β 2 -adrenomimetic drug, on the skeletal system of normal and androgen deficient (orchidectomized) rats were studied in vivo. Osteoclastogenesis and mRNA expression in osteoblasts were investigated in vitro in mouse cell cultures. Fenoterol administered to animals with physiological androgen level unfavorably affected the skeletal system, damaging the bone microarchitecture. Androgen deficiency induced osteoporotic changes, and fenoterol protected the osseous tissue from consequences of androgen deficiency. The results of in vitro studies correlated with the in vivo observations. A significantly increased number of osteoclasts in bone marrow cell cultures to which testosterone and fenoterol were added simultaneously was demonstrated. In cultures without the addition of testosterone, fenoterol significantly inhibited osteoclastogenesis in comparison with control cultures. The results indicate the favorable action of fenoterol in conditions of testosterone deficiency, and its destructive influence upon the skeleton in the presence of androgens. The results confirm the key role of sympathetic nervous system in the regulation of bone remodeling. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  2. Neuroendocrine Mechanisms of Acupuncture in the Treatment of Hypertension

    PubMed Central

    Zhou, Wei; Longhurst, John C.

    2012-01-01

    Hypertension affects approximately 1 billion individuals worldwide. Pharmacological therapy has not been perfected and often is associated with adverse side effects. Acupuncture is used as an adjunctive treatment for a number of cardiovascular diseases like hypertension. It has long been established that the two major contributors to systemic hypertension are the intrarenal renin-angiotensin system and chronic activation of the sympathetic nervous system. Recent evidence indicates that in some models of cardiovascular disease, blockade of AT1 receptors in the rostral ventrolateral medulla (rVLM) reduces sympathetic nerve activity and blood pressure, suggesting that overactivity of the angiotensin system in this nucleus may play a role in the maintenance of hypertension. Our experimental studies have shown that electroacupuncture stimulation activates neurons in the arcuate nucleus, ventrolateral gray, and nucleus raphe to inhibit the neural activity in the rVLM in a model of visceral reflex stimulation-induced hypertension. This paper will discuss current knowledge of the effects of acupuncture on central nervous system and how they contribute to regulation of acupuncture on the endocrine system to provide a perspective on the future of treatment of hypertension with this ancient technique. PMID:22216059

  3. Activation of hypothalamic RIP-Cre neurons promotes beiging of WAT via sympathetic nervous system.

    PubMed

    Wang, Baile; Li, Ang; Li, Xiaomu; Ho, Philip Wl; Wu, Donghai; Wang, Xiaoqi; Liu, Zhuohao; Wu, Kelvin Kl; Yau, Sonata Sy; Xu, Aimin; Cheng, Kenneth Ky

    2018-04-01

    Activation of brown adipose tissue (BAT) and beige fat by cold increases energy expenditure. Although their activation is known to be differentially regulated in part by hypothalamus, the underlying neural pathways and populations remain poorly characterized. Here, we show that activation of rat-insulin-promoter-Cre (RIP-Cre) neurons in ventromedial hypothalamus (VMH) preferentially promotes recruitment of beige fat via a selective control of sympathetic nervous system (SNS) outflow to subcutaneous white adipose tissue (sWAT), but has no effect on BAT Genetic ablation of APPL2 in RIP-Cre neurons diminishes beiging in sWAT without affecting BAT, leading to cold intolerance and obesity in mice. Such defects are reversed by activation of RIP-Cre neurons, inactivation of VMH AMPK, or treatment with a β3-adrenergic receptor agonist. Hypothalamic APPL2 enhances neuronal activation in VMH RIP-Cre neurons and raphe pallidus, thereby eliciting SNS outflow to sWAT and subsequent beiging. These data suggest that beige fat can be selectively activated by VMH RIP-Cre neurons, in which the APPL2-AMPK signaling axis is crucial for this defending mechanism to cold and obesity. © 2018 The Authors.

  4. Effect of functional sympathetic nervous system impairment of the liver and abdominal visceral adipose tissue on circulating triglyceride-rich lipoproteins

    PubMed Central

    Cirnigliaro, Christopher M.; Kirshblum, Steven C.; McKenna, Cristin

    2017-01-01

    Background Interruption of sympathetic innervation to the liver and visceral adipose tissue (VAT) in animal models has been reported to reduce VAT lipolysis and hepatic secretion of very low density lipoprotein (VLDL) and concentrations of triglyceride-rich lipoprotein particles. Whether functional impairment of sympathetic nervous system (SNS) innervation to tissues of the abdominal cavity reduce circulating concentrations of triglyceride (TG) and VLDL particles (VLDL-P) was tested in men with spinal cord injury (SCI). Methods One hundred-three non-ambulatory men with SCI [55 subjects with neurologic injury at or proximal to the 4th thoracic vertebrae (↑T4); 48 subjects with SCI at or distal to the 5th thoracic vertebrae (↓T5)] and 53 able-bodied (AB) subjects were studied. Fasting blood samples were obtained for determination of TG, VLDL-P concentration by NMR spectroscopy, serum glucose by autoanalyzer, and plasma insulin by radioimmunoassay. VAT volume was determined by dual energy x-ray absorptiometry imaging with calculation by a validated proprietary software package. Results Significant group main effects for TG and VLDL-P were present; post-hoc tests revealed that serum TG concentrations were significantly higher in ↓T5 group compared to AB and ↑T4 groups [150±9 vs. 101±8 (p<0.01) and 112±8 mg/dl (p<0.05), respectively]. VLDL-P concentration was significantly elevated in ↓T5 group compared to AB and ↑T4 groups [74±4 vs. 58±4 (p<0.05) and 55±4 μmol/l (p<0.05)]. VAT volume was significantly higher in both SCI groups than in the AB group, and HOMA-IR was higher and approached significance in the SCI groups compared to the AB group. A linear relationship between triglyceride rich lipoproteins (i.e., TG or Large VLDL-P) and VAT volume or HOMA-IR was significant only in the ↓T5 group. Conclusions Despite a similar VAT volume and insulin resistance in both SCI groups, the ↓T5 group had significantly higher serum TG and VLDL-P values than that observed in the ↑T4 and the AB control groups. Thus, level of injury is an important determinate of the concentration of circulating triglyceride rich lipoproteins, which may play a role in the genesis of cardiometabolic dysfunction. PMID:28346471

  5. 11C-meta-hydroxyephedrine PET/CT imaging allows in vivo study of adaptive thermogenesis and white-to-brown fat conversion

    PubMed Central

    Quarta, Carmelo; Lodi, Filippo; Mazza, Roberta; Giannone, Ferdinando; Boschi, Laura; Nanni, Cristina; Nisoli, Enzo; Boschi, Stefano; Pasquali, Renato; Fanti, Stefano; Iozzo, Patricia; Pagotto, Uberto

    2013-01-01

    Several lines of evidence suggest that novel pharmacological approaches aimed at converting white adipose tissue (WAT) into brown adipose tissue (BAT) may represent an effective therapeutic strategy for obesity and related disorders. (18)F-fluorodeoxyglucose (18F-FDG) is the only positron emission tomography (PET) tracer commonly used to study BAT function, and so far no functional tools have been described to investigate in vivo white-to-brown fat conversion. In this report, we show that the PET tracer 11C-meta-hydroxyephedrine (11C-MHED, a norepinephrine analogue) is a useful tool to investigate the sympathetic nervous system (SNS) activity in BAT of lean and dietary obese mice. Moreover, we demonstrate that 11C-MHED is a specific marker of the SNS-mediated thermogenesis in typical BAT depots, and that this tracer can detect in vivo WAT to BAT conversion. PMID:24049730

  6. [Endurance training and cardial adaptation (athlete's heart)].

    PubMed

    Dickhuth, Hans-Hermann; Röcker, Kai; Mayer, Frank; König, Daniel; Korsten-Reck, Ulrike

    2004-06-01

    One essential function of the cardiovascular system is to provide an adequate blood supply to all organs, including the skeletal muscles at rest and during exercise. Adaptation to chronic exercise proceeds mainly via the autonomic nervous system. On the one hand, peripheral muscles influence the autonomic reactions through "feedback" control via ergoreceptors, in particular, mechano- and chemoreceptors. On the other hand, there is central control in the sense of a "feed forward" regulation, e. g., the reaction of an athlete before competition. Along with other influential factors, such as circulatory presso-, chemo-, and volume receptors, the incoming impulses are processed in vegetative centers.A cardiovascular reaction, then, is the result of nerval and humoral sympathetic and parasympathetic activity. At rest, the parasympathetic tone dominates. It reduces heart frequency and conduction velocity. The high vagal tone is initially reduced with increasing physical exertion and switches at higher intensity to increasingly sympathetic activation. This mechanism of reaction to exercise is supported by inverse central and peripheral transmissions.Chronic endurance training leads to an improved local aerobic capacity of the exercised musculature. At rest, it augments parasympathetic activity when the muscle mass is sufficiently large, i. e., 20-30% of the skeletal musculature. The extent of the adaptation depends on individual factors, such as scope, intensity of training, and type of muscle fiber. A higher vagal tone delays the increase in the sympathetic tone during physical exertion. The regulatory range of heart rate, contractility, diastolic function, and blood pressure is increased. In addition, adaptation results in functional and structural changes in the vascular system. Cardiocirculatory work is economized, and maximum performance and oxygen uptake are improved. Endurance training exceeding an individual limit causes harmonic enlargement and hypertrophy of the heart. The thickness of both, the septum and posterior wall increases to the same extent as the interior volume. The mass/volume ratio, and therefore the maximum systolic wall stress, remains constant in contrast to pathologic forms of hypertrophy. Adaptations, including function and size of the heart, show a regression in healthy inactive persons without any structural heart disease.

  7. Postural tachycardia syndrome and inappropriate sinus tachycardia: role of autonomic modulation and sinus node automaticity.

    PubMed

    Nwazue, Victor C; Paranjape, Sachin Y; Black, Bonnie K; Biaggioni, Italo; Diedrich, André; Dupont, William D; Robertson, David; Raj, Satish R

    2014-04-10

    Inappropriate sinus tachycardia (IST) and postural tachycardia syndrome (POTS) are 2 disorders characterized by sinus tachycardia. It is debated whether the pathophysiology of IST and POTS results from abnormal autonomic regulation or abnormal sinus node function. We hypothesized that intrinsic heart rate (IHR) after autonomic blockade would be increased in patients with IST but not POTS. We enrolled 48 POTS patients, 8 IST patients, and 17 healthy control (HC) subjects. Intravenous propranolol and atropine were given to block the sympathetic and parasympathetic limbs of the autonomic nervous system in order to determine the IHR. Patients with IST have a higher sympathetic contribution to heart rate when compared with POTS patients (31±13 bpm versus 12±7 bpm, P<0.001) and HC (8±4 bpm; P<0.001) and a trend to less parasympathetic contribution than POTS and HC (IST: 31±11 bpm versus POTS: 46±11 bpm versus HC: 48±11 bpm, ANOVA P=0.108). IHR was not significantly different between IST and either POTS or HC (IST: 111±11 bpm versus POTS: 108±11 bpm versus HC: 106±12 bpm, ANOVA P=0.237). IST patients have more sympathetic tone when compared with either POTS or HC, but IST patients do not have abnormal sinus node automaticity. These data suggest that the treatment of IST and POTS should focus on sympatholysis, reserving sinus node modification for patients with continued debilitating symptoms after beta-blockade and possibly ivabradine. http://clinicaltrials.gov/. Unique identifier: NCT00262470.

  8. The Frequency-Dependent Aerobic Exercise Effects of Hypothalamic GABAergic Expression and Cardiovascular Functions in Aged Rats

    PubMed Central

    Li, Yan; Zhao, Ziqi; Cai, Jiajia; Gu, Boya; Lv, Yuanyuan; Zhao, Li

    2017-01-01

    A decline in cardiovascular modulation is a feature of the normal aging process and associated with cardiovascular diseases (CVDs) such as hypertension and stroke. Exercise training is known to promote cardiovascular adaptation in young animals and positive effects on motor and cognitive capabilities, as well as on brain plasticity for all ages in mice. Here, we examine the question of whether aerobic exercise interventions may impact the GABAergic neurons of the paraventricular nucleus (PVN) in aged rats which have been observed to have a decline in cardiovascular integration function. In the present study, young (2 months) and old (24 months) male Wistar rats were divided into young control (YC), old sedentary, old low frequency exercise (20 m/min, 60 min/day, 3 days/week, 12 weeks) and old high frequency exercise (20 m/min, 60 min/day, 5 days/week, 12 weeks). Exercise training indexes were obtained, including resting heart rate (HR), blood pressure (BP), plasma norepinephrine (NE), and heart weight (HW)-to-body weight (BW) ratios. The brain was removed and processed according to the immunofluorescence staining and western blot used to analyze the GABAergic terminal density, the proteins of GAD67, GABAA receptor and gephyrin in the PVN. There were significant changes in aged rats compared with those in the YC. Twelve weeks aerobic exercise training has volume-dependent ameliorated effects on cardiovascular parameters, autonomic nervous activities and GABAergic system functions. These data suggest that the density of GABAergic declines in the PVN is associated with imbalance in autonomic nervous activities in normal aging. Additionally, aerobic exercise can rescue aging-related an overactivity of the sympathetic nervous system and induces modifications the resting BP and HR to lower values via improving the GABAergic system in the PVN. PMID:28713263

  9. Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space

    PubMed Central

    Ertl, Andrew C; Diedrich, André; Biaggioni, Italo; Levine, Benjamin D; Robertson, Rose Marie; Cox, James F; Zuckerman, Julie H; Pawelczyk, James A; Ray, Chester A; Buckey, Jay C; Lane, Lynda D; Shiavi, Richard; Gaffney, F Andrew; Costa, Fernando; Holt, Carol; Blomqvist, C Gunnar; Eckberg, Dwain L; Baisch, Friedhelm J; Robertson, David

    2002-01-01

    Astronauts returning from space have reduced red blood cell masses, hypovolaemia and orthostatic intolerance, marked by greater cardio–acceleration during standing than before spaceflight, and in some, orthostatic hypotension and presyncope. Adaptation of the sympathetic nervous system occurring during spaceflight may be responsible for these postflight alterations. We tested the hypotheses that exposure to microgravity reduces sympathetic neural outflow and impairs sympathetic neural responses to orthostatic stress. We measured heart rate, photoplethysmographic finger arterial pressure, peroneal nerve muscle sympathetic activity and plasma noradrenaline spillover and clearance, in male astronauts before, during (flight day 12 or 13) and after the 16 day Neurolab space shuttle mission. Measurements were made during supine rest and orthostatic stress, as simulated on Earth and in space by 7 min periods of 15 and 30 mmHg lower body suction. Mean (± s.e.m.) heart rates before lower body suction were similar pre–flight and in flight. Heart rate responses to −30 mmHg were greater in flight (from 56 ± 4 to 72 ± 4 beats min−1) than pre–flight (from 56 ± 4 at rest to 62 ± 4 beats min−1, P < 0.05). Noradrenaline spillover and clearance were increased from pre–flight levels during baseline periods and during lower body suction, both in flight (n = 3) and on post–flight days 1 or 2 (n = 5, P < 0.05). In–flight baseline sympathetic nerve activity was increased above pre–flight levels (by 10–33 %) in the same three subjects in whom noradrenaline spillover and clearance were increased. The sympathetic response to 30 mmHg lower body suction was at pre–flight levels or higher in each subject (35 pre–flight vs. 40 bursts min−1 in flight). No astronaut experienced presyncope during lower body suction in space (or during upright tilt following the Neurolab mission). We conclude that in space, baseline sympathetic neural outflow is increased moderately and sympathetic responses to lower body suction are exaggerated. Therefore, notwithstanding hypovolaemia, astronauts respond normally to simulated orthostatic stress and are able to maintain their arterial pressures at normal levels. PMID:11773339

  10. Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space

    NASA Technical Reports Server (NTRS)

    Ertl, Andrew C.; Diedrich, Andre; Biaggioni, Italo; Levine, Benjamin D.; Robertson, Rose Marie; Cox, James F.; Zuckerman, Julie H.; Pawelczyk, James A.; Ray, Chester A.; Buckey, Jay C Jr; hide

    2002-01-01

    Astronauts returning from space have reduced red blood cell masses, hypovolaemia and orthostatic intolerance, marked by greater cardio-acceleration during standing than before spaceflight, and in some, orthostatic hypotension and presyncope. Adaptation of the sympathetic nervous system occurring during spaceflight may be responsible for these postflight alterations. We tested the hypotheses that exposure to microgravity reduces sympathetic neural outflow and impairs sympathetic neural responses to orthostatic stress. We measured heart rate, photoplethysmographic finger arterial pressure, peroneal nerve muscle sympathetic activity and plasma noradrenaline spillover and clearance, in male astronauts before, during (flight day 12 or 13) and after the 16 day Neurolab space shuttle mission. Measurements were made during supine rest and orthostatic stress, as simulated on Earth and in space by 7 min periods of 15 and 30 mmHg lower body suction. Mean (+/- S.E.M.) heart rates before lower body suction were similar pre-flight and in flight. Heart rate responses to -30 mmHg were greater in flight (from 56 +/- 4 to 72 +/- 4 beats min(-1)) than pre-flight (from 56 +/- 4 at rest to 62 +/- 4 beats min(-1), P < 0.05). Noradrenaline spillover and clearance were increased from pre-flight levels during baseline periods and during lower body suction, both in flight (n = 3) and on post-flight days 1 or 2 (n = 5, P < 0.05). In-flight baseline sympathetic nerve activity was increased above pre-flight levels (by 10-33 %) in the same three subjects in whom noradrenaline spillover and clearance were increased. The sympathetic response to 30 mmHg lower body suction was at pre-flight levels or higher in each subject (35 pre-flight vs. 40 bursts min(-1) in flight). No astronaut experienced presyncope during lower body suction in space (or during upright tilt following the Neurolab mission). We conclude that in space, baseline sympathetic neural outflow is increased moderately and sympathetic responses to lower body suction are exaggerated. Therefore, notwithstanding hypovolaemia, astronauts respond normally to simulated orthostatic stress and are able to maintain their arterial pressures at normal levels.

  11. Sudomotor, skin vasomotor, and cardiovascular reflexes in 3 clinical forms of Lewy body disease.

    PubMed

    Akaogi, Y; Asahina, M; Yamanaka, Y; Koyama, Y; Hattori, T

    2009-07-07

    To elucidate the differences among dementia with Lewy bodies (DLB), Parkinson disease with dementia (PDD), and Parkinson disease without dementia (PD), with respect to the involvement of the autonomic nervous system, we clinically investigated the cutaneous and cardiovascular autonomic functions in patients with Lewy body disease. We studied 36 patients with Lewy body disorders, including 12 patients with DLB (age, 75.4 +/- 5.9 years), 12 patients with PDD (71.0 +/- 6.8 years), and 12 patients with PD (70.9 +/- 4.2 years), and 12 healthy control subjects (69.9 +/- 5.3 years). Sympathetic sweat response (SSwR) and skin vasomotor reflex (SkVR) on the palm were recorded to estimate the cutaneous sympathetic function, and the head-up tilt test was performed and coefficient of variation of R-R intervals (CV(R-R)) was studied to estimate the cardiovascular function. The patients with DLB, patients with PDD, and patients with PD showed severely reduced SSwR amplitudes, significantly lower than that in the controls. The mean SkVR amplitudes in the patients with DLB and patients with PDD were significantly lower than that in the controls, but not in the patients with PD. The mean decreases in the systolic blood pressure during the head-up tilt test in the patients with DLB and patients with PDD were less than that in the controls. The mean CV(R-R) value was significantly lower in the patients with DLB. Sudomotor function on the palm may be severely affected in Lewy body disorders, while skin vasomotor function and the cardiovascular system may be more severely affected in dementia with Lewy bodies and Parkinson disease with dementia than in Parkinson disease.

  12. Autonomic nervous system involvement in the giant axonal neuropathy (GAN) KO mouse: implications for human disease.

    PubMed

    Armao, Diane; Bailey, Rachel M; Bouldin, Thomas W; Kim, Yongbaek; Gray, Steven J

    2016-08-01

    Giant axonal neuropathy (GAN) is an inherited severe sensorimotor neuropathy. The aim of this research was to investigate the neuropathologic features and clinical autonomic nervous system (ANS) phenotype in two GAN knockout (KO) mouse models. Little is known about ANS involvement in GAN in humans, but autonomic signs and symptoms are commonly reported in early childhood. Routine histology and immunohistochemistry was performed on GAN KO mouse specimens taken at various ages. Enteric dysfunction was assessed by quantifying the frequency, weight, and water content of defecation in GAN KO mice. Histological examination of the enteric, parasympathetic and sympathetic ANS of GAN KO mice revealed pronounced and widespread neuronal perikaryal intermediate filament inclusions. These neuronal inclusions served as an easily identifiable, early marker of GAN in young GAN KO mice. Functional studies identified an age-dependent alteration in fecal weight and defecation frequency in GAN KO mice. For the first time in the GAN KO mouse model, we described the early, pronounced and widespread neuropathologic features involving the ANS. In addition, we provided evidence for a clinical autonomic phenotype in GAN KO mice, reflected in abnormal gastrointestinal function. These findings in GAN KO mice suggest that consideration should be given to ANS involvement in human GAN, especially when considering treatments and patient care.

  13. [Nerve growth factor and the physiology of pain: the relationships among interoception, sympathetic neurons and the emotional response indicated by the molecular pathophysiology of congenital insensitivity to pain with anhidrosis].

    PubMed

    Indo, Yasuhiro

    2015-05-01

    Nerve growth factor (NGF) is a neurotrophic factor essential for the survival and maintenance of neurons. Congenital insensitivity to pain with anhidrosis (CIPA) is caused by loss-of-function mutations in NTRK1, which encodes a receptor tyrosine kinase, TrkA, for NGF. Mutations in NTRK1 cause the selective loss of NGF-dependent neurons, including both NGF-dependent primary afferents and sympathetic postganglionic neurons, in otherwise intact systems. The NGF-dependent primary afferents are thinly myelinated AΔ or unmyelinated C-fibers that are dependent on the NGF-TrkA system during development. NGF-dependent primary afferents are not only nociceptive neurons that transmit pain and temperature sensation, but also are polymodal receptors that play essential roles for interoception by monitoring various changes in the physiological status of all tissues in the body. In addition, they contribute to various inflammatory processes in acute, chronic and allergic inflammation. Together with sympathetic postganglionic neurons, they maintain the homeostasis of the body and emotional responses via interactions with the brain, immune and endocrine systems. Pain is closely related to emotions that accompany physical responses induced by systemic activation of the sympathetic nervous system. In contrast to a negative image of emotions in daily life, Antonio Damasio proposed the 'Somatic Marker Hypothesis', wherein emotions play critical roles in the decision-making and reasoning processes. According to this hypothesis, reciprocal communication between the brain and the body-proper are essential for emotional responses. Using the pathophysiology of CIPA as a foundation, this article suggests that NGF-dependent neurons constitute a part of the neuronal network required for homeostasis and emotional responses, and indicates that this network plays important roles in mediating the reciprocal communication between the brain and the body-proper.

  14. Nonuniformity in the von Bezold-Jarisch reflex.

    PubMed

    Salo, Lauren M; Woods, Robyn L; Anderson, Colin R; McAllen, Robin M

    2007-08-01

    The von Bezold-Jarisch reflex (BJR) is a vagally mediated chemoreflex from the heart and lungs, causing hypopnea, bradycardia, and inhibition of sympathetic vasomotor tone. However, cardiac sympathetic nerve activity (CSNA) has not been systematically compared with vasomotor activity during the BJR. In 11 urethane-anesthetized (1-1.5 g/kg iv), artificially ventilated rats, we measured CSNA simultaneously with lumbar sympathetic activity (LSNA) while the BJR was evoked by right atrial bolus injections of phenylbiguanide (0.5, 1.0, 1.5, and 2 microg). Nerve and heartbeat responses were analyzed by calculating normalized cumulative sums. LSNA and heartbeats were always reduced by the BJR. An excitatory "rebound" component often followed the inhibition of LSNA but never outweighed it. For CSNA, however, excitation usually (in 7 of 11 rats) outweighed any initial inhibition, such that the net response to phenylbiguanide was excitatory. The differences in net response between LSNA, CSNA, and heartbeats were all significant (P < 0.01). A second experimental series on seven rats showed that methyl atropine (1 mg/kg iv) abolished the bradycardia of the BJR, whereas subsequent bilateral vagotomy substantially reduced LSNA and CSNA responses, both excitatory and inhibitory. These findings show that, during the BJR, 1) CSNA is often excited, 2) there may be coactivation of sympathetic and parasympathetic drives to the heart, 3) divergent responses may be evoked simultaneously in cardiac vagal, cardiac sympathetic, and vasomotor nervous pathways, and 4) those divergent responses are mediated primarily by the vagi.

  15. Selective leptin resistance revisited

    PubMed Central

    2013-01-01

    In addition to effects on appetite and metabolism, leptin influences many neuroendocrine and physiological systems, including the sympathetic nervous system. Building on my Carl Ludwig Lecture of the American Physiological Society, I review the sympathetic and cardiovascular actions of leptin. The review focuses on a critical analysis of the concept of selective leptin resistance (SLR) and the role of leptin in the pathogenesis of obesity-induced hypertension in both experimental animals and humans. We introduced the concept of SLR in 2002 to explain how leptin might increase blood pressure (BP) in obese states, such as diet-induced obesity (DIO), that are accompanied by partial leptin resistance. This concept, analogous to selective insulin resistance in the metabolic syndrome, holds that in several genetic and acquired models of obesity, there is preservation of the renal sympathetic and pressor actions of leptin despite attenuation of the appetite and weight-reducing actions. Two potential overlapping mechanisms of SLR are reviewed: 1) differential leptin molecular signaling pathways that mediate selective as opposed to universal leptin action and 2) brain site-specific leptin action and resistance. Although the phenomenon of SLR in DIO has so far focused on preservation of sympathetic and BP actions of leptin, consideration should be given to the possibility that this concept may extend to preservation of other actions of leptin. Finally, I review perplexing data on the effects of leptin on sympathetic activity and BP in humans and its role in human obesity-induced hypertension. PMID:23883674

  16. Sympathetic nerve stimulation induces local endothelial Ca2+ signals to oppose vasoconstriction of mouse mesenteric arteries

    PubMed Central

    Nausch, Lydia W. M.; Bonev, Adrian D.; Heppner, Thomas J.; Tallini, Yvonne; Kotlikoff, Michael I.

    2012-01-01

    It is generally accepted that the endothelium regulates vascular tone independent of the activity of the sympathetic nervous system. Here, we tested the hypothesis that the activation of sympathetic nerves engages the endothelium to oppose vasoconstriction. Local inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ signals (“pulsars”) in or near endothelial projections to vascular smooth muscle (VSM) were measured in an en face mouse mesenteric artery preparation. Electrical field stimulation of sympathetic nerves induced an increase in endothelial cell (EC) Ca2+ pulsars, recruiting new pulsar sites without affecting activity at existing sites. This increase in Ca2+ pulsars was blocked by bath application of the α-adrenergic receptor antagonist prazosin or by TTX but was unaffected by directly picospritzing the α-adrenergic receptor agonist phenylephrine onto the vascular endothelium, indicating that nerve-derived norepinephrine acted through α-adrenergic receptors on smooth muscle cells. Moreover, EC Ca2+ signaling was not blocked by inhibitors of purinergic receptors, ryanodine receptors, or voltage-dependent Ca2+ channels, suggesting a role for IP3, rather than Ca2+, in VSM-to-endothelium communication. Block of intermediate-conductance Ca2+-sensitive K+ channels, which have been shown to colocalize with IP3 receptors in endothelial projections to VSM, enhanced nerve-evoked constriction. Collectively, our results support the concept of a transcellular negative feedback module whereby sympathetic nerve stimulation elevates EC Ca2+ signals to oppose vasoconstriction. PMID:22140050

  17. Renal norepinephrine spillover during infusion of nonesterified fatty acids.

    PubMed

    Grekin, Roger J; Ngarmukos, Chardpra-Orn; Williams, David M; Supiano, Mark A

    2005-03-01

    Sympathetic activity and renal norepinephrine spillover are increased in obese individuals. We have reported that infusion of nonesterified fatty acids increases blood pressure in animals through stimulation of the sympathetic nervous system. In this study, we assessed the effect of increasing circulating nonesterified fatty acids on systemic and renal norepinephrine kinetics in healthy adults by infusing fat emulsion and heparin for 4 h. (3)H-norepinephrine was infused for 60 min before and again during the last hour of the fatty acid infusion to assess norepinephrine kinetics. Renal venous blood samples were obtained to calculate renal norepinephrine spillover. Nonesterified fatty acid levels increased threefold during the first hour and remained elevated throughout the study. Arterial and renal venous plasma norepinephrine levels fell by 15% and 20%, respectively, during the infusion (P < .05 for both). Kinetic analysis indicated that systemic release of norepinephrine into an extravascular compartment decreased from 11.6 +/- 1.1 to 10.0 +/- 1.3 nmol/min/m(2) (P = .067) and renal venous norepinephrine spillover decreased from 454 +/- 54 pmol/min (P = .055). These results indicate that nonesterified fatty acids do not have a direct stimulating effect on whole-body or renal sympathetic activity. It is possible that increased plasma levels of fatty acids serve as a signal to decrease sympathetic tone during the fasting state.

  18. LncRNA uc.48+ siRNA improved diabetic sympathetic neuropathy in type 2 diabetic rats mediated by P2X7 receptor in SCG.

    PubMed

    Wu, Bing; Zhang, Chunping; Zou, Lifang; Ma, Yucheng; Huang, Kangyu; Lv, Qiulan; Zhang, Xi; Wang, Shouyu; Xue, Yun; Yi, Zhihua; Jia, Tianyu; Zhao, Shanhong; Liu, Shuangmei; Xu, Hong; Li, Guilin; Liang, Shangdong

    2016-05-01

    Diabetic autonomic neuropathy includes the sympathetic ganglionic dysfunction. P2X7 receptor in superior cervical ganglia (SCG) participated in the pathological changes of cardiac dysfunction. Abnormal expression of long noncoding RNAs (lncRNAs) was reported to be involved in nervous system diseases. Our preliminary results obtained from rat lncRNA array profiling revealed that the expression of the uc.48+ was significantly increased in the rat SCG in response to diabetic sympathetic pathology. In this study, we found that lncRNAuc.48+ and P2X7 receptor in the SCG were increased in type 2 diabetic rats and were associated with the cardiac dysfunction. The uc.48+ small interference RNA (siRNA) improved the cardiac autonomic dysfunction and decreased the up-regulation P2X7 and the ratio of phosphorylated extracellular regulated protein kinases1/2 (p-ERK1/2) to ERK1/2 in SCG of type 2 diabetic rats. In conclusion, lncRNA uc.48+ siRNA improved diabetic sympathetic neuropathy in type 2 diabetic rats through regulating the expression of P2X7 and ERK signaling in SCG. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Sympathetic cardiac hyperinnervation and atrial autonomic imbalance in diet-induced obesity promote cardiac arrhythmias

    PubMed Central

    Hasan, Wohaib; Streiff, Cole T.; Houle, Jennifer C.; Woodward, William R.; Giraud, George D.; Brooks, Virginia L.; Habecker, Beth A.

    2013-01-01

    Obesity increases the risk of arrhythmias and sudden cardiac death, but the mechanisms are unknown. This study tested the hypothesis that obesity-induced cardiac sympathetic outgrowth and hyperinnervation promotes the development of arrhythmic events. Male Sprague-Dawley rats (250–275 g), fed a high-fat diet (33% kcal/fat), diverged into obesity-resistant (OR) and obesity-prone (OP) groups and were compared with rats fed normal chow (13% kcal/fat; CON). In vitro experiments showed that both OR and OP rats exhibited hyperinnervation of the heart and high sympathetic outgrowth compared with CON rats, even though OR rats are not obese. Despite the hyperinnervation and outgrowth, we showed that, in vivo, OR rats were less susceptible to arrhythmic events after an intravenous epinephrine challenge compared with OP rats. On examining total and stimulus-evoked neurotransmitter levels in an ex vivo system, we demonstrate that atrial acetylcholine content and release were attenuated in OP compared with OR and CON groups. OP rats also expressed elevated atrial norepinephrine content, while norepinephrine release was suppressed. These findings suggest that the consumption of a high-fat diet, even in the absence of overt obesity, stimulates sympathetic outgrowth and hyperinnervation of the heart. However, normalized cardiac parasympathetic nervous system control may protect the heart from arrhythmic events. PMID:24014675

  20. Neurotrophins, growth-factor-regulated genes and the control of energy balance.

    PubMed

    Salton, Stephen R J

    2003-03-01

    Neurotrophic growth factors are proteins that control neuronal differentiation and survival, and consequently play important roles in the developing and adult stages of the nervous system. Study of the genes that are regulated by these growth factors has provided insight into the proteins that are critical to the maturation of the nervous system, suggesting that select neurotrophins may play a role in the control of body homeostasis by the brain and peripheral nervous system. Our understanding of the mechanisms of action of neurotrophic growth factors has increased through experimental manipulation of cultured neurons and neuronal cell lines. In particular, the PC12 pheochromocytoma cell line, which displays many properties of adrenal chromaffin cells and undergoes differentiation into sympathetic neuron-like cells when treated with nerve growth factor, has been extensively investigated to identify components of neurotrophin signaling pathways as well as the genes that they regulate. VGF was one of the first neurotrophin-regulated clones identified in NGF-treated PC12 cells. Subsequent studies indicate that the vgf gene is regulated in vivo in the nervous system by neurotrophins, by electrical activity, in response to injury or seizure, and by feeding and the circadian clock. The vgf gene encodes a polypeptide rich in paired basic amino acids; this polypeptide is differentially processed in neuronal and neuroendocrine cells and is released via the regulated secretory pathway. Generation and analysis of knockout mice that fail to synthesize VGF indicate that this protein plays a critical, non-redundant role in the regulation of energy homeostasis, providing a possible link between neurotrophin function in the nervous system and the peripheral control of feeding and metabolic activity. Future experiments should clarify the sites and mechanisms of action of this neurotrophin-regulated neuronal and neuroendocrine protein.

  1. Intrinsic cardiac nervous system in tachycardia induced heart failure.

    PubMed

    Arora, Rakesh C; Cardinal, Rene; Smith, Frank M; Ardell, Jeffrey L; Dell'Italia, Louis J; Armour, J Andrew

    2003-11-01

    The purpose of this study was to test the hypothesis that early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiac function. After 2 wk of rapid ventricular pacing in nine anesthetized canines, cardiac and right atrial neuronal function were evaluated in situ in response to enhanced cardiac sensory inputs, stimulation of extracardiac autonomic efferent neuronal inputs, and close coronary arterial administration of neurochemicals that included nicotine. Right atrial neuronal intracellular electrophysiological properties were then evaluated in vitro in response to synaptic activation and nicotine. Intrinsic cardiac nicotine-sensitive, neuronally induced cardiac responses were also evaluated in eight sham-operated, unpaced animals. Two weeks of rapid ventricular pacing reduced the cardiac index by 54%. Intrinsic cardiac neurons of paced hearts maintained their cardiac mechano- and chemosensory transduction properties in vivo. They also responded normally to sympathetic and parasympathetic preganglionic efferent neuronal inputs, as well as to locally administered alpha-or beta-adrenergic agonists or angiotensin II. The dose of nicotine needed to modify intrinsic cardiac neurons was 50 times greater in failure compared with normal preparations. That dose failed to alter monitored cardiovascular indexes in failing preparations. Phasic and accommodating neurons identified in vitro displayed altered intracellular membrane properties compared with control, including decreased membrane resistance, indicative of reduced excitability. Early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiodynamics. While maintaining its capacity to transduce cardiac mechano- and chemosensory inputs, as well as inputs from extracardiac autonomic efferent neurons, intrinsic cardiac nicotine-sensitive, local-circuit neurons differentially remodel such that their capacity to influence cardiodynamics becomes obtunded.

  2. An Integrative Review on Role and Mechanisms of Ghrelin in Stress, Anxiety and Depression.

    PubMed

    Bali, Anjana; Jaggi, Amteshwar Singh

    2016-01-01

    Ghrelin is orexigenic hormone primarily synthesized by endocrine X/A-like cells of gastric oxyntic mucosa to stimulate appetite and food intake along with regulation of growth hormone and insulin secretion; glucose and lipid metabolism; gastrointestinal motility; blood pressure, heart rate and neurogenesis. Furthermore, peripherally (after crossing the blood brain barrier) as well as centrally synthesized ghrelin (in the hypothalamus) regulates diverse functions of central nervous system including stress-associated behavioral functions. Exposure to stress alters the ghrelin levels and alteration in ghrelin levels significantly affects neuro-endocrinological parameters; metabolism-related physiology, behavior and mood. Studies have shown both anxiolytic and anxiogenic role of ghrelin suggesting its dual role in modulating anxiety-related behavior. However, it is proposed that increase in ghrelin levels during stress condition is an endogenous stress coping behavior and increased ghrelin levels may be required to prevent excessive anxiety. In preclinical and clinical studies, an elevation in ghrelin levels during depression has been correlated with their antidepressant activities. Ghrelin-induced modulation of stress and associated conditions has been linked to alteration in hypothalamic-pituitary-adrenal (HPA) axis; autonomic nervous system (mainly sympathetic nervous system and serotonergic neurotransmission. A reciprocal relationship has been reported between corticotropin-releasing hormone (CRH) and ghrelin as ghrelin increases the release of CRH, ACTH and corticosteroids; while CRH decreases the expression of ghrelin. Similarly, ghrelin increases the serotonin turnover and in turn, serotonin controls ghrelin signaling to modulate anxiety-related behavior. The present review discusses the dual role of ghrelin in stress and related behavioral disorders along with possible mechanisms.

  3. HIF-2α is essential for carotid body development and function

    PubMed Central

    Cowburn, Andrew S; Torres-Torrelo, Hortensia; Ortega-Sáenz, Patricia; López-Barneo, José

    2018-01-01

    Mammalian adaptation to oxygen flux occurs at many levels, from shifts in cellular metabolism to physiological adaptations facilitated by the sympathetic nervous system and carotid body (CB). Interactions between differing forms of adaptive response to hypoxia, including transcriptional responses orchestrated by the Hypoxia Inducible transcription Factors (HIFs), are complex and clearly synergistic. We show here that there is an absolute developmental requirement for HIF-2α, one of the HIF isoforms, for growth and survival of oxygen sensitive glomus cells of the carotid body. The loss of these cells renders mice incapable of ventilatory responses to hypoxia, and this has striking effects on processes as diverse as arterial pressure regulation, exercise performance, and glucose homeostasis. We show that the expansion of the glomus cells is correlated with mTORC1 activation, and is functionally inhibited by rapamycin treatment. These findings demonstrate the central role played by HIF-2α in carotid body development, growth and function. PMID:29671738

  4. Women of valor: post-traumatic stress disorder in the dental practice.

    PubMed

    Kloeffler, G Davis

    2015-01-01

    Dental professionals can intervene in head, neck and facial pain found in female patients who suffer from post-traumatic stress disorder (PTSD). There are three theories for why women are predisposed to pain: hormonal differences, nervous system rewiring and sympathetic issues. This article includes case studies of three patients who are representative of these theories. A rapid, nonintrusive intervention will also be described.

  5. Neural control of circulation and exercise: a translational approach disclosing interactions between central command, arterial baroreflex, and muscle metaboreflex.

    PubMed

    Michelini, Lisete C; O'Leary, Donal S; Raven, Peter B; Nóbrega, Antonio C L

    2015-08-01

    The last 100 years witnessed a rapid and progressive development of the body of knowledge concerning the neural control of the cardiovascular system in health and disease. The understanding of the complexity and the relevance of the neuroregulatory system continues to evolve and as a result raises new questions. The purpose of this review is to articulate results from studies involving experimental models in animals as well as in humans concerning the interaction between the neural mechanisms mediating the hemodynamic responses during exercise. The review describes the arterial baroreflex, the pivotal mechanism controlling mean arterial blood pressure and its fluctuations along with the two main activation mechanisms to exercise: central command (parallel activation of central somatomotor and autonomic descending pathways) and the muscle metaboreflex, the metabolic component of exercise pressor reflex (feedback from ergoreceptors within contracting skeletal muscles). In addition, the role of the cardiopulmonary baroreceptors in modulating the resetting of arterial baroreflex is identified, and the mechanisms in the central nervous system involved with the resetting of baroreflex function during dynamic exercise are also described. Approaching a very relevant clinical condition, the review also presents the concept that the impaired arterial baroreflex function is an integral component of the metaboreflex-mediated exaggerated sympathetic tone in subjects with heart failure. This increased sympathetic activity has a major role in causing the depressed ventricular function observed during submaximal dynamic exercise in these patients. The potential contribution of a metaboreflex arising from respiratory muscles is also considered. Copyright © 2015 the American Physiological Society.

  6. Separate and shared sympathetic outflow to white and brown fat coordinately regulates thermoregulation and beige adipocyte recruitment

    PubMed Central

    Nguyen, Ngoc Ly T.; Barr, Candace L.; Ryu, Vitaly; Cao, Qiang; Bartness, Timothy J.

    2017-01-01

    White adipose tissue (WAT) and brown adipose tissue (BAT) are innervated and regulated by the sympathetic nervous system (SNS). It is not clear, however, whether there are shared or separate central SNS outflows to WAT and BAT that regulate their function. We injected two isogenic strains of pseudorabies virus, a retrograde transneuronal viral tract tracer, with unique fluorescent reporters into interscapular BAT (IBAT) and inguinal WAT (IWAT) of the same Siberian hamsters to define SNS pathways to both. To test the functional importance of SNS coordinated control of BAT and WAT, we exposed hamsters with denervated SNS nerves to IBAT to 4°C for 16–24 h and measured core and fat temperatures and norepinephrine turnover (NETO) and uncoupling protein 1 (UCP1) expression in fat tissues. Overall, there were more SNS neurons innervating IBAT than IWAT across the neuroaxis. However, there was a greater percentage of singly labeled IWAT neurons in midbrain reticular nuclei than singly labeled IBAT neurons. The hindbrain had ~30–40% of doubly labeled neurons while the forebrain had ~25% suggesting shared SNS circuitry to BAT and WAT across the brain. The raphe nucleus, a key region in thermoregulation, had ~40% doubly labeled neurons. Hamsters with IBAT SNS denervation maintained core body temperature during acute cold challenge and had increased beige adipocyte formation in IWAT. They also had increased IWAT NETO, temperature, and UCP1 expression compared with intact hamsters. These data provide strong neuroanatomical and functional evidence of WAT and BAT SNS cross talk for thermoregulation and beige adipocyte formation. PMID:27881398

  7. Neural control of circulation and exercise: a translational approach disclosing interactions between central command, arterial baroreflex, and muscle metaboreflex

    PubMed Central

    Michelini, Lisete C.; O'Leary, Donal S.; Raven, Peter B.

    2015-01-01

    The last 100 years witnessed a rapid and progressive development of the body of knowledge concerning the neural control of the cardiovascular system in health and disease. The understanding of the complexity and the relevance of the neuroregulatory system continues to evolve and as a result raises new questions. The purpose of this review is to articulate results from studies involving experimental models in animals as well as in humans concerning the interaction between the neural mechanisms mediating the hemodynamic responses during exercise. The review describes the arterial baroreflex, the pivotal mechanism controlling mean arterial blood pressure and its fluctuations along with the two main activation mechanisms to exercise: central command (parallel activation of central somatomotor and autonomic descending pathways) and the muscle metaboreflex, the metabolic component of exercise pressor reflex (feedback from ergoreceptors within contracting skeletal muscles). In addition, the role of the cardiopulmonary baroreceptors in modulating the resetting of arterial baroreflex is identified, and the mechanisms in the central nervous system involved with the resetting of baroreflex function during dynamic exercise are also described. Approaching a very relevant clinical condition, the review also presents the concept that the impaired arterial baroreflex function is an integral component of the metaboreflex-mediated exaggerated sympathetic tone in subjects with heart failure. This increased sympathetic activity has a major role in causing the depressed ventricular function observed during submaximal dynamic exercise in these patients. The potential contribution of a metaboreflex arising from respiratory muscles is also considered. PMID:26024683

  8. Children's sleep and autonomic function: low sleep quality has an impact on heart rate variability.

    PubMed

    Michels, Nathalie; Clays, Els; De Buyzere, Marc; Vanaelst, Barbara; De Henauw, Stefaan; Sioen, Isabelle

    2013-12-01

    Short sleep duration and poor sleep quality in children have been associated with concentration, problem behavior, and emotional instability, but recently also with disrupted autonomic nervous function, which predicts cardiovascular health. Heart rate variability (HRV) was used as noninvasive indicator of autonomic function to examine the influence of sleep. Cross-sectional and longitudinal observational study on the effect of sleep on HRV. Belgian children (5-11 years) of the ChiBS study in 2010 (N = 334) and 2011 (N = 293). N/A. Sleep duration was reported and in a subgroup sleep quality (efficiency, latency, awakenings) was measured with accelerometry. High-frequency (HF) power and autonomic balance (LF/HF) were calculated on supine 5-minute HRV measurements. Stress was measured by emotion and problem behavior questionnaires. Sleep duration and quality were used as HRV predictors in corrected cross-sectional and longitudinal regressions. Stress was tested as mediator (intermediate pathway) or moderator (interaction) in sleep-HRV associations. In both cross-sectional and longitudinal analyses, long sleep latency could predict lower HF (parasympathetic activity), while nocturnal awakenings, sleep latency, low sleep efficiency, and low corrected sleep duration were related to higher LF/HF (sympathetic/parasympathetic balance). Parental reported sleep duration was not associated with HRV. The significances remained after correction for stress. Stress was not a mediator, but a moderator (enhancer) in the relationship between sleep quality and HRV. Low sleep quality but not parent-reported low sleep duration leads to an unhealthier heart rate variability pattern (sympathetic over parasympathetic dominance). This stresses the importance of good sleep quality for cardiovascular health in children.

  9. Impaired neural structure and function contributing to autonomic symptoms in congenital central hypoventilation syndrome.

    PubMed

    Harper, Ronald M; Kumar, Rajesh; Macey, Paul M; Harper, Rebecca K; Ogren, Jennifer A

    2015-01-01

    Congenital central hypoventilation syndrome (CCHS) patients show major autonomic alterations in addition to their better-known breathing deficiencies. The processes underlying CCHS, mutations in the PHOX2B gene, target autonomic neuronal development, with frame shift extent contributing to symptom severity. Many autonomic characteristics, such as impaired pupillary constriction and poor temperature regulation, reflect parasympathetic alterations, and can include disturbed alimentary processes, with malabsorption and intestinal motility dyscontrol. The sympathetic nervous system changes can exert life-threatening outcomes, with dysregulation of sympathetic outflow leading to high blood pressure, time-altered and dampened heart rate and breathing responses to challenges, cardiac arrhythmia, profuse sweating, and poor fluid regulation. The central mechanisms contributing to failed autonomic processes are readily apparent from structural and functional magnetic resonance imaging studies, which reveal substantial cortical thinning, tissue injury, and disrupted functional responses in hypothalamic, hippocampal, posterior thalamic, and basal ganglia sites and their descending projections, as well as insular, cingulate, and medial frontal cortices, which influence subcortical autonomic structures. Midbrain structures are also compromised, including the raphe system and its projections to cerebellar and medullary sites, the locus coeruleus, and medullary reflex integrating sites, including the dorsal and ventrolateral medullary nuclei. The damage to rostral autonomic sites overlaps metabolic, affective and cognitive regulatory regions, leading to hormonal disruption, anxiety, depression, behavioral control, and sudden death concerns. The injuries suggest that interventions for mitigating hypoxic exposure and nutrient loss may provide cellular protection, in the same fashion as interventions in other conditions with similar malabsorption, fluid turnover, or hypoxic exposure.

  10. Regulators of Human White Adipose Browning: Evidence for Sympathetic Control and Sexual Dimorphic Responses to Sprint Interval Training

    PubMed Central

    Scalzo, Rebecca L.; Peltonen, Garrett L.; Giordano, Gregory R.; Binns, Scott E.; Klochak, Anna L.; Paris, Hunter L. R.; Schweder, Melani M.; Szallar, Steve E.; Wood, Lacey M.; Larson, Dennis G.; Luckasen, Gary J.; Hickey, Matthew S.; Bell, Christopher

    2014-01-01

    The conversion of white adipose to the highly thermogenic beige adipose tissue has been proposed as a potential strategy to counter the unfavorable consequences of obesity. Three regulators of this conversion have recently emerged but information regarding their control is limited, and contradictory. We present two studies examining the control of these regulators. Study 1: In 10 young men, the plasma concentrations of irisin and fibroblast growth factor 21 (FGF21) were determined prior to and during activation of the sympathetic nervous system via hypoxic gas breathing (FIO2 = 0.11). The measurements were performed twice, once with and once without prior/concurrent sympathetic inhibition via transdermal clonidine administration. FGF21 was unaffected by basal sympathetic inhibition (338±113 vs. 295±80 pg/mL; P = 0.43; mean±SE), but was increased during hypoxia mediated sympathetic activation (368±135); this response was abrogated (P = 0.035) with clonidine (269±93). Irisin was unaffected by sympathetic inhibition and/or hypoxia (P>0.21). Study 2: The plasma concentration of irisin and FGF21, and the skeletal muscle protein content of fibronectin type III domain containing 5 (FNDC5) was determined in 19 young adults prior to and following three weeks of sprint interval training (SIT). SIT decreased FGF21 (338±78 vs. 251±36; P = 0.046) but did not affect FNDC5 (P = 0.79). Irisin was decreased in males (127±18 vs. 90±23 ng/mL; P = 0.045) and increased in females (139±14 vs. 170±18). Collectively, these data suggest a potential regulatory role of acute sympathetic activation pertaining to the browning of white adipose; further, there appears to be a sexual dimorphic response of irisin to SIT. PMID:24603718

  11. Insulin resistance is associated with impaired cardiac sympathetic innervation in patients with heart failure.

    PubMed

    Paolillo, S; Rengo, G; Pellegrino, T; Formisano, R; Pagano, G; Gargiulo, P; Savarese, G; Carotenuto, R; Petraglia, L; Rapacciuolo, A; Perrino, C; Piscitelli, S; Attena, E; Del Guercio, L; Leosco, D; Trimarco, B; Cuocolo, A; Perrone-Filardi, P

    2015-10-01

    Insulin resistance (IR) represents, at the same time, cause and consequence of heart failure (HF) and affects prognosis in HF patients, but pathophysiological mechanisms remain unclear. Hyperinsulinemia, which characterizes IR, enhances sympathetic drive, and it can be hypothesized that IR is associated with impaired cardiac sympathetic innervation in HF. Yet, this hypothesis has never been investigated. Aim of the present observational study was to assess the relationship between IR and cardiac sympathetic innervation in non-diabetic HF patients. One hundred and fifteen patients (87% males; 65 ± 11.3 years) with severe-to-moderate HF (ejection fraction 32.5 ± 9.1%) underwent iodine-123 meta-iodobenzylguanidine ((123)I-MIBG) myocardial scintigraphy to assess sympathetic innervation and Homeostasis Model Assessment Insulin Resistance (HOMA-IR) evaluation to determine the presence of IR. From (123)I-MIBG imaging, early and late heart to mediastinum (H/M) ratios and washout rate were calculated. Seventy-two (63%) patients showed IR and 43 (37%) were non-IR. Early [1.68 (IQR 1.53-1.85) vs. 1.79 (IQR 1.66-1.95); P = 0.05] and late H/M ratio [1.50 (IQR 1.35-1.69) vs. 1.65 (IQR 1.40-1.85); P = 0.020] were significantly reduced in IR compared with non-IR patients. Early and late H/M ratio showed significant inverse correlation with fasting insulinemia and HOMA-IR. Cardiac sympathetic innervation is more impaired in patients with IR and HF compared with matched non-IR patients. These findings shed light on the relationship among IR, HF, and cardiac sympathetic nervous system. Additional studies are needed to clarify the pathogenetic relationship between IR and HF. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  12. Lipid Processing in the Brain: A Key Regulator of Systemic Metabolism

    PubMed Central

    Bruce, Kimberley D.; Zsombok, Andrea; Eckel, Robert H.

    2017-01-01

    Metabolic disorders, particularly aberrations in lipid homeostasis, such as obesity, type 2 diabetes mellitus, and hypertriglyceridemia often manifest together as the metabolic syndrome (MetS). Despite major advances in our understanding of the pathogenesis of these disorders, the prevalence of the MetS continues to rise. It is becoming increasingly apparent that intermediary metabolism within the central nervous system is a major contributor to the regulation of systemic metabolism. In particular, lipid metabolism within the brain is tightly regulated to maintain neuronal structure and function and may signal nutrient status to modulate metabolism in key peripheral tissues such as the liver. There is now a growing body of evidence to suggest that fatty acid (FA) sensing in hypothalamic neurons via accumulation of FAs or FA metabolites may signal nutritional sufficiency and may decrease hepatic glucose production, lipogenesis, and VLDL-TG secretion. In addition, recent studies have highlighted the existence of liver-related neurons that have the potential to direct such signals through parasympathetic and sympathetic nervous system activity. However, to date whether these liver-related neurons are FA sensitive remain to be determined. The findings discussed in this review underscore the importance of the autonomic nervous system in the regulation of systemic metabolism and highlight the need for further research to determine the key features of FA neurons, which may serve as novel therapeutic targets for the treatment of metabolic disorders. PMID:28421037

  13. [Burnout syndrome: a "true" cardiovascular risk factor].

    PubMed

    Cursoux, Pauline; Lehucher-Michel, Marie-Pascale; Marchetti, Hélène; Chaumet, Guillaume; Delliaux, Stéphane

    2012-11-01

    The burnout syndrome is characterized by emotional exhaustion, depersonalization and reduced personal accomplishment in individuals professionally involved with others. The burnout syndrome is poorly recognized, particularly in France, as a distinct nosology from adaptation troubles, stress, depression, or anxiety. Several tools quantifying burnout and emotional exhaustion exist, the most spread is the questionnaire called Maslach Burnout Inventory. The burnout syndrome alters cardiovascular function and its neuroregulation by autonomic nervous system and is associated with: increased sympathetic tone to heart and vessels after mental stress, lowered physiological post-stress vagal rebound to heart, and lowered arterial baroreflex sensitivity. Job strain as burnout syndrome seems to be a real independent cardiovascular risk factor. Oppositely, training to manage emotions could increase vagal tone to heart and should be cardio-protective. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  14. Role of intrahepatic innervation in regulating the activity of liver cells

    PubMed Central

    Streba, Letitia Adela Maria; Vere, Cristin Constantin; Ionescu, Alin Gabriel; Streba, Costin Teodor; Rogoveanu, Ion

    2014-01-01

    Liver innervation comprises sympathetic, parasympathetic and peptidergic nerve fibers, organized as either afferent or efferent nerves with different origins and roles. Their anatomy and physiology have been studied in the past 30 years, with different results published over time. Hepatocytes are the main cell population of the liver, making up almost 80% of the total liver volume. The interaction between hepatocytes and nerve fibers is accomplished through a wealth of neurotransmitters and signaling pathways. In this short review, we have taken the task of condensing the most important data related to how the nervous system interacts with the liver and especially with the hepatocyte population, how it influences their metabolism and functions, and how different receptors and transmitters are involved in this complex process. PMID:24672643

  15. Genetic susceptibility to neuroblastoma

    PubMed Central

    Tolbert, Vanessa P.; Coggins, Grace E.; Maris, John M.

    2017-01-01

    Until recently, the genetic basis of neuroblastoma, a heterogeneous neoplasm arising from the developing sympathetic nervous system, remained undefined. The discovery of gain-of-function mutations in the ALK receptor tyrosine kinase gene as the major cause of familial neuroblastoma led to the discovery of identical somatic mutations and rapid advancement of ALK as a tractable therapeutic target. Inactivating mutations in a master regulator of neural crest development, PHOX2B, have also been identified in a subset of familial neuroblastomas. Other high penetrance susceptibility alleles likely exist, but together these heritable mutations account for less than 10% of neuroblastoma cases. A genome-wide association study of a large neuroblastoma cohort identified common and rare polymorphisms highly associated with the disease. Ongoing resequencing efforts aim to further define the genetic landscape of neuroblastoma. PMID:28458126

  16. [Remodeling of Cardiovascular System: Causes and Consequences].

    PubMed

    Lopatina, E V; Kipenko, A V; Penniyaynen, V A; Pasatetckaia, N A; Tsyrline, V A

    2016-01-01

    Literature and our data suggest the regulatory action of a number of biologically active substances (catecholamines, cardiac glycosides, β-blockers, angiotensin-converting-enzyme inhibitor) on the growth and proliferation of heart cells. By using of organotypic tissue culture has proved that the basis of this regulation is the ability of test substances, receptor- or transducer-mediated signaling to modulate the function of Na⁺, K⁺-ATPase. There is a delay in the development of vascular smooth muscle in the late postnatal period in rats with the blockade of the sympathetic nervous system in the prenatal period. The relationship between vascular remodeling and contractile activity is described. It seems that one of the causes of high blood pressure is a remodeling of the cardiovascular system, which precedes the development of hypertension.

  17. Bone: from a reservoir of minerals to a regulator of energy metabolism

    PubMed Central

    Confavreux, Cyrille B

    2011-01-01

    Besides locomotion, organ protection, and calcium–phosphorus homeostasis, the three classical functions of the skeleton, bone remodeling affects energy metabolism through uncarboxylated osteocalcin, a recently discovered hormone secreted by osteoblasts. This review traces how energy metabolism affects osteoblasts through the central control of bone mass involving leptin, serotoninergic neurons, the hypothalamus, and the sympathetic nervous system. Next, the role of osteocalcin (insulin secretion, insulin sensitivity, and pancreas β-cell proliferation) in the regulation of energy metabolism is described. Then, the connections between insulin signaling on osteoblasts and the release of uncarboxylated osteocalcin during osteoclast bone resorption through osteoprotegerin are reported. Finally, the understanding of this new bone endocrinology will provide some insights into bone, kidney, and energy metabolism in patients with chronic kidney disease. PMID:21346725

  18. An anatomical and physiological basis for the cardiovascular autonomic nervous system consequences of sport-related brain injury.

    PubMed

    La Fountaine, Michael F

    2017-11-29

    Concussion is defined as a complex pathophysiological process affecting the brain that is induced by the application or transmission of traumatic biomechanical forces to the head. The result of the impact is the onset of transient symptoms that may be experienced for approximately 2weeks in most individuals. However, in some individuals, symptoms may not resolve and persist for a protracted period and a chronic injury ensues. Concussion symptoms are generally characterized by their emergence through changes in affect, cognition, or multi-sensory processes including the visual and vestibular systems. An emerging consequence of concussion is the presence of cardiovascular autonomic nervous system dysfunction that is most apparent through hemodynamic perturbations and provocations. Further interrogation of data that are derived from continuous digital electrocardiograms and/or beat-to-beat blood pressure monitoring often reveal an imbalance of parasympathetic or sympathetic nervous system activity during a provocation after an injury. The disturbance is often greatest early after injury and a resolution of the dysfunction occurs in parallel with other symptoms. The possibility exists that the disturbance may remain if the concussion does not resolve. Unfortunately, there is little evidence in humans to support the etiology for the emergence of this post-injury dysfunction. As such, evidence from experimental models of traumatic brain injury and casual observations from human studies of concussion implicate a transient abnormality of the anatomical structures and functions of the cardiovascular autonomic nervous system. The purpose of this review article is to provide a mechanistic narrative of multi-disciplinary evidence to support the anatomical and physiological basis of cardiovascular autonomic nervous system dysfunction after concussion. The review article will identify the anatomical structures of the autonomic nervous system and propose a theoretical framework to demonstrate the potential effects of concussive head trauma on corresponding outcome measurements. Evidence from experimental models will be used to describe abnormal cellular functions and provide a hypothetical mechanistic basis for the respective responses of the anatomical structures to concussive head trauma. When available, example observations from the human concussion literature will be presented to demonstrate the effects of concussive head trauma that may be related to anomalous activity in the respective anatomical structures of the autonomic nervous system. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Neuroendocrine and sympathetic responses to an orexin receptor antagonist, SB-649868, and alprazolam following insulin-induced hypoglycemia in humans.

    PubMed

    Patel, Ameera X; Miller, Sam R; Nathan, Pradeep J; Kanakaraj, Ponmani; Napolitano, Antonella; Lawrence, Philip; Koch, Annelize; Bullmore, Edward T

    2014-10-01

    The orexin-hypocretin system is important for translating peripheral metabolic signals and central neuronal inputs to a diverse range of behaviors, from feeding, motivation and arousal, to sleep and wakefulness. Orexin signaling is thus an exciting potential therapeutic target for disorders of sleep, feeding, addiction, and stress. Here, we investigated the low dose pharmacology of orexin receptor antagonist, SB-649868, on neuroendocrine, sympathetic nervous system, and behavioral responses to insulin-induced hypoglycemic stress, in 24 healthy male subjects (aged 18-45 years; BMI 19.0-25.9 kg/m(2)), using a randomized, double-blind, placebo-controlled, within-subject crossover design. Alprazolam, a licensed benzodiazepine anxiolytic, was used as a positive comparator, as it has previously been validated using the insulin tolerance test (ITT) model in humans. Of the primary endpoints, ITT induced defined increases in pulse rate, plasma cortisol, and adrenocorticotropic hormone in the placebo condition, but these responses were not significantly impacted by alprazolam or SB-649868 pre-treatment. Of the secondary endpoints, ITT induced a defined increase in plasma concentrations of adrenaline, noradrenaline, growth hormone (GH), and prolactin in the placebo condition. Alprazolam pre-treatment significantly reduced the GH response to ITT (p < 0.003), the peak electromyography (p < 0.0001) and galvanic skin response (GSR, p = 0.04) to acoustic startle, the resting GSR (p = 0.01), and increased appetite following ITT (p < 0.0005). SB-649868 pre-treatment produced no significant results. We concluded that the ITT model may be informative for assessing the effects of drugs directly acting on the neuroendocrine or sympathetic nervous systems, but could not be validated for studying low dose orexin antagonist activity.

  20. Spectral analysis of heart rate dynamics in elderly persons with postprandial hypotension

    NASA Technical Reports Server (NTRS)

    Ryan, S. M.; Goldberger, A. L.; Ruthazer, R.; Mietus, J.; Lipsitz, L. A.

    1992-01-01

    Prior studies suggest that postprandial hypotension in elderly persons may be due to defective sympathetic nervous system activation. We examined autonomic control of heart rate (HR) after a meal using spectral analysis of HR data in 13 old (89 +/- 6 years) and 7 young (24 +/- 4 years) subjects. Total spectral power, an index of overall HR variability, was calculated for the frequency band between 0.01 and 0.40 Hz. Relatively low-frequency power, associated with sympathetic nervous system and baroreflex activation, was calculated for the 0.01 to 0.15 Hz band. High-frequency power, representing parasympathetic influences on HR, was calculated for the 0.15 to 0.40 Hz band. Mean arterial blood pressure declined 27 +/- 8 mm Hg by 60 minutes after the meal in elderly subjects, compared with 9 +/- 8 mm Hg in young subjects (p less than or equal to 0.0001, young vs old). The mean change in low-frequency HR power from 30 to 50 minutes after the meal was +19.4 +/- 25.3 U in young subjects versus -0.1 +/- 1.5 U in old subjects (p less than or equal to 0.02). Mean change in total power was also greater in young (19.0 +/- 26.6 U) subjects compared with old subjects (0.0 +/- 1.6 U, p greater than or equal to 0.02). Mean ratio of low:high-frequency power increased 3.1 +/- 3.3 U in young subjects vs 0.5 +/- 2.7 U in old subjects (p less than or equal to 0.01). The increase in low-frequency HR power and in the low:high frequency band ratio in young subjects is consistent with sympathetic activation in the postprandial period.(ABSTRACT TRUNCATED AT 250 WORDS).

Top