Science.gov

Sample records for sympatric ecological speciation

  1. Refining the conditions for sympatric ecological speciation.

    PubMed

    Débarre, F

    2012-12-01

    Can speciation occur in a single population when different types of resources are available, in the absence of any geographical isolation, or any spatial or temporal variation in selection? The controversial topics of sympatric speciation and ecological speciation have already stimulated many theoretical studies, most of them agreeing on the fact that mechanisms generating disruptive selection, some level of assortment, and enough heterogeneity in the available resources, are critical for sympatric speciation to occur. Few studies, however, have combined the three factors and investigated their interactions. In this article, I analytically derive conditions for sympatric speciation in a general model where the distribution of resources can be uni- or bimodal, and where a parameter controls the range of resources that an individual can exploit. This approach bridges the gap between models of a unimodal continuum of resources and Levene-type models with discrete resources. I then test these conditions against simulation results from a recently published article (Thibert-Plante & Hendry, 2011, J. Evol. Biol. 24: 2186-2196) and confirm that sympatric ecological speciation is favoured when (i) selection is disruptive (i.e. individuals with an intermediate trait are at a local fitness minimum), (ii) resources are differentiated enough and (iii) mating is assortative. I also discuss the role of mating preference functions and the need (or lack thereof) for bimodality in resource distributions for diversification.

  2. Possible incipient sympatric ecological speciation in blind mole rats (Spalax)

    PubMed Central

    Hadid, Yarin; Tzur, Shay; Pavlíček, Tomáš; Šumbera, Radim; Šklíba, Jan; Lövy, Matěj; Fragman-Sapir, Ori; Beiles, Avigdor; Arieli, Ran; Raz, Shmuel; Nevo, Eviatar

    2013-01-01

    Sympatric speciation has been controversial since it was first proposed as a mode of speciation. Subterranean blind mole rats (Spalacidae) are considered to speciate allopatrically or peripatrically. Here, we report a possible incipient sympatric adaptive ecological speciation in Spalax galili (2n = 52). The study microsite (0.04 km2) is sharply subdivided geologically, edaphically, and ecologically into abutting barrier-free ecologies divergent in rock, soil, and vegetation types. The Pleistocene Alma basalt abuts the Cretaceous Senonian Kerem Ben Zimra chalk. Only 28% of 112 plant species were shared between the soils. We examined mitochondrial DNA in the control region and ATP6 in 28 mole rats from basalt and in 14 from chalk habitats. We also sequenced the complete mtDNA (16,423 bp) of four animals, two from each soil type. Remarkably, the frequency of all major haplotype clusters (HC) was highly soil-biased. HCI and HCII are chalk biased. HC-III was abundant in basalt (36%) but absent in chalk; HC-IV was prevalent in basalt (46.5%) but was low (20%) in chalk. Up to 40% of the mtDNA diversity was edaphically dependent, suggesting constrained gene flow. We identified a homologous recombinant mtDNA in the basalt/chalk studied area. Phenotypically significant divergences differentiate the two populations, inhabiting different soils, in adaptive oxygen consumption and in the amount of outside-nest activity. This identification of a possible incipient sympatric adaptive ecological speciation caused by natural selection indirectly refutes the allopatric alternative. Sympatric ecological speciation may be more prevalent in nature because of abundant and sharply abutting divergent ecologies. PMID:23359700

  3. Ecological speciation in sympatric palms: 1. Gene expression, selection and pleiotropy.

    PubMed

    Dunning, L T; Hipperson, H; Baker, W J; Butlin, R K; Devaux, C; Hutton, I; Igea, J; Papadopulos, A S T; Quan, X; Smadja, C M; Turnbull, C G N; Savolainen, V

    2016-08-01

    Ecological speciation requires divergent selection, reproductive isolation and a genetic mechanism to link the two. We examined the role of gene expression and coding sequence evolution in this process using two species of Howea palms that have diverged sympatrically on Lord Howe Island, Australia. These palms are associated with distinct soil types and have displaced flowering times, representing an ideal candidate for ecological speciation. We generated large amounts of RNA-Seq data from multiple individuals and tissue types collected on the island from each of the two species. We found that differentially expressed loci as well as those with divergent coding sequences between Howea species were associated with known ecological and phenotypic differences, including response to salinity, drought, pH and flowering time. From these loci, we identified potential 'ecological speciation genes' and further validate their effect on flowering time by knocking out orthologous loci in a model plant species. Finally, we put forward six plausible ecological speciation loci, providing support for the hypothesis that pleiotropy could help to overcome the antagonism between selection and recombination during speciation with gene flow.

  4. Incipient speciation in sympatric Nicaraguan crater lake cichlid fishes: sexual selection versus ecological diversification.

    PubMed Central

    Wilson, A B; Noack-Kunnmann, K; Meyer, A

    2000-01-01

    The growing body of empirical evidence for sympatric speciation has been complemented by recent theoretical treatments that have identified evolutionary conditions conducive to speciation in sympatry. The Neotropical Midas cichlid (Amphilophus citrinellum) fits both of the key characteristics of these models, with strong assortative mating on the basis of a colour polymorphism coupled with trophic and ecological differentiation derived from a polymorphism in their pharyngeal jaws. We used microsatellite markers and a 480 bp fragment of the mitochondrial DNA control region to study four polymorphic populations of the Midas cichlid from three crater lakes and one large lake in Nicaragua in an investigation of incipient sympatric speciation. All populations were strongly genetically differentiated on the basis of geography. We identified strong genetic separation based on colour polymorphism for populations from Lake Nicaragua and one crater lake (Lake Apoyo), but failed to find significant genetic structuring based on trophic differences and ecological niche separation in any of the four populations studied. These data support the idea that sexual selection through assortative mating contributes more strongly or earlier during speciation in sympatry than ecological separation in these cichlids. The long-term persistence of divergent cichlid ecotypes (as measured by the percentage sequence divergence between populations) in Central American crater lakes, despite a lack of fixed genetic differentiation, differs strikingly from the patterns of extremely rapid speciation in the cichlids in Africa, including its crater lakes. It is unclear whether extrinsic environmental factors or intrinsic biological differences, e.g. in the degree of phenotypic plasticity, promote different mechanisms and thereby rates of speciation of cichlid fishes from the Old and New Worlds. PMID:11413624

  5. On the origin of species by sympatric speciation

    NASA Astrophysics Data System (ADS)

    Dieckmann, Ulf; Doebeli, Michael

    1999-07-01

    Understanding speciation is a fundamental biological problem. It is believed that many species originated through allopatric divergence, where new species arise from geographically isolated populations of the same ancestral species. In contrast, the possibility of sympatric speciation (in which new species arise without geographical isolation) has often been dismissed, partly because of theoretical difficulties,. Most previous models analysing sympatric speciation concentrated on particular aspects of the problem while neglecting others. Here we present a model that integrates a novel combination of different features and show that sympatric speciation is a likely outcome of competition for resources. We use multilocus genetics to describe sexual reproduction in an individual-based model, and we consider the evolution of assortative mating (where individuals mate preferentially with like individuals) depending either on an ecological character affecting resource use or on a selectively neutral marker trait. In both cases, evolution of assortative mating often leads to reproductive isolation between ecologically diverging subpopulations. When assortative mating depends on a marker trait, and is therefore not directly linked to resource competition, speciation occurs when genetic drift breaks the linkage equilibrium between the marker and the ecological trait. Our theory conforms well with mounting empirical evidence for the sympatric origin of many species.

  6. Ecological speciation in sympatric palms: 2. Pre- and post-zygotic isolation.

    PubMed

    Hipperson, H; Dunning, L T; Baker, W J; Butlin, R K; Hutton, I; Papadopulos, A S T; Smadja, C M; Wilson, T C; Devaux, C; Savolainen, V

    2016-11-01

    We evaluated reproductive isolation in two species of palms (Howea) that have evolved sympatrically on Lord Howe Island (LHI, Australia). We estimated the strength of some pre- and post-zygotic mechanisms in maintaining current species boundaries. We found that flowering time displacement between species is consistent across in and ex situ common gardens and is thus partly genetically determined. On LHI, pre-zygotic isolation due solely to flowering displacement was 97% for Howea belmoreana and 80% for H. forsteriana; this asymmetry results from H. forsteriana flowering earlier than H. belmoreana and being protandrous. As expected, only a few hybrids (here confirmed by genotyping) at both juvenile and adult stages could be detected in two sites on LHI, in which the two species grow intermingled (the Far Flats) or adjacently (Transit Hill). Yet, the distribution of hybrids was different between sites. At Transit Hill, we found no hybrid adult trees, but 13.5% of younger palms examined there were of late hybrid classes. In contrast, we found four hybrid adult trees, mostly of late hybrid classes, and only one juvenile F1 hybrid in the Far Flats. This pattern indicates that selection acts against hybrids between the juvenile and adult stages. An in situ reciprocal seed transplant between volcanic and calcareous soils also shows that early fitness components (up to 36 months) were affected by species and soil. These results are indicative of divergent selection in reproductive isolation, although it does not solely explain the current distribution of the two species on LHI.

  7. Sympatric speciation by allochrony in a seabird

    PubMed Central

    Friesen, V. L.; Smith, A. L.; Gómez-Díaz, E.; Bolton, M.; Furness, R. W.; González-Solís, J.; Monteiro, L. R.

    2007-01-01

    The importance of sympatric speciation (the evolution of reproductive isolation between codistributed populations) in generating biodiversity is highly controversial. Whereas potential examples of sympatric speciation exist for plants, insects, and fishes, most theoretical models suggest that it requires conditions that are probably not common in nature, and only two possible cases have been described for tetrapods. One mechanism by which it could occur is through allochronic isolation—separation of populations by breeding time. Oceanodroma castro (the Madeiran or band-rumped storm-petrel) is a small seabird that nests on tropical and subtropical islands throughout the Atlantic and Pacific Oceans. In at least five archipelagos, different individuals breed on the same islands in different seasons. We compared variation in five microsatellite loci and the mitochondrial control region among 562 O. castro from throughout the species' range. We found that sympatric seasonal populations differ genetically within all five archipelagos and have ceased to exchange genes in two. Population and gene trees all indicate that seasonal populations within four of the archipelagos are more closely related to each other than to populations from the same season from other archipelagos; divergence of the fifth sympatric pair is too ancient for reliable inference. Thus, seasonal populations appear to have arisen sympatrically at least four times. This is the first evidence for sympatric speciation by allochrony in a tetrapod, and adds to growing indications that population differentiation and speciation can occur without geographic barriers to gene flow. PMID:18006662

  8. Darwin's finches: Population variation and sympatric speciation

    PubMed Central

    Grant, B. R.; Grant, P. R.

    1979-01-01

    The classical model of the adaptive radiation of Darwin's finches is one of repeated speciation in allopatry. Evidence presented here suggests that sympatric specification may have contributed to the radiation. On Isla Genovesa Geospiza conirostris displays several features that are consistent with a model of sympatric speciation. Males are polymorphic in song type. Those singing song A have significantly longer bills than those singing song B. The two groups of males forage in different ways that are functionally associated with the bill differences, particularly in the nonbreeding season when food is probably limiting. Territories of mated song A and song B males alternate in space, whereas territories of unmated males do not. This suggests that females can discriminate between males on the basis of song and position, and the pattern is consistent with a hypothesis of assortative mating within song groups. The population is therefore polymorphic; the morphs occupy different niches in which they may be separately regulated and they could be on the way to achieving full reproductive isolation through assortive mating. It is suggested that the population may oscillate between fission and fusion tendencies due to a changing selection regime in this variable and unpredictable environment. There is no evidence that one of the morphs originated allopatrically and then immigrated to Genovesa. The possibility of sympatric speciation being partly responsible for the adaptive radiation, dismissed more than 30 years ago, should be reinstated. PMID:16592654

  9. Darwin's finches: Population variation and sympatric speciation.

    PubMed

    Grant, B R; Grant, P R

    1979-05-01

    The classical model of the adaptive radiation of Darwin's finches is one of repeated speciation in allopatry. Evidence presented here suggests that sympatric specification may have contributed to the radiation. On Isla Genovesa Geospiza conirostris displays several features that are consistent with a model of sympatric speciation. Males are polymorphic in song type. Those singing song A have significantly longer bills than those singing song B. The two groups of males forage in different ways that are functionally associated with the bill differences, particularly in the nonbreeding season when food is probably limiting. Territories of mated song A and song B males alternate in space, whereas territories of unmated males do not. This suggests that females can discriminate between males on the basis of song and position, and the pattern is consistent with a hypothesis of assortative mating within song groups. The population is therefore polymorphic; the morphs occupy different niches in which they may be separately regulated and they could be on the way to achieving full reproductive isolation through assortive mating. It is suggested that the population may oscillate between fission and fusion tendencies due to a changing selection regime in this variable and unpredictable environment. There is no evidence that one of the morphs originated allopatrically and then immigrated to Genovesa. The possibility of sympatric speciation being partly responsible for the adaptive radiation, dismissed more than 30 years ago, should be reinstated.

  10. Genomics of Rapid Incipient Speciation in Sympatric Threespine Stickleback.

    PubMed

    Marques, David A; Lucek, Kay; Meier, Joana I; Mwaiko, Salome; Wagner, Catherine E; Excoffier, Laurent; Seehausen, Ole

    2016-02-01

    Ecological speciation is the process by which reproductively isolated populations emerge as a consequence of divergent natural or ecologically-mediated sexual selection. Most genomic studies of ecological speciation have investigated allopatric populations, making it difficult to infer reproductive isolation. The few studies on sympatric ecotypes have focused on advanced stages of the speciation process after thousands of generations of divergence. As a consequence, we still do not know what genomic signatures of the early onset of ecological speciation look like. Here, we examined genomic differentiation among migratory lake and resident stream ecotypes of threespine stickleback reproducing in sympatry in one stream, and in parapatry in another stream. Importantly, these ecotypes started diverging less than 150 years ago. We obtained 34,756 SNPs with restriction-site associated DNA sequencing and identified genomic islands of differentiation using a Hidden Markov Model approach. Consistent with incipient ecological speciation, we found significant genomic differentiation between ecotypes both in sympatry and parapatry. Of 19 islands of differentiation resisting gene flow in sympatry, all were also differentiated in parapatry and were thus likely driven by divergent selection among habitats. These islands clustered in quantitative trait loci controlling divergent traits among the ecotypes, many of them concentrated in one region with low to intermediate recombination. Our findings suggest that adaptive genomic differentiation at many genetic loci can arise and persist in sympatry at the very early stage of ecotype divergence, and that the genomic architecture of adaptation may facilitate this.

  11. Genomics of Rapid Incipient Speciation in Sympatric Threespine Stickleback

    PubMed Central

    Marques, David A.; Lucek, Kay; Meier, Joana I.; Mwaiko, Salome; Wagner, Catherine E.; Excoffier, Laurent; Seehausen, Ole

    2016-01-01

    Ecological speciation is the process by which reproductively isolated populations emerge as a consequence of divergent natural or ecologically-mediated sexual selection. Most genomic studies of ecological speciation have investigated allopatric populations, making it difficult to infer reproductive isolation. The few studies on sympatric ecotypes have focused on advanced stages of the speciation process after thousands of generations of divergence. As a consequence, we still do not know what genomic signatures of the early onset of ecological speciation look like. Here, we examined genomic differentiation among migratory lake and resident stream ecotypes of threespine stickleback reproducing in sympatry in one stream, and in parapatry in another stream. Importantly, these ecotypes started diverging less than 150 years ago. We obtained 34,756 SNPs with restriction-site associated DNA sequencing and identified genomic islands of differentiation using a Hidden Markov Model approach. Consistent with incipient ecological speciation, we found significant genomic differentiation between ecotypes both in sympatry and parapatry. Of 19 islands of differentiation resisting gene flow in sympatry, all were also differentiated in parapatry and were thus likely driven by divergent selection among habitats. These islands clustered in quantitative trait loci controlling divergent traits among the ecotypes, many of them concentrated in one region with low to intermediate recombination. Our findings suggest that adaptive genomic differentiation at many genetic loci can arise and persist in sympatry at the very early stage of ecotype divergence, and that the genomic architecture of adaptation may facilitate this. PMID:26925837

  12. Extensive range overlap between heliconiine sister species: evidence for sympatric speciation in butterflies?

    PubMed

    Rosser, Neil; Kozak, Krzysztof M; Phillimore, Albert B; Mallet, James

    2015-06-30

    Sympatric speciation is today generally viewed as plausible, and some well-supported examples exist, but its relative contribution to biodiversity remains to be established. We here quantify geographic overlap of sister species of heliconiine butterflies, and use age-range correlations and spatial simulations of the geography of speciation to infer the frequency of sympatric speciation. We also test whether shifts in mimetic wing colour pattern, host plant use and climate niche play a role in speciation, and whether such shifts are associated with sympatry. Approximately a third of all heliconiine sister species pairs exhibit near complete range overlap, and analyses of the observed patterns of range overlap suggest that sympatric speciation contributes 32%-95% of speciation events. Müllerian mimicry colour patterns and host plant choice are highly labile traits that seem to be associated with speciation, but we find no association between shifts in these traits and range overlap. In contrast, climatic niches of sister species are more conserved. Unlike birds and mammals, sister species of heliconiines are often sympatric and our inferences using the most recent comparative methods suggest that sympatric speciation is common. However, if sister species spread rapidly into sympatry (e.g. due to their similar climatic niches), then assumptions underlying our methods would be violated. Furthermore, although we find some evidence for the role of ecology in speciation, ecological shifts did not show the associations with range overlap expected under sympatric speciation. We delimit species of heliconiines in three different ways, based on "strict and " "relaxed" biological species concepts (BSC), as well as on a surrogate for the widely-used "diagnostic" version of the phylogenetic species concept (PSC). We show that one reason why more sympatric speciation is inferred in heliconiines than in birds may be due to a different culture of species delimitation in the two

  13. Sympatric speciation as a consequence of male pregnancy in seahorses

    PubMed Central

    Jones, Adam G.; Moore, Glenn I.; Kvarnemo, Charlotta; Walker, DeEtte; Avise, John C.

    2003-01-01

    The phenomenon of male pregnancy in the family Syngnathidae (seahorses, pipefishes, and sea dragons) undeniably has sculpted the course of behavioral evolution in these fishes. Here we explore another potentially important but previously unrecognized consequence of male pregnancy: a predisposition for sympatric speciation. We present microsatellite data on genetic parentage that show that seahorses mate size-assortatively in nature. We then develop a quantitative genetic model based on these empirical findings to demonstrate that sympatric speciation indeed can occur under this mating regime in response to weak disruptive selection on body size. We also evaluate phylogenetic evidence bearing on sympatric speciation by asking whether tiny seahorse species are sister taxa to large sympatric relatives. Overall, our results indicate that sympatric speciation is a plausible mechanism for the diversification of seahorses, and that assortative mating (in this case as a result of male parental care) may warrant broader attention in the speciation process for some other taxonomic groups as well. PMID:12732712

  14. Adaptive methylation regulation of p53 pathway in sympatric speciation of blind mole rats, Spalax

    PubMed Central

    Zhao, Yang; Tang, Jia-Wei; Yang, Zhi; Cao, Yi-Bin; Ren, Ji-Long; Ben-Abu, Yuval; Li, Kexin; Chen, Xue-Qun; Du, Ji-Zeng; Nevo, Eviatar

    2016-01-01

    Epigenetic modifications play significant roles in adaptive evolution. The tumor suppressor p53, well known for controlling cell fate and maintaining genomic stability, is much less known as a master gene in environmental adaptation involving methylation modifications. The blind subterranean mole rat Spalax eherenbergi superspecies in Israel consists of four species that speciated peripatrically. Remarkably, the northern Galilee species Spalax galili (2n = 52) underwent adaptive ecological sympatric speciation, caused by the sharply divergent chalk and basalt ecologies. This was demonstrated by mitochondrial and nuclear genomic evidence. Here we show that the expression patterns of the p53 regulatory pathway diversified between the abutting sympatric populations of S. galili in sharply divergent chalk–basalt ecologies. We identified higher methylation on several sites of the p53 promoter in the population living in chalk soil (chalk population). Site mutagenesis showed that methylation on these sites linked to the transcriptional repression of p53 involving Cut-Like Homeobox 1 (Cux1), paired box 4 (Pax 4), Pax 6, and activator protein 1 (AP-1). Diverse expression levels of p53 between the incipiently sympatrically speciating chalk–basalt abutting populations of S. galili selectively affected cell-cycle arrest but not apoptosis. We hypothesize that methylation modification of p53 has adaptively shifted in supervising its target genes during sympatric speciation of S. galili to cope with the contrasting environmental stresses of the abutting divergent chalk–basalt ecologies. PMID:26858405

  15. Adaptive methylation regulation of p53 pathway in sympatric speciation of blind mole rats, Spalax.

    PubMed

    Zhao, Yang; Tang, Jia-Wei; Yang, Zhi; Cao, Yi-Bin; Ren, Ji-Long; Ben-Abu, Yuval; Li, Kexin; Chen, Xue-Qun; Du, Ji-Zeng; Nevo, Eviatar

    2016-02-23

    Epigenetic modifications play significant roles in adaptive evolution. The tumor suppressor p53, well known for controlling cell fate and maintaining genomic stability, is much less known as a master gene in environmental adaptation involving methylation modifications. The blind subterranean mole rat Spalax eherenbergi superspecies in Israel consists of four species that speciated peripatrically. Remarkably, the northern Galilee species Spalax galili (2n = 52) underwent adaptive ecological sympatric speciation, caused by the sharply divergent chalk and basalt ecologies. This was demonstrated by mitochondrial and nuclear genomic evidence. Here we show that the expression patterns of the p53 regulatory pathway diversified between the abutting sympatric populations of S. galili in sharply divergent chalk-basalt ecologies. We identified higher methylation on several sites of the p53 promoter in the population living in chalk soil (chalk population). Site mutagenesis showed that methylation on these sites linked to the transcriptional repression of p53 involving Cut-Like Homeobox 1 (Cux1), paired box 4 (Pax 4), Pax 6, and activator protein 1 (AP-1). Diverse expression levels of p53 between the incipiently sympatrically speciating chalk-basalt abutting populations of S. galili selectively affected cell-cycle arrest but not apoptosis. We hypothesize that methylation modification of p53 has adaptively shifted in supervising its target genes during sympatric speciation of S. galili to cope with the contrasting environmental stresses of the abutting divergent chalk-basalt ecologies.

  16. Parapatric divergence of sympatric morphs in a salamander: incipient speciation on Long Island?

    PubMed

    Fisher-Reid, M Caitlin; Engstrom, Tag N; Kuczynski, Caitlin A; Stephens, Patrick R; Wiens, John J

    2013-09-01

    Speciation is often categorized based on geographic modes (allopatric, parapatric or sympatric). Although it is widely accepted that species can arise in allopatry and then later become sympatrically or parapatrically distributed, patterns in the opposite direction are also theoretically possible (e.g. sympatric lineages or ecotypes becoming parapatric), but such patterns have not been shown at a macrogeographic scale. Here, we analyse genetic, climatic, ecological and morphological data and show that two typically sympatric colour morphs of the salamander Plethodon cinereus (redback and leadback) appear to have become parapatrically distributed on Long Island, New York, with pure-redback populations in the west and pure-leadback populations in the east (and polymorphic populations in between and on the mainland). In addition, the pure-leadback populations in eastern Long Island are genetically, ecologically and morphologically divergent from both mainland and other Long Island populations, suggesting the possibility of incipient speciation. This parapatric separation seems to be related to the different ecological preferences of the two morphs, preferences which are present on the mainland and across Long Island. These results potentially support the idea that spatial segregation of sympatric ecotypes may sometimes play an important part in parapatric speciation. © 2013 John Wiley & Sons Ltd.

  17. Sympatric incipient speciation of spiny mice Acomys at "Evolution Canyon," Israel.

    PubMed

    Hadid, Yarin; Pavlícek, Tomás; Beiles, Avigdor; Ianovici, Ron; Raz, Shmuel; Nevo, Eviatar

    2014-01-21

    Does the paucity of empirical evidence of sympatric speciation in nature reflect reality, despite theoretical support? Or is it due to inappropriate searches in nature with overly restrictive assumptions and an incorrect null hypothesis? Spiny mice, Acomys, described here at Evolution Canyon (EC) incipiently and sympatrically speciate owing to microclimatic interslope divergence. The opposite slopes at EC vary dramatically, physically and biotically, representing the dry and hot south-facing slope savannoid-African continent ["African" slope (AS)], abutting with the north-facing slope forested south-European continent ["European" slope (ES)]. African-originated spiny mice, of the Acomys cahirinus complex, colonized Israel 30,000 y ago based on fossils. Genotypically, we showed significantly higher genetic diversity of mtDNA and amplified fragment length polymorphism of Acomys on the AS compared with the ES. This is also true regionally across Israel. In complete mtDNA, 25% of the haplotypes at EC were slope-biased. Phenotypically, the opposite slope's populations also showed adaptive morphology, physiology, and behavior divergence paralleling regional populations across Israel. Preliminary tests indicate slope-specific mate choices. Colonization of Acomys at the EC first occurred on the AS and then moved to the ES. Strong slope-specific natural selection (both positive and negative) overrules low interslope gene flow. Both habitat slope selection and mate choices suggest ongoing incipient sympatric speciation. We conclude that Acomys at the EC is ecologically and genetically adaptively, incipiently, sympatrically speciating on the ES owing to adaptive microclimatic natural selection.

  18. Computer simulations of sympatric speciation in a simple food web

    NASA Astrophysics Data System (ADS)

    Luz-Burgoa, K.; Dell, Tony; de Oliveira, S. Moss

    2005-07-01

    Galapagos finches, have motivated much theoretical research aimed at understanding the processes associated with the formation of the species. Inspired by them, in this paper we investigate the process of sympatric speciation in a simple food web model. For that we modify the individual-based Penna model that has been widely used to study aging as well as other evolutionary processes. Initially, our web consists of a primary food source and a single herbivore species that feeds on this resource. Subsequently we introduce a predator that feeds on the herbivore. In both instances we manipulate directly a basal resource distribution and monitor the changes in the populations. Sympatric speciation is obtained for the top species in both cases, and our results suggest that the speciation velocity depends on how far up, in the food chain, the focus population is feeding. Simulations are done with three different sexual imprintinglike mechanisms, in order to discuss adaptation by natural selection.

  19. Recent speciation between sympatric Tanganyikan cichlid colour morphs.

    PubMed

    Wagner, Catherine E; McCune, Amy R; Lovette, Irby J

    2012-07-01

    Lake Tanganyika, Africa's oldest lake, harbours an impressive diversity of cichlid fishes. Although diversification in its radiating groups is thought to have been initially rapid, cichlids from Lake Tanganyika show little evidence for ongoing speciation. In contrast, examples of recent divergence among sympatric colour morphs are well known in haplochromine cichlids from Lakes Malawi and Victoria. Here, we report genetic evidence for recent divergence between two sympatric Tanganyikan cichlid colour morphs. These Petrochromis morphs share mitochondrial haplotypes, yet microsatellite loci reveal that their sympatric populations form distinct genetic groups. Nuclear divergence between the two morphs is equivalent to that which arises geographically within one of the morphs over short distances and is substantially smaller than that among other sympatric species in this genus. These patterns suggest that these morphs diverged only recently, yet that barriers to gene flow exist which prevent extensive admixture despite their sympatric distribution. The morphs studied here provide an unusual example of active diversification in Lake Tanganyika's generally ancient cichlid fauna and enable comparisons of speciation processes between Lake Tanganyika and other African lakes.

  20. Habitat avoidance: overlooking an important aspect of host-specific mating and sympatric speciation?

    PubMed

    Forbes, Andrew A; Fisher, Joan; Feder, Jeffrey L

    2005-07-01

    Understanding speciation requires discerning how reproductive barriers to gene flow evolve between previously interbreeding populations. Models of sympatric speciation for phytophagous insects posit that reproductive isolation can evolve in the absence of geographic isolation as a consequence of an insect shifting and ecologically adapting to a new host plant. One important adaptation contributing to sympatric differentiation is host-specific mating. When organisms mate in preferred habitats, a system of positive assortative mating is established that facilitates sympatric divergence. Models of host fidelity generally assume that host choice is determined by the aggregate effect of alleles imparting positive preferences for different plant species. But negative effect genes for avoiding nonnatal plants may also influence host use. Previous studies have shown that apple and hawthorn-infesting races of Rhagoletis pomonella flies use volatile compounds emitted from the surface of fruit as key chemosensory cues to recognize and distinguish between their host plants. Here, we report results from field trials indicating that in addition to preferring the odor of their natal fruit, apple and hawthorn flies, and their undescribed sister species infesting flowering dogwood (Cornus florida), also avoid the odors of nonnatal fruit. We discuss the implications of nonnatal fruit avoidance for the evolutionary dynamics and genetics of sympatric speciation. Our findings reveal an underappreciated role for habitat avoidance as a potential postmating, as well as prezygotic, barrier to gene flow.

  1. A model of sympatric speciation through assortative mating

    NASA Astrophysics Data System (ADS)

    Bagnoli, Franco; Guardiani, Carlo

    2005-03-01

    A microscopic model is developed, within the frame of the theory of quantitative traits, to study the combined effect of competition and assortativity on the sympatric speciation process, i.e., speciation in the absence of geographical barriers. Two components of fitness are considered: a static one that describes adaptation to environmental factors not related to the population itself, and a dynamic one that accounts for interactions between organisms, e.g. competition. A simulated annealing technique was applied in order to speed up simulations. The simulations show that both in the case of flat and steep static fitness landscapes, competition and assortativity do exert a synergistic effect on speciation. We also show that competition acts as a stabilizing force against extinction due to random sampling in a finite population. Finally, evidence is shown that speciation can be seen as a phase transition.

  2. Sympatric speciation: compliance with phenotype diversification from a single genotype.

    PubMed Central

    Kaneko, K; Yomo, T

    2000-01-01

    A novel mechanism for sympatric speciation that takes into account complex bioprocesses within each individual organism is proposed. According to dynamical systems theory, organisms with identical genotypes can possess differentiated physiological states and may coexist 'symbiotically' through appropriate mutual interaction. With mutations, the phenotypically differentiated organisms gradually come to possess distinct genotypes while maintaining their symbiotic relationship. This symbiotic speciation is robust against sexual recombination, because offspring of mixed parentage with intermediate genotypes are less fit than their parents. This leads to sterility of the hybrid. Accordingly, a basis for mating preference also arises. PMID:11133025

  3. Host races in plant-feeding insects and their importance in sympatric speciation.

    PubMed Central

    Drès, Michele; Mallet, James

    2002-01-01

    The existence of a continuous array of sympatric biotypes - from polymorphisms, through ecological or host races with increasing reproductive isolation, to good species - can provide strong evidence for a continuous route to sympatric speciation via natural selection. Host races in plant-feeding insects, in particular, have often been used as evidence for the probability of sympatric speciation. Here, we provide verifiable criteria to distinguish host races from other biotypes: in brief, host races are genetically differentiated, sympatric populations of parasites that use different hosts and between which there is appreciable gene flow. We recognize host races as kinds of species that regularly exchange genes with other species at a rate of more than ca. 1% per generation, rather than as fundamentally distinct taxa. Host races provide a convenient, although admittedly somewhat arbitrary intermediate stage along the speciation continuum. They are a heuristic device to aid in evaluating the probability of speciation by natural selection, particularly in sympatry. Speciation is thereby envisaged as having two phases: (i) the evolution of host races from within polymorphic, panmictic populations; and (ii) further reduction of gene flow between host races until the diverging populations can become generally accepted as species. We apply this criterion to 21 putative host race systems. Of these, only three are unambiguously classified as host races, but a further eight are strong candidates that merely lack accurate information on rates of hybridization or gene flow. Thus, over one-half of the cases that we review are probably or certainly host races, under our definition. Our review of the data favours the idea of sympatric speciation via host shift for three major reasons: (i) the evolution of assortative mating as a pleiotropic by-product of adaptation to a new host seems likely, even in cases where mating occurs away from the host; (ii) stable genetic differences in

  4. Sympatric ecological divergence associated with a color polymorphism.

    PubMed

    Kusche, Henrik; Elmer, Kathryn R; Meyer, Axel

    2015-10-05

    Color polymorphisms are a conspicuous feature of many species and a way to address broad ecological and evolutionary questions. Three potential major evolutionary fates of color polymorphisms are conceivable over time: maintenance, loss, or speciation. However, the understanding of color polymorphisms and their evolutionary implications is frequently impaired by sex-linkage of coloration, unknown inheritance patterns, difficulties in phenotypic characterization, and a lack of evolutionary replicates. Hence, the role of color polymorphisms in promoting ecological and evolutionary diversification remains poorly understood. In this context, we assessed the ecological and evolutionary consequences of a color polymorphic study system that is not hampered by these restrictions: the repeated adaptive radiations of the gold/dark Midas cichlid fishes (the Amphilophus citrinellus species complex) from the great lakes and crater lakes of Nicaragua, Central America. We conducted multi-trait morphological and ecological analyses from ten populations of this young adaptive radiation (<6,000 years old), which revealed sympatric ecological differentiation associated with the conspicuous binary (gold/dark) color polymorphism. Varying degrees of intraspecific ecological divergence were observed across the ten color morph pairs, but most pairs exhibited a consistently parallel ecological and evolutionary trajectory across populations. Specifically, gold Midas cichlids are frequently deeper-bodied, have more robust pharyngeal jaws, and feed at a lower trophic level compared to conspecific, sympatric dark individuals. A common garden experiment suggests there is a genetic correlation of color and eco-morphological traits. We demonstrate unprecedented ecological and evolutionary consequences of color polymorphism in this adaptive radiation. Across the species complex, sympatric conspecific individuals differed in eco-morphology depending on color morph (gold/dark) and the axis of

  5. Sympatric incipient speciation of spiny mice Acomys at “Evolution Canyon,” Israel

    PubMed Central

    Hadid, Yarin; Pavlíček, Tomáš; Beiles, Avigdor; Ianovici, Ron; Raz, Shmuel; Nevo, Eviatar

    2014-01-01

    Does the paucity of empirical evidence of sympatric speciation in nature reflect reality, despite theoretical support? Or is it due to inappropriate searches in nature with overly restrictive assumptions and an incorrect null hypothesis? Spiny mice, Acomys, described here at Evolution Canyon (EC) incipiently and sympatrically speciate owing to microclimatic interslope divergence. The opposite slopes at EC vary dramatically, physically and biotically, representing the dry and hot south-facing slope savannoid-African continent [“African” slope (AS)], abutting with the north-facing slope forested south-European continent [“European” slope (ES)]. African-originated spiny mice, of the Acomys cahirinus complex, colonized Israel 30,000 y ago based on fossils. Genotypically, we showed significantly higher genetic diversity of mtDNA and amplified fragment length polymorphism of Acomys on the AS compared with the ES. This is also true regionally across Israel. In complete mtDNA, 25% of the haplotypes at EC were slope-biased. Phenotypically, the opposite slope’s populations also showed adaptive morphology, physiology, and behavior divergence paralleling regional populations across Israel. Preliminary tests indicate slope-specific mate choices. Colonization of Acomys at the EC first occurred on the AS and then moved to the ES. Strong slope-specific natural selection (both positive and negative) overrules low interslope gene flow. Both habitat slope selection and mate choices suggest ongoing incipient sympatric speciation. We conclude that Acomys at the EC is ecologically and genetically adaptively, incipiently, sympatrically speciating on the ES owing to adaptive microclimatic natural selection. PMID:24402169

  6. Genetics of ecological divergence during speciation

    PubMed Central

    Arnegard, Matthew E.; McGee, Matthew D.; Matthews, Blake; Marchinko, Kerry B.; Conte, Gina L.; Kabir, Sahriar; Bedford, Nicole; Bergek, Sara; Chan, Yingguang Frank; Jones, Felicity C.; Kingsley, David M.; Peichel, Catherine L.; Schluter, Dolph

    2014-01-01

    Ecological differences often evolve early in speciation as divergent natural selection drives adaptation to distinct ecological niches, leading ultimately to reproductive isolation. Though this process is a major generator of biodiversity, its genetic basis remains poorly understood. Here we investigate the genetic architecture of niche differentiation in a sympatric species pair of threespine stickleback fish by mapping the environment-dependent effects of phenotypic traits on hybrid feeding and performance under semi-natural conditions. We show that multiple, unlinked loci act largely additively to determine position along the major niche axis separating these recently diverged species. We also find that functional mismatch between phenotypic traits reduces growth of some stickleback hybrids beyond that expected from an intermediate phenotype, suggesting a role for epistasis between the underlying genes. This functional mismatch might lead to hybrid incompatibilities that are analogous to those underlying intrinsic reproductive isolation but that depend on the ecological context. PMID:24909991

  7. Weak disruptive selection and incomplete phenotypic divergence in two classic examples of sympatric speciation: cameroon crater lake cichlids.

    PubMed

    Martin, Christopher H

    2012-10-01

    Recent documentation of a few compelling examples of sympatric speciation led to a proliferation of theoretical models. Unfortunately, plausible examples from nature have rarely been used to test model predictions, such as the initial presence of strong disruptive selection. Here I estimated the form and strength of selection in two classic examples of sympatric speciation: radiations of Cameroon cichlids restricted to Lakes Barombi Mbo and Ejagham. I measured five functional traits and relative growth rates in over 500 individuals within incipient species complexes from each lake. Disruptive selection was prevalent in both groups on single and multivariate trait axes but weak relative to stabilizing selection on other traits and most published estimates of disruptive selection. Furthermore, despite genetic structure, assortative mating, and bimodal species-diagnostic coloration, trait distributions were unimodal in both species complexes, indicating the earliest stages of speciation. Long waiting times or incomplete sympatric speciation may result when disruptive selection is initially weak. Alternatively, I present evidence of additional constraints in both species complexes, including weak linkage between coloration and morphology, reduced morphological variance aligned with nonlinear selection surfaces, and minimal ecological divergence. While other species within these radiations show complete phenotypic separation, morphological and ecological divergence in these species complexes may be slow or incomplete outside optimal parameter ranges, in contrast to rapid divergence of their sexual coloration.

  8. Modeling coevolution and sympatric speciation of flowers and pollinators

    NASA Astrophysics Data System (ADS)

    Bhattacharyay, A.; Drossel, B.

    2005-01-01

    A model based on quantitative genetics for the coevolution of plants and their pollinators is proposed. The model is characterized by competition for resources and by a two-fold coupling between the two types of species: pollinators depend on plants for resources and plants on pollinators for pollination. Starting with unimodal trait distributions, we study the dynamics of the model using computer simulations with discrete generations and alternating reproduction and selection. Under a variety of conditions we observe an evolution towards bimodal distributions, with two subpopulations that are reproductively isolated to a large extent. We also find sympatric speciation in situations where two pollinators pollinate the same plant, and where one pollinator pollinates two plants.

  9. An evaluation of putative sympatric speciation within Limnanthes (Limnanthaceae).

    PubMed

    Meyers, Stephen C; Liston, Aaron; Meinke, Robert

    2012-01-01

    Limnanthes floccosa ssp. floccosa and L. floccosa ssp. grandiflora are two of five subspecies within Limnanthes floccosa endemic to vernal pools in southern Oregon and northern California. Three seasons of monitoring natural populations have quantified that L. floccosa ssp. grandiflora is always found growing sympatrically with L. floccosa ssp. floccosa and that their flowering times overlap considerably. Despite their subspecific rank within the same species crossing experiments have confirmed that their F1 hybrids are sterile. An analysis of twelve microsatellite markers, with unique alleles in each taxon, also shows exceedingly low levels of gene flow between populations of the two subspecies. Due to the lack of previous phylogenetic resolution among L. floccosa subspecies, we used Illumina next generation sequencing to identify single nucleotide polymorphisms from genomic DNA libraries of L. floccosa ssp. floccosa and L. floccosa ssp. grandiflora. These data were used to identify single nucleotide polymorphisms in the chloroplast, mitochondrial, and nuclear genomes. From these variable loci, a total of 2772 bp was obtained using Sanger sequencing of ten individuals representing all subspecies of L. floccosa and an outgroup. The resulting phylogenetic reconstruction was fully resolved. Our results indicate that although L. floccosa ssp. floccosa and L. floccosa ssp. grandiflora are closely related, they are not sister taxa and therefore likely did not diverge as a result of a sympatric speciation event.

  10. Ecological speciation in Gambusia fishes.

    PubMed

    Langerhans, R Brian; Gifford, Matthew E; Joseph, Everton O

    2007-09-01

    Although theory indicates that natural selection can facilitate speciation as a by-product, demonstrating ongoing speciation via this by-product mechanism in nature has proven difficult. We examined morphological, molecular, and behavioral data to investigate ecology's role in incipient speciation for a post-Pleistocene radiation of Bahamas mosquitofish (Gambusia hubbsi) inhabiting blue holes. We show that adaptation to divergent predator regimes is driving ecological speciation as a by-product. Divergence in body shape, coupled with assortative mating for body shape, produces reproductive isolation that is twice as strong between populations inhabiting different predator regimes than between populations that evolved in similar ecological environments. Gathering analogous data on reproductive isolation at the interspecific level in the genus, we find that this mechanism of speciation may have been historically prevalent in Gambusia. These results suggest that speciation in nature can result as a by-product of divergence in ecologically important traits, producing interspecific patterns that persist long after speciation events have completed.

  11. How sympatric is speciation in the Howea palms of Lord Howe Island?

    PubMed

    Babik, Wiesław; Butlin, Roger K; Baker, William J; Papadopulos, Alexander S T; Boulesteix, Matthieu; Anstett, Marie-Charlotte; Lexer, Christian; Hutton, Ian; Savolainen, Vincent

    2009-09-01

    The two species of the palm genus Howea (Arecaceae) from Lord Howe Island, a minute volcanic island in the Tasman Sea, are now regarded as one of the most compelling examples of sympatric speciation, although this view is still disputed by some authors. Population genetic and ecological data are necessary to provide a more coherent and comprehensive understanding of this emerging model system. Here, we analyse data on abundance, juvenile recruitment, pollination mode and genetic variation and structure in both species. We find that Howea forsteriana is less abundant than Howea belmoreana. The genetic data based on amplified fragment length polymorphisms markers indicate similar levels of variation in the two species, despite the estimated census population size of H. belmoreana being three times larger than that of H. forsteriana. Genetic structure within species is low although some weak isolation by distance is detectable. Gene flow between species appears to be extremely limited and restricted to early-generation hybrids - only three admixed individuals, classified as F2s or first generation backcrosses to a parental species, were found among sampled palms. We conclude that speciation in Howea was indeed sympatric, although under certain strict definitions it may be called parapatric.

  12. Transcriptome, genetic editing, and microRNA divergence substantiate sympatric speciation of blind mole rat, Spalax.

    PubMed

    Li, Kexin; Wang, Liuyang; Knisbacher, Binyamin A; Xu, Qinqin; Levanon, Erez Y; Wang, Huihua; Frenkel-Morgenstern, Milana; Tagore, Satabdi; Fang, Xiaodong; Bazak, Lily; Buchumenski, Ilana; Zhao, Yang; Lövy, Matěj; Li, Xiangfeng; Han, Lijuan; Frenkel, Zeev; Beiles, Avigdor; Cao, Yi Bin; Wang, Zhen Long; Nevo, Eviatar

    2016-07-05

    Incipient sympatric speciation in blind mole rat, Spalax galili, in Israel, caused by sharp ecological divergence of abutting chalk-basalt ecologies, has been proposed previously based on mitochondrial and whole-genome nuclear DNA. Here, we present new evidence, including transcriptome, DNA editing, microRNA, and codon usage, substantiating earlier evidence for adaptive divergence in the abutting chalk and basalt populations. Genetic divergence, based on the previous and new evidence, is ongoing despite restricted gene flow between the two populations. The principal component analysis, neighbor-joining tree, and genetic structure analysis of the transcriptome clearly show the clustered divergent two mole rat populations. Gene-expression level analysis indicates that the population transcriptome divergence is displayed not only by soil divergence but also by sex. Gene ontology enrichment of the differentially expressed genes from the two abutting soil populations highlights reproductive isolation. Alternative splicing variation of the two abutting soil populations displays two distinct splicing patterns. L-shaped FST distribution indicates that the two populations have undergone divergence with gene flow. Transcriptome divergent genes highlight neurogenetics and nutrition characterizing the chalk population, and energetics, metabolism, musculature, and sensory perception characterizing the abutting basalt population. Remarkably, microRNAs also display divergence between the two populations. The GC content is significantly higher in chalk than in basalt, and stress-response genes mostly prefer nonoptimal codons. The multiple lines of evidence of ecological-genomic and genetic divergence highlight that natural selection overrules the gene flow between the two abutting populations, substantiating the sharp ecological chalk-basalt divergence driving sympatric speciation.

  13. Ecology, sexual selection and speciation.

    PubMed

    Maan, Martine E; Seehausen, Ole

    2011-06-01

    The spectacular diversity in sexually selected traits among animal taxa has inspired the hypothesis that divergent sexual selection can drive speciation. Unfortunately, speciation biologists often consider sexual selection in isolation from natural selection, even though sexually selected traits evolve in an ecological context: both preferences and traits are often subject to natural selection. Conversely, while behavioural ecologists may address ecological effects on sexual communication, they rarely measure the consequences for population divergence. Herein, we review the empirical literature addressing the mechanisms by which natural selection and sexual selection can interact during speciation. We find that convincing evidence for any of these scenarios is thin. However, the available data strongly support various diversifying effects that emerge from interactions between sexual selection and environmental heterogeneity. We suggest that evaluating the evolutionary consequences of these effects requires a better integration of behavioural, ecological and evolutionary research. © 2011 Blackwell Publishing Ltd/CNRS.

  14. Transcriptome, genetic editing, and microRNA divergence substantiate sympatric speciation of blind mole rat, Spalax

    PubMed Central

    Li, Kexin; Wang, Liuyang; Knisbacher, Binyamin A.; Xu, Qinqin; Levanon, Erez Y.; Wang, Huihua; Frenkel-Morgenstern, Milana; Tagore, Satabdi; Fang, Xiaodong; Bazak, Lily; Buchumenski, Ilana; Zhao, Yang; Lövy, Matěj; Li, Xiangfeng; Han, Lijuan; Frenkel, Zeev; Beiles, Avigdor; Cao, Yi Bin; Wang, Zhen Long; Nevo, Eviatar

    2016-01-01

    Incipient sympatric speciation in blind mole rat, Spalax galili, in Israel, caused by sharp ecological divergence of abutting chalk–basalt ecologies, has been proposed previously based on mitochondrial and whole-genome nuclear DNA. Here, we present new evidence, including transcriptome, DNA editing, microRNA, and codon usage, substantiating earlier evidence for adaptive divergence in the abutting chalk and basalt populations. Genetic divergence, based on the previous and new evidence, is ongoing despite restricted gene flow between the two populations. The principal component analysis, neighbor-joining tree, and genetic structure analysis of the transcriptome clearly show the clustered divergent two mole rat populations. Gene-expression level analysis indicates that the population transcriptome divergence is displayed not only by soil divergence but also by sex. Gene ontology enrichment of the differentially expressed genes from the two abutting soil populations highlights reproductive isolation. Alternative splicing variation of the two abutting soil populations displays two distinct splicing patterns. L-shaped FST distribution indicates that the two populations have undergone divergence with gene flow. Transcriptome divergent genes highlight neurogenetics and nutrition characterizing the chalk population, and energetics, metabolism, musculature, and sensory perception characterizing the abutting basalt population. Remarkably, microRNAs also display divergence between the two populations. The GC content is significantly higher in chalk than in basalt, and stress-response genes mostly prefer nonoptimal codons. The multiple lines of evidence of ecological–genomic and genetic divergence highlight that natural selection overrules the gene flow between the two abutting populations, substantiating the sharp ecological chalk–basalt divergence driving sympatric speciation. PMID:27339131

  15. Sympatric speciation revealed by genome-wide divergence in the blind mole rat Spalax

    PubMed Central

    Li, Kexin; Hong, Wei; Jiao, Hengwu; Wang, Guo-Dong; Rodriguez, Karl A.; Buffenstein, Rochelle; Zhao, Yang; Nevo, Eviatar; Zhao, Huabin

    2015-01-01

    Sympatric speciation (SS), i.e., speciation within a freely breeding population or in contiguous populations, was first proposed by Darwin [Darwin C (1859) On the Origins of Species by Means of Natural Selection] and is still controversial despite theoretical support [Gavrilets S (2004) Fitness Landscapes and the Origin of Species (MPB-41)] and mounting empirical evidence. Speciation of subterranean mammals generally, including the genus Spalax, was considered hitherto allopatric, whereby new species arise primarily through geographic isolation. Here we show in Spalax a case of genome-wide divergence analysis in mammals, demonstrating that SS in continuous populations, with gene flow, encompasses multiple widespread genomic adaptive complexes, associated with the sharply divergent ecologies. The two abutting soil populations of S. galili in northern Israel habituate the ancestral Senonian chalk population and abutting derivative Plio-Pleistocene basalt population. Population divergence originated ∼0.2–0.4 Mya based on both nuclear and mitochondrial genome analyses. Population structure analysis displayed two distinctly divergent clusters of chalk and basalt populations. Natural selection has acted on 300+ genes across the genome, diverging Spalax chalk and basalt soil populations. Gene ontology enrichment analysis highlights strong but differential soil population adaptive complexes: in basalt, sensory perception, musculature, metabolism, and energetics, and in chalk, nutrition and neurogenetics are outstanding. Population differentiation of chemoreceptor genes suggests intersoil population's mate and habitat choice substantiating SS. Importantly, distinctions in protein degradation may also contribute to SS. Natural selection and natural genetic engineering [Shapiro JA (2011) Evolution: A View From the 21st Century] overrule gene flow, evolving divergent ecological adaptive complexes. Sharp ecological divergences abound in nature; therefore, SS appears to be

  16. Sympatric speciation revealed by genome-wide divergence in the blind mole rat Spalax.

    PubMed

    Li, Kexin; Hong, Wei; Jiao, Hengwu; Wang, Guo-Dong; Rodriguez, Karl A; Buffenstein, Rochelle; Zhao, Yang; Nevo, Eviatar; Zhao, Huabin

    2015-09-22

    Sympatric speciation (SS), i.e., speciation within a freely breeding population or in contiguous populations, was first proposed by Darwin [Darwin C (1859) On the Origins of Species by Means of Natural Selection] and is still controversial despite theoretical support [Gavrilets S (2004) Fitness Landscapes and the Origin of Species (MPB-41)] and mounting empirical evidence. Speciation of subterranean mammals generally, including the genus Spalax, was considered hitherto allopatric, whereby new species arise primarily through geographic isolation. Here we show in Spalax a case of genome-wide divergence analysis in mammals, demonstrating that SS in continuous populations, with gene flow, encompasses multiple widespread genomic adaptive complexes, associated with the sharply divergent ecologies. The two abutting soil populations of S. galili in northern Israel habituate the ancestral Senonian chalk population and abutting derivative Plio-Pleistocene basalt population. Population divergence originated ∼0.2-0.4 Mya based on both nuclear and mitochondrial genome analyses. Population structure analysis displayed two distinctly divergent clusters of chalk and basalt populations. Natural selection has acted on 300+ genes across the genome, diverging Spalax chalk and basalt soil populations. Gene ontology enrichment analysis highlights strong but differential soil population adaptive complexes: in basalt, sensory perception, musculature, metabolism, and energetics, and in chalk, nutrition and neurogenetics are outstanding. Population differentiation of chemoreceptor genes suggests intersoil population's mate and habitat choice substantiating SS. Importantly, distinctions in protein degradation may also contribute to SS. Natural selection and natural genetic engineering [Shapiro JA (2011) Evolution: A View From the 21st Century] overrule gene flow, evolving divergent ecological adaptive complexes. Sharp ecological divergences abound in nature; therefore, SS appears to be an

  17. Emergence and loss of assortative mating in sympatric speciation.

    PubMed

    Ribeiro, Fabiano; Caticha, Nestor

    2009-06-07

    We have studied an agent model which presents the emergence of sexual barriers through the onset of assortative mating, a condition that might lead to sympatric speciation. In the model, individuals are characterized by two traits, each determined by a single locus A or B. Heterozygotes on A are penalized by introducing an adaptive difference from homozygotes. Two niches are available. Each A homozygote is adapted to one of the niches. The second trait, called the marker trait has no bearing on the fitness. The model includes mating preferences, which are inherited from the mother and subject to random variations. A parameter controlling recombination probabilities of the two loci is also introduced. We study the phase diagram by means of simulations, in the space of parameters (adaptive difference, carrying capacity, recombination probability). Three phases are found, characterized by (i) assortative mating, (ii) extinction of one of the A alleles and (iii) Hardy-Weinberg like equilibrium. We also make perturbations of these phases to see how robust they are. Assortative mating can be gained or lost with changes that present hysteresis loops, showing the resulting equilibrium to have partial memory of the initial state and that the process of going from a polymorphic panmictic phase to a phase where assortative mating acts as sexual barrier can be described as a first-order transition.

  18. A phylogenetic test of sympatric speciation in the Hydrobatinae (Aves: Procellariiformes).

    PubMed

    Wallace, S J; Morris-Pocock, J A; González-Solís, J; Quillfeldt, P; Friesen, V L

    2017-02-01

    Phylogenetic relationships among species can provide insight into how new species arise. For example, careful consideration of both the phylogenetic and geographic distributions of species in a group can reveal the geographic models of speciation within the group. One such model, sympatric speciation, may be more common than previously thought. The Hydrobatinae (Aves: Procellariformes) is a diverse subfamily of Northern Hemisphere storm-petrels for which the taxonomy is unclear. Previous studies showed that Hydrobates (formally Oceanodroma) castro breeding in the Azores during the cool season is sister species to H. monteiroi, a hot season breeder at the same locations, which suggests sympatric speciation by allochrony. To test whether other species within the subfamily arose via sympatric speciation by allochrony, we sequenced the cytochrome b gene and five nuclear introns to estimate a phylogenetic tree using multispecies coalescent methods, and to test whether species breeding in the same geographic area are monophyletic. We found that speciation within the Hydrobatinae appears to have followed several geographic modes of divergence. Sympatric seasonal species in Japan likely did not arise through sympatric speciation, but allochrony may have played a role in the divergence of H. matsudairae, a cool season breeder, and H. monorhis, a hot season breeder. No other potential cases of sympatric speciation were discovered within the subfamily. Despite breeding in the same geographic area, hydrobatine storm-petrels breeding in Baja California (H. microsoma and H. melania) are each sister to a species breeding off the coast of Peru (H. tethys and H. markhami, respectively). In fact, antitropical sister species appear to have diverged at multiple times, suggesting allochronic divergence might be common. In addition, allopatry has likely played a role in divergence of H. furcata, a north Pacific breeder, and H. pelagius, a north Atlantic breeder. This study demonstrates

  19. Strong assortative mating by diet, color, size, and morphology but limited progress toward sympatric speciation in a classic example: Cameroon crater lake cichlids.

    PubMed

    Martin, Christopher H

    2013-07-01

    Models predict that sympatric speciation depends on restrictive parameter ranges, such as sufficiently strong disruptive selection and assortative mating, but compelling examples in nature have rarely been used to test these predictions. I measured the strength of assortative mating within a species complex of Tilapia in Lake Ejagham, Cameroon, a celebrated example of incipient sympatric adaptive radiation. This species complex is in the earliest stages of speciation: morphological and ecological divergence are incomplete, species differ primarily in breeding coloration, and introgression is common. I captured 27 mated pairs in situ and measured the diet, color, size, and morphology of each individual. I found strong assortative mating by color, size, head depth, and dietary source of benthic or pelagic prey along two independent dimensions of assortment. Thus, Ejagham Tilapia showed strong assortative mating most conducive to sympatric speciation. Nonetheless, in contrast to a morphologically bimodal Sarotherodon cichlid species pair in the lake, Ejagham Tilapia show more limited progress toward speciation, likely due to insufficient strength of disruptive selection on morphology estimated in a previous study (γ = 0.16). This supports the predicted dependence of sympatric speciation on strong assortment and strong disruptive selection by examining a potentially stalled example in nature.

  20. Sympatric speciation of spiny mice, Acomys, unfolded transcriptomically at Evolution Canyon, Israel.

    PubMed

    Li, Kexin; Wang, Huihua; Cai, Zhenyuan; Wang, Liuyang; Xu, Qinqin; Lövy, Matěj; Wang, Zhenlong; Nevo, Eviatar

    2016-07-19

    Spiny mice, Acomys cahirinus, colonized Israel 30,000 y ago from dry tropical Africa and inhabited rocky habitats across Israel. Earlier, we had shown by mtDNA that A. cahirinus incipiently sympatrically speciates at Evolution Canyon I (EC I) in Mount Carmel, Israel because of microclimatic interslope divergence. The EC I microsite consists of a dry and hot savannoid "African" slope (AS) and an abutting humid and cool-forested "European" slope (ES). Here, we substantiate incipient SS in A. cahirinus at EC I based on the entire transcriptome, showing that multiple slope-specific adaptive complexes across the transcriptome result in two divergent clusters. Tajima's D distribution of the abutting Acomys interslope populations shows that the ES population is under stronger positive selection, whereas the AS population is under balancing selection, harboring higher genetic polymorphisms. Considerable sites of the two populations were differentiated with a coefficient of FST = 0.25-0.75. Remarkably, 24 and 37 putatively adaptively selected genes were detected in the AS and ES populations, respectively. The AS genes involved DNA repair, growth arrest, neural cell differentiation, and heat-shock proteins adapting to the local AS stresses of high solar radiation, drought, and high temperature. In contrast, the ES genes involved high ATP associated with energetics stress. The sharp ecological interslope divergence led to strong slope-specific selection overruling the interslope gene flow. Earlier tests suggested slope-specific mate choice. Habitat interslope-adaptive selection across the transcriptome and mate choice substantiate sympatric speciation (SS), suggesting its prevalence at EC I and commonality in nature.

  1. Sympatric speciation of spiny mice, Acomys, unfolded transcriptomically at Evolution Canyon, Israel

    PubMed Central

    Li, Kexin; Wang, Huihua; Cai, Zhenyuan; Wang, Liuyang; Xu, Qinqin; Lövy, Matěj; Wang, Zhenlong; Nevo, Eviatar

    2016-01-01

    Spiny mice, Acomys cahirinus, colonized Israel 30,000 y ago from dry tropical Africa and inhabited rocky habitats across Israel. Earlier, we had shown by mtDNA that A. cahirinus incipiently sympatrically speciates at Evolution Canyon I (EC I) in Mount Carmel, Israel because of microclimatic interslope divergence. The EC I microsite consists of a dry and hot savannoid “African” slope (AS) and an abutting humid and cool-forested “European” slope (ES). Here, we substantiate incipient SS in A. cahirinus at EC I based on the entire transcriptome, showing that multiple slope-specific adaptive complexes across the transcriptome result in two divergent clusters. Tajima’s D distribution of the abutting Acomys interslope populations shows that the ES population is under stronger positive selection, whereas the AS population is under balancing selection, harboring higher genetic polymorphisms. Considerable sites of the two populations were differentiated with a coefficient of FST = 0.25–0.75. Remarkably, 24 and 37 putatively adaptively selected genes were detected in the AS and ES populations, respectively. The AS genes involved DNA repair, growth arrest, neural cell differentiation, and heat-shock proteins adapting to the local AS stresses of high solar radiation, drought, and high temperature. In contrast, the ES genes involved high ATP associated with energetics stress. The sharp ecological interslope divergence led to strong slope-specific selection overruling the interslope gene flow. Earlier tests suggested slope-specific mate choice. Habitat interslope-adaptive selection across the transcriptome and mate choice substantiate sympatric speciation (SS), suggesting its prevalence at EC I and commonality in nature. PMID:27370801

  2. Thermal adaptation and ecological speciation.

    PubMed

    Keller, I; Seehausen, O

    2012-02-01

    Ecological speciation is defined as the emergence of reproductive isolation as a direct or indirect consequence of divergent ecological adaptation. Several empirical examples of ecological speciation have been reported in the literature which very often involve adaptation to biotic resources. In this review, we investigate whether adaptation to different thermal habitats could also promote speciation and try to assess the importance of such processes in nature. Our survey of the literature identified 16 animal and plant systems where divergent thermal adaptation may underlie (partial) reproductive isolation between populations or may allow the stable coexistence of sibling taxa. In many of the systems, the differentially adapted populations have a parapatric distribution along an environmental gradient. Isolation often involves extrinsic selection against locally maladapted parental or hybrid genotypes, and additional pre- or postzygotic barriers may be important. Together, the identified examples strongly suggest that divergent selection between thermal environments is often strong enough to maintain a bimodal genotype distribution upon secondary contact. What is less clear from the available data is whether it can also be strong enough to allow ecological speciation in the face of gene flow through reinforcement-like processes. It is possible that intrinsic features of thermal gradients or the genetic basis of thermal adaptation make such reinforcement-like processes unlikely but it is equally possible that pertinent systems are understudied. Overall, our literature survey highlights (once again) the dearth of studies that investigate similar incipient species along the continuum from initial divergence to full reproductive isolation and studies that investigate all possible reproductive barriers in a given system.

  3. The speed of ecological speciation.

    PubMed

    Hendry, Andrew P; Nosil, Patrik; Rieseberg, Loren H

    2007-06-01

    Adaptation can occur on ecological time-scales (contemporary evolution) and adaptive divergence can cause reproductive isolation (ecological speciation). From the intersection of these two premises follows the prediction that reproductive isolation can evolve on ecological time-scales. We explore this possibility in theory and in nature. Finding few relevant studies, we examine each in some detail. THEORY: Several models have demonstrated that ecological differences can drive the evolution of partial reproductive barriers in dozens to hundreds of generations. Barriers likely to evolve quickly include dispersal rate, habitat preference and selection against migrants/hybrids. PLANTS: Adjacent populations adapting to different fertilizer treatments or to mine tailings can develop reproductive barriers within at least 100 generations. These barriers include differences in flowering time and selection against migrants/hybrids. INVERTEBRATES: Populations on native and introduced host plants can manifest reproductive barriers in dozens to hundreds of generations. These barriers include local host preference and selection against migrants/hybrids. VERTEBRATES: Salmon adapting to divergent breeding environments can show restricted gene flow within at least 14 generations. Birds evolving different migratory routes can mate assortatively within at least 10-20 generations. Hybrid sculpins can become isolated from their ancestral species within at least 20-200 generations. Ecological speciation can commence within dozens of generations. How far it goes is an important question for future research.

  4. The speed of ecological speciation

    PubMed Central

    HENDRY, ANDREW P.; NOSIL, PATRIK; RIESEBERG, LOREN H.

    2008-01-01

    Summary Adaptation can occur on ecological time-scales (contemporary evolution) and adaptive divergence can cause reproductive isolation (ecological speciation). From the intersection of these two premises follows the prediction that reproductive isolation can evolve on ecological time-scales. We explore this possibility in theory and in nature. Finding few relevant studies, we examine each in some detail. Theory Several models have demonstrated that ecological differences can drive the evolution of partial reproductive barriers in dozens to hundreds of generations. Barriers likely to evolve quickly include dispersal rate, habitat preference and selection against migrants/hybrids. Plants Adjacent populations adapting to different fertilizer treatments or to mine tailings can develop reproductive barriers within at least 100 generations. These barriers include differences in flowering time and selection against migrants/hybrids. Invertebrates Populations on native and introduced host plants can manifest reproductive barriers in dozens to hundreds of generations. These barriers include local host preference and selection against migrants/hybrids. Vertebrates Salmon adapting to divergent breeding environments can show restricted gene flow within at least 14 generations. Birds evolving different migratory routes can mate assortatively within at least 10–20 generations. Hybrid sculpins can become isolated from their ancestral species within at least 20–200 generations. Ecological speciation can commence within dozens of generations. How far it goes is an important question for future research. PMID:19096732

  5. Evidence for nonallopatric speciation among closely related sympatric Heliotropium species in the Atacama Desert

    PubMed Central

    Luebert, Federico; Jacobs, Pit; Hilger, Hartmut H; Muller, Ludo A H

    2014-01-01

    The genetic structure of populations of closely related, sympatric species may hold the signature of the geographical mode of the speciation process. In fully allopatric speciation, it is expected that genetic differentiation between species is homogeneously distributed across the genome. In nonallopatric speciation, the genomes may remain undifferentiated to a large extent. In this article, we analyzed the genetic structure of five sympatric species from the plant genus Heliotropium in the Atacama Desert. We used amplified fragment length polymorphisms (AFLPs) to characterize the genetic structure of these species and evaluate their genetic differentiation as well as the number of loci subject to positive selection using divergence outlier analysis (DOA). The five species form distinguishable groups in the genetic space, with zones of overlap, indicating that they are possibly not completely isolated. Among-species differentiation accounts for 35% of the total genetic differentiation (FST = 0.35), and FST between species pairs is positively correlated with phylogenetic distance. DOA suggests that few loci are subject to positive selection, which is in line with a scenario of nonallopatric speciation. These results support the idea that sympatric species of Heliotropium sect. Cochranea are under an ongoing speciation process, characterized by a fluctuation of population ranges in response to pulses of arid and humid periods during Quaternary times. PMID:24558582

  6. Evidence for nonallopatric speciation among closely related sympatric Heliotropium species in the Atacama Desert.

    PubMed

    Luebert, Federico; Jacobs, Pit; Hilger, Hartmut H; Muller, Ludo A H

    2014-02-01

    The genetic structure of populations of closely related, sympatric species may hold the signature of the geographical mode of the speciation process. In fully allopatric speciation, it is expected that genetic differentiation between species is homogeneously distributed across the genome. In nonallopatric speciation, the genomes may remain undifferentiated to a large extent. In this article, we analyzed the genetic structure of five sympatric species from the plant genus Heliotropium in the Atacama Desert. We used amplified fragment length polymorphisms (AFLPs) to characterize the genetic structure of these species and evaluate their genetic differentiation as well as the number of loci subject to positive selection using divergence outlier analysis (DOA). The five species form distinguishable groups in the genetic space, with zones of overlap, indicating that they are possibly not completely isolated. Among-species differentiation accounts for 35% of the total genetic differentiation (F ST = 0.35), and F ST between species pairs is positively correlated with phylogenetic distance. DOA suggests that few loci are subject to positive selection, which is in line with a scenario of nonallopatric speciation. These results support the idea that sympatric species of Heliotropium sect. Cochranea are under an ongoing speciation process, characterized by a fluctuation of population ranges in response to pulses of arid and humid periods during Quaternary times.

  7. Bird song, ecology and speciation.

    PubMed Central

    Slabbekoorn, Hans; Smith, Thomas B

    2002-01-01

    The study of bird song dialects was once considered the most promising approach for investigating the role of behaviour in reproductive divergence and speciation. However, after a series of studies yielding conflicting results, research in the field slowed significantly. Recent findings, on how ecological factors may lead to divergence in both song and morphology, necessitate a re-examination. We focus primarily on species with learned song, examine conflicting results in the literature and propose some potential new directions for future studies. We believe an integrative approach, including an examination of the role of ecology in divergent selection, is essential for gaining insight into the role of song in the evolution of assortative mating. Habitat-dependent selection on both song and fitness-related characteristics can lead to parallel divergence in these traits. Song may, therefore, provide females with acoustic cues to find males that are most fit for a particular habitat. In analysing the role of song learning in reproductive divergence, we focus on post-dispersal plasticity in a conceptual framework. We argue that song learning may initially constrain reproductive divergence, while in the later stages of population divergence it may promote speciation. PMID:12028787

  8. Rapid sympatric ecological differentiation of crater lake cichlid fishes within historic times

    PubMed Central

    2010-01-01

    Background After a volcano erupts, a lake may form in the cooled crater and become an isolated aquatic ecosystem. This makes fishes in crater lakes informative for understanding sympatric evolution and ecological diversification in barren environments. From a geological and limnological perspective, such research offers insight about the process of crater lake ecosystem establishment and speciation. In the present study we use genetic and coalescence approaches to infer the colonization history of Midas cichlid fishes (Amphilophus cf. citrinellus) that inhabit a very young crater lake in Nicaragua-the ca. 1800 year-old Lake Apoyeque. This lake holds two sympatric, endemic morphs of Midas cichlid: one with large, hypertrophied lips (~20% of the total population) and another with thin lips. Here we test the associated ecological, morphological and genetic diversification of these two morphs and their potential to represent incipient speciation. Results Gene coalescence analyses [11 microsatellite loci and mitochondrial DNA (mtDNA) sequences] suggest that crater lake Apoyeque was colonized in a single event from the large neighbouring great lake Managua only about 100 years ago. This founding in historic times is also reflected in the extremely low nuclear and mitochondrial genetic diversity in Apoyeque. We found that sympatric adult thin- and thick-lipped fishes occupy distinct ecological trophic niches. Diet, body shape, head width, pharyngeal jaw size and shape and stable isotope values all differ significantly between the two lip-morphs. The eco-morphological features pharyngeal jaw shape, body shape, stomach contents and stable isotopes (δ15N) all show a bimodal distribution of traits, which is compatible with the expectations of an initial stage of ecological speciation under disruptive selection. Genetic differentiation between the thin- and thick-lipped population is weak at mtDNA sequence (FST = 0.018) and absent at nuclear microsatellite loci (FST < 0

  9. Phase transition in a mean-field model for sympatric speciation

    NASA Astrophysics Data System (ADS)

    Schwämmle, V.; Luz-Burgoa, K.; Sá Martins, J. S.; de Oliveira, S. Moss

    2006-09-01

    We introduce an analytical model for population dynamics with intra-specific competition, mutation and assortative mating as basic ingredients. The set of equations that describes the time evolution of population size in a mean-field approximation may be decoupled. We find a phase transition leading to sympatric speciation as a parameter that quantifies competition strength is varied. This transition, previously found in a computational model, occurs to be of first order.

  10. Mayr, Dobzhansky, and Bush and the complexities of sympatric speciation in Rhagoletis

    PubMed Central

    Feder, Jeffrey L.; Xie, Xianfa; Rull, Juan; Velez, Sebastian; Forbes, Andrew; Leung, Brian; Dambroski, Hattie; Filchak, Kenneth E.; Aluja, Martin

    2005-01-01

    The Rhagoletis pomonella sibling species complex is a model for sympatric speciation by means of host plant shifting. However, genetic variation aiding the sympatric radiation of the group in the United States may have geographic roots. Inversions on chromosomes 1-3 affecting diapause traits adapting flies to differences in host fruiting phenology appear to exist in the United States because of a series of secondary introgression events from Mexico. Here, we investigate whether these inverted regions of the genome may have subsequently evolved to become more recalcitrant to introgression relative to collinear regions, consistent with new models for chromosomal speciation. As predicted by the models, gene trees for six nuclear loci mapping to chromosomes other than 1-3 tended to have shallower node depths separating Mexican and U.S. haplotypes relative to an outgroup sequence than nine genes residing on chromosomes 1-3. We discuss the implications of secondary contact and differential introgression with respect to sympatric host race formation and speciation in Rhagoletis, reconciling some of the seemingly dichotomous views of Mayr, Dobzhansky, and Bush concerning modes of divergence. PMID:15851672

  11. Ecological speciation in marine v. freshwater fishes.

    PubMed

    Puebla, O

    2009-10-01

    Absolute barriers to dispersal are not common in marine systems, and the prevalence of planktonic larvae in marine taxa provides potential for gene flow across large geographic distances. These observations raise the fundamental question in marine evolutionary biology as to whether geographic and oceanographic barriers alone can account for the high levels of species diversity observed in marine environments such as coral reefs, or whether marine speciation also operates in the presence of gene flow between diverging populations. In this respect, the ecological hypothesis of speciation, in which reproductive isolation results from divergent or disruptive natural selection, is of particular interest because it may operate in the presence of gene flow. Although important insights into the process of ecological speciation in aquatic environments have been provided by the study of freshwater fishes, comparatively little is known about the possibility of ecological speciation in marine teleosts. In this study, the evidence consistent with different aspects of the ecological hypothesis of speciation is evaluated in marine fishes. Molecular approaches have played a critical role in the development of speciation hypotheses in marine fishes, with a role of ecology suggested by the occurrence of sister clades separated by ecological factors, rapid cladogenesis or the persistence of genetically and ecologically differentiated species in the presence of gene flow. Yet, ecological speciation research in marine fishes is still largely at an exploratory stage. Cases where the major ingredients of ecological speciation, namely a source of natural divergent or disruptive selection, a mechanism of reproductive isolation and a link between the two have been explicitly documented are few. Even in these cases, specific predictions of the ecological hypothesis of speciation remain largely untested. Recent developments in the study of freshwater fishes illustrate the potential for

  12. The ecological genetics of homoploid hybrid speciation.

    PubMed

    Gross, B L; Rieseberg, L H

    2005-01-01

    Our understanding of homoploid hybrid speciation has advanced substantially since this mechanism of species formation was codified 50 years ago. Early theory and research focused almost exclusively on the importance of chromosomal rearrangements, but it later became evident that natural selection, specifically ecological selection, might play a major role as well. In light of this recent shift, we present an evaluation of ecology's role in homoploid hybrid speciation, with an emphasis on the genetics underlying ecological components of the speciation process. We briefly review new theoretical developments related to the ecology of homoploid hybrid speciation; propose a set of explicit, testable questions that must be answered to verify the role of ecological selection in homoploid hybrid speciation; discuss published work with reference to these questions; and also report new data supporting the importance of ecological selection in the origin of the homoploid hybrid sunflower species Helianthus deserticola. Overall, theory and empirical evidence gathered to date suggest that ecological selection is a major factor promoting homoploid hybrid speciation, with the strongest evidence coming from genetic studies.

  13. Multispecies Outcomes of Sympatric Speciation after Admixture with the Source Population in Two Radiations of Nicaraguan Crater Lake Cichlids

    PubMed Central

    Kautt, Andreas F.; Machado-Schiaffino, Gonzalo; Meyer, Axel

    2016-01-01

    The formation of species in the absence of geographic barriers (i.e. sympatric speciation) remains one of the most controversial topics in evolutionary biology. While theoretical models have shown that this most extreme case of primary divergence-with-gene-flow is possible, only a handful of accepted empirical examples exist. And even for the most convincing examples uncertainties remain; complex histories of isolation and secondary contact can make species falsely appear to have originated by sympatric speciation. This alternative scenario is notoriously difficult to rule out. Midas cichlids inhabiting small and remote crater lakes in Nicaragua are traditionally considered to be one of the best examples of sympatric speciation and lend themselves to test the different evolutionary scenarios that could lead to apparent sympatric speciation since the system is relatively small and the source populations known. Here we reconstruct the evolutionary history of two small-scale radiations of Midas cichlids inhabiting crater lakes Apoyo and Xiloá through a comprehensive genomic data set. We find no signs of differential admixture of any of the sympatric species in the respective radiations. Together with coalescent simulations of different demographic models our results support a scenario of speciation that was initiated in sympatry and does not result from secondary contact of already partly diverged populations. Furthermore, several species seem to have diverged simultaneously, making Midas cichlids an empirical example of multispecies outcomes of sympatric speciation. Importantly, however, the demographic models strongly support an admixture event from the source population into both crater lakes shortly before the onset of the radiations within the lakes. This opens the possibility that the formation of reproductive barriers involved in sympatric speciation was facilitated by genetic variants that evolved in a period of isolation between the initial founding

  14. Multispecies Outcomes of Sympatric Speciation after Admixture with the Source Population in Two Radiations of Nicaraguan Crater Lake Cichlids.

    PubMed

    Kautt, Andreas F; Machado-Schiaffino, Gonzalo; Meyer, Axel

    2016-06-01

    The formation of species in the absence of geographic barriers (i.e. sympatric speciation) remains one of the most controversial topics in evolutionary biology. While theoretical models have shown that this most extreme case of primary divergence-with-gene-flow is possible, only a handful of accepted empirical examples exist. And even for the most convincing examples uncertainties remain; complex histories of isolation and secondary contact can make species falsely appear to have originated by sympatric speciation. This alternative scenario is notoriously difficult to rule out. Midas cichlids inhabiting small and remote crater lakes in Nicaragua are traditionally considered to be one of the best examples of sympatric speciation and lend themselves to test the different evolutionary scenarios that could lead to apparent sympatric speciation since the system is relatively small and the source populations known. Here we reconstruct the evolutionary history of two small-scale radiations of Midas cichlids inhabiting crater lakes Apoyo and Xiloá through a comprehensive genomic data set. We find no signs of differential admixture of any of the sympatric species in the respective radiations. Together with coalescent simulations of different demographic models our results support a scenario of speciation that was initiated in sympatry and does not result from secondary contact of already partly diverged populations. Furthermore, several species seem to have diverged simultaneously, making Midas cichlids an empirical example of multispecies outcomes of sympatric speciation. Importantly, however, the demographic models strongly support an admixture event from the source population into both crater lakes shortly before the onset of the radiations within the lakes. This opens the possibility that the formation of reproductive barriers involved in sympatric speciation was facilitated by genetic variants that evolved in a period of isolation between the initial founding

  15. The Ecological Genetics of Homoploid Hybrid Speciation

    PubMed Central

    Gross, B. L.; Rieseberg, L. H.

    2008-01-01

    Our understanding of homoploid hybrid speciation has advanced substantially since this mechanism of species formation was codified 50 years ago. Early theory and research focused almost exclusively on the importance of chromosomal rearrangements, but it later became evident that natural selection, specifically ecological selection, might play a major role as well. In light of this recent shift, we present an evaluation of ecology’s role in homoploid hybrid speciation, with an emphasis on the genetics underlying ecological components of the speciation process. We briefly review new theoretical developments related to the ecology of homoploid hybrid speciation; propose a set of explicit, testable questions that must be answered to verify the role of ecological selection in homoploid hybrid speciation; discuss published work with reference to these questions; and also report new data supporting the importance of ecological selection in the origin of the homoploid hybrid sunflower species Helianthus deserticola. Overall, theory and empirical evidence gathered to date suggest that ecological selection is a major factor promoting homoploid hybrid speciation, with the strongest evidence coming from genetic studies. PMID:15618301

  16. Stridulations Reveal Cryptic Speciation in Neotropical Sympatric Ants

    PubMed Central

    Ferreira, Ronara Souza; Poteaux, Chantal; Delabie, Jacques Hubert Charles; Fresneau, Dominique; Rybak, Fanny

    2010-01-01

    The taxonomic challenge posed by cryptic species underlines the importance of using multiple criteria in species delimitation. In the current paper we tested the use of acoustic analysis as a tool to assess the real diversity in a cryptic species complex of Neotropical ants. In order to understand the potential of acoustics and to improve consistency in the conclusions by comparing different approaches, phylogenetic relationships of all the morphs considered were assessed by the analysis of a fragment of the mitochondrial DNA cytochrome b. We observed that each of the cryptic morph studied presents a morphologically distinct stridulatory organ and that all sympatric morphs produce distinctive stridulations. This is the first evidence of such a degree of specialization in the acoustic organ and signals in ants, which suggests that stridulations may be among the cues used by these ants during inter-specific interactions. Mitochondrial DNA variation corroborated the acoustic differences observed, confirming acoustics as a helpful tool to determine cryptic species in this group of ants, and possibly in stridulating ants in general. Congruent morphological, acoustic and genetic results constitute sufficient evidence to propose each morph studied here as a valid new species, suggesting that P. apicalis is a complex of at least 6 to 9 species, even if they present different levels of divergence. Finally, our results highlight that ant stridulations may be much more informative than hitherto thought, as much for ant communication as for integrative taxonomists. PMID:21203529

  17. Genetic linkage of distinct adaptive traits in sympatrically speciating crater lake cichlid fish

    PubMed Central

    Fruciano, Carmelo; Franchini, Paolo; Kovacova, Viera; Elmer, Kathryn R.; Henning, Frederico; Meyer, Axel

    2016-01-01

    Our understanding of how biological diversity arises is limited, especially in the case of speciation in the face of gene flow. Here we investigate the genomic basis of adaptive traits, focusing on a sympatrically diverging species pair of crater lake cichlid fishes. We identify the main quantitative trait loci (QTL) for two eco-morphological traits: body shape and pharyngeal jaw morphology. These traits diverge in parallel between benthic and limnetic species in the repeated adaptive radiations of this and other fish lineages. Remarkably, a single chromosomal region contains the highest effect size QTL for both traits. Transcriptomic data show that the QTL regions contain genes putatively under selection. Independent population genomic data corroborate QTL regions as areas of high differentiation between the sympatric sister species. Our results provide empirical support for current theoretical models that emphasize the importance of genetic linkage and pleiotropy in facilitating rapid divergence in sympatry. PMID:27597183

  18. Ecological distinctions between sympatric species of Saguinus and Sciurus.

    PubMed

    Garber, P A; Sussman, R W

    1984-10-01

    Tamarins are small New World monkeys that have been described as "squirrellike." Squirrels, along with bats and birds, are the taxa most likely to utilize resources similar to those used by primates in the tropical forest canopy. In this paper we compare differences in ecology, diet, locomotion, and habitat utilization between sympatric populations of tamarins (Saguinus oedipus) and tree squirrels (Sciurus granatensis) in Panama. Data presented indicate that although there is some degree of resource overlap, patterns of habitat utilization differ significantly. Rather than being "squirrellike," the Panamanian tamarin exhibits a pattern of locomotor and feeding behavior consistent with that found in other arboreal primates.

  19. Mechanisms regulating proteostasis are involved in sympatric speciation of the blind mole rat, Spalax galili.

    PubMed

    Rodriguez, Karl A; Li, Kexin; Nevo, Eviatar; Buffenstein, Rochelle

    2016-01-01

    Genome-wide analysis demonstrates extensive genomic adaptive complexes involved in sympatric speciation between blind mole rats (Spalax galili) in abutting populations living in basalt and chalk soils. Among the gene ontology (GO) enrichment, musculature and metabolism stood out in basalt dwellers while nutrition and neurogenetics were highlighted in chalk residents. Measurements of mechanisms regulating protein homeostasis inspired by these GO terms suggest that at the proteomic level there is also a habitat/soil-type driven divergence with the basalt residents exhibiting higher proteasome activity whereas elevated levels of markers of autophagy are evident in the chalk inhabitants.

  20. Mechanisms regulating proteostasis are involved in sympatric speciation of the blind mole rat, Spalax galili

    PubMed Central

    Rodriguez, Karl A.; Li, Kexin; Nevo, Eviatar; Buffenstein, Rochelle

    2016-01-01

    ABSTRACT Genome-wide analysis demonstrates extensive genomic adaptive complexes involved in sympatric speciation between blind mole rats (Spalax galili) in abutting populations living in basalt and chalk soils. Among the gene ontology (GO) enrichment, musculature and metabolism stood out in basalt dwellers while nutrition and neurogenetics were highlighted in chalk residents. Measurements of mechanisms regulating protein homeostasis inspired by these GO terms suggest that at the proteomic level there is also a habitat/soil-type driven divergence with the basalt residents exhibiting higher proteasome activity whereas elevated levels of markers of autophagy are evident in the chalk inhabitants. PMID:27050459

  1. [Sympatric Speciation of the Plague Microbe Yersinia pestis: Monohostal Specialization in the Host-Parasite Marmot-Flea (Marmota sibirica-Oropsylla silantiewi) System].

    PubMed

    Suntsov, V V

    2016-01-01

    An ecological scenario of the origin of the plague microbe that is interpreted in the light of modern Darwinism (synthetic theory of evolution) is presented. It is shown that the plague microbe emerged from a clone of the psychrophilic saprozoonotic pseudotuberculosis microbe Yersinia pseudotuberculosis O:1b in the mountain steppe landscapes of Central Asia in the Sartan time, 22000-15000 years ago, in the monohostal Mongolian marmot (Marmota sibirica)-flea (Oropsylla silantiewi) host-parasite system. It was noted that the evolutionary process described corresponds to the sympatric form of speciation by transition ofthe clone of migrant founders to a new, already-existing ecological niche. It was established that monohostal specialization of the plague microbe was made possible due to heterothermia (5-37 degrees C) of marmots in the hibernation period. The factors of the speciation process--isolation, the struggle for existence, and natural selection--were analyzed.

  2. Complex histories of repeated gene flow in Cameroon crater lake cichlids cast doubt on one of the clearest examples of sympatric speciation.

    PubMed

    Martin, Christopher H; Cutler, Joseph S; Friel, John P; Dening Touokong, Cyrille; Coop, Graham; Wainwright, Peter C

    2015-06-01

    One of the most celebrated examples of sympatric speciation in nature are monophyletic radiations of cichlid fishes endemic to Cameroon crater lakes. However, phylogenetic inference of monophyly may not detect complex colonization histories involving some allopatric isolation, such as double invasions obscured by genome-wide gene flow. Population genomic approaches are better suited to test hypotheses of sympatric speciation in these cases. Here, we use comprehensive sampling from all four sympatric crater lake cichlid radiations in Cameroon and outgroups across Africa combined with next-generation sequencing to genotype tens of thousands of SNPs. We find considerable evidence of gene flow between all four radiations and neighboring riverine populations after initial colonization. In a few cases, some sympatric species are more closely related to outgroups than others, consistent with secondary gene flow facilitating their speciation. Our results do not rule out sympatric speciation in Cameroon cichlids, but rather reveal a complex history of speciation with gene flow, including allopatric and sympatric phases, resulting in both reproductively isolated species and incipient species complexes. The best remaining non-cichlid examples of sympatric speciation all involve assortative mating within microhabitats. We speculate that this feature may be necessary to complete the process of sympatric speciation in nature.

  3. Parallel phylogeographic structure in ecologically similar sympatric sister taxa.

    PubMed

    Dawson, Michael N

    2012-02-01

    Present-day phylogeographic patterns have been shaped by the dual histories of lineages and places, producing a diversity of relationships that may challenge discovery of general rules. For example, the predicted positive correlation between dispersal ability and gene flow has been supported inconsistently, suggesting unaccounted complexity in theory or the comparative framework. Here, I extend the sympatric sister-species approach, in which variance between lineages and places is minimized, to sister clades and test a fundamental assumption of comparative genetic studies of dispersal: that taxa which evolved at the same time and in the same place will, if they have similar life histories and ecologies, have essentially the same phylogeographic structure. Phylogenetic analyses of 197 Stigmatopora pipefishes using two nuclear (creatine kinase intron 6, α-tropomyosin) and two mitochondrial (16S, noncoding region) loci revealed largely synchronous parallel diversification of sister clades that are codistributed from Western Australia to New Zealand, supporting the null hypothesis. Only one comparison, however, yielded a sympatric sister-species pair (the two stem species), so I also explored the potential for extant species sharing a substantial proportion of their evolutionary histories in sympatry to substitute for sister taxon comparisons. In eastern Australia, where strong environmental structure is lacking, phylogeographic differences between species that have been codistributed for ~85% of their evolutionary histories were consistent with tendencies favoured by their modest life-history differences, that is the larger, rarer species had lower genetic diversity. In contrast, in New Zealand, two species codistributed for ~70% of their evolutionary histories were both structured similarly by a strong biogeographic filter despite differences in life history. Rigorously quantifying the influence of intrinsic and extrinsic factors on phylogeographic structure may

  4. Through thick and thin: cryptic sympatric speciation in the submersed genus Najas (Hydrocharitaceae).

    PubMed

    Les, Donald H; Peredo, Elena L; King, Ursula M; Benoit, Lori K; Tippery, Nicholas P; Ball, Cassandra J; Shannon, Robynn K

    2015-01-01

    Cryptic sympatric species arise when reproductive isolation is established in sympatry, leading to genetically divergent lineages that are highly similar morphologically or virtually indistinguishable. Although cryptic sympatric species have been reported in various animals, fungi, and protists, there are few compelling examples for plants. This investigation presents a case for cryptic sympatric speciation in Najas flexilis, a widespread aquatic plant, which extends throughout northern North America and Eurasia. The taxon is noted for its variable seed morphology, which earlier research associated with cytotypes; i.e., diploids were characterized by thicker seeds and tetraploids by thinner seeds. However, cytotypes are not patterned geographically with diploid and tetraploid plants often found in close proximity within the same lake. Using digital image and DNA sequence analyses, we found that diploids and tetraploids are well-isolated and remain genetically distinct throughout their sympatric range, where sterile hybrids occur frequently. Incorporation of sequence data from the single-copy nuclear phytoene desaturase locus revealed further that the tetraploids are allopolyploid derivatives of N. flexilis and N. guadalupensis, the latter a closely related species with an overlapping distribution. We conclude that the taxon widely known as N. flexilis actually comprises two cryptic, sibling species, which diverged in sympatry by interspecific hybridization and subsequent chromosomal isolation. By comparing seed morphology of type specimens, we associated the names N. flexilis and N. canadensis to the diploids and tetraploids respectively. Additionally, the narrowly restricted taxon known formerly as N. muenscheri is shown via morphological and genetic evidence to be synonymous with N. canadensis. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. The geography and ecology of plant speciation: range overlap and niche divergence in sister species

    PubMed Central

    Anacker, Brian L.; Strauss, Sharon Y.

    2014-01-01

    A goal of evolutionary biology is to understand the roles of geography and ecology in speciation. The recent shared ancestry of sister species can leave a major imprint on their geographical and ecological attributes, possibly revealing processes involved in speciation. We examined how ecological similarity, range overlap and range asymmetry are related to time since divergence of 71 sister species pairs in the California Floristic Province (CFP). We found that plants exhibit strikingly different age-range correlation patterns from those found for animals; the latter broadly support allopatric speciation as the primary mode of speciation. By contrast, plant sisters in the CFP were sympatric in 80% of cases and range sizes of sisters differed by a mean of 10-fold. Range overlap and range asymmetry were greatest in younger sisters. These results suggest that speciation mechanisms broadly grouped under ‘budding’ speciation, in which a larger ranged progenitor gives rise to a smaller ranged derivative species, are probably common. The ecological and reproductive similarity of sisters was significantly greater than that of sister–non-sister congeners for every trait assessed. However, shifts in at least one trait were present in 93% of the sister pairs; habitat and soil shifts were especially common. Ecological divergence did not increase with range overlap contrary to expectations under character displacement in sympatry. Our results suggest that vicariant speciation is more ubiquitous in animals than plants, perhaps owing to the sensitivity of plants to fine-scale environmental heterogeneity. Despite high levels of range overlap, ecological shifts in the process of budding speciation may result in low rates of fine-scale spatial co-occurrence. These results have implications for ecological studies of trait evolution and community assembly; despite high levels of sympatry, sister taxa and potentially other close relatives, may be missing from local communities

  6. The geography and ecology of plant speciation: range overlap and niche divergence in sister species.

    PubMed

    Anacker, Brian L; Strauss, Sharon Y

    2014-03-07

    A goal of evolutionary biology is to understand the roles of geography and ecology in speciation. The recent shared ancestry of sister species can leave a major imprint on their geographical and ecological attributes, possibly revealing processes involved in speciation. We examined how ecological similarity, range overlap and range asymmetry are related to time since divergence of 71 sister species pairs in the California Floristic Province (CFP). We found that plants exhibit strikingly different age-range correlation patterns from those found for animals; the latter broadly support allopatric speciation as the primary mode of speciation. By contrast, plant sisters in the CFP were sympatric in 80% of cases and range sizes of sisters differed by a mean of 10-fold. Range overlap and range asymmetry were greatest in younger sisters. These results suggest that speciation mechanisms broadly grouped under 'budding' speciation, in which a larger ranged progenitor gives rise to a smaller ranged derivative species, are probably common. The ecological and reproductive similarity of sisters was significantly greater than that of sister-non-sister congeners for every trait assessed. However, shifts in at least one trait were present in 93% of the sister pairs; habitat and soil shifts were especially common. Ecological divergence did not increase with range overlap contrary to expectations under character displacement in sympatry. Our results suggest that vicariant speciation is more ubiquitous in animals than plants, perhaps owing to the sensitivity of plants to fine-scale environmental heterogeneity. Despite high levels of range overlap, ecological shifts in the process of budding speciation may result in low rates of fine-scale spatial co-occurrence. These results have implications for ecological studies of trait evolution and community assembly; despite high levels of sympatry, sister taxa and potentially other close relatives, may be missing from local communities.

  7. Ecological speciation in tropical reef fishes

    PubMed Central

    Rocha, Luiz A; Robertson, D. Ross; Roman, Joe; Bowen, Brian W

    2005-01-01

    The high biodiversity in tropical seas provides a long-standing challenge to allopatric speciation models. Physical barriers are few in the ocean and larval dispersal is often extensive, a combination that should reduce opportunities for speciation. Yet coral reefs are among the most species-rich habitats in the world, indicating evolutionary processes beyond conventional allopatry. In a survey of mtDNA sequences of five congeneric west Atlantic reef fishes (wrasses, genus Halichoeres) with similar dispersal potential, we observed phylogeographical patterns that contradict expectations of geographical isolation, and instead indicate a role for ecological speciation. In Halichoeres bivittatus and the species pair Halichoeres radiatus/brasiliensis, we observed strong partitions (3.4% and 2.3% divergence, respectively) between adjacent and ecologically distinct habitats, but high genetic connectivity between similar habitats separated by thousands of kilometres. This habitat partitioning is maintained even at a local scale where H. bivittatus lineages are segregated between cold- and warm-water habitats in both Bermuda and Florida. The concordance of evolutionary partitions with habitat types, rather than conventional biogeographical barriers, indicates parapatric ecological speciation, in which adaptation to alternative environmental conditions in adjacent locations overwhelms the homogenizing effect of dispersal. This mechanism can explain the long-standing enigma of high biodiversity in coral reef faunas. PMID:15817431

  8. Influence of substrate and pH on the diversity of the aeroterrestrial alga Klebsormidium (Klebsormidiales, Streptophyta): a potentially important factor for sympatric speciation.

    PubMed

    Ryšánek, David; Holzinger, Andreas; Škaloud, Pavel

    Our knowledge of the processes involved in speciation of microalgae remains highly limited. In the present study, we investigated a potential role of ecological speciation processes in diversification of the filamentous green alga Klebsormidium. We examined 12 strains representing four different genotypes. The strains were collected from sandstone and limestone rocks and were cultivated at five different pH levels ranging from pH 4 to pH 8. We determined the responses of the 12 strains to the experimental pH conditions by (1) measuring the effective quantum yield of photosystem II, and (2) determining the growth rates after cultivation at different pH levels. Strong differences were found between the results obtained by these two methods. Direct counting of cells revealed a strong ecological differentiation of strains of Klebsormidium isolated from different substrate types. Strains isolated from limestone showed the highest growth rates at higher pH levels; whereas, the strains isolated from sandstone exhibited two distinct growth responses with optima at pH 5 and 6, respectively. In contrast, the effective quantum yield of photosystem II was always down-regulated at lower pH values, probably due to dissolved inorganic carbon limitation. In general, we determined distinct ecophysiological differentiation among distantly and closely related lineages, thereby corroborating our hypothesis that the sympatric speciation of terrestrial algae is driven by ecological divergence. We clearly showed that pH is a critical ecological factor that influences the diversity of autotrophic protists in terrestrial habitats.

  9. Functional basis of ecological divergence in sympatric stickleback

    PubMed Central

    2013-01-01

    Background The evolution of ecological divergence in closely related species is a key component of adaptive radiation. However, in most examples of adaptive radiation the mechanistic basis of ecological divergence remains unclear. A classic example is seen in the young benthic and limnetic stickleback species pairs of British Columbia. In each pair the benthic species feeds on littoral macroinvertebrates whereas the limnetic feeds on pelagic zooplankton. Previous studies indicate that in both short-term feeding trials and long-term enclosure studies, benthics and limnetics exhibit enhanced performance on their own resource but fare more poorly on the other species’ resource. We examined the functional basis of ecological divergence in the stickleback species pair from Paxton Lake, BC, using biomechanical models of fish feeding applied to morphological traits. We examined the consequences of morphological differences using high speed video of feeding fish. Results Benthic stickleback possess morphological traits that predict high suction generation capacity, including greatly hypertrophied epaxial musculature. In contrast, limnetic stickleback possess traits thought to enhance capture of evasive planktonic prey, including greater jaw protrusion than benthics and greater displacement advantage in both the lower jaw-opening lever system and the opercular four-bar linkage. Kinematic data support the expectations from the morphological analysis that limnetic stickleback exhibit faster strikes and greater jaw protrusion than benthic fish, whereas benthics exert greater suction force on attached prey. Conclusions We reveal a previously unknown suite of complex morphological traits that affect rapid ecological divergence in sympatric stickleback. These results indicate that postglacial divergence in stickleback involves many functional systems and shows the value of investigating the functional consequences of phenotypic divergence in adaptive radiation. PMID:24380474

  10. Parallel polyploid speciation: distinct sympatric gene-pools of recurrently derived allo-octoploid Asplenium ferns.

    PubMed

    Perrie, Leon R; Shepherd, Lara D; De Lange, Peter J; Brownsey, Patrick J

    2010-07-01

    Although polyploidy is widespread, its significance to the generation of biodiversity remains unclear. Many polyploids have been derived recurrently. For a particular polyploid, gene-flow between the products of independent origin is typical where they come into contact. Here, we use AFLP DNA-fingerprinting and chloroplast DNA sequences to demonstrate parallel polyploid speciation within both of the ferns Asplenium cimmeriorum and A. gracillimum. Both of these taxa comprise at least two allopolyploids, recurrently derived from the same progenitor pair. Each of these allopolyploids remain genetically distinguishable even with extensive sympatry, and could therefore be considered distinct species. To our knowledge, parallel speciation on this scale amongst recurrent polyploids has not been previously reported. With their parallel origins, these 'evolutionary replicates' provide an unrivalled opportunity to investigate how the reproductive barriers and ecological differentiation necessary for speciation arise following polyploidy.

  11. Ecological divergence associated with mating system causes nearly complete reproductive isolation between sympatric Mimulus species.

    PubMed

    Martin, Noland H; Willis, John H

    2007-01-01

    Speciation often involves the evolution of numerous prezygotic and postzygotic isolating barriers between divergent populations. Detailed knowledge of the strength and nature of those barriers provides insight into ecological and genetic factors that directly or indirectly influenced their origin, and may help predict whether they will be maintained in the face of sympatric hybridization and introgression. We estimated the magnitude of pre- and postzygotic barriers between naturally occurring sympatric populations of Mimulus guttatus and M. nasutus. Prezygotic barriers, including divergent flowering phenologies, differential pollen production, mating system isolation, and conspecific pollen precedence, act asymmetrically to completely prevent the formation of F(1) hybrids among seeds produced by M. guttatus (F(1)g), and reduce F(1) hybrid production among seeds produced by M. nasutus (F(1)n) to only about 1%. Postzygotic isolation is also asymmetric: in field experiments, F(1)g but not F(1)n hybrids had significantly reduced germination rates and survivorship compared to parental species. Both hybrid classes had flower, pollen, and seed production values within the range of parental values. Despite the moderate degree of F(1)g hybrid inviability, postzygotic isolation contributes very little to the total isolation between these species in the wild. We also found that F(1) hybrid flowering phenology overlapped more with M. guttatus than M. nasutus. These results, taken together, suggest greater potential for introgression from M. nasutus to M. guttatus than for the reverse direction. We also address problems with commonly used indices of isolation, discuss difficulties in calculating meaningful measures of reproductive isolation when barriers are asymmetric, and propose novel measures of prezygotic isolation that are consistent with postzygotic measures.

  12. Chemical ecology and pollinator-driven speciation in sexually deceptive orchids.

    PubMed

    Ayasse, Manfred; Stökl, Johannes; Francke, Wittko

    2011-09-01

    Sexually deceptive orchids mimic females of their pollinator species to attract male insects for pollination. Pollination by sexual deception has independently evolved in European, Australian, South African, and South American orchid taxa. Reproductive isolation is mainly based on pre-mating isolation barriers, the specific attraction of males of a single pollinator species, mostly bees, by mimicking the female species-specific sex-pheromone. However, in rare cases post-mating barriers have been found. Sexually deceptive orchids are ideal candidates for studies of sympatric speciation, because key adaptive traits such as the pollinator-attracting scent are associated with their reproductive success and with pre-mating isolation. During the last two decades several investigations studied processes of ecological speciation in sexually deceptive orchids of Europe and Australia. Using various methods like behavioural experiments, chemical, electrophysiological, and population-genetic analyses it was shown that minor changes in floral odour bouquets might be the driving force for pollinator shifts and speciation events. New pollinators act as an isolation barrier towards other sympatrically occurring species. Hybridization occurs because of similar odour bouquets of species and the overlap of flowering periods. Hybrid speciation can also lead to the displacement of species by the hybrid population, if its reproductive success is higher than that in the parental species.

  13. Sampling genetic diversity in the sympatrically and allopatrically speciating Midas cichlid species complex over a 16 year time series

    PubMed Central

    Bunje, Paul ME; Barluenga, Marta; Meyer, Axel

    2007-01-01

    Background Speciation often occurs in complex or uncertain temporal and spatial contexts. Processes such as reinforcement, allopatric divergence, and assortative mating can proceed at different rates and with different strengths as populations diverge. The Central American Midas cichlid fish species complex is an important case study for understanding the processes of speciation. Previous analyses have demonstrated that allopatric processes led to species formation among the lakes of Nicaragua as well as sympatric speciation that is occurring within at least one crater lake. However, since speciation is an ongoing process and sampling genetic diversity of such lineages can be biased by collection scheme or random factors, it is important to evaluate the robustness of conclusions drawn on individual time samples. Results In order to assess the validity and reliability of inferences based on different genetic samples, we have analyzed fish from several lakes in Nicaragua sampled at three different times over 16 years. In addition, this time series allows us to analyze the population genetic changes that have occurred between lakes, where allopatric speciation has operated, as well as between different species within lakes, some of which have originated by sympatric speciation. Focusing on commonly used genetic markers, we have analyzed both DNA sequences from the complete mitochondrial control region as well as nuclear DNA variation at ten microsatellite loci from these populations, sampled thrice in a 16 year time period, to develop a robust estimate of the population genetic history of these diversifying lineages. Conclusion The conclusions from previous work are well supported by our comprehensive analysis. In particular, we find that the genetic diversity of derived crater lake populations is lower than that of the source population regardless of when and how each population was sampled. Furthermore, changes in various estimates of genetic diversity within lakes

  14. Historical contingency and ecological determinism interact to prime speciation in sticklebacks, Gasterosteus.

    PubMed

    Taylor, E B; McPhail, J D

    2000-12-07

    Historical contingency and determinism are often cast as opposing paradigms under which evolutionary diversification operates. It may be, however, that both factors act together to promote evolutionary divergence, although there are few examples of such interaction in nature. We tested phylogenetic predictions of an explicit historical model of divergence (double invasions of freshwater by marine ancestors) in sympatric species of three-spined sticklebacks (Gasterosteus aculeatus) where determinism has been implicated as an important factor driving evolutionary novelty. Microsatellite DNA variation at six loci revealed relatively low genetic variation in freshwater populations, supporting the hypothesis that they were derived by colonization of freshwater by more diverse marine ancestors. Phylogenetic and genetic distance analyses suggested that pairs of sympatric species have evolved multiple times, further implicating determinism as a factor in speciation. Our data also supported predictions based on the hypothesis that the evolution of sympatric species was contingent upon 'double invasions' of postglacial lakes by ancestral marine sticklebacks. Sympatric sticklebacks, therefore, provide an example of adaptive radiation by determinism contingent upon historical conditions promoting unique ecological interactions, and illustrate how contingency and determinism may interact to generate geographical variation in species diversity

  15. Receptor expression and sympatric speciation: unique olfactory receptor neuron responses in F1 hybrid Rhagoletis populations.

    PubMed

    Olsson, Shannon B; Linn, Charles E; Michel, Andrew; Dambroski, Hattie R; Berlocher, Stewart H; Feder, Jeffrey L; Roelofs, Wendell L

    2006-10-01

    The Rhagoletis pomonella species complex is one of the foremost examples supporting the occurrence of sympatric speciation. A recent study found that reciprocal F(1) hybrid offspring from different host plant-infesting populations in the complex displayed significantly reduced olfactory host preference in flight-tunnel assays. Behavioral and electrophysiological studies indicate that olfactory cues from host fruit are important chemosensory signals for flies to locate fruit for mating and oviposition. The reduced olfactory abilities of hybrids could therefore constitute a significant post-mating barrier to gene flow among fly populations. The present study investigated the source of changes in the hybrid olfactory system by examining peripheral chemoreception in F(1) hybrid flies, using behaviorally relevant volatiles from the parent host fruit. Single-sensillum electrophysiological analyses revealed significant changes in olfactory receptor neuron (ORN) response specificities in hybrid flies when compared to parent ORN responses. We report that flies from F(1) crosses of apple-, hawthorn- and flowering dogwood-origin populations of R. pomonella exhibited distinct ORN response profiles absent from any parent population. These peripheral alterations in ORN response profiles could result from misexpression of multiple receptors in hybrid neurons as a function of genomic incompatibilities in receptor-gene pathways in parent populations. We conclude that these changes in peripheral chemoreception could impact olfactory host preference and contribute directly to reproductive isolation in the Rhagoletis complex, or could be genetically coupled to other host-associated traits.

  16. Influence of substrate and pH on the diversity of the aeroterrestrial alga Klebsormidium (Klebsormidiales, Streptophyta): a potentially important factor for sympatric speciation

    PubMed Central

    Ryšánek, David; Holzinger, Andreas; Škaloud, Pavel

    2016-01-01

    Our knowledge of the processes involved in speciation of microalgae remains highly limited. In the present study, we investigated a potential role of ecological speciation processes in diversification of the filamentous green alga Klebsormidium. We examined 12 strains representing four different genotypes. The strains were collected from sandstone and limestone rocks and were cultivated at five different pH levels ranging from pH 4 to pH 8. We determined the responses of the 12 strains to the experimental pH conditions by (1) measuring the effective quantum yield of photosystem II, and (2) determining the growth rates after cultivation at different pH levels. Strong differences were found between the results obtained by these two methods. Direct counting of cells revealed a strong ecological differentiation of strains of Klebsormidium isolated from different substrate types. Strains isolated from limestone showed the highest growth rates at higher pH levels; whereas, the strains isolated from sandstone exhibited two distinct growth responses with optima at pH 5 and 6, respectively. In contrast, the effective quantum yield of photosystem II was always down-regulated at lower pH values, probably due to dissolved inorganic carbon limitation. In general, we determined distinct ecophysiological differentiation among distantly and closely related lineages, thereby corroborating our hypothesis that the sympatric speciation of terrestrial algae is driven by ecological divergence. We clearly showed that pH is a critical ecological factor that influences the diversity of autotrophic protists in terrestrial habitats. PMID:27293301

  17. Linking emergence of fungal plant diseases and ecological speciation

    PubMed Central

    Giraud, Tatiana; Gladieux, Pierre; Gavrilets, Sergey

    2010-01-01

    Emerging diseases represent a growing worldwide problem accompanying global environmental changes, and there is tremendous interest in identifying the factors controlling the appearance and spread of these diseases. Here, we discuss emerging fungal plant diseases, and argue that they often result from host shift speciation, a particular case of ecological speciation. We consider the factors controlling local adaptation and ecological speciation and show that certain life-history traits of many fungal plant pathogens are conducive for rapid ecological speciation, thus favoring the emergence of novel pathogen species adapted to new hosts. We argue that placing the problem of emerging fungal diseases of plants within the context of ecological speciation can significantly improve our understanding of the biological mechanisms governing emergence of such diseases. PMID:20434790

  18. Ecological Impacts of Reverse Speciation in Threespine Stickleback.

    PubMed

    Rudman, Seth M; Schluter, Dolph

    2016-02-22

    Young species are highly prone to extinction via increased gene flow after human-caused environmental changes. This mechanism of biodiversity loss, often termed reverse speciation or introgressive extinction, is of exceptional interest because the parent species are typically highly differentiated ecologically. Reverse speciation events are potentially powerful case studies for the role of evolution in driving ecological changes, as the phenotypic shifts associated with introgressive extinction can be large and they occur over particularly short timescales. Furthermore, reverse speciation can lead to novel phenotypes, which may in turn produce novel ecological effects. Here we investigate the ecological shift associated with reverse speciation in threespine stickleback fish using a field study and a replicated experiment. We find that an instance of introgressive extinction had cascading ecological consequences that altered the abundance of both aquatic prey and the pupating aquatic insects that emerged into the terrestrial ecosystem. The community and ecosystem impacts of reverse speciation were novel, and yet they were also predictable based on ecological and morphological considerations. The study suggests that knowledge about the community ecology and changes in functional morphology of a dominant species may lead to some predictive power for the ecological effects of evolutionary change. Moreover, the rapid nature and resultant ecological impacts associated with reverse speciation demonstrates the interplay between biodiversity, evolutionary change, and ecosystem function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Ephemeral ecological speciation and the latitudinal biodiversity gradient.

    PubMed

    Cutter, Asher D; Gray, Jeremy C

    2016-10-01

    The richness of biodiversity in the tropics compared to high-latitude parts of the world forms one of the most globally conspicuous patterns in biology, and yet few hypotheses aim to explain this phenomenon in terms of explicit microevolutionary mechanisms of speciation and extinction. We link population genetic processes of selection and adaptation to speciation and extinction by way of their interaction with environmental factors to drive global scale macroecological patterns. High-latitude regions are both cradle and grave with respect to species diversification. In particular, we point to a conceptual equivalence of "environmental harshness" and "hard selection" as eco-evolutionary drivers of local adaptation and ecological speciation. By describing how ecological speciation likely occurs more readily at high latitudes, with such nascent species especially prone to extinction by fusion, we derive the ephemeral ecological speciation hypothesis as an integrative mechanistic explanation for latitudinal gradients in species turnover and the net accumulation of biodiversity.

  20. Gene flow between sexual and asexual strains of parasitic wasps: a possible case of sympatric speciation caused by a parthenogenesis-inducing bacterium.

    PubMed

    Adachi-Hagimori, Tetsuya; Miura, Kazuki; Abe, Yoshihisa

    2011-06-01

    Sympatric speciation is strictly defined as the emergence of two species from a population in which mating has been random with respect to the place of birth of the mating partners. Mathematical models have shown that sympatric speciation is possible, but very few examples have been documented in nature. In this article, we demonstrate that arrhenotokous and thelytokous strains of a parasitic wasp, Neochrysocharis formosa, speciated sympatrically through infection by a symbiotic bacterium Rickettsia for the following reasons: First, Rickettsia infection was detected in all of the thelytokous strains collected throughout Japan. Second, the arrhenotokous and thelytokous strains have been collected sympatrically. Third, crossing experiments between the two strains did not result in fertilized offspring. In addition, the two strains were genetically isolated at the nuclear and mitochondrial genes. Fourth, the two strains showed a sister relationship in nuclear 28S rRNA gene. Finally, thelytokous females treated with antibiotics produced Rickettsia-free male offspring of the same reproductive form as arrhenotokous females indicating that the thelytokous strain could have speciated sympatrically from an individual of the arrhenotokous strain.

  1. Experimental Swap of Anopheles gambiae's Assortative Mating Preferences Demonstrates Key Role of X-Chromosome Divergence Island in Incipient Sympatric Speciation

    PubMed Central

    Aboagye-Antwi, Fred; Alhafez, Nahla; Weedall, Gareth D.; Brothwood, Jessica; Kandola, Sharanjit; Paton, Doug; Fofana, Abrahamane; Olohan, Lisa; Betancourth, Mauro Pazmiño; Ekechukwu, Nkiru E.; Baeshen, Rowida; Traorè, Sékou F.; Diabate, Abdoulaye; Tripet, Frédéric

    2015-01-01

    Although many theoretical models of sympatric speciation propose that genes responsible for assortative mating amongst incipient species should be associated with genomic regions protected from recombination, there are few data to support this theory. The malaria mosquito, Anopheles gambiae, is known for its sympatric cryptic species maintained by pre-mating reproductive isolation and its putative genomic islands of speciation, and is therefore an ideal model system for studying the genomic signature associated with incipient sympatric speciation. Here we selectively introgressed the island of divergence located in the pericentric region of the X chromosome of An. gambiae s.s. into its sister taxon An. coluzzii through 5 generations of backcrossing followed by two generations of crosses within the introgressed strains that resulted in An. coluzzii-like recombinant strains fixed for the M and S marker in the X chromosome island. The mating preference of recombinant strains was then tested by giving virgin recombinant individuals a choice of mates with X-islands matching and non-matching their own island type. We show through genetic analyses of transferred sperm that recombinant females consistently mated with matching island-type males thereby associating assortative mating genes with the X-island of divergence. Furthermore, full-genome sequencing confirmed that protein-coding differences between recombinant strains were limited to the experimentally swapped pericentromeric region. Finally, targeted-genome comparisons showed that a number of these unique differences were conserved in sympatric field populations, thereby revealing candidate speciation genes. The functional demonstration of a close association between speciation genes and the X-island of differentiation lends unprecedented support to island-of-speciation models of sympatric speciation facilitated by pericentric recombination suppression. PMID:25880677

  2. Experimental swap of Anopheles gambiae's assortative mating preferences demonstrates key role of X-chromosome divergence island in incipient sympatric speciation.

    PubMed

    Aboagye-Antwi, Fred; Alhafez, Nahla; Weedall, Gareth D; Brothwood, Jessica; Kandola, Sharanjit; Paton, Doug; Fofana, Abrahamane; Olohan, Lisa; Betancourth, Mauro Pazmiño; Ekechukwu, Nkiru E; Baeshen, Rowida; Traorè, Sékou F; Diabate, Abdoulaye; Tripet, Frédéric

    2015-04-01

    Although many theoretical models of sympatric speciation propose that genes responsible for assortative mating amongst incipient species should be associated with genomic regions protected from recombination, there are few data to support this theory. The malaria mosquito, Anopheles gambiae, is known for its sympatric cryptic species maintained by pre-mating reproductive isolation and its putative genomic islands of speciation, and is therefore an ideal model system for studying the genomic signature associated with incipient sympatric speciation. Here we selectively introgressed the island of divergence located in the pericentric region of the X chromosome of An. gambiae s.s. into its sister taxon An. coluzzii through 5 generations of backcrossing followed by two generations of crosses within the introgressed strains that resulted in An. coluzzii-like recombinant strains fixed for the M and S marker in the X chromosome island. The mating preference of recombinant strains was then tested by giving virgin recombinant individuals a choice of mates with X-islands matching and non-matching their own island type. We show through genetic analyses of transferred sperm that recombinant females consistently mated with matching island-type males thereby associating assortative mating genes with the X-island of divergence. Furthermore, full-genome sequencing confirmed that protein-coding differences between recombinant strains were limited to the experimentally swapped pericentromeric region. Finally, targeted-genome comparisons showed that a number of these unique differences were conserved in sympatric field populations, thereby revealing candidate speciation genes. The functional demonstration of a close association between speciation genes and the X-island of differentiation lends unprecedented support to island-of-speciation models of sympatric speciation facilitated by pericentric recombination suppression.

  3. The role of ecological divergence in speciation between intertidal and subtidal Scoloplos armiger (Polychaeta, Orbiniidae)

    NASA Astrophysics Data System (ADS)

    Kruse, Inken; Strasser, Matthias; Thiermann, Frank

    2004-02-01

    The concept of ecological speciation implies that habitat differences may split a species by strong selection and rapid adaptation even under sympatric conditions. Studies on the polychaete Scoloplos armiger in the Wadden Sea (North Sea) indicate sibling species existing in sympatry: the intertidal 'Type I' with holobenthic development out of egg cocoons and the subtidal 'Type S' producing pelagic larvae. In the current study, Types I and S are compared in habitat-related traits of reproductive timing and physiological response to hypoxia and sulphide. Spawnings of Type I and Type S recorded over six years overlap in spring and both appear to be triggered by a rise in seawater temperature above 5 °C. Type S exhibits an additional autumn spawning (at seawater temperatures around 10 °C) which was previously unknown and is absent in Type I. The overall abundance of pelagic larvae in the Wadden Sea is higher in spring than in autumn. Tolerance of both sulphide and hypoxia was lower in Type S than in Type I. This correlates with a 5 to 10-fold lower sulphide concentration in the subtidal compared to the intertidal habitat. Physiological tolerance and divergence in developmental mode appear as traits which may have led to reproductive isolation between Type I and Type S. Their role in allopatric and sympatric speciation scenarios in S. armiger is discussed. Since the pelagic dispersal mode has been neglected so far, a reassessment of population dynamics models for S. armiger is suggested.

  4. Coevolution, local adaptation and ecological speciation.

    PubMed

    Thompson, John N

    2016-11-01

    Coevolution is one of the major processes organizing the earth's biodiversity, but it remains unclear when and how it may generate species diversity. The study by Parchman et al. () in this issue of Molecular Ecology provides the clearest evidence to date that divergent local adaptation in a coevolving interaction may lead to speciation on one side of an interaction but not necessarily on the other side. Red crossbills in North America have diversified into ecotypes that specialize on different conifer species, use different calls and vary in the extent to which they are nomadic or sedentary. This new study evaluated genomic divergence among nine crossbill ecotypes. The authors found low overall genomic divergence among many of the ecotypes, but the sedentary South Hills crossbills, which are specialized to eat the seeds of a unique population of lodgepole pines, showed substantial divergence from other crossbills at a small number of genomic regions. These results corroborate past studies showing local coadaptation of the morphological traits of South Hills crossbills and lodgepole pines, and premating isolation of the South Hills crossbills from other populations. Together, the past and new results suggest that local coevolution with lodgepole pines has led to reduced gene flow between South Hills crossbills and other crossbills. © 2016 John Wiley & Sons Ltd.

  5. The role of local ecology during hybridization at the initial stages of ecological speciation in a marine snail.

    PubMed

    Galindo, J; Martínez-Fernández, M; Rodríguez-Ramilo, S T; Rolán-Alvarez, E

    2013-07-01

    Hybrid zones of ecologically divergent populations are ideal systems to study the interaction between natural selection and gene flow during the initial stages of speciation. Here, we perform an amplified fragment length polymorphism (AFLP) genome scan in parallel hybrid zones between divergent ecotypes of the marine snail Littorina saxatilis, which is considered a model case for the study of ecological speciation. Ridged-Banded (RB) and Smooth-Unbanded (SU) ecotypes are adapted to different shore levels and microhabitats, although they present a sympatric distribution at the mid-shore where they meet and mate (partially assortatively). We used shell morphology, outlier and nonoutlier AFLP loci from RB, SU and hybrid specimens captured in sympatry to determine the level of phenotypic and genetic introgression. We found different levels of introgression at parallel hybrid zones and nonoutlier loci showed more gene flow with greater phenotypic introgression. These results were independent from the phylogeography of the studied populations, but not from the local ecological conditions. Genetic variation at outlier loci was highly correlated with phenotypic variation. In addition, we used the relationship between genetic and phenotypic variation to estimate the heritability of morphological traits and to identify potential Quantitative Trait Loci to be confirmed in future crosses. These results suggest that ecology (exogenous selection) plays an important role in this hybrid zone. Thus, ecologically based divergent natural selection is responsible, simultaneously, for both ecotype divergence and hybridization. On the other hand, genetic introgression occurs only at neutral loci (nonoutliers). In the future, genome-wide studies and controlled crosses would give more valuable information about this process of speciation in the face of gene flow.

  6. Tracing the first step to speciation: ecological and genetic differentiation of a salamander population in a small forest.

    PubMed

    Steinfartz, Sebastian; Weitere, Markus; Tautz, Diethard

    2007-11-01

    Mechanisms and processes of ecologically driven adaptive speciation are best studied in natural situations where the splitting process is still occurring, i.e. before complete reproductive isolation is achieved. Here, we present a case of an early stage of adaptive differentiation under sympatric conditions in the fire salamander, Salamandra salamandra, that allows inferring the underlying processes for the split. Larvae of S. salamandra normally mature in small streams until metamorphosis, but in an old, continuous forest area near Bonn (the Kottenforst), we found salamander larvae not only in small streams but also in shallow ponds, which are ecologically very different from small streams. Common-environment experiments with larvae from both habitat types reveal specific adaptations to these different ecological conditions. Mitochondrial and microsatellite analyses show that the two ecologically differentiated groups also show signs of genetic differentiation. A parallel analysis of animals from a neighbouring much larger forest area (the Eifel), in which larvae mature only in streams, shows no signs of genetic differentiation, indicating that gene flow between ecologically similar types can occur over large distances. Hence, geographical factors cannot explain the differential larval habitat adaptations in the Kottenforst, in particular since adult life and mating of S. salamandra is strictly terrestrial and not associated with larval habitats. We propose therefore that the evolution of these adaptations was coupled with the evolution of cues for assortative mating which would be in line with models of sympatric speciation that suggest a co-evolution of habitat adaptations and associated mating signals.

  7. Positive assortative mating between recently described sympatric morphs of Icelandic sticklebacks

    PubMed Central

    Ólafsdóttir, Gudbjörg Á; Ritchie, Michael G; Snorrason, Sigurdur S

    2006-01-01

    Recently, models of sympatric speciation have suggested that assortative mating can develop between sympatric morphs due to divergence in an ecologically important character. For example, in sympatric pairs of threespine stickleback (Gasterosteus aculeatus L.) size-assortative mating seems to be instrumental in reproductive isolation. Here, we examine courtship behaviour and assortative mating of newly described sympatric stickleback morphs in Lake Thingvallavatn, Iceland. We find that the two morphs show strong positive assortative mating. However, the mechanism involved in mate choice does not seem to be as straightforward as in other similar systems of sympatric stickleback morphs and may involve variation in nest type. PMID:17148375

  8. Novel trophic niches drive variable progress towards ecological speciation within an adaptive radiation of pupfishes.

    PubMed

    Martin, Christopher H; Feinstein, Laura C

    2014-04-01

    Adaptive radiation is recognized by a rapid burst of phenotypic, ecological and species diversification. However, it is unknown whether different species within an adaptive radiation evolve reproductive isolation at different rates. We compared patterns of genetic differentiation between nascent species within an adaptive radiation of Cyprinodon pupfishes using genotyping by sequencing. Similar to classic adaptive radiations, this clade exhibits rapid morphological diversification rates and two species are novel trophic specialists, a scale-eater and hard-shelled prey specialist (durophage), yet the radiation is <10 000 years old. Both specialists and an abundant generalist species all coexist in the benthic zone of lakes on San Salvador Island, Bahamas. Based on 13 912 single-nucleotide polymorphisms (SNPs), we found consistent differences in genetic differentiation between each specialist species and the generalist across seven lakes. The scale-eater showed the greatest genetic differentiation and clustered by species across lakes, whereas durophage populations often clustered with sympatric generalist populations, consistent with parallel speciation across lakes. However, we found strong evidence of admixture between durophage populations in different lakes, supporting a single origin of this species and genome-wide introgression with sympatric generalist populations. We conclude that the scale-eater is further along the speciation-with-gene-flow continuum than the durophage and suggest that different adaptive landscapes underlying these two niche environments drive variable progress towards speciation within the same habitat. Our previous measurements of fitness surfaces in these lakes support this conclusion: the scale-eating fitness peak may be more distant than the durophage peak on the complex adaptive landscape driving adaptive radiation. © 2014 John Wiley & Sons Ltd.

  9. Speciation, Ecological Opportunity, and Latitude (American Society of Naturalists Address).

    PubMed

    Schluter, Dolph

    2016-01-01

    Evolutionary hypotheses to explain the greater numbers of species in the tropics than the temperate zone include greater age and area, higher temperature and metabolic rates, and greater ecological opportunity. These ideas make contrasting predictions about the relationship between speciation processes and latitude, which I elaborate and evaluate. Available data suggest that per capita speciation rates are currently highest in the temperate zone and that diversification rates (speciation minus extinction) are similar between latitudes. In contrast, clades whose oldest analyzed dates precede the Eocene thermal maximum, when the extent of the tropics was much greater than today, tend to show highest speciation and diversification rates in the tropics. These findings are consistent with age and area, which is alone among hypotheses in predicting a time trend. Higher recent speciation rates in the temperate zone than the tropics suggest an additional response to high ecological opportunity associated with low species diversity. These broad patterns are compelling but provide limited insights into underlying mechanisms, arguing that studies of speciation processes along the latitudinal gradient will be vital. Using threespine stickleback in depauperate northern lakes as an example, I show how high ecological opportunity can lead to rapid speciation. The results support a role for ecological opportunity in speciation, but its importance in the evolution of the latitudinal gradient remains uncertain. I conclude that per capita evolutionary rates are no longer higher in the tropics than the temperate zone. Nevertheless, the vast numbers of species that have already accumulated in the tropics ensure that total rate of species production remains highest there. Thus, tropical evolutionary momentum helps to perpetuate the steep latitudinal biodiversity gradient.

  10. Postzygotic isolating factor in sympatric speciation in Rhagoletis flies: reduced response of hybrids to parental host-fruit odors.

    PubMed

    Linn, Charles E; Dambroski, Hattie R; Feder, Jeffrey L; Berlocher, Stewart H; Nojima, Satoshi; Roelofs, Wendell L

    2004-12-21

    Rhagoletis pomonella is a model for sympatric speciation (divergence without geographic isolation) by means of host-plant shifts. Many Rhagoletis species are known to use fruit odor as a key olfactory cue to distinguish among their respective host plants. Because Rhagoletis rendezvous on or near the unabscised fruit of their hosts to mate, behavioral preferences for fruit odor translate directly into premating reproductive isolation among flies. Here, we report that reciprocal F(1) hybrids between the apple and hawthorn host races of R. pomonella, as well as between the host races and an undescribed sibling species infesting Cornus florida (flowering dogwood) do not respond to host fruit volatiles in wind-tunnel assays at doses that elicit maximal directed flight in parental flies. The reduced ability of hybrids to orient to fruit volatiles could result from a conflict between neural pathways for preference and avoidance behaviors, and it suggests that hybrids might suffer a fitness disadvantage for finding fruit in nature. Therefore, host-specific mating may play a dual role as an important postzygotic as well as a premating reproductive barrier to isolate sympatric Rhagoletis flies.

  11. Postzygotic isolating factor in sympatric speciation in Rhagoletis flies: Reduced response of hybrids to parental host-fruit odors

    PubMed Central

    Linn, Charles E.; Dambroski, Hattie R.; Feder, Jeffrey L.; Berlocher, Stewart H.; Nojima, Satoshi; Roelofs, Wendell L.

    2004-01-01

    Rhagoletis pomonella is a model for sympatric speciation (divergence without geographic isolation) by means of host-plant shifts. Many Rhagoletis species are known to use fruit odor as a key olfactory cue to distinguish among their respective host plants. Because Rhagoletis rendezvous on or near the unabscised fruit of their hosts to mate, behavioral preferences for fruit odor translate directly into premating reproductive isolation among flies. Here, we report that reciprocal F1 hybrids between the apple and hawthorn host races of R. pomonella, as well as between the host races and an undescribed sibling species infesting Cornus florida (flowering dogwood) do not respond to host fruit volatiles in wind-tunnel assays at doses that elicit maximal directed flight in parental flies. The reduced ability of hybrids to orient to fruit volatiles could result from a conflict between neural pathways for preference and avoidance behaviors, and it suggests that hybrids might suffer a fitness disadvantage for finding fruit in nature. Therefore, host-specific mating may play a dual role as an important postzygotic as well as a premating reproductive barrier to isolate sympatric Rhagoletis flies. PMID:15591346

  12. Evaluation of genetic isolation within an island flora reveals unusually widespread local adaptation and supports sympatric speciation

    PubMed Central

    Papadopulos, Alexander S. T.; Kaye, Maria; Devaux, Céline; Hipperson, Helen; Lighten, Jackie; Dunning, Luke T.; Hutton, Ian; Baker, William J.; Butlin, Roger K.; Savolainen, Vincent

    2014-01-01

    It is now recognized that speciation can proceed even when divergent natural selection is opposed by gene flow. Understanding the extent to which environmental gradients and geographical distance can limit gene flow within species can shed light on the relative roles of selection and dispersal limitation during the early stages of population divergence and speciation. On the remote Lord Howe Island (Australia), ecological speciation with gene flow is thought to have taken place in several plant genera. The aim of this study was to establish the contributions of isolation by environment (IBE) and isolation by community (IBC) to the genetic structure of 19 plant species, from a number of distantly related families, which have been subjected to similar environmental pressures over comparable time scales. We applied an individual-based, multivariate, model averaging approach to quantify IBE and IBC, while controlling for isolation by distance (IBD). Our analyses demonstrated that all species experienced some degree of ecologically driven isolation, whereas only 12 of 19 species were subjected to IBD. The prevalence of IBE within these plant species indicates that divergent selection in plants frequently produces local adaptation and supports hypotheses that ecological divergence can drive speciation in sympatry. PMID:24958917

  13. Ecological speciation in postglacial European whitefish: rapid adaptive radiations into the littoral, pelagic, and profundal lake habitats.

    PubMed

    Præbel, Kim; Knudsen, Rune; Siwertsson, Anna; Karhunen, Markku; Kahilainen, Kimmo K; Ovaskainen, Otso; Ostbye, Kjartan; Peruzzi, Stefano; Fevolden, Svein-Erik; Amundsen, Per-Arne

    2013-12-01

    Understanding how a monophyletic lineage of a species diverges into several adaptive forms has received increased attention in recent years, but the underlying mechanisms in this process are still under debate. Postglacial fishes are excellent model organisms for exploring this process, especially the initial stages of ecological speciation, as postglacial lakes represent replicated discrete environments with variation in available niches. Here, we combine data of niche utilization, trophic morphology, and 17 microsatellite loci to investigate the diversification process of three sympatric European whitefish morphs from three northern Fennoscandian lakes. The morphological divergence in the gill raker number among the whitefish morphs was related to the utilization of different trophic niches and was associated with reproductive isolation within and across lakes. The intralacustrine comparison of whitefish morphs showed that these systems represent two levels of adaptive divergence: (1) a consistent littoral-pelagic resource axis; and (2) a more variable littoral-profundal resource axis. The results also indicate that the profundal whitefish morph has diverged repeatedly from the ancestral littoral whitefish morph in sympatry in two different watercourses. In contrast, all the analyses performed revealed clustering of the pelagic whitefish morphs across lakes suggesting parallel postglacial immigration with the littoral whitefish morph into each lake. Finally, the analyses strongly suggested that the trophic adaptive trait, number of gill rakers, was under diversifying selection in the different whitefish morphs. Together, the results support a complex evolutionary scenario where ecological speciation acts, but where both allopatric (colonization history) and sympatric (within watercourse divergence) processes are involved.

  14. Ecological speciation in postglacial European whitefish: rapid adaptive radiations into the littoral, pelagic, and profundal lake habitats

    PubMed Central

    Præbel, Kim; Knudsen, Rune; Siwertsson, Anna; Karhunen, Markku; Kahilainen, Kimmo K; Ovaskainen, Otso; Østbye, Kjartan; Peruzzi, Stefano; Fevolden, Svein-Erik; Amundsen, Per-Arne

    2013-01-01

    Understanding how a monophyletic lineage of a species diverges into several adaptive forms has received increased attention in recent years, but the underlying mechanisms in this process are still under debate. Postglacial fishes are excellent model organisms for exploring this process, especially the initial stages of ecological speciation, as postglacial lakes represent replicated discrete environments with variation in available niches. Here, we combine data of niche utilization, trophic morphology, and 17 microsatellite loci to investigate the diversification process of three sympatric European whitefish morphs from three northern Fennoscandian lakes. The morphological divergence in the gill raker number among the whitefish morphs was related to the utilization of different trophic niches and was associated with reproductive isolation within and across lakes. The intralacustrine comparison of whitefish morphs showed that these systems represent two levels of adaptive divergence: (1) a consistent littoral–pelagic resource axis; and (2) a more variable littoral–profundal resource axis. The results also indicate that the profundal whitefish morph has diverged repeatedly from the ancestral littoral whitefish morph in sympatry in two different watercourses. In contrast, all the analyses performed revealed clustering of the pelagic whitefish morphs across lakes suggesting parallel postglacial immigration with the littoral whitefish morph into each lake. Finally, the analyses strongly suggested that the trophic adaptive trait, number of gill rakers, was under diversifying selection in the different whitefish morphs. Together, the results support a complex evolutionary scenario where ecological speciation acts, but where both allopatric (colonization history) and sympatric (within watercourse divergence) processes are involved. PMID:24455129

  15. Ecological niche modeling of sympatric krill predators around Marguerite Bay, Western Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Friedlaender, Ari S.; Johnston, David W.; Fraser, William R.; Burns, Jennifer; Halpin, Patrick N.; Costa, Daniel P.

    2011-07-01

    Adélie penguins ( Pygoscelis adeliae), carabeater seals ( Lobodon carcinophagus), humpback ( Megaptera novaeangliae), and minke whales ( Balaenoptera bonaernsis) are found in the waters surrounding the Western Antarctic Peninsula. Each species relies primarily on Antarctic krill ( Euphausia superba) and has physiological constraints and foraging behaviors that dictate their ecological niches. Understanding the degree of ecological overlap between sympatric krill predators is critical to understanding and predicting the impacts on climate-driven changes to the Antarctic marine ecosystem. To explore ecological relationships amongst sympatric krill predators, we developed ecological niche models using a maximum entropy modeling approach (Maxent) that allows the integration of data collected by a variety of means (e.g. satellite-based locations and visual observations). We created spatially explicit probability distributions for the four krill predators in fall 2001 and 2002 in conjunction with a suite of environmental variables. We find areas within Marguerite Bay with high krill predator occurrence rates or biological hot spots. We find the modeled ecological niches for Adélie penguins and crabeater seals may be affected by their physiological needs to haul-out on substrate. Thus, their distributions may be less dictated by proximity to prey and more so by physical features that over time provide adequate access to prey. Humpback and minke whales, being fully marine and having greater energetic demands, occupy ecological niches more directly proximate to prey. We also find evidence to suggest that the amount of overlap between modeled niches is relatively low, even for species with similar energetic requirements. In a rapidly changing and variable environment, our modeling work shows little indication that krill predators maintain similar ecological niches across years around Marguerite Bay. Given the amount of variability in the marine environment around the

  16. Tracking niche variation over millennial timescales in sympatric killer whale lineages.

    PubMed

    Foote, Andrew D; Newton, Jason; Ávila-Arcos, María C; Kampmann, Marie-Louise; Samaniego, Jose A; Post, Klaas; Rosing-Asvid, Aqqalu; Sinding, Mikkel-Holger S; Gilbert, M Thomas P

    2013-10-07

    Niche variation owing to individual differences in ecology has been hypothesized to be an early stage of sympatric speciation. Yet to date, no study has tracked niche width over more than a few generations. In this study, we show the presence of isotopic niche variation over millennial timescales and investigate the evolutionary outcomes. Isotopic ratios were measured from tissue samples of sympatric killer whale Orcinus orca lineages from the North Sea, spanning over 10 000 years. Isotopic ratios spanned a range similar to the difference in isotopic values of two known prey items, herring Clupea harengus and harbour seal Phoca vitulina. Two proxies of the stage of speciation, lineage sorting of mitogenomes and genotypic clustering, were both weak to intermediate indicating that speciation has made little progress. Thus, our study confirms that even with the necessary ecological conditions, i.e. among-individual variation in ecology, it is difficult for sympatric speciation to progress in the face of gene flow. In contrast to some theoretical models, our empirical results suggest that sympatric speciation driven by among-individual differences in ecological niche is a slow process and may not reach completion. We argue that sympatric speciation is constrained in this system owing to the plastic nature of the behavioural traits under selection when hunting either mammals or fish.

  17. Tracking niche variation over millennial timescales in sympatric killer whale lineages

    PubMed Central

    Foote, Andrew D.; Newton, Jason; Ávila-Arcos, María C.; Kampmann, Marie-Louise; Samaniego, Jose A.; Post, Klaas; Rosing-Asvid, Aqqalu; Sinding, Mikkel-Holger S.; Gilbert, M. Thomas P.

    2013-01-01

    Niche variation owing to individual differences in ecology has been hypothesized to be an early stage of sympatric speciation. Yet to date, no study has tracked niche width over more than a few generations. In this study, we show the presence of isotopic niche variation over millennial timescales and investigate the evolutionary outcomes. Isotopic ratios were measured from tissue samples of sympatric killer whale Orcinus orca lineages from the North Sea, spanning over 10 000 years. Isotopic ratios spanned a range similar to the difference in isotopic values of two known prey items, herring Clupea harengus and harbour seal Phoca vitulina. Two proxies of the stage of speciation, lineage sorting of mitogenomes and genotypic clustering, were both weak to intermediate indicating that speciation has made little progress. Thus, our study confirms that even with the necessary ecological conditions, i.e. among-individual variation in ecology, it is difficult for sympatric speciation to progress in the face of gene flow. In contrast to some theoretical models, our empirical results suggest that sympatric speciation driven by among-individual differences in ecological niche is a slow process and may not reach completion. We argue that sympatric speciation is constrained in this system owing to the plastic nature of the behavioural traits under selection when hunting either mammals or fish. PMID:23945688

  18. Ecology of Speciation in the Genus Bacillus

    USDA-ARS?s Scientific Manuscript database

    Microbial ecologists and systematists are challenged to discover the early ecological changes that drive the splitting of one bacterial population into two ecologically distinct populations. We have aimed to identify newly divergent lineages (“ecotypes”) bearing the dynamic properties attributed to...

  19. Genetic population structure indicates sympatric speciation of Lake Malawi pelagic cichlids.

    PubMed Central

    Shaw, P W; Turner, G F; Idid, M R; Robinson, R L; Carvalho, G R

    2000-01-01

    Allopatric processes of speciation have routinely been presented to explain the extraordinary radiation of the East African Great Lakes cichlid fish species flocks. The 21 or more species of pelagic cichlids within the Lake Malawi flock appear to have lake-wide distributions that challenge such a concept. Data from six microsatellite DNA loci indicate single, panmictic populations across the lake of three Diplotaxodon species. Levels of variability at these loci suggest that populations have been large and stable. Mitochondrial DNA sequence data (872 bp of control region + 981 bp of the NADH-2) from 90 species, representing all major clades within the Lake Malawi flock, indicate reciprocal monophyly of the pelagic clade. We suggest that these data support a hypothesis that speciation in sympatry is more plausible (and widespread) within the cichlid species flocks than previously thought. PMID:11413643

  20. Genomic Signatures of Speciation in Sympatric and Allopatric Hawaiian Picture-Winged Drosophila

    PubMed Central

    Kang, Lin; Settlage, Robert; McMahon, Wyatt; Michalak, Katarzyna; Tae, Hongseok; Garner, Harold R.; Stacy, Elizabeth A.; Price, Donald K.; Michalak, Pawel

    2016-01-01

    The Hawaiian archipelago provides a natural arena for understanding adaptive radiation and speciation. The Hawaiian Drosophila are one of the most diverse endemic groups in Hawaiì with up to 1,000 species. We sequenced and analyzed entire genomes of recently diverged species of Hawaiian picture-winged Drosophila, Drosophila silvestris and Drosophila heteroneura from Hawaiì Island, in comparison with Drosophila planitibia, their sister species from Maui, a neighboring island where a common ancestor of all three had likely occurred. Genome-wide single nucleotide polymorphism patterns suggest the more recent origin of D. silvestris and D. heteroneura, as well as a pervasive influence of positive selection on divergence of the three species, with the signatures of positive selection more prominent in sympatry than allopatry. Positively selected genes were significantly enriched for functional terms related to sensory detection and mating, suggesting that sexual selection played an important role in speciation of these species. In particular, sequence variation in Olfactory receptor and Gustatory receptor genes seems to play a major role in adaptive radiation in Hawaiian pictured-winged Drosophila. PMID:27189993

  1. Genomic Signatures of Speciation in Sympatric and Allopatric Hawaiian Picture-Winged Drosophila.

    PubMed

    Kang, Lin; Settlage, Robert; McMahon, Wyatt; Michalak, Katarzyna; Tae, Hongseok; Garner, Harold R; Stacy, Elizabeth A; Price, Donald K; Michalak, Pawel

    2016-05-30

    The Hawaiian archipelago provides a natural arena for understanding adaptive radiation and speciation. The Hawaiian Drosophila are one of the most diverse endemic groups in Hawaiì with up to 1,000 species. We sequenced and analyzed entire genomes of recently diverged species of Hawaiian picture-winged Drosophila, Drosophila silvestris and Drosophila heteroneura from Hawaiì Island, in comparison with Drosophila planitibia, their sister species from Maui, a neighboring island where a common ancestor of all three had likely occurred. Genome-wide single nucleotide polymorphism patterns suggest the more recent origin of D. silvestris and D. heteroneura, as well as a pervasive influence of positive selection on divergence of the three species, with the signatures of positive selection more prominent in sympatry than allopatry. Positively selected genes were significantly enriched for functional terms related to sensory detection and mating, suggesting that sexual selection played an important role in speciation of these species. In particular, sequence variation in Olfactory receptor and Gustatory receptor genes seems to play a major role in adaptive radiation in Hawaiian pictured-winged Drosophila. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Ecology and sexual selection: evolution of wing pigmentation in calopterygid damselflies in relation to latitude, sexual dimorphism, and speciation.

    PubMed

    Svensson, Erik I; Waller, John T

    2013-11-01

    Our knowledge about how the environment influences sexual selection regimes and how ecology and sexual selection interact is still limited. We performed an integrative study of wing pigmentation in calopterygid damselflies, combining phylogenetic comparative analyses, field observations and experiments. We investigated the evolutionary consequences of wing pigmentation for sexual dimorphism, speciation, and extinction and addressed the possible thermoregulatory benefits of pigmentation. First, we reconstructed ancestral states of male and female phenotypes and traced the evolutionary change of wing pigmentation. Clear wings are the ancestral state and that pigmentation dimorphism is derived, suggesting that sexual selection results in sexual dimorphism. We further demonstrate that pigmentation elevates speciation and extinction rates. We also document a significant biogeographic association with pigmented species primarily occupying northern temperate regions with cooler climates. Field observations and experiments on two temperate sympatric species suggest a link between pigmentation, thermoregulation, and sexual selection, although body temperature is also affected by other phenotypic traits such as body mass, microhabitat selection, and thermoregulatory behaviors. Taken together, our results suggest an important role for wing pigmentation in sexual selection in males and in speciation. Wing pigmentation might not increase ecological adaptation and species longevity, and its primary function is in sexual signaling and species recognition.

  3. Nanoindentation of lemur enamel: an ecological investigation of mechanical property variations within and between sympatric species.

    PubMed

    Campbell, Sara E; Cuozzo, Frank P; Sauther, Michelle L; Sponheimer, Matt; Ferguson, Virginia L

    2012-06-01

    The common morphological metrics of size, shape, and enamel thickness of teeth are believed to reflect the functional requirements of a primate's diet. However, the mechanical and material properties of enamel also contribute to tooth function, yet are rarely studied. Substantial wear and tooth loss previously documented in Lemur catta at the Beza Mahafaly Special Reserve suggests that their dental morphology, structure, and possibly their enamel are not adapted for their current fallback food (the mechanically challenging tamarind fruit). In this study, we investigate the nanomechanical properties, mineralization, and microstructure of the enamel of three sympatric lemur species to provide insight into their dietary functional adaptations. Mechanical properties measured by nanoindentation were compared to measurements of mineral content, prism orientation, prism size, and enamel thickness using electron microscopy. Mechanical properties of all species were similar near the enamel dentin junction and variations correlated with changes in microstructure (e.g., prism size) and mineral content. Severe wear and microcracking within L. catta's enamel were associated with up to a 43% reduction in nanomechanical properties in regions of cracking versus intact enamel. The mechanical and material properties of L. catta's enamel are similar to those of sympatric folivores and suggest that they are not uniquely mechanically adapted to consume the physically challenging tamarind fruit. An understanding of the material and mechanical properties of enamel is required to fully elucidate the functional and ecological adaptations of primate teeth. Copyright © 2012 Wiley Periodicals, Inc.

  4. Emergence of novel fungal pathogens by ecological speciation: importance of the reduced viability of immigrants.

    PubMed

    Gladieux, Pierre; Guérin, Fabien; Giraud, Tatiana; Caffier, Valérie; Lemaire, Christophe; Parisi, Luciana; Didelot, Frédérique; LE Cam, Bruno

    2011-11-01

    Expanding global trade and the domestication of ecosystems have greatly accelerated the rate of emerging infectious fungal diseases, and host-shift speciation appears to be a major route for disease emergence. There is therefore an increased interest in identifying the factors that drive the evolution of reproductive isolation between populations adapting to different hosts. Here, we used genetic markers and cross-inoculations to assess the level of gene flow and investigate barriers responsible for reproductive isolation between two sympatric populations of Venturia inaequalis, the fungal pathogen causing apple scab disease, one of the fungal populations causing a recent emerging disease on resistant varieties. Our results showed the maintenance over several years of strong and stable differentiation between the two populations in the same orchards, suggesting ongoing ecological divergence following a host shift. We identified strong selection against immigrants (i.e. host specificity) from different host varieties as the strongest and likely most efficient barrier to gene flow between local and emerging populations. Cross-variety disease transmission events were indeed rare in the field and cross-inoculation tests confirmed high host specificity. Because the fungus mates within its host after successful infection and because pathogenicity-related loci prevent infection of nonhost trees, adaptation to specific hosts may alone maintain both genetic differentiation between and adaptive allelic combinations within sympatric populations parasitizing different apple varieties, thus acting as a 'magic trait'. Additional intrinsic and extrinsic postzygotic barriers might complete reproductive isolation and explain why the rare migrants and F1 hybrids detected do not lead to pervasive gene flow across years. © 2011 Blackwell Publishing Ltd.

  5. Evolution of body shape in sympatric versus non-sympatric Tropheus populations of Lake Tanganyika.

    PubMed

    Kerschbaumer, M; Mitteroecker, P; Sturmbauer, C

    2014-02-01

    Allopatric speciation often yields ecologically equivalent sister species, so that their secondary admixis enforces competition. The shores of Lake Tanganyika harbor about 120 distinct populations of the cichlid genus Tropheus, but only some are sympatric. When alone, Tropheus occupies a relatively broad depth zone, but in sympatry, fish segregate by depth. To assess the effects of competition, we studied the partial co-occurrence of Tropheus moorii 'Kaiser' and 'Kirschfleck' with Tropheus polli. A previous study demonstrated via standardized breeding experiments that some observed differences between Tropheus 'Kaiser' living alone and in sympatry with T. polli have a genetic basis despite large-scale phenotypic plasticity. Using geometric morphometrics and neutral genetic markers, we now investigated whether sympatric populations differ consistently in body shape from populations living alone and if the differences are adaptive. We found significant differences in mean shape between non-sympatric and sympatric populations, whereas all sympatric populations of both color morphs clustered together in shape space. Sympatric populations had a relatively smaller head, smaller eyes and a more anterior insertion of the pectoral fin than non-sympatric populations. Genetically, however, non-sympatric and sympatric 'Kaiser' populations clustered together to the exclusion of 'Kirschfleck'. Genetic distances, but not morphological distances, were correlated with geographic distances. Within- and between-population covariance matrices for T. moorii populations deviated from proportionality. It is thus likely that natural selection acts on both phenotypic plasticity and heritable traits and that both factors contribute to the observed shape differences. The consistency of the pattern in five populations suggests ecological character displacement.

  6. Evolution of body shape in sympatric versus non-sympatric Tropheus populations of Lake Tanganyika

    PubMed Central

    Kerschbaumer, M; Mitteroecker, P; Sturmbauer, C

    2014-01-01

    Allopatric speciation often yields ecologically equivalent sister species, so that their secondary admixis enforces competition. The shores of Lake Tanganyika harbor about 120 distinct populations of the cichlid genus Tropheus, but only some are sympatric. When alone, Tropheus occupies a relatively broad depth zone, but in sympatry, fish segregate by depth. To assess the effects of competition, we studied the partial co-occurrence of Tropheus moorii ‘Kaiser' and ‘Kirschfleck' with Tropheus polli. A previous study demonstrated via standardized breeding experiments that some observed differences between Tropheus ‘Kaiser' living alone and in sympatry with T. polli have a genetic basis despite large-scale phenotypic plasticity. Using geometric morphometrics and neutral genetic markers, we now investigated whether sympatric populations differ consistently in body shape from populations living alone and if the differences are adaptive. We found significant differences in mean shape between non-sympatric and sympatric populations, whereas all sympatric populations of both color morphs clustered together in shape space. Sympatric populations had a relatively smaller head, smaller eyes and a more anterior insertion of the pectoral fin than non-sympatric populations. Genetically, however, non-sympatric and sympatric ‘Kaiser' populations clustered together to the exclusion of ‘Kirschfleck'. Genetic distances, but not morphological distances, were correlated with geographic distances. Within- and between-population covariance matrices for T. moorii populations deviated from proportionality. It is thus likely that natural selection acts on both phenotypic plasticity and heritable traits and that both factors contribute to the observed shape differences. The consistency of the pattern in five populations suggests ecological character displacement. PMID:24065182

  7. Ecological, morphological and genetic divergence of sympatric North Atlantic killer whale populations.

    PubMed

    Foote, Andrew D; Newton, Jason; Piertney, Stuart B; Willerslev, Eske; Gilbert, M Thomas P

    2009-12-01

    Ecological divergence has a central role in speciation and is therefore an important source of biodiversity. Studying the micro-evolutionary processes of ecological diversification at its early stages provides an opportunity for investigating the causative mechanisms and ecological conditions promoting divergence. Here we use morphological traits, nitrogen stable isotope ratios and tooth wear to characterize two disparate types of North Atlantic killer whale. We find a highly specialist type, which reaches up to 8.5 m in length and a generalist type which reaches up to 6.6 m in length. There is a single fixed genetic difference in the mtDNA control region between these types, indicating integrity of groupings and a shallow divergence. Phylogenetic analysis indicates this divergence is independent of similar ecological divergences in the Pacific and Antarctic. Niche-width in the generalist type is more strongly influenced by between-individual variation rather than within-individual variation in the composition of the diet. This first step to divergent specialization on different ecological resources provides a rare example of the ecological conditions at the early stages of adaptive radiation.

  8. Multigene analysis suggests ecological speciation in the fungal pathogen Claviceps purpurea

    PubMed Central

    DOUHAN, G. W.; SMITH, M. E.; HUYRN, K. L.; WESTBROOK, A.; Beerli, P.; FISHER, A. J.

    2008-01-01

    Claviceps purpurea is an important pathogen of grasses and source of novel chemical compounds. Three groups within this species (G1, G2, and G3) have been recognized based on habitat association, sclerotia and conidia morphology, and alkaloid production. These groups have further been supported by RAPD and AFLP markers, suggesting this species may be more accurately described as a species complex. However, all divergent ecotypes can coexist in sympatric populations with no obvious physical barriers to prevent gene flow. In this study, we used both phylogenetic and population genetic analyses to test for speciation within C. purpurea using DNA sequences from ITS, a RAS-like locus, and a portion of beta-tubulin. The G1 types are significantly divergent from the G2/G3 types based on each of the three loci and the combined dataset, whereas the G2/G3 types are more integrated with one another. Although the G2 and G3 lineages have not diverged as much as the G1 lineage based on DNA sequence data, the use of three DNA loci does reliably separate the G2 and G3 lineages. However, the population genetic analyses strongly suggest little to no gene flow occurring between the different ecotypes and we argue that this process is driven by adaptations to ecological habitats; G1 isolates are associated with terrestrial grasses, G2 isolates are found in wet and shady environments, and G3 isolates are found in salt marsh habitats. PMID:18373531

  9. Habitat and Burrow System Characteristics of the Blind Mole Rat Spalax galili in an Area of Supposed Sympatric Speciation

    PubMed Central

    Lövy, Matěj; Šklíba, Jan; Hrouzková, Ema; Dvořáková, Veronika; Nevo, Eviatar; Šumbera, Radim

    2015-01-01

    A costly search for food in subterranean rodents resulted in various adaptations improving their foraging success under given ecological conditions. In Spalax ehrenbergi superspecies, adaptations to local ecological conditions can promote speciation, which was recently supposed to occur even in sympatry at sites where two soil types of contrasting characteristics abut each other. Quantitative description of ecological conditions in such a site has been, nevertheless, missing. We measured characteristics of food supply and soil within 16 home ranges of blind mole rats Spalax galili in an area subdivided into two parts formed by basaltic soil and pale rendzina. We also mapped nine complete mole rat burrow systems to compare burrowing patterns between the soil types. Basaltic soil had a higher food supply and was harder than rendzina even under higher moisture content and lower bulk density. Population density of mole rats was five-times lower in rendzina, possibly due to the lower food supply and higher cover of Sarcopoterium shrubs which seem to be avoided by mole rats. A combination of food supply and soil parameters probably influences burrowing patterns resulting in shorter and more complex burrow systems in basaltic soil. PMID:26192762

  10. Comparative Landscape Genetics of Three Closely Related Sympatric Hesperid Butterflies with Diverging Ecological Traits

    PubMed Central

    Engler, Jan O.; Balkenhol, Niko; Filz, Katharina J.; Habel, Jan C.; Rödder, Dennis

    2014-01-01

    To understand how landscape characteristics affect gene flow in species with diverging ecological traits, it is important to analyze taxonomically related sympatric species in the same landscape using identical methods. Here, we present such a comparative landscape genetic study involving three closely related Hesperid butterflies of the genus Thymelicus that represent a gradient of diverging ecological traits. We analyzed landscape effects on their gene flow by deriving inter-population connectivity estimates based on different species distribution models (SDMs), which were calculated from multiple landscape parameters. We then used SDM output maps to calculate circuit-theoretic connectivity estimates and statistically compared these estimates to actual genetic differentiation in each species. We based our inferences on two different analytical methods and two metrics of genetic differentiation. Results indicate that land use patterns influence population connectivity in the least mobile specialist T. acteon. In contrast, populations of the highly mobile generalist T. lineola were panmictic, lacking any landscape related effect on genetic differentiation. In the species with ecological traits in between those of the congeners, T. sylvestris, climate has a strong impact on inter-population connectivity. However, the relative importance of different landscape factors for connectivity varies when using different metrics of genetic differentiation in this species. Our results show that closely related species representing a gradient of ecological traits also show genetic structures and landscape genetic relationships that gradually change from a geographical macro- to micro-scale. Thus, the type and magnitude of landscape effects on gene flow can differ strongly even among closely related species inhabiting the same landscape, and depend on their relative degree of specialization. In addition, the use of different genetic differentiation metrics makes it possible to

  11. Comparative landscape genetics of three closely related sympatric Hesperid butterflies with diverging ecological traits.

    PubMed

    Engler, Jan O; Balkenhol, Niko; Filz, Katharina J; Habel, Jan C; Rödder, Dennis

    2014-01-01

    To understand how landscape characteristics affect gene flow in species with diverging ecological traits, it is important to analyze taxonomically related sympatric species in the same landscape using identical methods. Here, we present such a comparative landscape genetic study involving three closely related Hesperid butterflies of the genus Thymelicus that represent a gradient of diverging ecological traits. We analyzed landscape effects on their gene flow by deriving inter-population connectivity estimates based on different species distribution models (SDMs), which were calculated from multiple landscape parameters. We then used SDM output maps to calculate circuit-theoretic connectivity estimates and statistically compared these estimates to actual genetic differentiation in each species. We based our inferences on two different analytical methods and two metrics of genetic differentiation. Results indicate that land use patterns influence population connectivity in the least mobile specialist T. acteon. In contrast, populations of the highly mobile generalist T. lineola were panmictic, lacking any landscape related effect on genetic differentiation. In the species with ecological traits in between those of the congeners, T. sylvestris, climate has a strong impact on inter-population connectivity. However, the relative importance of different landscape factors for connectivity varies when using different metrics of genetic differentiation in this species. Our results show that closely related species representing a gradient of ecological traits also show genetic structures and landscape genetic relationships that gradually change from a geographical macro- to micro-scale. Thus, the type and magnitude of landscape effects on gene flow can differ strongly even among closely related species inhabiting the same landscape, and depend on their relative degree of specialization. In addition, the use of different genetic differentiation metrics makes it possible to

  12. Can parallel ecological speciation be detected with phylogenetic analyses?

    PubMed

    Pérez-Pereira, Noelia; Quesada, Humberto; Caballero, Armando

    2017-11-01

    Distinguishing parallel divergence from vicariance scenarios is crucial to establish the determinism of natural selection in the formation of new species. It has been proposed that phylogenetic methods can be used to disentangle a single origin in allopatry and multiple origins in sympatry for ecological speciation. However, a key issue is to what extent introgression in a patchy environment may complicate the distinction between both origins through the analysis of variation at neutral markers. While divergence at environmentally-based selected loci retains the initial correlation with ecological variables, such association may be lost at neutral loci unlinked to any selected locus. Thus, neutral divergence might reflect in the long-term the molecular fingerprint of isolation by distance regardless of the model of speciation considered, and a question arises as to whether phylogenetic analyses of neutral markers are able or not to retrieve the signals acquired in the ancestral populations. Here, we use computer simulations to show that the detection of the original signal using a phylogenetic method strongly depends on the migration rates among populations. Recombination accelerates the loss of the initial phylogenetic signal, but this effect is rather small compared with the effect of migration, and only substantial when recombination is very large. For model species with reduced gene flow between distant populations and between populations adapted to different habitats, the phylogenetic approach is able to distinguish a single origin in allopatry from multiple origins in sympatry. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The genetic architecture of ecological speciation and the association with signatures of selection in natural lake whitefish (Coregonus sp. Salmonidae) species pairs.

    PubMed

    Rogers, S M; Bernatchez, L

    2007-06-01

    Adaptive evolutionary change is contingent on variation and selection; thus, understanding adaptive divergence and ultimately speciation requires information on both the genetic basis of adaptive traits as well as an understanding of the role of divergent natural selection on those traits. The lake whitefish (Coregonus clupeaformis) consists of several sympatric "dwarf" (limnetic) and normal (benthic) species pairs that co-inhabit northern postglacial lakes. These young species pairs have evolved independently and display parallelism in life history, behavioral, and morphological divergence associated with the use of distinct trophic resources. We identified phenotype-environment associations and determined the genetic architecture and the role of selection modulating population genetic divergence in sympatric dwarf and normal lake whitefish. The genetic architecture of 9 adaptive traits was analyzed in 2 hybrid backcrosses individually phenotyped throughout their life history. Significant quantitative trait loci (QTL) were associated with swimming behavior (habitat selection and predator avoidance), growth rate, morphology (condition factor and gill rakers), and life history (onset of maturity and fecundity). Genome scans among 4 natural sympatric pairs, using loci segregating in the map, revealed a signature of selection for 24 loci. Loci exhibiting a signature of selection were associated with QTL relative to other regions of the genome more often than expected by chance alone. Two parallel QTL outliers for growth and condition factor exhibited segregation distortion in both mapping families, supporting the hypothesis that adaptive divergence contributing to parallel reductions of gene flow among natural populations may cause genetic incompatibilities. Overall, these findings offer evidence that the genetic architecture of ecological speciation is associated with signatures of selection in nature, providing strong support for the hypothesis that divergent

  14. Are we analyzing speciation without prejudice?

    PubMed

    Johannesson, Kerstin

    2010-09-01

    Physical isolation has long been the null hypothesis of speciation, with exceptional evidence required to suggest speciation with gene flow. Following recent persuasive theoretical support and strong empirical examples of nonallopatric speciation, one might expect a changed view. However, a review of 73 recent empirical studies shows that when allopatric speciation is suggested, a nonallopatric alternative is rarely considered, whereas the opposite is true in studies suggesting sympatric speciation, indicating a biased treatment of different speciation models. Although increasing support for ecological speciation suggests natural selection as the most critical component of speciation, gene flow remains an issue. Methods for unbiased hypothesis testing are available, and the genetic and phylogeographic data required for appropriate tests can be generated. Focus on phylogenies and functions of individual genes have revealed strong idiosyncratic elements of speciation, such as single genes with possible allopatric origin that make significant contributions during nonallopatric phases of speciation. Hence a more complex picture of speciation is now emerging that will benefit from unbiased evaluation of both allopatric and sympatric mechanisms of speciation.

  15. Adaptive, but not condition-dependent, body shape differences contribute to assortative mating preferences during ecological speciation.

    PubMed

    Greenway, Ryan; Drexler, Shannon; Arias-Rodriguez, Lenin; Tobler, Michael

    2016-12-01

    Assortative mating is critical for reproductive isolation during speciation; however, the mechanisms underlying mating preferences are often unknown. Assortative mating can be mediated through preferences for condition-dependent and adaptive ("magic") traits, but rigorously testing these hypotheses has been impeded by trait covariation in living organisms. We used computer-generated models to examine the role of body shape in producing association preferences between fish populations undergoing ecological speciation in different habitat types. We demonstrate that body shape can serve as an adaptive trait (variation in head size between populations) and a condition-dependent signal (variation in abdominal distention among individuals). Female preferences for stimuli varying in only one aspect of body shape uncovered evidence for body shape as a magic trait across population pairs, but no evidence for body shape serving as a condition-dependent signal. Evolution of preferences only in females from one habitat type as well as stronger preferences in sympatric nonsulfidic as opposed to allopatric nonsulfidic populations suggests that reinforcement may have played a role in producing the observed patterns. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  16. The birds, the bees, and the virtual flowers: can pollinator behavior drive ecological speciation in flowering plants?

    PubMed

    Gegear, Robert J; Burns, James G

    2007-10-01

    Biologists have long assumed that pollinator behavior is an important force in angiosperm speciation, yet there is surprisingly little direct evidence that floral preferences in pollinators can drive floral divergence and the evolution of reproductive (ethological) isolation between incipient plant species. In this study, we expose computer-generated plant populations with a wide variation in flower color to selection by live and virtual hummingbirds and bumblebees and track evolutionary changes in flower color over multiple generations. Flower color, which was derived from the known genetic architecture and phenotypic variance of naturally occurring plant species pollinated by both groups, evolved in simulations through a genetic algorithm in which pollinator preference determined changes in flower color between generations. The observed preferences of live hummingbirds and bumblebees were strong enough to cause adaptive divergence in flower color between plant populations but did not lead to ethological isolation. However, stronger preferences assigned to virtual pollinators in sympatric and allopatric scenarios rapidly produced ethological isolation. Pollinators can thus drive ecological speciation in flowering plants, but more rigorous and comprehensive behavioral studies are required to specify conditions that produce sufficient preference levels in pollinators.

  17. Divergent ecology of sympatric clones of the asexual gecko, Lepidodactylus lugubris.

    PubMed

    Bolger, Douglas T; Case, Ted J

    1994-12-01

    We report differences in the thermal biology, elevational, temporal and geographic distributions of sympatric clones of the widespread asexual house gecko, Lepidodactylus lugubris. The two most common L. lugubris clones in Fiji, clones 2NA and 2NB, differ significantly in preferred temperature as measured in a laboratory heat gradient, but were similar in critical thermal maximum and minimum. Significant differences were found in the relative frequency of clones 2NA, 2NB, and a third Fijian clone, clone 3NB, at seven sites along an elevational gradient in Fiji. Clone 2NB was not collected at sites above 235 m, consistent with its higher preferred temperature, whereas clone 2NA was captured as high as 835 m. Clone 3NB was extremely rare at sealevel (1% of all individuals at three sites below 100 m), but predominated at the two highest-elevation sites (42% and 100%). Clones 2NA and 2NB did not differ significantly in their activity time or ambient activity temperature at low-elevation sites. Clone 3NB however, was active on significantly cooler nights at two of those sites. These significant inter-clonal differences in spatial and temporal distribution should allow a more complete utilization of resources by the assemblage of clones than by any single clonal genotype, and may promote coexistence of clones at a within-island and within-site scale. Clone 2NA, which is the most common clone in Fiji and has the broadest elevational distribution, also has the widest geographic distribution. It was the predominant clone at 27 of 34 sites surveyed in nine Pacific archipelagoes. This suggests that the ecological attributes that favor this clone in Fiji also favor it elsewhere in the Pacific despite differing environmental conditions and clonal composition in those areas.

  18. Ecological divergence of two sympatric lineages of Buggy Creek virus, an arbovirus associated with birds.

    PubMed

    Brown, Charles R; Padhi, Abinash; Moore, Amy T; Brown, Mary Bomberger; Foster, Jerome E; Pfeffer, Martin; O'Brien, Valerie A; Komar, Nicholas

    2009-11-01

    Most arthropod-borne viruses (arboviruses) show distinct serological subtypes or evolutionary lineages, with the evolution of different strains often assumed to reflect differences in ecological selection pressures. Buggy Creek virus (BCRV) is an unusual RNA virus (Togaviridae, Alphavirus) that is associated primarily with a cimicid swallow bug (Oeciacus vicarius) as its vector and the Cliff Swallow (Petrochelidon pyrrhonota) and the introduced House Sparrow (Passer domesticus) as its amplifying hosts. There are two sympatric lineages of BCRV (lineages A and B) that differ from each other by > 6% at the nucleotide level. Analysis of 385 BCRV isolates all collected from bug vectors at a study site in southwestern Nebraska, USA, showed that the lineages differed in their peak times of seasonal occurrence within a summer. Lineage A was more likely to be found at recently established colonies, at those in culverts (rather than on highway bridges), and at those with invasive House Sparrows, and in bugs on the outsides of nests. Genetic diversity of lineage A increased with bird colony size and at sites with House Sparrows, while that of lineage B decreased with colony size and was unaffected by House Sparrows. Lineage A was more cytopathic on mammalian cells than was lineage B. These two lineages have apparently diverged in their transmission dynamics, with lineage A possibly more dependent on birds and lineage B perhaps more a bug virus. The long-standing association between Cliff Swallows and BCRV may have selected for immunological resistance to the virus by swallows and thus promoted the evolution of the more bug-adapted lineage B. In contrast, the recent arrival of the introduced House Sparrow and its high competence as a BCRV amplifying host may be favoring the more bird-dependent lineage A.

  19. Multilocus phylogeny of Crenicichla (Teleostei: Cichlidae), with biogeography of the C. lacustris group: species flocks as a model for sympatric speciation in rivers.

    PubMed

    Piálek, Lubomír; Ríčan, Oldřich; Casciotta, Jorge; Almirón, Adriana; Zrzavý, Jan

    2012-01-01

    First multilocus analysis of the largest Neotropical cichlid genus Crenicichla combining mitochondrial (cytb, ND2, 16S) and nuclear (S7 intron 1) genes and comprising 602 sequences of 169 specimens yields a robust phylogenetic hypothesis. The best marker in the combined analysis is the ND2 gene which contributes throughout the whole range of hierarchical levels in the tree and shows weak effects of saturation at the 3rd codon position. The 16S locus exerts almost no influence on the inferred phylogeny. The nuclear S7 intron 1 resolves mainly deeper nodes. Crenicichla is split into two main clades: (1) Teleocichla, the Crenicichla wallacii group, and the Crenicichla lugubris-Crenicichla saxatilis groups ("the TWLuS clade"); (2) the Crenicichla reticulata group and the Crenicichla lacustris group-Crenicichla macrophthalma ("the RMLa clade"). Our study confirms the monophyly of the C. lacustris species group with very high support. The biogeographic reconstruction of the C. lacustris group using dispersal-vicariance analysis underlines the importance of ancient barriers between the middle and upper Paraná River (the Guaíra Falls) and between the middle and upper Uruguay River (the Moconá Falls). Our phylogeny recovers two endemic species flocks within the C. lacustris group, the Crenicichla missioneira species flock and the herein discovered Crenicichla mandelburgeri species flock from the Uruguay and Paraná/Iguazú Rivers, respectively. We discuss putative sympatric diversification of trophic traits (morphology of jaws and lips, dentition) and propose these species flocks as models for studying sympatric speciation in complex riverine systems. The possible role of hybridization as a mechanism of speciation is mentioned with a recorded example (Crenicichla scottii).

  20. Ecological and genetic factors influencing the transition between host-use strategies in sympatric Heliconius butterflies.

    PubMed

    Merrill, R M; Naisbit, R E; Mallet, J; Jiggins, C D

    2013-09-01

    Shifts in host-plant use by phytophagous insects have played a central role in their diversification. Evolving host-use strategies will reflect a trade-off between selection pressures. The ecological niche of herbivorous insects is partitioned along several dimensions, and if populations remain in contact, recombination will break down associations between relevant loci. As such, genetic architecture can profoundly affect the coordinated divergence of traits and subsequently the ability to exploit novel habitats. The closely related species Heliconius cydno and H. melpomene differ in mimetic colour pattern, habitat and host-plant use. We investigate the selection pressures and genetic basis underlying host-use differences in these two species. Host-plant surveys reveal that H. melpomene specializes on a single species of Passiflora. This is also true for the majority of other Heliconius species in secondary growth forest at our study site, as expected under a model of interspecific competition. In contrast, H. cydno, which uses closed-forest habitats where both Heliconius and Passiflora are less common, appears not to be restricted by competition and uses a broad selection of the available Passiflora. However, other selection pressures are likely involved, and field experiments reveal that early larval survival of both butterfly species is highest on Passiflora menispermifolia, but most markedly so for H. melpomene, the specialist on that host. Finally, we demonstrate an association between host-plant acceptance and colour pattern amongst interspecific hybrids, suggesting that major loci underlying these important ecological traits are physically linked in the genome. Together, our results reveal ecological and genetic associations between shifts in habitat, host use and mimetic colour pattern that have likely facilitated both speciation and coexistence.

  1. Herbivorous insects: model systems for the comparative study of speciation ecology.

    PubMed

    Funk, Daniel J; Filchak, Kenneth E; Feder, Jeffrey L

    2002-11-01

    Does ecological divergence drive species-level evolutionary diversification? How so and to what degree? These questions were central to the thinking of the evolutionary synthesis. Only recently, however, has the ecology of speciation become an important focus of empirical study. Here, we argue that ecologically specialized, phylogenetically diverse, and experimentally tractable herbivorous insect taxa offer great opportunities to study the myriad mechanisms by which ecology may cause reproductive isolation and promote speciation. We call for the development and integrated experimental study of a taxonomic diversity of herbivore model systems and discuss the availability and recent evaluation of suitable taxa. Most importantly, we describe a general comparative framework that can be used to rigorously test a variety of hypotheses about the relative contributions and the macroevolutionary generality of particular mechanisms. Finally, we illustrate important issues for the experimental analysis of speciation ecology by demonstrating the consequences of specialized host associations for ecological divergence and premating isolation in Neochlamisus bebbianae leaf beetles.

  2. A combination of sexual and ecological divergence contributes to the spread of a chromosomal rearrangement during initial stages of speciation

    USDA-ARS?s Scientific Manuscript database

    Chromosomal rearrangements between sympatric species often contain multiple loci contributing to assortative mating, local adaptation, and hybrid sterility. When and how these associations arise during the process of speciation remains a subject of debate. Here, we address the relative roles of loca...

  3. Ecological niche partitioning between Anopheles gambiae molecular forms in Cameroon: the ecological side of speciation

    PubMed Central

    Simard, Frédéric; Ayala, Diego; Kamdem, Guy Colince; Pombi, Marco; Etouna, Joachim; Ose, Kenji; Fotsing, Jean-Marie; Fontenille, Didier; Besansky, Nora J; Costantini, Carlo

    2009-01-01

    Background Speciation among members of the Anopheles gambiae complex is thought to be promoted by disruptive selection and ecological divergence acting on sets of adaptation genes protected from recombination by polymorphic paracentric chromosomal inversions. However, shared chromosomal polymorphisms between the M and S molecular forms of An. gambiae and insufficient information about their relationship with ecological divergence challenge this view. We used Geographic Information Systems, Ecological Niche Factor Analysis, and Bayesian multilocus genetic clustering to explore the nature and extent of ecological and chromosomal differentiation of M and S across all the biogeographic domains of Cameroon in Central Africa, in order to understand the role of chromosomal arrangements in ecological specialisation within and among molecular forms. Results Species distribution modelling with presence-only data revealed differences in the ecological niche of both molecular forms and the sibling species, An. arabiensis. The fundamental environmental envelope of the two molecular forms, however, overlapped to a large extent in the rainforest, where they occurred in sympatry. The S form had the greatest niche breadth of all three taxa, whereas An. arabiensis and the M form had the smallest niche overlap. Correspondence analysis of M and S karyotypes confirmed that molecular forms shared similar combinations of chromosomal inversion arrangements in response to the eco-climatic gradient defining the main biogeographic domains occurring across Cameroon. Savanna karyotypes of M and S, however, segregated along the smaller-scale environmental gradient defined by the second ordination axis. Population structure analysis identified three chromosomal clusters, each containing a mixture of M and S specimens. In both M and S, alternative karyotypes were segregating in contrasted environments, in agreement with a strong ecological adaptive value of chromosomal inversions. Conclusion Our

  4. Niche dimensionality and the genetics of ecological speciation.

    PubMed

    Chevin, Luis-Miguel; Decorzent, Guillaume; Lenormand, Thomas

    2014-05-01

    Niche dimensionality is suggested to be a key determinant of ecological speciation ("multifarious selection" hypothesis), but genetic aspects of this process have not been investigated theoretically. We use Fisher's geometrical model to study how niche dimensionality influences the mean fitness of hybrids formed upon secondary contact between populations adapting in allopatry. Gaussian selection for an optimum generates two forms of reproductive isolation (RI): an extrinsic component due to maladaptation of the mean phenotype, and an intrinsic variance load resulting from what we term transgressive incompatibilities between mutations fixed in different populations. We show that after adaptation to a new environment, RI increases with (1) the mean initial maladaptation of diverging population, and (2) niche dimensionality, which increases the phenotypic variability of fixed mutations. Under mutation selection drift equilibrium in a constant environment, RI accumulates steadily with time, at a rate that also increases with niche dimensionality. A similar pattern can be produced by successive shifts in the optimum phenotype. Niche dimensionality thus has an effect per se on postzygotic isolation, beyond putative indirect effects (stronger selection, more genes). Our mechanism is consistent with empirical evidence about transgressive segregation in crosses between divergent populations, and with patterns of accumulation of RI with time in many taxa. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  5. Using ecological niche models and niche analyses to understand speciation patterns: the case of sister neotropical orchid bees.

    PubMed

    Silva, Daniel P; Vilela, Bruno; De Marco, Paulo; Nemésio, André

    2014-01-01

    The role of past connections between the two major South American forested biomes on current species distribution has been recognized a long time ago. Climatic oscillations that further separated these biomes have promoted parapatric speciation, in which many species had their continuous distribution split, giving rise to different but related species (i.e., different potential distributions and realized niche features). The distribution of many sister species of orchid bees follow this pattern. Here, using ecological niche models and niche analyses, we (1) tested the role of ecological niche differentiation on the divergence between sister orchid-bees (genera Eulaema and Eufriesea) from the Amazon and Atlantic forests, and (2) highlighted interesting areas for new surveys. Amazonian species occupied different realized niches than their Atlantic sister species. Conversely, species of sympatric but distantly related Eulaema bees occupied similar realized niches. Amazonian species had a wide potential distribution in South America, whereas Atlantic Forest species were more limited to the eastern coast of the continent. Additionally, we identified several areas in need of future surveys. Our results show that the realized niche of Atlantic-Amazonian sister species of orchid bees, which have been previously treated as allopatric populations of three species, had limited niche overlap and similarity. These findings agree with their current taxonomy, which treats each of those populations as distinct valid species.

  6. Using Ecological Niche Models and Niche Analyses to Understand Speciation Patterns: The Case of Sister Neotropical Orchid Bees

    PubMed Central

    Silva, Daniel P.; Vilela, Bruno; De Marco, Paulo; Nemésio, André

    2014-01-01

    The role of past connections between the two major South American forested biomes on current species distribution has been recognized a long time ago. Climatic oscillations that further separated these biomes have promoted parapatric speciation, in which many species had their continuous distribution split, giving rise to different but related species (i.e., different potential distributions and realized niche features). The distribution of many sister species of orchid bees follow this pattern. Here, using ecological niche models and niche analyses, we (1) tested the role of ecological niche differentiation on the divergence between sister orchid-bees (genera Eulaema and Eufriesea) from the Amazon and Atlantic forests, and (2) highlighted interesting areas for new surveys. Amazonian species occupied different realized niches than their Atlantic sister species. Conversely, species of sympatric but distantly related Eulaema bees occupied similar realized niches. Amazonian species had a wide potential distribution in South America, whereas Atlantic Forest species were more limited to the eastern coast of the continent. Additionally, we identified several areas in need of future surveys. Our results show that the realized niche of Atlantic-Amazonian sister species of orchid bees, which have been previously treated as allopatric populations of three species, had limited niche overlap and similarity. These findings agree with their current taxonomy, which treats each of those populations as distinct valid species. PMID:25422941

  7. Ecological speciation in the tropics: insights from comparative genetic studies in Amazonia

    PubMed Central

    Beheregaray, Luciano B.; Cooke, Georgina M.; Chao, Ning L.; Landguth, Erin L.

    2015-01-01

    Evolution creates and sustains biodiversity via adaptive changes in ecologically relevant traits. Ecologically mediated selection contributes to genetic divergence both in the presence or absence of geographic isolation between populations, and is considered an important driver of speciation. Indeed, the genetics of ecological speciation is becoming increasingly studied across a variety of taxa and environments. In this paper we review the literature of ecological speciation in the tropics. We report on low research productivity in tropical ecosystems and discuss reasons accounting for the rarity of studies. We argue for research programs that simultaneously address biogeographical and taxonomic questions in the tropics, while effectively assessing relationships between reproductive isolation and ecological divergence. To contribute toward this goal, we propose a new framework for ecological speciation that integrates information from phylogenetics, phylogeography, population genomics, and simulations in evolutionary landscape genetics (ELG). We introduce components of the framework, describe ELG simulations (a largely unexplored approach in ecological speciation), and discuss design and experimental feasibility within the context of tropical research. We then use published genetic datasets from populations of five codistributed Amazonian fish species to assess the performance of the framework in studies of tropical speciation. We suggest that these approaches can assist in distinguishing the relative contribution of natural selection from biogeographic history in the origin of biodiversity, even in complex ecosystems such as Amazonia. We also discuss on how to assess ecological speciation using ELG simulations that include selection. These integrative frameworks have considerable potential to enhance conservation management in biodiversity rich ecosystems and to complement historical biogeographic and evolutionary studies of tropical biotas. PMID:25653668

  8. Ecological speciation in the tropics: insights from comparative genetic studies in Amazonia.

    PubMed

    Beheregaray, Luciano B; Cooke, Georgina M; Chao, Ning L; Landguth, Erin L

    2014-01-01

    Evolution creates and sustains biodiversity via adaptive changes in ecologically relevant traits. Ecologically mediated selection contributes to genetic divergence both in the presence or absence of geographic isolation between populations, and is considered an important driver of speciation. Indeed, the genetics of ecological speciation is becoming increasingly studied across a variety of taxa and environments. In this paper we review the literature of ecological speciation in the tropics. We report on low research productivity in tropical ecosystems and discuss reasons accounting for the rarity of studies. We argue for research programs that simultaneously address biogeographical and taxonomic questions in the tropics, while effectively assessing relationships between reproductive isolation and ecological divergence. To contribute toward this goal, we propose a new framework for ecological speciation that integrates information from phylogenetics, phylogeography, population genomics, and simulations in evolutionary landscape genetics (ELG). We introduce components of the framework, describe ELG simulations (a largely unexplored approach in ecological speciation), and discuss design and experimental feasibility within the context of tropical research. We then use published genetic datasets from populations of five codistributed Amazonian fish species to assess the performance of the framework in studies of tropical speciation. We suggest that these approaches can assist in distinguishing the relative contribution of natural selection from biogeographic history in the origin of biodiversity, even in complex ecosystems such as Amazonia. We also discuss on how to assess ecological speciation using ELG simulations that include selection. These integrative frameworks have considerable potential to enhance conservation management in biodiversity rich ecosystems and to complement historical biogeographic and evolutionary studies of tropical biotas.

  9. Models of speciation: where are we now?

    PubMed

    Gavrilets, Sergey

    2014-01-01

    Theory building is an integral part of biological research, in general, and of speciation research, in particular. Here, I review the modeling work on speciation done in the last 10 years or so, assessing the progress made and identifying areas where additional effort is required. Specific topics considered include evolutionary dynamics of genetic incompatibilities, spatial and temporal patterns of speciation, links to neutral theory of biodiversity, effects of multidimensionality of phenotype, sympatric and parapatric speciation, adaptive radiation, speciation by sexual conflict, and models tailored for specific biological systems. Particularly challenging questions for future theoretical research identified here are 1) incorporating gene regulatory networks in models describing accumulation of genetic incompatibilities; 2) integrating models of community ecology with those developed in speciation theory; 3) building models providing better insights on the dynamics of parapatric speciation; 4) modeling speciation in multidimensional ecological niches with mating preferences based on multidimensional mating cues and sexual characters; 5) linking microevolutionary processes with macroevolutionary patterns as observed in adaptive radiations and paleontological record; 6) modeling speciation in specific systems studied by empirical biologists; and 7) modeling human origins. The insights from dynamic models of speciation should be useful in developing statistical tools that would enable empiricists to infer the history of past evolutionary divergence and speciation from genomic data.

  10. Mate choice, sexual imprinting, and speciation: a test of a one-allele isolating mechanism in sympatric sticklebacks.

    PubMed

    Albert, Arianne Y K

    2005-04-01

    One-allele isolating mechanisms should make the evolution of reproductive isolation between potentially hybridizing taxa easier than two-allele mechanisms, but the generality of one-allele mechanisms in nature has yet to be established. A potentially important one-allele mechanism is sexual imprinting, where the mate preferences of individuals are based on the phenotype of their parents. Here I test the possibility that sexual imprinting promotes reproductive isolation using sympatric species of threespine sticklebacks (Gasterosteus aculeatus). Sympatric species of sticklebacks consist of large benthic species and small limnetic species that are reproductively isolated and adapted to feeding in different environments. I fostered families of F1 hybrids between the species to males of both species. Preferences of these fostered females for males of either type revealed little or no effect of sexual imprinting on assortative mating. However, F1 females showed preferences for males that were similar to themselves in length, suggesting that size-assortative mating may be more important than sexual imprinting for promoting reproductive isolation between species pairs of threespine sticklebacks.

  11. Coexistence of three sympatric cormorants (Phalacrocorax spp.); partitioning of time as an ecological resource

    PubMed Central

    Mahendiran, Mylswamy

    2016-01-01

    Resource partitioning is well known along food and habitat for reducing competition among sympatric species, yet a study on temporal partitioning as a viable basis for reducing resource competition is not empirically investigated. Here, I attempt to identify the mechanism of temporal partitioning by intra- and interspecific diving analyses of three sympatric cormorant species at different freshwater wetlands around the Delhi region. Diving results indicated that cormorants opted for a shallow diving; consequently, they did not face any physiological stress. Moreover, diving durations were linked with seasons, foraging time and foraging habitats. Intraspecific comparison suggested that cormorants spent a longer time underwater in early hours of the day. Therefore, time spent for dive was higher in the forenoon than late afternoon, and the interspecific analysis also yielded a similar result. When Phalacrocorax niger and Phalacrocorax fuscicollis shared the same foraging habitat, they tended to differ in their foraging time (forenoon/afternoon). However, when P. niger and Phalacrocorax carbo shared the same foraging time, they tended to use different foraging habitats (lentic/lotic) leading to a mechanism of resource partitioning. Thus, sympatric cormorants effectively use time as a resource to exploit the food resources and successful coexistence. PMID:27293799

  12. Ecological divergence and speciation between lemur (Eulemur) sister species in Madagascar.

    PubMed

    Blair, M E; Sterling, E J; Dusch, M; Raxworthy, C J; Pearson, R G

    2013-08-01

    Understanding ecological niche evolution over evolutionary timescales is crucial to elucidating the biogeographic history of organisms. Here, we used, for the first time, climate-based ecological niche models (ENMs) to test hypotheses about ecological divergence and speciation processes between sister species pairs of lemurs (genus Eulemur) in Madagascar. We produced ENMs for eight species, all of which had significant validation support. Among the four sister species pairs, we found nonequivalent niches between sisters, varying degrees of niche overlap in ecological and geographic space, and support for multiple divergence processes. Specifically, three sister-pair comparisons supported the null model that niches are no more divergent than the available background region. These findings are consistent with an allopatric speciation model, and for two sister pairs (E. collaris-E. cinereiceps and E. rufus-E. rufifrons), a riverine barrier has been previously proposed for driving allopatric speciation. However, for the fourth sister pair E. flavifrons-E. macaco, we found support for significant niche divergence, and consistent with their parapatric distribution on an ecotone and the lack of obvious geographic barriers, these findings most strongly support a parapatric model of speciation. These analyses thus suggest that various speciation processes have led to diversification among closely related Eulemur species.

  13. Hybrid speciation in birds: allopatry more important than ecology?

    PubMed

    Brelsford, Alan

    2011-09-01

    Hybrid speciation was once thought to be rare in animals, but over the past decade, improved molecular analysis techniques and increased research attention have allowed scientists to uncover many examples. In this issue, two papers (Elgvin et al. 2011; Hermansen et al. 2011) present compelling evidence for the hybrid origin of the Italian sparrow based on nuclear and mitochondrial DNA sequences, microsatellites, and plumage coloration. These studies point to an important role for geographic isolation in the process of hybrid speciation, and provide a starting point for closer examination of the genetic and behavioural mechanisms involved. © 2011 Blackwell Publishing Ltd.

  14. Multivariate discrimination among cryptic mites of the genus Androlaelaps (Acari: Mesostigmata: Laelapidae) parasitic of sympatric akodontine rodents (Cricetidae: Sigmodontinae) in northeastern Argentina: possible evidence of host switch followed by speciation, with the description of two new species.

    PubMed

    Lareschi, Marcela; Galliari, Carlos

    2014-12-01

    Laelapids are among the most common ectoparasites of rodents. Currently, it is under discussion whether there is a single polixenous species that parasites a variety of hosts, or whether there are cryptic species highly host specific. Herein, multivariate morphometric analyses of cryptic sympatric laelapids of the genus Androlaelaps allowed us to identify different species. These species are specific of their akodontine hosts, Akodon montensis and Thaptomys nigrita, in localities situated in northeastern Argentina. In addition, we analyzed similar laelapids associated with the akodontines Deltamys kempi and Akodon cursor. Using principle component analyses we differentiated four laelapid species, each one host specific, independent of sympatry of the hosts, and without geographical variation. From these four species, we described two new species (Androlaelaps navonae n. sp. and Androlaelaps wingei n. sp.). We determined the four species based on a range of variations in several characters, mainly size. These four laelapid species belong to the Androlaelaps rotundus species group, specific to akodontines. These species are very similar among them but differ from the remainder species of the group by their small size, distance between j6 setae similar to the distance between the z5 setae, strong ventral setae, opisthogaster with 13 pairs of strong setae (one close to the distal margin of epigynal shield), and anal shield wider than long. Further studies will elucidate whether they constitute a new laelapid genus. Phylogenetic and ecological factors influencing host-specificity are discussed, and we propose that host colonization could have taken place by host switching of a single laelapid species among rodent species, followed by speciation.

  15. Evidence for ecological speciation via a host shift in the holly leafminer, Phytomyza glabricola (Diptera: Agromyzidae)

    USDA-ARS?s Scientific Manuscript database

    Evolutionary radiations have been well documented in plants and insects, but we have yet to determine the relative impact of genetic drift and natural selection underlying these radiations. If radiations are adaptive, the diversity of species could be due to ecological speciation in these lineages. ...

  16. Pollinator-driven ecological speciation in plants: new evidence and future perspectives

    PubMed Central

    Van der Niet, Timotheüs; Peakall, Rod; Johnson, Steven D.

    2014-01-01

    Background The hypothesis that pollinators have been important drivers of angiosperm diversity dates back to Darwin, and remains an important research topic today. Mounting evidence indicates that pollinators have the potential to drive diversification at several different stages of the evolutionary process. Microevolutionary studies have provided evidence for pollinator-mediated floral adaptation, while macroevolutionary evidence supports a general pattern of pollinator-driven diversification of angiosperms. However, the overarching issue of whether, and how, shifts in pollination system drive plant speciation represents a critical gap in knowledge. Bridging this gap is crucial to fully understand whether pollinator-driven microevolution accounts for the observed macroevolutionary patterns. Testable predictions about pollinator-driven speciation can be derived from the theory of ecological speciation, according to which adaptation (microevolution) and speciation (macroevolution) are directly linked. This theory is a particularly suitable framework for evaluating evidence for the processes underlying shifts in pollination systems and their potential consequences for the evolution of reproductive isolation and speciation. Scope This Viewpoint paper focuses on evidence for the four components of ecological speciation in the context of plant-pollinator interactions, namely (1) the role of pollinators as selective agents, (2) floral trait divergence, including the evolution of ‘pollination ecotypes‘, (3) the geographical context of selection on floral traits, and (4) the role of pollinators in the evolution of reproductive isolation. This Viewpoint also serves as the introduction to a Special Issue on Pollinator-Driven Speciation in Plants. The 13 papers in this Special Issue range from microevolutionary studies of ecotypes to macroevolutionary studies of historical ecological shifts, and span a wide range of geographical areas and plant families. These studies

  17. Morphological variability in the malaria vector, Anopheles moucheti, is not indicative of speciation: evidences from sympatric south Cameroon populations.

    PubMed

    Antonio-Nkondjio, Christophe; Simard, Frédéric; Cohuet, Anna; Fontenille, Didier

    2002-10-01

    Anopheles moucheti is a major human malaria vector in the vicinity of slow moving rivers in the tropical forests of Central Africa. Morphological variations in natural populations of A. moucheti led to the designation of three morphological forms named A. moucheti moucheti, A. moucheti nigeriensis and A. moucheti bervoetsi. Using allozyme markers, we investigated to which extent morphological and/or geographical populations of A. moucheti were genetically differentiated. Mosquitoes were collected from four villages 20-200 km distant apart in south Cameroon, where specimens from each morphological form were found in sympatry. All populations appeared highly homogenous across both morphological type and geographic location. Significant genetic differentiation was only observed between two locations 150 km apart (F(st)=0.029; P=0.006), while no pairwise F(st) estimate between morphological forms reached statistical significance. Further evidence against any taxonomic value of this morphological classification was provided by direct observation of morphological variation within the progeny of field-collected females from all three types. Single female offspring always belonged to at least two morphologically recognised types and most often, a mixture of all three forms was observed. Our results therefore demonstrate that morphological variability within A. moucheti natural populations is not indicative of speciation. With this respect, restricted migration of individuals across river systems may be a more important factor in shaping population genetic structure of A. moucheti.

  18. Genetic Tests for Ecological and Allopatric Speciation in Anoles on an Island Archipelago

    PubMed Central

    Johansson, Helena

    2010-01-01

    From Darwin's study of the Galapagos and Wallace's study of Indonesia, islands have played an important role in evolutionary investigations, and radiations within archipelagos are readily interpreted as supporting the conventional view of allopatric speciation. Even during the ongoing paradigm shift towards other modes of speciation, island radiations, such as the Lesser Antillean anoles, are thought to exemplify this process. Geological and molecular phylogenetic evidence show that, in this archipelago, Martinique anoles provide several examples of secondary contact of island species. Four precursor island species, with up to 8 mybp divergence, met when their islands coalesced to form the current island of Martinique. Moreover, adjacent anole populations also show marked adaptation to distinct habitat zonation, allowing both allopatric and ecological speciation to be tested in this system. We take advantage of this opportunity of replicated island coalescence and independent ecological adaptation to carry out an extensive population genetic study of hypervariable neutral nuclear markers to show that even after these very substantial periods of spatial isolation these putative allospecies show less reproductive isolation than conspecific populations in adjacent habitats in all three cases of subsequent island coalescence. The degree of genetic interchange shows that while there is always a significant genetic signature of past allopatry, and this may be quite strong if the selection regime allows, there is no case of complete allopatric speciation, in spite of the strong primae facie case for it. Importantly there is greater genetic isolation across the xeric/rainforest ecotone than is associated with any secondary contact. This rejects the development of reproductive isolation in allopatric divergence, but supports the potential for ecological speciation, even though full speciation has not been achieved in this case. It also explains the paucity of anole species

  19. Variable progress toward ecological speciation in parapatry: stickleback across eight lake-stream transitions.

    PubMed

    Berner, Daniel; Grandchamp, Anne-Catherine; Hendry, Andrew P

    2009-07-01

    Divergent selection between contrasting habitats can sometimes drive adaptive divergence and the evolution of reproductive isolation in the face of initially high gene flow. "Progress" along this ecological speciation pathway can range from minimal divergence to full speciation. We examine this variation for threespine stickleback fish that evolved independently across eight lake-stream habitat transitions. By quantifying stickleback diets, we show that lake-stream transitions usually coincide with limnetic-benthic ecotones. By measuring genetically based phenotypes, we show that these ecotones often generate adaptive divergence in foraging morphology. By analyzing neutral genetic markers (microsatellites), we show that adaptive divergence is often associated with the presence of two populations maintaining at least partial reproductive isolation in parapatry. Coalescent-based simulations further suggest that these populations have diverged with gene flow within a few thousand generations, although we cannot rule out the possibility of phases of allopatric divergence. Finally, we find striking variation among the eight lake-stream transitions in progress toward ecological speciation. This variation allows us to hypothesize that progress is generally promoted by strong divergent selection and limited dispersal across the habitat transitions. Our study thus makes a case for ecological speciation in a parapatric context, while also highlighting variation in the outcome.

  20. Genomic Heterogeneity and Ecological Speciation within One Subspecies of Bacillus subtilis

    PubMed Central

    Kopac, Sarah; Wang, Zhang; Wiedenbeck, Jane; Sherry, Jessica; Wu, Martin

    2014-01-01

    Closely related bacterial genomes usually differ in gene content, suggesting that nearly every strain in nature may be ecologically unique. We have tested this hypothesis by sequencing the genomes of extremely close relatives within a recognized taxon and analyzing the genomes for evidence of ecological distinctness. We compared the genomes of four Death Valley isolates plus the laboratory strain W23, all previously classified as Bacillus subtilis subsp. spizizenii and hypothesized through multilocus analysis to be members of the same ecotype (an ecologically homogeneous population), named putative ecotype 15 (PE15). These strains showed a history of positive selection on amino acid sequences in 38 genes. Each of the strains was under a different regimen of positive selection, suggesting that each strain is ecologically unique and represents a distinct ecological speciation event. The rate of speciation appears to be much faster than can be resolved with multilocus sequencing. Each PE15 strain contained unique genes known to confer a function for bacteria. Remarkably, no unique gene conferred a metabolic system or subsystem function that was not already present in all the PE15 strains sampled. Thus, the origin of ecotypes within this clade shows no evidence of qualitative divergence in the set of resources utilized. Ecotype formation within this clade is consistent with the nanoniche model of bacterial speciation, in which ecotypes use the same set of resources but in different proportions, and genetic cohesion extends beyond a single ecotype to the set of ecotypes utilizing the same resources. PMID:24907327

  1. Ecological comparison of sympatric populations of sand lizards (Cophosaurus texanus and Callisaurus draconoides)

    SciTech Connect

    Smith, D.D.; Medica, P.A.; Sanborn, S.R.

    1987-04-30

    Sympatric populations of Cophosaurus texanus and Callisaurus draconoides were periodically sampled from March 1973 through April 1974 at Burro Creek, Mohave County, Arizona. Callisaurus were also sampled at Rock Valley, Nye County, Nevada. Sex ratios were skewed in favor of males in the adult Cophosaurus but were equal in both adult populations of Callisaurus. Both species became sexually mature as yearlings. Mean clutch sizes were 3.55 (+/- 0.83) for Cophosaurus, and 4.25 (+/- 1.08) and 5.07 (+/- 1.33) for Callisaurus at Burro Creek and Rock Valley respectively. Evidence of multiple clutches was exhibited by both species. Egg weight/body weight ratios for both species and clutch weight/body weight ratios for Cophosaurus were notably smaller than previously reported. At Burro Creek both species were highly insectivorus, with orthopterans comprising the largest food group of each. Niche overlap for food was high at the ordinal level, but at the familial level it is apparent that Callisaurus probably fed in the more xeric areas of the riparian habitat. No differences were found in the temperature responses of these two lizards. However, minor temporal separations and substantial spatial partitioning were observed. Callisaurus preferred sandy open areas, while Cophosaurus preferred the presence of some rocks and boulders. 31 references, 2 figures, 8 tables.

  2. Ecological distributions, phenological isolation, and genetic structure in sympatric and parapatric populations of the Larrea tridentata polyploid complex.

    PubMed

    Laport, Robert G; Minckley, Robert L; Ramsey, Justin

    2016-07-01

    Polyploidy is widely recognized as a mechanism of diversification. Contributions of polyploidy to specific pre- and postzygotic barriers-and classifications of polyploid speciation as "ecological" vs. "non-ecological"-are more contentious. Evaluation of these issues requires comprehensive studies that test ecological characteristics of cytotypes as well as the coincidence of genetic structure with cytotype distributions. We investigated a classical example of autopolyploid speciation, Larrea tridentata, at multiple areas of cytotype co-occurrence. Habitat and phenological differences were compared between diploid, tetraploid, and hexaploid populations on the basis of edaphic, community composition, and flowering time surveys. Frequency of hybridization between diploids and tetraploids was investigated using a diploid-specific chloroplast DNA (cpDNA) marker; genetic structure for all cytotypes was assessed using amplified fragment length polymorphisms (AFLPs). Across contact zones, we found cytotypes in habitats distinguished by soil and vegetation. We observed modest differences in timing and production of flowers, indicating a degree of assortative mating that was asymmetric between cytotypes. Nonetheless, cpDNA analyses in diploid-tetraploid contact zones suggested that ∼5% of tetraploid plants had hybrid origins involving unilateral sexual polyploidization. Genetic structure of AFLPs largely coincided with cytotype distributions in diploid-tetraploid contact zones. In contrast, there was little structure in areas of contact between tetraploids and hexaploids, suggesting intercytotype gene flow or recurrent hexaploid formation. Diploid, tetraploid, and hexaploid cytotypes of L. tridentata are segregated by environmental distributions and flowering phenology in contact zones, with diploid and tetraploid populations having corresponding differences in genetic structure. © 2016 Botanical Society of America.

  3. [Pollination ecology of three sympatric species of Oenocarpus (Arecaceae) in the Colombian Amazon].

    PubMed

    Núñez A, Luis Alberto; Isaza, Carolina; Galeano, Gloria

    2015-03-01

    The understanding of pollination mechanisms is vital for developing management and conservation actions of economically important species. In order to understand the pollination mechanisms of the promising palms in the genus Oenocarpus (Arecaceae), we studied floral morphology and biology, of three sympatric species in the Colombian Amazon: O. bataua, O. balickii and O. minor. During the period 2010-2012 we made direct and continuous observations of inflorescences (visitors, pollinators, and reproductive success) of the three species in every development phase. We determined the association of the palms with their floral visitors through a complex or interaction network, whereas specificity or preference of the insects for each individual palm was assessed through paired similarity analysis, similarity analysis (ANOSIM), and ordering analysis based on nonmetric multidimensional scaling (NMSD). The three species flowered throughout the year; their inflorescences have long rachillae that hang close to each other from a short rachis, and they bear flowers in dyads or triads. Inflorescences are protandrous, thermogenic; anthesis takes place during daytime but pollination is nocturnal. We recorded 79 species of insects, mainly beetles, 33 of which visited O. balickii, 63 visited O. bataua, and 33 visited 0. minor. Although they shared some visitors, their abundance during the pistillate phase, as well as their pollen loads showed that only a few species of Curculionidae and Nitidulidae are the principal pollinators of the three studied species. Differences in network structure between staminate and pistillate phases, as well as difference in abundance found with the ANOSIM and NMSD similarity tests, suggest a high specificity of pollinators, leading to reproductive isolation among.the three species. Because all pollinating beetles were found to develop their life cycles within the inflorescences, we hypothesize the occurrence of a specialized system of mutual dependence

  4. Ecological traits of two sympatric species of Hyalella Smith, 1874 (Crustacea, Amphipoda, Dogielinotidae) from southern Brazil

    NASA Astrophysics Data System (ADS)

    da Silva Castiglioni, Daniela; Buckup, Georgina Bond

    2008-01-01

    This work was performed with the aim to test theoretical predictions regarding that the sympatric species Hyalella pleoacuta and H. castroi might show distinct population biology to facilitate its coexistence. The specimens were collected monthly with nets from August 2003 through July 2004 in two trout ponds at Sítio Vale das Trutas locality, São José dos Ausentes County, southern Brazil. In the laboratory, the specimens were measured as cephalothorax length (mm), being the sex and ovigerous conditions checked. The species H. pleoacuta was 2.94 times more frequent than H. castroi. Males were significantly greater in size than females ( H. pleoacuta—males: 0.74 ± 0.002 mm and females: 0.66 ± 0.001 mm; H. castroi—males: 0.84 ± 0.00 mm and females: 0.72 ± 0.003 mm). Males and females of H. castroi showed a greater mean body size than H. pleoacuta. Sexual maturity was attained at 0.53 mm in males and 0.48 mm in females of H. pleoacuta, and 0.72 mm in males and 0.67 mm in females of H. castroi. The frequency distribution in size classes was usually bimodal in H. pleoacuta and polymodal in H. castroi throughout the year. Sex ratio was female-biased in either species of Hyalella. Ovigerous females (carrying eggs or juveniles in the marsupium) were collected throughout the year in both Hyalella species, but H. pleoacuta and H. castroi were found with more frequency during the winter and fall, respectively. Recruitment occurred in all months of sampling, the juvenile frequency being more than 50% of the amphipods collected in almost all months in both species. The biological differences (especially body size, size at sexual maturity, number of specimens collected and reproductive peak) and microhabitat specialization can be facilitating factors in the coexistence of H. pleoacuta and H. castroi in artificial ponds raising trout.

  5. Rugged adaptive landscapes shape a complex, sympatric radiation

    PubMed Central

    Pfaender, Jobst; Hadiaty, Renny K.; Schliewen, Ulrich K.; Herder, Fabian

    2016-01-01

    Strong disruptive ecological selection can initiate speciation, even in the absence of physical isolation of diverging populations. Species evolving under disruptive ecological selection are expected to be ecologically distinct but, at least initially, genetically weakly differentiated. Strong selection and the associated fitness advantages of narrowly adapted individuals, coupled with assortative mating, are predicted to overcome the homogenizing effects of gene flow. Theoretical plausibility is, however, contrasted by limited evidence for the existence of rugged adaptive landscapes in nature. We found evidence for multiple, disruptive ecological selection regimes that have promoted divergence in the sympatric, incipient radiation of ‘sharpfin’ sailfin silverside fishes in ancient Lake Matano (Sulawesi, Indonesia). Various modes of ecological specialization have led to adaptive morphological differences between the species, and differently adapted morphs display significant but incomplete reproductive isolation. Individual fitness and variation in morphological key characters show that disruptive selection shapes a rugged adaptive landscape in this small but complex incipient lake fish radiation. PMID:26763702

  6. Rugged adaptive landscapes shape a complex, sympatric radiation.

    PubMed

    Pfaender, Jobst; Hadiaty, Renny K; Schliewen, Ulrich K; Herder, Fabian

    2016-01-13

    Strong disruptive ecological selection can initiate speciation, even in the absence of physical isolation of diverging populations. Species evolving under disruptive ecological selection are expected to be ecologically distinct but, at least initially, genetically weakly differentiated. Strong selection and the associated fitness advantages of narrowly adapted individuals, coupled with assortative mating, are predicted to overcome the homogenizing effects of gene flow. Theoretical plausibility is, however, contrasted by limited evidence for the existence of rugged adaptive landscapes in nature. We found evidence for multiple, disruptive ecological selection regimes that have promoted divergence in the sympatric, incipient radiation of 'sharpfin' sailfin silverside fishes in ancient Lake Matano (Sulawesi, Indonesia). Various modes of ecological specialization have led to adaptive morphological differences between the species, and differently adapted morphs display significant but incomplete reproductive isolation. Individual fitness and variation in morphological key characters show that disruptive selection shapes a rugged adaptive landscape in this small but complex incipient lake fish radiation. © 2016 The Author(s).

  7. Drosophila yakuba mayottensis, a new model for the study of incipient ecological speciation.

    PubMed

    Yassin, Amir

    2017-01-02

    A full understanding of how ecological factors drive the fixation of genetic changes during speciation is obscured by the lack of appropriate models with clear natural history and powerful genetic toolkits. In a recent study, we described an early stage of ecological speciation in a population of the generalist species Drosophila yakuba (melanogaster subgroup) on the island of Mayotte (Indian Ocean). On this island, flies are strongly associated with the toxic fruits of noni (Morinda citrifolia) and show a partial degree of pre-zygotic reproductive isolation. Here, I mine the nuclear and mitochondrial genomes and provide a full morphological description of this population. Only 29 nuclear sites (< 4 × 10(-7) of the genome) are fixed in this population and absent from 3 mainland populations and the closest relative D. santomea, but no mitochondrial or morphological character distinguish Mayotte flies from the mainland. This result indicates that physiological and behavioral traits may evolve faster than morphology at the early stages of speciation. Based on these differences, the Mayotte population is designated as a new subspecies, Drosophila yakuba mayottensis subsp. nov., and its strong potential in understanding the genetics of speciation and plant-insect interactions is discussed.

  8. Effects of Local Habitat Variation on the Behavioral Ecology of Two Sympatric Groups of Brown Howler Monkey (Alouatta clamitans)

    PubMed Central

    Grelle, Carlos E. V.; Strier, Karen B.; Boubli, Jean P.

    2015-01-01

    Although the brown howler monkey (Alouatta clamitans) is a relatively well-studied Neotropical primate, its behavioral and dietary flexibility at the intra-population level remains poorly documented. This study presents data collected on the behavior and ecology of two closely located groups of brown howlers during the same period at the RPPN Feliciano Miguel Abdala in southeastern Brazil. One group occupied a primary valley habitat, henceforth the Valley Group (VG), and the other group occupied a regenerating hillside habitat, the Hill Group (HG). We hypothesized differences in the behavior and ecological parameters between these sympatric groups due to the predicted harsher conditions on the hillside, compared to the valley. We measured several habitat parameters within the home range of both groups and collected data on the activity budget, diet and day range lengths, from August to November 2005, between dawn and dusk. In total, behavioral data were collected for 26 (318 h) and 28 (308 h) sampling days for VG and HG, respectively. As we predicted, HG spent significantly more time feeding and consumed less fruit and more leaves than VG, consistent with our finding that the hillside habitat was of lower quality. However, HG also spent less time resting and more time travelling than VG, suggesting that the monkeys had to expend more time and energy to obtain high-energy foods, such as fruits and flowers that were more widely spaced in their hill habitat. Our results revealed that different locations in this forest vary in quality and raise the question of how different groups secure their home ranges. Fine-grained comparisons such as this are important to prioritize conservation and management areas within a reserve. PMID:26147203

  9. Effects of Local Habitat Variation on the Behavioral Ecology of Two Sympatric Groups of Brown Howler Monkey (Alouatta clamitans).

    PubMed

    Jung, Linda; Mourthe, Italo; Grelle, Carlos E V; Strier, Karen B; Boubli, Jean P

    2015-01-01

    Although the brown howler monkey (Alouatta clamitans) is a relatively well-studied Neotropical primate, its behavioral and dietary flexibility at the intra-population level remains poorly documented. This study presents data collected on the behavior and ecology of two closely located groups of brown howlers during the same period at the RPPN Feliciano Miguel Abdala in southeastern Brazil. One group occupied a primary valley habitat, henceforth the Valley Group (VG), and the other group occupied a regenerating hillside habitat, the Hill Group (HG). We hypothesized differences in the behavior and ecological parameters between these sympatric groups due to the predicted harsher conditions on the hillside, compared to the valley. We measured several habitat parameters within the home range of both groups and collected data on the activity budget, diet and day range lengths, from August to November 2005, between dawn and dusk. In total, behavioral data were collected for 26 (318 h) and 28 (308 h) sampling days for VG and HG, respectively. As we predicted, HG spent significantly more time feeding and consumed less fruit and more leaves than VG, consistent with our finding that the hillside habitat was of lower quality. However, HG also spent less time resting and more time travelling than VG, suggesting that the monkeys had to expend more time and energy to obtain high-energy foods, such as fruits and flowers that were more widely spaced in their hill habitat. Our results revealed that different locations in this forest vary in quality and raise the question of how different groups secure their home ranges. Fine-grained comparisons such as this are important to prioritize conservation and management areas within a reserve.

  10. Ecological segregation in space, time and trophic niche of sympatric planktivorous petrels.

    PubMed

    Navarro, Joan; Votier, Stephen C; Aguzzi, Jacopo; Chiesa, Juan J; Forero, Manuela G; Phillips, Richard A

    2013-01-01

    The principle of competitive exclusion postulates that ecologically-similar species are expected to partition their use of resources, leading to niche divergence. The most likely mechanisms allowing such coexistence are considered to be segregation in a horizontal, vertical or temporal dimension, or, where these overlap, a difference in trophic niche. Here, by combining information obtained from tracking devices (geolocator-immersion and time depth recorders), stable isotope analyses of blood, and conventional morphometry, we provide a detailed investigation of the ecological mechanisms that explain the coexistence of four species of abundant, zooplanktivorous seabirds in Southern Ocean ecosystems (blue petrel Halobaena caerulea, Antarctic prion Pachyptila desolata, common diving petrel Pelecanoides urinatrix and South Georgian diving petrel P. georgicus). The results revealed a combination of horizontal, vertical and temporal foraging segregation during the breeding season. The stable isotope and morphological analyses reinforced this conclusion, indicating that each species occupied a distinct trophic space, and that this appears to reflect adaptations in terms of flight performance. In conclusion, the present study indicated that although there was a degree of overlap in some measures of foraging behaviour, overall the four taxa operated in very different ecological space despite breeding in close proximity. We therefore provide important insight into the mechanisms allowing these very large populations of ecologically-similar predators to coexist.

  11. Ecological Segregation in Space, Time and Trophic Niche of Sympatric Planktivorous Petrels

    PubMed Central

    Navarro, Joan; Votier, Stephen C.; Aguzzi, Jacopo; Chiesa, Juan J.; Forero, Manuela G.; Phillips, Richard A.

    2013-01-01

    The principle of competitive exclusion postulates that ecologically-similar species are expected to partition their use of resources, leading to niche divergence. The most likely mechanisms allowing such coexistence are considered to be segregation in a horizontal, vertical or temporal dimension, or, where these overlap, a difference in trophic niche. Here, by combining information obtained from tracking devices (geolocator-immersion and time depth recorders), stable isotope analyses of blood, and conventional morphometry, we provide a detailed investigation of the ecological mechanisms that explain the coexistence of four species of abundant, zooplanktivorous seabirds in Southern Ocean ecosystems (blue petrel Halobaena caerulea, Antarctic prion Pachyptila desolata, common diving petrel Pelecanoides urinatrix and South Georgian diving petrel P. georgicus). The results revealed a combination of horizontal, vertical and temporal foraging segregation during the breeding season. The stable isotope and morphological analyses reinforced this conclusion, indicating that each species occupied a distinct trophic space, and that this appears to reflect adaptations in terms of flight performance. In conclusion, the present study indicated that although there was a degree of overlap in some measures of foraging behaviour, overall the four taxa operated in very different ecological space despite breeding in close proximity. We therefore provide important insight into the mechanisms allowing these very large populations of ecologically-similar predators to coexist. PMID:23646155

  12. Evolution of sexual size dimorphisms in emydid turtles: ecological dimorphism, rensch's rule, and sympatric divergence.

    PubMed

    Stephens, Patrick R; Wiens, John J

    2009-04-01

    The origin of sexual size dimorphisms (SSD) has long been a central topic in evolutionary biology. However, there is little agreement as to which factors are most important in driving the evolution of SSD, and several hypotheses concerning SSD evolution have never been tested empirically. Emydid turtles include species with both male and female-biased SSD, and some emydids exhibit among the most extreme SSD in tetrapods. Here, we use a comparative phylogenetic approach in emydids to analyze the origins of SSD and test several hypotheses for the evolution of SSD, some for the first time. We test the Fairbairn-Preziosi hypothesis for the origin of Rensch's rule, and support it in lineages with male-biased SSD but not those with female-biased SSD. We also find support for the secondary ecological dimorphism hypothesis, which proposes that selection for ecological divergence between sexes exaggerates preexisting SSD. Finally, we find only equivocal support for the Bolnick-Doebeli hypothesis, which relates intersexual ecological divergence to interspecific ecological divergence. Our results also illustrate how global analyses of SSD may mislead in groups in which the factors that drive the evolution of SSD vary among clades.

  13. Evolution of mate choice and the so called magic traits in ecological speciation

    PubMed Central

    Thibert-Plante, Xavier; Gavrilets, Sergey

    2013-01-01

    Non-random mating provides multiple evolutionary benefits and can result in speciation. Biological organisms are characterized by a myriad of different traits, many of which can serve as mating cues. We consider multiple mechanisms of non-random mating simultaneously within a unified modeling framework in an attempt to understand better which are more likely to evolve in natural populations going through the process of local adaptation and ecological speciation. We show that certain traits that are under direct natural selection are more likely to be co-opted as mating cues, leading to the appearance of magic traits (i.e. phenotypic traits involved in both local adaptation and mating decisions). Multiple mechanisms of non-random mating can interact so that trait coevolution enables the evolution of non-random mating mechanisms that would not evolve alone. The presence of magic traits may suggest that ecological selection was acting during the origin of new species. PMID:23782866

  14. Ecological speciation in a generalist consumer expands the trophic niche of a dominant predator.

    PubMed

    Thomas, Stephen M; Harrod, Chris; Hayden, Brian; Malinen, Tommi; Kahilainen, Kimmo K

    2017-08-18

    Ecological speciation - whereby an ancestral founder species diversifies to fill vacant niches - is a phenomenon characteristic of newly formed ecosystems. Despite such ubiquity, ecosystem-level effects of such divergence remain poorly understood. Here, we compared the trophic niche of European whitefish (Coregonus lavaretus) and their predators in a series of contrasting subarctic lakes where this species had either diversified into four ecomorphologically distinct morphs or instead formed monomorphic populations. We found that the trophic niche of whitefish was almost three times larger in the polymorphic than in the monomorphic lakes, due to an increase in intraspecific specialisation. This trophic niche expansion was mirrored in brown trout (Salmo trutta), a major predator of whitefish. This represents amongst the first evidence for ecological speciation directly altering the trophic niche of a predator. We suggest such mechanisms may be a common and important - though presently overlooked - factor regulating trophic interactions in diverse ecosystems globally.

  15. The role of ecology in speciation by sexual selection: a systematic empirical review.

    PubMed

    Scordato, Elizabeth S C; Symes, Laurel B; Mendelson, Tamra C; Safran, Rebecca J

    2014-01-01

    Theoretical and empirical research indicates that sexual selection interacts with the ecological context in which mate choice occurs, suggesting that sexual and natural selection act together during the evolution of premating reproductive isolation. However, the relative importance of natural and sexual selection to speciation remains poorly understood. Here, we applied a recent conceptual framework for examining interactions between mate choice divergence and ecological context to a review of the empirical literature on speciation by sexual selection. This framework defines two types of interactions between mate choice and ecology: internal interactions, wherein natural and sexual selection jointly influence divergence in sexual signal traits and preferences, and external interactions, wherein sexual selection alone acts on traits and preferences but ecological context shapes the transmission efficacy of sexual signals. The objectives of this synthesis were 3-fold: to summarize the traits, ecological factors, taxa, and geographic contexts involved in studies of mate choice divergence; to analyze patterns of association between these variables; and to identify the most common types of interactions between mate choice and ecological factors. Our analysis revealed that certain traits are consistently associated with certain ecological factors. Moreover, among studies that examined a divergent sexually selected trait and an ecological factor, internal interactions were more common than external interactions. Trait-preference associations may thus frequently be subject to both sexual and natural selection in cases of divergent mate choice. Our results highlight the importance of interactions between sexual selection and ecology in mate choice divergence and suggest areas for future research. © The American Genetic Association. 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Divergence in Sex Steroid Hormone Signaling between Sympatric Species of Japanese Threespine Stickleback

    PubMed Central

    Kitano, Jun; Kawagishi, Yui; Mori, Seiichi; Peichel, Catherine L.; Makino, Takashi; Kawata, Masakado; Kusakabe, Makoto

    2011-01-01

    Sex steroids mediate the expression of sexually dimorphic or sex-specific traits that are important both for mate choice within species and for behavioral isolation between species. We investigated divergence in sex steroid signaling between two sympatric species of threespine stickleback (Gasterosteus aculeatus): the Japan Sea form and the Pacific Ocean form. These sympatric forms diverge in both male display traits and female mate choice behaviors, which together contribute to asymmetric behavioral isolation in sympatry. Here, we found that plasma levels of testosterone and 17β-estradiol differed between spawning females of the two sympatric forms. Transcript levels of follicle-stimulating hormone-β (FSHβ) gene were also higher in the pituitary gland of spawning Japan Sea females than in the pituitary gland of spawning Pacific Ocean females. By contrast, none of the sex steroids examined were significantly different between nesting males of the two forms. However, combining the plasma sex steroid data with testis transcriptome data suggested that the efficiency of the conversion of testosterone into 11-ketotestosterone has likely diverged between forms. Within forms, plasma testosterone levels in males were significantly correlated with male body size, a trait important for female mate choice in the two sympatric species. These results demonstrate that substantial divergence in sex steroid signaling can occur between incipient sympatric species. We suggest that investigation of the genetic and ecological mechanisms underlying divergence in hormonal signaling between incipient sympatric species will provide a better understanding of the mechanisms of speciation in animals. PMID:22216225

  17. SNP signatures of selection on standing genetic variation and their association with adaptive phenotypes along gradients of ecological speciation in lake whitefish species pairs (Coregonus spp.).

    PubMed

    Renaut, Sébastien; Nolte, Arne W; Rogers, Sean M; Derome, Nicolas; Bernatchez, Louis

    2011-02-01

    As populations adapt to novel environments, divergent selection will promote heterogeneous genomic differentiation via reductions in gene flow for loci underlying adaptive traits. Using a data set of over 100 SNP markers, genome scans were performed to investigate the effect of natural selection maintaining differentiation in five lakes harbouring sympatric pairs of normal and dwarf lake whitefish (Coregonus clupeaformis). A variable proportion of SNPs (between 0% and 12%) was identified as outliers, which corroborated the predicted intensity of competitive interactions unique to each lake. Moreover, strong reduction in heterozygosity was typically observed for outlier loci in dwarf but not in normal whitefish, indicating that directional selection has been acting on standing genetic variation more intensively in dwarf whitefish. SNP associations in backcross hybrid progeny identified 16 genes exhibiting genotype-phenotype associations for four adaptive traits (growth, swimming activity, gill rakers and condition factor). However, neither simple relationship between elevated levels of genetic differentiation with adaptive phenotype nor conspicuous genetic signatures for parallelism at outlier loci were detected, which underscores the importance of independent evolution among lakes. The integration of phenotypic, transcriptomic and functional genomic information identified two candidate genes (sodium potassium ATPase and triosephosphate isomerase) involved in the recent ecological divergence of lake whitefish. Finally, the identification of several markers under divergent selection suggests that many genes, in an environment-specific manner, are recruited by selection and ultimately contributed to the repeated ecological speciation of a dwarf phenotype.

  18. Wintering ecology of sympatric subspecies of Sandhill Crane: Correlations between body size, site fidelity, and movement patterns

    USGS Publications Warehouse

    Ivey, Gary L.; Dugger, Bruce D.; Herziger, Caroline P.; Casazza, Michael L.; Fleskes, Joseph P.

    2015-01-01

    Body size is known to correlate with many aspects of life history in birds, and this knowledge can be used to manage and conserve bird species. However, few studies have compared the wintering ecology of sympatric subspecies that vary significantly in body size. We used radiotelemetry to examine the relationship between body size and site fidelity, movements, and home range in 2 subspecies of Sandhill Crane (Grus canadensis) wintering in the Sacramento–San Joaquin Delta of California, USA. Both subspecies showed high interannual return rates to the Delta study area, but Greater Sandhill Cranes (G. c. tabida) showed stronger within-winter fidelity to landscapes in our study region and to roost complexes within landscapes than did Lesser Sandhill Cranes (G. c. canadensis). Foraging flights from roost sites were shorter for G. c. tabida than for G. c. canadensis (1.9 ± 0.01 km vs. 4.5 ± 0.01 km, respectively) and, consequently, the mean size of 95% fixed-kernel winter home ranges was an order of magnitude smaller for G. c. tabida than for G. c. canadensis (1.9 ± 0.4 km2 vs. 21.9 ± 1.9 km2, respectively). Strong site fidelity indicates that conservation planning to manage for adequate food resources around traditional roost sites can be effective for meeting the habitat needs of these cranes, but the scale of conservation efforts should differ by subspecies. Analysis of movement patterns suggests that conservation planners and managers should consider all habitats within 5 km of a known G. c. tabida roost and within 10 km of a G. c. canadensis roost when planning for habitat management, mitigation, acquisition, and easements.

  19. Niche divergence builds the case for ecological speciation in skinks of the Plestiodon skiltonianus species complex

    USGS Publications Warehouse

    Wogan, Guinevere O.U.; Richmond, Jonathan Q.

    2015-01-01

    Adaptation to different thermal environments has the potential to cause evolutionary changes that are sufficient to drive ecological speciation. Here, we examine whether climate-based niche divergence in lizards of the Plestiodon skiltonianus species complex is consistent with the outcomes of such a process. Previous work on this group shows that a mechanical sexual barrier has evolved between species that differ mainly in body size and that the barrier may be a by-product of selection for increased body size in lineages that have invaded xeric environments; however, baseline information on niche divergence among members of the group is lacking. We quantified the climatic niche using mechanistic physiological and correlative niche models and then estimated niche differences among species using ordination techniques and tests of niche overlap and equivalency. Our results show that the thermal niches of size-divergent, reproductively isolated morphospecies are significantly differentiated and that precipitation may have been as important as temperature in causing increased shifts in body size in xeric habitats. While these findings alone do not demonstrate thermal adaptation or identify the cause of speciation, their integration with earlier genetic and behavioral studies provides a useful test of phenotype–environment associations that further support the case for ecological speciation in these lizards.

  20. Niche divergence builds the case for ecological speciation in skinks of the Plestiodon skiltonianus species complex.

    PubMed

    Wogan, Guinevere O U; Richmond, Jonathan Q

    2015-10-01

    Adaptation to different thermal environments has the potential to cause evolutionary changes that are sufficient to drive ecological speciation. Here, we examine whether climate-based niche divergence in lizards of the Plestiodon skiltonianus species complex is consistent with the outcomes of such a process. Previous work on this group shows that a mechanical sexual barrier has evolved between species that differ mainly in body size and that the barrier may be a by-product of selection for increased body size in lineages that have invaded xeric environments; however, baseline information on niche divergence among members of the group is lacking. We quantified the climatic niche using mechanistic physiological and correlative niche models and then estimated niche differences among species using ordination techniques and tests of niche overlap and equivalency. Our results show that the thermal niches of size-divergent, reproductively isolated morphospecies are significantly differentiated and that precipitation may have been as important as temperature in causing increased shifts in body size in xeric habitats. While these findings alone do not demonstrate thermal adaptation or identify the cause of speciation, their integration with earlier genetic and behavioral studies provides a useful test of phenotype-environment associations that further support the case for ecological speciation in these lizards.

  1. Selenium distribution and speciation in the hyperaccumulator Astragalus bisulcatus and associated ecological partners.

    PubMed

    Valdez Barillas, José R; Quinn, Colin F; Freeman, John L; Lindblom, Stormy D; Fakra, Sirine C; Marcus, Matthew A; Gilligan, Todd M; Alford, Élan R; Wangeline, Ami L; Pilon-Smits, Elizabeth A H

    2012-08-01

    The goal of this study was to investigate how plant selenium (Se) hyperaccumulation may affect ecological interactions and whether associated partners may affect Se hyperaccumulation. The Se hyperaccumulator Astragalus bisulcatus was collected in its natural seleniferous habitat, and x-ray fluorescence mapping and x-ray absorption near-edge structure spectroscopy were used to characterize Se distribution and speciation in all organs as well as in encountered microbial symbionts and herbivores. Se was present at high levels (704-4,661 mg kg(-1) dry weight) in all organs, mainly as organic C-Se-C compounds (i.e. Se bonded to two carbon atoms, e.g. methylselenocysteine). In nodule, root, and stem, up to 34% of Se was found as elemental Se, which was potentially due to microbial activity. In addition to a nitrogen-fixing symbiont, the plants harbored an endophytic fungus that produced elemental Se. Furthermore, two Se-resistant herbivorous moths were discovered on A. bisulcatus, one of which was parasitized by a wasp. Adult moths, larvae, and wasps all accumulated predominantly C-Se-C compounds. In conclusion, hyperaccumulators live in association with a variety of Se-resistant ecological partners. Among these partners, microbial endosymbionts may affect Se speciation in hyperaccumulators. Hyperaccumulators have been shown earlier to negatively affect Se-sensitive ecological partners while apparently offering a niche for Se-resistant partners. Through their positive and negative effects on different ecological partners, hyperaccumulators may influence species composition and Se cycling in seleniferous ecosystems.

  2. Comparative spring-staging ecology of sympatric arctic-nesting geese in south-central Nebraska

    USGS Publications Warehouse

    Pearse, Aaron T.; Krapu, Gary L.; Cox, Robert R.

    2013-01-01

    The Rainwater Basin in Nebraska has been a historic staging area for midcontinent greater white-fronted geese (Anser albifrons frontalis) since the 1950s and, in the mid-1990s, millions of midcontinent lesser snow geese (Chen caerulescens caerulescens) expanded their spring migration route to include this region. In response to speculation that snow geese may be in direct competition with white-fronted geese, we compared staging ecology by quantifying diet, habitat use, movement patterns, and time budgets during springs 1998–1999. Collected white-fronted geese (n  =  190) and snow geese (n  =  203) consumed primarily corn (Zea mays; 97–98% aggregate dry mass) while staging in Nebraska; thus, diet overlap was nearly complete. Both species used cornfields most frequently during the morning (54–55%) and wetlands more during the afternoon (51–65%). When found grouped together, snow goose abundance was greater than white-fronted goose abundance by an average of 57 times (se  =  11, n  =  131 groups) in crop fields and 28 times (se  =  9, n  =  84 groups) in wetlands. Snow geese and white-fronted geese flew similar distances between roosting and feeding sites, leaving and returning to wetland roost sties at similar times in mornings and afternoons. Overlap in habitat-specific time budgets was high; resting was the most common behavior on wetlands, and foraging was a common behavior in fields. We observed 111 interspecific agonistic interactions while observing white-fronted and snow geese. White-fronted geese initiated and dominated more interactions with other waterfowl species than did snow geese (32 vs. 14%). Certain aspects of spring-staging niches (i.e., diet, habitat use, movement patterns, and habitat-specific behavior) of white-fronted and snow geese overlapped greatly at this mid-latitude staging site, creating opportunity for potential food- and habitat-based competition between species. Snow geese did not consistently dominate

  3. Functional ecology of the ciliate Glaucomides bromelicola, and comparison with the sympatric species Bromeliothrix metopoides.

    PubMed

    Weisse, Thomas; Scheffel, Ulrike; Stadler, Peter; Foissner, Wilhelm

    2013-01-01

    We investigated the ecology and life strategy of Glaucomides bromelicola (family Bromeliophryidae), a very common ciliate in the reservoirs (tanks) of bromeliads, assessing its response to food quality and quantity and pH. Further, we conducted competition experiments with the frequently coexisting species Bromeliothrix metopoides (family Colpodidae). In contrast to B. metopoides and many other colpodean ciliates, G. bromelicola does not form resting cysts, which jeopardizes this ciliate when its small aquatic habitats dry out. Both species form bactivorous microstomes and flagellate-feeding macrostomes. However, only G. bromelicola has a low feeding threshold and is able to adapt to different protist food. The higher affinity to the local bacterial and flagellate food renders it the superior competitor relative to B. metopoides. Continuous encystment and excystment of the latter may enable stable coexistence of both species in their natural habitat. Both are tolerant to a wide range of pH (4-9). These ciliates appear to be limited to tank bromeliads because they either lack resting cysts and vectors for long distance dispersal (G. bromelicola) and/or have highly specific food requirements (primarily B. metopoides).

  4. Functional Ecology of the Ciliate Glaucomides bromelicola, and Comparison with the Sympatric Species Bromeliothrix metopoides

    PubMed Central

    Weisse, Thomas; Scheffel, Ulrike; Stadler, Peter; Foissner, Wilhelm

    2013-01-01

    We investigated the ecology and life strategy of Glaucomides bromelicola (family Bromeliophryidae), a very common ciliate in the reservoirs (tanks) of bromeliads, assessing its response to food quality and quantity and pH. Further, we conducted competition experiments with the frequently coexisting species Bromeliothrix metopoides (family Colpodidae). In contrast to B. metopoides and many other colpodean ciliates, G. bromelicola does not form resting cysts, which jeopardizes this ciliate when its small aquatic habitats dry out. Both species form bactivorous microstomes and flagellate-feeding macrostomes. However, only G. bromelicola has a low feeding threshold and is able to adapt to different protist food. The higher affinity to the local bacterial and flagellate food renders it the superior competitor relative to B. metopoides. Continuous encystment and excystment of the latter may enable stable coexistence of both species in their natural habitat. Both are tolerant to a wide range of pH (4–9). These ciliates appear to be limited to tank bromeliads because they either lack resting cysts and vectors for long distance dispersal (G. bromelicola) and/or have highly specific food requirements (primarily B. metopoides). PMID:23865693

  5. Ecological speciation in an island snail: evidence for the parallel evolution of a novel ecotype and maintenance by ecologically dependent postzygotic isolation.

    PubMed

    Stankowski, Sean

    2013-05-01

    Speciation is the process by which reproductive isolation evolves between populations. Two general models of speciation have been proposed: ecological speciation, where reproductive barriers evolve due to ecologically based divergent selection, and mutation-order speciation, where populations fix different mutations as they adapt to similar selection pressures. I evaluate these alternative models and determine the progress of speciation in a diverse group of land snails, genus Rhagada, inhabiting Rosemary Island. A recently derived keeled-flat morphotype occupies two isolated rocky hills, while globose-shelled snails inhabit the surrounding plains. The study of one hill reveals that they are separated by a narrow hybrid zone. As predicted by ecological speciation theory, there are local and landscape level associations between shell shape and habitat, and the morphological transition coincides with a narrow ecotone between the two distinct environments. Microsatellite DNA revealed a cline of hybrid index scores much wider than the morphological cline, further supporting the ecological maintenance of the morphotypes. The hybrid zone does not run through an area of low population density, as is expected for mutation-order hybrid zones, and there is a unimodal distribution of phenotypes at the centre, suggesting that there is little or no prezygotic isolation. Instead, these data suggest that the ecotypes are maintained by ecologically dependent postzygotic isolation (i.e. ecological selection against hybrids). Mitochondrial and Microsatellite DNA indicate that the keeled-flat form evolved recently, and without major historical disruptions to gene flow. The data also suggest that the two keeled-flat populations, inhabiting similar rocky hills, have evolved in parallel. These snails provide a complex example of ecological speciation in its early stages.

  6. Local versus Generalized Phenotypes in Two Sympatric Aurelia Species: Understanding Jellyfish Ecology Using Genetics and Morphometrics.

    PubMed

    Chiaverano, Luciano M; Bayha, Keith W; Graham, William M

    2016-01-01

    .e., different selective pressures) and evolved different strategies to cope with environmental variation. This study highlights the importance of using genetics and morphometric data to understand jellyfish ecology, evolution and systematics.

  7. Local versus Generalized Phenotypes in Two Sympatric Aurelia Species: Understanding Jellyfish Ecology Using Genetics and Morphometrics

    PubMed Central

    Chiaverano, Luciano M.; Bayha, Keith W.; Graham, William M.

    2016-01-01

    .e., different selective pressures) and evolved different strategies to cope with environmental variation. This study highlights the importance of using genetics and morphometric data to understand jellyfish ecology, evolution and systematics. PMID:27332545

  8. Magadi tilapia ecological specialization: filling the early gap in the speciation continuum.

    PubMed

    Pinho, Catarina; Faria, Rui

    2016-04-01

    Cichlid fish are well known for their high speciation rates, which are usually accompanied by spectacular and rapid diversification in eco-morphological and secondary sexual traits. This is best illustrated by the famous repeated explosive radiations in the African Great Lakes Tanganyika, Malawi and Victoria, each lake harbouring several hundreds of mostly endemic species. Correspondingly, cichlids diversified very rapidly in many other lakes across their range. Although the larger radiations, unparalleled in vertebrates, are certainly the most intriguing, they are also the most intricate and difficult to address because of their complex nature. This is where smaller, simpler systems may prove to be the most useful. In this issue of Molecular Ecology, Kavembe et al. (2016) report very recent genetic diversification accompanied by ecological specialization in cichlids of the small and ecologically extreme Lake Magadi, in Kenya. Combining geometric morphometrics, stable isotope analysis, population genomics using RADSeq data and coalescent-based modelling techniques, the authors characterize the eco-morphological differences between genetically distinct populations of Magadi tilapia (Alcolapia grahami), which are consistent with the different environmental conditions they experience, and infer their history of divergence. The simplicity of the focal system and the use of a multidisciplinary approach make this work particularly important for our understanding of the early stages of speciation, in both cichlids and other organisms. © 2016 John Wiley & Sons Ltd.

  9. The roles of time and ecology in the continental radiation of the Old World leaf warblers (Phylloscopus and Seicercus)

    PubMed Central

    Price, Trevor D.

    2010-01-01

    Many continental sister species are allopatric or parapatric, ecologically similar and long separated, of the order of millions of years. Sympatric, ecologically differentiated, species, are often even older. This raises the question of whether build-up of sympatric diversity generally follows a slow process of divergence in allopatry, initially without much ecological change. I review patterns of speciation among birds belonging to the continental Eurasian Old World leaf warblers (Phylloscopus and Seicercus). I consider speciation to be a three-stage process (range expansions, barriers to gene flow, reproductive isolation) and ask how ecological factors at each stage have contributed to speciation, both among allopatric/parapatric sister species and among those lineages that eventually led to currently sympatric species. I suggest that time is probably the critical factor that leads to reproductive isolation between sympatric species and that a strong connection between ecological divergence and reproductive isolation remains to be established. Besides reproductive isolation, ecological factors can affect range expansions (e.g. habitat tracking) and the formation of barriers (e.g. treeless areas are effective barriers for warblers). Ecological factors may often limit speciation on continents because range expansions are difficult in ‘ecologically full’ environments. PMID:20439279

  10. The roles of time and ecology in the continental radiation of the Old World leaf warblers (Phylloscopus and Seicercus).

    PubMed

    Price, Trevor D

    2010-06-12

    Many continental sister species are allopatric or parapatric, ecologically similar and long separated, of the order of millions of years. Sympatric, ecologically differentiated, species, are often even older. This raises the question of whether build-up of sympatric diversity generally follows a slow process of divergence in allopatry, initially without much ecological change. I review patterns of speciation among birds belonging to the continental Eurasian Old World leaf warblers (Phylloscopus and Seicercus). I consider speciation to be a three-stage process (range expansions, barriers to gene flow, reproductive isolation) and ask how ecological factors at each stage have contributed to speciation, both among allopatric/parapatric sister species and among those lineages that eventually led to currently sympatric species. I suggest that time is probably the critical factor that leads to reproductive isolation between sympatric species and that a strong connection between ecological divergence and reproductive isolation remains to be established. Besides reproductive isolation, ecological factors can affect range expansions (e.g. habitat tracking) and the formation of barriers (e.g. treeless areas are effective barriers for warblers). Ecological factors may often limit speciation on continents because range expansions are difficult in 'ecologically full' environments.

  11. Climatic niche evolution is faster in sympatric than allopatric lineages of the butterfly genus Pyrgus.

    PubMed

    Pitteloud, Camille; Arrigo, Nils; Suchan, Tomasz; Mastretta-Yanes, Alicia; Vila, Roger; Dincă, Vlad; Hernández-Roldán, Juan; Brockmann, Ernst; Chittaro, Yannick; Kleckova, Irena; Fumagalli, Luca; Buerki, Sven; Pellissier, Loïc; Alvarez, Nadir

    2017-04-12

    Understanding how speciation relates to ecological divergence has long fascinated biologists. It is assumed that ecological divergence is essential to sympatric speciation, as a mechanism to avoid competition and eventually lead to reproductive isolation, while divergence in allopatry is not necessarily associated with niche differentiation. The impact of the spatial context of divergence on the evolutionary rates of abiotic dimensions of the ecological niche has rarely been explored for an entire clade. Here, we compare the magnitude of climatic niche shifts between sympatric versus allopatric divergence of lineages in butterflies. By combining next-generation sequencing, parametric biogeography and ecological niche analyses applied to a genus-wide phylogeny of Palaearctic Pyrgus butterflies, we compare evolutionary rates along eight climatic dimensions across sister lineages that diverged in large-scale sympatry versus allopatry. In order to examine the possible effects of the spatial scale at which sympatry is defined, we considered three sets of biogeographic assignments, ranging from narrow to broad definition. Our findings suggest higher rates of niche evolution along all climatic dimensions for sister lineages that diverge in sympatry, when using a narrow delineation of biogeographic areas. This result contrasts with significantly lower rates of climatic niche evolution found in cases of allopatric speciation, despite the biogeographic regions defined here being characterized by significantly different climates. Higher rates in allopatry are retrieved when biogeographic areas are too widely defined-in such a case allopatric events may be recorded as sympatric. Our results reveal the macro-evolutionary significance of abiotic niche differentiation involved in speciation processes within biogeographic regions, and illustrate the importance of the spatial scale chosen to define areas when applying parametric biogeographic analyses.

  12. Speciation versus phenotypic plasticity in coral inhabiting barnacles: Darwin's observations in an ecological context.

    PubMed

    Mokady, O; Loya, Y; Achituv, Y; Geffen, E; Graur, D; Rozenblatt, S; Brickner, I

    1999-09-01

    Speciation and phenotypic plasticity are two extreme strategic modes enabling a given taxon to populate a broad ecological niche. One of the organismal models which stimulated Darwin's ideas on speciation was the Cirripedia (barnacles), to which he dedicated a large monograph. In several cases, including the coral-inhabiting barnacle genera Savignium and Cantellius (formerly Pyrgoma and Creusia, respectively), Darwin assigned barnacle specimens to morphological "varieties" (as opposed to species) within a genus. Despite having been the subject of taxonomic investigations and revisions ever since, the significance of these varieties has never been examined with respect to host-associated speciation processes. Here we provide evidence from molecular (12S mt rDNA sequences) and micromorphological (SEM) studies, suggesting that these closely related barnacle genera utilize opposite strategies for populating a suite of live-coral substrates. Cantellius demonstrates a relatively low genetic variability, despite inhabiting a wide range of corals. The species C. pallidus alone was found on three coral families, belonging to distinct higher-order classification units. In contrast, Savignium barnacles exhibit large between- and within-species variations with respect to both micromorphology and DNA sequences, with S. dentatum "varieties" clustering phylogenetically according to their coral host species (all of which are members of a single family). Thus, whereas Savignium seems to have undergone intense host-associated speciation over a relatively narrow taxonomic range of hosts, Cantellius shows phenotypic plasticity over a much larger range. This dichotomy correlates with differences in life-history parameters between these barnacle taxa, including host-infestation characteristics, reproductive strategies, and larval trophic type.

  13. Speciation in fungi.

    PubMed

    Giraud, Tatiana; Refrégier, Guislaine; Le Gac, Mickaël; de Vienne, Damien M; Hood, Michael E

    2008-06-01

    In this review on fungal speciation, we first contrast the issues of species definition and species criteria and show that by distinguishing the two concepts the approaches to studying the speciation can be clarified. We then review recent developments in the understanding of modes of speciation in fungi. Allopatric speciation raises no theoretical problem and numerous fungal examples exist from nature. We explain the theoretical difficulties raised by sympatric speciation, review the most recent models, and provide some natural examples consistent with speciation in sympatry. We describe the nature of prezygotic and postzygotic reproductive isolation in fungi and examine their evolution as functions of temporal and of the geographical distributions. We then review the theory and evidence for roles of cospeciation, host shifts, hybridization, karyotypic rearrangement, and epigenetic mechanisms in fungal speciation. Finally, we review the available data on the genetics of speciation in fungi and address the issue of speciation in asexual species.

  14. Trophic ecology of largemouth bass and northern pike in allopatric and sympatric assemblages in northern boreal lakes

    USGS Publications Warehouse

    Soupir, Craig A.; Brown, Michael L.; Kallemeyn, Larry W.

    2000-01-01

    Largemouth bass (Micropterus salmoides) and northern pike (Esox lucius) are top predators in the food chain in most aquatic environments that they occupy; however, limited information exists on species interactions in the northern reaches of largemouth bass distribution. We investigated the seasonal food habits of allopatric and sympatric assemblages of largemouth bass and northern pike in six interior lakes within Voyageurs National Park, Minnesota. Percentages of empty stomachs were variable for largemouth bass (38-54%) and northern pike (34.7-66.7%). Fishes (mainly yellow perch, Perca flavescens) comprised greater than 60% (mean percent mass, MPM) of the northern pike diet during all seasons in both allopatric and sympatric assemblages. Aquatic insects (primarily Odonata and Hemiptera) were important in the diets of largemouth bass in all communities (0.0-79.7 MPM). Although largemouth bass were observed in the diet of northern pike, largemouth bass apparently did not prey on northern pike. Seasonal differences were observed in the proportion of aquatic insects (P = 0.010) and fishes (P = 0.023) in the diets of northern pike and largemouth bass. Based on three food categories, jackknifed classifications correctly classified 77 and 92% of northern pike and largemouth bass values, respectively. Percent resource overlap values were biologically significant (greater than 60%) during at least one season in each sympatric assemblage, suggesting some diet overlap.

  15. Is ecological speciation a major trend in aphids? Insights from a molecular phylogeny of the conifer-feeding genus Cinara

    PubMed Central

    2013-01-01

    Introduction In the past decade ecological speciation has been recognized as having an important role in the diversification of plant-feeding insects. Aphids are host-specialised phytophagous insects that mate on their host plants and, as such, they are prone to experience reproductive isolation linked with host plant association that could ultimately lead to species formation. The generality of such a scenario remains to be tested through macroevolutionary studies. To explore the prevalence of host-driven speciation in the diversification of the aphid genus Cinara and to investigate alternative modes of speciation, we reconstructed a phylogeny of this genus based on mitochondrial, nuclear and Buchnera aphidicola DNA sequence fragments and applied a DNA-based method of species delimitation. Using a recent software (PhyloType), we explored evolutionary transitions in host-plant genera, feeding sites and geographic distributions in the diversification of Cinara and investigated how transitions in these characters have accompanied speciation events. Results The diversification of Cinara has been constrained by host fidelity to conifer genera sometimes followed by sequential colonization onto different host species and by feeding-site specialisation. Nevertheless, our analyses suggest that, at the most, only half of the speciation events were accompanied by ecological niche shifts. The contribution of geographical isolation in the speciation process is clearly apparent in the occurrence of species from two continents in the same clades in relatively terminal positions in our phylogeny. Furthermore, in agreement with predictions from scenarios in which geographic isolation accounts for speciation events, geographic overlap between species increased significantly with time elapsed since their separation. Conclusions The history of Cinara offers a different perspective on the mode of speciation of aphids than that provided by classic models such as the pea aphid. In this

  16. Extremophile Poeciliidae: multivariate insights into the complexity of speciation along replicated ecological gradients.

    PubMed

    Riesch, Rüdiger; Tobler, Michael; Lerp, Hannes; Jourdan, Jonas; Doumas, Tess; Nosil, Patrik; Langerhans, R Brian; Plath, Martin

    2016-06-22

    Replicate population pairs that diverge in response to similar selective regimes allow for an investigation of (a) whether phenotypic traits diverge in a similar and predictable fashion, (b) whether there is gradual variation in phenotypic divergence reflecting variation in the strength of natural selection among populations, (c) whether the extent of this divergence is correlated between multiple character suites (i.e., concerted evolution), and (d) whether gradual variation in phenotypic divergence predicts the degree of reproductive isolation, pointing towards a role for adaptation as a driver of (ecological) speciation. Here, we use poeciliid fishes of the genera Gambusia and Poecilia that have repeatedly evolved extremophile lineages able to tolerate high and sustained levels of toxic hydrogen sulfide (H2S) to answer these questions. We investigated evolutionary divergence in response to H2S in Gambusia spp. (and to a lesser extent Poecilia spp.) using a multivariate approach considering the interplay of life history, body shape, and population genetics (nuclear miscrosatellites to infer population genetic differentiation as a proxy for reproductive isolation). We uncovered both shared and unique patterns of evolution: most extremophile Gambusia predictably evolved larger heads and offspring size, matching a priori predictions for adaptation to sulfidic waters, while variation in adult life histories was idiosyncratic. When investigating patterns for both genera (Gambusia and Poecilia), we found that divergence in offspring-related life histories and body shape were positively correlated across populations, but evidence for individual-level associations between the two character suites was limited, suggesting that genetic linkage, developmental interdependencies, or pleiotropic effects do not explain patterns of concerted evolution. We further found that phenotypic divergence was positively correlated with both environmental H2S-concentration and neutral

  17. Ecological factors influencing tetraploid speciation in snow buttercups (Ranunculus Adoneus): niche differentiation and tetraploid establishment.

    PubMed

    Baack, Eric J; Stanton, Maureen L

    2005-09-01

    Chromosome doubling plays an important role in generating new species of flowering plants. However, reproductive incompatibilities between newly formed tetraploid plants and their diploid progenitors are expected to create a significant barrier to the persistence and establishment of neopolyploid populations. Ecological differentiation can reduce this barrier via prezygotic isolation arising from spatial separation. Alternatively, superior viability or fecundity of neotetraploid plants might compensate for the reproductive cost of incompatible pollen from diploid neighbors. The performance of plants of both cytotypes can be assessed in their respective habitats through reciprocal transplants, although such experiments have not been used previously in the study of tetraploid speciation. We used a series of seed and seedling transplant experiments to assess ecological differentiation and competitive ability during early establishment phases for tetraploid and diploid forms of the snow buttercup (Ranunculus adoneus). At two sites, seeds from diploids and tetraploids had similar germination probabilities. Tetraploid snow buttercup seedlings had a significant growth advantage in a controlled environment chamber experiment. However, in the field diploid and tetraploid buttercup seedlings did not differ consistently in survival or growth, nor did the two cytotypes show reciprocal advantages in performance, as expected if ecological differentiation has occurred. At the seed and seedling stages, neither niche differentiation nor tetraploid competitive superiority appears sufficient to explain neotetraploid success in the presence of their diploid progenitors.

  18. Ongoing ecological speciation in Cotesia sesamiae, a biological control agent of cereal stem borers

    PubMed Central

    Kaiser, Laure; Le Ru, Bruno Pierre; Kaoula, Ferial; Paillusson, Corentin; Capdevielle-Dulac, Claire; Obonyo, Julius Ochieng; Herniou, Elisabeth A; Jancek, Severine; Branca, Antoine; Calatayud, Paul-André; Silvain, Jean-François; Dupas, Stephane

    2015-01-01

    To develop efficient and safe biological control, we need to reliably identify natural enemy species, determine their host range, and understand the mechanisms that drive host range evolution. We investigated these points in Cotesia sesamiae, an African parasitic wasp of cereal stem borers. Phylogenetic analyses of 74 individual wasps, based on six mitochondrial and nuclear genes, revealed three lineages. We then investigated the ecological status (host plant and host insect ranges in the field, and host insect suitability tests) and the biological status (cross-mating tests) of the three lineages. We found that one highly supported lineage showed all the hallmarks of a cryptic species. It is associated with one host insect, Sesamia nonagrioides, and is reproductively isolated from the other two lineages by pre- and postmating barriers. The other two lineages had a more variable phylogenetic support, depending on the set of genes; they exhibited an overlapping and diversified range of host species and are not reproductively isolated from one another. We discuss the ecological conditions and mechanisms that likely generated this ongoing speciation and the relevance of this new specialist taxon in the genus Cotesia for biological control. PMID:26366198

  19. Mapping the genomic architecture of ecological speciation in the wild: does linkage disequilibrium hold the key?

    PubMed

    Rogers, Sean M

    2012-11-01

    The hunt for the genes underlying ecological speciation has now closed in on a number of candidates, but making the link from genotype to phenotype continues to pose a significant challenge. This is partly because genetic studies in many systems remain impeded by long generation times or an inability to perform controlled crosses. Now, in this issue of Molecular Ecology, Malek et al. (2012) demonstrate the utility of a novel admixture mapping approach that can be used to identify genomic regions contributing to adaptive trait divergence between natural populations. Remarkably, they validate their approach by mapping traits associated with mate choice in a wild limnetic and benthic threespine stickleback (Gasterosteus aculeatus) species pair, finding several loci associated with male nuptial coloration and shape. While this study benefited from tried-and-true microsatellites in a well-characterized species with a detailed genetic map (and genome sequence), the field is quickly moving towards the use of next-generation sequencing, especially for nonmodel systems. The ability to characterize molecular polymorphisms for any system suggests that molecular ecologists working on virtually any species may benefit from applying Malek et al.'s approach, if naturally admixed populations are available. © 2012 Blackwell Publishing Ltd.

  20. Ongoing ecological speciation in Cotesia sesamiae, a biological control agent of cereal stem borers.

    PubMed

    Kaiser, Laure; Le Ru, Bruno Pierre; Kaoula, Ferial; Paillusson, Corentin; Capdevielle-Dulac, Claire; Obonyo, Julius Ochieng; Herniou, Elisabeth A; Jancek, Severine; Branca, Antoine; Calatayud, Paul-André; Silvain, Jean-François; Dupas, Stephane

    2015-09-01

    To develop efficient and safe biological control, we need to reliably identify natural enemy species, determine their host range, and understand the mechanisms that drive host range evolution. We investigated these points in Cotesia sesamiae, an African parasitic wasp of cereal stem borers. Phylogenetic analyses of 74 individual wasps, based on six mitochondrial and nuclear genes, revealed three lineages. We then investigated the ecological status (host plant and host insect ranges in the field, and host insect suitability tests) and the biological status (cross-mating tests) of the three lineages. We found that one highly supported lineage showed all the hallmarks of a cryptic species. It is associated with one host insect, Sesamia nonagrioides, and is reproductively isolated from the other two lineages by pre- and postmating barriers. The other two lineages had a more variable phylogenetic support, depending on the set of genes; they exhibited an overlapping and diversified range of host species and are not reproductively isolated from one another. We discuss the ecological conditions and mechanisms that likely generated this ongoing speciation and the relevance of this new specialist taxon in the genus Cotesia for biological control.

  1. Multi-locus genetic evidence for rapid ecologically based speciation in Daphnia.

    PubMed

    Pfrender, M E; Spitze, K; Lehman, N

    2000-11-01

    The process of speciation involves the divergence of two or more subpopulations of a parent species into independent evolutionary trajectories. To study this process in natural populations requires a detailed knowledge of the genetic and ecological characteristics of the parent species and an understanding of how its populations can lose evolutionary cohesion. The cosmopolitan and speciose genus Daphnia provides many of these features by existing in multiple freshwater habitat types, particularly permanent lakes and temporary ponds, each of which presents distinct ecological challenges. We assayed the genetic composition of 20 temporary pond populations of members of the Daphnia pulex species complex in north-western Oregon and compared them to published data on related lake and pond populations. We collected molecular genetic data from 13 allozyme loci, from six microsatellite loci, and from the control region of the mitochondrial DNA. By assaying over 400 individual Daphnia for these data, we were able to compile composite genotypes not only of individual Daphnia but of each pond population as a whole. In these ponds, we discovered two distinct genotypic constellations, one which bears resemblance to the lake-dwelling taxon D. pulicaria, and one which bears resemblance to the pond-dwelling taxon, D. pulex. Using published genetic data from these and other species as a frame of reference, we characterized 13 of these ponds as being 'pond-like', three as being 'lake-like', and four as being 'mixed'. Unlike studies performed elsewhere, however, these ponds do not exhibit high probabilities of interspecific hybridization. Over 95% of all individuals have either a lake-like or a pond-like genotype at all three genetic systems, suggesting the two forms do not represent hybridized vs. nonhybridized genotypes. Because both types can be found in the same ponds at the same time in gametic disequilibrium, we also discount the possibility that they are two extremes of a

  2. Ecological Speciation in Nolina parviflora (Asparagaceae): Lacking Spatial Connectivity along of the Trans-Mexican Volcanic Belt

    PubMed Central

    Ruiz-Sanchez, Eduardo; Specht, Chelsea D.

    2014-01-01

    The hypothesis of ecological speciation states that as populations diverge in different niches, reproductive isolation evolves as a by-product of adaptation to these different environments. In this context, we used Nolina parviflora as a model to test if this species evolved via ecological speciation and to explore current and historical gene flow among its populations. Nolina parviflora is a montane species endemic to Mexico with its geographical distribution restricted largely to the Trans-Mexican Volcanic Belt. This mountain range is one of the most complex geological regions in Mexico, having undergone volcanism from the mid-Miocene to the present. Ecologically, the Trans-Mexican Volcanic Belt possesses different types of vegetation, including tropical dry forest; oak, pine, pine-oak, and pine-juniper forests; and xerophytic scrub - all of which maintain populations of N. parviflora. Using species distribution models, climatic analyses, spatial connectivity and morphological comparisons, we found significant differences in climatic and morphological variables between populations of N. parviflora in two distinct Trans-Mexican Volcanic Belt regions (east vs. west). This could mean that the geographically isolated populations diverged from one another via niche divergence, indicating ecological speciation. Spatial connectivity analysis revealed no connectivity between these regions under the present or last glacial maximum climate models, indicating a lack of gene flow between the populations of the two regions. The results imply that these populations may encompass more than a single species. PMID:24905911

  3. Ecological speciation in Nolina parviflora (Asparagaceae): lacking spatial connectivity along of the Trans-Mexican Volcanic Belt.

    PubMed

    Ruiz-Sanchez, Eduardo; Specht, Chelsea D

    2014-01-01

    The hypothesis of ecological speciation states that as populations diverge in different niches, reproductive isolation evolves as a by-product of adaptation to these different environments. In this context, we used Nolina parviflora as a model to test if this species evolved via ecological speciation and to explore current and historical gene flow among its populations. Nolina parviflora is a montane species endemic to Mexico with its geographical distribution restricted largely to the Trans-Mexican Volcanic Belt. This mountain range is one of the most complex geological regions in Mexico, having undergone volcanism from the mid-Miocene to the present. Ecologically, the Trans-Mexican Volcanic Belt possesses different types of vegetation, including tropical dry forest; oak, pine, pine-oak, and pine-juniper forests; and xerophytic scrub--all of which maintain populations of N. parviflora. Using species distribution models, climatic analyses, spatial connectivity and morphological comparisons, we found significant differences in climatic and morphological variables between populations of N. parviflora in two distinct Trans-Mexican Volcanic Belt regions (east vs. west). This could mean that the geographically isolated populations diverged from one another via niche divergence, indicating ecological speciation. Spatial connectivity analysis revealed no connectivity between these regions under the present or last glacial maximum climate models, indicating a lack of gene flow between the populations of the two regions. The results imply that these populations may encompass more than a single species.

  4. Experimental evidence of genome-wide impact of ecological selection during early stages of speciation-with-gene-flow.

    PubMed

    Egan, Scott P; Ragland, Gregory J; Assour, Lauren; Powell, Thomas H Q; Hood, Glen R; Emrich, Scott; Nosil, Patrik; Feder, Jeffrey L

    2015-08-01

    Theory predicts that speciation-with-gene-flow is more likely when the consequences of selection for population divergence transitions from mainly direct effects of selection acting on individual genes to a collective property of all selected genes in the genome. Thus, understanding the direct impacts of ecologically based selection, as well as the indirect effects due to correlations among loci, is critical to understanding speciation. Here, we measure the genome-wide impacts of host-associated selection between hawthorn and apple host races of Rhagoletis pomonella (Diptera: Tephritidae), a model for contemporary speciation-with-gene-flow. Allele frequency shifts of 32 455 SNPs induced in a selection experiment based on host phenology were genome wide and highly concordant with genetic divergence between co-occurring apple and hawthorn flies in nature. This striking genome-wide similarity between experimental and natural populations of R. pomonella underscores the importance of ecological selection at early stages of divergence and calls for further integration of studies of eco-evolutionary dynamics and genome divergence. © 2015 The Authors Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  5. Ecological Genetic Divergence of the Fungal Pathogen Didymella rabiei on Sympatric Wild and Domesticated Cicer spp. (Chickpea) ▿

    PubMed Central

    Frenkel, Omer; Peever, Tobin L.; Chilvers, Martin I.; Özkilinc, Hilal; Can, Canan; Abbo, Shahal; Shtienberg, Dani; Sherman, Amir

    2010-01-01

    For millennia, chickpea (Cicer arietinum) has been grown in the Levant sympatrically with wild Cicer species. Chickpea is traditionally spring-sown, while its wild relatives germinate in the autumn and develop in the winter. It has been hypothesized that the human-directed shift of domesticated chickpea to summer production was an attempt to escape the devastating Ascochyta disease caused by Didymella rabiei. We estimated genetic divergence between D. rabiei isolates sampled from wild Cicer judaicum and domesticated C. arietinum and the potential role of temperature adaptation in this divergence. Neutral genetic markers showed strong differentiation between pathogen samples from the two hosts. Isolates from domesticated chickpea demonstrated increased adaptation to higher temperatures when grown in vitro compared with isolates from the wild host. The distribution of temperature responses among progeny from crosses of isolates from C. judaicum with isolates from C. arietinum was continuous, suggesting polygenic control of this trait. In vivo inoculations of host plants indicated that pathogenic fitness of the native isolates was higher than that of their hybrid progeny. The results indicate that there is a potential for adaptation to higher temperatures; however, the chances for formation of hybrids which are capable of parasitizing both hosts over a broad temperature range are low. We hypothesize that this pathogenic fitness cost is due to breakdown of coadapted gene complexes controlling pathogenic fitness on each host and may be responsible for maintenance of genetic differentiation between the pathogen demes. PMID:19897759

  6. Ecological genetic divergence of the fungal pathogen Didymella rabiei on sympatric wild and domesticated Cicer spp. (Chickpea).

    PubMed

    Frenkel, Omer; Peever, Tobin L; Chilvers, Martin I; Ozkilinc, Hilal; Can, Canan; Abbo, Shahal; Shtienberg, Dani; Sherman, Amir

    2010-01-01

    For millennia, chickpea (Cicer arietinum) has been grown in the Levant sympatrically with wild Cicer species. Chickpea is traditionally spring-sown, while its wild relatives germinate in the autumn and develop in the winter. It has been hypothesized that the human-directed shift of domesticated chickpea to summer production was an attempt to escape the devastating Ascochyta disease caused by Didymella rabiei. We estimated genetic divergence between D. rabiei isolates sampled from wild Cicer judaicum and domesticated C. arietinum and the potential role of temperature adaptation in this divergence. Neutral genetic markers showed strong differentiation between pathogen samples from the two hosts. Isolates from domesticated chickpea demonstrated increased adaptation to higher temperatures when grown in vitro compared with isolates from the wild host. The distribution of temperature responses among progeny from crosses of isolates from C. judaicum with isolates from C. arietinum was continuous, suggesting polygenic control of this trait. In vivo inoculations of host plants indicated that pathogenic fitness of the native isolates was higher than that of their hybrid progeny. The results indicate that there is a potential for adaptation to higher temperatures; however, the chances for formation of hybrids which are capable of parasitizing both hosts over a broad temperature range are low. We hypothesize that this pathogenic fitness cost is due to breakdown of coadapted gene complexes controlling pathogenic fitness on each host and may be responsible for maintenance of genetic differentiation between the pathogen demes.

  7. Non-breeding habitat preference affects ecological speciation in migratory waders

    NASA Astrophysics Data System (ADS)

    Kraaijeveld, Ken

    2008-04-01

    Models of ecological speciation predict that certain types of habitat should be more conducive to species diversification than others. In this study, I test this hypothesis in waders of the sub-order Charadrii using the number of morphological sub-species per species as an index of diversity. I classified all members of this clade as spending the non-breeding season either coastally or inland and argue that these represent fundamentally different environments. Coastal mudflats are characterised by high predictability and patchy worldwide distribution, whilst inland wetlands are widespread but unpredictable. The results show that migratory species that winter coastally are sub-divided into more sub-species than those that winter inland. This was not the case for non-migratory species. I argue that coastal environments select for more rigid migratory pathways, whilst inland wetlands favour more flexible movement patterns. Population sub-division could then result from the passive segregation of breeding sites or from the active selection for assortative mating of ecomorphs.

  8. Differential adaptation drives ecological speciation in campions (Silene): evidence from a multi-site transplant experiment.

    PubMed

    Favre, Adrien; Widmer, Alex; Karrenberg, Sophie

    2017-02-01

    In order to investigate the role of differential adaptation for the evolution of reproductive barriers, we conducted a multi-site transplant experiment with the dioecious sister species Silene dioica and S. latifolia and their hybrids. Crosses within species as well as reciprocal first-generation (F1 ) and second-generation (F2 ) interspecific hybrids were transplanted into six sites, three within each species' habitat. Survival and flowering were recorded over 4 yr. At all transplant sites, the local species outperformed the foreign species, reciprocal F1 hybrids performed intermediately and F2 hybrids underperformed in comparison to F1 hybrids (hybrid breakdown). Females generally had slightly higher cumulative fitness than males in both within- and between-species crosses and we thus found little evidence for Haldane's rule acting on field performance. The strength of selection against F1 and F2 hybrids as well as hybrid breakdown increased with increasing strength of habitat adaptation (i.e. the relative fitness difference between the local and the foreign species) across sites. Our results suggest that differential habitat adaptation led to ecologically dependent post-zygotic reproductive barriers and drives divergence and speciation in this Silene system.

  9. Recent Speciation in Three Closely Related Sympatric Specialists: Inferences Using Multi-Locus Sequence, Post-Mating Isolation and Endosymbiont Data

    PubMed Central

    Xue, Huai-Jun; Li, Wen-Zhu; Nie, Rui-E; Yang, Xing-Ke

    2011-01-01

    Shifting between unrelated host plants is relatively rare for phytophagous insects, and distinct host specificity may play crucial roles in reproductive isolation. However, the isolation status and the relationship between parental divergence and post-mating isolation among closely related sympatric specialists are still poorly understood. Here, multi-locus sequence were used to estimate the relationship among three host plant–specific closely related flea beetles, Altica cirsicola, A. fragariae and A. viridicyanea (abbreviated as AC, AF and AV respectively). The tree topologies were inconsistent using different gene or different combinations of gene fragments. The relationship of AF+(AC+AV) was supported, however, by both gene tree and species tree based on concatenated data. Post-mating reproductive data on the results of crossing these three species are best interpreted in the light of a well established phylogeny. Nuclear-induced but not Wolbachia-induced unidirectional cytoplasmic incompatibility, which was detected in AC-AF and AF-AV but not in AC-AV, may also suggest more close genetic affinity between AC and AV. Prevalence of Wolbachia in these three beetles, and the endosymbiont in most individuals of AV and AC sharing a same wsp haplotype may give another evidence of AF+(AC+AV). Our study also suggested that these three flea beetles diverged in a relative short time (0.94 My), which may be the result of shifting between unrelated host plants and distinct host specificity. Incomplete post-mating isolation while almost complete lineage sorting indicated that effective pre-mating isolation among these three species should have evolved. PMID:22110767

  10. Erosive processes after tectonic uplift stimulate vicariant and adaptive speciation: evolution in an Afrotemperate-endemic paper daisy genus.

    PubMed

    Bentley, Joanne; Verboom, G Anthony; Bergh, Nicola G

    2014-02-13

    The role of tectonic uplift in stimulating speciation in South Africa's only alpine zone, the Drakensberg, has not been explicitly examined. Tectonic processes may influence speciation both through the creation of novel habitats and by physically isolating plant populations. We use the Afrotemperate endemic daisy genus Macowania to explore the timing and mode (geographic versus adaptive) of speciation in this region. Between sister species pairs we expect high morphological divergence where speciation has happened in sympatry (adaptive) while with geographic (vicariant) speciation we may expect to find less morphological divergence and a greater degree of allopatry. A dated molecular phylogenetic hypothesis for Macowania elucidates species' relationships and is used to address the potential impact of uplift on diversification. Morphological divergence of a small sample of reproductive and vegetative characters, used as a proxy for adaptive divergence, is measured against species' range distributions to estimate mode of speciation across two subclades in the genus. The Macowania crown age is consistent with the hypothesis of post-uplift diversification, and we find evidence for both vicariant and adaptive speciation between the two subclades within Macowania. Both subclades exhibit strong signals of range allopatry, suggesting that geographic isolation was important in speciation. One subclade, associated with dry, rocky environments at high altitudes, shows very little morphological and ecological differentiation but high range allopatry. The other subclade occupies a greater variety of habitats and exhibits far greater morphological differentiation, but contains species with overlapping distribution ranges. Species in Macowania are likely to have diversified in response to tectonic uplift, and we invoke uplift and uplift-mediated erosion as the main drivers of speciation. The greater relative morphological divergence in sympatric species of Macowania indicates

  11. The role of ecological factors in determining phylogeographic and population genetic structure of two sympatric island skinks (Plestiodon kishinouyei and P. stimpsonii).

    PubMed

    Kurita, Kazuki; Toda, Mamoru

    2017-04-01

    We conducted comparative phylogeographic and population genetic analyses of Plestiodon kishinouyei and P. stimpsonii, two sympatric skinks endemic to islands in the southern Ryukyus, to explore different factors that have influenced population structure. Previous phylogenetic studies using partial mitochondrial DNA indicate similar divergence times from their respective closest relatives, suggesting that differences in population structure are driven by intrinsic attributes of either species rather than the common set of extrinsic factors that both presumably have been exposed to throughout their history. In this study, analysis of mtDNA sequences and microsatellite polymorphism demonstrate contrasting patterns of phylogeography and population structure: P. kishinouyei exhibits a lower genetic variability and lower genetic differentiation among islands than P. stimpsonii, consistent with recent population expansion. However, historical demographic analyses indicate that the relatively high genetic uniformity in P. kishinouyei is not attributable to recent expansion. We detected significant isolation-by-distance patterns among P. kishinouyei populations on the land bridge islands, but not among P. stimpsonii populations occurring on those same islands. Our results suggest that P. kishinouyei populations have maintained gene flows across islands until recently, probably via ephemeral Quaternary land bridges. The lower genetic variability in P. kishinouyei may also indicate smaller effective population sizes on average than that of P. stimpsonii. We interpret these differences as a consequence of ecological divergence between the two species, primarily in trophic level and habitat preference.

  12. How does ecological opportunity influence rates of speciation, extinction, and morphological diversification in New World ratsnakes (tribe Lampropeltini)?

    PubMed

    Burbrink, Frank T; Pyron, R Alexander

    2010-04-01

    Ecological adaptive radiation theory predicts an increase in both morphological and specific diversification when organisms colonize new environments. Accordingly, bursts of morphological diversification, characterized by low within-subclade morphological disparity, may be associated with these increases in speciation rates. Conversely, increasing species density, reduction in available habitat, or increasing extinction rates are expected to cause rates of diversification to decline. We test these hypotheses by examining the tempo and mode of speciation in the lampropeltinine snakes, a morphologically variable group that colonized the New World approximately 24 million years ago and radiated throughout the Miocene. We show that specific diversification increased early in the history of the group, and that most morphological variation is partitioned among, rather than within subclades. These patterns provide further evidence for the hypothesis that morphological variation tends to be strongly partitioned among lineages when clades undergo early bursts of species diversification. A reduction in speciation rates may be indicative of density dependent effects due to a saturation of available ecological opportunity, rather than increases in extinction rates at the onset of the Pleistocene/Pliocene glacial cycles. This evidence runs counter to the general Pleistocene species pump model.

  13. Colour pattern as a single trait driving speciation in Hypoplectrus coral reef fishes?

    PubMed

    Puebla, Oscar; Bermingham, Eldredge; Guichard, Frédéric; Whiteman, Elizabeth

    2007-05-22

    Theory shows that speciation in the presence of gene flow occurs only under narrow conditions. One of the most favourable scenarios for speciation with gene flow is established when a single trait is both under disruptive natural selection and used to cue assortative mating. Here, we demonstrate the potential for a single trait, colour pattern, to drive incipient speciation in the genus Hypoplectrus (Serranidae), coral reef fishes known for their striking colour polymorphism. We provide data demonstrating that sympatric Hypoplectrus colour morphs mate assortatively and are genetically distinct. Furthermore, we identify ecological conditions conducive to disruptive selection on colour pattern by presenting behavioural evidence of aggressive mimicry, whereby predatory Hypoplectrus colour morphs mimic the colour patterns of non-predatory reef fish species to increase their success approaching and attacking prey. We propose that colour-based assortative mating, combined with disruptive selection on colour pattern, is driving speciation in Hypoplectrus coral reef fishes.

  14. Colour pattern as a single trait driving speciation in Hypoplectrus coral reef fishes?

    PubMed Central

    Puebla, Oscar; Bermingham, Eldredge; Guichard, Frédéric; Whiteman, Elizabeth

    2007-01-01

    Theory shows that speciation in the presence of gene flow occurs only under narrow conditions. One of the most favourable scenarios for speciation with gene flow is established when a single trait is both under disruptive natural selection and used to cue assortative mating. Here, we demonstrate the potential for a single trait, colour pattern, to drive incipient speciation in the genus Hypoplectrus (Serranidae), coral reef fishes known for their striking colour polymorphism. We provide data demonstrating that sympatric Hypoplectrus colour morphs mate assortatively and are genetically distinct. Furthermore, we identify ecological conditions conducive to disruptive selection on colour pattern by presenting behavioural evidence of aggressive mimicry, whereby predatory Hypoplectrus colour morphs mimic the colour patterns of non-predatory reef fish species to increase their success approaching and attacking prey. We propose that colour-based assortative mating, combined with disruptive selection on colour pattern, is driving speciation in Hypoplectrus coral reef fishes. PMID:17360287

  15. The Bunocephalus coracoideus Species Complex (Siluriformes, Aspredinidae). Signs of a Speciation Process through Chromosomal, Genetic and Ecological Diversity.

    PubMed

    Ferreira, Milena; Garcia, Caroline; Matoso, Daniele A; de Jesus, Isac S; Cioffi, Marcelo de B; Bertollo, Luiz A C; Zuanon, Jansen; Feldberg, Eliana

    2017-01-01

    Bunocephalus is the most species-rich Aspredinidae genus, corresponding to a monophyletic clade with 13 valid species. However, many species have their classification put in question. Here, we analyzed individuals from four Amazonian populations of Bunocephalus coracoideus by cytogenetic and molecular procedures. The geographic distribution, genetic distances and karyotype data indicate that each population represents an Evolutionary Significant Unit (ESU). Cytogenetic markers showed distinct 2n and karyotype formulas, as well as different numbers and locations of the rDNA sites among ESUs. One of such populations (ESU-D) highlighted an extensive polymorphic condition, with several cytotypes probably due to chromosomal rearrangements and meiotic non-disjunctions. This resulted in several aneuploid karyotypes, which was also supported by the mapping of telomeric sequences. Phylograms based on Maximum Likelihood (ML) and Neighbor Joining (NJ) analyses grouped each ESU on particular highly supported clades, with the estimation of evolutionary divergence indicating values being higher than 3.8-12.3% among them. Our study reveals a huge degree of chromosomal and genetic diversity in B. coracoideus and highly points to the existence of four ESUs in allopatric and sympatric speciation processes. In fact, the high divergences found among the ESUs allowed us to delimitate lineages with taxonomic uncertainties in this nominal species.

  16. Evidence for parallel ecological speciation in scincid lizards of the Eumeces skiltonianus species group (Squamata: Scincidae).

    PubMed

    Richmond, Jonathan Q; Reeder, Tod W

    2002-07-01

    We identify instances of parallel morphological evolution in North American scincid lizards of the Eumeces skiltonianus species group and provide evidence that this system is consistent with a model of ecological speciation. The group consists of three putative species divided among two morphotypes, the small-bodied and striped E. skiltonianus and E. lagunensis versus the large-bodied and typically uniform-colored E. gilberti. Members of the group pass through markedly similar phenotypic stages during early development, but differ with respect to where terminal morphology occurs along the developmental sequence. The morphotypes also differ in habitat preference, with the large-bodied gilberti form generally inhabiting lower elevations and drier environments than the smaller, striped morphs. We inferred the phylogenetic relationships of 53 skiltonianus group populations using mtDNA sequence data from the ND4 protein-coding gene and three flanking tRNAs (900 bp total). Sampling encompassed nearly the entire geographic range of the group, and all currently recognized species and subspecies were included. Our results provide strong evidence for parallel origins of three clades characterized by the gilberti morphotype, two of which are nested within the more geographically widespread E. skiltonianus. Eumeces lagunensis was also nested among populations of E. skiltonianus. Comparative analyses using independent contrasts show that evolutionary changes in body size are correlated with differences in adult color pattern. The independently derived association of gilberti morphology with warm, arid environments suggests that phenotypic divergence is the result of adaptation to contrasting selection regimes. We provide evidence that body size was likely the target of natural selection, and that divergences in color pattern and mate recognition are probable secondary consequences of evolving large body size.

  17. Erosive processes after tectonic uplift stimulate vicariant and adaptive speciation: evolution in an Afrotemperate-endemic paper daisy genus

    PubMed Central

    2014-01-01

    Background The role of tectonic uplift in stimulating speciation in South Africa’s only alpine zone, the Drakensberg, has not been explicitly examined. Tectonic processes may influence speciation both through the creation of novel habitats and by physically isolating plant populations. We use the Afrotemperate endemic daisy genus Macowania to explore the timing and mode (geographic versus adaptive) of speciation in this region. Between sister species pairs we expect high morphological divergence where speciation has happened in sympatry (adaptive) while with geographic (vicariant) speciation we may expect to find less morphological divergence and a greater degree of allopatry. A dated molecular phylogenetic hypothesis for Macowania elucidates species’ relationships and is used to address the potential impact of uplift on diversification. Morphological divergence of a small sample of reproductive and vegetative characters, used as a proxy for adaptive divergence, is measured against species’ range distributions to estimate mode of speciation across two subclades in the genus. Results The Macowania crown age is consistent with the hypothesis of post-uplift diversification, and we find evidence for both vicariant and adaptive speciation between the two subclades within Macowania. Both subclades exhibit strong signals of range allopatry, suggesting that geographic isolation was important in speciation. One subclade, associated with dry, rocky environments at high altitudes, shows very little morphological and ecological differentiation but high range allopatry. The other subclade occupies a greater variety of habitats and exhibits far greater morphological differentiation, but contains species with overlapping distribution ranges. Conclusions Species in Macowania are likely to have diversified in response to tectonic uplift, and we invoke uplift and uplift-mediated erosion as the main drivers of speciation. The greater relative morphological divergence in

  18. Molecular, morphological, and ecological niche differentiation of sympatric sister oak species, Quercus virginiana and Q. geminata (Fagaceae).

    PubMed

    Cavender-Bares, Jeannine; Pahlich, Annette

    2009-09-01

    The genus Quercus (the oaks) is notorious for interspecific hybrization, generating questions about the mechanisms that permit coexistence of closely related species. Two sister oak species, Quercus virginiana and Q. geminata, occur in sympatry in Florida and throughout the southeastern United States. In 11 sites from northern and southeastern regions of Florida, we used a leaf-based morphological index to identify individuals to species. Eleven nuclear microsatellite markers significantly differentiated between the species with a high correspondence between molecular and morphological typing of specimens. Nevertheless, Bayesian clustering analysis indicates interspecific gene flow, and six of 109 individuals had mixed ancestry. The identity of several individuals also was mismatched using molecular markers and morphological characters. In a common environment, the two species performed differently in terms of photosynthetic performance and growth, corresponding to their divergent ecological niches with respect to soil moisture and other edaphic properties. Our data support earlier hypotheses that divergence in flowering time causes assortative mating, allowing these ecologically distinct sister species to occur in sympatry. Limited gene flow that permits ecological differentiation helps to explain the overdispersion of oak species in local communities.

  19. Sympatric and Allopatric Divergence of MHC Genes in Threespine Stickleback

    PubMed Central

    Matthews, Blake; Harmon, Luke J.; M'Gonigle, Leithen; Marchinko, Kerry B.; Schaschl, Helmut

    2010-01-01

    Parasites can strongly affect the evolution of their hosts, but their effects on host diversification are less clear. In theory, contrasting parasite communities in different foraging habitats could generate divergent selection on hosts and promote ecological speciation. Immune systems are costly to maintain, adaptable, and an important component of individual fitness. As a result, immune system genes, such as those of the Major Histocompatability Complex (MHC), can change rapidly in response to parasite-mediated selection. In threespine stickleback (Gasterosteus aculeatus), as well as in other vertebrates, MHC genes have been linked with female mating preference, suggesting that divergent selection acting on MHC genes might influence speciation. Here, we examined genetic variation at MHC Class II loci of sticklebacks from two lakes with a limnetic and benthic species pair, and two lakes with a single species. In both lakes with species pairs, limnetics and benthics differed in their composition of MHC alleles, and limnetics had fewer MHC alleles per individual than benthics. Similar to the limnetics, the allopatric population with a pelagic phenotype had few MHC alleles per individual, suggesting a correlation between MHC genotype and foraging habitat. Using a simulation model we show that the diversity and composition of MHC alleles in a sympatric species pair depends on the amount of assortative mating and on the strength of parasite-mediated selection in adjacent foraging habitats. Our results indicate parallel divergence in the number of MHC alleles between sympatric stickleback species, possibly resulting from the contrasting parasite communities in littoral and pelagic habitats of lakes. PMID:20585386

  20. On the ecology of two sympatric flounders of the genus Paralichthys in the Bay of Coquimbo, Chile

    NASA Astrophysics Data System (ADS)

    Acuña, Enzo; Cid, Luis

    The ecology of two flounders belonging to the genus Paralichthys was studied in the Bay of Coquimbo (29°57'S), Chile. P. adspersus grows larger than P. microps. In both species, the females were significantly larger than the males. The species differed in their reproductive cycles as revealed by their gonadosomatic indices. This difference was also reflected in larval abundance and spatial distribution of the species. No significant changes were found in the abundances of juveniles and adults in the Bay of Coquimbo either throughout the year or interannually. However, when the analysis included the proportion of specimens between the two species and sex by season, the differences were apparent in most cases. The results show that the environmental characteristics of the marine system which the Bay of Coquimbo is a part of provide good feeding, spawning and nursery grounds for these two species of flounder.

  1. Feeding ecology and trophic segregation of two sympatric mesopredatory sharks in the heavily exploited coastal ecosystem of the Adriatic Sea.

    PubMed

    Gračan, R; Zavodnik, D; Krstinić, P; Dragičević, B; Lazar, B

    2017-01-01

    The ecological roles and trophic interactions of two commercially important mesopredatory shark species, Squalus acanthias and Mustelus punctulatus that co-occur on the continental shelf of the north-central Adriatic Sea were investigated. Both shark species are dietary specialists, with a significant dietary overlap recorded only during the spring season. They showed different patterns of feeding as they grew: S. acanthias extended its trophic niche with an increase in size, while M. punctulatus developed a more specialized diet. These two sharks partition food resources and reduce niche overlap by foraging at different trophic levels. Mustelus punctulatus is a crustacean feeder, specialized in foraging on scavenging malacostracans frequently found along trawl tracks or on discards in the Adriatic fishing zone. Conversely, S. acanthias prefers small pelagic fishes, which are commercially exploited and in decline. The different foraging strategies adopted by these two species suggest that they should be managed separately. Dietary specialization, direct competition with humans for prey and their higher intrinsic vulnerability make S. acanthias particularly susceptible to the effects of anthropogenic perturbations. © 2016 The Fisheries Society of the British Isles.

  2. Selenium Distribution and Speciation in the Hyperaccumulator Astragalus bisulcatus and Associated Ecological Partners1[W][OA

    PubMed Central

    Valdez Barillas, José R.; Quinn, Colin F.; Freeman, John L.; Lindblom, Stormy D.; Fakra, Sirine C.; Marcus, Matthew A.; Gilligan, Todd M.; Alford, Élan R.; Wangeline, Ami L.; Pilon-Smits, Elizabeth A.H.

    2012-01-01

    The goal of this study was to investigate how plant selenium (Se) hyperaccumulation may affect ecological interactions and whether associated partners may affect Se hyperaccumulation. The Se hyperaccumulator Astragalus bisulcatus was collected in its natural seleniferous habitat, and x-ray fluorescence mapping and x-ray absorption near-edge structure spectroscopy were used to characterize Se distribution and speciation in all organs as well as in encountered microbial symbionts and herbivores. Se was present at high levels (704–4,661 mg kg−1 dry weight) in all organs, mainly as organic C-Se-C compounds (i.e. Se bonded to two carbon atoms, e.g. methylselenocysteine). In nodule, root, and stem, up to 34% of Se was found as elemental Se, which was potentially due to microbial activity. In addition to a nitrogen-fixing symbiont, the plants harbored an endophytic fungus that produced elemental Se. Furthermore, two Se-resistant herbivorous moths were discovered on A. bisulcatus, one of which was parasitized by a wasp. Adult moths, larvae, and wasps all accumulated predominantly C-Se-C compounds. In conclusion, hyperaccumulators live in association with a variety of Se-resistant ecological partners. Among these partners, microbial endosymbionts may affect Se speciation in hyperaccumulators. Hyperaccumulators have been shown earlier to negatively affect Se-sensitive ecological partners while apparently offering a niche for Se-resistant partners. Through their positive and negative effects on different ecological partners, hyperaccumulators may influence species composition and Se cycling in seleniferous ecosystems. PMID:22645068

  3. Weak crossability barrier but strong juvenile selection supports ecological speciation of the hybrid pine Pinus densata on the Tibetan plateau.

    PubMed

    Zhao, Wei; Meng, Jingxiang; Wang, Baosheng; Zhang, Lisha; Xu, Yulan; Zeng, Qing-Yin; Li, Yue; Mao, Jian-Feng; Wang, Xiao-Ru

    2014-11-01

    Determining how a new hybrid lineage can achieve reproductive isolation is a key to understanding the process and mechanisms of homoploid hybrid speciation. Here, we evaluated the degree and nature of reproductive isolation between the ecologically successful hybrid species Pinus densata and its parental species P. tabuliformis and P. yunnanensis. We performed interspecific crosses among the three species to assess their crossability. We then conducted reciprocal transplantation experiments to evaluate their fitness differentiation, and to examine how natural populations representing different directions of introgression differ in adaptation. The crossing experiments revealed weak genetic barriers among the species. The transplantation trials showed manifest evidence of local adaptation as the three species all performed best in their native habitats. Pinus densata populations from the western edge of its distribution have evolved a strong local adaptation to the specific habitat in that range; populations representing different directions of introgressants with the two parental species all showed fitness disadvantages in this P. densata habitat. These observations illustrate that premating isolation through selection against immigrants from other habitat types or postzygotic isolation through selection against backcrosses between the three species is strong. Thus, ecological selection in combination with endogenous components and geographic isolation has likely played a significant role in the speciation of P. densata. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  4. WEAK CROSSABILITY BARRIER BUT STRONG JUVENILE SELECTION SUPPORTS ECOLOGICAL SPECIATION OF THE HYBRID PINE PINUS DENSATA ON THE TIBETAN PLATEAU

    PubMed Central

    Zhao, Wei; Meng, Jingxiang; Wang, Baosheng; Zhang, Lisha; Xu, Yulan; Zeng, Qing-Yin; Li, Yue; Mao, Jian-Feng; Wang, Xiao-Ru

    2014-01-01

    Determining how a new hybrid lineage can achieve reproductive isolation is a key to understanding the process and mechanisms of homoploid hybrid speciation. Here, we evaluated the degree and nature of reproductive isolation between the ecologically successful hybrid species Pinus densata and its parental species P. tabuliformis and P. yunnanensis. We performed interspecific crosses among the three species to assess their crossability. We then conducted reciprocal transplantation experiments to evaluate their fitness differentiation, and to examine how natural populations representing different directions of introgression differ in adaptation. The crossing experiments revealed weak genetic barriers among the species. The transplantation trials showed manifest evidence of local adaptation as the three species all performed best in their native habitats. Pinus densata populations from the western edge of its distribution have evolved a strong local adaptation to the specific habitat in that range; populations representing different directions of introgressants with the two parental species all showed fitness disadvantages in this P. densata habitat. These observations illustrate that premating isolation through selection against immigrants from other habitat types or postzygotic isolation through selection against backcrosses between the three species is strong. Thus, ecological selection in combination with endogenous components and geographic isolation has likely played a significant role in the speciation of P. densata. PMID:25065387

  5. Arabidopsis hybrid speciation processes

    PubMed Central

    Schmickl, Roswitha; Koch, Marcus A.

    2011-01-01

    The genus Arabidopsis provides a unique opportunity to study fundamental biological questions in plant sciences using the diploid model species Arabidopsis thaliana and Arabidopsis lyrata. However, only a few studies have focused on introgression and hybrid speciation in Arabidopsis, although polyploidy is a common phenomenon within this genus. More recently, there is growing evidence of significant gene flow between the various Arabidopsis species. So far, we know Arabidopsis suecica and Arabidopsis kamchatica as fully stabilized allopolyploid species. Both species evolved during Pleistocene glaciation and deglaciation cycles in Fennoscandinavia and the amphi-Beringian region, respectively. These hybrid studies were conducted either on a phylogeographic scale or reconstructed experimentally in the laboratory. In our study we focus at a regional and population level. Our research area is located in the foothills of the eastern Austrian Alps, where two Arabidopsis species, Arabidopsis arenosa and A. lyrata ssp. petraea, are sympatrically distributed. Our hypothesis of genetic introgression, migration, and adaptation to the changing environment during the Pleistocene has been confirmed: We observed significant, mainly unidirectional gene flow between the two species, which has given rise to the tetraploid A. lyrata. This cytotype was able to escape from the narrow ecological niche occupied by diploid A. lyrata ssp. petraea on limestone outcrops by migrating northward into siliceous areas, leaving behind a trail of genetic differentiation. PMID:21825128

  6. Learning the ecological niche

    PubMed Central

    Slagsvold, Tore; Wiebe, Karen L

    2006-01-01

    A cornerstone of ecological theory is the ecological niche. Yet little is known about how individuals come to adopt it: whether it is innate or learned. Here, we report a cross-fostering experiment in the wild where we transferred eggs of blue tits, Cyanistes caeruleus, to nests of great tits, Parus major, and vice versa, to quantify the consequences of being reared in a different social context, but in an environment otherwise natural to the birds. We show that early learning causes a shift in the feeding niche in the direction of the foster species and that this shift lasts for life (foraging conservatism). Both species changed their feeding niches, but the change was greater in the great tit with its less specialized feeding behaviour. The study shows that cultural transmission through early learning is fundamental to the realization of ecological niches, and suggests a mechanism to explain learned habitat preference and sympatric speciation in animals. PMID:17015332

  7. Learning the ecological niche.

    PubMed

    Slagsvold, Tore; Wiebe, Karen L

    2007-01-07

    A cornerstone of ecological theory is the ecological niche. Yet little is known about how individuals come to adopt it: whether it is innate or learned. Here, we report a cross-fostering experiment in the wild where we transferred eggs of blue tits, Cyanistes caeruleus, to nests of great tits, Parus major, and vice versa, to quantify the consequences of being reared in a different social context, but in an environment otherwise natural to the birds. We show that early learning causes a shift in the feeding niche in the direction of the foster species and that this shift lasts for life (foraging conservatism). Both species changed their feeding niches, but the change was greater in the great tit with its less specialized feeding behaviour. The study shows that cultural transmission through early learning is fundamental to the realization of ecological niches, and suggests a mechanism to explain learned habitat preference and sympatric speciation in animals.

  8. Hybrid zones and the speciation continuum in Heliconius butterflies.

    PubMed

    Mallet, James; Dasmahapatra, Kanchon K

    2012-12-01

    Tropical butterflies in the genus Heliconius have long been models in the study of the stages of speciation. Heliconius are unpalatable to predators, and many species are notable for multiple geographic populations with striking warning colour pattern differences associated with Müllerian mimicry. A speciation continuum is evident in Heliconius hybrid zones. Examples range from hybrid zones across which (a) there is little genetic differentiation other than at mimicry loci, but where hybrids are common, (b) to 'bimodal' hybrid zones with strong genetic divergence and few hybrids, (c) through to 'good' sympatric species, with hybridization extremely rare or absent. Now, in this issue of Molecular Ecology, Arias et al. (2012) have found an intermediate case in Colombian Heliconius cydno showing evidence for assortative mating and molecular differences, but where hybrids are abundant.

  9. Evidence of sympatric speciation of elderberry carlaviruses

    USDA-ARS?s Scientific Manuscript database

    Five new carlavirus species infecting elderberry were characterized and tentatively named as elderberry virus A-E (EVA-EVE). The genome organization of the viruses ranges between 8,540-8,628 nucleotides, excluding the polyadenylated tail. EVA, EVB and EVD share a common ancestor as do EVC and EVE, i...

  10. Effects of ecological restoration on speciation and release of copper in lake sediments

    NASA Astrophysics Data System (ADS)

    Guo, Weijie; Zhao, Liangyuan; Li, Qingyun; Zhao, Weihua; Li, Huan

    2017-05-01

    The conclusion about the effect of macrophytes rhizosphere and mollusks bioturbation on morphology and mobility of heavy metals in the sediments is not entirely consistent. It is necessary to study further on influence mechanism of macrophytes growth and macrobenthos bioturbation on speciation and release of heavy metals in natural water body. This study intends to explore the influence mechanism of Bellamya aeruginosa (Bel) bioturbation and Pontederia cordata (Pon) growth on the speciation and release kinetics of Cu in sediment through construction of an aquatic organism-water-sediment system by indoor potted experiment. The results show that the particulate Cu in water of the control group and Pon treatment always maintain in lower level and the particulate Cu concentration in water of Bel treatment and Pon+Bel treatment appeared to a certain level of fluctuations at latter period. There was a significant positive correlation between the content of particulate Cu in water and the water turbidity. Bellamya aeruginosa bioturbation has not significantly affected the different speciation of heavy metals in surface sediments and the concentration of reducible Cu and Zn in the rhizosphere sediment was significantly lower than that in the control group.

  11. Testing alternative models for sexual isolation in natural populations of Littorina saxatilis: indirect support for by-product ecological speciation?

    PubMed

    Cruz, R; Carballo, M; Conde-Padín, P; Rolán-Alvarez, E

    2004-03-01

    Two ecotypes of the rough periwinkle Littorina saxatilis occur at different shore levels, showing assortative mating for size and partial reproductive isolation when they meet at the mid-shore. This system represents a putative case of incomplete speciation in sympatry. Two processes contribute to the assortative mating: morph-specific microhabitat aggregation and mate choice. The estimation of mate choice coefficients in nature and a simulation of the aggregation effects on sexual isolation were used to disentangle these processes as well as to test alternative mechanisms of mate choice. Mate choice significantly increased the frequency of within-morph pairs and significantly decreased the frequency of between-morph pairs, whereas those pairs including at least one hybrid morph mated randomly. These results allow us to reject a discriminant mate choice and support a model of evolution of sexual isolation as a side-effect of size-assortative mating in a context of divergent natural selection for size in the population. This mechanism is more compatible with a model of incomplete by-product ecological speciation, as suggested by previous evidence.

  12. Habitat selection and ecological speciation in Galápagos warbler finches (Certhidea olivacea and Certhidea fusca)

    PubMed Central

    Tonnis, Brandon; Grant, Peter R; Grant, B. Rosemary; Petren, Kenneth

    2005-01-01

    We investigated phylogeographic divergence among populations of Galápagos warbler finches. Their broad distribution, lack of phenotypic differentiation and low levels of genetic divergence make warbler finches an appropriate model to study speciation in allopatry. A positive relationship between genetic and geographical distances is expected for island taxa. Warbler finches actually showed a negative isolation by distance relationship, causing us to reject the hypothesis of distance‐limited dispersal. An alternative hypothesis, that dispersal is limited by habitat similarity, was supported. We found a positive correlation between genetic distances and differences in maximum elevation among islands, which is an indicator of ecological similarity. MtDNA sequence variation revealed monophyletic support for two distinct species. Certhidea olivacea have recently dispersed among larger central islands, while some Certhidea fusca have recently dispersed to small islands at opposite ends of the archipelago. We conclude that females have chosen to breed on islands with habitats similar to their natal environment. Habitat selection is implicated as an important component of speciation of warbler finches, which is the earliest known divergence of the adaptive radiation of Darwin's finches. These results suggest that small populations can harbour cryptic but biologically meaningful variation that may affect longer term evolutionary processes. PMID:15940826

  13. Speciation in fishes.

    PubMed

    Bernardi, Giacomo

    2013-11-01

    The field of speciation has seen much renewed interest in the past few years, with theoretical and empirical advances that have moved it from a descriptive field to a predictive and testable one. The goal of this review is to provide a general background on research on speciation as it pertains to fishes. Three major components to the question are first discussed: the spatial, ecological and sexual factors that influence speciation mechanisms. We then move to the latest developments in the field of speciation genomics. Affordable and rapidly available, massively parallel sequencing data allow speciation studies to converge into a single comprehensive line of investigation, where the focus has shifted to the search for speciation genes and genomic islands of speciation. We argue that fish present a very diverse array of scenarios, making them an ideal model to study speciation processes.

  14. Radiating on Oceanic Islands: Patterns and Processes of Speciation in the Land Snail Genus Theba (Risso 1826)

    PubMed Central

    Greve, Carola; Gimnich, France; Hutterer, Rainer; Misof, Bernhard; Haase, Martin

    2012-01-01

    Island radiations have played a major role in shaping our current understanding of allopatric, sympatric and parapatric speciation. However, the fact that species divergence correlates with island size emphasizes the importance of geographic isolation (allopatry) in speciation. Based on molecular and morphological data, we investigated the diversification of the land snail genus Theba on the two Canary Islands of Lanzarote and Fuerteventura. Due to the geological history of both islands, this study system provides ideal conditions to investigate the interplay of biogeography, dispersal ability and differentiation in generating species diversity. Our analyses demonstrated extensive cryptic diversification of Theba on these islands, probably driven mainly by non-adaptive allopatric differentiation and secondary gene flow. In a few cases, we observed a complete absence of gene flow among sympatrically distributed forms suggesting an advanced stage of speciation. On the Jandía peninsula genome scans suggested genotype-environment associations and potentially adaptive diversification of two closely related Theba species to different ecological environments. We found support for the idea that genetic differentiation was enhanced by divergent selection in different environments. The diversification of Theba on both islands is therefore best explained by a mixture of non-adaptive and adaptive speciation, promoted by ecological and geomorphological factors. PMID:22493687

  15. Radiating on oceanic islands: patterns and processes of speciation in the land snail genus Theba (Risso 1826).

    PubMed

    Greve, Carola; Gimnich, France; Hutterer, Rainer; Misof, Bernhard; Haase, Martin

    2012-01-01

    Island radiations have played a major role in shaping our current understanding of allopatric, sympatric and parapatric speciation. However, the fact that species divergence correlates with island size emphasizes the importance of geographic isolation (allopatry) in speciation. Based on molecular and morphological data, we investigated the diversification of the land snail genus Theba on the two Canary Islands of Lanzarote and Fuerteventura. Due to the geological history of both islands, this study system provides ideal conditions to investigate the interplay of biogeography, dispersal ability and differentiation in generating species diversity. Our analyses demonstrated extensive cryptic diversification of Theba on these islands, probably driven mainly by non-adaptive allopatric differentiation and secondary gene flow. In a few cases, we observed a complete absence of gene flow among sympatrically distributed forms suggesting an advanced stage of speciation. On the Jandía peninsula genome scans suggested genotype-environment associations and potentially adaptive diversification of two closely related Theba species to different ecological environments. We found support for the idea that genetic differentiation was enhanced by divergent selection in different environments. The diversification of Theba on both islands is therefore best explained by a mixture of non-adaptive and adaptive speciation, promoted by ecological and geomorphological factors.

  16. Molecular phylogeny of grunts (Teleostei, Haemulidae), with an emphasis on the ecology, evolution, and speciation history of New World species

    PubMed Central

    2012-01-01

    Background The fish family Haemulidae is divided in two subfamilies, Haemulinae and Plectorhynchinae (sweetlips), including approximately 17 genera and 145 species. The family has a broad geographic distribution that encompasses contrasting ecological habitats resulting in a unique potential for evolutionary hypotheses testing. In the present work we have examined the phylogenetic relationships of the family using selected representatives of additional Percomorpha based on Bayesian and Maximum likelihood methods by means of three mitochondrial genes. We also developed a phylogenetic hypothesis of the New World species based on five molecular markers (three mitochondrial and two nuclear) as a framework to evaluate the evolutionary history, the ecological diversification and speciation patterns of this group. Results Mitochondrial genes and different reconstruction methods consistently recovered a monophyletic Haemulidae with the Sillaginidae as its sister clade (although with low support values). Previous studies proposed different relationships that were not recovered in this analysis. We also present a robust molecular phylogeny of Haemulinae based on the combined data of two nuclear and three mitochondrial genes. All topologies support the monophyly of both sub-families (Haemulinae, Plectorhinchinae). The genus Pomadasys was shown to be polyphyletic and Haemulon, Anisotremus, and Plectorhinchus were found to be paraphyletic. Four of seven presumed geminate pairs were indeed found to be sister species, however our data did not support a contemporaneous divergence. Analyses also revealed that differential use of habitat might have played an important role in the speciation dynamics of this group of fishes, in particular among New World species where extensive sample coverage was available. Conclusions This study provides a new hypothesis for the sister clade of Hamulidae and a robust phylogeny of the latter. The presence of para- and polyphyletic genera underscores

  17. Character shifts in the defensive armor of sympatric sticklebacks.

    PubMed

    Vamosi, Steven M; Schluter, Dolph

    2004-02-01

    Natural enemies may contribute to the morphological divergence of sympatric species, yet their role has received little attention to date. We tested for character shifts in defensive armor of sympatric threespine sticklebacks (Gasterosteus aculeatus complex) previously shown to exhibit ecological character displacement in traits related to resource use. We scored five defensive armor traits in sympatric benthic and limnetic stickleback species from southwestern British Columbia and compared them with the same traits in nearby allopatric populations in the presence of the same predatory fish (Oncorhynchus sp.). This approach is analogous to tests of ecological character displacement that compare trophic traits of sympatric and allopatric species in the presence of the same community of resource types. Three patterns consistent with character displacement in defensive armor were found. First, limnetics in different lakes had consistently more armor than sympatric benthics. Second, the average amount of armor, averaged over both species, was reduced in sympatry compared to allopatric populations. This reduction was almost entirely the result of shifts by benthic species, whereas armor in limnetics was more similar to that in allopatric populations. Third, differences between sympatric benthics and limnetics in total armor were greater than expected from comparisons with allopatric populations. We interpret these patterns as the result of differences in habitat-specific predation regimes accompanying ecological character displacement and indirect interactions between sympatric stickleback species mediated by their top predators. These results suggest that predation may facilitate, rather than hinder, the process of divergence in sympatry.

  18. Chronic speciation in periodical cicadas.

    PubMed

    Ritchie, M G.

    2001-02-01

    Allochronic speciation and reproductive character displacement are two intuitively attractive models of speciation. The first proposes that changes in the timing of life cycles produce new species, whereas the second suggests that speciation is due to the exaggeration of sexual isolation in sympatric populations. Clear examples of either process in nature remain elusive, despite some extensive searches. Two recent studies of mtDNA markers and behaviour of periodical cicadas in North America have identified a new species of cicada that seems to provide good evidence for the involvement of both processes in its origin.

  19. Edaphic and light conditions of sympatric plant morphotypes in western Amazonia.

    PubMed

    Roncal, Julissa

    2014-01-01

    Here I present a dataset of edaphic and light conditions associated with the occurrence of sympatric morphotypes of Geonomamacrostachys (Arecaceae/Palmae), a candidate case study from Amazonia hypothesized to have evolved under ecological speciation. Transects were established in three lowland rainforests in Peru, and the abundance of each local morphotype of this species was recorded in a total area of 4.95 hectares. Composite soil samples and hemispherical photographs were taken along the transects were the species occurred to obtain information on soil nutrients, soil texture, and indirect measurements of light availability. The raw and summary tables disclose the characteristics of each study site and habitats within them, which could be useful to soil scientists, ecologists, and conservationists engaged in similar research activities or meta-analyses in Amazonia.

  20. Edaphic and light conditions of sympatric plant morphotypes in western Amazonia

    PubMed Central

    2014-01-01

    Abstract Here I present a dataset of edaphic and light conditions associated with the occurrence of sympatric morphotypes of Geonoma macrostachys (Arecaceae/Palmae), a candidate case study from Amazonia hypothesized to have evolved under ecological speciation. Transects were established in three lowland rainforests in Peru, and the abundance of each local morphotype of this species was recorded in a total area of 4.95 hectares. Composite soil samples and hemispherical photographs were taken along the transects were the species occurred to obtain information on soil nutrients, soil texture, and indirect measurements of light availability. The raw and summary tables disclose the characteristics of each study site and habitats within them, which could be useful to soil scientists, ecologists, and conservationists engaged in similar research activities or meta-analyses in Amazonia. PMID:24891831

  1. Incipient speciation driven by hypertrophied lips in Midas cichlid fishes?

    PubMed

    Machado-Schiaffino, Gonzalo; Kautt, Andreas F; Torres-Dowdall, Julian; Baumgarten, Lukas; Henning, Frederico; Meyer, Axel

    2017-01-30

    Sympatric speciation has been debated in evolutionary biology for decades. Although it has gained in acceptance recently, still only a handful of empirical examples are seen as valid (e.g. crater lake cichlids). In this study, we disentangle the role of hypertrophied lips in the repeated adaptive radiations of Nicaraguan crater lake cichlid fish. We assessed the role of disruptive selection and assortative mating during the early stages of divergence and found a functional trade-off in feeding behaviour between thick- and thin-lipped ecotypes, suggesting that this trait is a target of disruptive selection. Thick-lipped fish perform better on nonevasive prey at the cost of a poorer performance on evasive prey. Using enclosures in the wild, we found that thick-lipped fish perform significantly better in rocky than in sandy habitats. We found almost no mixed pairs during two breeding seasons and hence significant assortative mating. Genetic differentiation between ecotypes seems to be related to the time since colonization, being subtle in L. Masaya (1600 generations ago) and absent in the younger L. Apoyeque (<600 generations ago). Genome-wide differentiation between ecotypes was higher in the old source lakes than in the young crater lakes. Our results suggest that hypertrophied lips might be promoting incipient sympatric speciation through divergent selection (ecological divergence in feeding performance) and nonrandom mating (assortative mating) in the young Nicaraguan crater lakes. Nonetheless, further manipulative experiments are needed in order to confirm the role of hypertrophied lips as the main cue for assortative mating.

  2. Speciation dynamics and biogeography of Neotropical spiral gingers (Costaceae).

    PubMed

    André, Thiago; Salzman, Shayla; Wendt, Tânia; Specht, Chelsea D

    2016-10-01

    Species can arise via the divisive effects of allopatry as well as due to ecological and/or reproductive character displacement within sympatric populations. Two separate lineages of Costaceae are native to the Neotropics; an early-diverging clade endemic to South America (consisting of ca. 16 species in the genera Monocostus, Dimerocostus and Chamaecostus); and the Neotropical Costus clade (ca. 50 species), a diverse assemblage of understory herbs comprising nearly half of total familial species richness. We use a robust dated molecular phylogeny containing most of currently known species to inform macroevolutionary reconstructions, enabling us to examine the context of speciation in Neotropical lineages. Analyses of speciation rate revealed a significant variation among clades, with a rate shift at the most recent common ancestor of the Neotropical Costus clade. There is an overall predominance of allopatric speciation in the South American clade, as most species display little range overlap. In contrast, sympatry is much higher within the Neotropical Costus clade, independent of node age. Our results show that speciation dynamics during the history of Costaceae is strongly heterogeneous, and we suggest that the Costus radiation in the Neotropics arose at varied geographic contexts. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Temporal, spatial and ecological dynamics of speciation among amphi-Beringian small mammals

    USGS Publications Warehouse

    Hope, Andrew G.; Takebayashi, Naoki; Galbreath, Kurt E.; Talbot, Sandra L.; Cook, Joseph A.

    2013-01-01

    Quaternary climate cycles played an important role in promoting diversification across the Northern Hemisphere, although details of the mechanisms driving evolutionary change are still poorly resolved. In a comparative phylogeographical framework, we investigate temporal, spatial and ecological components of evolution within a suite of Holarctic small mammals. We test a hypothesis of simultaneous divergence among multiple taxon pairs, investigating time to coalescence and demographic change for each taxon in response to a combination of climate and geography.

  4. Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species.

    PubMed

    Luo, Chengwei; Walk, Seth T; Gordon, David M; Feldgarden, Michael; Tiedje, James M; Konstantinidis, Konstantinos T

    2011-04-26

    Defining bacterial species remains a challenging problem even for the model bacterium Escherichia coli and has major practical consequences for reliable diagnosis of infectious disease agents and regulations for transport and possession of organisms of economic importance. E. coli traditionally is thought to live within the gastrointestinal tract of humans and other warm-blooded animals and not to survive for extended periods outside its host; this understanding is the basis for its widespread use as a fecal contamination indicator. Here, we report the genome sequences of nine environmentally adapted strains that are phenotypically and taxonomically indistinguishable from typical E. coli (commensal or pathogenic). We find, however, that the commensal genomes encode for more functions that are important for fitness in the human gut, do not exchange genetic material with their environmental counterparts, and hence do not evolve according to the recently proposed fragmented speciation model. These findings are consistent with a more stringent and ecologic definition for bacterial species than the current definition and provide means to start replacing traditional approaches of defining distinctive phenotypes for new species with omics-based procedures. They also have important implications for reliable diagnosis and regulation of pathogenic E. coli and for the coliform cell-counting test.

  5. Evolutionary ecology in silico: evolving food webs, migrating population and speciation

    NASA Astrophysics Data System (ADS)

    Stauffer, Dietrich; Kunwar, Ambarish; Chowdhury, Debashish

    2005-07-01

    After a brief review of our recent works on “unified” models of evolutionary ecology, we have generalized our “unified” model by taking into account spatial variations from one “patch” to another. We model the spatial extension of the ecosystem (i.e., the geography) by a square lattice where each site corresponds to a distinct “patch”. A distinct self-organizing hierarchical food web describes the prey-predator relations at each patch in the ecosystem. By carrying out computer simulations up to 107 time steps, we found that, depending on the values of the set of parameters, the distribution of the lifetimes of the species can be fitted to power laws, but only over a very restricted regime of lifetimes. We also interpret our model in terms of taxonomy and present results to elucidate some evolutionary trends in genus, family, order, class, phylum, etc.

  6. From local adaptation to ecological speciation in copepod populations from neighboring lakes.

    PubMed

    Barrera-Moreno, Omar Alfredo; Ciros-Pérez, Jorge; Ortega-Mayagoitia, Elizabeth; Alcántara-Rodríguez, José Arturo; Piedra-Ibarra, Elías

    2015-01-01

    Continental copepods have been derived from several independent invasive events from the sea, but the subsequent evolutionary processes that account for the current diversity in lacustrine environments are virtually unknown. Salinity is highly variable among lakes and constitutes a source of divergent selection driving potential reproductive isolation. We studied four populations of the calanoid copepod Leptodiaptomus cf. sicilis inhabiting four neighboring lakes with a common history (since the Late Pleistocene) located in the Oriental Basin, Mexico; one lake is shallow and varies in salinity periodically (1.4-10 g L(-1)), while three are deep and permanent, with constant salinity (0.5, 1.1 and 6.5 g L(-1), respectively). We hypothesized that (1) these populations belong to a different species than L. sicilis sensu stricto and (2) are experiencing ecologically based divergence due to salinity differences. We assessed morphological and molecular (mtDNA) COI variation, as well as fitness differences and tests of reproductive isolation. Although relationships of the Mexican populations with L. sicilis s.s. could not be elucidated, we identified a clear pattern of divergent selection driven by salinity conditions. The four populations can still be considered a single biological species (sexual recognition and hybridization are still possible in laboratory conditions), but they have diverged into at least three different phenotypes: two locally adapted, specialized in the lakes of constant salinity (saline vs. freshwater), and an intermediate generalist phenotype inhabiting the temporary lake with fluctuating salinity. The specialized phenotypes are poorly suited as migrants, so prezygotic isolation due to immigrant inviability is highly probable. This implication was supported by molecular evidence that showed restricted gene flow, persistence of founder events, and a pattern of allopatric fragmentation. This study showed how ecologically based divergent selection may

  7. From Local Adaptation to Ecological Speciation in Copepod Populations from Neighboring Lakes

    PubMed Central

    Barrera-Moreno, Omar Alfredo; Ciros-Pérez, Jorge; Ortega-Mayagoitia, Elizabeth; Alcántara-Rodríguez, José Arturo; Piedra-Ibarra, Elías

    2015-01-01

    Continental copepods have been derived from several independent invasive events from the sea, but the subsequent evolutionary processes that account for the current diversity in lacustrine environments are virtually unknown. Salinity is highly variable among lakes and constitutes a source of divergent selection driving potential reproductive isolation. We studied four populations of the calanoid copepod Leptodiaptomus cf. sicilis inhabiting four neighboring lakes with a common history (since the Late Pleistocene) located in the Oriental Basin, Mexico; one lake is shallow and varies in salinity periodically (1.4–10 g L-1), while three are deep and permanent, with constant salinity (0.5, 1.1 and 6.5 g L-1, respectively). We hypothesized that (1) these populations belong to a different species than L. sicilis sensu stricto and (2) are experiencing ecologically based divergence due to salinity differences. We assessed morphological and molecular (mtDNA) COI variation, as well as fitness differences and tests of reproductive isolation. Although relationships of the Mexican populations with L. sicilis s.s. could not be elucidated, we identified a clear pattern of divergent selection driven by salinity conditions. The four populations can still be considered a single biological species (sexual recognition and hybridization are still possible in laboratory conditions), but they have diverged into at least three different phenotypes: two locally adapted, specialized in the lakes of constant salinity (saline vs. freshwater), and an intermediate generalist phenotype inhabiting the temporary lake with fluctuating salinity. The specialized phenotypes are poorly suited as migrants, so prezygotic isolation due to immigrant inviability is highly probable. This implication was supported by molecular evidence that showed restricted gene flow, persistence of founder events, and a pattern of allopatric fragmentation. This study showed how ecologically based divergent selection may

  8. Genomic signatures of divergent selection and speciation patterns in a 'natural experiment', the young parallel radiations of Nicaraguan crater lake cichlid fishes.

    PubMed

    Kautt, Andreas F; Elmer, Kathryn R; Meyer, Axel

    2012-10-01

    Divergent selection is the main driving force in sympatric ecological speciation and may also play a strong role in divergence between allopatric populations. Characterizing the genome-wide impact of divergent selection often constitutes a first step in unravelling the genetic bases underlying adaptation and ecological speciation. The Midas cichlid fish (Amphilophus citrinellus) species complex in Nicaragua is a powerful system for studying evolutionary processes. Independent colonizations of isolated young crater lakes by Midas cichlid populations from the older and great lakes of Nicaragua resulted in the repeated evolution of adaptive radiations by intralacustrine sympatric speciation. In this study we performed genome scans on two repeated radiations of crater lake species and their great lake source populations (1030 polymorphic AFLPs, n ∼ 30 individuals per species). We detected regions under divergent selection (0.3% in the crater lake Xiloá flock and 1.7% in the older crater lake Apoyo radiation) that might be responsible for the sympatric diversifications. We find no evidence that the same genomic regions have been involved in the repeated evolution of parallel adaptations across crater lake flocks. However, there is some genetic parallelism apparent (seven out of 51 crater lake to great lake outlier loci are shared; 13.7%) that is associated with the allopatric divergence of both crater lake flocks. Interestingly, our results suggest that the number of outlier loci involved in sympatric and allopatric divergence increases over time. A phylogeny based on the AFLP data clearly supports the monophyly of both crater lake species flocks and indicates a parallel branching order with a primary split along the limnetic-benthic axis in both radiations. © 2012 Blackwell Publishing Ltd.

  9. Uncoupling ecological innovation and speciation in sea snakes (Elapidae, Hydrophiinae, Hydrophiini).

    PubMed

    Sanders, K L; Mumpuni; Lee, M S Y

    2010-12-01

    The viviparous sea snakes (Hydrophiini) are by far the most successful living marine reptiles, with ∼ 60 species that comprise a prominent component of shallow-water marine ecosystems throughout the Indo-West Pacific. Phylogenetically nested within the ∼ 100 species of terrestrial Australo-Melanesian elapids (Hydrophiinae), molecular timescales suggest that the Hydrophiini are also very young, perhaps only ∼ 8-13 Myr old. Here, we use likelihood-based analyses of combined phylogenetic and taxonomic data for Hydrophiinae to show that the initial invasion of marine habitats was not accompanied by elevated diversification rates. Rather, a dramatic three to six-fold increase in diversification rates occurred at least 3-5 Myr after this transition, in a single nested clade: the Hydrophis group accounts for ∼ 80% of species richness in Hydrophiini and ∼ 35% of species richness in (terrestrial and marine) Hydrophiinae. Furthermore, other co-distributed lineages of viviparous sea snakes (and marine Laticauda, Acrochordus and homalopsid snakes) are not especially species rich. Invasion of the oceans has not (by itself) accelerated diversification in Hydrophiini; novelties characterizing the Hydrophis group alone must have contributed to its evolutionary and ecological success.

  10. Speciation reversal and biodiversity dynamics with hybridization in changing environments.

    PubMed

    Seehausen, Ole; Takimoto, Gaku; Roy, Denis; Jokela, Jukka

    2008-01-01

    A considerable fraction of the world's biodiversity is of recent evolutionary origin and has evolved as a by-product of, and is maintained by, divergent adaptation in heterogeneous environments. Conservationists have paid attention to genetic homogenization caused by human-induced translocations (e.g. biological invasions and stocking), and to the importance of environmental heterogeneity for the ecological coexistence of species. However, far less attention has been paid to the consequences of loss of environmental heterogeneity to the genetic coexistence of sympatric species. Our review of empirical observations and our theoretical considerations on the causes and consequences of interspecific hybridization suggest that a loss of environmental heterogeneity causes a loss of biodiversity through increased genetic admixture, effectively reversing speciation. Loss of heterogeneity relaxes divergent selection and removes ecological barriers to gene flow between divergently adapted species, promoting interspecific introgressive hybridization. Since heterogeneity of natural environments is rapidly deteriorating in most biomes, the evolutionary ecology of speciation reversal ought to be fully integrated into conservation biology.

  11. Widespread horizontal genomic exchange does not erode species barriers among sympatric ducks.

    PubMed

    Kraus, Robert H S; Kerstens, Hindrik H D; van Hooft, Pim; Megens, Hendrik-Jan; Elmberg, Johan; Tsvey, Arseny; Sartakov, Dmitry; Soloviev, Sergej A; Crooijmans, Richard P M A; Groenen, Martien A M; Ydenberg, Ronald C; Prins, Herbert H T

    2012-04-02

    The study of speciation and maintenance of species barriers is at the core of evolutionary biology. During speciation the genome of one population becomes separated from other populations of the same species, which may lead to genomic incompatibility with time. This separation is complete when no fertile offspring is produced from inter-population matings, which is the basis of the biological species concept. Birds, in particular ducks, are recognised as a challenging and illustrative group of higher vertebrates for speciation studies. There are many sympatric and ecologically similar duck species, among which fertile hybrids occur relatively frequently in nature, yet these species remain distinct. We show that the degree of shared single nucleotide polymorphisms (SNPs) between five species of dabbling ducks (genus Anas) is an order of magnitude higher than that previously reported between any pair of eukaryotic species with comparable evolutionary distances. We demonstrate that hybridisation has led to sustained exchange of genetic material between duck species on an evolutionary time scale without disintegrating species boundaries. Even though behavioural, genetic and ecological factors uphold species boundaries in ducks, we detect opposing forces allowing for viable interspecific hybrids, with long-term evolutionary implications. Based on the superspecies concept we here introduce the novel term "supra-population" to explain the persistence of SNPs identical by descent within the studied ducks despite their history as distinct species dating back millions of years. By reviewing evidence from speciation theory, palaeogeography and palaeontology we propose a fundamentally new model of speciation to accommodate our genetic findings in dabbling ducks. This model, we argue, may also shed light on longstanding unresolved general speciation and hybridisation patterns in higher organisms, e.g. in other bird groups with unusually high hybridisation rates. Observed

  12. Widespread horizontal genomic exchange does not erode species barriers among sympatric ducks

    PubMed Central

    2012-01-01

    Background The study of speciation and maintenance of species barriers is at the core of evolutionary biology. During speciation the genome of one population becomes separated from other populations of the same species, which may lead to genomic incompatibility with time. This separation is complete when no fertile offspring is produced from inter-population matings, which is the basis of the biological species concept. Birds, in particular ducks, are recognised as a challenging and illustrative group of higher vertebrates for speciation studies. There are many sympatric and ecologically similar duck species, among which fertile hybrids occur relatively frequently in nature, yet these species remain distinct. Results We show that the degree of shared single nucleotide polymorphisms (SNPs) between five species of dabbling ducks (genus Anas) is an order of magnitude higher than that previously reported between any pair of eukaryotic species with comparable evolutionary distances. We demonstrate that hybridisation has led to sustained exchange of genetic material between duck species on an evolutionary time scale without disintegrating species boundaries. Even though behavioural, genetic and ecological factors uphold species boundaries in ducks, we detect opposing forces allowing for viable interspecific hybrids, with long-term evolutionary implications. Based on the superspecies concept we here introduce the novel term "supra-population" to explain the persistence of SNPs identical by descent within the studied ducks despite their history as distinct species dating back millions of years. Conclusions By reviewing evidence from speciation theory, palaeogeography and palaeontology we propose a fundamentally new model of speciation to accommodate our genetic findings in dabbling ducks. This model, we argue, may also shed light on longstanding unresolved general speciation and hybridisation patterns in higher organisms, e.g. in other bird groups with unusually high

  13. Floral traits and pollination ecology of European Arum hybrids.

    PubMed

    Chartier, Marion; Liagre, Suzanne; Weiss-Schneeweiss, Hanna; Kolano, Bozena; Bessière, Jean-Marie; Schönenberger, Jürg; Gibernau, Marc

    2016-02-01

    Hybridisation is common in plants and can affect the genetic diversity and ecology of sympatric parental populations. Hybrids may resemble the parental species in their ecology, leading to competition and/or gene introgression; alternatively, they may diverge from the parental phenotypes, possibly leading to the colonisation of new ecological niches and to speciation. Here, we describe inflorescence morphology, ploidy levels, pollinator attractive scents, and pollinator guilds of natural hybrids of Arum italicum and A. maculatum (Araceae) from a site with sympatric parental populations in southern France to determine how these traits affect the hybrid pollination ecology. Hybrids were characterised by inflorescences with a size and a number of flowers more similar to A. italicum than to A. maculatum. In most cases, hybrid stamens were purple, as in A. maculatum, and spadix appendices yellow, as in A. italicum. Hybrid floral scent was closer to that of A. italicum, but shared some compounds with A. maculatum and comprised unique compounds. Also, the pollinator guild of the hybrids was similar to that of A. italicum. Nevertheless, the hybrids attracted a high proportion of individuals of the main pollinator of A. maculatum. We discuss the effects of hybridisation in sympatric parental zones in which hybrids exhibit low levels of reproductive success, the establishment of reproductive barriers between parental species, the role of the composition of floral attractive scents in the differential attraction of pollinators and in the competition between hybrids and their parental species, and the potential of hybridisation to give rise to new independent lineages.

  14. How does climate influence speciation?

    PubMed

    Hua, Xia; Wiens, John J

    2013-07-01

    Variation in climatic conditions over space and time is thought to be an important driver of speciation. However, the role of climate has not been explored in the theoretical literature on speciation, and the theory underlying empirical studies of climate and speciation has come largely from informal, verbal models. In this study, we develop a quantitative model to test a relatively new but theoretically untested model of speciation (speciation via niche conservatism) and to examine the climatic conditions under which speciation via niche conservatism and speciation via niche divergence are most plausible. Our results have three broad implications for the study of speciation: (1) ecological similarity over time (niche conservatism) can be an important part of speciation, despite the traditional emphasis on ecological divergence, (2) long-term directional climate change promotes speciation via niche conservatism for species with low climatic-niche lability, whereas climatic oscillations promote speciation via niche divergence for species with high climatic-niche lability, and (3) population extinction can be a key component of speciation.

  15. Experimental demonstration of ecological character displacement

    PubMed Central

    2008-01-01

    Background The evolutionary consequences of competition are of great interest to researchers studying sympatric speciation, adaptive radiation, species coexistence and ecological assembly. Competition's role in driving evolutionary change in phenotypic distributions, and thus causing ecological character displacement, has been inferred from biogeographical data and measurements of divergent selection on a focal species in the presence of competitors. However, direct experimental demonstrations of character displacement due to competition are rare. Results We demonstrate a causal role for competition in ecological character displacement. Using populations of the bacterium Escherichia coli that have adaptively diversified into ecotypes exploiting different carbon resources, we show that when interspecific competition is relaxed, phenotypic distributions converge. When we reinstate competition, phenotypic distributions diverge. Conclusion This accordion-like dynamic provides direct experimental evidence that competition for resources can cause evolutionary shifts in resource-related characters. PMID:18234105

  16. Host shift and speciation in a coral-feeding nudibranch

    PubMed Central

    Faucci, Anuschka; Toonen, Robert J; Hadfield, Michael G

    2006-01-01

    While the role of host preference in ecological speciation has been investigated extensively in terrestrial systems, very little is known in marine environments. Host preference combined with mate choice on the preferred host can lead to population subdivision and adaptation leading to host shifts. We use a phylogenetic approach based on two mitochondrial genetic markers to disentangle the taxonomic status and to investigate the role of host specificity in the speciation of the nudibranch genus Phestilla (Gastropoda, Opisthobranchia) from Guam, Palau and Hawaii. Species of the genus Phestilla complete their life cycle almost entirely on their specific host coral (species of Porites, Goniopora and Tubastrea). They reproduce on their host coral and their planktonic larvae require a host-specific chemical cue to metamorphose and settle onto their host. The phylogenetic trees of the combined cytochrome oxidase I and ribosomal 16S gene sequences clarify the relationship among species of Phestilla identifying most of the nominal species as monophyletic clades. We found a possible case of host shift from Porites to Goniopora and Tubastrea in sympatric Phestilla spp. This represents one of the first documented cases of host shift as a mechanism underlying speciation in a marine invertebrate. Furthermore, we found highly divergent clades within Phestilla sp. 1 and Phestilla minor (8.1–11.1%), suggesting cryptic speciation. The presence of a strong phylogenetic signal for the coral host confirms that the tight link between species of Phestilla and their host coral probably played an important role in speciation within this genus. PMID:17134995

  17. Low levels of hybridization between sympatric Arctic char (Salvelinus alpinus) and Dolly Varden char (Salvelinus malma) highlights their genetic distinctiveness and ecological segregation.

    PubMed

    May-McNally, Shannan L; Quinn, Thomas P; Taylor, Eric B

    2015-08-01

    Understanding the extent of interspecific hybridization and how ecological segregation may influence hybridization requires comprehensively sampling different habitats over a range of life history stages. Arctic char (Salvelinus alpinus) and Dolly Varden (S. malma) are recently diverged salmonid fishes that come into contact in several areas of the North Pacific where they occasionally hybridize. To better quantify the degree of hybridization and ecological segregation between these taxa, we sampled over 700 fish from multiple lake (littoral and profundal) and stream sites in two large, interconnected southwestern Alaskan lakes. Individuals were genotyped at 12 microsatellite markers, and genetic admixture (Q) values generated through Bayesian-based clustering revealed hybridization levels generally lower than reported in a previous study (<0.6% to 5% of samples classified as late-generation hybrids). Dolly Varden and Arctic char tended to make different use of stream habitats with the latter apparently abandoning streams for lake habitats after 2-3 years of age. Our results support the distinct biological species status of Dolly Varden and Arctic char and suggest that ecological segregation may be an important factor limiting opportunities for hybridization and/or the ecological performance of hybrid char.

  18. Low levels of hybridization between sympatric Arctic char (Salvelinus alpinus) and Dolly Varden char (Salvelinus malma) highlights their genetic distinctiveness and ecological segregation

    PubMed Central

    May-McNally, Shannan L; Quinn, Thomas P; Taylor, Eric B

    2015-01-01

    Understanding the extent of interspecific hybridization and how ecological segregation may influence hybridization requires comprehensively sampling different habitats over a range of life history stages. Arctic char (Salvelinus alpinus) and Dolly Varden (S. malma) are recently diverged salmonid fishes that come into contact in several areas of the North Pacific where they occasionally hybridize. To better quantify the degree of hybridization and ecological segregation between these taxa, we sampled over 700 fish from multiple lake (littoral and profundal) and stream sites in two large, interconnected southwestern Alaskan lakes. Individuals were genotyped at 12 microsatellite markers, and genetic admixture (Q) values generated through Bayesian-based clustering revealed hybridization levels generally lower than reported in a previous study (<0.6% to 5% of samples classified as late-generation hybrids). Dolly Varden and Arctic char tended to make different use of stream habitats with the latter apparently abandoning streams for lake habitats after 2–3 years of age. Our results support the distinct biological species status of Dolly Varden and Arctic char and suggest that ecological segregation may be an important factor limiting opportunities for hybridization and/or the ecological performance of hybrid char. PMID:26356310

  19. Speciation: more likely through a genetic or through a learned habitat preference?

    PubMed Central

    Beltman, J.B; Metz, J.A.J

    2005-01-01

    A problem in understanding sympatric speciation is establishing how reproductive isolation can arise when there is disruptive selection on an ecological trait. One of the solutions that has been proposed is that a habitat preference evolves, and that mates are chosen within the preferred habitat. We present a model where the habitat preference can evolve either by means of a genetic mechanism or by means of learning. Employing an adaptive-dynamical analysis, we show that evolution proceeds either to a single population of specialists with a genetic preference for their optimal habitat, or to a population of generalists without a habitat preference. The generalist population subsequently experiences disruptive selection. Learning promotes speciation because it increases the intensity of disruptive selection. An individual-based version of the model shows that, when loci are completely unlinked and learning confers little cost, the presence of disruptive selection most probably leads to speciation via the simultaneous evolution of a learned habitat preference. For high costs of learning, speciation is most likely to occur via the evolution of a genetic habitat preference. However, the latter only happens when the effect of mutations is large, or when there is linkage between genes coding for the different traits. PMID:16011920

  20. Speciation: more likely through a genetic or through a learned habitat preference?

    PubMed

    Beltman, J B; Metz, J A J

    2005-07-22

    A problem in understanding sympatric speciation is establishing how reproductive isolation can arise when there is disruptive selection on an ecological trait. One of the solutions that has been proposed is that a habitat preference evolves, and that mates are chosen within the preferred habitat. We present a model where the habitat preference can evolve either by means of a genetic mechanism or by means of learning. Employing an adaptive-dynamical analysis, we show that evolution proceeds either to a single population of specialists with a genetic preference for their optimal habitat, or to a population of generalists without a habitat preference. The generalist population subsequently experiences disruptive selection. Learning promotes speciation because it increases the intensity of disruptive selection. An individual-based version of the model shows that, when loci are completely unlinked and learning confers little cost, the presence of disruptive selection most probably leads to speciation via the simultaneous evolution of a learned habitat preference. For high costs of learning, speciation is most likely to occur via the evolution of a genetic habitat preference. However, the latter only happens when the effect of mutations is large, or when there is linkage between genes coding for the different traits.

  1. The rate test of speciation: estimating the likelihood of non-allopatric speciation from reproductive isolation rates in Drosophila.

    PubMed

    Yukilevich, Roman

    2014-04-01

    Among the most debated subjects in speciation is the question of its mode. Although allopatric (geographical) speciation is assumed the null model, the importance of parapatric and sympatric speciation is extremely difficult to assess and remains controversial. Here I develop a novel approach to distinguish these modes of speciation by studying the evolution of reproductive isolation (RI) among taxa. I focus on the Drosophila genus, for which measures of RI are known. First, I incorporate RI into age-range correlations. Plots show that almost all cases of weak RI are between allopatric taxa whereas sympatric taxa have strong RI. This either implies that most reproductive isolation (RI) was initiated in allopatry or that RI evolves too rapidly in sympatry to be captured at incipient stages. To distinguish between these explanations, I develop a new "rate test of speciation" that estimates the likelihood of non-allopatric speciation given the distribution of RI rates in allopatry versus sympatry. Most sympatric taxa were found to have likely initiated RI in allopatry. However, two putative candidate species pairs for non-allopatric speciation were identified (5% of known Drosophila). In total, this study shows how using RI measures can greatly inform us about the geographical mode of speciation in nature.

  2. Host plant use in sympatric closely related flea beetles.

    PubMed

    Xue, Huai-Jun; Yang, Xing-Ke

    2007-04-01

    Studies on strategies of host plant use in sympatric-related species are significant to the theory of sympatric speciation. Altica fragariae Nakane and Altica koreana Ogloblin are sympatric closely related flea beetles found in Beijing, northern China. All their recorded host plants are in the subfamily Rosoideae of the Rosaceae, so we regard them as a model system to study interactions between herbivorous insects and plant-insect co-evolution. We conducted a set of experiments on the host preference and performance of these flea beetles to study whether these closely related species have the ability to use sympatric novel host plants and whether monophagous and oligophagous flea beetles use the same strategy in host plant use. Oviposition preference experiments showed that A. koreana, a monophagous flea beetle, displayed high host fidelity. However, A. fragariae, which is oligophagous, often made "oviposition mistakes," ovipositing on nonhost plants such as Potentilla chinensis, the host plant of A. koreana, although normal host plants were preferred over novel ones. Larval performance studies suggested that A. fragariae was able to develop successfully on P. chinensis. Feeding experiences of larvae had no effect on feeding preference, oviposition preference, and fecundity of adults. However, females were impaired in their reproductive ability when fed on nonhost plants. Therefore, A. fragariae finished their development of larval stages on P. chinensis and came back to their primary host plant, Duchesnea indica, for feeding and reproduction after eclosion.

  3. The behavioural ecology of two sympatric talitrid species, Talitrus saltator (Montagu) and Orchestia gammarellus (Pallas) on a Tyrrhenian sandy beach dune system

    NASA Astrophysics Data System (ADS)

    Colombini, Isabella; Fallaci, Mario; Gagnarli, Elena; Rossano, Claudia; Scapini, Felicita; Chelazzi, Lorenzo

    2013-01-01

    The behavioural ecology of a sub-population of Talitrus saltator living on the sandy shore of the Maremma Regional Park (Italy) was compared with that of Orchestia gammarellus inhabiting the retrodunal dune slack area. Monthly monitoring over a year determined the mean distribution patterns, their changes and whether these overlapped. Standard pitfall traps were placed along transects across the beach-dune-dune slack area. Experiments analysed the diel activity rhythms during spring and the activity patterns of the different age classes and the two sexes were compared within and between species. Local environmental conditions were registered with a microclimatic station. During May and September, plant hummocks were monitored to see whether surface movements of O. gammarellus could be restricted to certain periods of the year and to estimate densities within the vegetation. The plant biomass and moisture conditions within the hummocks were also recorded and substratum samples were collected at the base of the shrubs for laboratory analysis. To test for visual cues, orientation experiments with and without landscape view were carried out on the beach during morning and afternoon hours and contemporaneously for each species. Experiments to test the diel variation of scototaxis to a black shape were also performed over a 24 h period of time under controlled conditions. There was a spatial partitioning of the two species, with T. saltator moving along a sea-land axis according to diel and seasonal changes and with some individuals reaching the back of the dune in particular environmental conditions. No spatial overlap with the zonation patterns of O. gammarellus was observed, which was restricted to the dune slack area. Nocturnal surface activity was observed for both species with juveniles peaking at dawn and with O. gammarellus being strictly more nocturnal than T. saltator. Orientation experiments showed a higher ability of T. saltator to orient towards the

  4. Individual-based modeling of ecological and evolutionary processes

    USGS Publications Warehouse

    DeAngelis, Donald L.; Mooij, Wolf M.

    2005-01-01

    Individual-based models (IBMs) allow the explicit inclusion of individual variation in greater detail than do classical differential-equation and difference-equation models. Inclusion of such variation is important for continued progress in ecological and evolutionary theory. We provide a conceptual basis for IBMs by describing five major types of individual variation in IBMs: spatial, ontogenetic, phenotypic, cognitive, and genetic. IBMs are now used in almost all subfields of ecology and evolutionary biology. We map those subfields and look more closely at selected key papers on fish recruitment, forest dynamics, sympatric speciation, metapopulation dynamics, maintenance of diversity, and species conservation. Theorists are currently divided on whether IBMs represent only a practical tool for extending classical theory to more complex situations, or whether individual-based theory represents a radically new research program. We feel that the tension between these two poles of thinking can be a source of creativity in ecology and evolutionary theory.

  5. Low reproductive isolation and highly variable levels of gene flow reveal limited progress towards speciation between European river and brook lampreys.

    PubMed

    Rougemont, Q; Gaigher, A; Lasne, E; Côte, J; Coke, M; Besnard, A-L; Launey, S; Evanno, G

    2015-12-01

    Ecologically based divergent selection is a factor that could drive reproductive isolation even in the presence of gene flow. Population pairs arrayed along a continuum of divergence provide a good opportunity to address this issue. Here, we used a combination of mating trials, experimental crosses and population genetic analyses to investigate the evolution of reproductive isolation between two closely related species of lampreys with distinct life histories. We used microsatellite markers to genotype over 1000 individuals of the migratory parasitic river lamprey (Lampetra fluviatilis) and freshwater-resident nonparasitic brook lamprey (Lampetra planeri) distributed in 10 sympatric and parapatric population pairs in France. Mating trials, parentage analyses and artificial fertilizations demonstrated a low level of reproductive isolation between species even though size-assortative mating may contribute to isolation. Most parapatric population pairs were strongly differentiated due to the joint effects of geographic distance and barriers to migration. In contrast, we found variable levels of gene flow between sympatric populations ranging from panmixia to moderate differentiation, which indicates a gradient of divergence with some population pairs that may correspond to alternative morphs or ecotypes of a single species and others that remain partially isolated. Ecologically based divergent selection may explain these variable levels of divergence among sympatric population pairs, but incomplete genome swamping following secondary contact could have also played a role. Overall, this study illustrates how highly differentiated phenotypes can be maintained despite high levels of gene flow that limit the progress towards speciation.

  6. Hawthorn-infesting populations of Rhagoletis pomonella in Mexico and speciation mode plurality.

    PubMed

    Xie, Xianfa; Rull, Juan; Michel, Andrew P; Velez, Sebastian; Forbes, Andrew A; Lobo, Neil F; Aluja, Martin; Feder, Jeffrey L

    2007-05-01

    species. For R. pomonella in the United States, the proximate selection pressures triggering race formation and speciation stem from sympatric host shifts. However, some of the phenological variation contributing to host-related ecological adaptation and reproductive isolation in sympatry at the present time appears to have an older history, having originated and become packaged into inversion polymorphism in allopatry.

  7. What Is Speciation?

    PubMed Central

    Shapiro, B. Jesse; Leducq, Jean-Baptiste; Mallet, James

    2016-01-01

    Concepts and definitions of species have been debated by generations of biologists and remain controversial. Microbes pose a particular challenge because of their genetic diversity, asexual reproduction, and often promiscuous horizontal gene transfer (HGT). However, microbes also present an opportunity to study and understand speciation because of their rapid evolution, both in nature and in the lab, and small, easily sequenced genomes. Here, we review how microbial population genomics has enabled us to catch speciation “in the act” and how the results have challenged and enriched our concepts of species, with implications for all domains of life. We describe how recombination (including HGT and introgression) has shaped the genomes of nascent microbial, animal, and plant species and argue for a prominent role of natural selection in initiating and maintaining speciation. We ask how universal is the process of speciation across the tree of life, and what lessons can be drawn from microbes? Comparative genomics showing the extent of HGT in natural populations certainly jeopardizes the relevance of vertical descent (i.e., the species tree) in speciation. Nevertheless, we conclude that species do indeed exist as clusters of genetic and ecological similarity and that speciation is driven primarily by natural selection, regardless of the balance between horizontal and vertical descent. PMID:27030977

  8. What Is Speciation?

    PubMed

    Shapiro, B Jesse; Leducq, Jean-Baptiste; Mallet, James

    2016-03-01

    Concepts and definitions of species have been debated by generations of biologists and remain controversial. Microbes pose a particular challenge because of their genetic diversity, asexual reproduction, and often promiscuous horizontal gene transfer (HGT). However, microbes also present an opportunity to study and understand speciation because of their rapid evolution, both in nature and in the lab, and small, easily sequenced genomes. Here, we review how microbial population genomics has enabled us to catch speciation "in the act" and how the results have challenged and enriched our concepts of species, with implications for all domains of life. We describe how recombination (including HGT and introgression) has shaped the genomes of nascent microbial, animal, and plant species and argue for a prominent role of natural selection in initiating and maintaining speciation. We ask how universal is the process of speciation across the tree of life, and what lessons can be drawn from microbes? Comparative genomics showing the extent of HGT in natural populations certainly jeopardizes the relevance of vertical descent (i.e., the species tree) in speciation. Nevertheless, we conclude that species do indeed exist as clusters of genetic and ecological similarity and that speciation is driven primarily by natural selection, regardless of the balance between horizontal and vertical descent.

  9. Reproductive Isolation among Sympatric Molecular Forms of An. gambiae from Inland Areas of South-Eastern Senegal

    PubMed Central

    Niang, El Hadji Amadou; Konaté, Lassana; Diallo, Mawlouth; Faye, Ousmane; Dia, Ibrahima

    2014-01-01

    The Anopheles gambiae species complex includes at least seven morphologically indistinguishable species, one of which, Anopheles gambiae sensu stricto, is the primary mosquito vector responsible for the transmission of malaria across sub-Saharan Africa. Sympatric ecological diversification of An. gambiae s.s. is in progress within this complex, leading to the emergence of at least two incipient species (the M and S molecular forms now recognized as good species and named An. coluzzii and An. gambiae respectively) that show heterogeneous levels of divergence in most parts of Africa. However, this process seems to have broken down in coastal areas of West Africa at the extreme edge of the distribution. We undertook a longitudinal study to describe An. gambiae s.s. populations collected from two inland transects with different ecological characteristics in south-eastern Senegal. Analysis of samples collected from 20 sites across these two transects showed the M and S molecular forms coexisted at almost all sampled sites. Overall, similar hybridization rates (2.16% and 1.86%) were recorded in the two transects; sites with relatively high frequencies of M/S hybrids (up to 7%) were clustered toward the north-western part of both transects, often near urban settings. Estimated inbreeding indices for this putative speciation event varied spatially (range: 0.52–1), with hybridization rates being generally lower than expected under panmictic conditions. Such observations suggest substantial reproductive isolation between the M and S molecular forms, and further support the ongoing process of speciation in these inland areas. According to a recent reclassification of the An. gambiae complex, the M and S molecular forms from this zone correspond to An. coluzzii and An. gambiae, respectively. There is considerable evidence that these molecular forms differ in their behavioural and ecological characteristics. Detailed study of these characteristics will allow the development

  10. Evidence for Divergent Evolution of Growth Temperature Preference in Sympatric Saccharomyces Species

    PubMed Central

    Gonçalves, Paula; Valério, Elisabete; Correia, Cláudia; de Almeida, João M. G. C. F.; Sampaio, José Paulo

    2011-01-01

    The genus Saccharomyces currently includes eight species in addition to the model yeast Saccharomyces cerevisiae, most of which can be consistently isolated from tree bark and soil. We recently found sympatric pairs of Saccharomyces species, composed of one cryotolerant and one thermotolerant species in oak bark samples of various geographic origins. In order to contribute to explain the occurrence in sympatry of Saccharomyces species, we screened Saccharomyces genomic data for protein divergence that might be correlated to distinct growth temperature preferences of the species, using the dN/dS ratio as a measure of protein evolution rates and pair-wise species comparisons. In addition to proteins previously implicated in growth at suboptimal temperatures, we found that glycolytic enzymes were among the proteins exhibiting higher than expected divergence when one cryotolerant and one thermotolerant species are compared. By measuring glycolytic fluxes and glycolytic enzymatic activities in different species and at different temperatures, we subsequently show that the unusual divergence of glycolytic genes may be related to divergent evolution of the glycolytic pathway aligning its performance to the growth temperature profiles of the different species. In general, our results support the view that growth temperature preference is a trait that may have undergone divergent selection in the course of ecological speciation in Saccharomyces. PMID:21674061

  11. Adaptive speciation theory: a conceptual review.

    PubMed

    Weissing, Franz J; Edelaar, Pim; van Doorn, G Sander

    2011-03-01

    Speciation-the origin of new species-is the source of the diversity of life. A theory of speciation is essential to link poorly understood macro-evolutionary processes, such as the origin of biodiversity and adaptive radiation, to well understood micro-evolutionary processes, such as allele frequency change due to natural or sexual selection. An important question is whether, and to what extent, the process of speciation is 'adaptive', i.e., driven by natural and/or sexual selection. Here, we discuss two main modelling approaches in adaptive speciation theory. Ecological models of speciation focus on the evolution of ecological differentiation through divergent natural selection. These models can explain the stable coexistence of the resulting daughter species in the face of interspecific competition, but they are often vague about the evolution of reproductive isolation. Most sexual selection models of speciation focus on the diversification of mating strategies through divergent sexual selection. These models can explain the evolution of prezygotic reproductive isolation, but they are typically vague on questions like ecological coexistence. By means of an integrated model, incorporating both ecological interactions and sexual selection, we demonstrate that disruptive selection on both ecological and mating strategies is necessary, but not sufficient, for speciation to occur. To achieve speciation, mating must at least partly reflect ecological characteristics. The interaction of natural and sexual selection is also pivotal in a model where sexual selection facilitates ecological speciation even in the absence of diverging female preferences. In view of these results, it is counterproductive to consider ecological and sexual selection models as contrasting and incompatible views on speciation, one being dominant over the other. Instead, an integrative perspective is needed to achieve a thorough and coherent understanding of adaptive speciation.

  12. Genomic Islands of Speciation in Anopheles gambiae

    PubMed Central

    Hahn, Matthew W; Nuzhdin, Sergey V

    2005-01-01

    The African malaria mosquito, Anopheles gambiae sensu stricto (A. gambiae), provides a unique opportunity to study the evolution of reproductive isolation because it is divided into two sympatric, partially isolated subtaxa known as M form and S form. With the annotated genome of this species now available, high-throughput techniques can be applied to locate and characterize the genomic regions contributing to reproductive isolation. In order to quantify patterns of differentiation within A. gambiae, we hybridized population samples of genomic DNA from each form to Affymetrix GeneChip microarrays. We found that three regions, together encompassing less than 2.8 Mb, are the only locations where the M and S forms are significantly differentiated. Two of these regions are adjacent to centromeres, on Chromosomes 2L and X, and contain 50 and 12 predicted genes, respectively. Sequenced loci in these regions contain fixed differences between forms and no shared polymorphisms, while no fixed differences were found at nearby control loci. The third region, on Chromosome 2R, contains only five predicted genes; fixed differences in this region were also verified by direct sequencing. These “speciation islands” remain differentiated despite considerable gene flow, and are therefore expected to contain the genes responsible for reproductive isolation. Much effort has recently been applied to locating the genes and genetic changes responsible for reproductive isolation between species. Though much can be inferred about speciation by studying taxa that have diverged for millions of years, studying differentiation between taxa that are in the early stages of isolation will lead to a clearer view of the number and size of regions involved in the genetics of speciation. Despite appreciable levels of gene flow between the M and S forms of A. gambiae, we were able to isolate three small regions of differentiation where genes responsible for ecological and behavioral isolation are

  13. Heavy metals in estuarine surface sediments of the Hai River Basin, variation characteristics, chemical speciation and ecological risk.

    PubMed

    Lei, Pei; Zhang, Hong; Shan, Baoqing; Lv, Shucong; Tang, Wenzhong

    2016-04-01

    The Hai River Basin (HRB) is considered to be one of the most polluted areas in China due to the high regional population density and rapid economic development. The estuaries of the HRB, which receive pollutants from terrestrial rivers, may subsequently suffer potential pollution and result in ecological risk of heavy metals. Six heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) were measured in estuarine surface sediments from 10 estuaries of the HRB to investigate their variation characteristics and ecological risks. The spatial difference of Cr, Ni, Pb, and Zn in sediments was higher than that of the rest two elements. The Yongdingxin Estuary (YDX) and Ziyaxin Estuary (ZYX) in the Northern Hai River System (NHRS) were the most severe in terms of heavy metal contamination. According to the Risk Assessment Code (RAC) classification, Cd associated with the exchangeable and carbonate fraction (the average of 21.3 %) indicated medium risk to high risk. More than 50 % of Cr, Cu, Ni, and Zn on average were associated with the residual fraction. Based on the sum of the first three fractions (exchangeable and carbonate + reducible + oxidizable), the mobility order of these heavy metals was Cd >Pb > Zn ≈ Cu > Ni > Cr. Compared to the background values of cinnamon soil, the potential ecological risk index (RI) values ranged from 25.6 to 168, with an average of 91.2, indicating a low ecological risk in estuarine sites of the HRB. Cd and Pb were the dominant contributors to the toxic-response factor (45.8 and 25.5 %, respectively). The results give insight into the different control measures pertaining to heavy metal pollution and risk for both relatively clean estuaries and urban seriously polluted areas, respectively, for the formation of protect strategies of aquatic environment in the HRB.

  14. Sympatric speciation: perfume preferences of orchid bee lineages.

    PubMed

    Jackson, Duncan E

    2008-12-09

    Female attraction to an environmentally derived mating signal released by male orchid bees may be tightly linked to shared olfactory preferences of both sexes. A change in perfume preference may have led to divergence of two morphologically distinct lineages.

  15. Speciation genes in plants

    PubMed Central

    Rieseberg, Loren H.; Blackman, Benjamin K.

    2010-01-01

    Background Analyses of speciation genes – genes that contribute to the cessation of gene flow between populations – can offer clues regarding the ecological settings, evolutionary forces and molecular mechanisms that drive the divergence of populations and species. This review discusses the identities and attributes of genes that contribute to reproductive isolation (RI) in plants, compares them with animal speciation genes and investigates what these genes can tell us about speciation. Scope Forty-one candidate speciation genes were identified in the plant literature. Of these, seven contributed to pre-pollination RI, one to post-pollination, prezygotic RI, eight to hybrid inviability, and 25 to hybrid sterility. Genes, gene families and genetic pathways that were frequently found to underlie the evolution of RI in different plant groups include the anthocyanin pathway and its regulators (pollinator isolation), S RNase-SI genes (unilateral incompatibility), disease resistance genes (hybrid necrosis), chimeric mitochondrial genes (cytoplasmic male sterility), and pentatricopeptide repeat family genes (cytoplasmic male sterility). Conclusions The most surprising conclusion from this review is that identities of genes underlying both prezygotic and postzygotic RI are often predictable in a broad sense from the phenotype of the reproductive barrier. Regulatory changes (both cis and trans) dominate the evolution of pre-pollination RI in plants, whereas a mix of regulatory mutations and changes in protein-coding genes underlie intrinsic postzygotic barriers. Also, loss-of-function mutations and copy number variation frequently contribute to RI. Although direct evidence of positive selection on speciation genes is surprisingly scarce in plants, analyses of gene family evolution, along with theoretical considerations, imply an important role for diversifying selection and genetic conflict in the evolution of RI. Unlike in animals, however, most candidate speciation

  16. Quantification and speciation of mercury in soils from the Tripuí Ecological Station, Minas Gerais, Brazil.

    PubMed

    Palmieri, Helena E L; Nalini, Hermínio A; Leonel, Liliam V; Windmöller, Cláudia C; Santos, Regis C; de Brito, Walter

    2006-09-01

    Contents of total mercury, organic carbon, total sulfur, iron, aluminum and grain size and clay mineralogy were used along with Pearson's correlation and Hg thermal desorption technique to investigate the presence, distribution and binding behavior of Hg in soils from three depths from the Tripuí Ecological Station, located near Ouro Preto, Minas Gerais State, Brazil. The soils studied had predominantly medium and fine sand texture (0.59-0.062 mm), acid character and Hg contents ranging from 0.09 to 1.23 microg/g. The granulometric distribution revealed that Hg is associated with coarse sand (2-0.59 mm) and silt and clay (<0.062 mm) and presents similar Hg concentrations in both fractions. Mercury distribution in soil profiles showed that Hg was homogeneously distributed throughout the depths at most sites. Hg thermal desorption curves show that mercury occurs not only as Hg2+ predominantly bound to organic components in most of the samples, but also in the form of cinnabar in some. Pearson's correlation confirmed that mercury is associated with organic matter and sulfur and possibly with sulfur-bearing organic matter in most samples.

  17. Diversification in North American arid lands: niche conservatism, divergence and expansion of habitat explain speciation in the genus Ephedra.

    PubMed

    Loera, Israel; Sosa, Victoria; Ickert-Bond, Stefanie M

    2012-11-01

    A lineage of 12 arid land shrubby species in the gymnosperm genus Ephedra (Gnetales) from North America is used to evaluate the influence of climate on speciation. With a long evolutionary history, and a well documented fossil record this lineage is an ideal model for understanding the process of speciation under a niche conservatism scenario. Using seven DNA molecular markers, Bayesian inference is carried out to uncover sister species and to estimate time of divergence of the lineages. Ecological niche models are generated for four parapatric and sympatric sister species and two analyses of niche evolution are performed, one based on ecological niche models and another using raw data and multivariate analysis. As previous analyses suggest, the diversification of North America Ephedra species may be the result of a recent secondary radiation. Both parapatric and sympatric species diverged mostly in a scenario of climatic niche conservatism. However, we also found strong evidence for niche divergence for one of the sister species pairs (E. californica-E. trifurca). Moreover, the multivariate analysis found environmental differences for some variables between sister species. The estimated divergence time of three pairs of sister species distributed in southwestern North America (E. cutleri-E. aspera, E. californica-E. trifurca and E. torreyana-E. viridis) is inferred to have occurred in the Late Miocene to Pliocene and for the sister species pair E. antisyphilitica-E. coryi distributed in the southern United States and northeastern Mexico, it was inferred from the Pliocene to Pleistocene. The orogenetic and climatic changes documented for these regions related to expansion of arid lands, may have contributed to the diversification in North American Ephedra, rather than adaptations to new climatic conditions.

  18. Comparing geographical genetic differentiation between candidate and noncandidate loci for adaptation strengthens support for parallel ecological divergence in the marine snail Littorina saxatilis.

    PubMed

    Galindo, J; Morán, P; Rolán-Alvarez, E

    2009-03-01

    The Galician sympatric ecotypes of Littorina saxatilis have been proposed as a model system for studying parallel ecological speciation. Such a model system makes a clear prediction: candidate loci (for divergent adaptation) should present a higher level of geographical differentiation than noncandidate (neutral) loci. We used 2356 amplified fragment length polymorphisms (AFLPs) and four microsatellite loci to identify candidate loci for ecological adaptation using the F(ST) outlier method. Three per cent of the studied AFLP loci were identified as candidate loci associated with adaptation, after multitest adjustments, thus contributing to ecotype differentiation (candidate loci were not detected within ecotypes). Candidate and noncandidate loci were analysed separately at four different F(ST) partitions: differences between ecotypes (overall and local), differences between localities and micro-geographical differences within ecotypes. The magnitude of F(ST) differed between candidate and noncandidate loci for all partitions except in the case of micro-geographical differentiation within ecotypes, and the microsatellites (putatively neutral) showed an identical pattern to noncandidate loci. Thus, variation in candidate loci is determined partially independent by divergent natural selection (in addition to stochastic forces) at each locality, while noncandidate loci are exclusively driven by stochastic forces. These results support the evolutionary history described for these particular populations, considered to be a clear example of incomplete sympatric ecological speciation.

  19. Genetic isolation between two sympatric host-plant races of the European corn borer, Ostrinia nubilalis Hübner. I. Sex pheromone, moth emergence timing, and parasitism.

    PubMed

    Thomas, Yan; Bethenod, Marie-Thérèse; Pelozuelo, Laurent; Frérot, Brigitte; Bourguet, Denis

    2003-02-01

    Adaptation to different environments may be a powerful source of genetic differentiation between populations. The biological traits selected in each environment can pleiotropically induce assortative mating between individuals of these genetically differentiated populations. This situation may facilitate sympatric speciation. Successful host shifts in phytophagous insects provide some of the best evidence for the ecological speciation that occurs, or has occurred, in sympatry. The European corn borer, Ostrinia nubilalis (Lepidoptera: Crambidae), colonized maize after its introduction into Europe by humans about 500 years ago. In northern France, two sympatric host races feed on maize (Zea mays) and mugwort (Artemisia vulgaris), respectively. We investigated the factors involved in the genetic isolation of these two races at a field site near Paris, France. We identified two biological differences that might make a significant contribution to the genetic divergence between sympatric populations feeding on the two host plants. First, assortative mating may be due to differences in the moth emergence pattern between the two races: mugwort-race moths emerged on average 10 days earlier than maize-race moths. In addition, the males emerged earlier than females in both races. Hence, the likelihood of mating between maize-race males and mugwort-race females was higher than that of mating between mugwort-race males and maize-race females. Second, the females feeding on mugwort and maize produced sex pheromones with different E/Z isomeric ratios of delta-11-tetradecenyl acetate. This difference in mate recognition systems reinforces the potential for assortative mating in the two races. During the experiment, overwintering mortality was much lower on maize than on mugwort. This difference was due to a braconid parasitoid wasp, Macrocentrus cingulum, that killed more than 50% of the larvae overwintering on mugwort but did not infest larvae diapausing on maize. Hence, by

  20. Evidence for Cryptic Speciation in Directly Transmitted Gyrodactylid Parasites of Trinidadian Guppies

    PubMed Central

    Xavier, Raquel; Faria, Patricia J.; Paladini, Giuseppe; van Oosterhout, Cock; Johnson, Mireille; Cable, Jo

    2015-01-01

    Cryptic species complexes are common among parasites, which tend to have large populations and are subject to rapid evolution. Such complexes may arise through host-parasite co-evolution and/or host switching. For parasites that reproduce directly on their host, there might be increased opportunities for sympatric speciation, either by exploiting different hosts or different micro-habitats within the same host. The genus Gyrodactylus is a specious group of viviparous monogeneans. These ectoparasites transfer between teleosts during social contact and cause significant host mortality. Their impact on the guppy (Poecilia reticulata), an iconic evolutionary and ecological model species, is well established and yet the population genetics and phylogenetics of these parasites remains understudied. Using mtDNA sequencing of the host and its parasites, we provide evidence of cryptic speciation in Gyrodactylus bullatarudis, G. poeciliae and G. turnbulli. For the COII gene, genetic divergence of lineages within each parasite species ranged between 5.7 and 17.2%, which is typical of the divergence observed between described species in this genus. Different lineages of G. turnbulli and G. poeciliae appear geographically isolated, which could imply allopatric speciation. In addition, for G. poeciliae, co-evolution with a different host species cannot be discarded due to its host range. This parasite was originally described on P. caucana, but for the first time here it is also recorded on the guppy. The two cryptic lineages of G. bullatarudis showed considerable geographic overlap. G. bullatarudis has a known wide host range and it can also utilize a killifish (Anablepsoides hartii) as a temporary host. This killifish is capable of migrating overland and it could act as a transmission vector between otherwise isolated populations. Additional genetic markers are needed to confirm the presence of these cryptic Gyrodactylus species complexes, potentially leading to more in

  1. Evidence for cryptic speciation in directly transmitted gyrodactylid parasites of Trinidadian guppies.

    PubMed

    Xavier, Raquel; Faria, Patricia J; Paladini, Giuseppe; van Oosterhout, Cock; Johnson, Mireille; Cable, Jo

    2015-01-01

    Cryptic species complexes are common among parasites, which tend to have large populations and are subject to rapid evolution. Such complexes may arise through host-parasite co-evolution and/or host switching. For parasites that reproduce directly on their host, there might be increased opportunities for sympatric speciation, either by exploiting different hosts or different micro-habitats within the same host. The genus Gyrodactylus is a specious group of viviparous monogeneans. These ectoparasites transfer between teleosts during social contact and cause significant host mortality. Their impact on the guppy (Poecilia reticulata), an iconic evolutionary and ecological model species, is well established and yet the population genetics and phylogenetics of these parasites remains understudied. Using mtDNA sequencing of the host and its parasites, we provide evidence of cryptic speciation in Gyrodactylus bullatarudis, G. poeciliae and G. turnbulli. For the COII gene, genetic divergence of lineages within each parasite species ranged between 5.7 and 17.2%, which is typical of the divergence observed between described species in this genus. Different lineages of G. turnbulli and G. poeciliae appear geographically isolated, which could imply allopatric speciation. In addition, for G. poeciliae, co-evolution with a different host species cannot be discarded due to its host range. This parasite was originally described on P. caucana, but for the first time here it is also recorded on the guppy. The two cryptic lineages of G. bullatarudis showed considerable geographic overlap. G. bullatarudis has a known wide host range and it can also utilize a killifish (Anablepsoides hartii) as a temporary host. This killifish is capable of migrating overland and it could act as a transmission vector between otherwise isolated populations. Additional genetic markers are needed to confirm the presence of these cryptic Gyrodactylus species complexes, potentially leading to more in

  2. Support for a 'Center of Origin' in the Coral Triangle: cryptic diversity, recent speciation, and local endemism in a diverse lineage of reef fishes (Gobiidae: Eviota).

    PubMed

    Tornabene, Luke; Valdez, Samantha; Erdmann, Mark; Pezold, Frank

    2015-01-01

    The Coral Triangle is widely regarded as the richest marine biodiversity hot-spot in the world. One factor that has been proposed to explain elevated species-richness within the Coral Triangle is a high rate of in situ speciation within the region itself. Dwarfgobies (Gobiidae: Eviota) are a diverse genus of diminutive cryptobenthic reef fishes with limited dispersal ability, and life histories and ecologies that increase potential for speciation. We use molecular phylogenetic and biogeographic data from two clades of Eviota species to examine patterns, processes and timing associated with species origination within the Coral Triangle. Sequence data from mitochondrial and nuclear DNA were used to generate molecular phylogenies and median-joining haplotype networks for the genus Eviota, with emphasis on the E. nigriventris and E. bifasciata complexes - two species groups with distributions centered in the Coral Triangle. The E. nigriventris and E. bifasciata complexes both contain multiple genetically distinct, geographically restricted color morphs indicative of recently-diverged species originating within the Coral Triangle. Relaxed molecular-clock dating estimates indicate that most speciation events occurred within the Pleistocene, and the geographic pattern of genetic breaks between species corresponds well with similar breaks in other marine fishes and sessile invertebrates. Regional isolation due to sea-level fluctuations may explain some speciation events in these species groups, yet other species formed with no evidence of physical isolation. The timing of diversification events and present day distributions of Eviota species within the Coral Triangle suggest that both allopatric speciation (driven by ephemeral and/or 'soft' physical barriers to gene flow) and sympatric speciation (driven by niche partitioning and assortative mating) may be driving diversification at local scales within the Coral Triangle. The presence of multiple young, highly

  3. Speciation and genetic diversity in Centaurea subsect. Phalolepis in Anatolia

    PubMed Central

    López-Pujol, Jordi; López-Vinyallonga, Sara; Susanna, Alfonso; Ertuğrul, Kuddisi; Uysal, Tuna; Tugay, Osman; Guetat, Arbi; Garcia-Jacas, Núria

    2016-01-01

    Mountains of Anatolia are one of the main Mediterranean biodiversity hotspots and their richness in endemic species amounts for 30% of the flora. Two main factors may account for this high diversity: the complex orography and its role as refugia during past glaciations. We have investigated seven narrow endemics of Centaurea subsection Phalolepis from Anatolia by means of microsatellites and ecological niche modelling (ENM), in order to analyse genetic polymorphisms and getting insights into their speciation. Despite being narrow endemics, all the studied species show moderate to high SSR genetic diversity. Populations are genetically isolated, but exchange of genes probably occurred at glacial maxima (likely through the Anatolian mountain arches as suggested by the ENM). The lack of correlation between genetic clusters and (morpho) species is interpreted as a result of allopatric diversification on the basis of a shared gene pool. As suggested in a former study in Greece, post-glacial isolation in mountains would be the main driver of diversification in these plants; mountains of Anatolia would have acted as plant refugia, allowing the maintenance of high genetic diversity. Ancient gene flow between taxa that became sympatric during glaciations may also have contributed to the high levels of genetic diversity. PMID:27886271

  4. Natural selection reinforces speciation in a radiation of neotropical rainforest plants.

    PubMed

    Kay, Kathleen M; Schemske, Douglas W

    2008-10-01

    The importance of reinforcement, that is, natural selection that strengthens reproductive isolation between incipient species, remains controversial. We used two approaches to test for reinforcement in a species radiation of Neotropical gingers in the genus Costus. First, we conducted an intensive study of Costus pulverulentus and Costus scaber, two recently diverged species that co-occur and share hummingbird pollinators. The hummingbird pollinators transfer pollen between these Costus species, but hybrids are rarely found in nature. By performing pollinations between populations of C. pulverulentus and C. scaber from three sites across the species' geographic ranges, we find that pollen-pistil incompatibilities acting prior to fertilization have evolved only between locally sympatric populations, whereas geographically distant populations within the region of sympatry and allopatric populations remain fully interfertile. Second, we conducted a comparative study of isolating mechanisms across the genus. We find lower seed set due to pollen-pistil incompatibility between species pairs that co-occur and experience pollen transfer in nature compared to species pairs that are otherwise isolated, regardless of genetic distance. Taken together, these studies indicate that crossing barriers prevent potentially maladaptive hybridization and effectively reinforce the speciation process. Our results add to mounting evidence for reinforcement from animal studies and show that plant speciation may also involve complex mate recognition systems. Reinforcement may be particularly important in rapidly diverging lineages where ecological factors play a primary role in reproductive isolation, as may often be the case in tropical communities.

  5. Interspecific resource partitioning in sympatric ursids

    USGS Publications Warehouse

    Belant, J.L.; Kielland, K.; Follmann, E.H.; Adams, L.G.

    2006-01-01

    The fundamental niche of a species is rarely if ever realized because the presence of other species restricts it to a narrower range of ecological conditions. The effects of this narrower range of conditions define how resources are partitioned. Resource partitioning has been inferred but not demonstrated previously for sympatric ursids. We estimated assimilated diet in relation to body condition (body fat and lean and total body mass) and reproduction for sympatric brown bears (Ursus arctos) and American black bears (U. americanus) in southcentral Alaska, 1998-2000. Based on isotopic analysis of blood and keratin in claws, salmon (Oncorhynchus spp.) predominated in brown bear diets (>53% annually) whereas black bears assimilated 0-25% salmon annually. Black bears did not exploit salmon during a year with below average spawning numbers, probably because brown bears deterred black bear access to salmon. Proportion of salmon in assimilated diet was consistent across years for brown bears and represented the major portion of their diet. Body size of brown bears in the study area approached mean body size of several coastal brown bear populations, demonstrating the importance of salmon availability to body condition. Black bears occurred at a comparable density (mass:mass), but body condition varied and was related directly to the amount of salmon assimilated in their diet. Both species gained most lean body mass during spring and all body fat during summer when salmon were present. Improved body condition (i.e., increased percentage body fat) from salmon consumption reduced catabolism of lean body mass during hibernation, resulting in better body condition the following spring. Further, black bear reproduction was directly related to body condition; reproductive rates were reduced when body condition was lower. High body fat content across years for brown bears was reflected in consistently high reproductive levels. We suggest that the fundamental niche of black bears

  6. Tempo and mode of speciation in Holacanthus angelfishes based on RADseq markers.

    PubMed

    Tariel, Juliette; Longo, Gary C; Bernardi, Giacomo

    2016-05-01

    In this study we estimated the timing of speciation events in a group of angelfishes using 1186 RADseq markers corresponding to 94,880 base pairs. The genus Holacanthus comprises seven species, including two clades of Panama trans-Isthmian geminates, which diverged approximately 3-3.5Mya. These clades diversified within the Tropical Eastern Pacific (TEP, three species) and Tropical Western Atlantic (TWA, two species) which our data suggest to have occurred within the past 1.5My in both ocean basins, but may have proceeded via different mechanisms. In the TEP, speciation is likely to have followed a peripatric pathway, while in the TWA, sister species are currently partially sympatric, thus raising the possibility of sympatric speciation. This study highlights the use of RADseq markers for estimating both divergence times and modes of speciation at a 1-3My timescale.

  7. Integrative analyses unveil speciation linked to host plant shift in Spialia butterflies.

    PubMed

    Hernández-Roldán, Juan L; Dapporto, Leonardo; Dincă, Vlad; Vicente, Juan C; Hornett, Emily A; Šíchová, Jindra; Lukhtanov, Vladimir A; Talavera, Gerard; Vila, Roger

    2016-09-01

    Discovering cryptic species in well-studied areas and taxonomic groups can have profound implications in understanding eco-evolutionary processes and in nature conservation because such groups often involve research models and act as flagship taxa for nature management. In this study, we use an array of techniques to study the butterflies in the Spialia sertorius species group (Lepidoptera, Hesperiidae). The integration of genetic, chemical, cytogenetic, morphological, ecological and microbiological data indicates that the sertorius species complex includes at least five species that differentiated during the last three million years. As a result, we propose the restitution of the species status for two taxa often treated as subspecies, Spialia ali (Oberthür, 1881) stat. rest. and Spialia therapne (Rambur, 1832) stat. rest., and describe a new cryptic species Spialia rosae Hernández-Roldán, Dapporto, Dincă, Vicente & Vila sp. nov. Spialia sertorius (Hoffmannsegg, 1804) and S. rosae are sympatric and synmorphic, but show constant differences in mitochondrial DNA, chemical profiles and ecology, suggesting that S. rosae represents a case of ecological speciation involving larval host plant and altitudinal shift, and apparently associated with Wolbachia infection. This study exemplifies how a multidisciplinary approach can reveal elusive cases of hidden diversity.

  8. Ecological character displacement in the face of gene flow: Evidence from two species of nightingales

    PubMed Central

    2011-01-01

    Background Ecological character displacement is a process of phenotypic differentiation of sympatric populations caused by interspecific competition. Such differentiation could facilitate speciation by enhancing reproductive isolation between incipient species, although empirical evidence for it at early stages of divergence when gene flow still occurs between the species is relatively scarce. Here we studied patterns of morphological variation in sympatric and allopatric populations of two hybridizing species of birds, the Common Nightingale (Luscinia megarhynchos) and the Thrush Nightingale (L. luscinia). Results We conducted principal component (PC) analysis of morphological traits and found that nightingale species converged in overall body size (PC1) and diverged in relative bill size (PC3) in sympatry. Closer analysis of morphological variation along geographical gradients revealed that the convergence in body size can be attributed largely to increasing body size with increasing latitude, a phenomenon known as Bergmann's rule. In contrast, interspecific interactions contributed significantly to the observed divergence in relative bill size, even after controlling for the effects of geographical gradients. We suggest that the divergence in bill size most likely reflects segregation of feeding niches between the species in sympatry. Conclusions Our results suggest that interspecific competition for food resources can drive species divergence even in the face of ongoing hybridization. Such divergence may enhance reproductive isolation between the species and thus contribute to speciation. PMID:21609448

  9. Genome-wide SNP data suggest complex ancestry of sympatric North Pacific killer whale ecotypes.

    PubMed

    Foote, A D; Morin, P A

    2016-11-01

    Three ecotypes of killer whale occur in partial sympatry in the North Pacific. Individuals assortatively mate within the same ecotype, resulting in correlated ecological and genetic differentiation. A key question is whether this pattern of evolutionary divergence is an example of incipient sympatric speciation from a single panmictic ancestral population, or whether sympatry could have resulted from multiple colonisations of the North Pacific and secondary contact between ecotypes. Here, we infer multilocus coalescent trees from >1000 nuclear single-nucleotide polymorphisms (SNPs) and find evidence of incomplete lineage sorting so that the genealogies of SNPs do not all conform to a single topology. To disentangle whether uncertainty in the phylogenetic inference of the relationships among ecotypes could also result from ancestral admixture events we reconstructed the relationship among the ecotypes as an admixture graph and estimated f4-statistics using TreeMix. The results were consistent with episodes of admixture between two of the North Pacific ecotypes and the two outgroups (populations from the Southern Ocean and the North Atlantic). Gene flow may have occurred via unsampled 'ghost' populations rather than directly between the populations sampled here. Our results indicate that because of ancestral admixture events and incomplete lineage sorting, a single bifurcating tree does not fully describe the relationship among these populations. The data are therefore most consistent with the genomic variation among North Pacific killer whale ecotypes resulting from multiple colonisation events, and secondary contact may have facilitated evolutionary divergence. Thus, the present-day populations of North Pacific killer whale ecotypes have a complex ancestry, confounding the tree-based inference of ancestral geography.

  10. Special Speciation

    ERIC Educational Resources Information Center

    Countryman, Lyn L.; Maroo, Jill D.

    2015-01-01

    Considerable anecdotal evidence indicates that some of the most difficult concepts that both high school and undergraduate elementary-education students struggle with are those surrounding evolutionary principles, especially speciation. It's no wonder that entry-level biology students are confused, when biologists have multiple definitions of…

  11. Special Speciation

    ERIC Educational Resources Information Center

    Countryman, Lyn L.; Maroo, Jill D.

    2015-01-01

    Considerable anecdotal evidence indicates that some of the most difficult concepts that both high school and undergraduate elementary-education students struggle with are those surrounding evolutionary principles, especially speciation. It's no wonder that entry-level biology students are confused, when biologists have multiple definitions of…

  12. Kin discrimination between sympatric Bacillus subtilis isolates.

    PubMed

    Stefanic, Polonca; Kraigher, Barbara; Lyons, Nicholas Anthony; Kolter, Roberto; Mandic-Mulec, Ines

    2015-11-10

    Kin discrimination, broadly defined as differential treatment of conspecifics according to their relatedness, could help biological systems direct cooperative behavior toward their relatives. Here we investigated the ability of the soil bacterium Bacillus subtilis to discriminate kin from nonkin in the context of swarming, a cooperative multicellular behavior. We tested a collection of sympatric conspecifics from soil in pairwise combinations and found that despite their history of coexistence, the vast majority formed distinct boundaries when the swarms met. Some swarms did merge, and most interestingly, this behavior was only seen in the most highly related strain pairs. Overall the swarm interaction phenotype strongly correlated with phylogenetic relatedness, indicative of kin discrimination. Using a subset of strains, we examined cocolonization patterns on plant roots. Pairs of kin strains were able to cocolonize roots and formed a mixed-strain biofilm. In contrast, inoculating roots with pairs of nonkin strains resulted in biofilms consisting primarily of one strain, suggestive of an antagonistic interaction among nonkin strains. This study firmly establishes kin discrimination in a bacterial multicellular setting and suggests its potential effect on ecological interactions.

  13. Kin discrimination between sympatric Bacillus subtilis isolates

    PubMed Central

    Stefanic, Polonca; Kraigher, Barbara; Lyons, Nicholas Anthony; Kolter, Roberto; Mandic-Mulec, Ines

    2015-01-01

    Kin discrimination, broadly defined as differential treatment of conspecifics according to their relatedness, could help biological systems direct cooperative behavior toward their relatives. Here we investigated the ability of the soil bacterium Bacillus subtilis to discriminate kin from nonkin in the context of swarming, a cooperative multicellular behavior. We tested a collection of sympatric conspecifics from soil in pairwise combinations and found that despite their history of coexistence, the vast majority formed distinct boundaries when the swarms met. Some swarms did merge, and most interestingly, this behavior was only seen in the most highly related strain pairs. Overall the swarm interaction phenotype strongly correlated with phylogenetic relatedness, indicative of kin discrimination. Using a subset of strains, we examined cocolonization patterns on plant roots. Pairs of kin strains were able to cocolonize roots and formed a mixed-strain biofilm. In contrast, inoculating roots with pairs of nonkin strains resulted in biofilms consisting primarily of one strain, suggestive of an antagonistic interaction among nonkin strains. This study firmly establishes kin discrimination in a bacterial multicellular setting and suggests its potential effect on ecological interactions. PMID:26438858

  14. Sympatric genetic differentiation of a generalist pathogenic fungus, Botrytis cinerea, on two different host plants, grapevine and bramble.

    PubMed

    Fournier, E; Giraud, T

    2008-01-01

    Prime candidates for sympatric ecological divergence include parasites that differentiate via host shifts, because different host species exert strong disruptive selection and because both hosts and parasites are continually co-evolving. Sympatric divergence may be fostered even more strongly in phytopathogenic fungi, in particular those where sex must occur on the host, which allows adaptation alone to restrict gene flow between populations developing on different hosts. We sampled populations of Botrytis cinerea, a generalist ascomycete fungus, on sympatric grapes and brambles in six regions in France. Microsatellite data were analyzed using standard population genetics, a population graph analysis and a Bayesian approach. In addition to confirming that B. cinerea reproduces sexually, our results showed that the fungal populations on the two hosts were significantly differentiated, indicating restricted gene flow, even in sympatry. In contrast, only weak geographical differentiation could be detected. These results support the possibility of sympatric divergence associated with host use in generalist parasites.

  15. Divergence in the calling songs between sympatric and allopatric populations of the southern wood cricket Gryllus fultoni (Orthoptera: Gryllidae).

    PubMed

    Jang, Y; Gerhardt, H C

    2006-03-01

    In the eastern United States the wood cricket Gryllus fultoni (Orthoptera: Gryllidae) occurs in sympatry with G. vernalis in an area between eastern Kansas and west of the Appalachian Mountains. Calling songs were recorded from 13 sympatric and allopatric localities. Both field and laboratory recordings showed that chirp rate (CR) and pulse rate (PR) overlapped extensively between allopatric populations of G. fultoni and sympatric populations of G. vernalis; by contrast, there was little or no overlap in these variables between sympatric populations of these two species. Divergence in PR and CR between the two species was thus greater in areas of sympatry than in areas of allopatry. Our field and laboratory studies of G. fultoni calling songs thus demonstrate the pattern expected of character displacement and support the genetic assumptions of this hypothesis. Other possible explanations for the sympatric divergence such as ecological character displacement and clinal variation are discussed.

  16. Evolution of Blind Beetles in Isolated Aquifers: A Test of Alternative Modes of Speciation

    PubMed Central

    Leijs, Remko; van Nes, Egbert H.; Watts, Chris H.; Cooper, Steven J. B.; Humphreys, William F.; Hogendoorn, Katja

    2012-01-01

    Evidence is growing that not only allopatric but also sympatric speciation can be important in the evolution of species. Sympatric speciation has most convincingly been demonstrated in laboratory experiments with bacteria, but field-based evidence is limited to a few cases. The recently discovered plethora of subterranean diving beetle species in isolated aquifers in the arid interior of Australia offers a unique opportunity to evaluate alternative modes of speciation. This naturally replicated evolutionary experiment started 10-5 million years ago, when climate change forced the surface species to occupy geographically isolated subterranean aquifers. Using phylogenetic analysis, we determine the frequency of aquifers containing closely related sister species. By comparing observed frequencies with predictions from different statistical models, we show that it is very unlikely that the high number of sympatrically occurring sister species can be explained by a combination of allopatric evolution and repeated colonisations alone. Thus, diversification has occurred within the aquifers and likely involved sympatric, parapatric and/or microallopatric speciation. PMID:22479581

  17. Evolution of blind beetles in isolated aquifers: a test of alternative modes of speciation.

    PubMed

    Leijs, Remko; van Nes, Egbert H; Watts, Chris H; Cooper, Steven J B; Humphreys, William F; Hogendoorn, Katja

    2012-01-01

    Evidence is growing that not only allopatric but also sympatric speciation can be important in the evolution of species. Sympatric speciation has most convincingly been demonstrated in laboratory experiments with bacteria, but field-based evidence is limited to a few cases. The recently discovered plethora of subterranean diving beetle species in isolated aquifers in the arid interior of Australia offers a unique opportunity to evaluate alternative modes of speciation. This naturally replicated evolutionary experiment started 10-5 million years ago, when climate change forced the surface species to occupy geographically isolated subterranean aquifers. Using phylogenetic analysis, we determine the frequency of aquifers containing closely related sister species. By comparing observed frequencies with predictions from different statistical models, we show that it is very unlikely that the high number of sympatrically occurring sister species can be explained by a combination of allopatric evolution and repeated colonisations alone. Thus, diversification has occurred within the aquifers and likely involved sympatric, parapatric and/or microallopatric speciation.

  18. The genetic architecture of reproductive isolation during speciation-with-gene-flow in lake whitefish species pairs assessed by RAD sequencing.

    PubMed

    Gagnaire, Pierre-Alexandre; Pavey, Scott A; Normandeau, Eric; Bernatchez, Louis

    2013-09-01

    During speciation-with-gene-flow, effective migration varies across the genome as a function of several factors, including proximity of selected loci, recombination rate, strength of selection, and number of selected loci. Genome scans may provide better empirical understanding of the genome-wide patterns of genetic differentiation, especially if the variance due to the previously mentioned factors is partitioned. In North American lake whitefish (Coregonus clupeaformis), glacial lineages that diverged in allopatry about 60,000 years ago and came into contact 12,000 years ago have independently evolved in several lakes into two sympatric species pairs (a normal benthic and a dwarf limnetic). Variable degrees of reproductive isolation between species pairs across lakes offer a continuum of genetic and phenotypic divergence associated with adaptation to distinct ecological niches. To disentangle the complex array of genetically based barriers that locally reduce the effective migration rate between whitefish species pairs, we compared genome-wide patterns of divergence across five lakes distributed along this divergence continuum. Using restriction site associated DNA (RAD) sequencing, we combined genetic mapping and population genetics approaches to identify genomic regions resistant to introgression and derive empirical measures of the barrier strength as a function of recombination distance. We found that the size of the genomic islands of differentiation was influenced by the joint effects of linkage disequilibrium maintained by selection on many loci, the strength of ecological niche divergence, as well as demographic characteristics unique to each lake. Partial parallelism in divergent genomic regions likely reflected the combined effects of polygenic adaptation from standing variation and independent changes in the genetic architecture of postzygotic isolation. This study illustrates how integrating genetic mapping and population genomics of multiple sympatric

  19. Correlation between nuptial colors and visual sensitivities tuned by opsins leads to species richness in sympatric Lake Victoria cichlid fishes.

    PubMed

    Miyagi, Ryutaro; Terai, Yohey; Aibara, Mitsuto; Sugawara, Tohru; Imai, Hiroo; Tachida, Hidenori; Mzighani, Semvua Isa; Okitsu, Takashi; Wada, Akimori; Okada, Norihiro

    2012-11-01

    Reproductive isolation that prevents interspecific hybridization between closely related coexisting species maintains sympatric species diversity. One of the reproductive isolations is mate choice based on color signals (breeding color perceived by color vision). This is well known in several animal taxa, yet little is known about its genetic and molecular mechanism. Lake Victoria cichlid fishes are thought to be an example of sympatric species diversity. In the species inhabiting different light environments in rocky shore, speciation by sensory drive through color signals has been proposed by analyses of the long wavelength-sensitive (LWS) opsin gene and the male nuptial coloration. However, the genetic and molecular mechanism of how diversity of sympatric species occurring in the same habitat is maintained remains unknown. To address this issue, we determined nucleotide sequences of eight opsins of six sympatric species collected from a sandy-muddy shore--an ideal model system for studying sympatric species. Among eight opsins, the LWS and RH1 alleles were diversified and one particular allele is dominant or fixed in each species, and we propose that this is due to natural selection. The functions of their LWS alleles were also diversified as shown by absorption measurements of reconstituted visual pigments. To analyze the relationship between nuptial coloration and the absorption of LWS pigments, we systematically evaluated and defined nuptial coloration. We showed that the coloration was species specific with respect to hue and significantly differentiated by the index values of hue (dominant wavelength: λ(d)). The λ(d) value of the male nuptial coloration correlated with the absorption of LWS pigments from all the species, suggesting that reproductive isolation through mate choice using color signals may prevent sympatric interspecific hybridization, thereby maintaining the species diversity in sympatric species in Lake Victoria.

  20. Sub-decadal resolution in sediments of Late Miocene Lake Pannon reveals speciation of Cyprideis (Crustacea, Ostracoda).

    PubMed

    Gitter, Frank; Gross, Martin; Piller, Werner E

    2015-01-01

    Late Miocene "Lake Pannon" (~11.3 Ma) was a remnant of the Central Paratethyan Sea. Successive freshening and constantly changing environmental conditions, like oxygenation, nutrition and substrate led to a well-documented radiation in molluscs and ostracods. Among ostracods (small crustaceans), Cyprideis is one of the most common genera in "Lake Pannon", as well as in several other ancient lakes, showing numerous adaptations and speciations. Here, we present high-resolution data from an early transgression of "Lake Pannon" in the Eastern Styrian Basin (SE Austria). Mataschen clay pit is in the focus of geologic and paleontologic research since 20 years and its geologic and paleoecologic evolution is well-documented. We drilled five cores covering a ~2.3 m long section and completely sampled it in 5-mm thick intervals to reconstruct minute changes in the ostracod fauna over a transgression of a brackish water body. The dominant genus, Cyprideis, is represented by three species C. mataschensis, C. kapfensteinensis and C. ex gr. pannonica. Through morphometric analyses we highlight the variance of each taxon and suggest that there is no direct ecologic control on size or shape. Furthermore, we found a second, co-occurring morphotype of C. kapfensteinensis which is directly related to an elevation of salinities above 13 psu. The presence of two intermediate specimens between the two morphotypes in the sample directly below the first appearance of C. kapfensteinensis B leads us to the conclusion that we are facing a speciation event leading to four sympatric species of Cyprideis.

  1. Ecology.

    ERIC Educational Resources Information Center

    National Audubon Society, New York, NY.

    This set of teaching aids consists of nine Audubon Nature Bulletins, providing teachers and students with informational reading on various ecological topics. The bulletins have these titles: Schoolyard Laboratories, Owls and Predators, The Forest Community, Life in Freshwater Marshes, Camouflage in the Animal World, Life in the Desert, The…

  2. Ecology.

    ERIC Educational Resources Information Center

    National Audubon Society, New York, NY.

    This set of teaching aids consists of nine Audubon Nature Bulletins, providing teachers and students with informational reading on various ecological topics. The bulletins have these titles: Schoolyard Laboratories, Owls and Predators, The Forest Community, Life in Freshwater Marshes, Camouflage in the Animal World, Life in the Desert, The…

  3. Speciation genetics: current status and evolving approaches.

    PubMed

    Wolf, Jochen B W; Lindell, Johan; Backström, Niclas

    2010-06-12

    The view of species as entities subjected to natural selection and amenable to change put forth by Charles Darwin and Alfred Wallace laid the conceptual foundation for understanding speciation. Initially marred by a rudimental understanding of hereditary principles, evolutionists gained appreciation of the mechanistic underpinnings of speciation following the merger of Mendelian genetic principles with Darwinian evolution. Only recently have we entered an era where deciphering the molecular basis of speciation is within reach. Much focus has been devoted to the genetic basis of intrinsic postzygotic isolation in model organisms and several hybrid incompatibility genes have been successfully identified. However, concomitant with the recent technological advancements in genome analysis and a newfound interest in the role of ecology in the differentiation process, speciation genetic research is becoming increasingly open to non-model organisms. This development will expand speciation research beyond the traditional boundaries and unveil the genetic basis of speciation from manifold perspectives and at various stages of the splitting process. This review aims at providing an extensive overview of speciation genetics. Starting from key historical developments and core concepts of speciation genetics, we focus much of our attention on evolving approaches and introduce promising methodological approaches for future research venues.

  4. Speciation genetics: current status and evolving approaches

    PubMed Central

    Wolf, Jochen B. W.; Lindell, Johan; Backström, Niclas

    2010-01-01

    The view of species as entities subjected to natural selection and amenable to change put forth by Charles Darwin and Alfred Wallace laid the conceptual foundation for understanding speciation. Initially marred by a rudimental understanding of hereditary principles, evolutionists gained appreciation of the mechanistic underpinnings of speciation following the merger of Mendelian genetic principles with Darwinian evolution. Only recently have we entered an era where deciphering the molecular basis of speciation is within reach. Much focus has been devoted to the genetic basis of intrinsic postzygotic isolation in model organisms and several hybrid incompatibility genes have been successfully identified. However, concomitant with the recent technological advancements in genome analysis and a newfound interest in the role of ecology in the differentiation process, speciation genetic research is becoming increasingly open to non-model organisms. This development will expand speciation research beyond the traditional boundaries and unveil the genetic basis of speciation from manifold perspectives and at various stages of the splitting process. This review aims at providing an extensive overview of speciation genetics. Starting from key historical developments and core concepts of speciation genetics, we focus much of our attention on evolving approaches and introduce promising methodological approaches for future research venues. PMID:20439277

  5. Location-specific sympatric morphological divergence as a possible response to species interactions in West Virginia Plethodon salamander communities.

    PubMed

    Adams, Dean C; West, Mary E; Collyer, Michael L

    2007-03-01

    1. The competitive interactions of closely related species have long been considered important determinants of community composition and a major cause of phenotypic diversification. However, while patterns such as character displacement are well documented, less is known about how local adaptation influences diversifying selection from interspecific competition. 2. We examined body size and head shape variation among allopatric and sympatric populations of two salamander species, the widespread Plethodon cinereus and the geographically restricted P. nettingi. We quantified morphology from 724 individuals from 20 geographical localities throughout the range of P. nettingi. 3. Plethodon nettingi was more robust in cranial morphology relative to P. cinereus, and sympatric localities were more robust relative to allopatric localities. Additionally, there was significantly greater sympatric head shape divergence between species relative to allopatric communities, and sympatric localities of P. cinereus exhibited greater morphological variation than sympatric P. nettingi. 4. The sympatric morphological divergence and increase in cranial robustness of one species (P. nettingi) were similar to observations in other Plethodon communities, and were consistent with the hypothesis of interspecific competition. These findings suggest that interspecific competition in Plethodon may play an important role in phenotypic diversification in this group. 5. The increase in among-population variance in sympatric P. cinereus suggests a species-specific response to divergent natural selection that is influenced in part by other factors. We hypothesize that enhanced morphological flexibility and ecological tolerance allow P. cinereus to more rapidly adapt to local environmental conditions, and initial differences among populations have allowed the evolutionary response of P. cinereus to vary across replicate sympatric locations, resulting in distinct evolutionary trajectories of

  6. Evolutionary relationships among sympatric life history forms of Dolly Varden inhabiting the landlocked Kronotsky Lake, Kamchatka, and a neighboring anadromous population

    USGS Publications Warehouse

    Ostberg, C.O.; Pavlov, S.D.; Hauser, L.

    2009-01-01

    We investigated the evolutionary relationships among five sympatric morphs of Dolly Varden Salvelinus malma (white, Schmidti, longhead, river, and dwarf) inhabiting landlocked Kronotsky Lake on the Kamchatka Peninsula, Russia, and an anadromous population below the barrier waterfall on the outflowing Kronotsky River. Morphological analyses indicated phenotypic differentiation corresponding to preferred habitat, the longhead (a limnetic piscivorous morph) having a fusiform body, long jaw, and short fins and the Schmidti (a benthic morph) having a robust body, small jaw, and long fins. Analysis of molecular variance among the Kronotsky Lake morphs indicated that contemporary gene flow is restricted both among morphs within locations and among locations within morphs. Gene flow from Kronotsky Lake into the anadromous population also appears to be restricted. Our findings indicate that there are two divergent evolutionary lineages, one consisting of the white, Schmidti, river, and dwarf morphs and the other of the longhead morph and the anadromous population, which suggests that Kronotsky Lake was subject to separate waves of immigration. The Kronotsky Lake Dolly Varden morphs may represent an example of ecological speciation in progress, and we present a working hypothesis for the diversification of morphs within Kronotsky Lake.

  7. Genetic differentiation and estimation of effective population size and migration rates in two sympatric ecotypes of the marine snail Littorina saxatilis.

    PubMed

    Fernández, J; Galindo, J; Fernández, B; Pérez-Figueroa, A; Caballero, A; Rolán-Alvarez, E

    2005-01-01

    On exposed rocky shores in Galicia (northwest Spain), a striking polymorphism exists between two ecotypes (RB and SU) of Littorina saxatilis that occupy different levels of the intertidal zone and exhibit an incomplete reproductive isolation. The setting has been suggested to represent ongoing sympatric speciation by ecological adaptation of the two ecotypes to their respective habitats. In this article we address whether or not the ecotypes have developed their own population structures in response to the rigors of their corresponding environments and life histories. We analyzed four to five allozymic loci from three surveys of the same sites, spanning a 14-year period. An experimental design including three localities with two transects per locality and three shore levels allowed studying temporal and spatial population structure and estimation of effective population sizes (N(e)), neighborhood sizes (N(n)), and migration rates (m). Genetic differentiation was significantly lower in RB populations (theta(ST) = 0.067) than in SU ones (theta(ST) = 0.124). Mean estimates of N(e), N(n), and m did not differ significantly between ecotypes, but local ecotype differences in migration between the two closest localities (larger migration rates in RB than in SU populations) could explain the pattern in population differentiation.

  8. The role of phenotypic plasticity on the proteome differences between two sympatric marine snail ecotypes adapted to distinct micro-habitats

    PubMed Central

    2010-01-01

    Background The role of phenotypic plasticity is increasingly being recognized in the field of evolutionary studies. In this paper we look at the role of genetic determination versus plastic response by comparing the protein expression profiles between two sympatric ecotypes adapted to different shore levels and habitats using two-dimensional protein maps. Results We compared qualitative and quantitative differences in protein expression between pools of both ecotypes from different environments (field and laboratory conditions). The results suggested that ecotype differences may affect about 7% of the proteome in agreement with previous studies, and moreover these differences are basically insensitive to environmental changes. Thus, observed differences between wild ecotypes can be mainly attributed to genetic factors rather than phenotypic plasticity. Conclusions These results confirm the mechanism of adaptation already proposed in this species and a minor role of phenotypic plasticity in this ecological speciation process. In addition, this study provides a number of interesting protein spots potentially involved in adaptation, and therefore candidates for a future identification. PMID:20210986

  9. Geographic variation in advertisement calls of a Microhylid frog - testing the role of drift and ecology.

    PubMed

    Lee, Ko-Huan; Shaner, Pei-Jen L; Lin, Yen-Po; Lin, Si-Min

    2016-05-01

    Acoustic signals for mating are important traits that could drive population differentiation and speciation. Ecology may play a role in acoustic divergence through direct selection (e.g., local adaptation to abiotic environment), constraint of correlated traits (e.g., acoustic traits linked to another trait under selection), and/or interspecific competition (e.g., character displacement). However, genetic drift alone can also drive acoustic divergence. It is not always easy to differentiate the role of ecology versus drift in acoustic divergence. In this study, we tested the role of ecology and drift in shaping geographic variation in the advertisement calls of Microhyla fissipes. We examined three predictions based on ecological processes: (1) the correlation between temperature and call properties across M. fissipes populations; (2) the correlation between call properties and body size across M. fissipes populations; and (3) reproductive character displacement (RCD) in call properties between M. fissipes populations that are sympatric with and allopatric to a congener M. heymonsi. To test genetic drift, we examined correlations among call divergence, geographic distance, and genetic distance across M. fissipes populations. We recorded the advertisement calls from 11 populations of M. fissipes in Taiwan, five of which are sympatrically distributed with M. heymonsi. We found geographic variation in both temporal and spectral properties of the advertisement calls of M. fissipes. However, the call properties were not correlated with local temperature or the callers' body size. Furthermore, we did not detect RCD. By contrast, call divergence, geographic distance, and genetic distance between M. fissipes populations were all positively correlated. The comparisons between phenotypic Q st (P st) and F st values did not show significant differences, suggesting a role of drift. We concluded that genetic drift, rather than ecological processes, is the more likely

  10. Genetic architecture underlying host choice differentiation in the sympatric host races of Lochmaea capreae leaf beetles.

    PubMed

    Soudi, Shaghayegh; Reinhold, Klaus; Engqvist, Leif

    2016-04-01

    Speciation in herbivorous insects has received considerable attention during the last few decades. Much of this group's diversity originates from adaptive population divergence onto different host plants, which often involves the evolution of specialized patterns of host choice behaviour. Differences in host choice often translates directly into divergence in mating sites, and therefore positive assortative mating will be created which will act as a strong barrier to gene flow. In this study, we first explored whether host choice is a genetically determined trait in the sympatric willow and birch host races of the leaf feeding beetle Lochmaea capreae, or whether larval experience influences adult host choice. Once we had established that host choice is a genetically based trait we determined its genetic architecture. To achieve this, we employed a reciprocal transplant design in which offspring from pure willow and birch cross-types, F1, F2 and backcrosses were raised on each host plant and their preference was determined upon reaching adulthood. We then applied joint-scaling analysis to uncover the genetic architecture of host preference. Our results suggest that rearing host does not have a pronounced effect on adult's host choice; rather the segregation pattern implies the existence of genetic loci affecting host choice in these host races. The joint-scaling analysis revealed that population differences in host choice are mainly influenced by the contribution of additive genetic effects and also maternally inherited cytoplasmic effects. We explore the implications of our findings for evolutionary dynamics of sympatric host race formation and speciation.

  11. Reproductive division of labour and thelytoky result in sympatric barriers to gene flow in honeybees (Apis mellifera L.).

    PubMed

    Neumann, P; Härtel, S; Kryger, P; Crewe, R M; Moritz, R F A

    2011-02-01

    Determining the extent and causes of barriers to gene flow is essential for understanding sympatric speciation, but the practical difficulties of quantifying reproductive isolation remain an obstacle to analysing this process. Social parasites are common in eusocial insects and tend to be close phylogenetic relatives of their hosts (= Emery's rule). Sympatric speciation caused by reproductive isolation between host and parasite is a possible evolutionary pathway. Socially parasitic workers of the Cape honeybee, Apis mellifera capensis, produce female clonal offspring parthenogenetically and invade colonies of the neighbouring subspecies A. m. scutellata. In the host colony, socially parasitic workers can become pseudoqueens, an intermediate caste with queenlike pheromone secretion. Here, we show that over an area of approximately 275.000 km², all parasitic workers bear the genetic signature of a clone founded by a single ancestral worker genotype. Any gene flow from the host to the parasite is impossible because honeybee workers cannot mate. Gene flow from the parasite to the host is possible, as parasitic larvae can develop into queens. However, we show that despite sympatric coexistence for more than a decade, gene flow between host and social parasite (F(st) = 0.32) and hybridizations (0.71%) are rare, resulting in reproductive isolation. Our data suggest a new barrier to gene flow in sympatry, which is not based on assortative matings but on thelytoky and reproductive division of labour in eusocial insects, thereby suggesting a new potential pathway to Emery's rule.

  12. Mechanisms of prezygotic reproductive isolation between two sympatric species, Gelsemium rankinii and G. sempervirens (Gelsemiaceae), in the southeastern United States.

    PubMed

    Pascarella, John B

    2007-03-01

    Natural hybridization plays a critical role in speciation, the maintenance of reproductive isolation, and genetic introgression. While many plant species have hybrid swarms in areas of sympatry, the lack of hybrids among closely related sympatrically distributed species suggests that strong pre- and/or postzygotic barriers exist to hybridization. Gelsemium sempervirens and G. rankinii (Gelsemiaceae) are sympatrically distributed southeastern sister taxa that have strong postzygotic barriers to hybrid formation and high levels of genetic differentiation. In this study, two sympatric populations in Lowndes County, Georgia were surveyed from 1999-2005 to assess the role of temporal and pollinator isolation as potential prezygotic barriers. The populations had mostly non-overlapping flowering periods in 2003-2005, with significant differences in time of peak flowering and length of flowering. Both species shared a similar community of flower visitors, with the apid bee Habropoda laboriosa the dominant visitor to both species. A choice experiment found that H. laboriosa visited both species but preferred G. sempervirens. The primary prezygotic barrier is temporal isolation preventing hybridization in spite of the shared pollinators. This study suggests that reliance on a shared pollinator during speciation may limit opportunity for divergent selection on flowering time.

  13. Shared evolutionary origin of MHC polymorphism in sympatric lemurs.

    PubMed

    Kaesler, Eva; Kappeler, Peter M; Brameier, Markus; Demeler, Janina; Kraus, Cornelia; Rakotoniaina, Josué H; Hämäläinen, Anni M; Huchard, Elise

    2017-08-21

    Genes of the Major Histocompatibility Complex (MHC) play a central role in adaptive immune responses of vertebrates. They exhibit remarkable polymorphism, often crossing species boundaries with similar alleles or allelic motifs shared across species. This pattern may reflect parallel parasite-mediated selective pressures, either favouring the long maintenance of ancestral MHC allelic lineages across successive speciation events by balancing selection ('trans-species polymorphism'), or alternatively favouring the independent emergence of functionally similar alleles post-speciation via convergent evolution. Here we investigate the origins of MHC similarity across several species of dwarf and mouse lemurs (Cheirogaleidae). We examined MHC class II variation in two highly polymorphic loci (DRB, DQB) and evaluated the overlap of gut-parasite communities in four sympatric lemurs. We tested for parasite-MHC associations across species to determine whether similar parasite pressures may select for similar MHC alleles in different species. Next, we integrated our MHC data with those previously obtained from other Cheirogaleidae to investigate the relative contribution of convergent evolution and co-ancestry to shared MHC polymorphism by contrasting patterns of codon usage at functional versus neutral sites. Our results indicate that parasites shared across species may select for functionally similar MHC alleles, implying that the dynamics of MHC-parasite co-evolution should be envisaged at the community level. We further show that balancing selection maintaining trans-species polymorphism, rather than convergent evolution, is the primary mechanism explaining shared MHC sequence motifs between species that diverged up to 30 million years ago. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Experimental hybridization and reproductive isolation between two sympatric species of tephritid fruit flies in the Anastrepha fraterculus species group.

    PubMed

    Rull, Juan; Tadeo, Eduardo; Lasa, Rodrigo; Rodríguez, Christian L; Altuzar-Molina, Alma; Aluja, Martín

    2017-06-06

    Among tephritid fruit flies, hybridization has been found to produce local adaptation and speciation, and in the case of pest species, induce behavioral and ecological alterations that can adversely impact efficient pest management. The fraterculus species group within Anastrepha (Diptera: Tephritidae), is a rapidly radiating aggregate, which includes cryptic species complexes, numerous sister species, and several pest species. Molecular studies have highlighted the possibility of introgression between A. fraterculus and A. obliqua. Reproductive isolation has been studied among morphotypes of the A. fraterculus species complex as a tool for species delimitation. Here we examined the existence and strength of prezygotic and postzygotic isolation between sympatric populations of two closely related species within the highly derived fraterculus group (A. fraterculus and A. obliqua), coexisting in nature. Although adults of both species showed a strong tendency for assortative mating, a small proportion of hybrid pairings in both directions were observed. We also observed asymmetric postzygotic isolation, with one hybrid cross displaying a strong reduction in fecundity and F1 egg fertility. Survival was greater for the progeny of homotypic and hybrid crosses in the maternal host. There was a marked female biased sex ratio distortion for both F1 hybrid adults. Hybridization between A. fraterculus and A. obliqua in nature may be difficult but possible; these two species display stronger reproductive isolation than all pairs of species previously examined in the A. fraterculus species complex. Asymmetric postzygotic isolation is suggestive of Wolbachia mediated cytoplasmic incompatibilities that may be exploited in area-wide pest management. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  15. Evolution and Ecophysiology of the Industrial Producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a New Sympatric Agamospecies Related to It

    PubMed Central

    Druzhinina, Irina S.; Komoń-Zelazowska, Monika; Atanasova, Lea; Seidl, Verena; Kubicek, Christian P.

    2010-01-01

    Background Trichoderma reesei, a mitosporic green mould, was recognized during the WW II based on a single isolate from the Solomon Islands and since then used in industry for production of cellulases. It is believed to be an anamorph (asexual stage) of the common pantropical ascomycete Hypocrea jecorina. Methodology/Principal Findings We combined molecular evolutionary analysis and multiple methods of phenotype profiling in order to reveal the genetic relationship of T. reesei to H. jecorina. The resulting data show that the isolates which were previously identified as H. jecorina by means of morphophysiology and ITS1 and 2 (rRNA gene cluster) barcode in fact comprise several species: i) H. jecorina/T. reesei sensu stricto which contains most of the teleomorphs (sexual stages) found on dead wood and the wild-type strain of T. reesei QM 6a; ii) T. parareesei nom. prov., which contains all strains isolated as anamorphs from soil; iii) and two other hypothetical new species for which only one or two isolates are available. In silico tests for recombination and in vitro mating experiments revealed a history of sexual reproduction for H. jecorina and confirmed clonality for T. parareesei nom. prov. Isolates of both species were consistently found worldwide in pantropical climatic zone. Ecophysiological comparison of H. jecorina and T. parareesei nom. prov. revealed striking differences in carbon source utilization, conidiation intensity, photosensitivity and mycoparasitism, thus suggesting adaptation to different ecological niches with the high opportunistic potential for T. parareesei nom. prov. Conclusions Our data prove that T. reesei belongs to a holomorph H. jecorina and displays a history of worldwide gene flow. We also show that its nearest genetic neighbour - T. parareesei nom. prov., is a cryptic phylogenetic agamospecies which inhabits the same biogeographic zone. These two species thus provide a so far rare example of sympatric speciation within saprotrophic

  16. Environmental harshness, latitude and incipient speciation.

    PubMed

    Weir, Jason T

    2014-02-01

    Are rates of evolution and speciation fastest where diversity is greatest - the tropics? A commonly accepted theory links the latitudinal diversity gradient to a speciation pump model whereby the tropics produce species at a faster rate than extra-tropical regions. In this issue of Molecular Ecology, Botero et al. () test the speciation pump model using subspecies richness patterns for more than 9000 species of birds and mammals as a proxy for incipient speciation opportunity. Rather than using latitudinal centroids, the authors investigate the role of various environmental correlates of latitude as drivers of subspecies richness. Their key finding points to environmental harshness as a positive predictor of subspecies richness. The authors link high subspecies richness in environmental harsh areas to increased opportunities for geographic range fragmentation and/or faster rates of trait evolution as drivers of incipient speciation. Because environmental harshness generally increases with latitude, these results suggest that opportunity for incipient speciation is lowest where species richness is highest. The authors interpret this finding as incompatible with the view of the tropics as a cradle of diversity. Their results are consistent with a growing body of evidence that reproductive isolation and speciation occur fastest at high latitudes.

  17. Australasian sky islands act as a diversity pump facilitating peripheral speciation and complex reversal from narrow endemic to widespread ecological supertramp

    PubMed Central

    Toussaint, Emmanuel F A; Sagata, Katayo; Surbakti, Suriani; Hendrich, Lars; Balke, Michael

    2013-01-01

    The Australasian archipelago is biologically extremely diverse as a result of a highly puzzling geological and biological evolution. Unveiling the underlying mechanisms has never been more attainable as molecular phylogenetic and geological methods improve, and has become a research priority considering increasing human-mediated loss of biodiversity. However, studies of finer scaled evolutionary patterns remain rare particularly for megadiverse Melanesian biota. While oceanic islands have received some attention in the region, likewise insular mountain blocks that serve as species pumps remain understudied, even though Australasia, for example, features some of the most spectacular tropical alpine habitats in the World. Here, we sequenced almost 2 kb of mitochondrial DNA from the widespread diving beetle Rhantus suturalis from across Australasia and the Indomalayan Archipelago, including remote New Guinean highlands. Based on expert taxonomy with a multigene phylogenetic backbone study, and combining molecular phylogenetics, phylogeography, divergence time estimation, and historical demography, we recover comparably low geographic signal, but complex phylogenetic relationships and population structure within R. suturalis. Four narrowly endemic New Guinea highland species are subordinated and two populations (New Guinea, New Zealand) seem to constitute cases of ongoing speciation. We reveal repeated colonization of remote mountain chains where haplotypes out of a core clade of very widespread haplotypes syntopically might occur with well-isolated ones. These results are corroborated by a Pleistocene origin approximately 2.4 Ma ago, followed by a sudden demographic expansion 600,000 years ago that may have been initiated through climatic adaptations. This study is a snapshot of the early stages of lineage diversification by peripatric speciation in Australasia, and supports New Guinea sky islands as cradles of evolution, in line with geological evidence suggesting

  18. Separation in flowering time contributes to the maintenance of sympatric cryptic plant lineages

    PubMed Central

    Michalski, Stefan G; Durka, Walter

    2015-01-01

    Sympatric cryptic lineages are a challenge for the understanding of species coexistence and lineage diversification as well as for management, conservation, and utilization of plant genetic resources. In higher plants studies providing insights into the mechanisms creating and maintaining sympatric cryptic lineages are rare. Here, using microsatellites and chloroplast sequence data, morphometric analyses, and phenological observations, we ask whether sympatrically coexisting lineages in the common wetland plant Juncus effusus are ecologically differentiated and reproductively isolated. Our results show two genetically highly differentiated, homoploid lineages within J. effusus that are morphologically cryptic and have similar preference for soil moisture content. However, flowering time differed significantly between the lineages contributing to reproductive isolation and the maintenance of these lineages. Furthermore, the later flowering lineage suffered less from predispersal seed predation by a Coleophora moth species. Still, we detected viable and reproducing hybrids between both lineages and the earlier flowering lineage and J. conglomeratus, a coexisting close relative. Flowering time differentiation between the lineages can be explained by neutral divergence alone and together with a lack of postzygotic isolation mechanisms; the sympatric coexistence of these lineages is most likely the result of an allopatric origin with secondary contact. PMID:26078854

  19. Aggression and food resource competition between sympatric hermit crab species.

    PubMed

    Tran, Mark V; O'Grady, Matthew; Colborn, Jeremiah; Van Ness, Kimberly; Hill, Richard W

    2014-01-01

    The vertical zonation patterns of intertidal organisms have been topics of interest to marine ecologists for many years, with interspecific food competition being implicated as a contributing factor to intertidal community organization. In this study, we used behavioral bioassays to examine the potential roles that interspecific aggression and food competition have on the structuring of intertidal hermit crab assemblages. We studied two ecologically similar, sympatric hermit crab species, Clibanarius digueti [1] and Paguristes perrieri [2], which occupy adjacent zones within the intertidal region of the Gulf of California. During the search phase of foraging, C. digueti showed higher frequencies of aggressive behaviors than P. perrieri. In competition assays, C. digueti gained increased access to food resources compared to P. perrieri. The results suggest that food competition may play an important role in structuring intertidal hermit crab assemblages, and that the zonation patterns of Gulf of California hermit crab species may be the result of geographical displacement by the dominant food competitor (C. digueti).

  20. Sympatric reinforcement of reproductive barriers between Neotinea tridentata and N. ustulata (Orchidaceae).

    PubMed

    Pellegrino, Giuseppe

    2016-11-01

    Reinforcement is the process by which selection favors traits that decrease mating between two incipient species in response to costly mating or the production of maladapted hybrids, causing the evolution of greater reproductive isolation between emerging species. I have studied a pair of orchids, Neotinea tridentata and N. ustulata, to examine the level of postmating pre- and post-zygotic isolating mechanisms that maintain these species, and the degree to which the boundary may still be permeable to gene flow. In this study, I performed pollen tube growth rate experiments and I investigated pre- and post-zygotic barriers by performing hand pollination experiments in order to evaluate fruit set, embryonate seed set and seed germination rates by intra- and interspecific crosses. Fruit set, the percentage of embryonate seeds and germinability of interspecific crosses were reduced compared to intraspecific pollinations, showing significant differences between sympatric and allopatric populations. While in allopatric populations the post-pollination isolation index ranged between 0.40 and 0.11, in sympatric populations orchid pairs showed total isolation due to post-pollination prezygotic barriers, guaranteed at the level of pollen-stigma interactions. Indeed, in sympatric populations, pollen tubes reached the ovary after 24 h in only 8 out of 45 plants; in the remaining cases, the pollen tubes did not enter the ovary, and thus no fruit set occurred. This pair of orchids is characterized by postmating pre-zygotic reproductive isolation in sympatric populations that prevents the formation of hybrids. This mechanism of speciation, starting in allopatry and triggering the reinforcement mechanisms of reproductive isolation in secondary sympatry, is the most likely explanation for the pattern of evolutionary transitions found in this pair of orchids.

  1. [Study on Speciation Analysis and Ecological Risk Assessment of Heavy Metals in Surface Sediments in Gansu, Ningxia and Inner Mongolia Sections of the Yellow River in Wet Season with HR-ICP-MS].

    PubMed

    Ma, Xiao-ling; Liu, Jing-jun; Zuo, Hang; Huang, Fang; Liu, Ying

    2015-04-01

    In order to continuously study the contents, pollution condition and potential ecological risk of heavy metals in surface sediments in Gansu, Ningxia and Inner Mongolia sections of the Yellow River in wet seasons in different years, the speciation analysis of 9 kinds of heavy metals including Cd, Pb, Cr, Ni, Cu, V, Co, Zn and Mn, pollution condition and potential ecological risk of heavy metals in surface sediments from 10 sampling sites like Baotoufuqiao (S2), Shizuishantaolezhen (S6) and Wujinxia (S9) in Gansu, Ningxia and Inner Mongolia sections of the Yellow River in 2012 wet season were studied with BCR sequential extraction and high resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS) based on our previous works. The results implied that the order of heavy metals average contents in the 10 sediment samples were the same: Mn>V> Zn>Cr>Cu>Ni>Pb>Co>Cd. In the sediments, heavy metals mainly existed in the form of residual fraction, which indicated that the bioavailability or environmental impact was low. Results of geo-accumulation indices (Igeo) showed that Igeo(CD), was the largest among the heavy metals with the strongest pollution, while IGEO(Mn)was the smallest. Enrichment factor (EF) indicated that only Cd and Cu were enriched at some sampling sites. In S5, because EFcd reached 4. 69, Cd was affected by human activities obviously and the result was consistent with I. Potential ecological risk index (RI) implied that the RI values in S1, S2 and S5 were between 150 and 300, which belonged to moderate polluting degree, while others were less than 150, belonging to light pollution degree. The results of this paper could not only provide reliable experimental data and theoretical basis for the relevant departments, but also supply the technical support for constructing mathematics model of sediments-pollutants transport, systematically researching the migration and transformation rule of persistent toxic substances and environmental assessment in

  2. Species identification and sibship assignment of sympatric larvae in the yucca moths Tegeticula synthetica and Tegeticula antithetica (Lepidoptera: Prodoxidae).

    PubMed

    Drummond, Christopher S; Smith, Christopher I; Pellmyr, Olle

    2009-09-01

    Ecological interactions between yucca moths (Tegeticula, Prodoxidae) and their host plants (Yucca, Agavaceae) are exemplary of obligate plant-pollinator mutualism and co-evolution. We describe a multiplex microsatellite DNA protocol for species identification and sibship assignment of sympatric larvae from Tegeticula synthetica and Tegeticula antithetica, pollinators of the Joshua tree (Yucca brevifolia). Bayesian clustering provides correct diagnosis of species in 100% of adult moths, with unambiguous identification of sympatric larvae. Sibship assignments show that larvae within a single fruit are more likely to be full-sibs or half-sibs than larvae from different fruit, consistent with the hypothesis that larval clutches are predominantly the progeny of an individual female.

  3. Revisiting the particular role of host shifts in initiating insect speciation.

    PubMed

    Forbes, Andrew A; Devine, Sara N; Hippee, Alaine C; Tvedte, Eric S; Ward, Anna K G; Widmayer, Heather A; Wilson, Caleb J

    2017-01-04

    The notion that shifts to new hosts can initiate insect speciation is more than 150 years old, yet widespread conflation with paradigms of sympatric speciation has led to confusion about how much support exists for this hypothesis. Here, we review 85 insect systems and evaluate the relationship between host shifting, reproductive isolation, and speciation. We sort insects into five categories: (1) systems in which a host shift has initiated speciation; (2) systems in which a host shift has made a contribution to speciation; (3) systems in which a host shift has caused the evolution of new reproductive isolating barriers; (4) systems with host-associated genetic differences; and (5) systems with no evidence of host-associated genetic differences. We find host-associated genetic structure in 65 systems, 43 of which show that host shifts have resulted in the evolution of new reproductive barriers. Twenty-six of the latter also support a role for host shifts in speciation, including eight studies that definitively support the hypothesis that a host shift has initiated speciation. While this review is agnostic as to the fraction of all insect speciation events to which host shifts have contributed, it clarifies that host shifts absolutely can and do initiate speciation.

  4. Homoploid hybrid speciation in animals.

    PubMed

    Mavárez, Jesús; Linares, Mauricio

    2008-10-01

    Among animals, evidence for homoploid hybrid speciation (HHS, i.e. the creation of a hybrid lineage without a change in chromosome number) was limited until recently to the virgin chub, Gila seminuda, and some controversial data in support of hybrid status for the red wolf, Canis rufus. This scarcity of evidence, together with pessimistic attitudes among zoologists about the evolutionary importance of hybridisation, prompted the view that HHS is extremely rare among animals, especially as compared with plants. However, in recent years, the literature on animal HHS has expanded to include several new putative examples in butterflies, ants, flies and fishes. We argue that this evidence suggests that HHS is far more common than previously thought and use it to provide insights into some of the genetic and ecological aspects associated with this type of speciation among animals.

  5. Sensory drive in cichlid speciation.

    PubMed

    Maan, Martine E; Hofker, Kees D; van Alphen, Jacques J M; Seehausen, Ole

    2006-06-01

    The role of selection in speciation is a central yet poorly understood problem in evolutionary biology. The rapid radiations of extremely colorful cichlid fish in African lakes have fueled the hypothesis that sexual selection can drive species divergence without geographical isolation. Here we present experimental evidence for a mechanism by which sexual selection becomes divergent: in two sibling species from Lake Victoria, female mating preferences for red and blue male nuptial coloration coincide with their context-independent sensitivities to red and blue light, which in turn correspond to a difference in ambient light in the natural habitat of the species. These results suggest that natural selection on visual performance, favoring different visual properties in different spectral environments, may lead to divergent sexual selection on male nuptial coloration. This interplay of ecological and sexual selection along a light gradient may provide a mechanism of rapid speciation through divergent sensory drive.

  6. SPECIATE - EPA'S DATABASE OF SPECIATED EMISSION PROFILES

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of total organic compound (TOC) and particulate matter (PM) speciation profiles for emissions from air pollution sources. The data base has recently been updated and an associated report has recently been re...

  7. SPECIATE - EPA'S DATABASE OF SPECIATED EMISSION PROFILES

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of total organic compound (TOC) and particulate matter (PM) speciation profiles for emissions from air pollution sources. The data base has recently been updated and an associated report has recently been re...

  8. Do specialized flowers promote reproductive isolation? Realized pollination accuracy of three sympatric Pedicularis species

    PubMed Central

    Armbruster, W. Scott; Shi, Xiao-Qing; Huang, Shuang-Quan

    2014-01-01

    Background and Aims Interest in pollinator-mediated evolutionary divergence of flower phenotype and speciation in plants has been at the core of plant evolutionary studies since Darwin. Specialized pollination is predicted to lead to reproductive isolation and promote speciation among sympatric species by promoting partitioning of (1) the species of pollinators used, (2) when pollinators are used, or (3) the sites of pollen placement. Here this last mechanism is investigated by observing the pollination accuracy of sympatric Pedicularis species (Orobanchacae). Methods Pollinator behaviour was observed on three species of Pedicularis (P. densispica, P. tricolor and P. dichotoma) in the Hengduan Mountains, south-west China. Using fluorescent powder and dyed pollen, the accuracy was assessed of stigma contact with, and pollen deposition on, pollinating bumble-bees, respectively. Key Results All three species of Pedicularis were pollinated by bumble-bees. It was found that the adaptive accuracy of female function was much higher than that of male function in all three flower species. Although peak pollen deposition corresponded to the optimal location on the pollinator (i.e. the site of stigma contact) for each species, substantial amounts of pollen were scattered over much of the bees' bodies. Conclusions The Pedicularis species studied in the eastern Himalayan region did not conform with Grant's ‘Pedicularis Model’ of mechanical reproductive isolation. The specialized flowers of this diverse group of plants seem unlikely to have increased the potential for reproductive isolation or influenced rates of speciation. It is suggested instead that the extreme species richness of the Pedicularis clade was generated in other ways and that specialized flowers and substantial pollination accuracy evolved as a response to selection generated by the diversity of co-occurring congeners. PMID:24047714

  9. Ecological opportunity and the evolution of habitat preferences in an arid-zone bird: implications for speciation in a climate-modified landscape

    PubMed Central

    Norman, Janette A.; Christidis, Les

    2016-01-01

    Bioclimatic models are widely used to investigate the impacts of climate change on species distributions. Range shifts are expected to occur as species track their current climate niche yet the potential for exploitation of new ecological opportunities that may arise as ecosystems and communities remodel is rarely considered. Here we show that grasswrens of the Amytornis textilis-modestus complex responded to new ecological opportunities in Australia’s arid biome through shifts in habitat preference following the development of chenopod shrublands during the late Plio-Pleistocene. We find evidence of spatially explicit responses to climatically driven landscape changes including changes in niche width and patterns of population growth. Conservation of structural and functional aspects of the ancestral niche appear to have facilitated recent habitat shifts, while demographic responses to late Pleistocene climate change provide evidence for the greater resilience of populations inhabiting the recently evolved chenopod shrubland communities. Similar responses could occur under future climate change in species exposed to novel ecological conditions, or those already occupying spatially heterogeneous landscapes. Mechanistic models that consider structural and functional aspects of the niche along with regional hydro-dynamics may be better predictors of future climate responses in Australia’s arid biome than bioclimatic models alone. PMID:26787111

  10. Ecological opportunity and the evolution of habitat preferences in an arid-zone bird: implications for speciation in a climate-modified landscape.

    PubMed

    Norman, Janette A; Christidis, Les

    2016-01-20

    Bioclimatic models are widely used to investigate the impacts of climate change on species distributions. Range shifts are expected to occur as species track their current climate niche yet the potential for exploitation of new ecological opportunities that may arise as ecosystems and communities remodel is rarely considered. Here we show that grasswrens of the Amytornis textilis-modestus complex responded to new ecological opportunities in Australia's arid biome through shifts in habitat preference following the development of chenopod shrublands during the late Plio-Pleistocene. We find evidence of spatially explicit responses to climatically driven landscape changes including changes in niche width and patterns of population growth. Conservation of structural and functional aspects of the ancestral niche appear to have facilitated recent habitat shifts, while demographic responses to late Pleistocene climate change provide evidence for the greater resilience of populations inhabiting the recently evolved chenopod shrubland communities. Similar responses could occur under future climate change in species exposed to novel ecological conditions, or those already occupying spatially heterogeneous landscapes. Mechanistic models that consider structural and functional aspects of the niche along with regional hydro-dynamics may be better predictors of future climate responses in Australia's arid biome than bioclimatic models alone.

  11. Song sparrows Melospiza melodia have a home-field advantage in defending against sympatric malarial parasites.

    PubMed

    Sarquis-Adamson, Yanina; MacDougall-Shackleton, Elizabeth A

    2016-08-01

    Hosts and parasites interact on both evolutionary and ecological timescales. The outcome of these interactions, specifically whether hosts are more resistant to their local parasites (sympatric) than to parasites from another location (allopatric), is likely to affect the spread of infectious disease and the fitness consequences of host dispersal. We conducted a cross-infection experiment to determine whether song sparrows (Melospiza melodia) have an advantage in dealing with sympatric parasites. We captured birds from two breeding sites 437 km apart, and inoculated them with avian malaria (Plasmodium spp.) cultured either from their capture site or from the other site. Infection risk was lower for birds exposed to sympatric than to allopatric Plasmodium lineages, suggesting that song sparrows may have a home-field advantage in defending against local parasite strains. This pattern was more pronounced at one capture site than at the other, consistent with mosaic models of host-parasite interactions. Home-field advantage may arise from evolutionary processes, whereby host populations become adapted to their local parasites, and/or from ecological interactions, whereby host individuals develop resistance to the local parasites through previous immune exposure. Our findings suggest that greater susceptibility to novel parasites may represent a fitness consequence of natal dispersal.

  12. Song sparrows Melospiza melodia have a home-field advantage in defending against sympatric malarial parasites

    PubMed Central

    Sarquis-Adamson, Yanina

    2016-01-01

    Hosts and parasites interact on both evolutionary and ecological timescales. The outcome of these interactions, specifically whether hosts are more resistant to their local parasites (sympatric) than to parasites from another location (allopatric), is likely to affect the spread of infectious disease and the fitness consequences of host dispersal. We conducted a cross-infection experiment to determine whether song sparrows (Melospiza melodia) have an advantage in dealing with sympatric parasites. We captured birds from two breeding sites 437 km apart, and inoculated them with avian malaria (Plasmodium spp.) cultured either from their capture site or from the other site. Infection risk was lower for birds exposed to sympatric than to allopatric Plasmodium lineages, suggesting that song sparrows may have a home-field advantage in defending against local parasite strains. This pattern was more pronounced at one capture site than at the other, consistent with mosaic models of host–parasite interactions. Home-field advantage may arise from evolutionary processes, whereby host populations become adapted to their local parasites, and/or from ecological interactions, whereby host individuals develop resistance to the local parasites through previous immune exposure. Our findings suggest that greater susceptibility to novel parasites may represent a fitness consequence of natal dispersal. PMID:27853596

  13. Daily Rhythm of Mutualistic Pollinator Activity and Scent Emission in Ficus septica: Ecological Differentiation between Co-Occurring Pollinators and Potential Consequences for Chemical Communication and Facilitation of Host Speciation

    PubMed Central

    Conchou, Lucie; Cabioch, Léa; Rodriguez, Lillian J. V.; Kjellberg, Finn

    2014-01-01

    The mutualistic interaction between Ficus and their pollinating agaonid wasps constitutes an extreme example of plant-insect co-diversification. Most Ficus species are locally associated with a single specific agaonid wasp species. Specificity is ensured by each fig species emitting a distinctive attractive scent. However, cases of widespread coexistence of two agaonid wasp species on the same Ficus species are documented. Here we document the coexistence of two agaonid wasp species in Ficus septica: one yellow-colored and one black-colored. Our results suggest that their coexistence is facilitated by divergent ecological traits. The black species is longer-lived (a few more hours) and is hence active until later in the afternoon. Some traits of the yellow species must compensate for this advantage for their coexistence to be stable. In addition, we show that the composition of the scent emitted by receptive figs changes between sunrise and noon. The two species may therefore be exposed to somewhat different ranges of receptive fig scent composition and may consequently diverge in the way they perceive and/or respond to scents. Whether such situations may lead to host plant speciation is an open question. PMID:25105796

  14. Genomic islands of divergence are not affected by geography of speciation in sunflowers.

    PubMed

    Renaut, S; Grassa, C J; Yeaman, S; Moyers, B T; Lai, Z; Kane, N C; Bowers, J E; Burke, J M; Rieseberg, L H

    2013-01-01

    Genomic studies of speciation often report the presence of highly differentiated genomic regions interspersed within a milieu of weakly diverged loci. The formation of these speciation islands is generally attributed to reduced inter-population gene flow near loci under divergent selection, but few studies have critically evaluated this hypothesis. Here, we report on transcriptome scans among four recently diverged pairs of sunflower (Helianthus) species that vary in the geographical context of speciation. We find that genetic divergence is lower in sympatric and parapatric comparisons, consistent with a role for gene flow in eroding neutral differences. However, genomic islands of divergence are numerous and small in all comparisons, and contrary to expectations, island number and size are not significantly affected by levels of interspecific gene flow. Rather, island formation is strongly associated with reduced recombination rates. Overall, our results indicate that the functional architecture of genomes plays a larger role in shaping genomic divergence than does the geography of speciation.

  15. Incipient speciation through niche expansion: an example from the Arctic charr in a subarctic lake

    PubMed Central

    Knudsen, Rune; Klemetsen, Anders; Amundsen, Per-Arne; Hermansen, Bjørn

    2006-01-01

    Two reproductive isolated morphs of Arctic charr (Salvelinus alpinus), termed profundal and littoral charr according to their different spawning habitats, co-occur in the postglacial lake Fjellfrøsvatn in North Norway. All profundal charr live in deep water their entire life and have a maximum size of 14 cm, while the littoral charr grow to 40 cm. Some small and young littoral charr move to the profundal zone in an ontogenetic habitat shift in the ice-free season and the rest of the population remains in epilimnic waters. The two morphs had different diet niches in the profundal zone: the profundal charr ate typical soft-bottom prey (chironomid larvae, pea mussels and benthic copepods), while the young littoral charr mainly consumed crustacean zooplankton. In four other lakes without a profundal morph (i.e. monomorphic populations), young charr also performed ontogenetic habitat shifts to the profundal zone and fed on zooplankton. The profundal morph of Fjellfrøsvatn therefore utilize a food resource niche that neither the littoral morph nor comparable monomorphic populations exploit. This suggests that intraspecific resource competition has driven incipient ecological speciation of the profundal charr of Fjellfrøsvatn. The exploitation of the soft-bottom resources by the profundal charr supports earlier experimental findings that the profundal morph is genetically different in trophic behaviour and morphology. The sympatric ecological divergence within the profundal habitat is possible because unexploited food resources (soft-bottom profundal prey) are available. Apparently, this represents a case of incipient segregation by expansion to new resource types (niche invasion), and not by subdivision of one broad ancestral niche. PMID:16928630

  16. Reproductive isolation and introgression between sympatric Mimulus species.

    PubMed

    Kenney, Amanda M; Sweigart, Andrea L

    2016-06-01

    Incompletely isolated species provide an opportunity to investigate the genetic mechanisms and evolutionary forces that maintain distinct species in the face of ongoing gene flow. Here, we use field surveys and reduced representation sequencing to characterize the patterns of reproductive isolation, admixture and genomic divergence between populations of the outcrossing wildflower Mimulus guttatus and selfing M. nasutus. Focusing on a single site where these two species have come into secondary contact, we find that phenological isolation is strong, although incomplete, and is likely driven by divergence in response to photoperiod. In contrast to previous field studies, which have suggested that F1 -hybrid formation might be rare, we discover patterns of genomic variation consistent with ongoing introgression. Strikingly, admixed individuals vary continuously from highly admixed to nearly pure M. guttatus, demonstrating ongoing hybridization and asymmetric introgression from M. nasutus into M. guttatus. Patterns of admixture and divergence across the genome show that levels of introgression are more variable than expected by chance. Some genomic regions show a reduced introgression, including one region that overlaps a critical photoperiod QTL, whereas other regions show elevated levels of interspecific gene flow. In addition, we observe a genome-wide negative relationship between absolute divergence and the local recombination rate, potentially indicating natural selection against M. nasutus ancestry in M. guttatus genetic backgrounds. Together, our results suggest that Mimulus speciation is both ongoing and dynamic and that a combination of divergence in phenology and mating system, as well as selection against interspecific alleles, likely maintains these sympatric species. © 2016 John Wiley & Sons Ltd.

  17. Speciation and ecological success in dimly lit waters: horizontal gene transfer in a green sulfur bacteria bloom unveiled by metagenomic assembly.

    PubMed

    Llorens-Marès, Tomàs; Liu, Zhenfeng; Allen, Lisa Zeigler; Rusch, Douglas B; Craig, Matthew T; Dupont, Chris L; Bryant, Donald A; Casamayor, Emilio O

    2017-01-01

    A natural planktonic bloom of a brown-pigmented photosynthetic green sulfur bacteria (GSB) from the disphotic zone of karstic Lake Banyoles (NE Spain) was studied as a natural enrichment culture from which a nearly complete genome was obtained after metagenomic assembly. We showed in situ a case where horizontal gene transfer (HGT) explained the ecological success of a natural population unveiling ecosystem-specific adaptations. The uncultured brown-pigmented GSB was 99.7% identical in the 16S rRNA gene sequence to its green-pigmented cultured counterpart Chlorobium luteolum DSM 273(T). Several differences were detected for ferrous iron acquisition potential, ATP synthesis and gas vesicle formation, although the most striking trait was related to pigment biosynthesis strategy. Chl. luteolum DSM 273(T) synthesizes bacteriochlorophyll (BChl) c, whereas Chl. luteolum CIII incorporated by HGT a 18-kbp cluster with the genes needed for BChl e and specific carotenoids biosynthesis that provided ecophysiological advantages to successfully colonize the dimly lit waters. We also genomically characterized what we believe to be the first described GSB phage, which based on the metagenomic coverage was likely in an active state of lytic infection. Overall, we observed spread HGT and we unveiled clear evidence for virus-mediated HGT in a natural population of photosynthetic GSB.

  18. High inbreeding, limited recombination and divergent evolutionary patterns between two sympatric morel species in China.

    PubMed

    Du, Xi-Hui; Zhao, Qi; Xu, Jianping; Yang, Zhu L

    2016-03-01

    As highly prized, popular mushrooms, morels are widely distributed in the northern hemisphere, with China as a modern centre of speciation and diversity. Overharvesting of morels has caused concern over how to effectively preserve their biological and genetic diversity. However, little is known about their population biology and life cycle. In this study, we selected two sympatric phylogenetic species, Mel-13 (124 collections from 11 geographical locations) and Morchella eohespera (156 collections from 14 geographical locations), using fragments of 4 DNA sequences, to analyse their genetic structure. Our results indicated significant differentiation among geographic locations in both species, whereas no obvious correlation between genetic and geographic distance was identified in either species. M. eohespera exhibited a predominantly clonal population structure with limited recombination detected in only 1 of the 14 geographic locations. In contrast, relatively frequent recombination was identified in 6 of the 11 geographic locations of Mel-13. Our analysis indicated that the sympatric species Mel-13 and M. eohespera might have divergent evolutionary patterns, with the former showing signatures of recent population expansion and the latter being relatively stable. Interestingly, we found no heterozygosity but strong evidence for genealogical incongruence, indicating a high level of inbreeding and hybridisation among morel species.

  19. High inbreeding, limited recombination and divergent evolutionary patterns between two sympatric morel species in China

    PubMed Central

    Du, Xi-Hui; Zhao, Qi; Xu, Jianping; Yang, Zhu L.

    2016-01-01

    As highly prized, popular mushrooms, morels are widely distributed in the northern hemisphere, with China as a modern centre of speciation and diversity. Overharvesting of morels has caused concern over how to effectively preserve their biological and genetic diversity. However, little is known about their population biology and life cycle. In this study, we selected two sympatric phylogenetic species, Mel-13 (124 collections from 11 geographical locations) and Morchella eohespera (156 collections from 14 geographical locations), using fragments of 4 DNA sequences, to analyse their genetic structure. Our results indicated significant differentiation among geographic locations in both species, whereas no obvious correlation between genetic and geographic distance was identified in either species. M. eohespera exhibited a predominantly clonal population structure with limited recombination detected in only 1 of the 14 geographic locations. In contrast, relatively frequent recombination was identified in 6 of the 11 geographic locations of Mel-13. Our analysis indicated that the sympatric species Mel-13 and M. eohespera might have divergent evolutionary patterns, with the former showing signatures of recent population expansion and the latter being relatively stable. Interestingly, we found no heterozygosity but strong evidence for genealogical incongruence, indicating a high level of inbreeding and hybridisation among morel species. PMID:26928176

  20. Female preference for sympatric vs. allopatric male throat color morphs in the mesquite lizard (Sceloporus grammicus) species complex.

    PubMed

    Bastiaans, Elizabeth; Bastiaans, Mary Jane; Morinaga, Gen; Castañeda Gaytán, José Gamaliel; Marshall, Jonathon C; Bane, Brendan; de la Cruz, Fausto Méndez; Sinervo, Barry

    2014-01-01

    Color polymorphic sexual signals are often associated with alternative reproductive behaviors within populations, and the number, frequency, or type of morphs present often vary among populations. When these differences lead to assortative mating by population, the study of such polymorphic taxa may shed light on speciation mechanisms. We studied two populations of a lizard with polymorphic throat color, an important sexual signal. Males in one population exhibit orange, yellow, or blue throats; whereas males in the other exhibit orange, yellow, or white throats. We assessed female behavior when choosing between allopatric and sympatric males. We asked whether females discriminated more when the allopatric male was of an unfamiliar morph than when the allopatric male was similar in coloration to the sympatric male. We found that female rejection of allopatric males relative to sympatric males was more pronounced when males in a pair were more different in throat color. Our findings may help illuminate how behavioral responses to color morph differences between populations with polymorphic sexual signals contribute to reproductive isolation.

  1. Female Preference for Sympatric vs. Allopatric Male Throat Color Morphs in the Mesquite Lizard (Sceloporus grammicus) Species Complex

    PubMed Central

    Bastiaans, Elizabeth; Bastiaans, Mary Jane; Morinaga, Gen; Castañeda Gaytán, José Gamaliel; Marshall, Jonathon C.; Bane, Brendan; de la Cruz, Fausto Méndez; Sinervo, Barry

    2014-01-01

    Color polymorphic sexual signals are often associated with alternative reproductive behaviors within populations, and the number, frequency, or type of morphs present often vary among populations. When these differences lead to assortative mating by population, the study of such polymorphic taxa may shed light on speciation mechanisms. We studied two populations of a lizard with polymorphic throat color, an important sexual signal. Males in one population exhibit orange, yellow, or blue throats; whereas males in the other exhibit orange, yellow, or white throats. We assessed female behavior when choosing between allopatric and sympatric males. We asked whether females discriminated more when the allopatric male was of an unfamiliar morph than when the allopatric male was similar in coloration to the sympatric male. We found that female rejection of allopatric males relative to sympatric males was more pronounced when males in a pair were more different in throat color. Our findings may help illuminate how behavioral responses to color morph differences between populations with polymorphic sexual signals contribute to reproductive isolation. PMID:24718297

  2. Divergent morphological and acoustic traits in sympatric communities of Asian barbets

    PubMed Central

    Tamma, Krishnapriya

    2016-01-01

    The opposing effects of environmental filtering and competitive interactions may influence community assembly and coexistence of related species. Competition, both in the domain of ecological resources, and in the sensory domain (for example, acoustic interference) may also result in sympatric species evolving divergent traits and niches. Delineating these scenarios within communities requires understanding trait distributions and phylogenetic structure within the community, as well as patterns of trait evolution. We report that sympatric assemblages of Asian barbets (frugivorous canopy birds) consist of a random phylogenetic sample of species, but are divergent in both morphological and acoustic traits. Additionally, we find that morphology is more divergent than expected under Brownian evolution, whereas vocal frequency evolution is close to the pattern expected under Brownian motion (i.e. a random walk). Together, these patterns are consistent with a role for competition or competitive exclusion in driving community assembly. Phylogenetic patterns of morphological divergence between related species suggest that these traits are key in species coexistence. Because vocal frequency and size are correlated in barbets, we therefore hypothesize that frequency differences between sympatric barbets are a by-product of their divergent morphologies. PMID:27853589

  3. Pollinator-mediated competition influences selection for flower-color displacement in sympatric monkeyflowers.

    PubMed

    Grossenbacher, Dena L; Stanton, Maureen L

    2014-11-01

    When coflowering plant species share pollinators, pollinator-mediated competition may favor divergent floral characters associated with pollinator attraction. One potential outcome of this process is that sympatric populations will display increased divergence in floral traits compared with allopatric populations. We developed a new system to study the pattern and process of character displacement. In the central Sierra Nevada of California, USA, Mimulus bicolor is a spring wildflower with two flower-color morphs, one of which resembles coflowering M. guttatus. We documented a fine-scale geographic pattern of character displacement in sympatric and allopatric patches and, using experimental arrays, measured seed set in M. bicolor color morphs in the presence versus absence of M. guttatus. In sympatric arrays yellow, guttatus-like M. bicolor morphs had lower relative fitness (0.35 ± 0.05) and reduced conspecific pollen deposition compared with the distinct alternative morph, whereas in allopatric arrays yellow, guttatus-like morphs were occasionally strongly favored. Pollinator-mediated competition with M. guttatus is consistent with ecological character displacement in M. bicolor and likely contributes to a geographic pattern of character displacement. © 2014 Botanical Society of America, Inc.

  4. Niche separation of sympatric macaques, Macaca assamensis and M. mulatta, in limestone habitats of Nonggang, China.

    PubMed

    Zhou, Qihai; Wei, Hua; Tang, Huaxing; Huang, Zhonghao; Krzton, Ali; Huang, Chengming

    2014-01-01

    Comparative studies of sympatric species are essential in understanding those species' behavioral and ecological adaptations as well as the mechanisms that can reduce resource competition enough to allow coexistence. We collected data on diet, activity budget and habitat use from two sympatric macaque species, the Assamese macaque (Macaca assamensis) and the rhesus macaque (M. mulatta), in a limestone seasonal rainforest of Nonggang Nature Reserve, southwestern Guangxi, China. Our results show that the two sympatric macaques differ in diet, activity budget, and habitat use: (1) out of the 131 plant species that were used by both macaque species as food over the year, only 15 plant species (11 %) were shared. Rhesus macaques used more plant species as major foods, and had higher dietary diversity and evenness indexes than Assamese macaques. (2) Assamese macaques fed predominantly on leaves, whereas rhesus macaques fed more selectively on fruits. The rhesus macaques' diet varied according to season, and was significantly correlated to season fluctuation in fruit availability. (3) Assamese macaques devoted more time to resting, and less time to feeding than rhesus macaques (4) Assamese macaques were present mostly on the cliff, and tended to stay on the ground, whereas rhesus macaques were present mostly on the hillside, and showed preference to lower and middle canopy. The observed differences in diet and habitat use between the two macaque species represent behavioral patterns enabling their coexistence.

  5. Sub-Decadal Resolution in Sediments of Late Miocene Lake Pannon Reveals Speciation of Cyprideis (Crustacea, Ostracoda)

    PubMed Central

    Gross, Martin; Piller, Werner E.

    2015-01-01

    Late Miocene "Lake Pannon" (~11.3 Ma) was a remnant of the Central Paratethyan Sea. Successive freshening and constantly changing environmental conditions, like oxygenation, nutrition and substrate led to a well-documented radiation in molluscs and ostracods. Among ostracods (small crustaceans), Cyprideis is one of the most common genera in "Lake Pannon", as well as in several other ancient lakes, showing numerous adaptations and speciations. Here, we present high-resolution data from an early transgression of "Lake Pannon" in the Eastern Styrian Basin (SE Austria). Mataschen clay pit is in the focus of geologic and paleontologic research since 20 years and its geologic and paleoecologic evolution is well-documented. We drilled five cores covering a ~2.3 m long section and completely sampled it in 5-mm thick intervals to reconstruct minute changes in the ostracod fauna over a transgression of a brackish water body. The dominant genus, Cyprideis, is represented by three species C. mataschensis, C. kapfensteinensis and C. ex gr. pannonica. Through morphometric analyses we highlight the variance of each taxon and suggest that there is no direct ecologic control on size or shape. Furthermore, we found a second, co-occurring morphotype of C. kapfensteinensis which is directly related to an elevation of salinities above 13 psu. The presence of two intermediate specimens between the two morphotypes in the sample directly below the first appearance of C. kapfensteinensis B leads us to the conclusion that we are facing a speciation event leading to four sympatric species of Cyprideis. PMID:25902063

  6. Population genomic signatures of divergent adaptation, gene flow and hybrid speciation in the rapid radiation of Lake Victoria cichlid fishes.

    PubMed

    Keller, I; Wagner, C E; Greuter, L; Mwaiko, S; Selz, O M; Sivasundar, A; Wittwer, S; Seehausen, O

    2013-06-01

    Adaptive radiations are an important source of biodiversity and are often characterized by many speciation events in very short succession. It has been proposed that the high speciation rates in these radiations may be fuelled by novel genetic combinations produced in episodes of hybridization among the young species. The role of such hybridization events in the evolutionary history of a group can be investigated by comparing the genealogical relationships inferred from different subsets of loci, but such studies have thus far often been hampered by shallow genetic divergences, especially in young adaptive radiations, and the lack of genome-scale molecular data. Here, we use a genome-wide sampling of SNPs identified within restriction site-associated DNA (RAD) tags to investigate the genomic consistency of patterns of shared ancestry and adaptive divergence among five sympatric cichlid species of two genera, Pundamilia and Mbipia, which form part of the massive adaptive radiation of cichlids in the East African Lake Victoria. Species pairs differ along several axes: male nuptial colouration, feeding ecology, depth distribution, as well as the morphological traits that distinguish the two genera and more subtle morphological differences. Using outlier scan approaches, we identify signals of divergent selection between all species pairs with a number of loci showing parallel patterns in replicated contrasts either between genera or between male colour types. We then create SNP subsets that we expect to be characterized to different extents by selection history and neutral processes and describe phylogenetic and population genetic patterns across these subsets. These analyses reveal very different evolutionary histories for different regions of the genome. To explain these results, we propose at least two intergeneric hybridization events (between Mbipia spp. and Pundamilia spp.) in the evolutionary history of these five species that would have lead to the evolution

  7. Speciation of Iberian diving beetles in Pleistocene refugia (Coleoptera, Dytiscidae).

    PubMed

    Ribera, Ignacio; Vogler, Alfried P

    2004-01-01

    The Mediterranean basin is an area of high diversity and endemicity, but the age and origin of its fauna are still largely unknown. Here we use species-level phylogenies based on approximately 1300 base pairs of the genes 16S rRNA and cytochrome oxidase I to establish the relationships of 27 of the 34 endemic Iberian species of diving beetles in the family Dytiscidae, and to investigate their level of divergence. Using a molecular clock approach, 18-19 of these species were estimated to be of Pleistocene origin, with four to six of them from the Late Pleistocene ( approximately 100 000 years). A second, lower speciation frequency peak was assigned to Late Miocene or Early Pliocene. Analysis of the distributional ranges showed that endemic species placed in the tip nodes of the trees are significantly more likely to be allopatric with their sisters than endemic species at lower node levels. Allopatric sister species are also significantly younger than sympatric clades, in agreement with an allopatric mode of speciation and limited subsequent range movement. These results strongly suggest that for some taxa Iberian populations were isolated during the Pleistocene long enough to speciate, and apparently did not expand their ranges to recolonize areas north of the Pyrenees. This is in contradiction to observations from fossil beetles in areas further north, which document large range movements associated with the Pleistocene glacial cycles hypothesized to suppress population isolation and allopatric speciation.

  8. Speciation without Pre-Defined Fitness Functions.

    PubMed

    Gras, Robin; Golestani, Abbas; Hendry, Andrew P; Cristescu, Melania E

    2015-01-01

    The forces promoting and constraining speciation are often studied in theoretical models because the process is hard to observe, replicate, and manipulate in real organisms. Most models analyzed to date include pre-defined functions influencing fitness, leaving open the question of how speciation might proceed without these built-in determinants. To consider the process of speciation without pre-defined functions, we employ the individual-based ecosystem simulation platform EcoSim. The environment is initially uniform across space, and an evolving behavioural model then determines how prey consume resources and how predators consume prey. Simulations including natural selection (i.e., an evolving behavioural model that influences survival and reproduction) frequently led to strong and distinct phenotypic/genotypic clusters between which hybridization was low. This speciation was the result of divergence between spatially-localized clusters in the behavioural model, an emergent property of evolving ecological interactions. By contrast, simulations without natural selection (i.e., behavioural model turned off) but with spatial isolation (i.e., limited dispersal) produced weaker and overlapping clusters. Simulations without natural selection or spatial isolation (i.e., behaviour model turned off and high dispersal) did not generate clusters. These results confirm the role of natural selection in speciation by showing its importance even in the absence of pre-defined fitness functions.

  9. Geographic variation in animal colour polymorphisms and its role in speciation.

    PubMed

    McLean, Claire A; Stuart-Fox, Devi

    2014-11-01

    Polymorphic species, in which multiple variants coexist within a population, are often used as model systems in evolutionary biology. Recent research has been dominated by the hypothesis that polymorphism can be a precursor to speciation. To date, the majority of research regarding polymorphism and speciation has focused on whether polymorphism is maintained within a population or whether morphs within populations may diverge to form separate species (sympatric speciation); however, the geographical context of speciation in polymorphic systems is likely to be both diverse and complex. In this review, we draw attention to the geographic variation in morph composition and frequencies that characterises many, if not most polymorphic species. Recent theoretical and empirical developments suggest that such variation in the number, type and frequency of morphs present among populations can increase the probability of speciation. Thus, the geographical context of a polymorphism requires a greater research focus. Here, we review the prevalence, causes and evolutionary consequences of geographic variation in polymorphism in colour-polymorphic animal species. The prevalence and nature of geographic variation in polymorphism suggests that polymorphism may be a precursor to and facilitate speciation more commonly than appreciated previously. We argue that a better understanding of the processes generating geographic variation in polymorphism is vital to understanding how polymorphism can promote speciation.

  10. A comparative analysis of island floras challenges taxonomy-based biogeographical models of speciation.

    PubMed

    Igea, Javier; Bogarín, Diego; Papadopulos, Alexander S T; Savolainen, Vincent

    2015-02-01

    Speciation on islands, and particularly the divergence of species in situ, has long been debated. Here, we present one of the first, complete assessments of the geographic modes of speciation for the flora of a small oceanic island. Cocos Island (Costa Rica) is pristine; it is located 550 km off the Pacific coast of Central America. It harbors 189 native plant species, 33 of which are endemic. Using phylogenetic data from insular and mainland congeneric species, we show that all of the endemic species are derived from independent colonization events rather than in situ speciation. This is in sharp contrast to the results of a study carried out in a comparable system, Lord Howe Island (Australia), where as much as 8.2% of the plant species were the product of sympatric speciation. Differences in physiography and age between the islands may be responsible for the contrasting patterns of speciation observed. Importantly, comparing phylogenetic assessments of the modes of speciation with taxonomy-based measures shows that widely used island biogeography approaches overestimate rates of in situ speciation.

  11. Ecological separation in a polymorphic terrestrial salamander.

    PubMed

    Anthony, Carl D; Venesky, Matthew D; Hickerson, Cari-Ann M

    2008-07-01

    1. When studying speciation, researchers commonly examine reproductive isolation in recently diverged populations. Polymorphic species provide an opportunity to examine the role of reproductive isolation in populations that may be in the process of divergence. 2. We examined a polymorphic population of Plethodon cinereus (red-backed salamanders) for evidence of sympatric ecological separation by colour morphology. Recent studies have correlated temperature and climate with colour morphology in this species, but no studies have looked at differences in diet or mate choice between colour morphs. We used artificial cover objects to assess salamander diet, mating preference and surface activity over a 2-year period at a field site in north-eastern Ohio. 3. We detected differences in diet between two colour morphs, striped and unstriped. The diets of striped individuals were significantly more diverse and were made up of more profitable prey than the diets of unstriped salamanders. 4. Opposite sex pairs were made up of individuals of the same colour morph and striped males were found more often with larger females than were unstriped males. 5. We corroborate findings of earlier studies suggesting that the unstriped form is adapted to warmer conditions. Unstriped individuals were the first to withdraw from the forest floor as temperatures fell in the late fall. We found no evidence that the colour morphs responded differently to abiotic factors such as soil moisture and relative humidity, and responses to surface temperatures were also equivocal. 6. We conclude that the two colour morphs exhibit some degree of ecological separation and tend to mate assortatively, but are unlikely to be undergoing divergence given the observed frequency of intermorph pairings.

  12. The genetic basis for fruit odor discrimination in Rhagoletis flies and its significance for sympatric host shifts.

    PubMed

    Dambroski, Hattie R; Linn, Charles; Berlocher, Stewart H; Forbes, Andrew A; Roelofs, Wendell; Feder, Jeffrey L

    2005-09-01

    Rhagoletis pomonella (Diptera: Tephritidae) use volatile compounds emitted from the surface of ripening fruit as important chemosensory cues for recognizing and distinguishing among alternative host plants. Host choice is of evolutionary significance in Rhagoletis because these flies mate on or near the fruit of their respective host plants. Differences in host choice based on fruit odor discrimination therefore result in differential mate choice and prezygotic reproductive isolation, facilitating sympatric speciation in the absence of geographic isolation. We test for a genetic basis for host fruit odor discrimination through an analysis of F2 and backcross hybrids constructed between apple-, hawthorn-, and flowering dogwood-infesting Rhagoletis flies. We recovered a significant proportion (30-65%) of parental apple, hawthorn, and dogwood fly response phenotypes in F2 hybrids, despite the general failure of F1 hybrids to reach odor source spheres. Segregation patterns in F2 and backcross hybrids suggest that only a modest number of allelic differences at a few loci may underlie host fruit odor discrimination. In addition, a strong bias was observed for F2 and backcross flies to orient to the natal fruit blend of their maternal grandmother, implying the existence of cytonuclear gene interactions. We explore the implications of our findings for the evolutionary dynamics of sympatric host race formation and speciation.

  13. Evidence for inversion polymorphism related to sympatric host race formation in the apple maggot fly, Rhagoletis pomonella.

    PubMed Central

    Feder, Jeffrey L; Roethele, Joseph B; Filchak, Kenneth; Niedbalski, Julie; Romero-Severson, Jeanne

    2003-01-01

    Evidence suggests that the apple maggot, Rhagoletis pomonella (Diptera: Tephritidae) is undergoing sympatric speciation (i.e., divergence without geographic isolation) in the process of shifting and adapting to a new host plant. Prior to the introduction of cultivated apples (Malus pumila) in North America, R. pomonella infested the fruit of native hawthorns (Crataegus spp.). However, sometime in the mid-1800s the fly formed a sympatric race on apple. The recently derived apple-infesting race shows consistent allele frequency differences from the hawthorn host race for six allozyme loci mapping to three different chromosomes. Alleles at all six of these allozymes correlate with the timing of adult eclosion, an event dependent on the duration of the overwintering pupal diapause. This timing difference differentially adapts the univoltine fly races to an approximately 3- to 4-week difference in the peak fruiting times of apple and hawthorn trees, partially reproductively isolating the host races. Here, we report finding substantial gametic disequilibrium among allozyme and complementary DNA (cDNA) markers encompassing the three chromosomal regions differentiating apple and hawthorn flies. The regions of disequilibrium extend well beyond the previously characterized six allozyme loci, covering substantial portions of chromosomes 1, 2, and 3 (haploid n = 6 in R. pomonella). Moreover, significant recombination heterogeneity and variation in gene order were observed among single-pair crosses for each of the three genomic regions, implying the existence of inversion polymorphism. We therefore have evidence that genes affecting diapause traits involved in host race formation reside within large complexes of rearranged genes. We explore whether these genomic regions (inversions) constitute coadapted gene complexes and discuss the implications of our findings for sympatric speciation in Rhagoletis. PMID:12663534

  14. SPECIATE 4.2: speciation Database Development Documentation

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Among the many uses of speciation data, these source profiles are used to: (1) create speciated emissions inve...

  15. Evolutionary animation: How do molecular phylogenies compare to Mayr's reconstruction of speciation patterns in the sea?

    PubMed Central

    Palumbi, Stephen R.; Lessios, H. A.

    2005-01-01

    Ernst Mayr used the geography of closely related species in various stages of increasing divergence to “animate” the process of geographic, or allopatric, speciation. This approach was applied to a wide set of taxa, and a seminal paper by Mayr used it to explore speciation patterns in tropical sea urchins. Since then, taxonomic information in several of these genera has been augmented by detailed molecular phylogenies. We compare Mayr's animation with the phylogenies of eight sea urchin genera placed by Mayr into four speciation groups. True to Mayr's predictions, early-stage genera have on average lower species divergence and more polytypic species than genera in later stages. For six of these genera, we also have information about the evolution of the gamete recognition protein bindin, which is critical to reproductive isolation. These comparisons show that later-stage genera with many sympatric species tend to be those with rapid bindin evolution. By contrast, early-stage genera with few sympatric species are not necessarily earlier in the divergence process; they happen to be those with slow rates of bindin evolution. These results show that the rate of speciation in sea urchins does not only depend on the steady accumulation of genome divergence over time, but also on the rate of evolution of gamete recognition proteins. The animation method used by Mayr is generally supported by molecular phylogenies. However, the existence of multiple rates in the acquisition of reproductive isolation complicates placement of different genera in an evolutionary series. PMID:15851681

  16. Ode to Ehrlich and Raven or how herbivorous insects might drive plant speciation.

    PubMed

    Marquis, Robert J; Salazar, Diego; Baer, Christina; Reinhardt, Jason; Priest, Galen; Barnett, Kirk

    2016-11-01

    Fifty years ago, Ehrlich and Raven proposed that insect herbivores have driven much of plant speciation, particularly at tropical latitudes. There have been no explicit tests of their hypotheses. Indeed there were no proposed mechanisms either at the time or since by which herbivores might generate new plant species. Here we outline two main classes of mechanisms, prezygotic and postzygotic, with a number of scenarios in each by which herbivore-driven changes in host plant secondary chemistry might lead to new plant lineage production. The former apply mainly to a sympatric model of speciation while the latter apply to a parapatric or allopatric model. Our review suggests that the steps of each mechanism are known to occur individually in many different systems, but no scenario has been thoroughly investigated in any one system. Nevertheless, studies of Dalechampia and its herbivores and pollinators, and patterns of defense tradeoffs in trees on different soil types in the Peruvian Amazon provide evidence consistent with the original hypotheses of Ehrlich and Raven. For herbivores to drive sympatric speciation, our findings suggest that interactions with both their herbivores and their pollinators should be considered. In contrast, herbivores may drive speciation allopatrically without any influence by pollinators. Finally, there is evidence that these mechanisms are more likely to occur at low latitudes and thus more likely to produce new species in the tropics. The mechanisms we outline provide a predictive framework for further study of the general role that herbivores play in diversification of their host plants.

  17. Comparative phylogeography of sympatric sister species, Clevelandia ios and Eucyclogobius newberryi (Teleostei, Gobiidae), across the California Transition Zone.

    PubMed

    Dawson, M N; Louie, K D; Barlow, M; Jacobs, D K; Swift, C C

    2002-06-01

    It is paradigmatic in marine species that greater dispersal ability often, but not always, results in greater gene flow and less population structure. Some of the exceptions may be attributable to studies confounded by comparison of species with dissimilar evolutionary histories, i.e. co-occurring species that are not closely related or species that are closely related but allopatric. Investigation of sympatric sister species, in contrast, should allow differences in phylogeographic structure to be attributed reliably to recently derived differences in dispersal ability. Here, using mitochondrial DNA control region sequence, we first confirm that Clevelandia ios and Eucyclogobius newberryi are sympatric sister taxa, then demonstrate considerably shallower phylogeographic structure in C. ios than in E. newberryi. This shallower phylogeographic structure is consistent with the higher dispersal ability of C. ios, which most likely results from the interaction of habitat and life-history differences between the species. We suggest that the paradigm will be investigated most rigorously by similar studies of other sympatric sister species, appended by thorough ecological studies, and by extending this sister-taxon approach to comparative phylogeographic studies of monophyletic clades of sympatric species.

  18. Aggression and Food Resource Competition between Sympatric Hermit Crab Species

    PubMed Central

    Tran, Mark V.; O’Grady, Matthew; Colborn, Jeremiah; Van Ness, Kimberly; Hill, Richard W.

    2014-01-01

    The vertical zonation patterns of intertidal organisms have been topics of interest to marine ecologists for many years, with interspecific food competition being implicated as a contributing factor to intertidal community organization. In this study, we used behavioral bioassays to examine the potential roles that interspecific aggression and food competition have on the structuring of intertidal hermit crab assemblages. We studied two ecologically similar, sympatric hermit crab species, Clibanarius digueti [1] and Paguristes perrieri [2], which occupy adjacent zones within the intertidal region of the Gulf of California. During the search phase of foraging, C. digueti showed higher frequencies of aggressive behaviors than P. perrieri. In competition assays, C. digueti gained increased access to food resources compared to P. perrieri. The results suggest that food competition may play an important role in structuring intertidal hermit crab assemblages, and that the zonation patterns of Gulf of California hermit crab species may be the result of geographical displacement by the dominant food competitor (C. digueti). PMID:24632897

  19. Benthic food webs support the production of sympatric flatfish ...

    EPA Pesticide Factsheets

    Identifying nursery habitats is of paramount importance to define proper management and conservation strategies for flatfish species. Flatfish nursery studies usually report upon habitat occupation, but few attempted to quantify the importance of those habitats to larvae development. The reliance of two sympatric flatfish species larvae, the European flounder Platichthys flesus and the common sole Solea solea, on the estuarine food web (benthic vs. pelagic) was determined through carbon and nitrogen stable isotope analysis. The organic matter sources supporting the production of P. flesus and S. solea larvae biomass originates chiefly in the benthic food web. However, these species have significantly different ä13C and ä15N values which suggests that they prey on organisms that use a different mixture of sources or assimilate different components from similar OM pools (or both). Fisheries production is a highly-valued ecosystem service of coastal habitats globally. Developing ecological production functions to relate nursery habitat to this ecosystem service, however, has proved challenging owing to lack of techniques to effectively relate habitat use with the early life stages of fish. In this study, we demonstrate how stable isotopes can be used to evaluate nursery habitat-fish production linkages using stable isotope analysis of an estuarine food web. In particular, we show how to quantify the reliance of two commercially-important fish species to various h

  20. Speciation in the Derrida–Higgs model with finite genomes and spatial populations

    NASA Astrophysics Data System (ADS)

    de Aguiar, Marcus A. M.

    2017-02-01

    The speciation model proposed by Derrida and Higgs demonstrated that a sexually reproducing population can split into different species in the absence of natural selection or any type of geographic isolation, provided that mating is assortative and the number of genes involved in the process is infinite. Here we revisit this model and simulate it for finite genomes, focusing on the question of how many genes it actually takes to trigger neutral sympatric speciation. We find that, for typical parameters used in the original model, it takes the order of 105 genes. We compare the results with a similar spatially explicit model where about 100 genes suffice for speciation. We show that when the number of genes is small the species that emerge are strongly segregated in space. For a larger number of genes, on the other hand, the spatial structure of the population is less important and the species distribution overlap considerably.

  1. Metacommunity speciation models and their implications for diversification theory.

    PubMed

    Hubert, Nicolas; Calcagno, Vincent; Etienne, Rampal S; Mouquet, Nicolas

    2015-08-01

    The emergence of new frameworks combining evolutionary and ecological dynamics in communities opens new perspectives on the study of speciation. By acknowledging the relative contribution of local and regional dynamics in shaping the complexity of ecological communities, metacommunity theory sheds a new light on the mechanisms underlying the emergence of species. Three integrative frameworks have been proposed, involving neutral dynamics, niche theory, and life history trade-offs respectively. Here, we review these frameworks of metacommunity theory to emphasise that: (1) studies on speciation and community ecology have converged towards similar general principles by acknowledging the central role of dispersal in metacommunities dynamics, (2) considering the conditions of emergence and maintenance of new species in communities has given rise to new models of speciation embedded in the metacommunity theory, (3) studies of diversification have shifted from relating phylogenetic patterns to landscapes spatial and ecological characteristics towards integrative approaches that explicitly consider speciation in a mechanistic ecological framework. We highlight several challenges, in particular the need for a better integration of the eco-evolutionary consequences of dispersal and the need to increase our understanding on the relative rates of evolutionary and ecological changes in communities.

  2. Divergence is focused on few genomic regions early in speciation: incipient speciation of sunflower ecotypes.

    PubMed

    Andrew, Rose L; Rieseberg, Loren H

    2013-09-01

    Early in speciation, as populations undergo the transition from local adaptation to incipient species, is when a number of transient, but potentially important, processes appear to be most easily detected. These include signatures of selective sweeps that can point to asymmetry in selection between habitats, divergence hitchhiking, and associations of adaptive genes with environments. In a genomic comparison of ecotypes of the prairie sunflower, Helianthus petiolaris, occurring at Great Sand Dunes National Park and Preserve (Colorado), we found that selective sweeps were mainly restricted to the dune ecotype and that there was variation across the genome in whether proximity to the nondune population constrained or promoted divergence. The major regions of divergence were few and large between ecotypes, in contrast with an interspecific comparison between H. petiolaris and a sympatric congener, Helianthus annuus. In general, the large regions of divergence observed in the ecotypic comparison swamped locus-specific associations with environmental variables. In both comparisons, regions of high divergence occurred in portions of the genetic map with high marker density, probably reflecting regions of low recombination. The difference in genomic distributions of highly divergent regions between ecotypic and interspecific comparisons highlights the value of studies spanning the spectrum of speciation in related taxa.

  3. The genetics of mate preferences in hybrids between two young and sympatric Lake Victoria cichlid species.

    PubMed

    Svensson, Ola; Woodhouse, Katie; van Oosterhout, Cock; Smith, Alan; Turner, George F; Seehausen, Ole

    2017-02-22

    The genetic architecture of mate preferences is likely to affect significant evolutionary processes, including speciation and hybridization. Here, we investigate laboratory hybrids between a pair of sympatric Lake Victoria cichlid fish species that appear to have recently evolved from a hybrid population between similar predecessor species. The species demonstrate strong assortative mating in the laboratory, associated with divergent male breeding coloration (red dorsum versus blue). We show in a common garden experiment, using DNA-based paternity testing, that the strong female mate preferences among males of the two species are fully recovered in a large fraction of their F2 hybrid generation. Individual hybrid females often demonstrated consistent preferences in multiple mate choice trials (more than or equal to five) across a year or more. This result suggests that female mate preference is influenced by relatively few major genes or genomic regions. These preferences were not changed by experience of a successful spawning event with a male of the non-preferred species in a no-choice single-male trial. We found no evidence for imprinting in the F2 hybrids, although the F1 hybrid females may have been imprinted on their mothers. We discuss this nearly Mendelian inheritance of consistent innate mate preferences in the context of speciation theory.

  4. SPECIATE 4.3: Addendum to SPECIATE 4.2--Speciation database development documentation

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Among the many uses of speciation data, these source profiles are used to: (1) create speciated emissions inve...

  5. Patterns of plant speciation in the Cape floristic region.

    PubMed

    van der Niet, Timotheüs; Johnson, Steven D

    2009-04-01

    Plant species have accumulated in the Cape region of southern Africa to a much greater degree than in areas of equivalent size in the rest of the subcontinent. Although this could be a consequence simply of lower extinction rates in the Cape, most researchers have invoked high rates of ecological speciation, driven by unique aspects of the Cape environment, as the primary explanation for this richness. To assess these ideas, we analyzed the frequencies of ecological shifts among 188 sister species pairs obtained from molecular phylogenies of eight Cape clades. Ecological shifts were evident in 80% of sister species pairs, with general habitat, pollinator, and fire-survival strategy shifts being especially frequent. Contrary to an established idea that shifts in soil type are frequently associated with speciation of Cape taxa, these shifts were relatively rare, occurring in just 17% of species pairs. More cases of sister species divergence are accompanied solely by floral than by vegetative diversification, suggesting an important role for pollinator-driven speciation. In an analysis of two large orchid genera that have radiated in both the Cape and the rest of southern Africa, the frequency of ecological shifts (general habitat, soil type, altitude and flowering time), did not differ between sister species pairs in the Cape region and those outside it. Despite suggestions that Cape plants tend to have small range sizes and show fine-scale patterns of speciation, range size did not differ significantly between species in the Cape and those outside it. We conclude that ecological speciation is likely to have been important for radiation of the Cape flora, but there is no evidence as yet for special "Cape" patterns of ecological speciation.

  6. Population genomics of local adaptation versus speciation in coral reef fishes (Hypoplectrus spp, Serranidae).

    PubMed

    Picq, Sophie; McMillan, W Owen; Puebla, Oscar

    2016-04-01

    Are the population genomic patterns underlying local adaptation and the early stages of speciation similar? Addressing this question requires a system in which (i) local adaptation and the early stages of speciation can be clearly identified and distinguished, (ii) the amount of genetic divergence driven by the two processes is similar, and (iii) comparisons can be repeated both taxonomically (for local adaptation) and geographically (for speciation). Here, we report just such a situation in the hamlets (Hypoplectrus spp), brightly colored reef fishes from the wider Caribbean. Close to 100,000 SNPs genotyped in 126 individuals from three sympatric species sampled in three repeated populations provide genome-wide levels of divergence that are comparable among allopatric populations (F st estimate = 0.0042) and sympatric species (F st estimate = 0.0038). Population genetic, clustering, and phylogenetic analyses reveal very similar patterns for local adaptation and speciation, with a large fraction of the genome undifferentiated (F st estimate ≈ 0), a very small proportion of F st outlier loci (0.05-0.07%), and remarkably few repeated outliers (1-3). Nevertheless, different loci appear to be involved in the two processes in Hypoplectrus, with only 7% of the most differentiated SNPs and outliers shared between populations and species comparisons. In particular, a tropomyosin (Tpm4) and a previously identified hox (HoxCa) locus emerge as candidate loci (repeated outliers) for local adaptation and speciation, respectively. We conclude that marine populations may be locally adapted notwithstanding shallow levels of genetic divergence, and that from a population genomic perspective, this process does not appear to differ fundamentally from the early stages of speciation.

  7. Selenometabolomics explored by speciation.

    PubMed

    Ogra, Yasumitsu; Anan, Yasumi

    2012-01-01

    Selenium (Se) belongs to the same group as sulfur in the periodic table but possesses certain chemical properties characteristic of a metal. It is an essential element in animals but becomes severely toxic when the amount ingested exceeds the required level. On the other hand, Se is not essential in plants although some plants are Se hyperaccumulators. Se changes into several chemical forms when metabolized. Thus, the identification of selenometabolites would enable us to formulate a metabolic chart of Se. Recently, speciation analysis by hyphenated techniques has contributed immensely to the study of selenometabolomes, i.e., the entirety of selenometabolites. Indeed, speciation has unveiled some unique selenometabolites in biological samples. The aim of this review is to present newly identified selenometabolites in animals and plants by speciation using hyphenated techniques and to delineate the perspectives of Se biology and toxicology from the viewpoint of speciation.

  8. Speciation reversal in European whitefish (Coregonus lavaretus (L.)) caused by competitor invasion.

    PubMed

    Bhat, Shripathi; Amundsen, Per-Arne; Knudsen, Rune; Gjelland, Karl Øystein; Fevolden, Svein-Erik; Bernatchez, Louis; Præbel, Kim

    2014-01-01

    Invasion of exotic species has caused the loss of biodiversity and imparts evolutionary and ecological changes in the introduced systems. In northern Fennoscandia, European whitefish (Coregonus lavaretus (L.)) is a highly polymorphic species displaying adaptive radiations into partially reproductively isolated and thus genetically differentiated sympatric morphs utilizing the planktivorous and benthivorous food niche in many lakes. In 1993, Lake Skrukkebukta was invaded by vendace (Coregonus albula (L.)) which is a zooplanktivorous specialist. The vendace displaced the densely rakered whitefish from its preferred pelagic niche to the benthic habitat harbouring the large sparsely rakered whitefish. In this study, we investigate the potential influence of the vendace invasion on the breakdown of reproductive isolation between the two whitefish morphs. We inferred the genotypic and phenotypic differentiation between the two morphs collected at the arrival (1993) and 15 years after (2008) the vendace invasion using 16 microsatellite loci and gill raker numbers, the most distinctive adaptive phenotypic trait between them. The comparison of gill raker number distributions revealed two modes growing closer over 15 years following the invasion. Bayesian analyses of genotypes revealed that the two genetically distinct whitefish morphs that existed in 1993 had collapsed into a single population in 2008. The decline in association between the gill raker numbers and admixture values over 15 years corroborates the findings from the Bayesian analysis. Our study thus suggests an apparent decrease of reproductive isolation in a morph-pair of European whitefish within 15 years (≃ 3 generations) following the invasion of a superior trophic competitor (vendace) in a subarctic lake, reflecting a situation of "speciation in reverse".

  9. Speciation Reversal in European Whitefish (Coregonus lavaretus (L.)) Caused by Competitor Invasion

    PubMed Central

    Bhat, Shripathi; Amundsen, Per-Arne; Knudsen, Rune; Gjelland, Karl Øystein; Fevolden, Svein-Erik; Bernatchez, Louis; Præbel, Kim

    2014-01-01

    Invasion of exotic species has caused the loss of biodiversity and imparts evolutionary and ecological changes in the introduced systems. In northern Fennoscandia, European whitefish (Coregonus lavaretus (L.)) is a highly polymorphic species displaying adaptive radiations into partially reproductively isolated and thus genetically differentiated sympatric morphs utilizing the planktivorous and benthivorous food niche in many lakes. In 1993, Lake Skrukkebukta was invaded by vendace (Coregonus albula (L.)) which is a zooplanktivorous specialist. The vendace displaced the densely rakered whitefish from its preferred pelagic niche to the benthic habitat harbouring the large sparsely rakered whitefish. In this study, we investigate the potential influence of the vendace invasion on the breakdown of reproductive isolation between the two whitefish morphs. We inferred the genotypic and phenotypic differentiation between the two morphs collected at the arrival (1993) and 15 years after (2008) the vendace invasion using 16 microsatellite loci and gill raker numbers, the most distinctive adaptive phenotypic trait between them. The comparison of gill raker number distributions revealed two modes growing closer over 15 years following the invasion. Bayesian analyses of genotypes revealed that the two genetically distinct whitefish morphs that existed in 1993 had collapsed into a single population in 2008. The decline in association between the gill raker numbers and admixture values over 15 years corroborates the findings from the Bayesian analysis. Our study thus suggests an apparent decrease of reproductive isolation in a morph-pair of European whitefish within 15 years (≃ 3 generations) following the invasion of a superior trophic competitor (vendace) in a subarctic lake, reflecting a situation of “speciation in reverse”. PMID:24626131

  10. Killer whale call frequency is similar across the oceans, but varies across sympatric ecotypes.

    PubMed

    Filatova, Olga A; Miller, Patrick J O; Yurk, Harald; Samarra, Filipa I P; Hoyt, Erich; Ford, John K B; Matkin, Craig O; Barrett-Lennard, Lance G

    2015-07-01

    Killer whale populations may differ in genetics, morphology, ecology, and behavior. In the North Pacific, two sympatric populations ("resident" and "transient") specialize on different prey (fish and marine mammals) and retain reproductive isolation. In the eastern North Atlantic, whales from the same populations have been observed feeding on both fish and marine mammals. Fish-eating North Pacific "residents" are more genetically related to eastern North Atlantic killer whales than to sympatric mammal-eating "transients." In this paper, a comparison of frequency variables in killer whale calls recorded from four North Pacific resident, two North Pacific transient, and two eastern North Atlantic populations is reported to assess which factors drive the large-scale changes in call structure. Both low-frequency and high-frequency components of North Pacific transient killer whale calls have significantly lower frequencies than those of the North Pacific resident and North Atlantic populations. The difference in frequencies could be related to ecological specialization or to the phylogenetic history of these populations. North Pacific transient killer whales may have genetically inherited predisposition toward lower frequencies that may shape their learned repertoires.

  11. Sympatric inhibition and niche differentiation suggest alternative coevolutionary trajectories among Streptomycetes.

    PubMed

    Kinkel, Linda L; Schlatter, Daniel C; Xiao, Kun; Baines, Anita D

    2014-02-01

    Soil bacteria produce a diverse array of antibiotics, yet our understanding of the specific roles of antibiotics in the ecological and evolutionary dynamics of microbial interactions in natural habitats remains limited. Here, we show a significant role for antibiotics in mediating antagonistic interactions and nutrient competition among locally coexisting Streptomycete populations from soil. We found that antibiotic inhibition is significantly more intense among sympatric than allopatric Streptomycete populations, indicating local selection for inhibitory phenotypes. For sympatric but not allopatric populations, antibiotic inhibition is significantly positively correlated with niche overlap, indicating that inhibition is targeted toward bacteria that pose the greatest competitive threat. Our results support the hypothesis that antibiotics serve as weapons in mediating local microbial interactions in soil and suggest that coevolutionary niche displacement may reduce the likelihood of an antibiotic arms race. Further insight into the diverse roles of antibiotics in microbial ecology and evolution has significant implications for understanding the persistence of antibiotic inhibitory and resistance phenotypes in environmental microbes, optimizing antibiotic drug discovery and developing strategies for managing microbial coevolutionary dynamics to enhance inhibitory phenotypes.

  12. The coexistence of seven sympatric fulvettas in Ailao Mountains, Ejia Town, Yunnan Province

    PubMed Central

    XIA, Ji; WU, Fei; HU, Wan-Zhao; FANG, Jian-Ling; YANG, Xiao-Jun

    2015-01-01

    The coexistence of ecologically similar species sharing sympatric areas is a central issue of community ecology. Niche differentiation is required at least in one dimension to avoid competitive exclusion. From 2012-2014, by adopting the methods of mist-nets and point counts to evaluate spatial niche partitioning and morphological differentiations, we explored the coexistence mechanisms of seven sympatric fulvettas in Ailao Mountains, Ejia town, Yunnan Province, China. The microhabitats of these seven fulvettas were significantly different in elevation, roost site height and vegetation coverage, indicating a spatial niche segregation in different levels. Approximately, 90.30% of the samples were correctly classified by linear discriminant analysis (LDA) with correct rates at 91.20%-100%, except the White-browed fulvetta (Alcippe vinipectus) (65.4%) and the Streak-throated fulvetta (A. cinereiceps) (74.6%). The seven fulvettas were classified into four guilds based on their specific morphological characters, suggesting that the species in each guild use their unique feeding ways to realize resource partitioning in the overlapped areas. These finding indicate that through multi-dimensional spatial niche segregation and divergence in resource utilizing, the inter-specific competition among these seven fulvettas is minimized, whereas, coexistence is promoted. PMID:25730457

  13. Sediment ingestion of two sympatric shorebird species

    USGS Publications Warehouse

    Hui, C.A.; Beyer, W.N.

    1998-01-01

    Black-bellied Plovers (Pluvialis squatarola) have short bills and primarily peck while foraging whereas Willets (Catoptrophorus semipalmatus) have long bills and primarily probe with bills open in sediments. Intestinal digesta were collected from these species at sympatric overwintering sites in southern California near San Diego to relate sediment ingestion to bill length and feeding behavior. Plover digesta contained an estimated 29% sediment, and Willet digesta an estimated 3% sediment. Techniques based on acid insoluble ash and on the elemental markers of Al, Fe, and Ti in digesta provided similar results. High Ca concentrations in Willet digesta and our observations suggested that the willets in our sample fed primarily on molluscs and crustaceans. Sediment ingestion may be species specific, not necessarily linked to bill length or probing behaviors, and may greatly affect a bird?s exposure to environmental contaminants in sediment.

  14. Sympatric predator detection alters cutaneous respiration in Lymnaea.

    PubMed

    Orr, Mike; Lukowiak, Ken

    2010-01-01

    The ability of an organism to detect a predator and then to take the appropriate vigilance actions is paramount for survival of the species. Lab-reared snails (>250 generations) maintain their ability to detect predators and alter both aerial and cutaneous respiration. However, only the scent of a sympatric predator altered aerial respiration in freshly collected 'wild' snails. Here we test the hypothesis that the detection of a sympatric predator but not an allopatric predator will alter cutaneous respiration in freshly collected 'wild' snails. We find that Alberta snails while altering their cutaneous respiration to the scent of a sympatric predator (tiger salamander) do not alter respiration to the scent of a crayfish (an allopatric predator). In Dutch snails there is a greater alteration to the scent of crayfish (sympatric predator) than to an allopatric predator (tiger salamander).

  15. Male competition fitness landscapes predict both forward and reverse speciation.

    PubMed

    Keagy, Jason; Lettieri, Liliana; Boughman, Janette W

    2016-01-01

    Speciation is facilitated when selection generates a rugged fitness landscape such that populations occupy different peaks separated by valleys. Competition for food resources is a strong ecological force that can generate such divergent selection. However, it is unclear whether intrasexual competition over resources that provide mating opportunities can generate rugged fitness landscapes that foster speciation. Here we use highly variable male F2 hybrids of benthic and limnetic threespine sticklebacks, Gasterosteus aculeatus Linnaeus, 1758, to quantify the male competition fitness landscape. We find that disruptive sexual selection generates two fitness peaks corresponding closely to the male phenotypes of the two parental species, favouring divergence. Most surprisingly, an additional region of high fitness favours novel hybrid phenotypes that correspond to those observed in a recent case of reverse speciation after anthropogenic disturbance. Our results reveal that sexual selection through male competition plays an integral role in both forward and reverse speciation.

  16. Determinants of the Sympatric Host-Pathogen Relationship in Tuberculosis.

    PubMed

    David, Susana; Mateus, A R A; Duarte, Elsa L; Albuquerque, José; Portugal, Clara; Sancho, Luísa; Lavinha, João; Gonçalves, Guilherme

    2015-01-01

    Major contributions from pathogen genome analysis and host genetics have equated the possibility of Mycobacterium tuberculosis co-evolution with its human host leading to more stable sympatric host-pathogen relationships. However, the attribution to either sympatric or allopatric categories depends on the resolution or grain of genotypic characterization. We explored the influence on the sympatric host-pathogen relationship of clinical (HIV infection and multidrug-resistant tuberculosis [MDRTB]) and demographic (gender and age) factors in regards to the genotypic grain by using spacer oligonucleotide typing (spoligotyping) for classification of M. tuberculosis strains within the Euro-American lineage. We analyzed a total of 547 tuberculosis (TB) cases, from six year consecutive sampling in a setting with high TB-HIV coinfection (32.0%). Of these, 62.0% were caused by major circulating pathogen genotypes. The sympatric relationship was defined according to spoligotype in comparison to the international spoligotype database SpolDB4. While no significant association with Euro-American lineage was observed with any of the factors analyzed, increasing the resolution with spoligotyping evidenced a significant association of MDRTB with sympatric strains, regardless of the HIV status. Furthermore, distribution curves of the prevalence of sympatric and allopatric TB in relation to patients' age showed an accentuation of the relevance of the age of onset in the allopatric relationship, as reflected in the trimodal distribution. On the contrary, sympatric TB was characterized by the tendency towards a typical (standard) distribution curve. Our results suggest that within the Euro-American lineage a greater degree of genotyping fine-tuning is necessary in modeling the biological processes behind the host-pathogen interplay. Furthermore, prevalence distribution of sympatric TB to age was suggestive of host genetic determinisms driven by more common variants.

  17. Determinants of the Sympatric Host-Pathogen Relationship in Tuberculosis

    PubMed Central

    David, Susana; Mateus, A. R. A.; Duarte, Elsa L.; Albuquerque, José; Portugal, Clara; Sancho, Luísa; Lavinha, João; Gonçalves, Guilherme

    2015-01-01

    Major contributions from pathogen genome analysis and host genetics have equated the possibility of Mycobacterium tuberculosis co-evolution with its human host leading to more stable sympatric host–pathogen relationships. However, the attribution to either sympatric or allopatric categories depends on the resolution or grain of genotypic characterization. We explored the influence on the sympatric host-pathogen relationship of clinical (HIV infection and multidrug-resistant tuberculosis [MDRTB]) and demographic (gender and age) factors in regards to the genotypic grain by using spacer oligonucleotide typing (spoligotyping) for classification of M. tuberculosis strains within the Euro-American lineage. We analyzed a total of 547 tuberculosis (TB) cases, from six year consecutive sampling in a setting with high TB-HIV coinfection (32.0%). Of these, 62.0% were caused by major circulating pathogen genotypes. The sympatric relationship was defined according to spoligotype in comparison to the international spoligotype database SpolDB4. While no significant association with Euro-American lineage was observed with any of the factors analyzed, increasing the resolution with spoligotyping evidenced a significant association of MDRTB with sympatric strains, regardless of the HIV status. Furthermore, distribution curves of the prevalence of sympatric and allopatric TB in relation to patients’ age showed an accentuation of the relevance of the age of onset in the allopatric relationship, as reflected in the trimodal distribution. On the contrary, sympatric TB was characterized by the tendency towards a typical (standard) distribution curve. Our results suggest that within the Euro-American lineage a greater degree of genotyping fine-tuning is necessary in modeling the biological processes behind the host-pathogen interplay. Furthermore, prevalence distribution of sympatric TB to age was suggestive of host genetic determinisms driven by more common variants. PMID:26529092

  18. Mutation-order divergence by sexual selection: diversification of sexual signals in similar environments as a first step in speciation.

    PubMed

    Mendelson, Tamra C; Martin, Michael D; Flaxman, Samuel M

    2014-09-01

    The origin of species remains a central question, and recent research focuses on the role of ecological differences in promoting speciation. Ecological differences create opportunities for divergent selection (i.e. 'ecological' speciation), a Darwinian hypothesis that hardly requires justification. In contrast, 'mutation-order' speciation proposes that, instead of adapting to different environments, populations find different ways to adapt to similar environments, implying that speciation does not require ecological differences. This distinction is critical as it provides an alternative hypothesis to the prevailing view that ecological differences drive speciation. Speciation by sexual selection lies at the centre of debates about the importance of ecological differences in promoting speciation; here, we present verbal and mathematical models of mutation-order divergence by sexual selection. We develop three general cases and provide a two-locus population genetic model for each. Results indicate that alternative secondary sexual traits can fix in populations that initially experience similar natural and sexual selection and that divergent traits and preferences can remain stable in the face of low gene flow. This stable divergence can facilitate subsequent divergence that completes or reinforces speciation. We argue that a mutation-order process could explain widespread diversity in secondary sexual traits among closely related, allopatric species.

  19. Mitonuclear Ecology

    PubMed Central

    Hill, Geoffrey E.

    2015-01-01

    Eukaryotes were born of a chimeric union between two prokaryotes—the progenitors of the mitochondrial and nuclear genomes. Early in eukaryote evolution, most mitochondrial genes were lost or transferred to the nucleus, but a core set of genes that code exclusively for products associated with the electron transport system remained in the mitochondrion. The products of these mitochondrial genes work in intimate association with the products of nuclear genes to enable oxidative phosphorylation and core energy production. The need for coadaptation, the challenge of cotransmission, and the possibility of genomic conflict between mitochondrial and nuclear genes have profound consequences for the ecology and evolution of eukaryotic life. An emerging interdisciplinary field that I call “mitonuclear ecology” is reassessing core concepts in evolutionary ecology including sexual reproduction, two sexes, sexual selection, adaptation, and speciation in light of the interactions of mitochondrial and nuclear genomes. PMID:25931514

  20. Eutrophication causes speciation reversal in whitefish adaptive radiations.

    PubMed

    Vonlanthen, P; Bittner, D; Hudson, A G; Young, K A; Müller, R; Lundsgaard-Hansen, B; Roy, D; Di Piazza, S; Largiader, C R; Seehausen, O

    2012-02-15

    Species diversity can be lost through two different but potentially interacting extinction processes: demographic decline and speciation reversal through introgressive hybridization. To investigate the relative contribution of these processes, we analysed historical and contemporary data of replicate whitefish radiations from 17 pre-alpine European lakes and reconstructed changes in genetic species differentiation through time using historical samples. Here we provide evidence that species diversity evolved in response to ecological opportunity, and that eutrophication, by diminishing this opportunity, has driven extinctions through speciation reversal and demographic decline. Across the radiations, the magnitude of eutrophication explains the pattern of species loss and levels of genetic and functional distinctiveness among remaining species. We argue that extinction by speciation reversal may be more widespread than currently appreciated. Preventing such extinctions will require that conservation efforts not only target existing species but identify and protect the ecological and evolutionary processes that generate and maintain species.

  1. Genome-wide evidence for speciation with gene flow in Heliconius butterflies.

    PubMed

    Martin, Simon H; Dasmahapatra, Kanchon K; Nadeau, Nicola J; Salazar, Camilo; Walters, James R; Simpson, Fraser; Blaxter, Mark; Manica, Andrea; Mallet, James; Jiggins, Chris D

    2013-11-01

    Most speciation events probably occur gradually, without complete and immediate reproductive isolation, but the full extent of gene flow between diverging species has rarely been characterized on a genome-wide scale. Documenting the extent and timing of admixture between diverging species can clarify the role of geographic isolation in speciation. Here we use new methodology to quantify admixture at different stages of divergence in Heliconius butterflies, based on whole-genome sequences of 31 individuals. Comparisons between sympatric and allopatric populations of H. melpomene, H. cydno, and H. timareta revealed a genome-wide trend of increased shared variation in sympatry, indicative of pervasive interspecific gene flow. Up to 40% of 100-kb genomic windows clustered by geography rather than by species, demonstrating that a very substantial fraction of the genome has been shared between sympatric species. Analyses of genetic variation shared over different time intervals suggested that admixture between these species has continued since early in speciation. Alleles shared between species during recent time intervals displayed higher levels of linkage disequilibrium than those shared over longer time intervals, suggesting that this admixture took place at multiple points during divergence and is probably ongoing. The signal of admixture was significantly reduced around loci controlling divergent wing patterns, as well as throughout the Z chromosome, consistent with strong selection for Müllerian mimicry and with known Z-linked hybrid incompatibility. Overall these results show that species divergence can occur in the face of persistent and genome-wide admixture over long periods of time.

  2. Multiple speciation events in an arthropod with divergent evolution in sexual morphology.

    PubMed

    Sota, Teiji; Tanabe, Tsutomu

    2010-03-07

    Sexual selection can facilitate divergent evolution of traits related to mating and consequently promote speciation. Theoretically, independent operation of sexual selection in different populations can lead to divergence of sexual traits among populations and result in allopatric speciation. Here, we show that divergent evolution in sexual morphology affecting mating compatibility (body size and genital morphologies) and speciation have occurred in a lineage of millipedes, the Parafontaria tonominea species complex. In this millipede group, male and female body and genital sizes exhibit marked, correlated divergence among populations, and the diverged morphologies result in mechanical reproductive isolation between sympatric species. The morphological divergence occurred among populations independently and without any correlation with climatic variables, although matching between sexes has been maintained, suggesting that morphological divergence was not a by-product of climatic adaptation. The diverged populations underwent restricted dispersal and secondary contact without hybridization. The extent of morphological difference between sympatric species is variable, as is diversity among allopatric populations; consequently, the species complex appears to contain many species. This millipede case suggests that sexual selection does contribute to species richness via morphological diversification when a lineage of organisms consists of highly divided populations owing to limited dispersal.

  3. Contrasting landscape epidemiology of two sympatric rabies virus strains.

    PubMed

    Barton, Heather D; Gregory, Andrew J; Davis, Rolan; Hanlon, Cathleen A; Wisely, Samantha M

    2010-07-01

    Viral strain evolution and disease emergence are influenced by anthropogenic change to the environment. We investigated viral characteristics, host ecology, and landscape features in the rabies-striped skunk disease system of the central Great Plains to determine how these factors interact to influence disease emergence. We amplified portions of the N and G genes of rabies viral RNA from 269 samples extracted from striped skunk brains throughout the distribution of two different rabies strains for which striped skunks were the reservoir. Because the distribution of these two strains overlapped on the landscape and were present in the same host population, we could evaluate how viral properties influenced epidemiological patterns in the area of sympatry. We found that South Central Skunk rabies (SCSK) exhibited intense purifying selection and high infectivity, which are both characteristics of an epizootic virus. Conversely, North Central Skunk rabies (NCSK) exhibited relaxed purifying selection and comparatively lower infectivity, suggesting the presence of an enzootic virus. The host population in the area of sympatry was highly admixed, and skunks among allopatric and sympatric areas had similar effective population sizes. Spatial analysis indicated that landscape features had minimal influence on NCSK movement across the landscape, but those same features were partial barriers to the spread of SCSK. We conclude that NCSK and SCSK have different epidemiological properties that interact differently with both host and landscape features to influence rabies spread in the central Great Plains. We suggest a holistic approach for future studies of emerging infectious diseases that includes studies of viral properties, host characteristics, and spatial features.

  4. A complex speciation-richness relationship in a simple neutral model.

    PubMed

    Desjardins-Proulx, Philippe; Gravel, Dominique

    2012-08-01

    Speciation is the "elephant in the room" of community ecology. As the ultimate source of biodiversity, its integration in ecology's theoretical corpus is necessary to understand community assembly. Yet, speciation is often completely ignored or stripped of its spatial dimension. Recent approaches based on network theory have allowed ecologists to effectively model complex landscapes. In this study, we use this framework to model allopatric and parapatric speciation in networks of communities. We focus on the relationship between speciation, richness, and the spatial structure of communities. We find a strong opposition between speciation and local richness, with speciation being more common in isolated communities and local richness being higher in more connected communities. Unlike previous models, we also find a transition to a positive relationship between speciation and local richness when dispersal is low and the number of communities is small. We use several measures of centrality to characterize the effect of network structure on diversity. The degree, the simplest measure of centrality, is the best predictor of local richness and speciation, although it loses some of its predictive power as connectivity grows. Our framework shows how a simple neutral model can be combined with network theory to reveal complex relationships between speciation, richness, and the spatial organization of populations.

  5. Evidence for gene flow between two sympatric mealybug species (Insecta; Coccoidea; Pseudococcidae).

    PubMed

    Kol-Maimon, Hofit; Ghanim, Murad; Franco, José Carlos; Mendel, Zvi

    2014-01-01

    Occurrence of inter-species hybrids in natural populations might be evidence of gene flow between species. In the present study we found evidence of gene flow between two sympatric, genetically related scale insect species--the citrus mealybug Planococcus citri (Risso) and the vine mealybug Planococcus ficus (Signoret). These species can be distinguished by morphological, behavioral, and molecular traits. We employed the sex pheromones of the two respective species to study their different patterns of male attraction. We also used nuclear ITS2 (internal transcribed spacer 2) and mitochondrial COI (Cytochrome c oxidase sub unit 1) DNA sequences to characterize populations of the two species, in order to demonstrate the outcome of a possible gene flow between feral populations of the two species. Our results showed attraction to P. ficus pheromones of all tested populations of P. citri males but not vice versa. Furthermore, ITS2 sequences revealed the presence of 'hybrid females' among P. citri populations but not among those of P. ficus. 'hybrid females' from P. citri populations identified as P. citri females according to COI sequences. We offer two hypotheses for these results. 1) The occurrence of phenotypic and genotypic traits of P. ficus in P. citri populations may be attributed to both ancient and contemporary gene flow between their populations; and 2) we cannot rule out that an ancient sympatric speciation by which P. ficus emerged from P. citri might have led to the present situation of shared traits between these species. In light of these findings we also discuss the origin of the studied species and the importance of the pherotype phenomenon as a tool with which to study genetic relationships between congener scale insects.

  6. Evidence for Gene Flow between Two Sympatric Mealybug Species (Insecta; Coccoidea; Pseudococcidae)

    PubMed Central

    Kol-Maimon, Hofit; Ghanim, Murad; Franco, José Carlos; Mendel, Zvi

    2014-01-01

    Occurrence of inter-species hybrids in natural populations might be evidence of gene flow between species. In the present study we found evidence of gene flow between two sympatric, genetically related scale insect species – the citrus mealybug Planococcus citri (Risso) and the vine mealybug Planococcus ficus (Signoret). These species can be distinguished by morphological, behavioral, and molecular traits. We employed the sex pheromones of the two respective species to study their different patterns of male attraction. We also used nuclear ITS2 (internal transcribed spacer 2) and mitochondrial COI (Cytochrome c oxidase sub unit 1) DNA sequences to characterize populations of the two species, in order to demonstrate the outcome of a possible gene flow between feral populations of the two species. Our results showed attraction to P. ficus pheromones of all tested populations of P. citri males but not vice versa. Furthermore, ITS2 sequences revealed the presence of ‘hybrid females’ among P. citri populations but not among those of P. ficus. ‘hybrid females’ from P. citri populations identified as P. citri females according to COI sequences. We offer two hypotheses for these results. 1) The occurrence of phenotypic and genotypic traits of P. ficus in P. citri populations may be attributed to both ancient and contemporary gene flow between their populations; and 2) we cannot rule out that an ancient sympatric speciation by which P. ficus emerged from P. citri might have led to the present situation of shared traits between these species. In light of these findings we also discuss the origin of the studied species and the importance of the pherotype phenomenon as a tool with which to study genetic relationships between congener scale insects. PMID:24523894

  7. Ecological character displacement in Plethodon: biomechanical differences found from a geometric morphometric study.

    PubMed

    Adams, D C; Rohlf, F J

    2000-04-11

    Ecological character displacement describes a pattern where morphological differences between sympatric species are enhanced through interspecific competition. Although widely considered a pervasive force in evolutionary ecology, few clear-cut examples have been documented. Here we report a case of ecological character displacement between two salamander species, Plethodon cinereus and Plethodon hoffmani. Morphology was quantified by using linear measurements and landmark-based geometric morphometric methods for specimens from allopatric and sympatric populations from two geographic transects in south-central Pennsylvania, and stomach contents were assayed to quantify food resource use. Morphological variation was also assessed in 13 additional allopatric populations. In both transects, we found significant morphological differentiation between sympatric populations that was associated with a reduction in prey consumption in sympatry and a segregation of prey according to prey size. No trophic morphological or resource use differences were found between allopatric populations, and comparisons of sympatric populations with randomly paired allopatric populations revealed that the observed sympatric morphological differentiation was greater than expected by chance. The major trophic anatomical differences between sympatric populations relates to functional and biomechanical differences in jaw closure: sympatric P. hoffmani have a faster closing jaw, whereas sympatric P. cinereus have a slower, stronger jaw. Because salamanders immobilize prey of different sizes in different ways, and because the observed sympatric biomechanical differences in jaw closure are associated with the differences in prey consumption, the observed character displacement has a functional ecological correlate, and we can link changes in form with changes in function in this apparent example of character displacement.

  8. Ecological character displacement in Plethodon: Biomechanical differences found from a geometric morphometric study

    PubMed Central

    Adams, Dean C.; Rohlf, F. James

    2000-01-01

    Ecological character displacement describes a pattern where morphological differences between sympatric species are enhanced through interspecific competition. Although widely considered a pervasive force in evolutionary ecology, few clear-cut examples have been documented. Here we report a case of ecological character displacement between two salamander species, Plethodon cinereus and Plethodon hoffmani. Morphology was quantified by using linear measurements and landmark-based geometric morphometric methods for specimens from allopatric and sympatric populations from two geographic transects in south-central Pennsylvania, and stomach contents were assayed to quantify food resource use. Morphological variation was also assessed in 13 additional allopatric populations. In both transects, we found significant morphological differentiation between sympatric populations that was associated with a reduction in prey consumption in sympatry and a segregation of prey according to prey size. No trophic morphological or resource use differences were found between allopatric populations, and comparisons of sympatric populations with randomly paired allopatric populations revealed that the observed sympatric morphological differentiation was greater than expected by chance. The major trophic anatomical differences between sympatric populations relates to functional and biomechanical differences in jaw closure: sympatric P. hoffmani have a faster closing jaw, whereas sympatric P. cinereus have a slower, stronger jaw. Because salamanders immobilize prey of different sizes in different ways, and because the observed sympatric biomechanical differences in jaw closure are associated with the differences in prey consumption, the observed character displacement has a functional ecological correlate, and we can link changes in form with changes in function in this apparent example of character displacement. PMID:10760280

  9. Speciation and bifurcations.

    PubMed

    Volkenstein, M V; Livshits, M A

    1989-01-01

    The interrelations of physics and biology are discussed. It is shown that Darwin can be considered as one of the founders of the important field of contemporary physics called physics of dissipative structures or synergetics. The theories of gradual and punctual evolution are presented. The contradiction between these theories can be solved on the basis of molecular theory of evolution and on the basis of the phenomenological physical treatment. The general physical properties of living systems, considered as open systems being far from equilibrium, are listed and simple non-linear mathematical models describing gradual and punctual speciation are suggested. The usual pictures which present these two kinds of speciation can possess physico-mathematical sense. Punctuated speciation means bifurcation, a kind of non-equilibrium phase transition.

  10. Cryptic diversity in a fig wasp community-morphologically differentiated species are sympatric but cryptic species are parapatric.

    PubMed

    Darwell, C T; Cook, J M

    2017-02-01

    A key debate in ecology centres on the relative importance of niche and neutral processes in determining patterns of community assembly with particular focus on whether ecologically similar species with similar functional traits are able to coexist. Meanwhile, molecular studies are increasingly revealing morphologically indistinguishable cryptic species with presumably similar ecological roles. Determining the geographic distribution of such cryptic species provides opportunities to contrast predictions of niche vs. neutral models. Discovery of sympatric cryptic species increases alpha diversity and supports neutral models, while documentation of allopatric/parapatric cryptic species increases beta diversity and supports niche models. We tested these predictions using morphological and molecular data, coupled with environmental niche modelling analyses, of a fig wasp community along its 2700-km latitudinal range. Molecular methods increased previous species diversity estimates from eight to eleven species, revealing morphologically cryptic species in each of the four wasp genera studied. Congeneric species pairs that were differentiated by a key morphological functional trait (ovipositor length) coexisted sympatrically over large areas. In contrast, morphologically similar species, with similar ovipositor lengths, typically showed parapatric ranges with very little overlap. Despite parapatric ranges, environmental niche models of cryptic congeneric pairs indicate large regions of potential sympatry, suggesting that competitive processes are important in determining the distributions of ecologically similar species. Niche processes appear to structure this insect community, and cryptic diversity may typically contribute mostly to beta rather than alpha diversity.

  11. Choice matters: incipient speciation in Gyrodactylus corydori (Monogenoidea: Gyrodactylidae).

    PubMed

    Bueno-Silva, Marlus; Boeger, Walter A; Pie, Marcio R

    2011-05-01

    We investigated how Gyrodactylus corydoriBueno-Silva and Boeger, 2009 exploits two sympatric host species, Corydoras paleatus (Jenyns, 1842) and Corydoras ehrhardti Steindachner, 1910. Specimens of G. corydori were collected from the Piraquara and Miringuava Rivers, State of Paraná, Brazil, between 2005 and 2006. A total of 167 parasites was measured from both host species. Nine morphometric features of the haptoral sclerites were measured and analyzed by discriminant analysis, cluster analysis and multivariate analysis of variance. A fragment of the mitochondrial cytochrome oxidase I gene (COI) (∼740 bp) and the rDNA internal transcribed spacers (ITS) (∼1200 bp) of G. corydori were sequenced. Bayesian and parsimony analyses of COI recognized two genetically structured clades of G. corydori, which corresponded closely with the two species of Corydoras. Twenty-eight haplotypes were detected (18 were exclusive to C. ehrhardti and seven were exclusive to C. paleatus). The same general pattern between parasites and host species was observed in the morphometric analyses. Nevertheless, poor correlation of genetic and morphometric variation strongly supports the plastic nature of the morphological variation of haptoral sclerites. The existence of two clades with limited gene flow would suggest that G. corydori already represents two cryptic species. However, the morphometric and molecular data showed that there is insufficient evidence to support two valid species. The low COI (0.1-6.2%) and ITS (0.09-3.5%) divergence within G. corydori suggest a recent separation of the lineages between distinct host species (less than 1 million years). As the hypothesis of secondary contact of the parasite demographic history was rejected, our results point to the possibility of sympatric incipient ongoing speciation of G. corydori to form distinct parasite lineages adapted to C. ehrhardti and C. paleatus. This may be a common event within the Gyrodactylidae, adding a yet

  12. Assortative mating between two sympatric closely-related specialists: inferred from molecular phylogenetic analysis and behavioral data.

    PubMed

    Xue, Huai-Jun; Li, Wen-Zhu; Yang, Xing-Ke

    2014-06-25

    Host plant shifting of phytophagous insects can lead to the formation of host associated differentiation and ultimately speciation. In some cases, host plant specificity alone acts as a nearly complete pre-mating isolating barrier among insect populations. We here test whether effective pre-mating isolation and host-independent behavioral isolation have evolved under the condition of extreme host specilization using two sympatric flea beetles with incomplete post-mating isolation under laboratory conditions. Phylogenetic analysis and coalescent simulation results showed that there is a limited interspecific gene flow, indicating effctive isolation between these species. Three types of mating tests in the absence of host plant cues showed that strong host-independent behavioral isolation has evolved between them. We conclude that almost perfect assortative mating between these two extreme host specialists results from a combination of reduced encounter rates due to differential host preference and strong sexual isolation.

  13. Assortative mating between two sympatric closely-related specialists: inferred from molecular phylogenetic analysis and behavioral data

    PubMed Central

    Xue, Huai-Jun; Li, Wen-Zhu; Yang, Xing-Ke

    2014-01-01

    Host plant shifting of phytophagous insects can lead to the formation of host associated differentiation and ultimately speciation. In some cases, host plant specificity alone acts as a nearly complete pre-mating isolating barrier among insect populations. We here test whether effective pre-mating isolation and host-independent behavioral isolation have evolved under the condition of extreme host specilization using two sympatric flea beetles with incomplete post-mating isolation under laboratory conditions. Phylogenetic analysis and coalescent simulation results showed that there is a limited interspecific gene flow, indicating effctive isolation between these species. Three types of mating tests in the absence of host plant cues showed that strong host-independent behavioral isolation has evolved between them. We conclude that almost perfect assortative mating between these two extreme host specialists results from a combination of reduced encounter rates due to differential host preference and strong sexual isolation. PMID:24961567

  14. Role of demographic stochasticity in a speciation model with sexual reproduction

    NASA Astrophysics Data System (ADS)

    Lafuerza, Luis F.; McKane, Alan J.

    2016-03-01

    Recent theoretical studies have shown that demographic stochasticity can greatly increase the tendency of asexually reproducing phenotypically diverse organisms to spontaneously evolve into localized clusters, suggesting a simple mechanism for sympatric speciation. Here we study the role of demographic stochasticity in a model of competing organisms subject to assortative mating. We find that in models with sexual reproduction, noise can also lead to the formation of phenotypic clusters in parameter ranges where deterministic models would lead to a homogeneous distribution. In some cases, noise can have a sizable effect, rendering the deterministic modeling insufficient to understand the phenotypic distribution.

  15. Role of demographic stochasticity in a speciation model with sexual reproduction.

    PubMed

    Lafuerza, Luis F; McKane, Alan J

    2016-03-01

    Recent theoretical studies have shown that demographic stochasticity can greatly increase the tendency of asexually reproducing phenotypically diverse organisms to spontaneously evolve into localized clusters, suggesting a simple mechanism for sympatric speciation. Here we study the role of demographic stochasticity in a model of competing organisms subject to assortative mating. We find that in models with sexual reproduction, noise can also lead to the formation of phenotypic clusters in parameter ranges where deterministic models would lead to a homogeneous distribution. In some cases, noise can have a sizable effect, rendering the deterministic modeling insufficient to understand the phenotypic distribution.

  16. The role of demographic stochasticity in a speciation model with sexual reproduction

    NASA Astrophysics Data System (ADS)

    Lafuerza, Luis F.; McKane, Alan J.

    2015-09-01

    Recent theoretical studies have shown that demographic stochasticity can greatly increase the tendency of asexually reproducing phenotypically diverse organisms to spontaneously evolve into localised clusters, suggesting a simple mechanism for sympatric speciation. Here we study the role of demographic stochasticity in a model of competing organisms subject to assortative mating. We find that in models with sexual reproduction, noise can also lead to the formation of phenotypic clusters in parameter ranges where deterministic models would lead to a homogeneous distribution. In some cases, noise can have a sizeable effect, rendering the deterministic modelling insufficient to understand the phenotypic distribution.

  17. Can newts cope with the heat? Disparate thermoregulatory strategies of two sympatric species in water.

    PubMed

    Balogová, Monika; Gvoždík, Lumír

    2015-01-01

    Many ectotherms effectively reduce their exposure to low or high environmental temperatures using behavioral thermoregulation. In terrestrial ectotherms, thermoregulatory strategies range from accurate thermoregulation to thermoconformity according to the costs and limits of thermoregulation, while in aquatic taxa the quantification of behavioral thermoregulation have received limited attention. We examined thermoregulation in two sympatric newt species, Ichthyosaura alpestris and Lissotriton vulgaris, exposed to elevated water temperatures under semi-natural conditions. According to a recent theory, we predicted that species for which elevated water temperatures pose a lower thermal quality habitat, would thermoregulate more effectively than species in thermally benign conditions. In the laboratory thermal gradient, L. vulgaris maintained higher body temperatures than I. alpestris. Semi-natural thermal conditions provided better thermal quality of habitat for L. vulgaris than for I. alpestris. Thermoregulatory indices indicated that I. alpestris actively thermoregulated its body temperature, whereas L. vulgaris remained passive to the thermal heterogeneity of aquatic environment. In the face of elevated water temperatures, sympatric newt species employed disparate thermoregulatory strategies according to the species-specific quality of the thermal habitat. Both strategies reduced newt exposure to suboptimal water temperatures with the same accuracy but with or without the costs of thermoregulation. The quantification of behavioral thermoregulation proves to be an important conceptual and methodological tool for thermal ecology studies not only in terrestrial but also in aquatic ectotherms.

  18. Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis

    PubMed Central

    Feder, Jeffrey L.; Berlocher, Stewart H.; Roethele, Joseph B.; Dambroski, Hattie; Smith, James J.; Perry, William L.; Gavrilovic, Vesna; Filchak, Kenneth E.; Rull, Juan; Aluja, Martin

    2003-01-01

    Tephritid fruit flies belonging to the Rhagoletis pomonella sibling species complex are controversial because they have been proposed to diverge in sympatry (in the absence of geographic isolation) by shifting and adapting to new host plants. Here, we report evidence suggesting a surprising source of genetic variation contributing to sympatric host shifts for these flies. From DNA sequence data for three nuclear loci and mtDNA, we infer that an ancestral, hawthorn-infesting R. pomonella population became geographically subdivided into Mexican and North American isolates ≈1.57 million years ago. Episodes of gene flow from Mexico subsequently infused the North American population with inversion polymorphism affecting key diapause traits, forming adaptive clines. Sometime later (perhaps ±1 million years), diapause variation in the latitudinal clines appears to have aided North American flies in adapting to a variety of plants with differing fruiting times, helping to spawn several new taxa. Thus, important raw genetic material facilitating the adaptive radiation of R. pomonella originated in a different time and place than the proximate ecological host shifts triggering sympatric divergence. PMID:12928500

  19. Multidimensional differentiation in foraging resource use during breeding of two sympatric top predators

    PubMed Central

    Friedemann, Guilad; Leshem, Yossi; Kerem, Lior; Shacham, Boaz; Bar-Massada, Avi; McClain, Krystaal M.; Bohrer, Gil; Izhaki, Ido

    2016-01-01

    Ecologically-similar species were found to develop specific strategies to partition their resources, leading to niche differentiation and divergence, in order to avoid interspecific competition. Our study determines multi-dimensional differentiation of two sympatric top-predators, long-legged buzzards (LLB) and short-toed eagles (STE), which recently became sympatric during their breeding season in the Judean Foothills, Israel. By combining information from comprehensive diet and movement analyses we found four dimensions of differentiation: (1) Geographic foraging area: LLB tended to forage relatively close to their nests (2.35 ± 0.62 km), while STE forage far from their nest (13.03 ± 2.20 km); (2) Foraging-habitat type: LLBs forage at low natural vegetation, avoiding cultivated fields, whereas STEs forage in cultivated fields, avoiding low natural vegetation; (3) Diurnal dynamics of foraging: LLBs are uniformly active during daytime, whereas STEs activity peaks in the early afternoon; and (4) Food-niche: while both species largely rely on reptiles (47.8% and 76.3% for LLB and STE, respectively), LLB had a more diverse diet and consumed significantly higher percentages of lizards, while STE consumed significantly higher percentages of snakes. Our results suggest that this multidimensional differentiation allows the spatial coexistence of these two dense populations in the study area. PMID:27725734

  20. Interploidy hybridization in sympatric zones: the formation of Epidendrum fulgens × E. puniceoluteum hybrids (Epidendroideae, Orchidaceae)

    PubMed Central

    Moraes, Ana P; Chinaglia, Mariana; Palma-Silva, Clarisse; Pinheiro, Fábio

    2013-01-01

    Interspecific hybridization is a primary cause of extensive morphological and chromosomal variation and plays an important role in plant species diversification. However, the role of interploidal hybridization in the formation of hybrid swarms is less clear. Epidendrum encompasses wide variation in chromosome number and lacks strong premating barriers, making the genus a good model for clarifying the role of chromosomes in postzygotic barriers in interploidal hybrids. In this sense, hybrids from the interploidal sympatric zone between E. fulgens (2n = 2x = 24) and E. puniceoluteum (2n = 4x = 56) were analyzed using cytogenetic techniques to elucidate the formation and establishment of interploidal hybrids. Hybrids were not a uniform group: two chromosome numbers were observed, with the variation being a consequence of severe hybrid meiotic abnormalities and backcrossing with E. puniceoluteum. The hybrids were triploids (2n = 3x = 38 and 40) and despite the occurrence of enormous meiotic problems associated with triploidy, the hybrids were able to backcross, producing successful hybrid individuals with broad ecological distributions. In spite of the nonpolyploidization of the hybrid, its formation is a long-term evolutionary process rather than a product of a recent disturbance, and considering other sympatric zones in Epidendrum, these events could be recurrent. PMID:24198942

  1. Can Newts Cope with the Heat? Disparate Thermoregulatory Strategies of Two Sympatric Species in Water

    PubMed Central

    Balogová, Monika; Gvoždík, Lumír

    2015-01-01

    Many ectotherms effectively reduce their exposure to low or high environmental temperatures using behavioral thermoregulation. In terrestrial ectotherms, thermoregulatory strategies range from accurate thermoregulation to thermoconformity according to the costs and limits of thermoregulation, while in aquatic taxa the quantification of behavioral thermoregulation have received limited attention. We examined thermoregulation in two sympatric newt species, Ichthyosaura alpestris and Lissotriton vulgaris, exposed to elevated water temperatures under semi-natural conditions. According to a recent theory, we predicted that species for which elevated water temperatures pose a lower thermal quality habitat, would thermoregulate more effectively than species in thermally benign conditions. In the laboratory thermal gradient, L. vulgaris maintained higher body temperatures than I. alpestris. Semi-natural thermal conditions provided better thermal quality of habitat for L. vulgaris than for I. alpestris. Thermoregulatory indices indicated that I. alpestris actively thermoregulated its body temperature, whereas L. vulgaris remained passive to the thermal heterogeneity of aquatic environment. In the face of elevated water temperatures, sympatric newt species employed disparate thermoregulatory strategies according to the species-specific quality of the thermal habitat. Both strategies reduced newt exposure to suboptimal water temperatures with the same accuracy but with or without the costs of thermoregulation. The quantification of behavioral thermoregulation proves to be an important conceptual and methodological tool for thermal ecology studies not only in terrestrial but also in aquatic ectotherms. PMID:25993482

  2. Multidimensional differentiation in foraging resource use during breeding of two sympatric top predators

    NASA Astrophysics Data System (ADS)

    Friedemann, Guilad; Leshem, Yossi; Kerem, Lior; Shacham, Boaz; Bar-Massada, Avi; McClain, Krystaal M.; Bohrer, Gil; Izhaki, Ido

    2016-10-01

    Ecologically-similar species were found to develop specific strategies to partition their resources, leading to niche differentiation and divergence, in order to avoid interspecific competition. Our study determines multi-dimensional differentiation of two sympatric top-predators, long-legged buzzards (LLB) and short-toed eagles (STE), which recently became sympatric during their breeding season in the Judean Foothills, Israel. By combining information from comprehensive diet and movement analyses we found four dimensions of differentiation: (1) Geographic foraging area: LLB tended to forage relatively close to their nests (2.35 ± 0.62 km), while STE forage far from their nest (13.03 ± 2.20 km) (2) Foraging-habitat type: LLBs forage at low natural vegetation, avoiding cultivated fields, whereas STEs forage in cultivated fields, avoiding low natural vegetation; (3) Diurnal dynamics of foraging: LLBs are uniformly active during daytime, whereas STEs activity peaks in the early afternoon; and (4) Food-niche: while both species largely rely on reptiles (47.8% and 76.3% for LLB and STE, respectively), LLB had a more diverse diet and consumed significantly higher percentages of lizards, while STE consumed significantly higher percentages of snakes. Our results suggest that this multidimensional differentiation allows the spatial coexistence of these two dense populations in the study area.

  3. Comparative phylogeography of two sympatric beeches in subtropical China: Species-specific geographic mosaic of lineages

    PubMed Central

    Zhang, Zhi-Yong; Wu, Rong; Wang, Qun; Zhang, Zhi-Rong; López-Pujol, Jordi; Fan, Deng-Mei; Li, De-Zhu

    2013-01-01

    In subtropical China, large-scale phylogeographic comparisons among multiple sympatric plants with similar ecological preferences are scarce, making generalizations about common response to historical events necessarily tentative. A phylogeographic comparison of two sympatric Chinese beeches (Fagus lucida and F. longipetiolata, 21 and 28 populations, respectively) was conducted to test whether they have responded to historical events in a concerted fashion and to determine whether their phylogeographic structure is exclusively due to Quaternary events or it is also associated with pre-Quaternary events. Twenty-three haplotypes were recovered for F. lucida and F. longipetiolata (14 each one and five shared). Both species exhibited a species-specific mosaic distribution of haplotypes, with many of them being range-restricted and even private to populations. The two beeches had comparable total haplotype diversity but F. lucida had much higher within-population diversity than F. longipetiolata. Molecular dating showed that the time to most recent common ancestor of all haplotypes was 6.36 Ma, with most haplotypes differentiating during the Quaternary. [Correction added on 14 October 2013, after first online publication: the timeunit has been corrected to ‘6.36’.] Our results support a late Miocene origin and southwards colonization of Chinese beeches when the aridity in Central Asia intensified and the monsoon climate began to dominate the East Asia. During the Quaternary, long-term isolation in subtropical mountains of China coupled with limited gene flow would have lead to the current species-specific mosaic distribution of lineages. PMID:24340187

  4. Patterns of gastrointestinal parasitism among five sympatric prairie carnivores: are males reservoirs?

    PubMed

    Wirsing, Aaron J; Azevedo, Fernando C C; Larivière, Serge; Murray, Dennis L

    2007-06-01

    Male vertebrates are believed to be disproportionately vulnerable to parasites, but empirical support for this contention is mixed. We tested the hypothesis of higher levels of parasitism in males with the use of counts of gastrointestinal helminths in 5 sympatric mammalian carnivores (American badgers, coyotes, red foxes, raccoons, striped skunks) from central Saskatchewan. Parasite burdens for females and males of each host species were compared with the use of prevalence (percentage of hosts infected), intensity (parasites per infected host), and overdispersion (proportion of heavily infected hosts that were male). Of 30 comparisons (13 each for prevalence and intensity, 4 for overdispersion), male bias was detected 8 times (27%), whereas female bias was detected only once (3%), adding some support to the notion that male mammals are more susceptible to parasitism. However, most of the statistical comparisons we undertook revealed no sexual bias (n=21, 70%), suggesting that differential patterns of infection are not ubiquitous in mammals. Moreover, when detected, the magnitude and direction of bias varied among host species, helminth species, and metrics of infection. We conclude that sympatric and ecologically similar mammal species will not always share the tendency for males to be more susceptible to parasitism, and that studies incorporating multiple parasites and metrics of infection are more likely to detect sex bias.

  5. Hybridization, natural selection, and evolution of reproductive isolation: a 25-years survey of an artificial sympatric area between two mosquito sibling species of the Aedes mariae complex.

    PubMed

    Urbanelli, Sandra; Porretta, Daniele; Mastrantonio, Valentina; Bellini, Romeo; Pieraccini, Giuseppe; Romoli, Riccardo; Crasta, Graziano; Nascetti, Giuseppe

    2014-10-01

    Natural selection can act against maladaptive hybridization between co-occurring divergent populations leading to evolution of reproductive isolation among them. A critical unanswered question about this process that provides a basis for the theory of speciation by reinforcement, is whether natural selection can cause hybridization rates to evolve to zero. Here, we investigated this issue in two sibling mosquitoes species, Aedes mariae and Aedes zammitii, that show postmating reproductive isolation (F1 males sterile) and partial premating isolation (different height of mating swarms) that could be reinforced by natural selection against hybridization. In 1986, we created an artificial sympatric area between the two species and sampled about 20,000 individuals over the following 25 years. Between 1986 and 2011, the composition of mating swarms and the hybridization rate between the two species were investigated across time in the sympatric area. Our results showed that A. mariae and A. zammitii have not completed reproductive isolation since their first contact in the artificial sympatric area. We have discussed the relative role of factors such as time of contact, gene flow, strength of natural selection, and biological mechanisms causing prezygotic isolation to explain the observed results.

  6. DNA metabarcoding diet analysis for species with parapatric vs sympatric distribution: a case study on subterranean rodents

    PubMed Central

    Lopes, C M; De Barba, M; Boyer, F; Mercier, C; da Silva Filho, P J S; Heidtmann, L M; Galiano, D; Kubiak, B B; Langone, P; Garcias, F M; Gielly, L; Coissac, E; de Freitas, T R O; Taberlet, P

    2015-01-01

    Closely related sympatric species commonly develop different ecological strategies to avoid competition. Ctenomys minutus and C. flamarioni are subterranean rodents parapatrically distributed in the southern Brazilian coastal plain, showing a narrow sympatric zone. To gain understanding on food preferences and possible competition for food resources, we evaluated their diet composition performing DNA metabarcoding analyzes of 67 C. minutus and 100 C. flamarioni scat samples, collected along the species geographical ranges. Thirteen plant families, mainly represented by Poaceae, Araliaceae, Asteraceae and Fabaceae, were identified in the diet of C. minutus. For C. flamarioni, 10 families were recovered, with a predominance of Poaceae, Araliaceae and Asteraceae. A significant correlation between diet composition and geographical distance was detected in C. minutus, whereas the diet of C. flamarioni was quite homogeneous throughout its geographical distribution. No significant differences were observed between males and females of each species. However, differences in diet composition between species were evident according to multivariate analysis. Our results suggest some level of diet partitioning between C. flamarioni and C. minutus in the sympatric region. While the first species is more specialized on few plant items, the second showed a more varied and heterogeneous diet pattern among individuals. These differences might have been developed to avoid competition in the region of co-occurrence. Resource availability in the environment also seems to influence food choices. Our data indicate that C. minutus and C. flamarioni are generalist species, but that some preference for Poaceae, Asteraceae and Araliaceae families can be suggested for both rodents. PMID:25649502

  7. DNA metabarcoding diet analysis for species with parapatric vs sympatric distribution: a case study on subterranean rodents.

    PubMed

    Lopes, C M; De Barba, M; Boyer, F; Mercier, C; da Silva Filho, P J S; Heidtmann, L M; Galiano, D; Kubiak, B B; Langone, P; Garcias, F M; Gielly, L; Coissac, E; de Freitas, T R O; Taberlet, P

    2015-05-01

    Closely related sympatric species commonly develop different ecological strategies to avoid competition. Ctenomys minutus and C. flamarioni are subterranean rodents parapatrically distributed in the southern Brazilian coastal plain, showing a narrow sympatric zone. To gain understanding on food preferences and possible competition for food resources, we evaluated their diet composition performing DNA metabarcoding analyzes of 67 C. minutus and 100 C. flamarioni scat samples, collected along the species geographical ranges. Thirteen plant families, mainly represented by Poaceae, Araliaceae, Asteraceae and Fabaceae, were identified in the diet of C. minutus. For C. flamarioni, 10 families were recovered, with a predominance of Poaceae, Araliaceae and Asteraceae. A significant correlation between diet composition and geographical distance was detected in C. minutus, whereas the diet of C. flamarioni was quite homogeneous throughout its geographical distribution. No significant differences were observed between males and females of each species. However, differences in diet composition between species were evident according to multivariate analysis. Our results suggest some level of diet partitioning between C. flamarioni and C. minutus in the sympatric region. While the first species is more specialized on few plant items, the second showed a more varied and heterogeneous diet pattern among individuals. These differences might have been developed to avoid competition in the region of co-occurrence. Resource availability in the environment also seems to influence food choices. Our data indicate that C. minutus and C. flamarioni are generalist species, but that some preference for Poaceae, Asteraceae and Araliaceae families can be suggested for both rodents.

  8. Distribution and Ecology of Cytotypes of the Aster amellus Aggregates in the Czech Republic

    PubMed Central

    MANDÁKOVÁ, TEREZIE; MÜNZBERGOVÁ, ZUZANA

    2006-01-01

    • Background and Aims Polyploidy is viewed as an important mechanism of sympatric speciation, but only a few studies have documented patterns of distribution and ecology of different cytotypes in their contact zone. Aster amellus agg. (Asteraceae) is one of the species with documented multiple ploidy levels. The aim of this study was to determine spatial distribution and ecology of two cytotypes, diploid (2n = 18) and hexaploid (2n = 54), of Aster amellus agg. at their contact zone in the Czech Republic. • Methods Root-tip squashes and flow cytometry were used to determine the ploidy of 2175 individuals from 87 populations. To test whether some differences in ecology between the two ploidy levels exist, in each locality relevés were recorded and abiotic conditions of the sites were studied by estimating potential direct solar radiation, Ellenberg indicator values and above-ground biomass. • Key Results Together with diploid and hexaploids, minorite cytotypes (triploid, pentaploid and nonaploid) were found. No significant ecological differences between diploid and hexaploid cytotypes were found. In spite of this, no population consisting of both of the two basic cytotypes was found. • Conclusions The results of this study show that the contact zone of diploid and hexaploid cytotypes in the Czech Republic is much more diffuse than indicated in previous records. Although populations of both cytotypes occur in close proximity (the closest populations of different cytotypes were 500 m apart), each individual population consists of only one basic ploidy level. This was unexpected since there are no clear differences in abiotic conditions between populations. Taken together with the absence of an intermediate tetraploid cytotype and with reference to published world distributional patterns of different ploidy levels, this suggests a secondary contact zone. Detailed genetic study is, however, necessary to confirm this. PMID:16870643

  9. Distribution and ecology of cytotypes of the Aster amellus aggregates in the Czech Republic.

    PubMed

    Mandáková, Terezie; Münzbergová, Zuzana

    2006-10-01

    Polyploidy is viewed as an important mechanism of sympatric speciation, but only a few studies have documented patterns of distribution and ecology of different cytotypes in their contact zone. Aster amellus agg. (Asteraceae) is one of the species with documented multiple ploidy levels. The aim of this study was to determine spatial distribution and ecology of two cytotypes, diploid (2n = 18) and hexaploid (2n = 54), of Aster amellus agg. at their contact zone in the Czech Republic. Root-tip squashes and flow cytometry were used to determine the ploidy of 2175 individuals from 87 populations. To test whether some differences in ecology between the two ploidy levels exist, in each locality relevés were recorded and abiotic conditions of the sites were studied by estimating potential direct solar radiation, Ellenberg indicator values and above-ground biomass. Together with diploid and hexaploids, minorite cytotypes (triploid, pentaploid and nonaploid) were found. No significant ecological differences between diploid and hexaploid cytotypes were found. In spite of this, no population consisting of both of the two basic cytotypes was found. The results of this study show that the contact zone of diploid and hexaploid cytotypes in the Czech Republic is much more diffuse than indicated in previous records. Although populations of both cytotypes occur in close proximity (the closest populations of different cytotypes were 500 m apart), each individual population consists of only one basic ploidy level. This was unexpected since there are no clear differences in abiotic conditions between populations. Taken together with the absence of an intermediate tetraploid cytotype and with reference to published world distributional patterns of different ploidy levels, this suggests a secondary contact zone. Detailed genetic study is, however, necessary to confirm this.

  10. Interaction between Digestive Strategy and Niche Specialization Predicts Speciation Rates across Herbivorous Mammals.

    PubMed

    Tran, Lucy A P

    2016-04-01

    Biotic and abiotic factors often are treated as mutually exclusive drivers of diversification processes. In this framework, ecological specialists are expected to have higher speciation rates than generalists if abiotic factors are the primary controls on species diversity but lower rates if biotic interactions are more important. Speciation rate is therefore predicted to positively correlate with ecological specialization in the purely abiotic model but negatively correlate in the biotic model. In this study, I show that the positive relationship between ecological specialization and speciation expected from the purely abiotic model is recovered only when a species-specific trait, digestive strategy, is modeled in the terrestrial, herbivorous mammals (Mammalia). This result suggests a more nuanced model in which the response of specialized lineages to abiotic factors is dependent on a biological trait. I also demonstrate that the effect of digestive strategy on the ecological specialization-speciation rate relationship is not due to a difference in either the degree of ecological specialization or the speciation rate between foregut- and hindgut-fermenting mammals. Together, these findings suggest that a biological trait, alongside historical abiotic events, played an important role in shaping mammal speciation at long temporal and large geographic scales.

  11. Diversification of sympatric Sapromyza (Diptera: Lauxaniidae) from Madeira: six morphological species but only four mtDNA lineages.

    PubMed

    Pestano, José; Brown, Richard P; Suárez, Nicolás M; Báez, Marcos

    2003-06-01

    A series of recent studies on speciation of insects within the Canary Islands have indicated considerable within-island diversification, similar to that described in the Hawaiian islands. Little work has yet been carried out on the neighboring Madeiran archipelago, which is also volcanic. This study examines relationships among all known Lauxaniid flies of the genus Sapromyza from Madeira (including six newly described morphological species) based on mitochondrial gene trees constructed from cytochrome c oxidase (subunit I) and 16S rRNA partial sequences. Phylogenies based on maximum likelihood distances, a Bayesian method based on Markov chain Monte Carlo sampling from the posterior probability distribution, and maximum parsimony show that eight of the nine Madeiran species comprise a single monophyletic group. This clade is also split into two subclades representing black- and yellow/orange-bodied forms. The latter mtDNA clade corresponds to only two species (Sapromyza imitans and Sapromyza indigena) which are not reciprocally monophyletic. Monophyly is strongly supported within four of the six black-bodied species but not for the species pair (Sapromyza inconspicua, Sapromyza laurisilvae). We discuss the double occurrence (at least) of introgressive hybridization/incomplete lineage sorting within this group and suggest that recent speciation is the most likely explanation. The remaining species on the island, Sapromyza madeirensis, is very divergent from the aforementioned group, occupying a more basal position in the tree than the other Atlantic island and continental Sapromyza that were included in the analysis. At least two speciation events for Madeiran Sapromyza appear to correspond to quite ancient periods relative to the age of the island, while others are more recent. This suggests that a combination of island colonization and within-island sympatric and/or vicariance-mediated speciation may explain the observed diversity.

  12. Speciation and host-parasite relationships in the parasite genus Gyrodactylus (Monogenea, Platyhelminthes) infecting gobies of the genus Pomatoschistus (Gobiidae, Teleostei).

    PubMed

    Huyse, Tine; Audenaert, Vanessa; Volckaert, Filip A M

    2003-12-01

    Using species-level phylogenies, the speciation mode of Gyrodactylus species infecting a single host genus was evaluated. Eighteen Gyrodactylus species were collected from gobies of the genus Pomatoschistus and sympatric fish species across the distribution range of the hosts. The V4 region of the ssrRNA and the internal transcribed spacers encompassing the 5.8S rRNA gene were sequenced; by including published sequences a total of 30 species representing all subgenera were used in the data analyses. The molecular phylogeny did not support the morphological groupings into subgenera as based on the excretory system, suggesting that the genus needs systematic revisions. Paraphyly of the total Gyrodactylus fauna of the gobies indicates that at least two independent colonisation events were involved, giving rise to two separate groups, belonging to the subgenus Mesonephrotus and Paranephrotus, respectively. The most recent association probably originated from a host switching event from Gyrodactylus arcuatus, which parasitises three-spined stickleback, onto Pomatoschistus gobies. These species are highly host-specific and form a monophyletic group, two possible "signatures" of co-speciation. Host specificity was lower in the second group. The colonising capacity of these species is illustrated by a host jump from gobiids to another fish order (Anguilliformes), supporting the hypothesis of a European origin of Gyrodactylus anguillae and its intercontinental introduction by the eel trade. Thus, allopatric speciation seems to be the dominant mode of speciation in this host-parasite system, with a possible case of sympatric speciation.

  13. Reconstructing the history of selection during homoploid hybrid speciation.

    PubMed

    Karrenberg, Sophie; Lexer, Christian; Rieseberg, Loren H

    2007-06-01

    This study aims to identify selection pressures during the historical process of homoploid hybrid speciation in three Helianthus (sunflower) hybrid species. If selection against intrinsic genetic incompatibilities (fertility selection) or for important morphological/ecological traits (phenotypic selection) were important in hybrid speciation, we would expect this selection to have influenced the parentage of molecular markers or chromosomal segments in the hybrid species' genomes. To infer past selection, we compared the parentage of molecular markers in high-density maps of the three hybrid species with predicted marker parentage from an analysis of fertility selection in artificial hybrids and from the directions of quantitative trait loci effects with respect to the phenotypes of the hybrid species. Multiple logistic regression models were consistent with both fertility and phenotypic selection in all three species. To further investigate traits under selection, we used a permutation test to determine whether marker parentage predicted from groups of functionally related traits differed from neutral expectations. Our results suggest that trait groups associated with ecological divergence were under selection during hybrid speciation. This study presents a new method to test for selection and supports earlier claims that fertility selection and phenotypic selection on ecologically relevant traits have operated simultaneously during sunflower hybrid speciation.

  14. Hybrid speciation and independent evolution in lineages of alpine butterflies.

    PubMed

    Nice, Chris C; Gompert, Zachariah; Fordyce, James A; Forister, Matthew L; Lucas, Lauren K; Buerkle, C Alex

    2013-04-01

    The power of hybridization between species to generate variation and fuel adaptation is poorly understood despite long-standing interest. There is, however, increasing evidence that hybridization often generates biodiversity, including via hybrid speciation. We tested the hypothesis of hybrid speciation in butterflies occupying extreme, high-altitude habitats in four mountain ranges in western North America with an explicit, probabilistic model, and genome-wide DNA sequence data. Using this approach, in concert with ecological experiments and observations and morphological data, we document three lineages of hybrid origin. These lineages have different genome admixture proportions and distinctive trait combinations that suggest unique and independent evolutionary histories.

  15. Nested biological variation and speciation

    PubMed Central

    Foster, S. A.

    1998-01-01

    The modes of speciation that are thought to have contributed most to the generation of biodiversity require population differentiation as the initial stage in the speciation process. Consequently, a complete understanding of the mechanisms of speciation requires that the process be examined not just after speciation is complete, or nearly so, but also much earlier. Because reproductive isolation defines biological species, and it evolves slowly, study of the process may require a prohibitive span of time. Even if speciation could be observed directly, selection of populations in the process of speciation is typically difficult or impossible, because those that will ultimately undergo speciation cannot be distinguished from those that will differentiate but never assume the status of new biological species. One means of circumventing this problem is to study speciation in taxa comprising several sibling species, at least one of which exhibits extensive population differentiation. We illustrate this approach by exploring patterns of population variation in the post-glacial radiation of the threespine stickleback, Gasterosteus aculeatus. We focus on lacustrine populations and species within this complex, demonstrating parallel axes of divergence within populations, among populations and among species. The pattern that emerges is one of parallel relationships between phenotype and fitness at all three hierarchical levels, a pattern that facilitates exploration of the causes and consequences of speciation and secondary contact. A second outcome of this exploration is the observation that speciation can be the consequence of a cascade of effects, beginning with selection on trophic or other characteristics that in turn force the evolution of other population characteristics that precipitate speciation. Neither of these conclusions could have been reached without comparative studies of wild populations at several hierarchical levels, a conclusion reinforced by a brief

  16. Responses of sympatric Karenia brevis, Prorocentrum minimum, and Heterosigma akashiwo to the exposure of crude oil.

    PubMed

    Ozhan, Koray; Bargu, Sibel

    2014-10-01

    Impacts of the Deepwater Horizon oil spill on phytoplankton, particularly, the tolerability and changes to the toxin profiles of harmful toxic algal species remain unknown. The degree to which oil-affected sympatric Karenia brevis, Prorocentrum minimum, and Heterosigma akashiwo, all of which are ecologically important species in the Gulf of Mexico, was investigated. Comparison of their tolerability to that of non-toxic species showed that the toxin-production potential of harmful species does not provide a selective advantage. Investigated toxin profiles for K. brevis and P. minimum demonstrated an increase in toxin productivity at the lowest crude oil concentration (0.66 mg L(-1)) tested in this study. Higher crude oil concentrations led to significant growth inhibition and a decrease in toxin production. Findings from this study could assist in the assessment of shellfish bed closures due to high risk of increased toxin potential of these phytoplankton species, especially during times of stressed conditions.

  17. [Prey selection by tiger frog larvae (Hoplobatrachus chinensis) of two sympatric anuran species' tadpoles].

    PubMed

    Wei, Li; Lin, Zhi-Hua; Zhao, Ren-You; Chen, Shi-Tong

    2013-06-01

    We examined the prey selection and behavioral responses of tiger frog Hoplobatrachus chinensis larvae exposed to unpalatable and palatable sympatric prey tadpoles, Bufo melanostictus and Pelophylax nigromaculatus. We found that after a short exposure to the toxic toad tadpoles B. melanostictus, predators may learn to decrease going after unpalatable prey, subsequently it seems they may express short-term behavioral memory in order to avoid the toxic prey. In general, H. chinensis showed no preference for either any of the two prey species, which may be the result of P. nigromaculatus using behavioral performance and chemical defense as antipredatation strategies. These results facilitate further investigation of other aspects of the behavioral ecology of these three anuran species and hint at some potentially interesting possibilities of memory in choice of prey which may suggest further study.

  18. Speciation in ancient lakes.

    PubMed

    Martens, K

    1997-05-01

    About a dozen lakes in the world are up to three orders of magnitude older than most others. Lakes Tanganyika (East Africa) and Baikal (Siberia) have probably existed in some form for 12-20 million years, maybe more. Such lakes can have different origins, sizes, shapes, depths and limnologies, but, in contrast to short-lived (mostly post-glacial) lakes, they have exceptionally high faunal diversity and levels of endemicity. A multitude of and processes accounting for these explosive radiations have recently been documented, most of them based on particular groups in certain lakes, but comparative research can detect repeated patterns. No special speciafion mechanism, exclusive to ancient lakes has been demonstrated, although cases of ultra-rapid speciation have been documented. Extant diversity results not by simple accumulation, but by a complex process of immigration, speciation and extinction.

  19. Deep sympatric mitochondrial divergence without reproductive isolation in the common redstart Phoenicurus phoenicurus.

    PubMed

    Hogner, Silje; Laskemoen, Terje; Lifjeld, Jan T; Porkert, Jiri; Kleven, Oddmund; Albayrak, Tamer; Kabasakal, Bekir; Johnsen, Arild

    2012-12-01

    Mitochondrial DNA usually shows low sequence variation within and high sequence divergence among species, which makes it a useful marker for phylogenetic inference and DNA barcoding. A previous study on the common redstart (Phoenicurus phoenicurus) revealed two very different mtDNA haplogroups (5% K2P distance). This divergence is comparable to that among many sister species; however, both haplogroups coexist and interbreed in Europe today. Herein, we describe the phylogeographic pattern of these lineages and test hypotheses for how such high diversity in mtDNA has evolved. We found no evidence for mitochondrial pseudogenes confirming that both haplotypes are of mitochondrial origin. When testing for possible reproductive barriers, we found no evidence for lineage-specific assortative mating and no difference in sperm morphology, indicating that they are not examples of cryptic species, nor likely to reflect the early stages of speciation. A gene tree based on a short fragment of cytochrome c oxidase subunit 1 from the common redstart and 10 other Phoenicurus species, showed no introgression from any of the extant congenerics. However, introgression from an extinct congeneric cannot be excluded. Sequences from two nuclear introns did not show a similar differentiation into two distinct groups. Mismatch distributions indicated that the lineages have undergone similar demographic changes. Taken together, these results confirm that deeply divergent mitochondrial lineages can coexist in biological species. Sympatric mtDNA divergences are relatively rare in birds, but the fact that they occur argues against the use of threshold mtDNA divergences in species delineation.

  20. A theoretical investigation of sympatric evolution of temporal reproductive isolation as illustrated by marine broadcast spawners.

    PubMed

    Tomaiuolo, Maurizio; Hansen, Thomas F; Levitan, Don R

    2007-11-01

    Recent theory suggests that frequency-dependent disruptive selection in combination with assortative mating can lead to the establishment of reproductive isolation in sympatry. Here we explore how temporal variation in reproduction might simultaneously generate both disruptive selection and assortative mating, and result in sympatric speciation. The conceptual framework of the model may be applicable to biological systems with negative frequency-dependent selection, such as marine broadcast spawners or systems with pollinator limitation. We present a model that is motivated by recent findings in marine broadcast spawners and is parameterized with data from the Montastraea annularis species complex. Broadcast spawners reproduce via external fertilization and synchronous spawning is required to increase the probability of successful fertilization, but empirical evidence shows that as density increases, so does the risk of polyspermy. Polyspermy is the fusion of multiple sperm with an egg at fertilization, a process that makes the embryo unviable. Synchrony can therefore also act as a source of negative density-dependent disruptive selection. Model analysis shows that the interaction between polyspermy and spawning synchrony can lead to temporal reproductive isolation in sympatry and that, more generally, increased density promotes maintenance of genetic variation.

  1. Parallel speciation in Astyanax cave fish (Teleostei) in Northern Mexico.

    PubMed

    Strecker, Ulrike; Hausdorf, Bernhard; Wilkens, Horst

    2012-01-01

    We investigated differentiation processes in the Neotropical fish Astyanax that represents a model system for examining adaptation to caves, including regressive evolution. In particular, we analyzed microsatellite and mitochondrial data of seven cave and seven surface populations from Mexico to test whether the evolution of the cave fish represents a case of parallel evolution. Our data revealed that Astyanax invaded northern Mexico across the Trans-Mexican Volcanic Belt at least three times and that populations of all three invasions adapted to subterranean habitats. Significant differentiation was found between the cave and surface populations. We did not observe gene flow between the strongly eye and pigment reduced old cave populations (Sabinos, Tinaja, Pachon) and the surface fish, even when syntopically occurring like in Yerbaniz cave. Little gene flow, if any, was found between cave populations, which are variable in eye and pigmentation (Micos, Chica, Caballo Moro caves), and surface fish. This suggests that the variability is due to their more recent origin rather than to hybridization. Finally, admixture of the young Chica cave fish population with nuclear markers from older cave fish demonstrates that gene flow between populations that independently colonized caves occurs. Thus, all criteria of parallel speciation are fulfilled. Moreover, the microsatellite data provide evidence that two co-occurring groups with small sunken eyes and externally visible eyes, respectively, differentiated within the partly lightened Caballo Moro karst window cave and might represent an example for incipient sympatric speciation. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Speciation within Columnea section Angustiflora (Gesneriaceae): islands, pollinators and climate.

    PubMed

    Schulte, Lacie J; Clark, John L; Novak, Stephen J; Jeffries, Shandra K; Smith, James F

    2015-03-01

    Despite many advances in evolutionary biology, understanding the proximate mechanisms that lead to speciation for many taxonomic groups remains elusive. Phylogenetic analyses provide a means to generate well-supported estimates of species relationships. Understanding how genetic isolation (restricted gene flow) occurred in the past requires not only a well-supported molecular phylogenetic analysis, but also an understanding of when character states that define species may have changed. In this study, phylogenetic trees resolve species level relationships for fourteen of the fifteen species within Columnea section Angustiflorae (Gesneriaceae). The distributions of sister species pairs are compared and ancestral character states are reconstructed using Bayesian stochastic mapping. Climate variables were also assessed and shifts in ancestral climate conditions were mapped using SEEVA. The relationships between morphological character states and climate variables were assessed with correlation analyses. These results indicate that species in section Angustiflorae have likely diverged as a result of allopatric, parapatric, and sympatric speciation, with both biotic and abiotic forces driving morphological and phenological divergence. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Adaptive divergence with gene flow in incipient speciation of Miscanthus floridulus/sinensis complex (Poaceae).

    PubMed

    Huang, Chao-Li; Ho, Chuan-Wen; Chiang, Yu-Chung; Shigemoto, Yasumasa; Hsu, Tsai-Wen; Hwang, Chi-Chuan; Ge, Xue-Jun; Chen, Charles; Wu, Tai-Han; Chou, Chang-Hung; Huang, Hao-Jen; Gojobori, Takashi; Osada, Naoki; Chiang, Tzen-Yuh

    2014-12-01

    Young incipient species provide ideal materials for untangling the process of ecological speciation in the presence of gene flow. The Miscanthus floridulus/sinensis complex exhibits diverse phenotypic and ecological differences despite recent divergence (approximately 1.59 million years ago). To elucidate the process of genetic differentiation during early stages of ecological speciation, we analyzed genomic divergence in the Miscanthus complex using 72 randomly selected genes from a newly assembled transcriptome. In this study, rampant gene flow was detected between species, estimated as M = 3.36 × 10(-9) to 1.20 × 10(-6) , resulting in contradicting phylogenies across loci. Nevertheless, beast analyses revealed the species identity and the effects of extrinsic cohesive forces that counteracted the non-stop introgression. As expected, early in speciation with gene flow, only 3-13 loci were highly diverged; two to five outliers (approximately 2.78-6.94% of the genome) were characterized by strong linkage disequilibrium, and asymmetrically distributed among ecotypes, indicating footprints of diversifying selection. In conclusion, ecological speciation of incipient species of Miscanthus probably followed the parapatric model, whereas allopatric speciation cannot be completely ruled out, especially between the geographically isolated northern and southern M. sinensis, for which no significant gene flow across oceanic barriers was detected. Divergence between local ecotypes in early-stage speciation began at a few genomic regions under the influence of natural selection and divergence hitchhiking that overcame gene flow.

  4. Niche relations among three sympatric Mediterranean carnivores.

    PubMed

    Fedriani, Jose M; Palomares, Francisco; Delibes, Miguel

    1999-10-01

    Previous studies carried out in the Doñana National Park reported that red foxes (Vulpes vulpes) were killed by Iberian lynxes (Lynx pardinus), whereas similar-sized Eurasian badgers (Meles meles) were not. Therefore, we predicted that fox would avoid lynx predation risk by niche segregation whereas we did not expect such a segregation between badger and lynx. As an approach for evaluating our predictions, we compared their diet, activity patterns, and habitat use in an area of Doñana where the three carnivores are sympatric. Lynxes preyed almost uniquely on European rabbits (Oryctolagus cuniculus), and though badgers and foxes were omnivorous, rabbits also were a major prey, resulting in high overlaps throughout the year. However, badgers preyed largely on small rabbits, whereas lynxes and foxes preyed mainly on medium-sized rabbits. There were also interspecific differences in activity patterns. Maximum levels of activity among lynxes were during sunrise and dusk (49-67%). Foxes were most active during dusk and night (34-67%), and badgers were mainly nocturnal (53-87%). Though there were seasonal differences in the amount of activity of each species, specific activity patterns changed little throughout the year. There was a strong difference in annual habitat use by the three species (P < 0.0001). Lynxes used mainly the Mediterranean scrubland during both the active (PMAX) and the resting (PMIN) periods. During PMIN, foxes used the Mediterranean scrubland intensively (40% of locations on average), but during PMAX, they used the pastureland much more intensively despite this habitat being poorer in their main prey (rabbits). As a consequence, foxes and lynxes exhibited segregation in their habitat use during the active period. Badgers also used the Mediterranean scrubland intensively, especially during PMIN. There were no seasonal differences in habitat use for lynx and fox, but there was for badgers (P < 0.015). Within the study area, the three species

  5. The evolutionary genetics of speciation.

    PubMed Central

    Coyne, J A; Orr, H A

    1998-01-01

    The last decade has brought renewed interest in the genetics of speciation, yielding a number of new models and empirical results. Defining speciation as 'the origin of reproductive isolation between two taxa', we review recent theoretical studies and relevant data, emphasizing the regular patterns seen among genetic analyses. Finally, we point out some important and tractable questions about speciation that have been neglected. PMID:9533126

  6. The transcriptomics of ecological convergence between 2 limnetic coregonine fishes (Salmonidae).

    PubMed

    Derome, N; Bernatchez, L

    2006-12-01

    Species living in comparable habitats often display strikingly similar patterns of specialization, suggesting that natural selection can lead to predictable evolutionary changes. Elucidating the genomic basis underlying such adaptive phenotypic changes is a major goal in evolutionary biology. Increasing evidence indicates that natural selection would first modulate gene regulation during the process of population divergence. Previously, we showed that parallel phenotypic adaptations of the dwarf whitefish (Coregonus clupeaformis) ecotype to the limnetic trophic niche involved parallel transcriptional changes at the same genes involved in muscle contraction and energetic metabolism relative to the sympatric normal ecotype. Here, we tested whether the same genes are also implicated in a limnetic specialist species, the cisco (Coregonus artedi), which is the most likely competitor of dwarf whitefish. Significant upregulation was detected in cisco at the same 6 candidate genes functionally involved in modulating swimming activity, namely 5 variants of a major protein of fast muscle and 1 putative catalytic crystallin enzyme. Moreover, 3 of 5 variants and the same putative catalytic crystallin enzyme were upregulated in cisco relative to the dwarf ecotype, indicating a greater physiological potential of the former for exploiting the limnetic trophic niche. This study provides the first empirical evidence that recent, parallel phenotypic evolution toward the use of the same ecological niche occupied by a specialist competitor involved similar adaptive changes in expression at the same genes. As such, this study provides strong support to the general hypothesis that directional selection acting on gene regulation may promote rapid phenotypic divergence and ultimately speciation.

  7. Arsenic Speciation in Groundwater: Role of Thioanions

    EPA Science Inventory

    The behavior of arsenic in groundwater environments is fundamentally linked to its speciation. Understanding arsenic speciation is important because chemical speciation impacts reactivity, bioavailability, toxicity, and transport and fate processes. In aerobic environments arsen...

  8. Arsenic Speciation in Groundwater: Role of Thioanions

    EPA Science Inventory

    The behavior of arsenic in groundwater environments is fundamentally linked to its speciation. Understanding arsenic speciation is important because chemical speciation impacts reactivity, bioavailability, toxicity, and transport and fate processes. In aerobic environments arsen...

  9. SPECIATE--EPA'S DATABASE OF SPECIATED EMISSION PROFILES

    EPA Science Inventory

    SPECIATE is EPA's repository of Total Organic Compound and Particulate Matter speciated profiles for a wide variety of sources. The profiles in this system are provided for air quality dispersion modeling and as a library for source-receptor and source apportionment type models. ...

  10. SPECIATE--EPA'S DATABASE OF SPECIATED EMISSION PROFILES

    EPA Science Inventory

    SPECIATE is EPA's repository of Total Organic Compound and Particulate Matter speciated profiles for a wide variety of sources. The profiles in this system are provided for air quality dispersion modeling and as a library for source-receptor and source apportionment type models. ...

  11. Resolving lost herbivore community structure using coprolites of four sympatric moa species (Aves: Dinornithiformes).

    PubMed

    Wood, Jamie R; Wilmshurst, Janet M; Richardson, Sarah J; Rawlence, Nicolas J; Wagstaff, Steven J; Worthy, Trevor H; Cooper, Alan

    2013-10-15

    Knowledge of extinct herbivore community structuring is essential for assessing the wider ecological impacts of Quaternary extinctions and determining appropriate taxon substitutes for rewilding. Here, we demonstrate the potential for coprolite studies to progress beyond single-species diet reconstructions to resolving community-level detail. The moa (Aves: Dinornithiformes) of New Zealand are an intensively studied group of nine extinct herbivore species, yet many details of their diets and community structuring remain unresolved. We provide unique insights into these aspects of moa biology through analyses of a multispecies coprolite assemblage from a rock overhang in a montane river valley in southern New Zealand. Using ancient DNA (aDNA), we identified 51 coprolites, which included specimens from four sympatric moa species. Pollen, plant macrofossils, and plant aDNA from the coprolites chronicle the diets and habitat preferences of these large avian herbivores during the 400 y before their extinction (∼1450 AD). We use the coprolite data to develop a paleoecological niche model in which moa species were partitioned based on both habitat (forest and valley-floor herbfield) and dietary preferences, the latter reflecting allometric relationships between body size, digestive efficiency, and nutritional requirements. Broad ecological niches occupied by South Island giant moa (Dinornis robustus) and upland moa (Megalapteryx didinus) may reflect sexual segregation and seasonal variation in habitat use, respectively. Our results show that moa lack extant ecological analogs, and their extinction represents an irreplaceable loss of function from New Zealand's terrestrial ecosystems.

  12. Accelerated Diversification of Nonhuman Primate Malarias in Southeast Asia: Adaptive Radiation or Geographic Speciation?

    PubMed Central

    Muehlenbein, Michael P.; Pacheco, M. Andreína; Taylor, Jesse E.; Prall, Sean P.; Ambu, Laurentius; Nathan, Senthilvel; Alsisto, Sylvia; Ramirez, Diana; Escalante, Ananias A.

    2015-01-01

    Although parasitic organisms are found worldwide, the relative importance of host specificity and geographic isolation for parasite speciation has been explored in only a few systems. Here, we study Plasmodium parasites known to infect Asian nonhuman primates, a monophyletic group that includes the lineage leading to the human parasite Plasmodium vivax and several species used as laboratory models in malaria research. We analyze the available data together with new samples from three sympatric primate species from Borneo: The Bornean orangutan and the long-tailed and the pig-tailed macaques. We find several species of malaria parasites, including three putatively new species in this biodiversity hotspot. Among those newly discovered lineages, we report two sympatric parasites in orangutans. We find no differences in the sets of malaria species infecting each macaque species indicating that these species show no host specificity. Finally, phylogenetic analysis of these data suggests that the malaria parasites infecting Southeast Asian macaques and their relatives are speciating three to four times more rapidly than those with other mammalian hosts such as lemurs and African apes. We estimate that these events took place in approximately a 3–4-Ma period. Based on the genetic and phenotypic diversity of the macaque malarias, we hypothesize that the diversification of this group of parasites has been facilitated by the diversity, geographic distributions, and demographic histories of their primate hosts. PMID:25389206

  13. Reproductive character displacement and speciation in periodical cicadas, with description of new species, 13-year Magicicada neotredecem.

    PubMed

    Marshall, D C; Cooley, J R

    2000-08-01

    Acoustic mate-attracting signals of related sympatric, synchronic species are always distinguishable, but those of related allopatric species sometimes are not, thus suggesting that such signals may evolve to "reinforce" premating species isolation when similar species become sympatric. This hypothesis predicts divergences restricted to regions of sympatry in partially overlapping species, but such "reproductive character displacement" has rarely been confirmed. We report such a case in the acoustic signals of a previously unrecognized 13-year periodical cicada species, Magicicada neotredecim, described here as a new species (see Appendix). Where M. neotredecim overlaps M. tredecim in the central United States, the dominant male call pitch (frequency) of M. neotredecim increases from approximately 1.4 kHz to 1.7 kHz, whereas that of M. tredecim remains comparatively stable. The average preferences of female M. neotredecim for call pitch show a similar geographic pattern, changing with the call pitch of conspecific males. Magicicada neotredecim differs from 13-year M. tredecim in abdomen coloration, mitochondrial DNA, and call pitch, but is not consistently distinguishable from 17-year M. septendecim; thus, like other Magicicada species, M. neotredecim appears most closely related to a geographically adjacent counterpart with the alternative life cycle. Speciation in Magicicada may be facilitated by life-cycle changes that create temporal isolation, and reinforcement could play a role by fostering divergence in premating signals prior to speciation. We present two theories of Magicicada speciation by life-cycle evolution: "nurse-brood facilitation" and "life-cycle canalization."

  14. Speciation with gene flow on Lord Howe Island

    PubMed Central

    Papadopulos, Alexander S. T.; Baker, William J.; Crayn, Darren; Butlin, Roger K.; Kynast, Ralf G.; Hutton, Ian; Savolainen, Vincent

    2011-01-01

    Understanding the processes underlying the origin of species is a fundamental goal of biology. It is widely accepted that speciation requires an interruption of gene flow between populations: ongoing gene exchange is considered a major hindrance to population divergence and, ultimately, to the evolution of new species. Where a geographic barrier to reproductive isolation is lacking, a biological mechanism for speciation is required to counterbalance the homogenizing effect of gene flow. Speciation with initially strong gene flow is thought to be extremely rare, and few convincing empirical examples have been published. However, using phylogenetic, karyological, and ecological data for the flora of a minute oceanic island (Lord Howe Island, LHI), we demonstrate that speciation with gene flow may, in fact, be frequent in some instances and could account for one in five of the endemic plant species of LHI. We present 11 potential instances of species divergence with gene flow, including an in situ radiation of five species of Coprosma (Rubiaceae, the coffee family). These results, together with the speciation of Howea palms on LHI, challenge current views on the origin of species diversity. PMID:21730151

  15. Latitude, elevational climatic zonation and speciation in New World vertebrates.

    PubMed

    Cadena, Carlos Daniel; Kozak, Kenneth H; Gómez, Juan Pablo; Parra, Juan Luis; McCain, Christy M; Bowie, Rauri C K; Carnaval, Ana C; Moritz, Craig; Rahbek, Carsten; Roberts, Trina E; Sanders, Nathan J; Schneider, Christopher J; VanDerWal, Jeremy; Zamudio, Kelly R; Graham, Catherine H

    2012-01-07

    Many biodiversity hotspots are located in montane regions, especially in the tropics. A possible explanation for this pattern is that the narrow thermal tolerances of tropical species and greater climatic stratification of tropical mountains create more opportunities for climate-associated parapatric or allopatric speciation in the tropics relative to the temperate zone. However, it is unclear whether a general relationship exists among latitude, climatic zonation and the ecology of speciation. Recent taxon-specific studies obtained different results regarding the role of climate in speciation in tropical versus temperate areas. Here, we quantify overlap in the climatic distributions of 93 pairs of sister species of mammals, birds, amphibians and reptiles restricted to either the New World tropics or to the Northern temperate zone. We show that elevational ranges of tropical- and temperate-zone species do not differ from one another, yet the temperature range experienced by species in the temperate zone is greater than for those in the tropics. Moreover, tropical sister species tend to exhibit greater similarity in their climatic distributions than temperate sister species. This pattern suggests that evolutionary conservatism in the thermal niches of tropical taxa, coupled with the greater thermal zonation of tropical mountains, may result in increased opportunities for allopatric isolation, speciation and the accumulation of species in tropical montane regions. Our study exemplifies the power of combining phylogenetic and spatial datasets of global climatic variation to explore evolutionary (rather than purely ecological) explanations for the high biodiversity of tropical montane regions.

  16. Latitude, elevational climatic zonation and speciation in New World vertebrates

    PubMed Central

    Cadena, Carlos Daniel; Kozak, Kenneth H.; Gómez, Juan Pablo; Parra, Juan Luis; McCain, Christy M.; Bowie, Rauri C. K.; Carnaval, Ana C.; Moritz, Craig; Rahbek, Carsten; Roberts, Trina E.; Sanders, Nathan J.; Schneider, Christopher J.; VanDerWal, Jeremy; Zamudio, Kelly R.; Graham, Catherine H.

    2012-01-01

    Many biodiversity hotspots are located in montane regions, especially in the tropics. A possible explanation for this pattern is that the narrow thermal tolerances of tropical species and greater climatic stratification of tropical mountains create more opportunities for climate-associated parapatric or allopatric speciation in the tropics relative to the temperate zone. However, it is unclear whether a general relationship exists among latitude, climatic zonation and the ecology of speciation. Recent taxon-specific studies obtained different results regarding the role of climate in speciation in tropical versus temperate areas. Here, we quantify overlap in the climatic distributions of 93 pairs of sister species of mammals, birds, amphibians and reptiles restricted to either the New World tropics or to the Northern temperate zone. We show that elevational ranges of tropical- and temperate-zone species do not differ from one another, yet the temperature range experienced by species in the temperate zone is greater than for those in the tropics. Moreover, tropical sister species tend to exhibit greater similarity in their climatic distributions than temperate sister species. This pattern suggests that evolutionary conservatism in the thermal niches of tropical taxa, coupled with the greater thermal zonation of tropical mountains, may result in increased opportunities for allopatric isolation, speciation and the accumulation of species in tropical montane regions. Our study exemplifies the power of combining phylogenetic and spatial datasets of global climatic variation to explore evolutionary (rather than purely ecological) explanations for the high biodiversity of tropical montane regions. PMID:21632626

  17. The drivers of tropical speciation.

    PubMed

    Smith, Brian Tilston; McCormack, John E; Cuervo, Andrés M; Hickerson, Michael J; Aleixo, Alexandre; Cadena, Carlos Daniel; Pérez-Emán, Jorge; Burney, Curtis W; Xie, Xiaoou; Harvey, Michael G; Faircloth, Brant C; Glenn, Travis C; Derryberry, Elizabeth P; Prejean, Jesse; Fields, Samantha; Brumfield, Robb T

    2014-11-20

    Since the recognition that allopatric speciation can be induced by large-scale reconfigurations of the landscape that isolate formerly continuous populations, such as the separation of continents by plate tectonics, the uplift of mountains or the formation of large rivers, landscape change has been viewed as a primary driver of biological diversification. This process is referred to in biogeography as vicariance. In the most species-rich region of the world, the Neotropics, the sundering of populations associated with the Andean uplift is ascribed this principal role in speciation. An alternative model posits that rather than being directly linked to landscape change, allopatric speciation is initiated to a greater extent by dispersal events, with the principal drivers of speciation being organism-specific abilities to persist and disperse in the landscape. Landscape change is not a necessity for speciation in this model. Here we show that spatial and temporal patterns of genetic differentiation in Neotropical birds are highly discordant across lineages and are not reconcilable with a model linking speciation solely to landscape change. Instead, the strongest predictors of speciation are the amount of time a lineage has persisted in the landscape and the ability of birds to move through the landscape matrix. These results, augmented by the observation that most species-level diversity originated after episodes of major Andean uplift in the Neogene period, suggest that dispersal and differentiation on a matrix previously shaped by large-scale landscape events was a major driver of avian speciation in lowland Neotropical rainforests.

  18. Lead Speciation in Microorganisms.

    PubMed

    Stewart, Theodora J

    2017-04-10

    The biogeochemical cycles of lead (Pb) have been largely affected by anthropogenic activities as a result of its high natural abundance and use over the centuries [1]. At sites more strongly impacted by urbanization [2] and mining [3], Pb is found at high nano to low micromolar concentrations in surface waters, and can be significantly higher in soil and sediment [4]. Microorganisms are found everywhere and their responses to Pb exposure can range from resistant to highly sensitive [5, 6]. These varying levels of toxicity can be attributed to the cellular handling of Pb, making it important to understand the role of intracellular Pb speciation for more accurate toxicity predictions.

  19. The geographical pattern of speciation and floral diversification in the neotropics: the tribe sinningieae (gesneriaceae) as a case study.

    PubMed

    Perret, Mathieu; Chautems, Alain; Spichiger, Rodolphe; Barraclough, Timothy G; Savolainen, Vincent

    2007-07-01

    The geographical pattern of speciation and the relationship between floral variation and species ranges were investigated in the tribe Sinningieae (Gesneriaceae), which is found mainly in the Atlantic forests of Brazil. Geographical distribution data recorded on a grid system of 0.5 x 0.5 degree intervals and a near-complete species-level phylogenetic tree of Sinningieae inferred from a simultaneous analysis of seven DNA regions were used to address the role of geographical isolation in speciation. Geographical range overlaps between sister lineages were measured across all nodes in the phylogenetic tree and analyzed in relation to relative ages estimated from branch lengths. Although there are several cases of species sympatry in Sinningieae, patterns of sympatry between sister taxa support the predominance of allopatric speciation. The pattern of sympatry between sister taxa is consistent with range shifts following allopatric speciation, except in one clade, in which the overlapping distribution of recent sister species indicates speciation within a restricted geographical area and involving changes in pollinators and habitats. The relationship between floral divergence and regional sympatry was also examined by analyzing floral contrasts, phenological overlap, and the degree of sympatry between sister clades. Morphological contrast between flowers is not increased in sympatry and phenological divergence is more apparent between allopatric clades than between sympatric clades. Therefore, our results failed to indicate a tendency for sympatric taxa to minimize morphological and phenological overlap (geographic exclusion and/or character displacement hypotheses). Instead, they point toward adaptation in phenology to local conditions and buildup of sympatries at random with respect to flower morphology. Additional studies at a lower geographical scale are needed to identify truely coexisting species and the components of their reproductive isolation.

  20. Speciation and Introgression between Mimulus nasutus and Mimulus guttatus

    PubMed Central

    Flagel, Lex; Coop, Graham; Sweigart, Andrea L.

    2014-01-01

    Mimulus guttatus and M. nasutus are an evolutionary and ecological model sister species pair differentiated by ecology, mating system, and partial reproductive isolation. Despite extensive research on this system, the history of divergence and differentiation in this sister pair is unclear. We present and analyze a population genomic data set which shows that M. nasutus budded from a central Californian M. guttatus population within the last 200 to 500 thousand years. In this time, the M. nasutus genome has accrued genomic signatures of the transition to predominant selfing, including an elevated proportion of nonsynonymous variants, an accumulation of premature stop codons, and extended levels of linkage disequilibrium. Despite clear biological differentiation, we document genomic signatures of ongoing, bidirectional introgression. We observe a negative relationship between the recombination rate and divergence between M. nasutus and sympatric M. guttatus samples, suggesting that selection acts against M. nasutus ancestry in M. guttatus. PMID:24967630

  1. Speciation and introgression between Mimulus nasutus and Mimulus guttatus.

    PubMed

    Brandvain, Yaniv; Kenney, Amanda M; Flagel, Lex; Coop, Graham; Sweigart, Andrea L

    2014-06-01

    Mimulus guttatus and M. nasutus are an evolutionary and ecological model sister species pair differentiated by ecology, mating system, and partial reproductive isolation. Despite extensive research on this system, the history of divergence and differentiation in this sister pair is unclear. We present and analyze a population genomic data set which shows that M. nasutus budded from a central Californian M. guttatus population within the last 200 to 500 thousand years. In this time, the M. nasutus genome has accrued genomic signatures of the transition to predominant selfing, including an elevated proportion of nonsynonymous variants, an accumulation of premature stop codons, and extended levels of linkage disequilibrium. Despite clear biological differentiation, we document genomic signatures of ongoing, bidirectional introgression. We observe a negative relationship between the recombination rate and divergence between M. nasutus and sympatric M. guttatus samples, suggesting that selection acts against M. nasutus ancestry in M. guttatus.

  2. Speciation is associated with changing ornamentation rather than stronger sexual selection.

    PubMed

    Gomes, Ana Cristina R; Sorenson, Michael D; Cardoso, Gonçalo C

    2016-12-01

    Although sexual ornamentation mediates reproductive isolation, comparative evidence does not support the hypothesis that stronger sexual selection promotes speciation. Prior analyses have neglected the possibility that decreases in ornamentation may also promote speciation, such that both increases and decreases in the strength of sexual selection and associated changes in ornamentation promote speciation. To test this hypothesis, we studied color ornamentation in one of the largest and fastest avian radiations, the estrildid finches. We show that more ornamented lineages do not speciate more, even though they tend to have faster rates of ornamental evolution, whereas changes in ornamentation (i.e., increases or decreases) are associated with speciation. This indicates that divergence in sexually selected ornamentation, rather than stronger sexual selection, promotes or is otherwise associated with speciation. We also show that gregariousness and investment in reproduction are related to the elaboration of some ornamental traits, suggesting ecological influences on speciation mediated by ornamentation. We conclude that past work focusing specifically on the strength of sexual selection may have greatly underestimated the importance of sexual ornamentation for speciation.

  3. SPECIATE 4.0: SPECIATION DATABASE DEVELOPMENT DOCUMENTATION--FINAL REPORT

    EPA Science Inventory

    SPECIATE is the U.S. EPA's repository of total organic compounds (TOC) and particulate matter (PM) speciation profiles of air pollution sources. This report documents how EPA developed the SPECIATE 4.0 database that replaces the prior version, SPECIATE 3.2. SPECIATE 4.0 includes ...

  4. SPECIATE 4.0: SPECIATION DATABASE DEVELOPMENT DOCUMENTATION--FINAL REPORT

    EPA Science Inventory

    SPECIATE is the U.S. EPA's repository of total organic compounds (TOC) and particulate matter (PM) speciation profiles of air pollution sources. This report documents how EPA developed the SPECIATE 4.0 database that replaces the prior version, SPECIATE 3.2. SPECIATE 4.0 includes ...

  5. Dietary response of sympatric deer to fire using stable isotope analysis of liver tissue

    USGS Publications Warehouse

    Walter, W. David; Zimmerman, T.J.; Leslie, David M.; Jenks, J.A.

    2009-01-01

    Carbon (??13C) and nitrogen (??15N) isotopes in biological samples from large herbivores identify photosynthetic pathways (C3 vs. C4) of plants they consumed and can elucidate potential nutritional characteristics of dietary selection. Because large herbivores consume a diversity of forage types, ??13C and ??15N in their tissue can index ingested and assimilated diets through time. We assessed ??13C and ??15N in metabolically active liver tissue of sympatric mule deer (Odocoileus hemionus) and white-tailed deer (O. virginianus) to identify dietary disparity resulting from use of burned and unburned areas in a largely forested landscape. Interspecific variation in dietary disparity of deer was documented 2-3 years post-fire in response to lag-time effects of vegetative response to burning and seasonal (i.e., summer, winter) differences in forage type. Liver ??13C for mule deer were lower during winter and higher during summer 2 years post-fire on burned habitat compared to unburned habitat suggesting different forages were consumed by mule deer in response to fire. Liver ??15N for both species were higher on burned than unburned habitat during winter and summer suggesting deer consumed more nutritious forage on burned habitat during both seasons 2 and 3 years post-fire. Unlike traditional methods of dietary assessment that do not measure uptake of carbon and nitrogen from dietary components, analyses of stable isotopes in liver or similar tissue elucidated ??13C and ??15N assimilation from seasonal dietary components and resulting differences in the foraging ecology of sympatric species in response to fire.

  6. Darwin's finches and their diet niches: the sympatric coexistence of imperfect generalists.

    PubMed

    De León, L F; Podos, J; Gardezi, T; Herrel, A; Hendry, A P

    2014-06-01

    Adaptive radiation can be strongly influenced by interspecific competition for resources, which can lead to diverse outcomes ranging from competitive exclusion to character displacement. In each case, sympatric species are expected to evolve into distinct ecological niches, such as different food types, yet this expectation is not always met when such species are examined in nature. The most common hypotheses to account for the coexistence of species with substantial diet overlap rest on temporal variation in niches (often diets). Yet spatial variation in niche overlap might also be important, pointing to the need for spatiotemporal analyses of diet and diet overlap between closely related species persisting in sympatry. We here perform such an analysis by characterizing the diets of, and diet overlap among, four sympatric Darwin's ground finch species at three sites and over 5 years on a single Galápagos island (Santa Cruz). We find that the different species have broadly similar and overlapping diets - they are to some extent generalists and opportunists - yet we also find that each species retains some 'private' resources for which their morphologies are best suited. Importantly, use of these private resources increased considerably, and diet overlap decreased accordingly, when the availability of preferred shared foods, such as arthropods, was reduced during drought conditions. Spatial variation in food resources was also important. These results together suggest that the ground finches are 'imperfect generalists' that use overlapping resources under benign conditions (in space or time), but then retreat to resources for which they are best adapted during periods of food limitation. These conditions likely promote local and regional coexistence. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  7. Contrasting responses to a climate regime change by sympatric, ice-dependent predators.

    PubMed

    Younger, Jane L; van den Hoff, John; Wienecke, Barbara; Hindell, Mark; Miller, Karen J

    2016-03-15

    Models that predict changes in the abundance and distribution of fauna under future climate change scenarios often assume that ecological niche and habitat availability are the major determinants of species' responses to climate change. However, individual species may have very different capacities to adapt to environmental change, as determined by intrinsic factors such as their dispersal ability, genetic diversity, generation time and rate of evolution. These intrinsic factors are usually excluded from forecasts of species' abundance and distribution changes. We aimed to determine the importance of these factors by comparing the impact of the most recent climate regime change, the late Pleistocene glacial-interglacial transition, on two sympatric, ice-dependent meso-predators, the emperor penguin (Aptenodytes forsteri) and Weddell seal (Leptonychotes weddellii). We reconstructed the population trend of emperor penguins and Weddell seals in East Antarctica over the past 75,000 years using mitochondrial DNA sequences and an extended Bayesian skyline plot method. We also assessed patterns of contemporary population structure and genetic diversity. Despite their overlapping distributions and shared dependence on sea ice, our genetic data revealed very different responses to climate warming between these species. The emperor penguin population grew rapidly following the glacial-interglacial transition, but the size of the Weddell seal population did not change. The expansion of emperor penguin numbers during the warm Holocene may have been facilitated by their higher dispersal ability and gene flow among colonies, and fine-scale differences in preferred foraging locations. The vastly different climate change responses of two sympatric ice-dependent predators suggests that differing adaptive capacities and/or fine-scale niche differences can play a major role in species' climate change responses, and that adaptive capacity should be considered alongside niche and

  8. Pollination, breeding system, and genetic structure in two sympatric Delphinium (Ranunculaceae) species.

    PubMed

    Williams, C F; Ruvinsky, J; Scott, P E; Hews, D K

    2001-09-01

    Two sympatric Delphinium species, D. barbeyi and D. nuttallianum, are ecologically and morphologically similar. However, D. barbeyi has multiple, large inflorescences while D. nuttallianum has a single, small inflorescence. These differences in floral display should result in greater intraplant pollen transfer in D. barbeyi, leading to higher rates of self-pollination through geitonogamy. Reduced gene flow by pollen should in turn produce greater population differentiation among populations of D. barbeyi relative to D. nuttallianum. We tested these predictions by comparing pollinator behavior, breeding systems, outcrossing rates, and population genetic structure of sympatric populations of the two species in Colorado. Bumble bee and hummingbird pollinators visit more flowers and inflorescences per foraging bout in D. barbeyi than in D. nuttallianum. The species differed in breeding system; D. barbeyi produced more seeds by autogamy (9 vs. 2%) than D. nuttallianum and suffered no reduction in seed set in hand-self vs. outcross pollinations, in contrast to a 41% decline in D. nuttallianum. The outcrossing rate in one D. barbeyi population was 55%, but ranged from 87 to 97% in four D. nuttallianum populations. Genetic differentiation among population subdivisions estimated by hierarchical F statistics was >10 times greater in D. barbeyi ( = 0.055-0.126) than D. nuttallianum ( = 0.004-0.009) at spatial scales ranging from metres to 3.5 km. Spatial autocorrelation analysis also indicated more pronounced local genetic structure in D. barbeyi than D. nuttallianum populations. Fixation indices (F(IS)) of D. barbeyi adults were much lower than expected based on mating system equilibrium and suggest that differences in the degree of self-compatibility and/or the timing of postpollination selection/inbreeding depression between the two species further contribute to the genetic differences between them.

  9. Genome-wide evidence for speciation with gene flow in Heliconius butterflies

    PubMed Central

    Martin, Simon H.; Dasmahapatra, Kanchon K.; Nadeau, Nicola J.; Salazar, Camilo; Walters, James R.; Simpson, Fraser; Blaxter, Mark; Manica, Andrea; Mallet, James; Jiggins, Chris D.

    2013-01-01

    Most speciation events probably occur gradually, without complete and immediate reproductive isolation, but the full extent of gene flow between diverging species has rarely been characterized on a genome-wide scale. Documenting the extent and timing of admixture between diverging species can clarify the role of geographic isolation in speciation. Here we use new methodology to quantify admixture at different stages of divergence in Heliconius butterflies, based on whole-genome sequences of 31 individuals. Comparisons between sympatric and allopatric populations of H. melpomene, H. cydno, and H. timareta revealed a genome-wide trend of increased shared variation in sympatry, indicative of pervasive interspecific gene flow. Up to 40% of 100-kb genomic windows clustered by geography rather than by species, demonstrating that a very substantial fraction of the genome has been shared between sympatric species. Analyses of genetic variation shared over different time intervals suggested that admixture between these species has continued since early in speciation. Alleles shared between species during recent time intervals displayed higher levels of linkage disequilibrium than those shared over longer time intervals, suggesting that this admixture took place at multiple points during divergence and is probably ongoing. The signal of admixture was significantly reduced around loci controlling divergent wing patterns, as well as throughout the Z chromosome, consistent with strong selection for Müllerian mimicry and with known Z-linked hybrid incompatibility. Overall these results show that species divergence can occur in the face of persistent and genome-wide admixture over long periods of time. PMID:24045163

  10. Evidence of unique and generalist microbes in distantly related sympatric intertidal marine sponges (Porifera: Demospongiae).

    PubMed

    Alex, Anoop; Silva, Vitor; Vasconcelos, Vitor; Antunes, Agostinho

    2013-01-01

    The diversity and specificity of microbial communities in marine environments is a key aspect of the ecology and evolution of both the eukaryotic hosts and their associated prokaryotes. Marine sponges harbor phylogenetically diverse and complex microbial lineages. Here, we investigated the sponge bacterial community and distribution patterns of microbes in three sympatric intertidal marine demosponges, Hymeniacidon perlevis, Ophlitaspongia papilla and Polymastia penicillus, from the Atlantic coast of Portugal using classical isolation techniques and 16S rRNA gene clone libraries. Microbial composition assessment, with nearly full-length 16S rRNA gene sequences (ca. 1400 bp) from the isolates (n = 31) and partial sequences (ca. 280 bp) from clone libraries (n = 349), revealed diverse bacterial communities and other sponge-associated microbes. The majority of the bacterial isolates were members of the order Vibrionales and other symbiotic bacteria like Pseudovibrio ascidiaceiocola, Roseobacter sp., Hahellaceae sp. and Cobetia sp. Extended analyses using ecological metrics comprising 142 OTUs supported the clear differentiation of bacterial community profiles among the sponge hosts and their ambient seawater. Phylogenetic analyses were insightful in defining clades representing shared bacterial communities, particularly between H. perlevis and the geographically distantly-related H. heliophila, but also among other sponges. Furthermore, we also observed three distinct and unique bacterial groups, Betaproteobactria (~81%), Spirochaetes (~7%) and Chloroflexi (~3%), which are strictly maintained in low-microbial-abundance host species O. papilla and P. penicillus. Our study revealed the largely generalist nature of microbial associations among these co-occurring intertidal marine sponges.

  11. Sympatric Masticophis flagellum and Coluber constrictor select vertebrate prey at different levels of taxonomy

    USGS Publications Warehouse

    Halstead, B.J.; Mushinsky, H.R.; McCoy, E.D.

    2008-01-01

    Masticophis flagellum (Coachwhip) and Coluber constrictor (Eastern Racer) are widespread North American snakes with similar foraging modes and habits. Little is known about the selection of prey by either species, and despite their apparently similar foraging habits, comparative studies of the foraging ecology of sympatric M. flagellum and C. constrictor are lacking. We examined the foraging ecology and prey selection of these actively foraging snakes in xeric, open-canopied Florida scrub habitat by defining prey availability separately for each snake to elucidate mechanisms underlying geographic, temporal, and interspecific variation in predator diets. Nineteen percent of M. flagellum and 28% of C. constrictor contained stomach contents, and most snakes contained only one prey item. Mean relative prey mass for both species was less than 10%. Larger C. constrictor consumed larger prey than small individuals, but this relationship disappeared when prey size was scaled to snake size. Masticophis flagellum was selective at the prey category level, and positively selected lizards and mammals; however, within these categories it consumed prey species in proportion to their availability. In contrast, C. constrictor preyed upon prey categories opportunistically, but was selective with regard to species. Specifically, C. constrictor positively selected Hyla femoralis (Pine Woods Treefrog) and negatively selected Bufo querclcus (Oak Toad), B. terrestris (Southern Toad), and Gastrophryne carolinensis (Eastern Narrowmouth Toad). Thus, despite their similar foraging habits, M. flagellum and C. constrictor select different prey and are selective of prey at different levels of taxonomy. ?? 2008 by the American Society of Ichthyologists and Herpetologists.

  12. Socially segregated, sympatric sperm whale clans in the Atlantic Ocean

    PubMed Central