Sensory Processing in Preterm Preschoolers and Its Association with Executive Function
Adams, Jenna N.; Feldman, Heidi M.; Huffman, Lynne C.; Loe, Irene M.
2015-01-01
Background Symptoms of abnormal sensory processing have been related to preterm birth, but have not yet been studied specifically in preterm preschoolers. The degree of association between sensory processing and other domains is important for understanding the role of sensory processing symptoms in the development of preterm children. Aims To test two related hypotheses: (1) preterm preschoolers have more sensory processing symptoms than full term preschoolers and (2) sensory processing is associated with both executive function and adaptive function in preterm preschoolers. Study Design Cross-sectional study Subjects Preterm children (≤34 weeks of gestation; n = 54) and full term controls (≥37 weeks of gestation; n = 73) ages 3-5 years. Outcome Measures Sensory processing was assessed with the Short Sensory Profile. Executive function was assessed with (1) parent ratings on the Behavior Rating Inventory of Executive Function- Preschool version and (2) a performance-based battery of tasks. Adaptive function was assessed with the Vineland Adaptive Behavior Scales-II. Results Preterm preschoolers showed significantly more sensory symptoms than full term controls. A higher percentage of preterm than full term preschoolers had elevated numbers of sensory symptoms (37% vs. 12%). Sensory symptoms in preterm preschoolers were associated with scores on executive function measures, but were not significantly associated with adaptive function. Conclusions Preterm preschoolers exhibited more sensory symptoms than full term controls. Preterm preschoolers with elevated numbers of sensory symptoms also showed executive function impairment. Future research should further examine whether sensory processing and executive function should be considered independent or overlapping constructs. PMID:25706317
ERIC Educational Resources Information Center
McCormick, Carolyn; Hepburn, Susan; Young, Gregory S.; Rogers, Sally J.
2016-01-01
Sensory symptoms are prevalent in autism spectrum disorder but little is known about the early developmental patterns of these symptoms. This study examined the development of sensory symptoms and the relationship between sensory symptoms and adaptive functioning during early childhood. Three groups of children were followed across three time…
Case Series: Sensory Intolerance as a Primary Symptom of Pediatric OCD
HAZEN, ERIC P.; REICHERT, ELIZABETH L.; PIACENTINI, JOHN C.; MIGUEL, EURÍPEDES CONSTANTINO; DO ROSARIO, MARIA CONCEIÇÃO; PAULS, DAVID; GELLER, DANIEL A.
2013-01-01
Introduction Marked intolerance or intrusive re-experiencing of ordinary sensory stimuli that in turn drive functionally impairing compulsive behaviors are occasionally seen in young children with OCD. Methods We describe a number of children with DSM-IV OCD ascertained from a family genetic study of pediatric OCD, whose intolerance of ordinary sensory stimuli created significant subjective distress and time-consuming ritualistic behavior that was clinically impairing. Results In each case, these sensory symptoms were the primary presenting symptoms and were experienced in the absence of intrusive thoughts, images, or ideas associated with “conventional” OCD symptoms. Conclusions These symptoms suggest abnormalities in sensory processing and integration in at least a subset of OCD patients. Recognition of these sensory symptoms and sensory-driven behaviors as part of the broad phenotypic variation in children with OCD could help clinicians more easily identify OCD patients and facilitate treatment. PMID:19034751
Stone, Jon; Mutch, Jennifer; Giannokous, Denis; Hoeritzauer, Ingrid; Carson, Alan
2017-10-15
Symptoms and signs of functional (psychogenic) motor and sensory disorder are often said to be dependent on the patients' idea of what symptoms should be, rather than anatomy and physiology. This hypothesis has however rarely been tested. Inspired by a brief experiment carried out in 1919 by neurologist Arthur Hurst we aimed to assess the views of healthy non-medical adults towards paralysis and numbness and their response to tests for functional disorders when asked to pretend to have motor and sensory symptoms. When subjects were asked to pretend they had a paralysed arm 80% thought there would be sensory loss. Of these 60% thought it would have a circumferential (functional) distribution at the wrist, elbow or shoulder. Hoover's sign of functional weakness was only positive in 75% of patients pretending to have leg paralysis with 23% maintaining weakness of hip extension in the feigned weak leg, a rare finding in neurological practice. 20% of subjects managed to continue having their feigned tremor during the entrainment test. 52% of subjects thought there was asymmetry of a tuning fork across their forehead even when no prior instruction had been given. The study confirmed Hurst's finding that non-medical people generally expect sensory loss to go along with paralysis, especially if the examiner suggests it. When present, it usually conforms to functional patterns of sensory loss. Clinical tests for functional and motor disorders appear to behave somewhat differently in patients asked to pretend to have symptoms suggesting that larger more detailed studies would be worthwhile. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Minshew, Nancy J.; Hobson, Jessica A.
2008-01-01
Most reports of sensory symptoms in autism are second hand or observational, and there is little evidence of a neurological basis. Sixty individuals with high-functioning autism and 61 matched typical participants were administered a sensory questionnaire and neuropsychological tests of elementary and higher cortical sensory perception. Thirty-two…
A Bayesian account of ‘hysteria’
Adams, Rick A.; Brown, Harriet; Pareés, Isabel; Friston, Karl J.
2012-01-01
This article provides a neurobiological account of symptoms that have been called ‘hysterical’, ‘psychogenic’ or ‘medically unexplained’, which we will call functional motor and sensory symptoms. We use a neurobiologically informed model of hierarchical Bayesian inference in the brain to explain functional motor and sensory symptoms in terms of perception and action arising from inference based on prior beliefs and sensory information. This explanation exploits the key balance between prior beliefs and sensory evidence that is mediated by (body focused) attention, symptom expectations, physical and emotional experiences and beliefs about illness. Crucially, this furnishes an explanation at three different levels: (i) underlying neuromodulatory (synaptic) mechanisms; (ii) cognitive and experiential processes (attention and attribution of agency); and (iii) formal computations that underlie perceptual inference (representation of uncertainty or precision). Our explanation involves primary and secondary failures of inference; the primary failure is the (autonomous) emergence of a percept or belief that is held with undue certainty (precision) following top-down attentional modulation of synaptic gain. This belief can constitute a sensory percept (or its absence) or induce movement (or its absence). The secondary failure of inference is when the ensuing percept (and any somatosensory consequences) is falsely inferred to be a symptom to explain why its content was not predicted by the source of attentional modulation. This account accommodates several fundamental observations about functional motor and sensory symptoms, including: (i) their induction and maintenance by attention; (ii) their modification by expectation, prior experience and cultural beliefs and (iii) their involuntary and symptomatic nature. PMID:22641838
Cortico-Cortical Connections of Primary Sensory Areas and Associated Symptoms in Migraine.
Hodkinson, Duncan J; Veggeberg, Rosanna; Kucyi, Aaron; van Dijk, Koene R A; Wilcox, Sophie L; Scrivani, Steven J; Burstein, Rami; Becerra, Lino; Borsook, David
2016-01-01
Migraine is a recurring, episodic neurological disorder characterized by headache, nausea, vomiting, and sensory disturbances. These events are thought to arise from the activation and sensitization of neurons along the trigemino-vascular pathway. From animal studies, it is known that thalamocortical projections play an important role in the transmission of nociceptive signals from the meninges to the cortex. However, little is currently known about the potential involvement of cortico-cortical feedback projections from higher-order multisensory areas and/or feedforward projections from principle primary sensory areas or subcortical structures. In a large cohort of human migraine patients ( N = 40) and matched healthy control subjects ( N = 40), we used resting-state intrinsic functional connectivity to examine the cortical networks associated with the three main sensory perceptual modalities of vision, audition, and somatosensation. Specifically, we sought to explore the complexity of the sensory networks as they converge and become functionally coupled in multimodal systems. We also compared self-reported retrospective migraine symptoms in the same patients, examining the prevalence of sensory symptoms across the different phases of the migraine cycle. Our results show widespread and persistent disturbances in the perceptions of multiple sensory modalities. Consistent with this observation, we discovered that primary sensory areas maintain local functional connectivity but express impaired long-range connections to higher-order association areas (including regions of the default mode and salience network). We speculate that cortico-cortical interactions are necessary for the integration of information within and across the sensory modalities and, thus, could play an important role in the initiation of migraine and/or the development of its associated symptoms.
Depressive and Anxiety Symptoms in Older Adults With Auditory, Vision, and Dual Sensory Impairment.
Simning, Adam; Fox, Meghan L; Barnett, Steven L; Sorensen, Silvia; Conwell, Yeates
2018-06-01
The objective of the study is to examine the association of auditory, vision, and dual sensory impairment with late-life depressive and anxiety symptoms. Our study included 7,507 older adults from the National Health & Aging Trends Study, a nationally representative sample of U.S. Medicare beneficiaries. Auditory and vision impairment were determined by self-report, and depressive and anxiety symptoms were evaluated by the two-item Patient Health Questionnaire (PHQ-2) and two-item Generalized Anxiety Disorder Scale (GAD-2), respectively. Auditory, vision, and dual impairment were associated with an increased risk of depressive and anxiety symptoms in multivariable analyses accounting for sociodemographics, medical comorbidity, and functional impairment. Auditory, vision, and dual impairment were also associated with an increased risk for depressive and anxiety symptoms that persist or were of new onset after 1 year. Screening older adults with sensory impairments for depression and anxiety, and screening those with late-life depression and anxiety for sensory impairments, may identify treatment opportunities to optimize health and well-being.
Kano, Yukiko; Matsuda, Natsumi; Nonaka, Maiko; Fujio, Miyuki; Kuwabara, Hitoshi; Kono, Toshiaki
2015-10-01
Sensory phenomena, including premonitory urges, are experienced by patients with Tourette syndrome (TS) and obsessive-compulsive disorder (OCD). The goal of the present study was to investigate such phenomena related to tics, obsessive-compulsive symptoms (OCS), and global functioning in Japanese patients with TS. Forty-one patients with TS were assessed using the University of São Paulo Sensory Phenomena Scale (USP-SPS), the Premonitory Urge for Tics Scale (PUTS), the Yale Global Tic Severity Scale (YGTSS), the Dimensional Yale-Brown Obsessive-Compulsive Scale (DY-BOCS), and the Global Assessment of Functioning (GAF) Scale. USP-SPS and PUTS total scores were significantly correlated with YGTSS total and vocal tics scores. Additionally, both sensory phenomena severity scores were significantly correlated with DY-BOCS total OCS scores. Of the six dimensional OCS scores, the USP-SPS scores were significantly correlated with measures of aggression and sexual/religious dimensions. Finally, the PUTS total scores were significantly and negatively correlated with GAF scores. By assessing premonitory urges and broader sensory phenomena, and by viewing OCS from a dimensional approach, this study provides significant insight into sensory phenomena related to tics, OCS, and global functioning in patients with TS. Copyright © 2015 Elsevier Inc. All rights reserved.
Yamada, Yukari; Vlachova, Martina; Richter, Tomas; Finne-Soveri, Harriet; Gindin, Jacob; van der Roest, Henriëtte; Denkinger, Michael D; Bernabei, Roberto; Onder, Graziano; Topinkova, Eva
2014-10-01
Visual and hearing impairments are known to be related to functional disability, cognitive impairment, and depression in community-dwelling older people. The aim of this study was to examine the prevalence of sensory impairment in nursing home residents, and whether sensory impairment is related to other common clinical problems in nursing homes, mediated by functional disability, cognitive impairment, and depressive symptoms. Cross-sectional data of 4007 nursing home residents in 59 facilities in 8 countries from the SHELTER study were analyzed. Visual and hearing impairments were assessed by trained staff using the interRAI instrument for Long-Term Care Facilities. Generalized linear mixed models adjusted for functional disability, cognitive impairment, and depressive symptoms were used to analyze associations of sensory impairments with prevalence of clinical problems, including behavioral symptoms, incontinence, fatigue, falls, problems with balance, sleep, nutrition, and communication. Of the participants, 32% had vision or hearing impairment (single impairment) and another 32% had both vision and hearing impairments (dual impairment). Residents with single impairment had significantly higher rates of communication problems, fatigue, balance problems, and sleep problems, as compared with residents without any sensory impairment. Those with dual impairment had significantly higher rates of all clinical problems assessed in this study as compared with those without sensory impairment. For each clinical problem, the magnitude of the odds ratio for specific clinical problems was higher for dual impairment than for single impairment. Visual and hearing impairments are associated with higher rates of common clinical problems among nursing home residents, independent of functional disability, cognitive impairment, and depressive symptoms. Copyright © 2014 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Sensory Intolerance: Latent Structure and Psychopathologic Correlates
Taylor, Steven; Conelea, Christine A.; McKay, Dean; Crowe, Katherine B.; Abramowitz, Jonathan S.
2014-01-01
Background Sensory intolerance refers to high levels of distress evoked by everyday sounds (e.g., sounds of people chewing) or commonplace tactile sensations (e.g., sticky or greasy substances). Sensory intolerance may be associated with obsessive-compulsive (OC) symptoms, OC-related phenomena, and other forms of psychopathology. Sensory intolerance is not included as a syndrome in current diagnostic systems, although preliminary research suggests that it might be a distinct syndrome. Objectives First, to investigate the latent structure of sensory intolerance in adults; that is, to investigate whether it is syndrome-like in nature, in which auditory and tactile sensory intolerance co-occur and are associated with impaired functioning. Second, to investigate the psychopathologic correlates of sensory intolerance. In particular, to investigate whether sensory intolerance is associated with OC-related phenomena, as suggested by previous research. Method A sample of 534 community-based participants were recruited via Amazon.com’s Mechanical Turk program. Participants completed measures of sensory intolerance, OC-related phenomena, and general psychopathology. Results Latent class analysis revealed two classes of individuals: Those who were intolerant of both auditory and tactile stimuli (n = 150), and those who were relatively undisturbed by auditory or tactile stimuli (n = 384). Sensory intolerant individuals, compared to those who were comparatively sensory tolerant, had greater scores on indices of general psychopathology, more severe OC symptoms, a higher likelihood of meeting caseness criteria for OC disorder, elevated scores on measures of OC-related dysfunctional beliefs, a greater tendency to report OC-related phenomena (e.g., a greater frequency of tics), and more impairment on indices of social and occupational functioning. Sensory intolerant individuals had significantly higher scores on OC symptoms even after controlling for general psychopathology. Conclusions Consistent with recent research, these findings provide further evidence for a sensory intolerance syndrome. The findings provide a rationale for conducting future research for determining whether a sensory intolerance syndrome should be included in the diagnostic nomenclature. PMID:24703593
Sensory functioning and personality development among older adults.
Stephan, Yannick; Sutin, Angelina R; Bosselut, Grégoire; Terracciano, Antonio
2017-03-01
Deficits in sensory functioning, such as poor vision and hearing, take a significant toll on quality of life. Little is known, however, about their relation with personality development across adulthood. This study examined whether baseline and change in vision and hearing were associated with personality change over a 4-year period. Participants (N = 7,471; Mage = 66.89; 59% women) were drawn from the Health and Retirement Study. They provided data on vision, hearing, and personality both at baseline and 4 years later. Poor vision and hearing at baseline and declines in vision and hearing over time were independently related to steeper declines in extraversion, agreeableness, openness, and conscientiousness, and less decline in neuroticism, controlling for demographic factors, disease burden, and depressive symptoms. Sensory functioning was generally a stronger predictor of personality change than disease burden or depressive symptoms. Consistent with evidence that poor and worsening sensory functions compromise individuals' interactions with the social and physical environment, this study found deficits in hearing and vision were also associated with maladaptive personality trajectories in older adults. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
The relationship of nerve fibre pathology to sensory function in entrapment neuropathy
Schmid, Annina B.; Bland, Jeremy D. P.; Bhat, Manzoor A.
2014-01-01
Surprisingly little is known about the impact of entrapment neuropathy on target innervation and the relationship of nerve fibre pathology to sensory symptoms and signs. Carpal tunnel syndrome is the most common entrapment neuropathy; the aim of this study was to investigate its effect on the morphology of small unmyelinated as well as myelinated sensory axons and relate such changes to somatosensory function and clinical symptoms. Thirty patients with a clinical and electrophysiological diagnosis of carpal tunnel syndrome [17 females, mean age (standard deviation) 56.4 (15.3)] and 26 age and gender matched healthy volunteers [18 females, mean age (standard deviation) 51.0 (17.3)] participated in the study. Small and large fibre function was examined with quantitative sensory testing in the median nerve territory of the hand. Vibration and mechanical detection thresholds were significantly elevated in patients with carpal tunnel syndrome (P < 0.007) confirming large fibre dysfunction and patients also presented with increased thermal detection thresholds (P < 0.0001) indicative of C and Aδ-fibre dysfunction. Mechanical and thermal pain thresholds were comparable between groups (P > 0.13). A skin biopsy was taken from a median nerve innervated area of the proximal phalanx of the index finger. Immunohistochemical staining for protein gene product 9.5 and myelin basic protein was used to evaluate morphological features of unmyelinated and myelinated axons. Evaluation of intraepidermal nerve fibre density showed a striking loss in patients (P < 0.0001) confirming a significant compromise of small fibres. The extent of Meissner corpuscles and dermal nerve bundles were comparable between groups (P > 0.07). However, patients displayed a significant increase in the percentage of elongated nodes (P < 0.0001), with altered architecture of voltage-gated sodium channel distribution. Whereas neither neurophysiology nor quantitative sensory testing correlated with patients’ symptoms or function deficits, the presence of elongated nodes was inversely correlated with a number of functional and symptom related scores (P < 0.023). Our findings suggest that carpal tunnel syndrome does not exclusively affect large fibres but is associated with loss of function in modalities mediated by both unmyelinated and myelinated sensory axons. We also document for the first time that entrapment neuropathies lead to a clear reduction in intraepidermal nerve fibre density, which was independent of electrodiagnostic test severity. The presence of elongated nodes in the target tissue further suggests that entrapment neuropathies affect nodal structure/myelin well beyond the focal compression site. Interestingly, nodal lengthening may be an adaptive phenomenon as it inversely correlates with symptom severity. PMID:25348629
Phenomenology of hallucinations, illusions, and delusions as part of seizure semiology.
Kasper, B S; Kasper, E M; Pauli, E; Stefan, H
2010-05-01
In partial epilepsy, a localized hypersynchronous neuronal discharge evolving into a partial seizure affecting a particular cortical region or cerebral subsystem can give rise to subjective symptoms, which are perceived by the affected person only, that is, ictal hallucinations, illusions, or delusions. When forming the beginning of a symptom sequence leading to impairment of consciousness and/or a classic generalized seizure, these phenomena are referred to as an epileptic aura, but they also occur in isolation. They often manifest in the fully awake state, as part of simple partial seizures, but they also can be associated to different degrees of disturbed consciousness. Initial ictal symptoms often are closely related to the physiological functions of the cortical circuit involved and, therefore, can provide localizing information. When brain regions related to sensory integration are involved, the seizure discharge can cause specific kinds of hallucinations, for example, visual, auditory, gustatory, olfactory, and cutaneous sensory sensations. In addition to these elementary sensory perceptions, quite complex hallucinations related to a partial seizure can arise, for example, perception of visual scenes or hearing music. By involving psychic and emotional spheres of human perception, many seizures also give rise to hallucinatory emotional states (e.g., fear or happiness) or even more complex hallucinations (e.g., visuospatial phenomena), illusions (e.g., déjà vu, out-of-body experience), or delusional beliefs (e.g., identity change) that often are not easily recognized as epileptic. Here we suggest a classification into elementary sensory, complex sensory, and complex integratory seizure symptoms. Epileptic hallucinations, illusions, and delusions shine interesting light on the physiology and functional anatomy of brain regions involved and their functions in the human being. This article, in which 10 cases are described, introduces the fascinating phenomenology of subjective seizure symptoms. Copyright (c) 2010 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Quigley, Shawn P.; Peterson, Lloyd; Frieder, Jessica E.; Peterson, Stephanie
2011-01-01
Weighted vests are a specific form of Sensory Integration Therapy (SIT) (Honaker, 2005a) that are intended to help individuals resolve sensory related issues thereby decreasing the symptoms (e.g., hyperness, lack of attention, etc.) of the sensory issue and are also often recommended as an intervention for problem behaviors exhibited by children…
Nasiri, Hamid; Ebrahimi, Amrollah; Zahed, Arash; Arab, Mostafa; Samouei, Rahele
2015-05-01
Functional neurological symptom disorder commonly presents with symptoms and defects of sensory and motor functions. Therefore, it is often mistaken for a medical condition. It is well known that functional neurological symptom disorder more often caused by psychological factors. There are three main approaches namely analytical, cognitive and biological to manage conversion disorder. Any of such approaches can be applied through short-term treatment programs. In this case, study a 12-year-old boy with the diagnosed functional neurological symptom disorder (psychogenic myopia) was put under a cognitive-analytical treatment. The outcome of this treatment modality was proved successful.
Neuropathic sensory symptoms: association with pain and psychological factors
Shaygan, Maryam; Böger, Andreas; Kröner-Herwig, Birgit
2014-01-01
Background A large number of population-based studies of chronic pain have considered neuropathic sensory symptoms to be associated with a high level of pain intensity and negative affectivity. The present study examines the question of whether this association previously found in non-selected samples of chronic pain patients can also be found in chronic pain patients with underlying pathology of neuropathic sensory symptoms. Methods Neuropathic sensory symptoms in 306 patients with chronic pain diagnosed as typical neuropathic pain, radiculopathy, fibromyalgia, or nociceptive back pain were assessed using the Pain DETECT Questionnaire. Two separate cluster analyses were performed to identify subgroups of patients with different levels of self-reported neuropathic sensory symptoms and, furthermore, to identify subgroups of patients with distinct patterns of neuropathic sensory symptoms (adjusted for individual response bias regarding specific symptoms). Results ANOVA (analysis of variance) results in typical neuropathic pain, radiculopathy, and fibromyalgia showed no significant differences between the three levels of neuropathic sensory symptoms regarding pain intensity, pain chronicity, pain catastrophizing, pain acceptance, and depressive symptoms. However, in nociceptive back pain patients, significant differences were found for all variables except pain chronicity. When controlling for the response bias of patients in ratings of symptoms, none of the patterns of neuropathic sensory symptoms were associated with pain and psychological factors. Conclusion Neuropathic sensory symptoms are not closely associated with higher levels of pain intensity and cognitive-emotional evaluations in chronic pain patients with underlying pathology of neuropathic sensory symptoms. The findings are discussed in term of differential response bias in patients with versus without verified neuropathic sensory symptoms by clinical examination, medical tests, or underlying pathology of disease. Our results lend support to the importance of using adjusted scores, thereby eliminating the response bias, when investigating self-reported neuropathic symptoms by patients. PMID:24899808
Ginanneschi, Federica; Mondelli, Mauro; Rossi, Alessandro
2012-10-01
Functional reorganization in the somatosensory network after peripheral nerve lesions has been suspected to modify the clinical expression of symptoms. However, no conclusive evidence exists to support this notion. We addressed this question by investigating the topographic distribution of the subjective sensory report in various chronic human mononeuropathies. We report the clinical results of 86 patients who were diagnosed with meralgia paresthetica, 86 patients with ulnar neuropathy at the elbow, and 203 patients with carpal tunnel syndrome. In the carpal tunnel syndrome group, 10% of the patients exhibited a spread of sensory symptoms beyond the innervation territory of the median nerve. As previously reported, this spread was contingent upon an indirect compressive lesion of the ulnar nerve at the wrist. In all of the patients who were affected with meralgia paresthetica or ulnar neuropathy at the elbow, the peripheral referral of sensation was always within the anatomic distribution of the affected nerve. In human neuropathies, the projected sensory symptoms are restricted to the innervation territories of the affected nerves, with no extraterritorial spread. Thus, the somatosensory localization function remains accurate, despite the central reorganization that presumably occurs after nerve injury. We conclude that reorganization of the sensory connections within the central nervous system after peripheral nerve injury in humans is a clinically silent adaptive phenomenon.
Baum, Sarah H.; Stevenson, Ryan A.; Wallace, Mark T.
2015-01-01
Although sensory processing challenges have been noted since the first clinical descriptions of autism, it has taken until the release of the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) in 2013 for sensory problems to be included as part of the core symptoms of autism spectrum disorder (ASD) in the diagnostic profile. Because sensory information forms the building blocks for higher-order social and cognitive functions, we argue that sensory processing is not only an additional piece of the puzzle, but rather a critical cornerstone for characterizing and understanding ASD. In this review we discuss what is currently known about sensory processing in ASD, how sensory function fits within contemporary models of ASD, and what is understood about the differences in the underlying neural processing of sensory and social communication observed between individuals with and without ASD. In addition to highlighting the sensory features associated with ASD, we also emphasize the importance of multisensory processing in building perceptual and cognitive representations, and how deficits in multisensory integration may also be a core characteristic of ASD. PMID:26455789
Voon, Valerie; Cavanna, Andrea E; Coburn, Kerry; Sampson, Shirlene; Reeve, Alya; LaFrance, W Curt
2016-01-01
Much is known regarding the physical characteristics, comorbid symptoms, psychological makeup, and neuropsychological performance of patients with functional neurological disorders (FNDs)/conversion disorders. Gross neurostructural deficits do not account for the patients' deficits or symptoms. This review describes the literature focusing on potential neurobiological (i.e. functional neuroanatomic/neurophysiological) findings among individuals with FND, examining neuroimaging and neurophysiological studies of patients with the various forms of motor and sensory FND. In summary, neural networks and neurophysiologic mechanisms may mediate "functional" symptoms, reflecting neurobiological and intrapsychic processes.
ERIC Educational Resources Information Center
Salami, Fatemeh; Ashayeri, Hassan; Estaki, Mahnaz; Farzad, Valiollah; Entezar, Roya Koochak
2017-01-01
The aim of the present study is to examine the effectiveness of combination therapy based on executive function and sensory integration child-centered on ADHD. For this purpose, from among all first, second and third grade primary school students in Shiraz, 40 children were selected. The selected students were randomly assigned in two groups of…
Genetic Variation in Serotonin Transporter Modulates Tactile Hyperresponsiveness in ASD
Schauder, Kimberly B.; Muller, Christopher L.; Veenstra-VanderWeele, Jeremy; Cascio, Carissa J.
2014-01-01
Several lines of evidence implicate dysfunction of the serotonin (5-HT) system in autism spectrum disorder (ASD). Specifically, the serotonin transporter (5-HTT, SERT) has been scrutinized as an ASD candidate risk gene. SERT plays key roles in the development of circuits that underlie sensory function, particularly in the somatosensory system. One previous study in ASD found association of a rare, hyperfunctional SERT variant with sensory aversion, but studies of common SERT variants have never examined sensory symptoms in ASD. Using standardized caregiver assessments of sensory function in children, we evaluated patterns of sensory responsiveness in 47 children with ASD and 38 typically developing (TD) children. Study participants were genotyped for the functional SERT promoter polymorphisms, 5-HTTLPR and rs25531, to test the hypothesis that the higher expressing genotypes would be associated with hyperresponsiveness to touch, a common sensory aversion in ASD. All measures of sensory hypo- and hyperresponsiveness were increased in children with ASD, with hyporesponsive sensory patterns negatively correlated to age and hyperresponsive sensory patterns positively correlated to repetitive behavior. Strikingly, high-expressing SERT genotypes were associated with increased tactile hyperresponsiveness in the ASD group. Our findings indicate genetic variation that increases SERT function may specifically impact somatosensory processing in ASD. PMID:25558276
A novel symptom cluster analysis among ambulatory HIV/AIDS patients in Uganda.
Namisango, Eve; Harding, Richard; Katabira, Elly T; Siegert, Richard J; Powell, Richard A; Atuhaire, Leonard; Moens, Katrien; Taylor, Steve
2015-01-01
Symptom clusters are gaining importance given HIV/AIDS patients experience multiple, concurrent symptoms. This study aimed to: determine clusters of patients with similar symptom combinations; describe symptom combinations distinguishing the clusters; and evaluate the clusters regarding patient socio-demographic, disease and treatment characteristics, quality of life (QOL) and functional performance. This was a cross-sectional study of 302 adult HIV/AIDS outpatients consecutively recruited at two teaching and referral hospitals in Uganda. Socio-demographic and seven-day period symptom prevalence and distress data were self-reported using the Memorial Symptom Assessment Schedule. QOL was assessed using the Medical Outcome Scale and functional performance using the Karnofsky Performance Scale. Symptom clusters were established using hierarchical cluster analysis with squared Euclidean distances using Ward's clustering methods based on symptom occurrence. Analysis of variance compared clusters on mean QOL and functional performance scores. Patient subgroups were categorised based on symptom occurrence rates. Five symptom occurrence clusters were identified: Cluster 1 (n=107), high-low for sensory discomfort and eating difficulties symptoms; Cluster 2 (n=47), high-low for psycho-gastrointestinal symptoms; Cluster 3 (n=71), high for pain and sensory disturbance symptoms; Cluster 4 (n=35), all high for general HIV/AIDS symptoms; and Cluster 5 (n=48), all low for mood-cognitive symptoms. The all high occurrence cluster was associated with worst functional status, poorest QOL scores and highest symptom-associated distress. Use of antiretroviral therapy was associated with all high symptom occurrence rate (Fisher's exact=4, P<0.001). CD4 count group below 200 was associated with the all high occurrence rate symptom cluster (Fisher's exact=41, P<0.001). Symptom clusters have a differential, affect HIV/AIDS patients' self-reported outcomes, with the subgroup experiencing high-symptom occurrence rates having a higher risk of poorer outcomes. Identification of symptom clusters could provide insights into commonly co-occurring symptoms that should be jointly targeted for management in patients with multiple complaints.
Wolny, Tomasz; Saulicz, Edward; Linek, Paweł; Shacklock, Michael; Myśliwiec, Andrzej
2017-05-01
The purpose of this randomized trial was to compare the efficacy of manual therapy, including the use of neurodynamic techniques, with electrophysical modalities on patients with mild and moderate carpal tunnel syndrome (CTS). The study included 140 CTS patients who were randomly assigned to the manual therapy (MT) group, which included the use of neurodynamic techniques, functional massage, and carpal bone mobilizations techniques, or to the electrophysical modalities (EM) group, which included laser and ultrasound therapy. Nerve conduction, pain severity, symptom severity, and functional status measured by the Boston Carpal Tunnel Questionnaire were assessed before and after treatment. Therapy was conducted twice weekly and both groups received 20 therapy sessions. A baseline assessment revealed group differences in sensory conduction of the median nerve (P < .01) but not in motor conduction (P = .82). Four weeks after the last treatment procedure, nerve conduction was examined again. In the MT group, median nerve sensory conduction velocity increased by 34% and motor conduction velocity by 6% (in both cases, P < .01). There was no change in median nerve sensory and motor conduction velocities in the EM. Distal motor latency was decreased (P < .01) in both groups. A baseline assessment revealed no group differences in pain severity, symptom severity, or functional status. Immediately after therapy, analysis of variance revealed group differences in pain severity (P < .01), with a reduction in pain in both groups (MT: 290%, P < .01; EM: 47%, P < .01). There were group differences in symptom severity (P < .01) and function (P < .01) on the Boston Carpal Tunnel Questionnaire. Both groups had an improvement in functional status (MT: 47%, P < .01; EM: 9%, P < .01) and a reduction in subjective CTS symptoms (MT: 67%, P < .01; EM: 15%, P < .01). Both therapies had a positive effect on nerve conduction, pain reduction, functional status, and subjective symptoms in individuals with CTS. However, the results regarding pain reduction, subjective symptoms, and functional status were better in the MT group. Copyright © 2017. Published by Elsevier Inc.
Complex interaction of sensory and motor signs and symptoms in chronic CRPS.
Huge, Volker; Lauchart, Meike; Magerl, Walter; Beyer, Antje; Moehnle, Patrick; Kaufhold, Wibke; Schelling, Gustav; Azad, Shahnaz Christina
2011-04-29
Spontaneous pain, hyperalgesia as well as sensory abnormalities, autonomic, trophic, and motor disturbances are key features of Complex Regional Pain Syndrome (CRPS). This study was conceived to comprehensively characterize the interaction of these symptoms in 118 patients with chronic upper limb CRPS (duration of disease: 43±23 months). Disease-related stress, depression, and the degree of accompanying motor disability were likewise assessed. Stress and depression were measured by Posttraumatic Stress Symptoms Score and Center for Epidemiological Studies Depression Test. Motor disability of the affected hand was determined by Sequential Occupational Dexterity Assessment and Michigan Hand Questionnaire. Sensory changes were assessed by Quantitative Sensory Testing according to the standards of the German Research Network on Neuropathic Pain. Almost two-thirds of all patients exhibited spontaneous pain at rest. Hand force as well as hand motor function were found to be substantially impaired. Results of Quantitative Sensory Testing revealed a distinct pattern of generalized bilateral sensory loss and hyperalgesia, most prominently to blunt pressure. Patients reported substantial motor complaints confirmed by the objective motor disability testings. Interestingly, patients displayed clinically relevant levels of stress and depression. We conclude that chronic CRPS is characterized by a combination of ongoing pain, pain-related disability, stress and depression, potentially triggered by peripheral nerve/tissue damage and ensuing sensory loss. In order to consolidate the different dimensions of disturbances in chronic CRPS, we developed a model based on interaction analysis suggesting a complex hierarchical interaction of peripheral (injury/sensory loss) and central factors (pain/disability/stress/depression) predicting motor dysfunction and hyperalgesia.
Complex Interaction of Sensory and Motor Signs and Symptoms in Chronic CRPS
Huge, Volker; Lauchart, Meike; Magerl, Walter; Beyer, Antje; Moehnle, Patrick; Kaufhold, Wibke; Schelling, Gustav; Azad, Shahnaz Christina
2011-01-01
Spontaneous pain, hyperalgesia as well as sensory abnormalities, autonomic, trophic, and motor disturbances are key features of Complex Regional Pain Syndrome (CRPS). This study was conceived to comprehensively characterize the interaction of these symptoms in 118 patients with chronic upper limb CRPS (duration of disease: 43±23 months). Disease-related stress, depression, and the degree of accompanying motor disability were likewise assessed. Stress and depression were measured by Posttraumatic Stress Symptoms Score and Center for Epidemiological Studies Depression Test. Motor disability of the affected hand was determined by Sequential Occupational Dexterity Assessment and Michigan Hand Questionnaire. Sensory changes were assessed by Quantitative Sensory Testing according to the standards of the German Research Network on Neuropathic Pain. Almost two-thirds of all patients exhibited spontaneous pain at rest. Hand force as well as hand motor function were found to be substantially impaired. Results of Quantitative Sensory Testing revealed a distinct pattern of generalized bilateral sensory loss and hyperalgesia, most prominently to blunt pressure. Patients reported substantial motor complaints confirmed by the objective motor disability testings. Interestingly, patients displayed clinically relevant levels of stress and depression. We conclude that chronic CRPS is characterized by a combination of ongoing pain, pain-related disability, stress and depression, potentially triggered by peripheral nerve/tissue damage and ensuing sensory loss. In order to consolidate the different dimensions of disturbances in chronic CRPS, we developed a model based on interaction analysis suggesting a complex hierarchical interaction of peripheral (injury/sensory loss) and central factors (pain/disability/stress/depression) predicting motor dysfunction and hyperalgesia. PMID:21559525
Topography of sensory symptoms in patients with drug-naïve restless legs syndrome.
Koo, Yong Seo; Lee, Gwan-Taek; Lee, Seo Young; Cho, Yong Won; Jung, Ki-Young
2013-12-01
We aimed to describe the sensory topography of restless legs syndrome (RLS) sensory symptoms and to identify the relationship between topography and clinical variables. Eighty adult patients with drug-naïve RLS who had symptoms for more than 1year were consecutively recruited. During face-to-face interviews using a structured paper and pencil questionnaire with all participants, we obtained clinical information and also marked the topography of RLS sensory symptoms on a specified body template, all of which were subsequently inputted into our in-house software. The RLS sensory topography patterns were classified according to localization, lateralization, and symmetry. We investigated if these sensory topography patterns differed according to various clinical variables. The lower extremities only (LE) were the most common location (72.5%), and 76.3% of participants exhibited symmetric sensory topography. Late-onset RLS showed more asymmetric sensory distribution compared with early-onset RLS (P=.024). Patients whose sensory symptoms involved the lower extremities in addition to other body parts (LE-PLUS) showed more severe RLS compared with those involving the LE (P=.037). RLS sensory symptoms typically were symmetrically located in the lower extremities. LE-PLUS or an asymmetric distribution more often occurred in patients with more severe RLS symptoms or late-onset RLS. Copyright © 2013 Elsevier B.V. All rights reserved.
Tavassoli, Teresa; Miller, Lucy Jane; Schoen, Sarah A; Jo Brout, Jennifer; Sullivan, Jillian; Baron-Cohen, Simon
2018-01-01
Although the DSM-5 added sensory symptoms as a criterion for ASC, there is a group of children who display sensory symptoms but do not have ASC; children with sensory processing disorder (SPD). To be able to differentiate these two disorders, our aim was to evaluate whether children with ASC show more sensory symptomatology and/or different cognitive styles in empathy and systemizing compared to children with SPD and typically developing (TD) children. The study included 210 participants: 68 children with ASC, 79 with SPD and 63 TD children. The Sensory Processing Scale Inventory was used to measure sensory symptoms, the Autism Spectrum Quotient (AQ) to measure autistic traits, and the Empathy Quotient (EQ) and Systemizing Quotient (SQ) to measure cognitive styles. Across groups, a greater sensory symptomatology was associated with lower empathy. Further, both the ASC and SPD groups showed more sensory symptoms than TD children. Children with ASC and SPD only differed on sensory under-reactivity. The ASD group did, however, show lower empathy and higher systemizing scores than the SPD group. Together, this suggest that sensory symptoms alone may not be adequate to differentiate children with ASC and SPD but that cognitive style measures could be used for differential diagnosis. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Schauder, Kimberly B.; Bennetto, Loisa
2016-01-01
Sensory processing differences have long been associated with autism spectrum disorder (ASD), and they have recently been added to the diagnostic criteria for the disorder. The focus on sensory processing in ASD research has increased substantially in the last decade. This research has been approached from two different perspectives: the first focuses on characterizing the symptoms that manifest in response to real world sensory stimulation, and the second focuses on the neural pathways and mechanisms underlying sensory processing. The purpose of this paper is to integrate the empirical literature on sensory processing in ASD from the last decade, including both studies characterizing sensory symptoms and those that investigate neural response to sensory stimuli. We begin with a discussion of definitions to clarify some of the inconsistencies in terminology that currently exist in the field. Next, the sensory symptoms literature is reviewed with a particular focus on developmental considerations and the relationship of sensory symptoms to other core features of the disorder. Then, the neuroscience literature is reviewed with a focus on methodological approaches and specific sensory modalities. Currently, these sensory symptoms and neuroscience perspectives are largely developing independently from each other leading to multiple, but separate, theories and methods, thus creating a multidisciplinary approach to sensory processing in ASD. In order to progress our understanding of sensory processing in ASD, it is now critical to integrate these two research perspectives and move toward an interdisciplinary approach. This will inevitably aid in a better understanding of the underlying biological basis of these symptoms and help realize the translational value through its application to early identification and treatment. The review ends with specific recommendations for future research to help bridge these two research perspectives in order to advance our understanding of sensory processing in ASD. PMID:27378838
Mechanisms of Aromatase Inhibitor-induced Musculoskeletal Symptoms
2012-07-01
through the TRPV1 cation channel, an important chemical and thermal nociceptive transducer (15). In addition to steroids supplied by circulation in...identify whether aromatase expression co-localizes with functional neuronal populations, such as TRPV1 or CGRP expressing sensory neurons...to augment neuropeptide release from cultured sensory neurons evoked by the inflammatory mediator bradykinin and TRPV1 -selective agonist capsaicin (17
2011-01-01
Background Patients with diabetic neuropathy (DPN) and fibromyalgia differ substantially in pathogenetic factors and the spatial distribution of the perceived pain. We questioned whether, despite these obvious differences, similar abnormal sensory complaints and pain qualities exist in both entities. We hypothesized that similar sensory symptoms might be associated with similar mechanisms of pain generation. The aims were (1) to compare epidemiological features and co-morbidities and (2) to identify similarities and differences of sensory symptoms in both entities. Methods The present multi-center study compares epidemiological data and sensory symptoms of a large cohort of 1434 fibromyalgia patients and 1623 patients with painful diabetic neuropathy. Data acquisition included standard demographic questions and self-report questionnaires (MOS sleep scale, PHQ-9, PainDETECT). To identify subgroups of patients with characteristic combinations of symptoms (sensory profiles) a cluster analysis was performed using all patients in both cohorts. Results Significant differences in co-morbidities (depression, sleep disturbance) were found between both disorders. Patients of both aetiologies chose very similar descriptors to characterize their sensory perceptions. Burning pain, prickling and touch-evoked allodynia were present in the same frequency. Five subgroups with distinct symptom profiles could be detected. Two of the subgroups were characteristic for fibromyalgia whereas one profile occurred predominantly in DPN patients. Two profiles were found frequently in patients of both entities (20-35%). Conclusions DPN and fibromyalgia patients experience very similar sensory phenomena. The combination of sensory symptoms - the sensory profile - is in most cases distinct and almost unique for each one of the two entities indicating aetiology-specific mechanisms of symptom generation. Beside the unique aetiology-specific sensory profiles an overlap of sensory profiles can be found in 20-35% of patients of both aetiologies. PMID:21612589
The function and failure of sensory predictions.
Bansal, Sonia; Ford, Judith M; Spering, Miriam
2018-04-23
Humans and other primates are equipped with neural mechanisms that allow them to automatically make predictions about future events, facilitating processing of expected sensations and actions. Prediction-driven control and monitoring of perceptual and motor acts are vital to normal cognitive functioning. This review provides an overview of corollary discharge mechanisms involved in predictions across sensory modalities and discusses consequences of predictive coding for cognition and behavior. Converging evidence now links impairments in corollary discharge mechanisms to neuropsychiatric symptoms such as hallucinations and delusions. We review studies supporting a prediction-failure hypothesis of perceptual and cognitive disturbances. We also outline neural correlates underlying prediction function and failure, highlighting similarities across the visual, auditory, and somatosensory systems. In linking basic psychophysical and psychophysiological evidence of visual, auditory, and somatosensory prediction failures to neuropsychiatric symptoms, our review furthers our understanding of disease mechanisms. © 2018 New York Academy of Sciences.
Factor analysis of persistent postconcussive symptoms within a military sample with blast exposure.
Franke, Laura M; Czarnota, Jenna N; Ketchum, Jessica M; Walker, William C
2015-01-01
To determine the factor structure of persistent postconcussive syndrome symptoms in a blast-exposed military sample and validate factors against objective and symptom measures. Veterans Affairs medical center and military bases. One hundred eighty-one service members and veterans with at least 1 significant exposure to blast during deployment within the 2 years prior to study enrollment. Confirmatory and exploratory factor analyses of the Rivermead Postconcussion Questionnaire. Rivermead Postconcussion Questionnaire, PTSD (posttraumatic stress disorder) Symptom Checklist-Civilian, Center for Epidemiological Studies Depression scale, Sensory Organization Test, Paced Auditory Serial Addition Test, California Verbal Learning Test, and Delis-Kaplan Executive Function System subtests. The 3-factor structure of persistent postconcussive syndrome was not confirmed. A 4-factor structure was extracted, and factors were interpreted as reflecting emotional, cognitive, visual, and vestibular functions. All factors were associated with scores on psychological symptom inventories; visual and vestibular factors were also associated with balance performance. There was no significant association between the cognitive factor and neuropsychological performance or between a history of mild traumatic brain injury and factor scores. Persistent postconcussive symptoms observed months after blast exposure seem to be related to 4 distinct forms of distress, but not to mild traumatic brain injury per se, with vestibular and visual factors possibly related to injury of sensory organs by blast.
Dogru Huzmeli, Esra; Yildirim, Sibel Aksu; Kilinc, Muhammed
2017-04-01
Some studies show that sensorial rehabilitation is effective on functionality. The aim of this study is to investigate the effect of sensory training of the posterior thigh on the functionality of upper extremity and trunk control in stroke patients. Thirteen subjects (53.23 ± 6.82 years) were included in the intervention group and 13 subjects (58.69 ± 5.94 years) in the control group. The control and intervention groups were treated for ten sessions. The control group was treated only with neurodevelopmental treatment, and the intervention group was treated with sensorial training on the posterior thigh in addition to the neurodevelopmental treatment. Subjects were evaluated three times, pre- and post-treatment and 10 days after finishing the treatment. Trunk control was assessed by the Trunk Impairment Scale, reaching function by the Functional Reach Test, balance by the Berg Balance Test, upper extremity symptom and disability severity by the Disabilities of the Arm, Shoulder, Hand and Minnesota, independence level in daily living activities by the Barthel Index, and sensory function of the posterior thigh by sensorial tests. In the post-treatment assessment, it was found that the intervention group was better than the control group in the parameter of functional reach while sitting (p < 0.005). In the third assessment, reaching while sitting and independence level were better in the intervention group than the control group (p < 0.005). There was no difference in sensorial assessment between the groups. Sensory training of the posterior thigh should be included in the rehabilitation programme of stroke patients.
Conversion disorder: towards a neurobiological understanding
Harvey, Samuel B; Stanton, Biba R; David, Anthony S
2006-01-01
Conversion disorders are a common cause of neurological disability, but the diagnosis remains controversial and the mechanism by which psychological stress can result in physical symptoms “unconsciously” is poorly understood. This review summarises research examining conversion disorder from a neurobiological perspective. Early observations suggesting a role for hemispheric specialization have not been replicated consistently. Patients with sensory conversion symptoms have normal evoked responses in primary and secondary somatosensory cortex but a reduction in the P300 potential, which is thought to reflect a lack of conscious processing of sensory stimuli. The emergence of functional imaging has provided the greatest opportunity for understanding the neural basis of conversion symptoms. Studies have been limited by small patient numbers and failure to control for confounding variables. The evidence available would suggest a broad hypothesis that frontal cortical and limbic activation associated with emotional stress may act via inhibitory basal ganglia–thalamocortical circuits to produce a deficit of conscious sensory or motor processing. The conceptual difficulties that have limited progress in this area are discussed. A better neuropsychiatric understanding of the mechanisms of conversion symptoms may improve our understanding of normal attention and volition and reduce the controversy surrounding this diagnosis. PMID:19412442
A Meta-Analysis of Sensory Modulation Symptoms in Individuals with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Ben-Sasson, Ayelet; Hen, Liat; Fluss, Ronen; Cermak, Sharon A.; Engel-Yeger, Batya; Gal, Eynat
2009-01-01
Sensory modulation symptoms are common in persons with autism spectrum disorders (ASD); however have a heterogeneous presentation. Results from 14 studies indicated a significant high difference between ASD and typical groups in the presence/frequency of sensory symptoms, with the greatest difference in under-responsivity, followed by…
The Role of Sensory Modulation Deficits and Behavioral Symptoms in a Diagnosis for Early Childhood
ERIC Educational Resources Information Center
Perez-Robles, Ruth; Doval, Eduardo; Jane, Ma Claustre; da Silva, Pedro Caldeira; Papoila, Ana Luisa; Virella, Daniel
2013-01-01
To contribute to the validation of the sensory and behavioral criteria for Regulation Disorders of Sensory Processing (RDSP) (DC:0-3R, 2005), this study examined a sample of toddlers in a clinical setting to analyze: (1) the severity of sensory modulation deficits and the behavioral symptoms of RDSP; (2) the associations between sensory and…
RAGE-dependent potentiation of TRPV1 currents in sensory neurons exposed to high glucose.
Lam, Doris; Momeni, Zeinab; Theaker, Michael; Jagadeeshan, Santosh; Yamamoto, Yasuhiko; Ianowski, Juan P; Campanucci, Verónica A
2018-01-01
Diabetes mellitus is associated with sensory abnormalities, including exacerbated responses to painful (hyperalgesia) or non-painful (allodynia) stimuli. These abnormalities are symptoms of diabetic peripheral neuropathy (DPN), which is the most common complication that affects approximately 50% of diabetic patients. Yet, the underlying mechanisms linking hyperglycemia and symptoms of DPN remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) channel plays a central role in such sensory abnormalities and shows elevated expression levels in animal models of diabetes. Here, we investigated the function of TRPV1 channels in sensory neurons cultured from the dorsal root ganglion (DRG) of neonatal mice, under control (5mM) and high glucose (25mM) conditions. After maintaining DRG neurons in high glucose for 1 week, we observed a significant increase in capsaicin (CAP)-evoked currents and CAP-evoked depolarizations, independent of TRPV1 channel expression. These functional changes were largely dependent on the expression of the receptor for Advanced Glycation End-products (RAGE), calcium influx, cytoplasmic ROS accumulation, PKC, and Src kinase activity. Like cultured neurons from neonates, mature neurons from adult mice also displayed a similar potentiation of CAP-evoked currents in the high glucose condition. Taken together, our data demonstrate that under the diabetic condition, DRG neurons are directly affected by elevated levels of glucose, independent of vascular or glial signals, and dependent on RAGE expression. These early cellular and molecular changes to sensory neurons in vitro are potential mechanisms that might contribute to sensory abnormalities that can occur in the very early stages of diabetes.
RAGE-dependent potentiation of TRPV1 currents in sensory neurons exposed to high glucose
Lam, Doris; Momeni, Zeinab; Theaker, Michael; Jagadeeshan, Santosh; Yamamoto, Yasuhiko; Ianowski, Juan P.
2018-01-01
Diabetes mellitus is associated with sensory abnormalities, including exacerbated responses to painful (hyperalgesia) or non-painful (allodynia) stimuli. These abnormalities are symptoms of diabetic peripheral neuropathy (DPN), which is the most common complication that affects approximately 50% of diabetic patients. Yet, the underlying mechanisms linking hyperglycemia and symptoms of DPN remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) channel plays a central role in such sensory abnormalities and shows elevated expression levels in animal models of diabetes. Here, we investigated the function of TRPV1 channels in sensory neurons cultured from the dorsal root ganglion (DRG) of neonatal mice, under control (5mM) and high glucose (25mM) conditions. After maintaining DRG neurons in high glucose for 1 week, we observed a significant increase in capsaicin (CAP)-evoked currents and CAP-evoked depolarizations, independent of TRPV1 channel expression. These functional changes were largely dependent on the expression of the receptor for Advanced Glycation End-products (RAGE), calcium influx, cytoplasmic ROS accumulation, PKC, and Src kinase activity. Like cultured neurons from neonates, mature neurons from adult mice also displayed a similar potentiation of CAP-evoked currents in the high glucose condition. Taken together, our data demonstrate that under the diabetic condition, DRG neurons are directly affected by elevated levels of glucose, independent of vascular or glial signals, and dependent on RAGE expression. These early cellular and molecular changes to sensory neurons in vitro are potential mechanisms that might contribute to sensory abnormalities that can occur in the very early stages of diabetes. PMID:29474476
Kiang, Michael; Light, Gregory A; Prugh, Jocelyn; Coulson, Seana; Braff, David L; Kutas, Marta
2007-07-01
A hallmark of schizophrenia is impaired proverb interpretation, which could be due to: (1) aberrant activation of disorganized semantic associations, or (2) working memory (WM) deficits. We assessed 18 schizophrenia patients and 18 normal control participants on proverb interpretation, and evaluated these two hypotheses by examining within patients the correlations of proverb interpretation with disorganized symptoms and auditory WM, respectively. Secondarily, we also explored the relationships between proverb interpretation and a spectrum of cognitive functions including auditory sensory-memory encoding (as indexed by the mismatch negativity (MMN) event-related brain potential (ERP)); executive function; and social/occupational function. As expected, schizophrenia patients produced less accurate and less abstract descriptions of proverbs than did controls. These proverb interpretation difficulties in patients were not significantly correlated with disorganization or other symptom factors, but were significantly correlated (p < .05) with WM impairment, as well as with impairments in sensory-memory encoding, executive function, and social/occupational function. These results offer no support for disorganized associations in abnormal proverb interpretation in schizophrenia, but implicate WM deficits, perhaps as a part of a syndrome related to generalized frontal cortical dysfunction.
Peripheral neuropathic pain: a mechanism-related organizing principle based on sensory profiles
Baron, Ralf; Maier, Christoph; Attal, Nadine; Binder, Andreas; Bouhassira, Didier; Cruccu, Giorgio; Finnerup, Nanna B.; Haanpää, Maija; Hansson, Per; Hüllemann, Philipp; Jensen, Troels S.; Freynhagen, Rainer; Kennedy, Jeffrey D.; Magerl, Walter; Mainka, Tina; Reimer, Maren; Rice, Andrew S.C.; Segerdahl, Märta; Serra, Jordi; Sindrup, Sören; Sommer, Claudia; Tölle, Thomas; Vollert, Jan; Treede, Rolf-Detlef
2016-01-01
Abstract Patients with neuropathic pain are heterogeneous in etiology, pathophysiology, and clinical appearance. They exhibit a variety of pain-related sensory symptoms and signs (sensory profile). Different sensory profiles might indicate different classes of neurobiological mechanisms, and hence subgroups with different sensory profiles might respond differently to treatment. The aim of the investigation was to identify subgroups in a large sample of patients with neuropathic pain using hypothesis-free statistical methods on the database of 3 large multinational research networks (German Research Network on Neuropathic Pain (DFNS), IMI-Europain, and Neuropain). Standardized quantitative sensory testing was used in 902 (test cohort) and 233 (validation cohort) patients with peripheral neuropathic pain of different etiologies. For subgrouping, we performed a cluster analysis using 13 quantitative sensory testing parameters. Three distinct subgroups with characteristic sensory profiles were identified and replicated. Cluster 1 (sensory loss, 42%) showed a loss of small and large fiber function in combination with paradoxical heat sensations. Cluster 2 (thermal hyperalgesia, 33%) was characterized by preserved sensory functions in combination with heat and cold hyperalgesia and mild dynamic mechanical allodynia. Cluster 3 (mechanical hyperalgesia, 24%) was characterized by a loss of small fiber function in combination with pinprick hyperalgesia and dynamic mechanical allodynia. All clusters occurred across etiologies but frequencies differed. We present a new approach of subgrouping patients with peripheral neuropathic pain of different etiologies according to intrinsic sensory profiles. These 3 profiles may be related to pathophysiological mechanisms and may be useful in clinical trial design to enrich the study population for treatment responders. PMID:27893485
Peripheral neuropathic pain: a mechanism-related organizing principle based on sensory profiles.
Baron, Ralf; Maier, Christoph; Attal, Nadine; Binder, Andreas; Bouhassira, Didier; Cruccu, Giorgio; Finnerup, Nanna B; Haanpää, Maija; Hansson, Per; Hüllemann, Philipp; Jensen, Troels S; Freynhagen, Rainer; Kennedy, Jeffrey D; Magerl, Walter; Mainka, Tina; Reimer, Maren; Rice, Andrew S C; Segerdahl, Märta; Serra, Jordi; Sindrup, Sören; Sommer, Claudia; Tölle, Thomas; Vollert, Jan; Treede, Rolf-Detlef
2017-02-01
Patients with neuropathic pain are heterogeneous in etiology, pathophysiology, and clinical appearance. They exhibit a variety of pain-related sensory symptoms and signs (sensory profile). Different sensory profiles might indicate different classes of neurobiological mechanisms, and hence subgroups with different sensory profiles might respond differently to treatment. The aim of the investigation was to identify subgroups in a large sample of patients with neuropathic pain using hypothesis-free statistical methods on the database of 3 large multinational research networks (German Research Network on Neuropathic Pain (DFNS), IMI-Europain, and Neuropain). Standardized quantitative sensory testing was used in 902 (test cohort) and 233 (validation cohort) patients with peripheral neuropathic pain of different etiologies. For subgrouping, we performed a cluster analysis using 13 quantitative sensory testing parameters. Three distinct subgroups with characteristic sensory profiles were identified and replicated. Cluster 1 (sensory loss, 42%) showed a loss of small and large fiber function in combination with paradoxical heat sensations. Cluster 2 (thermal hyperalgesia, 33%) was characterized by preserved sensory functions in combination with heat and cold hyperalgesia and mild dynamic mechanical allodynia. Cluster 3 (mechanical hyperalgesia, 24%) was characterized by a loss of small fiber function in combination with pinprick hyperalgesia and dynamic mechanical allodynia. All clusters occurred across etiologies but frequencies differed. We present a new approach of subgrouping patients with peripheral neuropathic pain of different etiologies according to intrinsic sensory profiles. These 3 profiles may be related to pathophysiological mechanisms and may be useful in clinical trial design to enrich the study population for treatment responders.
Satoh, Jo; Kohara, Nobuo; Sekiguchi, Kenji; Yamaguchi, Yasuyuki
2016-01-01
We conducted a 26-week oral-administration study of ranirestat (an aldose reductase inhibitor) at a once-daily dose of 20 mg to evaluate its efficacy and safety in Japanese patients with diabetic polyneuropathy (DPN). The primary endpoint was summed change in sensory nerve conduction velocity (NCV) for the bilateral sural and proximal median sensory nerves. The sensory NCV was significantly (P = 0.006) improved by ranirestat. On clinical symptoms evaluated with the use of modified Toronto Clinical Neuropathy Score (mTCNS), obvious efficacy was not found in total score. However, improvement in the sensory test domain of the mTCNS was significant (P = 0.037) in a subgroup of patients diagnosed with neuropathy according to the TCNS severity classification. No clinically significant effects on safety parameters including hepatic and renal functions were observed. Our results indicate that ranirestat is effective on DPN (Japic CTI-121994). PMID:26881251
Ways of encoding somatic information and their effects on retrospective symptom reporting.
Walentynowicz, Marta; Van Diest, Ilse; Raes, Filip; Van den Bergh, Omer
2017-05-01
Retrospective symptom reports tend to overestimate actual symptom intensity. This study explored how focusing on sensory-perceptual or on affective-motivational aspects of a somatic experience influenced retrospective symptom reports in high and low habitual symptom reporters (HSR). We hypothesized that a focus on affective-motivational aspects of somatic episodes contributes to retrospective overestimation compared to a focus on sensory-perceptual aspects. Dyspnoea (rebreathing) and pain (cold pain) were induced during two experimental sessions in healthy women: 21 high and 24 low HSR, selected using cut-off scores on a symptom checklist. Within-subject manipulation of sensory and affective processing focus (PF) took place at the encoding phase before symptom induction. Dyspnoea and pain ratings were collected immediately after the symptom inductions and after 2 weeks. Breathing behaviour was recorded during dyspnoea trials, while affective state and symptom measures were collected after each trial. Compared to pain, dyspnoea induction was perceived as more unpleasant, arousing, and threatening (ps < .001). Affective PF led to higher arousal (p < .01) and threat ratings (p = .01) than sensory PF. Affective PF also led to an increase in retrospective dyspnoea ratings over the course of 2 weeks (p = .039), which was not observed for pain, nor for dyspnoea after sensory PF. The effects of PF on symptom ratings were independent of the HSR levels. The PF during symptom encoding may explain previously observed bias in retrospective symptom reporting. The results are relevant to understand the mechanisms underlying symptom overreporting. Statement of contribution What is already known on this subject? Retrospective symptom ratings are often biased when compared to the momentary assessments. Attending to either sensory or affective aspects of the somatic experience is one of the factors affecting self-reported symptoms. What does this study add? Focusing on affective aspects elicited by the somatic experience led to an increase in retrospective symptom ratings over time. This is particularly so for more aversive somatic experiences. Directing the processing focus to sensory aspects during symptom encoding can attenuate bias in retrospective symptom reporting. © 2017 The British Psychological Society.
Hyper-connectivity of the Thalamus in during Early Stages following Mild Traumatic Brain Injury
Sours, Chandler; George, Elijah O.; Zhuo, Jiachen; Roys, Steven; Gullapalli, Rao P.
2015-01-01
The thalamo-cortical resting state functional connectivity of 7 sub-thalamic regions were examined in a prospectively recruited population of 77 acute mild TBI (mTBI) patients within the first 10 days (mean 6±3 days) of injury and 35 neurologically intact control subjects using the Oxford thalamic connectivity atlas. Neuropsychological assessments were conducted using the Automated Neuropsychological Assessment Metrics (ANAM). A subset of participants received a magentic resonance spectroscopy (MRS) exam to determine metabolite concentrations in the thalamus and posterior cingulate cortex. Results show that patients performed worse than the control group on various subtests of ANAM and the weighted throughput score, suggesting reduced cognitive performance at this early stage of injury. Both voxel and region of interest based analysis of the resting state fMRI data demonstrated that acute mTBI patients have increased functional connectivity between the various sub-thalamic regions and cortical regions associated with sensory processing and the default mode network (DMN). In addition, a significant reduction in NAA/Cr was observed in the thalamus in the mTBI patients. Furthermore, an increase in Cho/Cr ratio specific to mTBI patients with self-reported sensory symptoms was observed compared to those without self-reported sensory symptoms. These results provide novel insights into the neural mechanisms of the brain state related to internal rumination and arousal, which have implications for new interventions for mTBI patients with persistent symptoms. Furthermore, an understanding of heightened sensitivity to sensory related inputs during early stages of injury may facilitate enhanced prediction of safe return to work. PMID:26153468
Siper, Paige M; Kolevzon, Alexander; Wang, A Ting; Buxbaum, Joseph D; Tavassoli, Teresa
2017-06-01
Sensory reactivity is a new criterion for autism spectrum disorder (ASD) in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). However, there is no consensus on how to reliably measure sensory reactivity, particularly in minimally verbal individuals. The current study is an initial validation of the Sensory Assessment for Neurodevelopmental Disorders (SAND), a novel clinician-administered observation and corresponding caregiver interview that captures sensory symptoms based on DSM-5 criteria for ASD. Eighty children between the ages of 2 and 12 participated in this study; 44 children with ASD and 36 typically developing (TD) children. Sensory reactivity symptoms were measured using the SAND and the already validated Short Sensory Profile (SSP). Initial psychometric properties of the SAND were examined including reliability, validity, sensitivity and specificity. Children with ASD showed significantly more sensory reactivity symptoms compared to TD children across sensory domains (visual, tactile, and auditory) and within sensory subtypes (hyperreactivity, hyporeactivity and seeking). The SAND showed strong internal consistency, inter-rater reliability and test-retest reliability, high sensitivity (95.5%) and specificity (91.7%), and strong convergent validity with the SSP. The SAND provides a novel method to characterize sensory reactivity symptoms based on DSM-5 criteria for ASD. This is the first known sensory assessment that combines a clinician-administered observation and caregiver interview to optimally capture sensory phenotypes characteristic of individuals with neurodevelopmental disorders. The SAND offers a beneficial new tool for both research and clinical purposes and has the potential to meaningfully enhance gold-standard assessment of ASD. Autism Res 2017, 10: 1133-1140. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Stewart, Claire R.; Sanchez, Sandra S.; Grenesko, Emily L.; Brown, Christine M.; Chen, Colleen P.; Keehn, Brandon; Velasquez, Francisco; Lincoln, Alan J.; Müller, Ralph-Axel
2016-01-01
Atypical sensory responses are common in autism spectrum disorder (ASD). While evidence suggests impaired auditory-visual integration for verbal information, findings for nonverbal stimuli are inconsistent. We tested for sensory symptoms in children with ASD (using the Adolescent/Adult Sensory Profile) and examined unisensory and bisensory…
Pons-Vigués, Mariona; López, María José; Córdoba, Rodrigo; Ballve-Moreno, José Luis; Puigdomènech-Puig, Elisa; Benito-López, Vega Estíbaliz; Arias-Agudelo, Olga Lucía; López-Grau, Mercè; Guardia-Riera, Anna; Trujillo, José Manuel; Martin-Cantera, Carlos
2017-01-01
Aims The aim of this systematic review and meta-analysis is to synthesize the available evidence in scientific papers of smokefree legislation effects on respiratory diseases and sensory and respiratory symptoms (cough, phlegm, red eyes, runny nose) among all populations. Materials and methods Systematic review and meta-analysis were carried out. A search between January 1995 and February 2015 was performed in PubMed, EMBASE, Cochrane Library, Scopus, Web of Science, and Google Scholar databases. Inclusion criteria were: 1) original scientific studies about smokefree legislation, 2) Data before and after legislation were collected, and 3) Impact on respiratory and sensory outcomes were assessed. Paired reviewers independently carried out the screening of titles and abstracts, data extraction from full-text articles, and methodological quality assessment. Results A total number of 1606 papers were identified. 50 papers were selected, 26 were related to symptoms (23 concerned workers). Most outcomes presented significant decreases in the percentage of people suffering from them, especially in locations with comprehensive measures and during the immediate post-ban period (within the first six months). Four (50%) of the papers concerning pulmonary function reported some significant improvement in expiratory parameters. Significant decreases were described in 13 of the 17 papers evaluating asthma hospital admissions, and there were fewer significant reductions in chronic obstructive pulmonary disease admissions (range 1–36%) than for asthma (5–31%). Six studies regarding different respiratory diseases showed discrepant results, and four papers about mortality reported significant declines in subgroups. Low bias risk was present in 23 (46%) of the studies. Conclusions Smokefree legislation appears to improve respiratory and sensory symptoms at short term in workers (the overall effect being greater in comprehensive smokefree legislation in sensory symptoms) and, to a lesser degree, rates of hospitalization for asthma. PMID:28759596
Rando-Matos, Yolanda; Pons-Vigués, Mariona; López, María José; Córdoba, Rodrigo; Ballve-Moreno, José Luis; Puigdomènech-Puig, Elisa; Benito-López, Vega Estíbaliz; Arias-Agudelo, Olga Lucía; López-Grau, Mercè; Guardia-Riera, Anna; Trujillo, José Manuel; Martin-Cantera, Carlos
2017-01-01
The aim of this systematic review and meta-analysis is to synthesize the available evidence in scientific papers of smokefree legislation effects on respiratory diseases and sensory and respiratory symptoms (cough, phlegm, red eyes, runny nose) among all populations. Systematic review and meta-analysis were carried out. A search between January 1995 and February 2015 was performed in PubMed, EMBASE, Cochrane Library, Scopus, Web of Science, and Google Scholar databases. Inclusion criteria were: 1) original scientific studies about smokefree legislation, 2) Data before and after legislation were collected, and 3) Impact on respiratory and sensory outcomes were assessed. Paired reviewers independently carried out the screening of titles and abstracts, data extraction from full-text articles, and methodological quality assessment. A total number of 1606 papers were identified. 50 papers were selected, 26 were related to symptoms (23 concerned workers). Most outcomes presented significant decreases in the percentage of people suffering from them, especially in locations with comprehensive measures and during the immediate post-ban period (within the first six months). Four (50%) of the papers concerning pulmonary function reported some significant improvement in expiratory parameters. Significant decreases were described in 13 of the 17 papers evaluating asthma hospital admissions, and there were fewer significant reductions in chronic obstructive pulmonary disease admissions (range 1-36%) than for asthma (5-31%). Six studies regarding different respiratory diseases showed discrepant results, and four papers about mortality reported significant declines in subgroups. Low bias risk was present in 23 (46%) of the studies. Smokefree legislation appears to improve respiratory and sensory symptoms at short term in workers (the overall effect being greater in comprehensive smokefree legislation in sensory symptoms) and, to a lesser degree, rates of hospitalization for asthma.
Pelosin, Elisa; Avanzino, Laura; Marchese, Roberta; Stramesi, Paola; Bilanci, Martina; Trompetto, Carlo; Abbruzzese, Giovanni
2013-10-01
Pain is one of the most common and disabling "nonmotor" symptoms in patients with dystonia. No recent study evaluated the pharmacological or physical therapy approaches to specifically treat dystonic pain symptoms. To evaluate the effectiveness of KinesioTaping in patients with cervical dystonia (CD) and focal hand dystonia (FHD) on self-reported pain (primary objective) and on sensory functions (secondary objective). Twenty-five dystonic patients (14 with CD and 11 FHD) entered a randomized crossover pilot study. The patients were randomized to 14-day treatment with KinesioTaping or ShamTaping over neck (in CD) or forearm muscles (in FHD), and after a 30-day washout period, they received the other treatment. The were 3 visual analog scales (VASs) for usual pain, worst pain, and pain relief. Disease severity changes were evaluated by means of the Toronto Western Spasmodic Torticollis Rating Scale (CD) and the Writer's Cramp Rating Scale (FHD). Furthermore, to investigate possible KinesioTaping-induced effects on sensory functions, we evaluated the somatosensory temporal discrimination threshold. Treatment with KinesioTape induced a decrease in the subjective sensation of pain and a modification in the ability of sensory discrimination, whereas ShamTaping had no effect. A significant, positive correlation was found in both groups of patients between the improvement in the subjective sensation of pain and the reduction of somatosensory temporal discrimination threshold values induced by KinesioTaping. These preliminary results suggest that KinesioTaping may be useful in treating pain in patients with dystonia.
Factor Analysis of Persistent Post-Concussive Symptoms within a Military Sample with Blast Exposure
Franke, L.M.; Czarnota, J.N.; Ketchum, J.M.; Walker, W.C.
2014-01-01
Objective To determine the factor structure of persistent post-concussive syndrome (PPCS) symptoms in a blast-exposed military sample and validate factors against objective and symptom measures. Setting Veterans Affairs medical center and military bases. Participants One hundred eighty-one service members and veterans with at least one significant exposure to blast during deployment within the two years prior to study enrollment. Design Confirmatory and exploratory factor analysis of the Rivermead Post-concussion Questionnaire (RPQ). Main Measures RPQ, PTSD Symptom Checklist-Civilian, Center for Epidemiologic Studies Depression inventory, Sensory Organization Test, Paced Auditory Serial Addition Test, California Verbal Learning Test, Delis-Kaplan Executive Function System subtests. Results The three-factor structure of PPCS was not confirmed. A four-factor structure was extracted, and factors were interpreted as reflecting emotional, cognitive, visual, and vestibular functions. All factors were associated with scores on psychological symptom inventories; visual and vestibular factors were also associated with balance performance. There was no significant association between the cognitive factor and neuropsychological performance, nor between a history of mTBI and factor scores. Conclusion Persistent post-concussive symptoms observed months after blast exposure seem to be related to four distinct forms of distress, but not to mTBI per se, with vestibular and visual factors possibly related to injury of sensory organs by blast. PMID:24695267
A heuristic mathematical model for the dynamics of sensory conflict and motion sickness
NASA Technical Reports Server (NTRS)
Oman, C. M.
1982-01-01
The etiology of motion sickness is now usually explained in terms of a qualitatively formulated sensory conflict hypothesis. By consideration of the information processing task faced by the central nervous system in estimating body spatial orientation and in controlling active body movement using an internal model referenced control strategy, a mathematical model for sensory conflict generation is developed. The model postulates a major dynamic functional role for sensory conflict signals in movement control, as well as in sensory motor adaptation. It accounts for the role of active movement in creating motion sickness symptoms in some experimental circumstances, and in alleviating them in others. The relationship between motion sickness produced by sensory rearrangement and that resulting from external motion disturbances is explicitly defined. A nonlinear conflict averaging model describes dynamic aspects of experimentally observed subjective discomfort sensation, and suggests resulting behavior.
A heuristic mathematical model for the dynamics of sensory conflict and motion sickness
NASA Technical Reports Server (NTRS)
Oman, C. M.
1980-01-01
The etiology of motion sickness is explained in terms of a qualitatively formulated sensory conflict hypothesis. By consideration of the information processing task faced by the central nervous system in estimating body spatial orientation and in controlling active body movement using an internal model referenced control strategy, a mathematical model for sensory conflict generation is developed. The model postulates a major dynamic functional role for sensory conflict signals in movement control, as well as in sensory-motor adaptation. It accounts for the role of active movement in creating motion sickness symptoms in some experimental circumstances, and in alleviating them in others. The relationship between motion sickness produced by sensory rearrangement and that resulting from external motion disturbances is explicitly defined. A nonlinear conflict averaging model is proposed which describes dynamic aspects of experimentally observed subjective discomfort sensation, and suggests resulting behaviors.
Clinical and epidemiological aspects of methylmercury poisoning.
Bakir, F.; Rustam, H.; Tikriti, S.; Al-Damluji, S. F.; Shihristani, H.
1980-01-01
An opportunity to study the effects of methylmercury poisoning in humans was provided by the large outbreak in Iraq in 1971-2. In adults, poisoning resulted from the ingestion of home-made bread prepared from methylmercury-treated seed grain and there was a highly significant correlation between the amount of bread ingested and blood mercury levels. Poisoning in infants resulted either from prior exposure in utero or from suckling or both. Blood mercury levels were higher in infants and children than in adults. There was no increased incidence of congenital defects. Symptoms and signs of poisoning and histopathological changes were mainly confined to the CNS. Symptoms developed, on average, 1-2 months after exposure. In children there was mental retardation with delayed onset of speech and impaired motor, sensory and autonomic function. Severely affected children were blind and deaf. In adults, the clinical picture could be classified as 1, mild (mainly of sensory symptoms) 2, moderate (sensory symptoms accompanied by cerebellar signs) and 3, severe (gross ataxia with marked visual and hearing loss which, in some cases, progressed to akinetic mutism followed by coma). Grades 1 and 2 carried a better prognosis thant grade 3. Interference with transmission at the myoneural junction was found in 14% of patients studied. There was no evidence of peripheral nerve involvement per se and sensory symptoms may be of central origin. The clinical differences between the Iraqi and Japanese outbreaks may be a result, in part at least, of the severe, prolonged and continuous exposure which occurred in the latter outbreak. Improvement was observed among the mild and moderate group. Treatment with chelating agents, thiol resin, haemodialysis and exchange transfusion lowered blood mercury concentrations but produced no convincing clinical benefit. To be effective, treatment may need to be instituted soon after exposure. PMID:7383945
de Carvalho Barbosa, Mariana; Kosturakis, Alyssa K; Eng, Cathy; Wendelschafer-Crabb, Gwen; Kennedy, William R; Simone, Donald A; Wang, Xin S; Cleeland, Charles S; Dougherty, Patrick M
2014-11-01
Peripheral neuropathy caused by cytotoxic chemotherapy, especially platins and taxanes, is a widespread problem among cancer survivors that is likely to continue to expand in the future. However, little work to date has focused on understanding this challenge. The goal in this study was to determine the impact of colorectal cancer and cumulative chemotherapeutic dose on sensory function to gain mechanistic insight into the subtypes of primary afferent fibers damaged by chemotherapy. Patients with colorectal cancer underwent quantitative sensory testing before and then prior to each cycle of oxaliplatin. These data were compared with those from 47 age- and sex-matched healthy volunteers. Patients showed significant subclinical deficits in sensory function before any therapy compared with healthy volunteers, and they became more pronounced in patients who received chemotherapy. Sensory modalities that involved large Aβ myelinated fibers and unmyelinated C fibers were most affected by chemotherapy, whereas sensory modalities conveyed by thinly myelinated Aδ fibers were less sensitive to chemotherapy. Patients with baseline sensory deficits went on to develop more symptom complaints during chemotherapy than those who had no baseline deficit. Patients who were tested again 6 to 12 months after chemotherapy presented with the most numbness and pain and also the most pronounced sensory deficits. Our results illuminate a mechanistic connection between the pattern of effects on sensory function and the nerve fiber types that appear to be most vulnerable to chemotherapy-induced toxicity, with implications for how to focus future work to ameloirate risks of peripheral neuropathy. ©2014 American Association for Cancer Research.
Watson, Linda R; Patten, Elena; Baranek, Grace T; Poe, Michele; Boyd, Brian A; Freuler, Ashley; Lorenzi, Jill
2011-12-01
To examine patterns of sensory responsiveness (i.e., hyperresponsiveness, hyporesponsiveness, and sensory seeking) as factors that may account for variability in social-communicative symptoms of autism and variability in language, social, and communication skill development in children with autism or other developmental disabilities (DDs). Children with autistic disorder (AD; n = 72, mean age = 52.3 months) and other DDs (n = 44, mean age = 48.1 months) participated in a protocol measuring sensory response patterns; social-communicative symptoms of autism; and language, social, and communication skills. Hyporesponsiveness was positively associated with social-communicative symptom severity, with no significant group difference in the association. Hyperresponsiveness was not significantly associated with social-communicative symptom severity. A group difference emerged for sensory seeking and social-communicative symptom severity, with a positive association for the AD group only. For the 2 groups of children combined, hyporesponsiveness was negatively associated with language skills and social adaptive skills. Sensory seeking also was negatively associated with language skills. These associations did not differ between the 2 groups. Aberrant sensory processing may play an important role in the pathogenesis of autism and other DDs as well as in the rate of acquisition of language, social, and communication skills.
Watson, Linda R.; Patten, Elena; Baranek, Grace T.; Poe, Michele; Boyd, Brian A.; Freuler, Ashley; Lorenzi, Jill
2012-01-01
Purpose Examine patterns of sensory responsiveness (i.e., hyperresponsiveness, hyporesponsiveness, and sensory seeking) as factors that may account for variability in social-communicative symptoms of autism and variability in language, social, and communication skill development in children with autism or other developmental disabilities. Method Children with autistic disorder (AD; n = 72, mean age = 52.3 months) and other developmental disabilities (DD; n = 44, mean age = 48.1 months) participated in a protocol measuring sensory response patterns, social-communicative symptoms of autism, and language, social, and communication skills. Results Hyporesponsiveness was positively associated with social-communicative symptom severity, with no significant group difference in the association. Hyperresponsiveness was not significantly associated with social-communicative symptom severity. A group difference emerged for sensory seeking and social-communicative symptom severity, with a positive association for the AD group only. For the two groups of children combined, hyporesponsiveness was negatively associated with language skills and social adaptive skills. Sensory seeking also was negatively associated with language skills. These associations did not differ between the two groups. Conclusions Aberrant sensory processing may play an important role in the pathogenesis of autism and other developmental disabilities, as well as in the rate of acquisition of language, social, and communication skills. PMID:21862675
Environmental odor intolerance in pregnant women.
Nordin, Steven; Broman, Daniel A; Wulff, Marianne
2005-02-15
Previous findings indicating that pregnant women experience a shift in odor sensitivity and hedonics raise the question of whether these changes evoke adverse reactions to odorous and pungent environmental substances in daily activities, to a larger extent in pregnant than in nonpregnant women. Forty-four women in pregnancy weeks 21-23 and 44 nonpregnant women were therefore compared with respect to affective reactions to and behavioral disruptions by odorous/pungent daily environments by means of the questionnaire-based, 21-item Chemical Sensitivity Scale (CSS). This scale refers to neurasthenic and sensory/somatic symptoms and includes the 11 items of the Chemical Sensitivity Scale for Sensory Hyperreactivity (CSS-SHR). This latter scale refers predominantly to sensory/somatic symptoms. To investigate whether there is a general environmental hypersensitivity during pregnancy, the Noise Sensitivity Scale (NSS) was used that is analogous to the CSS (including 11 NSS items corresponding to those of the CSS-SHR; "NSS-SHR"). Results show that the two groups were similar with respect to scores on both the CSS and NSS, whereas the pregnant women had higher scores than the nonpregnant women on the CSS-SHR, but not on the "NSS-SHR". These results suggest that pregnant women to a larger extent than nonpregnant women manifest an odor intolerance that affects their daily activities, with predominantly sensory/somatic symptoms, which appears not to be due to a general environmental hypersensitivity. This behavior may have embryo- and maternal-protective functions.
Neuropathophysiology of functional gastrointestinal disorders
Wood, Jackie D
2007-01-01
The investigative evidence and emerging concepts in neurogastroenterology implicate dysfunctions at the levels of the enteric and central nervous systems as underlying causes of the prominent symptoms of many of the functional gastrointestinal disorders. Neurogastroenterological research aims for improved understanding of the physiology and pathophysiology of the digestive subsystems from which the arrays of functional symptoms emerge. The key subsystems for defecation-related symptoms and visceral hyper-sensitivity are the intestinal secretory glands, the musculature and the nervous system that controls and integrates their activity. Abdominal pain and discomfort arising from these systems adds the dimension of sensory neurophysiology. This review details current concepts for the underlying pathophysiology in terms of the physiology of intestinal secretion, motility, nervous control, sensing function, immuno-neural communication and the brain-gut axis. PMID:17457962
Ulnar neuropathy at or distal to the wrist: traumatic versus cumulative stress cases.
Chiodo, Anthony; Chadd, Edmund
2007-04-01
To identify clinical and electromyographic characteristics of ulnar neuropathy at or below the wrist, comparing those caused by unitary trauma with those caused by suspected cumulative stress. Retrospective case series. University hospital electromyography laboratory. Patients with electrodiagnostic evidence of an ulnar neuropathy at or distal to the wrist over a 3-year period. Forty-seven hands from 42 patients (age range, 20-80y; mean, 52y) were identified and evaluated in this study. Record review of clinical history, physical examination, electromyography, and treatment. Etiology of injury, physical signs and symptoms, and electromyographic testing results. Ulnar neuropathy at or distal to the wrist is commonly mischaracterized because of other mononeuropathies in the upper extremity and because of peripheral polyneuropathy. Ulnar neuropathy because of cumulative stress presents typically with sensory symptoms (63%) and a normal examination (71%), whereas trauma cases present with motor with or without sensory symptoms (92%) with motor abnormalities (92%) confirmed on examination. Traumatic cases are characterized by electromyography by decreased sensory and motor-evoked amplitudes, prolonged motor distal latencies, and abnormal needle examination. The amplitude changes are noted comparing with laboratory norms and comparing side to side. No characteristic pattern of abnormalities on electromyography is noted in the cumulative stress cases. Patients with no motor symptoms, regardless of etiology, are more apt to have sensory distal latency prolongation, whereas those with motor symptoms have motor amplitude and needle examination abnormalities. Traumatic ulnar neuropathy at or distal to the wrist is characterized by motor symptoms and sensory and motor axonal loss by electromyography, whereas cumulative stress cases have sensory symptoms and electromyographic findings that are highly variable and noncharacteristic. Patients with no motor symptoms are more apt to show sensory distal latency abnormalities on electromyography, whereas those with motor symptoms show motor-evoked amplitude and needle electromyography abnormalities.
Schoj, Veronica; Alderete, Mariela; Ruiz, Ernesto; Hasdeu, Santiago; Linetzky, Bruno; Ferrante, Daniel
2010-04-01
The objective of this study was to evaluate the impact of 100% smoke-free environment legislation on respiratory and sensory irritation symptoms and respiratory function among bar and restaurant workers from the city of Neuquén, Argentina. Pre-ban and post-ban studies without a comparison group in an Argentinean city were conducted. A baseline survey and spirometric measurements were performed with a total of 80 bar and restaurant workers 1 month before (October 2007) and 3 months after (March 2008) the implementation of the new 100% smoke-free legislation. A significant reduction in secondhand smoke exposure was observed after the enactment and enforcement of the new legislation, and an important reduction in respiratory symptoms (from a pre-ban level of 57.5% to a post-ban level of only 28.8%). The reduction of sensory irritation symptoms was even higher. From 86.3% of workers who reported at least one sensory irritation symptom in October 2007, only 37.5% reported the same symptoms in March 2008. Also, data obtained by spirometry showed a significant forced vital capacity increase. Consistent with other studies, 100% smoke-free legislation improved short-term health outcomes in the sample and should be implemented nationwide. Furthermore, undertaking this study has been highly important in promoting 100% smoke-free environment legislation at the workplace as a legitimate right of hospitality workers, and in reducing social acceptance of designated smoking areas in bars and restaurants.
At the interface of sensory and motor dysfunctions and Alzheimer’s Disease
Albers, Mark W.; Gilmore, Grover C.; Kaye, Jeffrey; Murphy, Claire; Wingfield, Arthur; Bennett, David A.; Boxer, Adam L.; Buchman, Aron S.; Cruickshanks, Karen J.; Devanand, Davangere P.; Duffy, Charles J.; Gall, Christine M.; Gates, George A.; Granholm, Ann-Charlotte; Hensch, Takao; Holtzer, Roee; Hyman, Bradley T.; Lin, Frank R.; McKee, Ann C.; Morris, John C.; Petersen, Ronald C.; Silbert, Lisa C.; Struble, Robert G.; Trojanowski, John Q.; Verghese, Joe; Wilson, Donald A.; Xu, Shunbin; Zhang, Li I.
2014-01-01
Recent evidence indicates that sensory and motor changes may precede the cognitive symptoms of Alzheimer’s disease (AD) by several years and may signify increased risk of developing AD. Traditionally, sensory and motor dysfunctions in aging and AD have been studied separately. To ascertain the evidence supporting the relationship between age-related changes in sensory and motor systems and the development of AD and to facilitate communication between several disciplines, the National Institute on Aging held an exploratory workshop titled “Sensory and Motor Dysfunctions in Aging and Alzheimer’s Disease”. The scientific sessions of the workshop focused on age-related and neuropathological changes in the olfactory, visual, auditory, and motor systems, followed by extensive discussion and hypothesis generation related to the possible links among sensory, cognitive, and motor domains in aging and AD. Based on the data presented and discussed at this workshop, it is clear that sensory and motor regions of the CNS are affected by Alzheimer pathology and that interventions targeting amelioration of sensory-motor deficits in AD may enhance patient function as AD progresses. PMID:25022540
Shell shock at Queen Square: Lewis Yealland 100 years on
Jones, Edgar; Lees, Andrew J.
2013-01-01
This article reviews the treatment of functional neurological symptoms during World War I by Lewis Yealland at the National Hospital for the Paralysed and Epileptic in London. Yealland was among the first doctors in Britain to incorporate electricity in the systematic treatment of shell shock. Our analysis is based on the original case records of his treatment of 196 soldiers with functional motor and sensory symptoms, functional seizures and somatoform disorders. Yealland’s treatment approach integrated peripheral and central electrical stimulation with a variety of other—psychological and physical—interventions. A combination of electrical stimulation of affected muscles with suggestion of imminent improvement was the hallmark of his approach. Although his reported success rates were high, Yealland conducted no formal follow-up. Many of the principles of his treatment, including the emphasis on suggestion, demonstration of preserved function and the communication of a physiological illness model, are encountered in current therapeutic approaches to functional motor and sensory symptoms. Yealland has been attacked for his use of electrical stimulation and harsh disciplinary procedures in popular and scientific literature during and after World War I. This criticism reflects changing views on patient autonomy and the social role of doctors and directly impacts on current debates on ethical justification of suggestive therapies. We argue that knowledge of the historical approaches to diagnosis and management of functional neurological syndromes can inform both aetiological models and treatment concepts for these challenging conditions. PMID:23384604
Resting-state thalamic dysconnectivity in schizophrenia and relationships with symptoms.
Ferri, J; Ford, J M; Roach, B J; Turner, J A; van Erp, T G; Voyvodic, J; Preda, A; Belger, A; Bustillo, J; O'Leary, D; Mueller, B A; Lim, K O; McEwen, S C; Calhoun, V D; Diaz, M; Glover, G; Greve, D; Wible, C G; Vaidya, J G; Potkin, S G; Mathalon, D H
2018-02-15
Schizophrenia (SZ) is a severe neuropsychiatric disorder associated with disrupted connectivity within the thalamic-cortico-cerebellar network. Resting-state functional connectivity studies have reported thalamic hypoconnectivity with the cerebellum and prefrontal cortex as well as thalamic hyperconnectivity with sensory cortical regions in SZ patients compared with healthy comparison participants (HCs). However, fundamental questions remain regarding the clinical significance of these connectivity abnormalities. Resting state seed-based functional connectivity was used to investigate thalamus to whole brain connectivity using multi-site data including 183 SZ patients and 178 matched HCs. Statistical significance was based on a voxel-level FWE-corrected height threshold of p < 0.001. The relationships between positive and negative symptoms of SZ and regions of the brain demonstrating group differences in thalamic connectivity were examined. HC and SZ participants both demonstrated widespread positive connectivity between the thalamus and cortical regions. Compared with HCs, SZ patients had reduced thalamic connectivity with bilateral cerebellum and anterior cingulate cortex. In contrast, SZ patients had greater thalamic connectivity with multiple sensory-motor regions, including bilateral pre- and post-central gyrus, middle/inferior occipital gyrus, and middle/superior temporal gyrus. Thalamus to middle temporal gyrus connectivity was positively correlated with hallucinations and delusions, while thalamus to cerebellar connectivity was negatively correlated with delusions and bizarre behavior. Thalamic hyperconnectivity with sensory regions and hypoconnectivity with cerebellar regions in combination with their relationship to clinical features of SZ suggest that thalamic dysconnectivity may be a core neurobiological feature of SZ that underpins positive symptoms.
A heuristic mathematical model for the dynamics of sensory conflict and motion sickness
NASA Technical Reports Server (NTRS)
Oman, C. M.
1982-01-01
By consideration of the information processing task faced by the central nervous system in estimating body spatial orientation and in controlling active body movement using an internal model referenced control strategy, a mathematical model for sensory conflict generation is developed. The model postulates a major dynamic functional role for sensory conflict signals in movement control, as well as in sensory-motor adaptation. It accounts for the role of active movement in creating motion sickness symptoms in some experimental circumstance, and in alleviating them in others. The relationship between motion sickness produced by sensory rearrangement and that resulting from external motion disturbances is explicitly defined. A nonlinear conflict averaging model is proposed which describes dynamic aspects of experimentally observed subjective discomfort sensation, and suggests resulting behaviours. The model admits several possibilities for adaptive mechanisms which do not involve internal model updating. Further systematic efforts to experimentally refine and validate the model are indicated.
Brazill, Jennifer M; Cruz, Beverley; Zhu, Yi; Zhai, R Grace
2018-06-12
Chemotherapy-induced peripheral neuropathy (CIPN) is the major dose-limiting side effect of many commonly used chemotherapeutic agents, including paclitaxel. Currently, there are no neuroprotective or effective symptomatic treatments for CIPN. Lack of understanding of the in vivo mechanisms of CIPN has greatly impeded the identification of therapeutic targets. Here, we optimized a model of paclitaxel-induced peripheral neuropathy using Drosophila larvae that recapitulates aspects of chemotherapy-induced sensory dysfunction . We showed that nociceptive sensitivity is associated with disrupted organization of microtubule-associated MAP1B/Futsch and aberrant stabilization of peripheral sensory dendrites. These findings establish a robust and amenable model for studying peripheral mechanisms of CIPN. Using this model, we uncovered a critical role for nicotinamide mononucleotide adenylyltransferase (Nmnat) in maintaining the integrity and function of peripheral sensory neurons and uncovered Nmnat's therapeutic potential against diverse sensory symptoms of CIPN. © 2018. Published by The Company of Biologists Ltd.
Sensory Clusters of Toddlers with Autism Spectrum Disorders: Differences in Affective Symptoms
ERIC Educational Resources Information Center
Ben-Sasson, A.; Cermak, S. A.; Orsmond, G. I.; Tager-Flusberg, H.; Kadlec, M. B.; Carter, A. S.
2008-01-01
Background: Individuals with autism spectrum disorders (ASDs) show variability in their sensory behaviors. In this study we identified clusters of toddlers with ASDs who shared sensory profiles and examined differences in affective symptoms across these clusters. Method: Using cluster analysis 170 toddlers with ASDs were grouped based on parent…
Are Sensory Processing Features Associated with Depressive Symptoms in Boys with an ASD?
ERIC Educational Resources Information Center
Bitsika, Vicki; Sharpley, Christopher F.; Mills, Richard
2016-01-01
The association between Sensory Processing Features (SPF) and depressive symptoms was investigated at two levels in 150 young males (6-18 years) with an ASD. First, a significant correlation was found between SPF and total depressive symptom scores. Second, different aspects of SPF significantly predicted different depressive symptom factors, with…
Choung, R S; Talley, N J; Peterson, J; Camilleri, M; Burton, D; Harmsen, W S; Zinsmeister, A R
2007-03-01
Itopride, a dopamine D2 antagonist and acetylcholinesterase inhibitor, significantly improved symptoms in patients with functional dyspepsia in one phase II randomized trial. However, the mechanisms by which itopride may improve symptoms are unknown. We aimed to compare the effects of two doses of itopride and placebo on gastric volumes, gastric emptying, small bowel transit and satiation in female and male healthy volunteers. Randomized, double-blind, placebo-controlled study evaluated gastric function before and after 7 days of itopride 100 mg (n = 16) or 200 mg (n = 15) or placebo (n = 15) t.i.d. Validated methods were used to study gastric accommodation (single photon emission computed tomography), gastric emptying and orocecal transit and satiation postnutrient challenge. The three arms were comparable with regard to age, gender and body mass index. There were no statistically significant effects of itopride on gastric emptying, orocecal transit, fasting gastric volume, maximum tolerated volume or aggregate symptom score with nutrient drink challenge. Postprandial (PP) change in gastric volume differed in the three groups (P = 0.019): 625[+/-28 (SEM)], 555(+/-26) and 512(+/-33) in placebo, itopride 100 and 200 mg groups, respectively. In healthy subjects, itopride reduced total PP gastric volume without accelerating gastric emptying or significantly altering gastric motor and sensory function in healthy individuals.
ERIC Educational Resources Information Center
Brandwein, Alice B.; Foxe, John J.; Butler, John S.; Frey, Hans-Peter; Bates, Juliana C.; Shulman, Lisa H.; Molholm, Sophie
2015-01-01
Atypical processing and integration of sensory inputs are hypothesized to play a role in unusual sensory reactions and social-cognitive deficits in autism spectrum disorder (ASD). Reports on the relationship between objective metrics of sensory processing and clinical symptoms, however, are surprisingly sparse. Here we examined the relationship…
Westermann, Andrea; Krumova, Elena K; Pennekamp, Werner; Horch, Christoph; Baron, Ralf; Maier, Christoph
2012-07-01
Pain following spinal cord injury has been classified as nociceptive (musculoskeletal, visceral) or neuropathic (above, at, below level). There is no clear relation between the etiology and reported symptoms. Thus, due to different underlying mechanisms, the treatment is often ineffective. We report on a patient with spinal cord injury with neurological level of injury at T8 suffering from bilateral burning and prickling pain in the T9-11 dermatomes bilaterally (at-level pain), as well as diffusely in both legs from below the torso (below-level pain), accompanied by musculoskeletal low back pain. Bilateral comparison of quantitative sensory testing (QST) and skin biopsy revealed completely different findings in the dermatome T9 despite identical at-level pain characteristics. On the right side, QST revealed a normal sensory profile; the intraepidermal nerve fiber density (IENFD) was reduced, but not as severe as the contralateral side. On the left side there was a severe sensory loss with a stronger reduction of the IENDF, similar to the areas below the neurological level. These findings were significantly related to the treatment results. Pregabalin induced unilateral pain relief only in the area with remaining sensory function, whereas the left-sided at-level pain was unchanged. Thus, 2 different underlying mechanisms leading to bilaterally neuropathic pain with identical symptoms and with different treatment success were demonstrated in a single patient. The at-level pain in areas with remaining sensory function despite IENFD reduction could be relieved by pregabalin. Thus, in an individual case, QST may be helpful to better understand pain-generating mechanisms and to initiate successful treatment. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Functional Somatic Symptoms Across Cultures: Perceptual and Health Care Issues.
Löwe, Bernd; Gerloff, Christian
2018-06-01
Functional neurological disorders are conceptualized as patterns of neurological symptoms that cannot be attributed to a clear organic etiology. The study by Wilkins et al. in this issue of Psychosomatic Medicine reveals that 8.2% of patients who were initially presented with suspected stroke were later diagnosed with functional disorders, i.e., "functional stroke mimics." However, the percentage of functional stroke mimics varied substantially with patients' nationality, age, and sex. In this editorial comment, we discuss potential reasons for the intercultural variation of the frequency of functional stroke mimics.The current models of symptom perception, in which symptom perception is guided by top-down processes of the central nervous system, are helpful in explaining the intercultural variation of functional symptoms. According to these models, cultural beliefs, previous illnesses, and stressful life situations influence patients' expectations, sensory input, and finally the perception of somatic symptoms. In addition, differences in insurance status, health literacy, and health care experiences are strong predictors of health care use in patients who experience somatic symptoms.This article provides a conceptual model that integrates sociocultural factors with symptom perception and health care use relevant to the different rates of functional somatic symptoms in emergency departments across nationalities. Considering these factors, future attempts to improve care for patients with functional disorders should enhance access to effective treatment for all patient groups, empower patients through education and early participation in the treatment process, and foster interdisciplinary collaboration among specialists from somatic and mental health disciplines.
Neurobiology of Sensory Overresponsivity in Youth With Autism Spectrum Disorders.
Green, Shulamite A; Hernandez, Leanna; Tottenham, Nim; Krasileva, Kate; Bookheimer, Susan Y; Dapretto, Mirella
2015-08-01
More than half of youth with autism spectrum disorders (ASDs) have sensory overresponsivity (SOR), an extreme negative reaction to sensory stimuli. However, little is known about the neurobiological basis of SOR, and there are few effective treatments. Understanding whether SOR is due to an initial heightened sensory response or to deficits in regulating emotional reactions to stimuli has important implications for intervention. To determine differences in brain responses, habituation, and connectivity during exposure to mildly aversive sensory stimuli in youth with ASDs and SOR compared with youth with ASDs without SOR and compared with typically developing control subjects. Functional magnetic resonance imaging was used to examine brain responses and habituation to mildly aversive auditory and tactile stimuli in 19 high-functioning youths with ASDs and 19 age- and IQ-matched, typically developing youths (age range, 9-17 years). Brain activity was related to parents' ratings of children's SOR symptoms. Functional connectivity between the amygdala and orbitofrontal cortex was compared between ASDs subgroups with and without SOR and typically developing controls without SOR. The study dates were March 2012 through February 2014. Relative increases in blood oxygen level-dependent signal response across the whole brain and within the amygdala during exposure to sensory stimuli compared with fixation, as well as correlation between blood oxygen level-dependent signal change in the amygdala and orbitofrontal cortex. The mean age in both groups was 14 years and the majority in both groups (16 of 19 each) were male. Compared with neurotypical control participants, participants with ASDs displayed stronger activation in primary sensory cortices and the amygdala (P < .05, corrected). This activity was positively correlated with SOR symptoms after controlling for anxiety. The ASDs with SOR subgroup had decreased neural habituation to stimuli in sensory cortices and the amygdala compared with groups without SOR. Youth with ASDs without SOR showed a pattern of amygdala downregulation, with negative connectivity between the amygdala and orbitofrontal cortex (thresholded at z > 1.70, P < .05). Results demonstrate that youth with ASDs and SOR show sensorilimbic hyperresponsivity to mildly aversive tactile and auditory stimuli, particularly to multiple modalities presented simultaneously, and show that this hyperresponsivity is due to failure to habituate. In addition, findings suggest that a subset of youth with ASDs can regulate their responses through prefrontal downregulation of amygdala activity. Implications for intervention include minimizing exposure to multiple sensory modalities and building coping strategies for regulating emotional response to stimuli.
Phillips, Tudor J.C.; Brown, Matthew; Ramirez, Juan D.; Perkins, James; Woldeamanuel, Yohannes W.; Williams, Amanda C. de C.; Orengo, Christine; Bennett, David L.H.; Bodi, Istvan; Cox, Sarah; Maier, Christoph; Krumova, Elena K.; Rice, Andrew S.C.
2014-01-01
HIV-associated sensory neuropathy (HIV-SN) is a frequent complication of HIV infection and a major source of morbidity. A cross-sectional deep profiling study examining HIV-SN was conducted in people living with HIV in a high resource setting using a battery of measures which included the following: parameters of pain and sensory symptoms (7 day pain diary, Neuropathic Pain Symptom Inventory [NPSI] and Brief Pain Inventory [BPI]), sensory innervation (structured neurological examination, quantitative sensory testing [QST] and intraepidermal nerve fibre density [IENFD]), psychological state (Pain Anxiety Symptoms Scale-20 [PASS-20], Depression Anxiety and Positive Outlook Scale [DAPOS], and Pain Catastrophizing Scale [PCS], insomnia (Insomnia Severity Index [ISI]), and quality of life (Short Form (36) Health Survey [SF-36]). The diagnostic utility of the Brief Peripheral Neuropathy Screen (BPNS), Utah Early Neuropathy Scale (UENS), and Toronto Clinical Scoring System (TCSS) were evaluated. Thirty-six healthy volunteers and 66 HIV infected participants were recruited. A novel triumvirate case definition for HIV-SN was used that required 2 out of 3 of the following: 2 or more abnormal QST findings, reduced IENFD, and signs of a peripheral neuropathy on a structured neurological examination. Of those with HIV, 42% fulfilled the case definition for HIV-SN (n = 28), of whom 75% (n = 21) reported pain. The most frequent QST abnormalities in HIV-SN were loss of function in mechanical and vibration detection. Structured clinical examination was superior to QST or IENFD in HIV-SN diagnosis. HIV-SN participants had higher plasma triglyceride, concentrations depression, anxiety and catastrophizing scores, and prevalence of insomnia than HIV participants without HIV-SN. PMID:24973717
Disintegration of Sensorimotor Brain Networks in Schizophrenia.
Kaufmann, Tobias; Skåtun, Kristina C; Alnæs, Dag; Doan, Nhat Trung; Duff, Eugene P; Tønnesen, Siren; Roussos, Evangelos; Ueland, Torill; Aminoff, Sofie R; Lagerberg, Trine V; Agartz, Ingrid; Melle, Ingrid S; Smith, Stephen M; Andreassen, Ole A; Westlye, Lars T
2015-11-01
Schizophrenia is a severe mental disorder associated with derogated function across various domains, including perception, language, motor, emotional, and social behavior. Due to its complex symptomatology, schizophrenia is often regarded a disorder of cognitive processes. Yet due to the frequent involvement of sensory and perceptual symptoms, it has been hypothesized that functional disintegration between sensory and cognitive processes mediates the heterogeneous and comprehensive schizophrenia symptomatology. Here, using resting-state functional magnetic resonance imaging in 71 patients and 196 healthy controls, we characterized the standard deviation in BOLD (blood-oxygen-level-dependent) signal amplitude and the functional connectivity across a range of functional brain networks. We investigated connectivity on the edge and node level using network modeling based on independent component analysis and utilized the brain network features in cross-validated classification procedures. Both amplitude and connectivity were significantly altered in patients, largely involving sensory networks. Reduced standard deviation in amplitude was observed in a range of visual, sensorimotor, and auditory nodes in patients. The strongest differences in connectivity implicated within-sensorimotor and sensorimotor-thalamic connections. Furthermore, sensory nodes displayed widespread alterations in the connectivity with higher-order nodes. We demonstrated robustness of effects across subjects by significantly classifying diagnostic group on the individual level based on cross-validated multivariate connectivity features. Taken together, the findings support the hypothesis of disintegrated sensory and cognitive processes in schizophrenia, and the foci of effects emphasize that targeting the sensory and perceptual domains may be key to enhance our understanding of schizophrenia pathophysiology. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Pruritus: an underrecognized symptom of small-fiber neuropathies.
Brenaut, Emilie; Marcorelles, Pascale; Genestet, Steeve; Ménard, Dominique; Misery, Laurent
2015-02-01
Small-fiber neuropathies (SFN) are diseases of small nerve fibers that are characterized by autonomic and sensory symptoms. We sought to evaluate sensory symptoms, especially pruritus, in patients with SFN. A questionnaire was given to patients with SFN. In all, 41 patients responded to the questionnaire (71.9% response rate). The most frequent sensory symptoms were burning (77.5%), pain (72.5%), heat sensations (70.2%), and numbness (67.5%). Pruritus was present in 68.3% of patients. It appeared most often in the evening, and was localized to the limbs in a distal-to-proximal gradient, although the back was the most frequent location (64%). Exacerbating factors were fatigue, xerosis, sweating, hot temperature, and stress. Cold water was an alleviating factor. Recall bias associated with filling out the questionnaire, relatively small sample size, and the uncontrolled, retrospective nature of the study were limitations. Pruritus occurs frequently in patients with SFN and could be recognized as a possible presenting symptom, especially if there are other sensory or autonomic symptoms. Copyright © 2014 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.
Alderete, Mariela; Ruiz, Ernesto; Hasdeu, Santiago; Linetzky, Bruno; Ferrante, Daniel
2010-01-01
Objectives The objective of this study was to evaluate the impact of 100% smoke-free environment legislation on respiratory and sensory irritation symptoms and respiratory function among bar and restaurant workers from the city of Neuquén, Argentina. Methods Pre-ban and post-ban studies without a comparison group in an Argentinean city were conducted. A baseline survey and spirometric measurements were performed with a total of 80 bar and restaurant workers 1 month before (October 2007) and 3 months after (March 2008) the implementation of the new 100% smoke-free legislation. Results A significant reduction in secondhand smoke exposure was observed after the enactment and enforcement of the new legislation, and an important reduction in respiratory symptoms (from a pre-ban level of 57.5% to a post-ban level of only 28.8%). The reduction of sensory irritation symptoms was even higher. From 86.3% of workers who reported at least one sensory irritation symptom in October 2007, only 37.5% reported the same symptoms in March 2008. Also, data obtained by spirometry showed a significant forced vital capacity increase. Conclusions Consistent with other studies, 100% smoke-free legislation improved short-term health outcomes in the sample and should be implemented nationwide. Furthermore, undertaking this study has been highly important in promoting 100% smoke-free environment legislation at the workplace as a legitimate right of hospitality workers, and in reducing social acceptance of designated smoking areas in bars and restaurants. PMID:20378587
At the interface of sensory and motor dysfunctions and Alzheimer's disease.
Albers, Mark W; Gilmore, Grover C; Kaye, Jeffrey; Murphy, Claire; Wingfield, Arthur; Bennett, David A; Boxer, Adam L; Buchman, Aron S; Cruickshanks, Karen J; Devanand, Davangere P; Duffy, Charles J; Gall, Christine M; Gates, George A; Granholm, Ann-Charlotte; Hensch, Takao; Holtzer, Roee; Hyman, Bradley T; Lin, Frank R; McKee, Ann C; Morris, John C; Petersen, Ronald C; Silbert, Lisa C; Struble, Robert G; Trojanowski, John Q; Verghese, Joe; Wilson, Donald A; Xu, Shunbin; Zhang, Li I
2015-01-01
Recent evidence indicates that sensory and motor changes may precede the cognitive symptoms of Alzheimer's disease (AD) by several years and may signify increased risk of developing AD. Traditionally, sensory and motor dysfunctions in aging and AD have been studied separately. To ascertain the evidence supporting the relationship between age-related changes in sensory and motor systems and the development of AD and to facilitate communication between several disciplines, the National Institute on Aging held an exploratory workshop titled "Sensory and Motor Dysfunctions in Aging and AD." The scientific sessions of the workshop focused on age-related and neuropathologic changes in the olfactory, visual, auditory, and motor systems, followed by extensive discussion and hypothesis generation related to the possible links among sensory, cognitive, and motor domains in aging and AD. Based on the data presented and discussed at this workshop, it is clear that sensory and motor regions of the central nervous system are affected by AD pathology and that interventions targeting amelioration of sensory-motor deficits in AD may enhance patient function as AD progresses. Copyright © 2015 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
Black, Karen R; Stevenson, Ryan A; Segers, Magali; Ncube, Busiswe L; Sun, Sol Z; Philipp-Muller, Aviva; Bebko, James M; Barense, Morgan D; Ferber, Susanne
2017-08-01
Sensory hypersensitivity and insistence on sameness (I/S) are common, co-occurring features of autism, yet the relationship between them is poorly understood. This study assessed the impact of sensory hypersensitivity on the clinical symptoms of specific phobia, separation anxiety, social anxiety and I/S for autistic and typically developing (TD) children. Parents of 79 children completed questionnaires on their child's difficulties related to sensory processing, I/S, and anxiety. Results demonstrated that sensory hypersensitivity mediated 67% of the relationship between symptoms of specific phobia and I/S and 57% of the relationship between separation anxiety and I/S. No relationship was observed between sensory hypersensitivity and social anxiety. These mediation effects of sensory hypersensitivity were found only in autistic children, not in TD children.
Oral symptoms and functional outcome related to oral and oropharyngeal cancer.
Kamstra, Jolanda I; Jager-Wittenaar, Harriet; Dijkstra, Pieter U; Huisman, Paulien M; van Oort, Rob P; van der Laan, Bernard F A M; Roodenburg, Jan L N
2011-09-01
This study aimed to assess: (1) oral symptoms of patients treated for oral or oropharyngeal cancer; (2) how patients rank the burden of oral symptoms; (3) the impact of the tumor, the treatment, and oral symptoms on functional outcome. Eighty-nine patients treated for oral or oropharyngeal cancer were asked about their oral symptoms related to mouth opening, dental status, oral sensory function, tongue mobility, salivary function, and pain. They were asked to rank these oral symptoms according to the degree of burden experienced. The Mandibular Function Impairment Questionnaire (MFIQ) was used to assess functional outcome. In a multivariate linear regression analyses, variables related to MFIQ scores (p≤0.10) were entered as predictors with MFIQ score as the outcome. Lack of saliva (52%), restricted mouth opening (48%), and restricted tongue mobility (46%) were the most frequently reported oral symptoms. Lack of saliva was most frequently (32%) ranked as the most burdensome oral symptom. For radiated patients, an inability to wear a dental prosthesis, a T3 or T4 stage, and a higher age were predictive of MFIQ scores. For non-radiated patients, a restricted mouth opening, an inability to wear a dental prosthesis, restricted tongue mobility, and surgery of the mandible were predictive of MFIQ scores. Lack of saliva was not only the most frequently reported oral symptom after treatment for oral or oropharyngeal cancer, but also the most burdensome. Functional outcome is strongly influenced by an inability to wear a dental prosthesis in both radiated and non-radiated patients.
Sensory over responsivity and obsessive compulsive symptoms: A cluster analysis.
Ben-Sasson, Ayelet; Podoly, Tamar Yonit
2017-02-01
Several studies have examined the sensory component in Obsesseive Compulsive Disorder (OCD) and described an OCD subtype which has a unique profile, and that Sensory Phenomena (SP) is a significant component of this subtype. SP has some commonalities with Sensory Over Responsivity (SOR) and might be in part a characteristic of this subtype. Although there are some studies that have examined SOR and its relation to Obsessive Compulsive Symptoms (OCS), literature lacks sufficient data on this interplay. First to further examine the correlations between OCS and SOR, and to explore the correlations between SOR modalities (i.e. smell, touch, etc.) and OCS subscales (i.e. washing, ordering, etc.). Second, to investigate the cluster analysis of SOR and OCS dimensions in adults, that is, to classify the sample using the sensory scores to find whether a sensory OCD subtype can be specified. Our third goal was to explore the psychometric features of a new sensory questionnaire: the Sensory Perception Quotient (SPQ). A sample of non clinical adults (n=350) was recruited via e-mail, social media and social networks. Participants completed questionnaires for measuring SOR, OCS, and anxiety. SOR and OCI-F scores were moderately significantly correlated (n=274), significant correlations between all SOR modalities and OCS subscales were found with no specific higher correlation between one modality to one OCS subscale. Cluster analysis revealed four distinct clusters: (1) No OC and SOR symptoms (NONE; n=100), (2) High OC and SOR symptoms (BOTH; n=28), (3) Moderate OC symptoms (OCS; n=63), (4) Moderate SOR symptoms (SOR; n=83). The BOTH cluster had significantly higher anxiety levels than the other clusters, and shared OC subscales scores with the OCS cluster. The BOTH cluster also reported higher SOR scores across tactile, vision, taste and olfactory modalities. The SPQ was found reliable and suitable to detect SOR, the sample SPQ scores was normally distributed (n=350). SOR is a dimensional feature that can influence the severity of OCS and may characterize a unique sensory OCD subtype. Copyright © 2016 Elsevier Inc. All rights reserved.
Camilleri, Michael; Carlson, Paula; Zinsmeister, Alan R.; McKinzie, Sanna; Busciglio, Irene; Burton, Duane; Zucchelli, Marco; D’Amato, Mauro
2009-01-01
Background & Aims NPSR1, the receptor for neuropeptide S (NPS), is expressed by gastrointestinal (GI) enteroendocrine (EE) cells, and is involved in inflammation, anxiety and nociception. NPSR1 polymorphisms are associated with asthma and inflammatory bowel disease. We aimed to determine whether NPS induces expression of GI neuropeptides; and to associate NPSR1 single nucleotide polymorphisms (SNPs) with symptom phenotype and GI functions in health and functional GI disorders (FGID). Methods The effect of NPS on mRNA expression of neuropeptides was assessed using real-time PCR in NPSR1-tranfected HEK293 cells. Seventeen NPSR1 SNPs were successfully genotyped in 699 subjects from a regional cohort of 466 FGID patients and 233 healthy controls. Associations were sought using sex-adjusted regression analysis and false discovery rate (FDR) correction. Results NPS-NPSR1 signaling induced increased expression of CCK, VIP, PYY, and somatostatin. There were no significant associations with phenotypes of FGID symptoms. There were several NPSR1 SNPs associated with individual motor or sensory functions; the associations of SNPs rs2609234, rs6972158 and rs1379928 with colonic transit rate remained significant after FDR correction. The rs1379928 polymorphism was also associated with pain, gas and urgency sensory ratings at 36 mm Hg distension, the level pre-specified for formal testing. Associations with rectal sensory ratings were not significant after FDR correction. Conclusions Expression of several neuropeptides is induced upon NPS-NPSR1 signaling; NPSR1 variants are associated with colonic transit in FGID. The role of the NPS system in FGID deserves further study. PMID:19732772
Henningsen, Peter; Gündel, Harald; Kop, Willem J; Löwe, Bernd; Martin, Alexandra; Rief, Winfried; Rosmalen, Judith G M; Schröder, Andreas; van der Feltz-Cornelis, Christina; Van den Bergh, Omer
2018-06-01
The mechanisms underlying the perception and experience of persistent physical symptoms are not well understood, and in the models, the specific relevance of peripheral input versus central processing, or of neurobiological versus psychosocial factors in general, is not clear. In this article, we proposed a model for this clinical phenomenon that is designed to be coherent with an underlying, relatively new model of the normal brain functions involved in the experience of bodily signals. Based on a review of recent literature, we describe central elements of this model and its clinical implications. In the model, the brain is seen as an active predictive processing or inferential device rather than one that is passively waiting for sensory input. A central aspect of the model is the attempt of the brain to minimize prediction errors that result from constant comparisons of predictions and sensory input. Two possibilities exist: adaptation of the generative model underlying the predictions or alteration of the sensory input via autonomic nervous activation (in the case of interoception). Following this model, persistent physical symptoms can be described as "failures of inference" and clinically well-known factors such as expectation are assigned a role, not only in the later amplification of bodily signals but also in the very basis of symptom perception. We discuss therapeutic implications of such a model including new interpretations for established treatments as well as new options such as virtual reality techniques combining exteroceptive and interoceptive information.
Adewusi, Joy K; Hadjivassiliou, Marios; Vinagre-Aragón, Ana; O'Connor, Karen Ruth; Khan, Aijaz; Grünewald, Richard Adam; Zis, Panagiotis
2018-05-23
Neuropathic symptoms are commonly reported in Parkinson's disease (PD), but robust data on the epidemiology of such symptoms are lacking. The present study sought to investigate the prevalence and determinants of peripheral sensory neuropathic symptoms (PSNS) in idiopathic PD (IPD) and ascertain the effects of such symptoms on the patients' quality of life (QoL). Patients with IPD and age-matched and gender-matched controls were screened for neuropathic symptoms using the Michigan Neuropathy Screening Instrument. The impact of neuropathic symptoms on QoL was investigated using the 36-Item Short Form Survey. Fifty-two patients and 52 age-matched and gender-matched controls were recruited. PSNS were reported more frequently in patients with IPD than in the control subjects (57.7 versus 28.8%, p = 0.003). No significant relationships were found between PD-related clinical characteristics (i.e. disease severity and duration, duration of exposure to levodopa) and the presence of PSNS. Significant correlations were found between the number of PSNS and physical functioning (Spearman's Rho - 0.351), even after adjusting for age, gender and Hoehn and Yahr score. Our results support the notion of a greater prevalence of PSNS in IPD patients as compared to the general population, which, at least in part, may be secondary to large and/or small fibre peripheral neuropathy. This warrants further investigation in larger studies that include detailed neurophysiological assessments.
Ness, Kirsten K; Jones, Kendra E; Smith, Webb A; Spunt, Sheri L; Wilson, Carmen L; Armstrong, Gregory T; Srivastava, Deo Kumar; Robison, Leslie L; Hudson, Melissa M; Gurney, James G
2013-08-01
To ascertain prevalence of peripheral sensory and motor neuropathy, and to evaluate impairments in relation to function. St. Jude Lifetime Cohort Study, a clinical follow-up study designed to evaluate adverse late effects in adult survivors of childhood cancer. A children's research hospital. Eligibility required treatment for an extracranial solid malignancy between 1962 and 2002, age ≥ 18 years, ≥ 10 years postdiagnosis, and no history of cranial radiation. Survivors (N=531) were included in the evaluation with a median age of 32 years and a median time from diagnosis of 25 years. Not applicable. Primary exposure measures were cumulative doses of vinca-alkaloid and platinum-based chemotherapies. Survivors with scores ≥ 1 on the sensory subscale of the Modified Total Neuropathy Score were classified with prevalent sensory impairment. Those with sex-specific z scores of ≤-1.3 for dorsiflexion strength were classified with prevalent motor impairment. Participants completed the 6-minute walk test (endurance), the Timed Up & Go test (mobility), and the Sensory Organization Test (balance). The prevalence of sensory and motor impairment was 20% and 17.5%, respectively. Vinca-alkaloid exposure was associated with an increased risk of motor impairment (adjusted odds ratio [OR]=1.66; 95% confidence interval [CI], 1.04-2.64) without evidence for a dose response. Platinum exposure was associated with increased risk of sensory impairment (adjusted OR=1.62; 95% CI, .97-2.72) without evidence of a dose response. Sensory impairment was associated with poor endurance (OR=1.99; 95% CI, .99-4.0) and mobility (OR=1.65; 95% CI, .96-2.83). Vincristine and cisplatin exposure may increase risk for long-term motor and sensory impairment, respectively. Survivors with sensory impairment are at increased risk for functional performance limitations. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Foss-Feig, Jennifer H.; Heacock, Jessica L.; Cascio, Carissa J.
2011-01-01
Autism spectrum disorders (ASD) are often associated with aberrant responses to sensory stimuli, which are thought to contribute to the social, communication, and repetitive behavior deficits that define ASD. However, there are few studies that separate aberrant sensory responses by individual sensory modality to assess modality-specific associations between sensory features and core symptoms. Differences in response to tactile stimuli are prevalent in ASD, and tactile contact early in infancy is a foundation for the development of social and communication skills affected by ASD. We assessed the association between three aberrant patterns of tactile responsiveness (hyper-responsiveness, hypo-responsiveness, sensory seeking) and core symptoms of ASD. Both sensory and core features were measured with converging methods including both parent-report and direct observation. Our results demonstrate that for the tactile modality, sensory hypo-responsiveness correlates strongly with increased social and communication impairments, and to a lesser degree, repetitive behaviors. Sensory seeking was found to correlate strongly with social impairment, nonverbal communication impairment, and repetitive behaviors. Surprisingly, tactile hyper-responsiveness did not significantly correlate with any core features of ASD. This differential association between specific tactile processing patterns and core features provides an important step in defining the significance of sensory symptoms in ASD, and may be useful in the development of sensory–based approaches for early detection and intervention. PMID:22059092
Sensory and motor peripheral nerve function and longitudinal changes in quadriceps strength.
Ward, Rachel E; Boudreau, Robert M; Caserotti, Paolo; Harris, Tamara B; Zivkovic, Sasa; Goodpaster, Bret H; Satterfield, Suzanne; Kritchevsky, Stephen; Schwartz, Ann V; Vinik, Aaron I; Cauley, Jane A; Newman, Anne B; Strotmeyer, Elsa S
2015-04-01
Poor peripheral nerve function is common in older adults and may be a risk factor for strength decline, although this has not been assessed longitudinally. We assessed whether sensorimotor peripheral nerve function predicts strength longitudinally in 1,830 participants (age = 76.3 ± 2.8, body mass index = 27.2 ± 4.6kg/m(2), strength = 96.3 ± 34.7 Nm, 51.0% female, 34.8% black) from the Health ABC study. Isokinetic quadriceps strength was measured semiannually over 6 years. Peroneal motor nerve conduction amplitude and velocity were recorded. Sensory nerve function was assessed with 10-g and 1.4-g monofilaments and average vibration detection threshold at the toe. Lower-extremity neuropathy symptoms were self-reported. Worse vibration detection threshold predicted 2.4% lower strength in men and worse motor amplitude and two symptoms predicted 2.5% and 8.1% lower strength, respectively, in women. Initial 10-g monofilament insensitivity predicted 14.2% lower strength and faster strength decline in women and 6.6% lower strength in men (all p < .05). Poor nerve function predicted lower strength and faster strength decline. Future work should examine interventions aimed at preventing declines in strength in older adults with impaired nerve function. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Dynamics of the sensory response to urethral flow over multiple time scales in rat
Danziger, Zachary C; Grill, Warren M
2015-01-01
The pudendal nerve carries sensory information from the urethra that controls spinal reflexes necessary to maintain continence and achieve efficient micturition. Despite the key role urethral sensory feedback plays in regulation of the lower urinary tract, there is little information about the characteristics of urethral sensory responses to physiological stimuli, and the quantitative relationship between physiological stimuli and the evoked sensory activation is unknown. Such a relation is critical to understanding the neural control of the lower urinary tract and how dysfunction arises in disease states. We systematically quantified pudendal afferent responses to fluid flow in the urethra in vivo in the rat. We characterized the sensory response across a range of stimuli, and describe a previously unreported long-term neural accommodation phenomenon. We developed and validated a compact mechanistic mathematical model capable of reproducing the pudendal sensory activity in response to arbitrary profiles of urethral flows. These results describe the properties and function of urethral afferents that are necessary to understand how sensory disruption manifests in lower urinary tract pathophysiology. Key points Sensory information from the urethra is essential to maintain continence and to achieve efficient micturition and when compromised by disease or injury can lead to substantial loss of function. Despite the key role urethral sensory information plays in the lower urinary tract, the relationship between physiological urethral stimuli, such as fluid flow, and the neural sensory response is poorly understood. This work systematically quantifies pudendal afferent responses to a range of fluid flows in the urethra in vivo and describes a previously unknown long-term neural accommodation phenomenon in these afferents. We present a compact mechanistic mathematical model that reproduces the pudendal sensory activity in response to urethral flow. These results have implications for understanding urinary tract dysfunction caused by neuropathy or nerve damage, such as urinary retention or incontinence, as well as for the development of strategies to mitigate the symptoms of these conditions. PMID:26041695
Motor and sensory function of the esophagus: revelations through ultrasound imaging.
Mittal, Ravinder K
2005-04-01
Catheter based high frequency intraluminal ultrasound (HFIUS) imaging is a powerful tool to study esophageal sensory and motor function and dysfunction in vivo in humans. It has provided a number of important insights into the longitudinal muscle function of the esophagus. Based on the ultrasound images and intraluminal pressure recordings, it is clear that there is synchrony in the timing as well as the amplitude of contraction between the circular and the longitudinal muscle layers of the esophagus in normal subjects. On the other hand, in patients with spastic disorders of the esophagus, there is an asynchrony of contraction related to the timing and amplitude of contraction of the two muscle layers during peristalsis. Achalasia, diffuse esophageal spasm, and nutcracker esophagus (spastic motor disorders of the esophagus) are associated with hypertrophy of the circular as well as longitudinal muscle layers. A sustained contraction of the longitudinal muscle of the esophagus is temporally related to chest pain and heartburn and may very well be the cause of symptoms. Longitudinal muscle function of the esophagus can be studied in vivo in humans using dynamic ultrasound imaging. Longitudinal muscle dysfunction appears to be important in the motor and sensory disorders of the esophagus.
Mindful Yoga Pilot Study Shows Modulation of Abnormal Pain Processing in Fibromyalgia Patients.
Carson, James W; Carson, Kimberly M; Jones, Kim D; Lancaster, Lindsay; Mist, Scott D
2016-01-01
Published findings from a randomized controlled trial have shown that Mindful Yoga training improves symptoms, functional deficits, and coping abilities in individuals with fibromyalgia and that these benefits are replicable and can be maintained 3 months post-treatment. The aim of this study was to collect pilot data in female fibromyalgia patients (n = 7) to determine if initial evidence indicates that Mindful Yoga also modulates the abnormal pain processing that characterizes fibromyalgia. Pre- and post-treatment data were obtained on quantitative sensory tests and measures of symptoms, functional deficits, and coping abilities. Separation test analyses indicated significant improvements in heat pain tolerance, pressure pain threshold, and heat pain after-sensations at post-treatment. Fibromyalgia symptoms and functional deficits also improved significantly, including physical tests of strength and balance, and pain coping strategies. These findings indicate that further investigation is warranted into the effect of Mindful Yoga on neurobiological pain processing.
Voxel-based lesion-symptom mapping of stroke lesions underlying somatosensory deficits
Meyer, Sarah; Kessner, Simon S.; Cheng, Bastian; Bönstrup, Marlene; Schulz, Robert; Hummel, Friedhelm C.; De Bruyn, Nele; Peeters, Andre; Van Pesch, Vincent; Duprez, Thierry; Sunaert, Stefan; Schrooten, Maarten; Feys, Hilde; Gerloff, Christian; Thomalla, Götz; Thijs, Vincent; Verheyden, Geert
2015-01-01
The aim of this study was to investigate the relationship between stroke lesion location and the resulting somatosensory deficit. We studied exteroceptive and proprioceptive somatosensory symptoms and stroke lesions in 38 patients with first-ever acute stroke. The Erasmus modified Nottingham Sensory Assessment was used to clinically evaluate somatosensory functioning in the arm and hand within the first week after stroke onset. Additionally, more objective measures such as the perceptual threshold of touch and somatosensory evoked potentials were recorded. Non-parametric voxel-based lesion-symptom mapping was performed to investigate lesion contribution to different somatosensory deficits in the upper limb. Additionally, structural connectivity of brain areas that demonstrated the strongest association with somatosensory symptoms was determined, using probabilistic fiber tracking based on diffusion tensor imaging data from a healthy age-matched sample. Voxels with a significant association to somatosensory deficits were clustered in two core brain regions: the central parietal white matter, also referred to as the sensory component of the superior thalamic radiation, and the parietal operculum close to the insular cortex, representing the secondary somatosensory cortex. Our objective recordings confirmed findings from clinical assessments. Probabilistic tracking connected the first region to thalamus, internal capsule, brain stem, postcentral gyrus, cerebellum, and frontal pathways, while the second region demonstrated structural connections to thalamus, insular and primary somatosensory cortex. This study reveals that stroke lesions in the sensory fibers of the superior thalamocortical radiation and the parietal operculum are significantly associated with multiple exteroceptive and proprioceptive deficits in the arm and hand. PMID:26900565
Symptom development in childhood onset schizophrenia.
Watkins, J M; Asarnow, R F; Tanguay, P E
1988-11-01
Symptom development from birth to 12 years of age was examined in 18 children who met DSM-III criteria for schizophrenia with onset before 10 years of age. Using a follow-back design, symptom development was rated at each of four age levels using a DSM-III Symptom Rating Scale and the Achenbach Child Behavior Checklist. Results revealed a gradual developmental unfolding of a broad spectrum of symptoms affecting social, cognitive, sensory and motor functioning and beginning many years before the appearance of schizophrenic symptoms--usually in early infancy. Prior to 6 years of age, severe language deficits and motor development problems were each found in 72% of the sample and symptoms of infantile autism were found in 39% of the sample. Onset of schizophrenia occurred at an earlier age for children with a history of autistic symptoms during infancy than for other children in the sample. Schizophrenia as defined by DSM-III was entirely absent before 6 years of age.
Clitoral Epidermal Inclusion Cyst Resection With Intraoperative Sensory Nerve Mapping Technique.
Wu, Cindy; Damitz, Lynn; Karrat, Kimberly M; Mintz, Alice; Zolnoun, Denniz
2016-01-01
Despite the ever increasing popularity of labial and clitoral surgeries, the best practices and long-term effects of reconstructive procedures in these regions remain unknown. This is particularly noteworthy because the presentation of nerve-related symptoms may be delayed up to a year. Despite the convention that these surgical procedures are low risk, little is known about the best practices that may reduce the postoperative complications as a result of these reconstructive surgeries. We describe a preoperative sensory mapping technique in the context of a symptomatic inclusion cyst in the clitoral region. This technique delineates anatomical and functional regions innervated by the dorsal clitoral nerve while minimizing the vascular watershed area in the midline. A prototypical case of a patient with a clitoral mass is discussed with clinical history and surgical approach. Prior to surgical excision, the dorsal clitoral nerve distribution was mapped in order to avoid a surgical incision in this sensual zone. In our practice, preoperative sensory mapping is a clinically useful planning tool that requires minimal instrumentation and no additional operating time. Sensory mapping allows identification of the functional zone innervated by the dorsal clitoral nerve, which can aid in minimizing damage to the area.
DuBois, Denise; Desarkar, Pushpal
2017-01-01
Sensory reactivity is a diagnostic criterion for Autism Spectrum Disorder (ASD), and has been associated with poorer functional outcomes, behavioral difficulties, and autism severity across the lifespan. Yet, there is little consensus on best practice approaches to assessing sensory processing dysfunction in adolescents and adults with ASD. Despite growing evidence that sensory symptoms persist into adolescence and adulthood, there is a lack of norms for older age groups, and pediatric assessments may not target appropriate functional outcomes or environments. This review identified approaches used to measure sensory processing in the scientific literature, and to describe and compare these approaches to current best practice guidelines that can be incorporated into evidence-based practice. Method and Analysis: A search of scientific databases and grey literature (professional association and ASD society websites), from January 1987–May 2017, uncovered 4769 articles and 12 clinical guidelines. Study and sample characteristics were extracted, charted, and categorized according to assessment approach. Results: There were 66 articles included after article screening. Five categories of assessment approaches were identified: Self- and Proxy-Report Questionnaires, Psychophysical Assessment, Direct Behavioral Observation, Qualitative Interview Techniques, and Neuroimaging/EEG. Sensory research to date has focused on individuals with high-functioning ASD, most commonly through the use of self-report questionnaires. The Adolescent and Adult Sensory Profile (AASP) is the most widely used assessment measure (n = 22), however, a number of other assessment approaches may demonstrate strengths specific to the ASD population. Multi-method approaches to assessment (e.g., combining psychophysical or observation with questionnaires) may have clinical applicability to interdisciplinary clinical teams serving adolescents and adults with ASD. Contribution: A comprehensive knowledge of approaches is critical in the clinical assessment of a population characterized by symptomatic heterogeneity and wide-ranging cognitive profiles. This review should inform future development of international interdisciplinary clinical guidelines on sensory processing assessment in ASD across the lifespan. PMID:28825635
Depressive symptoms in institutionalized older adults
Santiago, Lívia Maria; Mattos, Inês Echenique
2014-01-01
OBJECTIVE To estimate the prevalence of depressive symptoms among institutionalized elderly individuals and to analyze factors associated with this condition. METHODS This was a cross-sectional study involving 462 individuals aged 60 or older, residents in long stay institutions in four Brazilian municipalities. The dependent variable was assessed using the 15-item Geriatric Depression Scale. Poisson’s regression was used to evaluate associations with co-variables. We investigated which variables were most relevant in terms of presence of depressive symptoms within the studied context through factor analysis. RESULTS Prevalence of depressive symptoms was 48.7%. The variables associated with depressive symptoms were: regular/bad/very bad self-rated health; comorbidities; hospitalizations; and lack of friends in the institution. Five components accounted for 49.2% of total variance of the sample: functioning, social support, sensory deficiency, institutionalization and health conditions. In the factor analysis, functionality and social support were the components which explained a large part of observed variance. CONCLUSIONS A high prevalence of depressive symptoms, with significant variation in distribution, was observed. Such results emphasize the importance of health conditions and functioning for institutionalized older individuals developing depression. They also point to the importance of providing opportunities for interaction among institutionalized individuals. PMID:24897042
Han, J H; Lee, H J; Jung, J; Park, E-C
2018-02-08
The aims of this study were to investigate the effects of either hearing, vision or dual sensory impairment on depressive symptoms and to identify subgroups that are vulnerable and significantly affected. Data from the 2006-2014 Korean Longitudinal Study of Aging (KLoSA) were used and a total of 5832 individuals were included in this study. Depressive symptoms were assessed using the Center for Epidemiologic Studies Depression (CES-D10) scale. Sensory impairment was assessed according to the levels of self-reported hearing or vision, which were categorised as either good (excellent, very good or good) or poor (fair or poor). The changes in hearing or vision from records of previous survey were investigated. Changes from good to poor, which indicates new onset, were defined as hearing impairment or vision impairment. Interactions of changes in hearing and vision were considered in the analysis. Dual sensory impairment was indicated when hearing impairment and vision impairment both developed at the same time. Demographic, socioeconomic and health-related factors were considered as potential confounders and were adjusted for in the generalised estimating equation model. Individuals with hearing impairment demonstrated significantly more severe depressive symptoms [β = 0.434, standard errors (s.e.) = 0.097, p < 0.001] than those who had good hearing. Those with vision impairment also showed significantly elevated depressive symptoms (β = 0.253, s.e. = 0.058, p < 0.001) than those with good vision. When the interactions between hearing and vision were considered, participants with dual sensory impairment showed significantly more severe depressive symptoms (β = 0.768, s.e. = 0.197, p < 0.001) than those with good hearing and vision. The effect of a single and dual sensory impairment on depressive symptoms was significant in both sexes and across age groups, except for vision impairment in male participants. Hearing, vision and dual sensory impairment are significantly associated with depressive symptoms. Our results suggest that treatment or rehabilitation of either hearing or vision impairment would help prevent depression.
Genetics Home Reference: congenital insensitivity to pain with anhidrosis
... is also known as hereditary sensory and autonomic neuropathy type IV. The signs and symptoms of CIPA ... to pain with anhidrosis hereditary sensory and autonomic neuropathy type IV hereditary sensory and autonomic neuropathy, type ...
[Homogeneous spinal-shortening axial decompression procedure for tethered cord syndrome].
Wang, Haibo; Sun, Jingchuan; Wang, Yuan; Wu, Zhao; Xu, Tao; Chen, Kefu; Shi, Guodong; Yuan, Wen; Jia, Lianshun; Shi, Jiangang
2015-06-16
Surgical detethering is a traditional treatment for symptomatic tethered cord syndrome. However, such complications as cerebrospinal fluid leakage and neurologic deterioration are common. Homogeneous spinal-shortening axial decompression (HSAD) is a modified procedure of monosegmental spinal-shortening osteotomy and it is a novel surgical alternative of reducing neural tension indirectly. The objective was to evaluate the surgical outcomes of HSAD for tethered cord syndrome. The surgical outcomes were examined for 15 consecutive patients with tethered cord syndrome undergoing HSAD from April 2010 to July 2014. Improvements of neurological symptoms including urinary dysfunction, lower-extremity motor and sensory disturbances and/or gait abnormalities, low-back and/or lower-extremity pain, bowel incontinence and sexual dysfunction were evaluated. Their average follow-up period was 21.5 months. The length of spinal column shortening was 17.2 ± 2.9 mm. Urinary dysfunction (n = 9) was the most common residual deficit. All 9 patients with urological symptoms reported improvements, although deficits persisted at the last follow-up. All patients with lower-extremity motor dysfunction improved and 4 (50.0%) noted complete resolution of preoperative lower-extremity sensory symptoms. All patients reported immediate low-back or lower-extremity pain relief after HSAD. One patient reported improved sexual functioning and regained complete erectile capabilities. Two patients (11%) experienced less satisfactory symptomatic or functional benefit from HSAD. However, the main objective of surgery was to prevent further worsening of neurological status. Complete bone union at osteotomy site was noted in all cases at the last follow-up. As a novel surgical option for tethered cord syndrome, HSAD may avoid such complications as cerebrospinal fluid leakage or neurologic deterioration commonly encountered during traditional detethering surgery. All patients gain satisfactory functional outcomes without complications compared to their preoperative symptoms.
Pilkington, Paul A; Gray, Selena; Gilmore, Anna B
2007-01-01
Background Casino workers are exposed to high levels of secondhand smoke (SHS) at work, yet remain at risk of being excluded from smoke-free legislation around the world. If the prime motivation for smoke-free legislation is the protection of workers, then a workforce experiencing ill-health associated with SHS exposure should not be excluded from legislation. This study aimed to determine the prevalence of respiratory and sensory irritation symptoms among a sample of casino workers, to identify any association between the reporting of symptoms and exposure to SHS at work, and to compare the prevalence of symptoms with that in other workers exposed to SHS. Methods A postal questionnaire survey of 1568 casino workers in London. Using multivariate analysis we identified predictors of respiratory and sensory irritation symptoms. Results 559 workers responded to the questionnaire (response of 36%). 91% of casino workers reported the presence of one or more sensory irritation symptoms in the previous four weeks, while the figure was 84% for respiratory symptoms. The presence of one or more sensory irritation symptoms was most strongly associated with reporting the highest exposure to SHS at work (OR 3.26; 1.72, 6.16). This was also true for reporting the presence of one or more respiratory irritation symptoms (OR 2.24; 1.34, 3.74). Prevalence of irritation symptoms in the casino workers was in general appreciably higher than that reported in studies of bar workers. Conclusion Our research supports the need for comprehensive smoke-free legislation around the world, covering all indoor workplaces including casinos. PMID:17888155
Pilkington, Paul A; Gray, Selena; Gilmore, Anna B
2007-09-21
Casino workers are exposed to high levels of secondhand smoke (SHS) at work, yet remain at risk of being excluded from smoke-free legislation around the world. If the prime motivation for smoke-free legislation is the protection of workers, then a workforce experiencing ill-health associated with SHS exposure should not be excluded from legislation. This study aimed to determine the prevalence of respiratory and sensory irritation symptoms among a sample of casino workers, to identify any association between the reporting of symptoms and exposure to SHS at work, and to compare the prevalence of symptoms with that in other workers exposed to SHS. A postal questionnaire survey of 1568 casino workers in London. Using multivariate analysis we identified predictors of respiratory and sensory irritation symptoms. 559 workers responded to the questionnaire (response of 36%). 91% of casino workers reported the presence of one or more sensory irritation symptoms in the previous four weeks, while the figure was 84% for respiratory symptoms. The presence of one or more sensory irritation symptoms was most strongly associated with reporting the highest exposure to SHS at work (OR 3.26; 1.72, 6.16). This was also true for reporting the presence of one or more respiratory irritation symptoms (OR 2.24; 1.34, 3.74). Prevalence of irritation symptoms in the casino workers was in general appreciably higher than that reported in studies of bar workers. Our research supports the need for comprehensive smoke-free legislation around the world, covering all indoor workplaces including casinos.
Sensory and motor peripheral nerve function and incident mobility disability.
Ward, Rachel E; Boudreau, Robert M; Caserotti, Paolo; Harris, Tamara B; Zivkovic, Sasa; Goodpaster, Bret H; Satterfield, Suzanne; Kritchevsky, Stephen B; Schwartz, Ann V; Vinik, Aaron I; Cauley, Jane A; Simonsick, Eleanor M; Newman, Anne B; Strotmeyer, Elsa S
2014-12-01
To assess the relationship between sensorimotor nerve function and incident mobility disability over 10 years. Prospective cohort study with longitudinal analysis. Two U.S. clinical sites. Population-based sample of community-dwelling older adults with no mobility disability at 2000/01 examination (N = 2,148 [Corrected]; mean age ± SD 76.5 ± 2.9, body mass index 27.1 ± 4.6; 50.2% female, 36.6% black, 10.7% with diabetes mellitus). Motor nerve conduction amplitude (poor <1 mV) and velocity (poor <40 m/s) were measured on the deep peroneal nerve. Sensory nerve function was measured using 10- and 1.4-g monofilaments and vibration detection threshold at the toe. Lower extremity symptoms included numbness or tingling and aching or burning pain. Incident mobility disability assessed semiannually over 8.5 years (interquartile range 4.5-9.6 years) was defined as two consecutive self-reports of a lot of difficulty or inability to walk one-quarter of a mile or climb 10 steps. Nerve impairments were detected in 55% of participants, and 30% developed mobility disability. Worse motor amplitude (HR = 1.29 per SD, 95% CI = 1.16-1.44), vibration detection threshold (HR = 1.13 per SD, 95% CI = 1.04-1.23), symptoms (HR = 1.65, 95% CI = 1.26-2.17), two motor impairments (HR = 2.10, 95% CI = 1.43-3.09), two sensory impairments (HR = 1.91, 95% CI = 1.37-2.68), and three or more nerve impairments (HR = 2.33, 95% CI = 1.54-3.53) predicted incident mobility disability after adjustment. Quadriceps strength mediated relationships between certain nerve impairments and mobility disability, although most remained significant. Poor sensorimotor nerve function independently predicted mobility disability. Future work should investigate modifiable risk factors and interventions such as strength training for preventing disability and improving function in older adults with poor nerve function. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.
The spinal cord: a review of functional neuroanatomy.
Bican, Orhan; Minagar, Alireza; Pruitt, Amy A
2013-02-01
The spinal cord controls the voluntary muscles of the trunk and limbs and receives sensory input from these areas. It extends from the medulla oblongata to the lower border of the first lumbar vertebra. A basic knowledge of spinal cord anatomy is essential for interpretation of clinical signs and symptoms and for understanding of pathologic processes involving the spinal cord. In this article, anatomic structures are correlated with relevant clinical signs and symptoms and a step-wise approach to spinal cord diagnosis is outlined. Copyright © 2013 Elsevier Inc. All rights reserved.
An interoceptive model of bulimia nervosa: A neurobiological systematic review.
Klabunde, Megan; Collado, Danielle; Bohon, Cara
2017-11-01
The objective of our study was to examine the neurobiological support for an interoceptive sensory processing model of bulimia nervosa (BN). To do so, we conducted a systematic review of interoceptive sensory processing in BN, using the PRISMA guidelines. We searched PsychInfo, Pubmed, and Web of Knowledge databases to identify biological and behavioral studies that examine interoceptive detection in BN. After screening 390 articles for inclusion and conducting a quality assessment of articles that met inclusion criteria, we reviewed 41 articles. We found that global interoceptive sensory processing deficits may be present in BN. Specifically there is evidence of abnormal brain function, structure and connectivity in the interoceptive neural network, in addition to gastric and pain processing disturbances. These results suggest that there may be a neurobiological basis for global interoceptive sensory processing deficits in BN that remain after recovery. Data from taste and heart beat detection studies were inconclusive; some studies suggest interoceptive disturbances in these sensory domains. Discrepancies in findings appear to be due to methodological differences. In conclusion, interoceptive sensory processing deficits may directly contribute to and explain a variety of symptoms present in those with BN. Further examination of interoceptive sensory processing deficits could inform the development of treatments for those with BN. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeoh, Eric K., E-mail: eric.yeoh@health.sa.gov.au; Discipline of Medicine, University of Adelaide, Adelaide; Holloway, Richard H.
2012-12-01
Purpose: To characterize the prevalence, pathophysiology, and natural history of chronic radiation proctitis 5 years following radiation therapy (RT) for localized carcinoma of the prostate. Methods and Materials: Studies were performed in 34 patients (median age 68 years; range 54-79) previously randomly assigned to either 64 Gy in 32 fractions over 6.4 weeks or 55 Gy in 20 fractions over 4 weeks RT schedule using 2- and later 3-dimensional treatment technique for localized prostate carcinoma. Each patient underwent evaluations of (1) gastrointestinal (GI) symptoms (Modified Late Effects in Normal Tissues Subjective, Objective, Management and Analytic scales including effect on activitiesmore » of daily living [ADLs]); (2) anorectal motor and sensory function (manometry and graded balloon distension); and (3) anal sphincteric morphology (endoanal ultrasound) before RT, at 1 month, and annually for 5 years after its completion. Results: Total GI symptom scores increased after RT and remained above baseline levels at 5 years and were associated with reductions in (1) basal anal pressures, (2) responses to squeeze and increased intra-abdominal pressure, (3) rectal compliance and (4) rectal volumes of sensory perception. Anal sphincter morphology was unchanged. At 5 years, 44% and 21% of patients reported urgency of defecation and rectal bleeding, respectively, and 48% impairment of ADLs. GI symptom scores and parameters of anorectal function and anal sphincter morphology did not differ between the 2 RT schedules or treatment techniques. Conclusions: Five years after RT for prostate carcinoma, anorectal symptoms continue to have a significant impact on ADLs of almost 50% of patients. These symptoms are associated with anorectal dysfunction independent of the RT schedules or treatment techniques reported here.« less
Sensitization of the Nociceptive System in Complex Regional Pain Syndrome
Diedrichs, Carolina; Baron, Ralf; Gierthmühlen, Janne
2016-01-01
Background Complex regional pain syndrome type I (CRPS-I) is characterized by sensory, motor and autonomic abnormalities without electrophysiological evidence of a nerve lesion. Objective Aims were to investigate how sensory, autonomic and motor function change in the course of the disease. Methods 19 CRPS-I patients (17 with acute, 2 with chronic CRPS, mean duration of disease 5.7±8.3, range 1–33 months) were examined with questionnaires (LANSS, NPS, MPI, Quick DASH, multiple choice list of descriptors for sensory, motor, autonomic symptoms), motor and autonomic tests as well as quantitative sensory testing according to the German Research Network on Neuropathic Pain at two visits (baseline and 36±10.6, range 16–53 months later). Results CRPS-I patients had an improvement of sudomotor and vasomotor function, but still a great impairment of sensory and motor function upon follow-up. Although pain and mechanical detection improved upon follow-up, thermal and mechanical pain sensitivity increased, including the contralateral side. Increase in mechanical pain sensitivity and loss of mechanical detection were associated with presence of ongoing pain. Conclusions The results demonstrate that patients with CRPS-I show a sensitization of the nociceptive system in the course of the disease, for which ongoing pain seems to be the most important trigger. They further suggest that measured loss of function in CRPS-I is due to pain-induced hypoesthesia rather than a minimal nerve lesion. In conclusion, this article gives evidence for a pronociceptive pain modulation profile developing in the course of CRPS and thus helps to assess underlying mechanisms of CRPS that contribute to the maintenance of patients’ pain and disability. PMID:27149519
Rectal distensibility and symptoms after stapled and Milligan-Morgan operation for hemorrhoids.
Corsetti, Maura; De Nardi, Paola; Di Pietro, Salvatore; Passaretti, Sandro; Testoni, Pier Alberto; Staudacher, Carlo
2009-12-01
In a previous uncontrolled study, a reduction of rectal distensibility and volume thresholds for sensations have been related to the occurrence of fecal urgency and/or increased stool frequency after stapled hemorrhoidopexy. The aim of this study was to compare rectal symptoms and sensory-motor function after stapled hemorrhoidopexy and Milligan-Morgan hemorrhoidectomy. The clinical records of 12 (four women) and ten patients (four women) with third- and fourth-degree hemorrhoids, respectively, who underwent stapled hemorrhoidopexy or Milligan-Morgan's hemorrhoidectomy, were evaluated. One week before and 6 months after surgery, rectal motor and sensory response to distension was assessed by an electronic barostat, and bowel and rectal symptoms were recorded by means of a 7-day diary and Bristol Index scale and psychological symptoms with SCL-90 questionnaire. Rectal distensibility and volume thresholds for sensations were significantly lower after surgery (P < 0.02) in the stapled group. Increased stool frequency and/or fecal urgency arose in 41% of patients in the stapled group and associated with altered rectal distensibility. No difference within and between groups could be demonstrated in SCL-90 score. Rectal distensibility and volume thresholds for sensations decrease after stapled hemorrhoidopexy. Altered rectal distensibility was associated with rectal urgency and/or increased stool frequency.
Kurt, Seda; Can, Gulbeyaz
2018-02-01
The current experimental study aimed to evaluate the effectiveness of reflexology on the management of symptoms and functions of chemotherapy-induced peripheral neuropathy (CIPN) in cancer patients. This study was conducted as a randomized controlled trial in 60 patients (30 experimental and 30 control patients) who had chemotherapy-induced Grade II-IV peripheral neuropathy complaints from July 2013 to November 2015. Data were collected using the patient identification form, European Organization for the Research and Treatment of Cancer Quality of Life Questionnaire Chemotherapy-Induced Peripheral Neuropathy (EORTC-CIPN-20) form, and BPI (used for related chemotherapy-induced peripheral neuropathy symptoms). The majority of the patients were being treated for gastrointestinal or breast cancer and were primarily receiving Eloxatine- or taxane-based treatment. It was found that reflexology applications did not lead to differences in either group in terms of peripheral neuropathy severity and incidence (p > 0.05) and only led to improvement in sensory functions in the experimental group (p < 0.05). It was determined that reflexology is not an effective method in the management of patients' activity levels, walking ability etc. and motor, autonomic functions related CIPN, but reflexology is effective method in the management of patients' sensory functions related CIPN. Key Words: Peripheral neuropathy, reflexology, chemotherapy, EORTC QLQ-CIPN-20, BPI. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reduced modulation of thalamocortical connectivity during exposure to sensory stimuli in ASD.
Green, Shulamite A; Hernandez, Leanna; Bookheimer, Susan Y; Dapretto, Mirella
2017-05-01
Recent evidence for abnormal thalamic connectivity in autism spectrum disorders (ASD) and sensory processing disorders suggests the thalamus may play a role in sensory over-responsivity (SOR), an extreme negative response to sensory stimuli, which is common in ASD. However, there is yet little understanding of changes in thalamic connectivity during exposure to aversive sensory inputs in individuals with ASD. In particular, the pulvinar nucleus of the thalamus is implicated in atypical sensory processing given its role in selective attention, regulation, and sensory integration. This study aimed to examine the role of pulvinar connectivity in ASD during mildly aversive sensory input. Functional magnetic resonance imaging was used to examine connectivity with the pulvinar during exposure to mildly aversive auditory and tactile stimuli in 38 youth (age 9-17; 19 ASD, 19 IQ-matched typically developing (TD)). Parents rated children's SOR severity on two standard scales. Compared to TD, ASD participants displayed aberrant modulation of connectivity between pulvinar and cortex (including sensory-motor and prefrontal regions) during sensory stimulation. In ASD participants, pulvinar-amygdala connectivity was correlated with severity of SOR symptoms. Deficits in modulation of thalamocortical connectivity in youth with ASD may reflect reduced thalamo-cortical inhibition in response to sensory stimulation, which could lead to difficulty filtering out and/or integrating sensory information. An increase in amygdala connectivity with the pulvinar might be partially responsible for deficits in selective attention as the amygdala signals the brain to attend to distracting sensory stimuli. Autism Res 2017, 10: 801-809. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Swanson, Randel L; Hampton, Stephen; Green-McKenzie, Judith; Diaz-Arrastia, Ramon; Grady, M Sean; Verma, Ragini; Biester, Rosette; Duda, Diana; Wolf, Ronald L; Smith, Douglas H
2018-03-20
From late 2016 through August 2017, US government personnel serving on diplomatic assignment in Havana, Cuba, reported neurological symptoms associated with exposure to auditory and sensory phenomena. To describe the neurological manifestations that followed exposure to an unknown energy source associated with auditory and sensory phenomena. Preliminary results from a retrospective case series of US government personnel in Havana, Cuba. Following reported exposure to auditory and sensory phenomena in their homes or hotel rooms, the individuals reported a similar constellation of neurological symptoms resembling brain injury. These individuals were referred to an academic brain injury center for multidisciplinary evaluation and treatment. Report of experiencing audible and sensory phenomena emanating from a distinct direction (directional phenomena) associated with an undetermined source, while serving on US government assignments in Havana, Cuba, since 2016. Descriptions of the exposures and symptoms were obtained from medical record review of multidisciplinary clinical interviews and examinations. Additional objective assessments included clinical tests of vestibular (dynamic and static balance, vestibulo-ocular reflex testing, caloric testing), oculomotor (measurement of convergence, saccadic, and smooth pursuit eye movements), cognitive (comprehensive neuropsychological battery), and audiometric (pure tone and speech audiometry) functioning. Neuroimaging was also obtained. Of 24 individuals with suspected exposure identified by the US Department of State, 21 completed multidisciplinary evaluation an average of 203 days after exposure. Persistent symptoms (>3 months after exposure) were reported by these individuals including cognitive (n = 17, 81%), balance (n = 15, 71%), visual (n = 18, 86%), and auditory (n = 15, 68%) dysfunction, sleep impairment (n = 18, 86%), and headaches (n = 16, 76%). Objective findings included cognitive (n = 16, 76%), vestibular (n = 17, 81%), and oculomotor (n = 15, 71%) abnormalities. Moderate to severe sensorineural hearing loss was identified in 3 individuals. Pharmacologic intervention was required for persistent sleep dysfunction (n = 15, 71%) and headache (n = 12, 57%). Fourteen individuals (67%) were held from work at the time of multidisciplinary evaluation. Of those, 7 began graduated return to work with restrictions in place, home exercise programs, and higher-level work-focused cognitive rehabilitation. In this preliminary report of a retrospective case series, persistent cognitive, vestibular, and oculomotor dysfunction, as well as sleep impairment and headaches, were observed among US government personnel in Havana, Cuba, associated with reports of directional audible and/or sensory phenomena of unclear origin. These individuals appeared to have sustained injury to widespread brain networks without an associated history of head trauma.
Larsson, Matz; Boëthius, Göran; Axelsson, Sara; Montgomery, Scott M
2008-08-01
This study attempted to identify changes in exposure to environmental tobacco smoke, as well as symptoms and attitudes among hospitality workers after the introduction of extended smoke-free workplace legislation. A total of 37 volunteers working in bingo halls and casinos (gaming workers) and 54 bars and restaurant employees (other workers) in nine Swedish communities participated in the study. Altogether 71 of 91 persons (14 daily smokers and 57 nonsmokers) participated in both the pre-ban baseline survey and the follow-up 12 months after the ban. Exposure to environmental tobacco smoke, smoking habits, respiratory and sensory symptoms, and attitudes towards the ban were recorded, and spirometry was carried out. The frequency of reported respiratory and sensory symptoms was approximately halved among the nonsmokers in both occupational groups after the introduction of the ban. Initially 87% had exposure to environmental tobacco smoke that was over the nicotine cut-off level chosen to identify possible health risk ( <0.5 microg/m3) while, after the ban, it was only 22%, a relative risk of 0.25 (95% confidence interval 0.15-0.41). The risk decreased in both occupational groups, but gaming workers experienced the highest pre-ban exposure levels. Attitudes towards the legislation were largely positive, particularly after the ban. However, there was no notable change in lung function, and there was no notable reduction in the number of cigarettes consumed by smokers. The introduction of smoke-free legislation was associated with a substantial reduction in respiratory and sensory symptoms, as well as reduced exposure to environmental tobacco smoke at work, particularly among gaming workers.
Irritable bowel syndrome in quiescent inflammatory bowel disease: a review.
Burgell, R E; Asthana, A K; Gibson, P R
2015-12-01
Ongoing troublesome bowel symptoms despite quiescent inflammatory disease are a frequent management challenge when caring for patients with inflammatory bowel disease (IBD). Even when active disease has been excluded the prevalence of residual gastrointestinal symptoms is surprisingly high and the cause often obscure. The presence of a concurrent functional disorder such as irritable bowel syndrome (IBS) is associated with worse quality of life, worse physical functioning, higher prevalence of anxiety and greater health care utilization. Potential etiological mechanisms leading to the development of IBS like symptoms include the development of visceral hypersensitivity following the original inflammatory insult, alteration in cortical processing, dysbiosis and residual subacute inflammation. Therapeutic options for managing IBS in patients with IBD include dietary modification, interventions targeted at correction of visceral sensory dysfunction or cortical processing and modulation of the gut microbiota. As there are few studies specifically examining the treatment of IBS in patients with IBD, the majority of therapeutic interventions are extrapolated from the IBS literature. Given the frequency of residual functional symptoms in IBS, significantly more research is warranted in this field.
Neurophysiology and new techniques to assess esophageal sensory function: an update.
Brock, Christina; McCallum, Richard W; Gyawali, C Prakash; Farmer, Adam D; Frøkjaer, Jens Brøndum; McMahon, Barry P; Drewes, Asbjørn Mohr
2016-09-01
This review aims to discuss the neurophysiology of the esophagus and new methods to assess esophageal nociception. Pain and other symptoms can be caused by diseases in the mucosa or muscular or sphincter dysfunction, together with abnormal pain processing, either in the peripheral or central nervous systems. Therefore, we present new techniques in the assessment of esophageal function and the potential role of the mucosal barrier in the generation and propagation of pain. We discuss the assessment and role of esophageal sphincters in nociception, as well as imaging and electrophysiological techniques, with examples of their use in understanding the sensory system following noxious stimuli to the esophagus. Additionally, we discuss the mechanisms behind functional diseases of the esophagus. We conclude that the new methods have identified many of the mechanisms behind malfunction of the mucosa, disturbances of muscular and sphincter functions, and the central response to different stimuli. Taken together, this has increased our understanding of esophageal disorders and may lead to new treatment modalities. © 2016 New York Academy of Sciences.
Sensorimotor Peripheral Nerve Function and Physical Activity in Older Men
Lange-Maia, Brittney S.; Cauley, Jane A.; Newman, Anne B.; Boudreau, Robert M.; Jakicic, John M.; Glynn, Nancy W.; Zivkovic, Sasa; Dam, Tien; Caserotti, Paolo; Cawthon, Peggy M.; Orwoll, Eric S.; Strotmeyer, Elsa S.
2017-01-01
We determined whether sensorimotor peripheral nerve (PN) function was associated with physical activity (PA) in older men. The Osteoporotic Fractures in Men Study Pittsburgh, PA, site (n=328, age 78.8±4.7 years), conducted PN testing, including: peroneal motor and sural sensory nerve conduction (latencies, amplitudes: CMAP and SNAP for motor and sensory amplitude, respectively), 1.4g/10g monofilament (dorsum of the great toe), and neuropathy symptoms. ANOVA and multivariate linear regression modeled PN associations with PA (Physical Activity Scale for the Elderly (PASE) and SenseWear Armband). After multivariable adjustment, better motor latency was associated with higher PASE scores (160.5±4.8 vs 135.6±6.7, p<0.01). Those without vs. with neuropathy symptoms had higher PASE scores (157.6±5.3 vs 132.9±7.1, p<0.01). Better vs. worse SNAP was associated with slightly more daily vigorous activity (9.5±0.8 vs. 7.3±0.7, p=0.05). Other PN measures were not associated with PA. Certain PN measures were associated with lower PA, suggesting a potential pathway for disability. PMID:26964668
Evaluative procedures to detect, characterize, and assess the severity of diabetic neuropathy.
Dyck, P J
1991-01-01
Minimal criteria for diabetic neuropathy need to be defined and universally applied. Standardized evaluative procedures need to be agreed and normal ranges determined from healthy volunteers. Types and stages of neuropathy should be established and assessments performed on representative populations of both Type 1 and Type 2 diabetic patients. Potential minimal criteria include absent ankle reflexes and vibratory sensation, and abnormalities of nerve conduction. However, the preferred criterion is the identification of more than two statistically defined abnormalities among symptoms and deficits, nerve conduction, quantitative sensory examination or quantitative autonomic examination. Various evaluative procedures are available. Symptoms should be assessed and scores can be assigned to neurological deficits. However, assessments of nerve conduction provide the most specific, objective, sensitive, and repeatable procedures, although these may be the least meaningful. Many techniques are available for quantitative sensory examination, but are poorly standardized and normal values are not available. For quantitative autonomic examination, tests are available for the adequacy of cardiovascular and peripheral vascular reflexes and increasingly for other autonomic functions. In any assessment of nerve function the conditions should be optimized and standardized, and stimuli defined. Specific instructions should be given and normal ranges established in healthy volunteers.
Neuropathic symptoms and findings in women with Fabry disease.
Laaksonen, Satu M; Röyttä, Matias; Jääskeläinen, Satu K; Kantola, Ilkka; Penttinen, Maila; Falck, Björn
2008-06-01
To examine the neurologic and neurophysiologic findings and neurologic symptoms in 12 women with Fabry disease and to study the relationship between the subjective symptoms and the findings on the various tests done. Neurography, vibratory and thermal quantitative sensory testing (QST), skin biopsy for measuring intraepidermal nerve fiber density (IENFD). Heart rate variability (HRV) and sympathetic skin response (SSR) tests for detecting autonomic dysfunction, pain-, depression- and somatic symptom questionnaires and clinical examination. Only two women had no persistent symptoms or signs of polyneuropathy, 10 had symptoms of small fiber neuropathy. Neurological examination was normal in most patients. Five patients had decreased IENFD or thermal hypoesthesia in QST. In QST, Adelta-fiber function for innocuous cold was more often impaired than C-fiber function. Conventional nerve conduction studies were mostly normal. Carpal tunnel syndrome (CTS) incidence was increased, 25% had symptomatic CTS. Heterozygous women carrying the gene for Fabry disease have symptoms and findings of small-fiber polyneuropathy more often than has previously been considered. The prevalence of CTS is also increased. While the clinical diagnosis of small-fiber neuropathy is difficult, the diagnostic yield can be increased using a combination of thermal QST and IENFD measurements.
Gengoux, Grace W; Schapp, Salena; Burton, Sarah; Ardel, Christina M; Libove, Robin A; Baldi, Gina; Berquist, Kari L; Phillips, Jennifer M; Hardan, Antonio Y
2018-05-01
Developmental approaches to autism treatment aim to establish strong interpersonal relationships through joint play. These approaches have emerging empirical support; however, there is a need for further research documenting the procedures and demonstrating their effectiveness. This pilot study evaluated changes in parent behavior and child autism symptoms following a 12-week Developmental Reciprocity Treatment parent-training program. A total of 22 children with autism spectrum disorder between 2 and 6 years (mean age = 44.6 months, standard deviation = 12.7) and a primary caregiver participated in 12 weekly sessions of Developmental Reciprocity Treatment parent training, covering topics including introduction to developmental approaches, supporting attention and motivation, sensory regulation and sensory-social routines, imitation/building nonverbal communication, functional language development, and turn taking. Results indicated improvement in aspects of parent empowerment and social quality of life. Improvement in core autism symptoms was observed on the Social Responsiveness Scale total score (F(1,19): 5.550, p = 0.029), MacArthur-Bates Communicative Development Inventories number of words produced out of 680 (F(1,18): 18.104, p = 0.000), and two subscales of the Repetitive Behavior Scale, Revised (compulsive, p = 0.046 and restricted, p = 0.025). No differences in sensory sensitivity were observed on the Short Sensory Profile. Findings from this pilot study indicate that Developmental Reciprocity Treatment shows promise and suggest the need for future controlled trials of this developmentally based intervention.
Serotonin rebalances cortical tuning and behavior linked to autism symptoms in 15q11-13 CNV mice
Nakai, Nobuhiro; Nagano, Masatoshi; Saitow, Fumihito; Watanabe, Yasuhito; Kawamura, Yoshinobu; Kawamoto, Akiko; Tamada, Kota; Mizuma, Hiroshi; Onoe, Hirotaka; Watanabe, Yasuyoshi; Monai, Hiromu; Hirase, Hajime; Nakatani, Jin; Inagaki, Hirofumi; Kawada, Tomoyuki; Miyazaki, Taisuke; Watanabe, Masahiko; Sato, Yuka; Okabe, Shigeo; Kitamura, Kazuo; Kano, Masanobu; Hashimoto, Kouichi; Suzuki, Hidenori; Takumi, Toru
2017-01-01
Serotonin is a critical modulator of cortical function, and its metabolism is defective in autism spectrum disorder (ASD) brain. How serotonin metabolism regulates cortical physiology and contributes to the pathological and behavioral symptoms of ASD remains unknown. We show that normal serotonin levels are essential for the maintenance of neocortical excitation/inhibition balance, correct sensory stimulus tuning, and social behavior. Conversely, low serotonin levels in 15q dup mice (a model for ASD with the human 15q11-13 duplication) result in impairment of the same phenotypes. Restoration of normal serotonin levels in 15q dup mice revealed the reversibility of a subset of ASD-related symptoms in the adult. These findings suggest that serotonin may have therapeutic potential for discrete ASD symptoms. PMID:28691086
The associations between multisensory temporal processing and symptoms of schizophrenia.
Stevenson, Ryan A; Park, Sohee; Cochran, Channing; McIntosh, Lindsey G; Noel, Jean-Paul; Barense, Morgan D; Ferber, Susanne; Wallace, Mark T
2017-01-01
Recent neurobiological accounts of schizophrenia have included an emphasis on changes in sensory processing. These sensory and perceptual deficits can have a cascading effect onto higher-level cognitive processes and clinical symptoms. One form of sensory dysfunction that has been consistently observed in schizophrenia is altered temporal processing. In this study, we investigated temporal processing within and across the auditory and visual modalities in individuals with schizophrenia (SCZ) and age-matched healthy controls. Individuals with SCZ showed auditory and visual temporal processing abnormalities, as well as multisensory temporal processing dysfunction that extended beyond that attributable to unisensory processing dysfunction. Most importantly, these multisensory temporal deficits were associated with the severity of hallucinations. This link between atypical multisensory temporal perception and clinical symptomatology suggests that clinical symptoms of schizophrenia may be at least partly a result of cascading effects from (multi)sensory disturbances. These results are discussed in terms of underlying neural bases and the possible implications for remediation. Copyright © 2016 Elsevier B.V. All rights reserved.
Hand involvement in children with Charcot-Marie-Tooth disease type 1A.
Burns, Joshua; Bray, Paula; Cross, Lauren A; North, Kathryn N; Ryan, Monique M; Ouvrier, Robert A
2008-12-01
Charcot-Marie-Tooth disease type 1A (CMT1A), a demyelinating neuropathy characterised by progressive length-dependent muscle weakness and atrophy, is thought to affect the foot and leg first followed some time later by hand weakness and dysfunction. We aimed to characterise hand strength, function and disease-related symptoms in children with CMT1A. Intrinsic and extrinsic hand strength was measured by hand-held dynamometry, function by nine-hole peg test, and disease-related symptoms by interview and examination in 84 affected children aged 2-16 years. Hand weakness and dysfunction was present from the earliest stages of the disease. While hand strength and function measures tended to increase with age throughout childhood, at no point did they reach normal values. Day-to-day hand problems such as poor handwriting, weakness, pain and sensory symptoms also worsened with age. The hand is affected at all ages in children with CMT1A, but may be under-recognised in its early stages, potentially delaying therapy.
Visual Occlusion Decreases Motion Sickness in a Flight Simulator.
Ishak, Shaziela; Bubka, Andrea; Bonato, Frederick
2018-05-01
Sensory conflict theories of motion sickness (MS) assert that symptoms may result when incoming sensory inputs (e.g., visual and vestibular) contradict each other. Logic suggests that attenuating input from one sense may reduce conflict and hence lessen MS symptoms. In the current study, it was hypothesized that attenuating visual input by blocking light entering the eye would reduce MS symptoms in a motion provocative environment. Participants sat inside an aircraft cockpit mounted onto a motion platform that simultaneously pitched, rolled, and heaved in two conditions. In the occluded condition, participants wore "blackout" goggles and closed their eyes to block light. In the control condition, participants opened their eyes and had full view of the cockpit's interior. Participants completed separate Simulator Sickness Questionnaires before and after each condition. The posttreatment total Simulator Sickness Questionnaires and subscores for nausea, oculomotor, and disorientation in the control condition were significantly higher than those in the occluded condition. These results suggest that under some conditions attenuating visual input may delay the onset of MS or weaken the severity of symptoms. Eliminating visual input may reduce visual/nonvisual sensory conflict by weakening the influence of the visual channel, which is consistent with the sensory conflict theory of MS.
Sensory Symptom Profiles and Co-Morbidities in Painful Radiculopathy
Gockel, Ulrich; Brosz, Mathias; Freynhagen, Rainer; Tölle, Thomas R.; Baron, Ralf
2011-01-01
Painful radiculopathies (RAD) and classical neuropathic pain syndromes (painful diabetic polyneuropathy, postherpetic neuralgia) show differences how the patients express their sensory perceptions. Furthermore, several clinical trials with neuropathic pain medications failed in painful radiculopathy. Epidemiological and clinical data of 2094 patients with painful radiculopathy were collected within a cross sectional survey (painDETECT) to describe demographic data and co-morbidities and to detect characteristic sensory abnormalities in patients with RAD and compare them with other neuropathic pain syndromes. Common co-morbidities in neuropathic pain (depression, sleep disturbance, anxiety) do not differ considerably between the three conditions. Compared to other neuropathic pain syndromes touch-evoked allodynia and thermal hyperalgesia are relatively uncommon in RAD. One distinct sensory symptom pattern (sensory profile), i.e., severe painful attacks and pressure induced pain in combination with mild spontaneous pain, mild mechanical allodynia and thermal hyperalgesia, was found to be characteristic for RAD. Despite similarities in sensory symptoms there are two important differences between RAD and other neuropathic pain disorders: (1) The paucity of mechanical allodynia and thermal hyperalgesia might be explained by the fact that the site of the nerve lesion in RAD is often located proximal to the dorsal root ganglion. (2) The distinct sensory profile found in RAD might be explained by compression-induced ectopic discharges from a dorsal root and not necessarily by nerve damage. These differences in pathogenesis might explain why medications effective in DPN and PHN failed to demonstrate efficacy in RAD. PMID:21573064
ERIC Educational Resources Information Center
Gunn, Timothy E.; Tavegia, Bethany D.; Houskamp, Beth M.; McDonald, Laura B.; Bustrum, Joy M.; Welsh, Robert K.; Mok, Doris S.
2009-01-01
This study examined the relationship between sensory deficits and externalizing behavior problems in preschool children. Parents of 179 urban, Latino preschool children completed two parent-report measures, the Short Sensory Profile (SSP), as a checklist for sensory symptoms, and the Achenbach Checklist for Ages 1 1/2-5 (CBCL/1 1/2-5) to assess…
Lange-Maia, Brittney S; Newman, Anne B; Jakicic, John M; Cauley, Jane A; Boudreau, Robert M; Schwartz, Ann V; Simonsick, Eleanor M; Satterfield, Suzanne; Vinik, Aaron I; Zivkovic, Sasa; Harris, Tamara B; Strotmeyer, Elsa S
2017-10-01
Age-related peripheral nervous system (PNS) impairments are highly prevalent in older adults. Although sensorimotor and cardiovascular autonomic function have been shown to be related in persons with diabetes, the nature of the relationship in general community-dwelling older adult populations is unknown. Health, Aging and Body Composition participants (n=2399, age=76.5±2.9years, 52% women, 38% black) underwent peripheral nerve testing at the 2000/01 clinic visit. Nerve conduction amplitude and velocity were measured at the peroneal motor nerve. Sensory nerve function was assessed with vibration detection threshold and monofilament (1.4-g/10-g) testing at the big toe. Symptoms of lower-extremity peripheral neuropathy were collected by self-report. Cardiovascular autonomic function indicators included postural hypotension, resting heart rate (HR), as well as HR response to and recovery from submaximal exercise testing (400m walk). Multivariable modeling adjusted for demographic/lifestyle factors, medication use and comorbid conditions. In fully adjusted models, poor motor nerve conduction velocity (<40m/s) was associated with greater odds of postural hypotension, (OR=1.6, 95% CI: 1.0-2.5), while poor motor amplitude (<1mV) was associated with 2.3beats/min (p=0.003) higher resting HR. No associations were observed between sensory nerve function or symptoms of peripheral neuropathy and indicators of cardiovascular autonomic function. Motor nerve function and indicators of cardiovascular autonomic function remained significantly related even after considering many potentially shared risk factors. Future studies should investigate common underlying processes for developing multiple PNS impairments in older adults. Copyright © 2017 Elsevier Inc. All rights reserved.
Fundamental Visual Representations of Social Cognition in ASD
2016-12-01
visual adaptation functions in Autism , again pointing to basic sensory processing anomalies in this population. Our research team is developing...challenging-to-test ASD pediatric population. 15. SUBJECT TERMS Autism , Visual Adaptation, Retinotopy, Social Communication, Eye-movements, fMRI, EEG, ERP...social interaction are a hallmark symptom of Autism , and the lack of appropriate eye- contact during interpersonal interactions is an oft-noted feature
Wang, Xiao-Hong; Zhang, Lin; Sperry, Laura; Olichney, John; Farias, Sarah Tomaszewski; Shahlaie, Kiarash; Chang, Norika Malhado; Liu, Ying; Wang, Su-Ping; Wang, Cui
2015-12-20
This review examines the evidence that deep brain stimulation (DBS) has extensive impact on nonmotor symptoms (NMSs) of patients with Parkinson's disease (PD). We retrieved information from the PubMed database up to September, 2015, using various search terms and their combinations including PD, NMSs, DBS, globus pallidus internus (GPi), subthalamic nucleus (STN), and ventral intermediate thalamic nucleus. We included data from peer-reviewed journals on impacts of DBS on neuropsychological profiles, sensory function, autonomic symptoms, weight changes, and sleep disturbances. For psychological symptoms and cognitive impairment, we tried to use more reliable proofs: Random, control, multicenter, large sample sizes, and long period follow-up clinical studies. We categorized the NMSs into four groups: those that would improve definitively following DBS; those that are not significantly affected by DBS; those that remain controversial on their surgical benefit; and those that can be worsened by DBS. In general, it seems to be an overall beneficial effect of DBS on NMSs, such as sensory, sleep, gastrointestinal, sweating, cardiovascular, odor, urological symptoms, and sexual dysfunction, GPi-DBS may produce similar results; Both STN and Gpi-DBS are safe with regard to cognition and psychology over long-term follow-up, though verbal fluency decline is related to DBS; The impact of DBS on behavioral addictions and dysphagia is still uncertain. As the motor effects of STN-DBS and GPi-DBS are similar, NMSs may determine the target choice in surgery of future patients.
Parker, H L; Tucker, E; Hoad, C L; Pal, A; Costigan, C; Hudders, N; Perkins, A; Blackshaw, E; Gowland, P; Marciani, L; Fox, M R
2016-04-01
Current investigations of stomach function are based on small test meals that do not reliably induce symptoms and analysis techniques that rarely detect clinically relevant dysfunction. This study introduces the large 'Nottingham Test Meal' (NTM) for assessment of gastric motor and sensory function by non-invasive imaging. NTM comprises 400 mL liquid nutrient (0.75 kcal/mL) and 12 solid agar-beads (0 kcal) with known breaking strength. Gastric fullness and dyspeptic sensations were documented by 100 mm visual analogue scale (VAS). Gastric emptying (GE) were measured in 24 healthy volunteers (HVs) by gastric scintigraphy (GS) and magnetic resonance imaging (MRI). The contribution of secretion to gastric volume was assessed. Parameters that describe GE were calculated from validated models. Inter-observer agreement and reproducibility were assessed. NTM produced moderate fullness (VAS ≥30) but no more than mild dyspeptic symptoms (VAS <30) in 24 HVs. Stable binding of meal components to labels in gastric conditions was confirmed. Distinct early and late-phase GE were detected by both modalities. Liquid GE half-time was median 49 (95% CI: 36-62) min and 68 (57-71) min for GS and MRI, respectively. Differences between GS and MRI measurements were explained by the contribution of gastric secretion. Breaking strength for agar-beads was 0.8 N/m(2) such that median 25 (8-50) % intact agar-beads and 65 (47-74) % solid material remained at 120 min on MRI and GS, respectively. Good reproducibility for liquid GE parameters was present and GE was not altered by agar-beads. The NTM provided an objective assessment of gastric motor and sensory function. The results were reproducible and liquid emptying was not affected by non-nutrient agar-beads. The method is potentially suitable for clinical practice. © 2016 John Wiley & Sons Ltd.
Neuromuscular findings in thyroid dysfunction: a prospective clinical and electrodiagnostic study.
Duyff, R F; Van den Bosch, J; Laman, D M; van Loon, B J; Linssen, W H
2000-06-01
To evaluate neuromuscular signs and symptoms in patients with newly diagnosed hypothyroidism and hyperthyroidism. A prospective cohort study was performed in adult patients with newly diagnosed thyroid dysfunction. Patients were evaluated clinically with hand held dynamometry and with electrodiagnosis. The clinical features of weakness and sensory signs and the biochemical data were evaluated during treatment. In hypothyroid patients 79% had neuromuscular complaints, 38% had clinical weakness (manual muscle strength testing) in one or more muscle groups, 42% had signs of sensorimotor axonal neuropathy, and 29% had carpal tunnel syndrome. Serum creatine kinase did not correlate with weakness. After 1 year of treatment 13% of the patients still had weakness. In hyperthyroid patients 67% had neuromuscular symptoms, 62% had clinical weakness in at least one muscle group that correlated with FT4 concentrations, but not with serum CK. Nineteen per cent of the patients had sensory-motor axonal neuropathy and 0% had carpal tunnel syndrome. The neuromuscular signs developed rapidly, early in the course of the disorder and were severe, but resolved rapidly and completely during treatment (average time 3.6 months). Neuromuscular symptoms and signs were present in most patients. About 40% of the hypothyroid patients and 20% of the hyperthyroid patients had predominantly sensory signs of a sensorimotor axonal neuropathy early in the course of thyroid disease. Weakness in hyperthyroidism evolved rapidly at an early stage of the disorder and resolved completely during treatment, suggesting a functional muscle disorder. Hand held dynamometry is sensitive for the detection of weakness and for the clinical evaluation of treatment effects. Weakness in hypothyroidism is more difficult to treat, suggesting myopathy.
Electrophysiology of Cranial Nerve Testing: Cranial Nerves IX and X.
Martinez, Alberto R M; Martins, Melina P; Moreira, Ana Lucila; Martins, Carlos R; Kimaid, Paulo A T; França, Marcondes C
2018-01-01
The cranial nerves IX and X emerge from medulla oblongata and have motor, sensory, and parasympathetic functions. Some of these are amenable to neurophysiological assessment. It is often hard to separate the individual contribution of each nerve; in fact, some of the techniques are indeed a composite functional measure of both nerves. The main methods are the evaluation of the swallowing function (combined IX and X), laryngeal electromyogram (predominant motor vagal function), and heart rate variability (predominant parasympathetic vagal function). This review describes, therefore, the techniques that best evaluate the major symptoms presented in IX and X cranial nerve disturbance: dysphagia, dysphonia, and autonomic parasympathetic dysfunction.
Kerner-Rossi, Mallory; Gulinello, Maria; Walkley, Steven; Dobrenis, Kostantin
2018-05-14
Christianson syndrome (CS) is a recently described rare neurogenetic disorder presenting early in life with a broad range of neurological symptoms, including severe intellectual disability with nonverbal status, hyperactivity, epilepsy, and progressive ataxia due to cerebellar atrophy. CS is due to loss-of-function mutations in SLC9A6, encoding NHE6, a sodium-hydrogen exchanger involved in the regulation of early endosomal pH. Here we review what is currently known about the neuropathogenesis of CS, based on insights from experimental models, which to date have focused on mechanisms that affect the CNS, specifically the brain. In addition, parental reports of sensory disturbances in their children with CS, including an apparent insensitivity to pain, led us to explore sensory function and related neuropathology in Slc9a6 KO mice. We present new data showing sensory deficits in Slc9a6 KO mice, which had reduced behavioral responses to noxious thermal and mechanical stimuli (Hargreaves and Von Frey assays, respectively) compared to wild type (WT) littermates. Immunohistochemical and ultrastructural analysis of the spinal cord and peripheral nervous system revealed intracellular accumulation of the glycosphingolipid GM2 ganglioside in KO but not WT mice. This cellular storage phenotype was most abundant in neurons of lamina I-II of the dorsal horn, a major relay site in the processing of painful stimuli. Spinal cords of KO mice also exhibited changes in astroglial and microglial populations throughout the gray matter suggestive of a neuroinflammatory process. Our findings establish the Slc9a6 KO mouse as a relevant tool for studying the sensory deficits in CS, and highlight selective vulnerabilities in relevant cell populations that may contribute to this phenotype. How NHE6 loss of function leads to such a multifaceted neurological syndrome is still undefined, and it is likely that NHE6 is involved with many cellular processes critical to normal nervous system development and function. In addition, the sensory issues exhibited by Slc9a6 KO mice, in combination with our neuropathological findings, are consistent with NHE6 loss of function impacting the entire nervous system. Sensory dysfunction in intellectually disabled individuals is challenging to assess and may impair patient safety and quality of life. Further mechanistic studies of the neurological impairments underlying CS and other genetic intellectual disability disorders must also take into account mechanisms affecting broader nervous system function in order to understand the full range of associated disabilities. Copyright © 2018. Published by Elsevier Inc.
Laviolette, S R; Grace, A A
2006-07-01
Cannabinoids represent one of the most widely used hallucinogenic drugs and induce profound alterations in sensory perception and emotional processing. Similarly, the dopamine (DA) neurotransmitter system is critical for the central processing of emotion and motivation. Functional disturbances in either of these neurotransmitter systems are well-established correlates of the psychopathological symptoms and behavioral manifestations observed in addiction and schizophrenia. Increasing evidence from the anatomical, pharmacological and behavioral neuroscience fields points to complex functional interactions between these receptor systems at the anatomical, pharmacological and neural systems levels. An important question relates to whether these systems act in an orchestrated manner to produce the emotional processing and sensory perception deficits underlying addiction and schizophrenia. This review describes evidence for functional neural interactions between cannabinoid and DA receptor systems and how disturbances in this neural circuitry may underlie the aberrant emotional learning and processing observed in disorders such as addiction and schizophrenia.
De Cicco, Vincenzo; Tramonti Fantozzi, Maria P.; Cataldo, Enrico; Barresi, Massimo; Bruschini, Luca; Faraguna, Ugo; Manzoni, Diego
2018-01-01
It is known that sensory signals sustain the background discharge of the ascending reticular activating system (ARAS) which includes the noradrenergic locus coeruleus (LC) neurons and controls the level of attention and alertness. Moreover, LC neurons influence brain metabolic activity, gene expression and brain inflammatory processes. As a consequence of the sensory control of ARAS/LC, stimulation of a sensory channel may potential influence neuronal activity and trophic state all over the brain, supporting cognitive functions and exerting a neuroprotective action. On the other hand, an imbalance of the same input on the two sides may lead to an asymmetric hemispheric excitability, leading to an impairment in cognitive functions. Among the inputs that may drive LC neurons and ARAS, those arising from the trigeminal region, from visceral organs and, possibly, from the vestibular system seem to be particularly relevant in regulating their activity. The trigeminal, visceral and vestibular control of ARAS/LC activity may explain why these input signals: (1) affect sensorimotor and cognitive functions which are not directly related to their specific informational content; and (2) are effective in relieving the symptoms of some brain pathologies, thus prompting peripheral activation of these input systems as a complementary approach for the treatment of cognitive impairments and neurodegenerative disorders. PMID:29358907
Acute Motor Axonal Neuropathy in a Child With Atypical Presentation
Lee, Kyung Soo; Han, Seung Hoon
2015-01-01
Abstract Acute motor axonal neuropathy (AMAN) is a variant of Guillain–Barre syndrome. It has been reported to have no sensory symptoms and is diagnosed by typical electrophysiological findings of low-amplitude or unobtainable compound muscle action potentials with normal sensory nerve action potentials. However, the authors experienced atypical case of general electrophysiological findings of AMAN with pain and paresthesia and presented it. This case implies that clinician should be on the alert to atypical sensory symptoms from the classical presentation of AMAN even if the patient is diagnosed with AMAN electrophysiologically and should consider proper treatment options based on clinical presentations. PMID:25621680
The Experience of Children Living with Sensory Processing Disorder
ERIC Educational Resources Information Center
Scotch, Melissa Dawn
2017-01-01
Sensory processing disorder (SPD) is a neurological condition that alters the way an individual perceives sensory information. Although the condition has been studied for more than 40 years, SPD remains a difficult condition to diagnose, treat, and live with because it affects individuals uniquely, and the symptoms can change from childhood to…
Abram, Katrin; Bohne, Silvia; Bublak, Peter; Karvouniari, Panagiota; Klingner, Carsten M; Witte, Otto W; Guntinas-Lichius, Orlando; Axer, Hubertus
2016-01-01
Postural instability in patients with normal pressure hydrocephalus (NPH) is a most crucial symptom leading to falls with secondary complications. The aim of the current study was to evaluate the therapeutic effect of spinal tap on postural stability in these patients. Seventeen patients with clinical symptoms of NPH were examined using gait scale, computerized dynamic posturography (CDP), and neuropsychological assessment. Examinations were done before and after spinal tap test. The gait score showed a significant improvement 24 h after spinal tap test in all subtests and in the sum score (p < 0.003), while neuropsychological assessment did not reveal significant differences 72 h after spinal tap test. CDP showed significant improvements after spinal tap test in the Sensory Organization Tests 2 (p = 0.017), 4 (p = 0.001), and 5 (p = 0.009) and the composite score (p = 0.01). Patients showed best performance in somatosensory and worst performance in vestibular dominated tests. Vestibular dominated tests did not improve significantly after spinal tap test, while somatosensory and visual dominated tests did. Postural stability in NPH is predominantly affected by deficient vestibular functions, which did not improve after spinal tap test. Conditions which improved best were mainly independent from visual control and are based on proprioceptive functions.
Are Rice and Spicy Diet Good for Functional Gastrointestinal Disorders?
2010-01-01
Rice- and chili-containing foods are common in Asia. Studies suggest that rice is completely absorbed in the small bowel, produces little intestinal gas and has a low allergenicity. Several clinical studies have demonstrated that rice-based meals are well tolerated and may improve gastrointestinal symptoms in functional gastrointestinal disorders (FGID). Chili is a spicy ingredient commonly use throughout Asia. The active component of chili is capsaicin. Capsaicin can mediate a painful, burning sensation in the human gut via the transient receptor potential vanilloid-1 (TRPV1). Recently, the TRPV1 expressing sensory fibers have been reported to increase in the gastrointestinal tract of patients with FGID and visceral hypersensitivity. Acute exposure to capsaicin or chili can aggravate abdominal pain and burning in dyspepsia and IBS patients. Whereas, chronic ingestion of natural capsaicin agonist or chili has been shown to decrease dyspeptic and gastroesophageal reflux disease (GERD) symptoms. The high prevalence of spicy food in Asia may modify gastrointestinal burning symptoms in patients with FGID. Studies in Asia demonstrated a low prevalence of heartburn symptoms in GERD patients in several Asian countries. In conclusion rice is well tolerated and should be advocated as the carbohydrate source of choice for patients with FGID. Although, acute chili ingestion can aggravate abdominal pain and burning symptoms in FGID, chronic ingestion of chili was found to improve functional dyspepsia and GERD symptoms in small randomized, controlled studies. PMID:20535343
Neuropathic pain: is quantitative sensory testing helpful?
Krumova, Elena K; Geber, Christian; Westermann, Andrea; Maier, Christoph
2012-08-01
Neuropathic pain arises as a consequence of a lesion or disease affecting the somatosensory system and is characterised by a combination of positive and negative sensory symptoms. Quantitative sensory testing (QST) examines the sensory perception after application of different mechanical and thermal stimuli of controlled intensity and the function of both large (A-beta) and small (A-delta and C) nerve fibres, including the corresponding central pathways. QST can be used to determine detection, pain thresholds and stimulus-response curves and can thus detect both negative and positive sensory signs, the second ones not being assessed by other methods. Similarly to all other psychophysical tests QST requires standardised examination, instructions and data evaluation to receive valid and reliable results. Since normative data are available, QST can contribute also to the individual diagnosis of neuropathy, especially in the case of isolated small-fibre neuropathy, in contrast to the conventional electrophysiology which assesses only large myelinated fibres. For example, detection of early stages of subclinical neuropathy in symptomatic or asymptomatic patients with diabetes mellitus can be helpful to optimise treatment and identify diabetic foot at risk of ulceration. QST assessed the individual's sensory profile and thus can be valuable to evaluate the underlying pain mechanisms which occur in different frequencies even in the same neuropathic pain syndromes. Furthermore, assessing the exact sensory phenotype by QST might be useful in the future to identify responders to certain treatments in accordance to the underlying pain mechanisms.
Nakamura, Misa; Tanaka, Seiji; Inoue, Tadashi; Maeda, Yasuto; Okumiya, Kiyohito; Esaki, Takuya; Shimomura, G O; Masunaga, Kenji; Nagamitsu, Shinichiro; Yamashita, Yushiro
2018-05-21
Conversion disorder (CD) is sometimes accompanied by motor and sensory impairments, such as muscle weakness, paralysis, sensory hypersensitivity, and sensory loss. Sjögren's syndrome (SS) complicates 5-10% of cases of systemic lupus erythematosus (SLE). Patients with SS or SLE present with various neurological symptoms and psychiatric manifestations. When neurological symptoms are present, it is important to distinguish whether the symptoms are caused by a neurological or a mental disorder because the former requires early intensive intervention, such as methylprednisolone pulse therapy (MPT), whereas psychotherapy or antidepressant drugs are recommended for mental disorders. We noticed SS- and SLE-like symptoms just after a diagnosis of idiopathic thrombocytopenic purpura in a 14-year-old girl. At approximately the same time, paralysis started in her lower limbs and subsequently spread to her upper limbs. An examination for neurological symptoms revealed no abnormalities. Because of the conversion reaction between her neurological symptoms and her disease state, CD was suspected as the etiology of her physical symptoms. Nevertheless, because of the progressive nature of the neurological symptoms, MPT was initiated with concurrent administration of intravenous immunoglobulin, but it failed to achieve a good outcome. The patient's symptoms eventually improved after she underwent psychotherapy treatment for a few months. Because early diagnosis of the cause of neurological symptoms accompanying SS and SLE is difficult, it may be necessary to combine the two lines of treatment in the early stages. However, when a mental disorder is suspected, psychotherapy should be started early to minimize the use of unnecessary neurological treatment.
Wild-type male offspring of fmr-1+/- mothers exhibit characteristics of the fragile X phenotype.
Zupan, Bojana; Toth, Miklos
2008-10-01
Fragile X syndrome is an X-linked disorder caused by the inactivation of the FMR-1 gene with symptoms ranging from impaired cognitive functions to seizures, anxiety, sensory abnormalities, and hyperactivity. Males are more severely affected than heterozygote (H) females, who, as carriers, have a 50% chance of transmitting the mutated allele in each pregnancy. fmr-1 knockout (KO) mice reproduce fragile X symptoms, including hyperactivity, seizures, and abnormal sensory processing. In contrast to the expectation that wild-type (WT) males born to H (fmr-1(+/-)) mothers (H>WT) are behaviorally normal and indistinguishable from WT males born to WT mothers (WT>WT); here, we show that H>WT offspring are more active than WT>WT offspring and that their hyperactivity is similar to male KO mice born to H or KO (fmr-1(-/-)) mothers (H>KO/KO>KO). H>WT mice, however, do not exhibit seizures or abnormal sensory processing. Consistent with their hyperactivity, the effect of the D2 agonist quinpirole is reduced in H>WT as well as in H>KO and KO>KO mice compared to WT>WT offspring, suggesting a diminished feedback inhibition of dopamine release. Our data indicate that some aspects of hyperactivity and associated dopaminergic changes in 'fragile X' mice are a maternal fmr-1 genotype rather than an offspring fmr-1 genotype effect.
Wild-Type Male Offspring of fmr-1+/− Mothers Exhibit Characteristics of the Fragile X Phenotype
Zupan, Bojana; Toth, Miklos
2009-01-01
Fragile X syndrome is an X-linked disorder caused by the inactivation of the FMR-1 gene with symptoms ranging from impaired cognitive functions to seizures, anxiety, sensory abnormalities, and hyperactivity. Males are more severely affected than heterozygote (H) females, who, as carriers, have a 50% chance of transmitting the mutated allele in each pregnancy. fmr-1 knockout (KO) mice reproduce fragile X symptoms, including hyperactivity, seizures, and abnormal sensory processing. In contrast to the expectation that wild-type (WT) males born to H (fmr-1+/−) mothers (H> WT) are behaviorally normal and indistinguishable from WT males born to WT mothers (WT> WT); here, we show that H> WT offspring are more active than WT> WT offspring and that their hyperactivity is similar to male KO mice born to H or KO (fmr-1−/−) mothers (H> KO/KO> KO). H> WT mice, however, do not exhibit seizures or abnormal sensory processing. Consistent with their hyperactivity, the effect of the D2 agonist quinpirole is reduced in H> WT as well as in H> KO and KO> KO mice compared to WT> WT offspring, suggesting a diminished feedback inhibition of dopamine release. Our data indicate that some aspects of hyperactivity and associated dopaminergic changes in ‘fragile X’ mice are a maternal fmr-1 genotype rather than an offspring fmr-1 genotype effect. PMID:18172434
Sensory Processing in the Dorsolateral Striatum: The Contribution of Thalamostriatal Pathways
Alloway, Kevin D.; Smith, Jared B.; Mowery, Todd M.; Watson, Glenn D. R.
2017-01-01
The dorsal striatum has two functionally-defined subdivisions: a dorsomedial striatum (DMS) region involved in mediating goal-directed behaviors that require conscious effort, and a dorsolateral striatum (DLS) region involved in the execution of habitual behaviors in a familiar sensory context. Consistent with its presumed role in forming stimulus-response (S-R) associations, neurons in DLS receive massive inputs from sensorimotor cortex and are responsive to both active and passive sensory stimulation. While several studies have established that corticostriatal inputs contribute to the stimulus-induced responses observed in the DLS, there is growing awareness that the thalamus has a significant role in conveying sensory-related information to DLS and other parts of the striatum. The thalamostriatal projections to DLS originate mainly from the caudal intralaminar region, which contains the parafascicular (Pf) nucleus, and from higher-order thalamic nuclei such as the medial part of the posterior (POm) nucleus. Based on recent findings, we hypothesize that the thalamostriatal projections from these two regions exert opposing influences on the expression of behavioral habits. This article reviews the subcortical circuits that regulate the transmission of sensory information through these thalamostriatal projection systems, and describes the evidence that indicates these circuits could be manipulated to ameliorate the symptoms of Parkinson’s disease (PD) and related neurological disorders. PMID:28790899
ERIC Educational Resources Information Center
Black, Karen R.; Stevenson, Ryan A.; Segers, Magali; Ncube, Busiswe L.; Sun, Sol Z.; Philipp-Muller, Aviva; Bebko, James M.; Barense, Morgan D.; Ferber, Susanne
2017-01-01
Sensory hypersensitivity and insistence on sameness (I/S) are common, co-occurring features of autism, yet the relationship between them is poorly understood. This study assessed the impact of sensory hypersensitivity on the clinical symptoms of specific phobia, separation anxiety, social anxiety and I/S for autistic and typically developing (TD)…
The Psychometric Properties of a New Measure of Sensory Behaviors in Autistic Children
ERIC Educational Resources Information Center
Neil, Louise; Green, Dido; Pellicano, Elizabeth
2017-01-01
Unusual reactions to sensory input became part of the diagnostic criteria for autism spectrum disorder in the DSM-5. Measures accurately assessing these symptoms are important for clinical decisions. This study examined the reliability and validity of the Sensory Behavior Questionnaire, a parent-report scale designed to assess frequency and impact…
Javitt, Daniel C.
2012-01-01
Over the last 20 years, glutamatergic models of schizophrenia have become increasingly accepted as etiopathological models of schizophrenia, based on the observation that phencyclidine (PCP) induces a schizophrenia-like psychosis by blocking neurotransmission at N-methyl-D-aspartate (NMDA)-type glutamate receptors. This article reviews developments in two key predictions of the model: first, that neurocognitive deficits in schizophrenia should follow the pattern of deficit predicted based on underlying NMDAR dysfunction and, second, that agents that stimulate NMDAR function should be therapeutically beneficial. As opposed to dopamine receptors, NMDAR are widely distributed throughout the brain, including subcortical as well as cortical brain regions, and sensory as well as association cortex. Studies over the past 20 years have documented severe sensory dysfunction in schizophrenia using behavioral, neurophysiological, and functional brain imaging approaches, including impaired generation of key sensory-related potentials such as mismatch negativity and visual P1 potentials. Similar deficits are observed in humans following administration of NMDAR antagonists such as ketamine in either humans or animal models. Sensory dysfunction, in turn, predicts impairments in higher order cognitive functions such as auditory or visual emotion recognition. Treatment studies have been performed with compounds acting directly at the NMDAR glycine site, such as glycine, D-serine, or D-cycloserine, and, more recently, with high-affinity glycine transport inhibitors such as RG1678 (Roche). More limited studies have been performed with compounds targeting the redox site. Overall, these compounds have been found to induce significant beneficial effects on persistent symptoms, suggesting novel approaches for treatment and prevention of schizophrenia. PMID:22987851
Wang, Xiao-Hong; Zhang, Lin; Sperry, Laura; Olichney, John; Farias, Sarah Tomaszewski; Shahlaie, Kiarash; Chang, Norika Malhado; Liu, Ying; Wang, Su-Ping; Wang, Cui
2015-01-01
Objective: This review examines the evidence that deep brain stimulation (DBS) has extensive impact on nonmotor symptoms (NMSs) of patients with Parkinson's disease (PD). Data Sources: We retrieved information from the PubMed database up to September, 2015, using various search terms and their combinations including PD, NMSs, DBS, globus pallidus internus (GPi), subthalamic nucleus (STN), and ventral intermediate thalamic nucleus. Study Selection: We included data from peer-reviewed journals on impacts of DBS on neuropsychological profiles, sensory function, autonomic symptoms, weight changes, and sleep disturbances. For psychological symptoms and cognitive impairment, we tried to use more reliable proofs: Random, control, multicenter, large sample sizes, and long period follow-up clinical studies. We categorized the NMSs into four groups: those that would improve definitively following DBS; those that are not significantly affected by DBS; those that remain controversial on their surgical benefit; and those that can be worsened by DBS. Results: In general, it seems to be an overall beneficial effect of DBS on NMSs, such as sensory, sleep, gastrointestinal, sweating, cardiovascular, odor, urological symptoms, and sexual dysfunction, GPi-DBS may produce similar results; Both STN and Gpi-DBS are safe with regard to cognition and psychology over long-term follow-up, though verbal fluency decline is related to DBS; The impact of DBS on behavioral addictions and dysphagia is still uncertain. Conclusions: As the motor effects of STN-DBS and GPi-DBS are similar, NMSs may determine the target choice in surgery of future patients. PMID:26668154
Efficacy of paraffin wax bath for carpal tunnel syndrome: a randomized comparative study
NASA Astrophysics Data System (ADS)
Ordahan, Banu; Karahan, Ali Yavuz
2017-12-01
Carpal tunnel syndrome (CTS) is the most frequently diagnosed neuropathy of upper extremity entrapment neuropathies. We aimed to investigate the effectiveness of paraffin therapy in patients with CTS. Seventy patients diagnosed with mild or moderate CTS were randomly divided into two groups as splint treatment (during the night and day time as much as possible for 3 weeks) alone and splint (during the night and day time as much as possible for 3 weeks) + paraffin treatment (five consecutive days a week for 3 weeks). Clinical and electrophysiological assessments were performed before and 3 weeks after treatment. The patients were assessed by using visual analog scale (VAS) for pain, electroneuromyography (ENMG), and Boston Carpal Tunnel Syndrome Questionnaire (BCTSQ). The significant improvement was found in VAS scores in both groups when compared with pretreatment values ( p < 0.05). There was no significant improvement in functional capacity score ( p > 0.05), whereas a significant improvement was noted in the BCTQ symptom severity scale score in the splint group ( p < 0.05). Significant improvements were demonstrated in both scorers in the combined treatment group. Similarly, significant improvements were found in the combined treatment group in terms of motor and sensory distal latency, sensory amplitude, and median sensory nerve velocity ( p < 0.05). There was no significant change in electrophysiologic parameters in the splint group ( p > 0.05), and the difference in these parameters between the groups was statistically significant ( p < 0.05). In conclusion, using splinting alone in patients with CTS is an effective treatment for reducing symptoms in the early stages. Paraffin treatment with splint increases the recovery in functional and electrophysiological parameters.
Common questions about the diagnosis and management of fibromyalgia.
Kodner, Charles
2015-04-01
Fibromyalgia has a distinct pathophysiology involving central amplification of peripheral sensory signals. Core symptoms are chronic widespread pain, fatigue, and sleep disturbance. Most patients with fibromyalgia have muscle pain and tenderness, forgetfulness or problems concentrating, and significant functional limitations. Fibromyalgia is diagnosed using an updated set of clinical criteria that no longer depend on tender point examination; laboratory testing may rule out other disorders that commonly present with fatigue, such as anemia and thyroid disease. Patients with fibromyalgia should be evaluated for comorbid functional pain syndromes and mood disorders. Management of fibromyalgia should include patient education, symptom relief, and regular aerobic physical activity. Serotoninnorepinephrine reuptake inhibitors, tricyclic antidepressants, antiepileptics, and muscle relaxants have the strongest evidence of benefit for improving pain, fatigue, sleep symptoms, and quality of life. Multiple complementary and alternative medicine therapies have been used but have limited evidence of effectiveness. Opioids should be used to relieve pain in carefully selected patients only if alternative therapies are ineffective.
Clinical and electrophysiologic attributes as predictors of results of autonomic function tests
NASA Technical Reports Server (NTRS)
Wu, C. L.; Denq, J. C.; Harper, C. M.; O'Brien, P. C.; Low, P. A.
1998-01-01
Autonomic dysfunction is a feature of some neuropathies and not others. It has been suggested that some clinical and electrophysiologic attributes are predictable of autonomic impairment detected using laboratory testing; however, dear guidelines are unavailable. We evaluated 138 relatively unselected patients with peripheral neuropathy who underwent neurologic evaluation, electromyography (EMG), nerve conduction studies, and autonomic function tests to determine which variables were predictive of laboratory findings of autonomic failure. The variables evaluated were 1) clinical somatic neuropathic findings, 2) clinical autonomic symptoms, and 3) electrophysiologic findings. Autonomic symptoms were strongly predictive (Rs = 0.40, p < 0.001) of autonomic failure. Among the non-autonomic indices, absent ankle reflexes were mildly predictive (Rs = 0.19, p = 0.022) of autonomic impairment, but all others were not (duration, clinical pattern, severity, weakness, sensory loss). Electrophysiologic changes of an axonal neuropathy predicted autonomic impairment while demyelinating neuropathy did not. We conclude that autonomic studies will most likely be abnormal in patients who have symptoms of autonomic involvement and those who have an axonal neuropathy.
Neuromuscular findings in thyroid dysfunction: a prospective clinical and electrodiagnostic study
Duyff, R.; Van den Bosch, J.; Laman, D; van Loon, B.-J. P.; Linssen, W.
2000-01-01
OBJECTIVES—To evaluate neuromuscular signs and symptoms in patients with newly diagnosed hypothyroidism and hyperthyroidism. METHODS—A prospective cohort study was performed in adult patients with newly diagnosed thyroid dysfunction. Patients were evaluated clinically with hand held dynamometry and with electrodiagnosis. The clinical features of weakness and sensory signs and the biochemical data were evaluated during treatment. RESULTS—In hypothyroid patients 79% had neuromuscular complaints, 38% had clinical weakness (manual muscle strength testing) in one or more muscle groups, 42% had signs of sensorimotor axonal neuropathy, and 29% had carpal tunnel syndrome. Serum creatine kinase did not correlate with weakness. After 1 year of treatment 13% of the patients still had weakness. In hyperthyroid patients 67% had neuromuscular symptoms, 62% had clinical weakness in at least one muscle group that correlated with FT4 concentrations, but not with serum CK. Nineteen per cent of the patients had sensory-motor axonal neuropathy and 0% had carpal tunnel syndrome. The neuromuscular signs developed rapidly, early in the course of the disorder and were severe, but resolved rapidly and completely during treatment (average time 3.6months). CONCLUSIONS—Neuromuscular symptoms and signs were present in most patients. About 40% of the hypothyroid patients and 20% of the hyperthyroid patients had predominantly sensory signs of a sensorimotor axonal neuropathy early in the course of thyroid disease. Weakness in hyperthyroidism evolved rapidly at an early stage of the disorder and resolved completely during treatment, suggesting a functional muscle disorder. Hand held dynamometry is sensitive for the detection of weakness and for the clinical evaluation of treatment effects. Weakness in hypothyroidism is more difficult to treat, suggesting myopathy. PMID:10811699
Simons, Megan; Price, Nathaniel; Kimble, Roy; Tyack, Zephanie
2016-05-01
The aim of this study was to understand the impact of burn scars on health-related quality of life (HRQOL) from the perspective of adults and children with burn scars, and caregivers to inform the development of a conceptual model of burn scar HRQOL. Twenty-one participants (adults and children) with burn scars and nine caregivers participated in semi-structured, face-to-face interviews between 2012 and 2013. During the interviews, participants were asked to describe features about their (or their child's) burn scars and its impact on everyday life. Two coders conducted thematic analysis, with consensus achieved through discussion and review with a third coder. The literature on HRQOL models was then reviewed to further inform the development of a conceptual model of burn scar HRQOL. Five themes emerged from the qualitative data: 'physical and sensory symptoms', 'impact of burn scar interventions', 'impact of burn scar symptoms', 'personal factors' and 'change over time'. Caregivers offered further insights into family functioning after burn, and the impacts of burn scars and burn scar interventions on family life. In the conceptual model, symptoms (sensory and physical) of burn scars are considered proximal to HRQOL, with distal indicators including functioning (physical, emotional, social, cognitive), individual factors and the environment. Overall quality of life was affected by HRQOL. Understanding the impact of burn scars on HRQOL and the development of a conceptual model will inform future burn scar research and clinical practice. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Soyupek, Feray; Yesildag, Ahmet; Kutluhan, Suleyman; Askin, Ayhan; Ozden, Ahmet; Uslusoy, Gokcen Ay; Demirci, Seden
2012-10-01
Firstly, we aimed to determine the effectiveness of various treatment modalities using ultrasonography (US), and secondly, we aimed to assess the correlations between the ultrasonographic findings and electrophysiological tests, symptom severity, functional status and physical findings. 74 hands of 47 patients with carpal tunnel syndrome (CTS) were randomly treated by applying wrist splinting alone in the neutral position (23 hands), phonophoresis with corticosteroid (PCS) (28 hands) and phonophoresis with non-steroid anti-inflamatory drug (PNSAI) (23 hands). The cross-sectional area (CSA) of the median nerve (MN) was determined by ultrasound on the initial and at the 3 months after treatment. MN conduction studies were performed on the initial visit and 3 months after treatment. The patients completed the Boston symptom severity questionnaire. For clinical evaluation, we used Phalen's and Tinel's signs. We could find reduction in CSA of MN in PCS group (P < 0.001). The CSA of MN was inversely correlated with motor sensory and median nerve conduction velocity (NCV) (r = 0.421, r = 0.213, respectively). Statistically significant correlations were not detected between ultrasonographic parameters and clinical evaluation parameters (P > 0.05) and also between ultrasonographic parameters and BQ scores (P > 0.05). Although there was some improvement in clinical parameters, ultrasonographic parameters did not change in P-NSAI group. The most effective treatment modality was P-CS according to ultrasonographic and other findings. Although there were inverse correlations between the CSA of MN and sensory and motor MN conduction velocity, no relationship was found between symptom severity, functional status and US findings or electrophysiological studies.
Jääskeläinen, Satu K
2004-01-01
Chronic orofacial pain represents a diagnostic and treatment challenge for the clinician. Some conditions, such as atypical facial pain, still lack proper diagnostic criteria, and their etiology is not known. The recent development of neurophysiological methods and quantitative sensory testing for the examination of the trigeminal somatosensory system offers several tools for diagnostic and etiological investigation of orofacial pain. This review presents some of these techniques and the results of their application in studies on orofacial pain and sensory dysfunction. Clinical neurophysiological investigation has greater diagnostic accuracy and sensitivity than clinical examination in the detection of the neurogenic abnormalities of either peripheral or central origin that may underlie symptoms of orofacial pain and sensory dysfunction. Neurophysiological testing may also reveal trigeminal pathology when magnetic resonance imaging has failed to detect it, so these methods should be considered complementary to each other in the investigation of orofacial pain patients. The blink reflex, corneal reflex, jaw jerk, sensory neurography of the inferior alveolar nerve, and the recording of trigeminal somatosensory-evoked potentials with near-nerve stimulation have all proved to be sensitive and reliable in the detection of dysfunction of the myelinated sensory fibers of the trigeminal nerve or its central connections within the brainstem. With appropriately small thermodes, thermal quantitative sensory testing is useful for the detection of trigeminal small-fiber dysfunction (Adelta and C). In neuropathic conditions, it is most sensitive to lesions causing axonal injury. By combining different techniques for investigation of the trigeminal system, an accurate topographical diagnosis and profile of sensory fiber pathology can be determined. Neurophysiological and quantitative sensory tests have already highlighted some similarities among various orofacial pain conditions and have shown heterogeneity within clinical diagnostic categories. With the aid of neurophysiological recordings and quantitative sensory testing, it is possible to approach a mechanism-based classification of orofacial pain.
Sensory modulation disorder symptoms in anorexia nervosa and bulimia nervosa: A pilot study.
Brand-Gothelf, Ayelet; Parush, Shula; Eitan, Yehudith; Admoni, Shai; Gur, Eitan; Stein, Daniel
2016-01-01
Individuals with anorexia nervosa (AN) and bulimia nervosa (BN) may exhibit reduced ability to modulate sensory, physiological, and affective responses. The aim of the present study is to assess sensory modulation disorder (SMD) symptoms in patients with AN and BN. We assessed female adolescent and young adult inpatients with restrictive type anorexia nervosa (AN-R; n = 20) and BN (n = 20) evaluated in the acute stage of their illness, and 27 female controls. Another group of 20 inpatients with AN-R was assessed on admission and discharge, upon achieving their required weight. Participants completed standardized questionnaires assessing the severity of their eating disorder (ED) and the sensory responsiveness questionnaire (SRQ). Inpatients with AN-R demonstrated elevated overall sensory over-responsiveness as well as elevated scores on the taste/gustatory, vestibular/kinesthetic and somatosensory/tactile SRQ modalities compared with patients with BN and controls. Significant correlations between the severity of sensory over-responsiveness and ED-related symptomatology were found in acutely-ill patients with AN-R and to a lesser extent, following weight restoration. Elevated sensory over-responsiveness was retained in weight-restored inpatients with AN-R. Inpatients with BN demonstrated greater sensory under-responsiveness in the intensity subscale of the SRQ, but not in the frequency and combined SRQ dimensions. Female inpatients with AN-R exhibited sensory over-responsiveness both in the acute stage of their illness and following weight restoration, suggesting that sensory over-responsiveness may represent a trait related to the illness itself above and beyond the influence of malnutrition. The finding for sensory under-responsiveness in BN is less consistent. © 2015 Wiley Periodicals, Inc.
Nielsen, Kristine Esbjerg; Knudsen, Troels Bygum
2013-12-16
A syndrome involving acute urinary retention in combination with sacral radiculitis and cerebrospinal fluid pleocytosis was first described by the American neurosurgeon Charles Elsberg in 1931. In many instances the aetiology is herpes simplex virus type 2 (HSV-2) reactivation from sensory neurons. In this case report we present a 34-year-old pregnant woman with previous undiagnosed sensory lumbosacral symptoms. She was hospitalized with HSV-2 meningitis and lumbosacral radiculitis but no genital rash. A week after the onset of symptoms she developed acute urinary retention, thus indicating Elsberg syndrome.
Considering the senses in the diagnosis and management of dementia.
Behrman, Sophie; Chouliaras, Leonidas; Ebmeier, Klaus P
2014-04-01
Associations between dementia and impairments in hearing, vision, olfaction and (to a lesser degree) taste have been identified. Hearing impairment has been shown to precede cognitive decline, but it is not clear if the hearing loss is an early marker of dementia or a modifiable risk factor. Olfactory impairment is seen in many neurodegenerative conditions, but it has been shown that those with dementia have particular difficulties with the recognition and identification of odours rather than the detection, suggesting a link to impairment of higher cognitive function. Olfactory impairment has been shown to be predictive of conversion from mild cognitive impairment to Alzheimer's disease with 85.2% sensitivity. As cognitive function deteriorates, the world is experienced at a sensory level, with reduced ability to integrate the sensory experiences to understand the context. Thus, people with dementia are very sensitive to sensory experiences and their environment needs to be managed carefully to make it understandable, comfortable, and (if possible) therapeutic. Light can be used to stabilise the circadian rhythm, which may be disturbed in dementia. Music therapy, aromatherapy, massage and multisensory stimulation are recommended by NICE for the management of behavioural and psychological symptoms of dementia (BPSD), although the mechanisms behind such interventions are poorly understood and evidence is limited. Sensory considerations are likely to play a greater role in dementia care in the future, with the development of purpose-built dementia care facilities and the focus on non-pharmacological management strategies for BPSD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Hereditary sensory and autonomic neuropathy type IID caused by an SCN9A mutation.
Yuan, Junhui; Matsuura, Eiji; Higuchi, Yujiro; Hashiguchi, Akihiro; Nakamura, Tomonori; Nozuma, Satoshi; Sakiyama, Yusuke; Yoshimura, Akiko; Izumo, Shuji; Takashima, Hiroshi
2013-04-30
To identify the clinical features of Japanese patients with suspected hereditary sensory and autonomic neuropathy (HSAN) on the basis of genetic diagnoses. On the basis of clinical, in vivo electrophysiologic, and pathologic findings, 9 Japanese patients with sensory and autonomic nervous dysfunctions were selected. Eleven known HSAN disease-causing genes and 5 related genes were screened using a next-generation sequencer. A homozygous mutation, c.3993delGinsTT, was identified in exon 22 of SCN9A from 2 patients/families. The clinical phenotype was characterized by adolescent or congenital onset with loss of pain and temperature sensation, autonomic nervous dysfunctions, hearing loss, and hyposmia. Subsequently, this mutation was discovered in one of patient 1's sisters, who also exhibited sensory and autonomic nervous system dysfunctions, with recurrent fractures being the most predominant feature. Nerve conduction studies revealed definite asymmetric sensory nerve involvement in patient 1. In addition, sural nerve pathologic findings showed loss of large myelinated fibers in patient 1, whereas the younger patient showed normal sural nerve pathology. We identified a novel homozygous mutation in SCN9A from 2 Japanese families with autosomal recessive HSAN. This loss-of-function SCN9A mutation results in disturbances in the sensory, olfactory, and autonomic nervous systems. We propose that SCN9A mutation results in the new entity of HSAN type IID, with additional symptoms including hyposmia, hearing loss, bone dysplasia, and hypogeusia.
Ternesten-Hasséus, Ewa; Lowhagen, Olle; Millqvist, Eva
2007-01-01
Objective It is common in asthma and allergy clinics to see patients presenting with upper and lower airway symptoms that are induced by chemicals and scents and not explained by allergic or asthmatic reactions. Previous studies have shown that these patients often have increased cough sensitivity to inhaled capsaicin; such sensitivity is known to reflect the airway sensory reactivity. The aim of this study was to evaluate the duration of symptoms induced by chemicals and scents and to measure health-related quality of life (HRQL) in patients with chemically induced airway symptoms. We also wished to determine and compare repeatability of the cough response to capsaicin inhalation, and to evaluate the patients’ airway sensory reactivity in a long-term perspective. Participants Seventeen patients with a history of at least 12 months of airway symptoms induced by chemicals and scents were followed over 5 years with repeated questionnaires, measurements of HRQL, and capsaicin inhalation tests. Results The symptoms persisted and did not change significantly over time, and the patients had a reduced HRQL that did not change during the 5-year period. The capsaicin sensitivity was increased at the start of the study, the cough sensitivity was long-lasting, and the repeatability of the capsaicin inhalation test was considered to be good in a long-term perspective. Conclusions Upper and lower airway symptoms induced by chemicals and scents represent an entity of chronic diseases, different from asthma or chronic obstructive pulmonary disease, with persistent symptoms, a reduced HRQL, and unchanged sensory hyperreactivity. PMID:17431493
Functional Imaging and Migraine: New Connections?
Schwedt, Todd J.; Chong, Catherine D.
2015-01-01
Purpose of Review Over the last several years, a growing number of brain functional imaging studies have provided insights into mechanisms underlying migraine. This manuscript reviews the recent migraine functional neuroimaging literature and provides recommendations for future studies that will help fill knowledge gaps. Recent Findings Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies have identified brain regions that might be responsible for mediating the onset of a migraine attack and those associated with migraine symptoms. Enhanced activation of brain regions that facilitate processing of sensory stimuli suggests a mechanism by which migraineurs are hypersensitive to visual, olfactory, and cutaneous stimuli. Resting state functional connectivity MRI studies have identified numerous brain regions and functional networks with atypical functional connectivity in migraineurs, suggesting that migraine is associated with aberrant brain functional organization. Summary fMRI and PET studies that have identified brain regions and brain networks that are atypical in migraine have helped to describe the neurofunctional basis for migraine symptoms. Future studies should compare functional imaging findings in migraine to other headache and pain disorders and should explore the utility of functional imaging data as biomarkers for diagnostic and treatment purposes. PMID:25887764
Peripheral neuropathy in HIV: an analysis of evidence-based approaches.
Nicholas, Patrice K; Corless, Inge B; Evans, Linda A
2014-01-01
Peripheral neuropathy is a common and vexing symptom for people living with HIV infection (PLWH). Neuropathy occurs in several different syndromes and is identified in the literature as distal sensory polyneuropathy or distal sensory peripheral neuropathy. More recently, the HIV literature has focused on the syndrome as painful HIV-associated sensory neuropathy, addressing the symptom rather than the underlying pathophysiology. Assessment of neuropathy in PLWH is critical and must be incorporated into nursing practice for each visit. Neuropathy has been attributed to the direct effects of HIV, exposure to antiretroviral medications (particularly the nucleoside reverse transcriptase inhibitors), advanced immune suppression, and comorbid tuberculosis infection and exposure to antituberculosis medications. Evidence supports the importance of addressing neuropathy in PLWH with pharmacologic treatment regimens and complementary/alternative approaches. This paper examines the pathophysiology, evidence, and approaches to managing peripheral neuropathy. A case study has been included to illustrate a patient's experience with neuropathy symptoms. Copyright © 2014 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.
Karkare, K; Taly, Arun B; Sinha, Sanjib; Rao, S
2011-01-01
Focused studies on sensory manifestations, especially pain and paresthesia in Guillain-Barre' (GB) syndrome are few and far between. To study the sensory manifestations in GB syndrome during 10 days of hospitalization with clinico-electrophysiological correlation. The study included 60 non-consecutive patients with GB syndrome, fulfilling National Institute of Neurological and Communicative Disorders and Stroke (NINCDS) criteria for GB syndrome. Data especially related to clinical and electrophysiological evidence of sensory involvement were analyzed. Pain was assessed using a) visual analogue paraesthesias (Vapar), b) visual analogue for pain (Vap) and c) verbal rating scale for pain (Verp). Sensory symptoms were widely prevalent: paraesthesia in 45 (75%) patients and pain in 30 (50%) patients. Impairment of different sensory modalities included: pain in 8 (13.3%), joint position sense in 14 (23.3%), and vibration in 11 (18.3%). Electrophysiological evidence of abnormal sensory nerve conduction was noted in 35 (58.3%) patients. Pain assessment using Vapar, Vap and Verp for from Day 1 to Day 10 of hospitalization revealed that from Day 7 onwards the degree and frequency of sensory symptoms and signs decreased. On comparing various clinico-electrophysiological parameters among patients of GB syndrome with and without pain and paresthesia. Presence of respiratory distress correlated with pain and paresthesia (P=0.02). Sensory manifestations in GB syndrome are often under-recognized and under-emphasized. This study analyzed the evolution and the profile of pain and paresthesia in GB syndrome during hospitalization. Knowledge, especially about evolution of pain and paresthesia during hospitalization might improve understanding and patient care.
Sensory, Emotional and Cognitive Contributions to Anxiety in Autism Spectrum Disorders
South, Mikle; Rodgers, Jacqui
2017-01-01
Severe symptoms of anxiety add substantial additional burden to many individuals diagnosed with Autism Spectrum Disorder (ASD). Improved understanding of specific factors that contribute to anxiety in ASD can aid research regarding the causes of autism and also provide targets for more effective intervention. This mini-review article focuses on emerging evidence for three concepts that appear to be related to each other and which also strongly predict anxiety in ASD samples. Atypical sensory function is included in the diagnostic criteria for ASD and is likely an important contributor to anxiety. Difficulties in understanding and labeling emotions (alexithymia), although a co-morbidity, may arise in part from atypical sensory function and can lead to confusion and uncertainty about how to respond to social and emotional situations. Intolerance of uncertainty (IU) describes people who have a particularly hard time with ambiguity and is known to be a key mechanism underlying some anxiety disorders. While evidence for linking these ideas is to date incomplete, we put forward a model including each concept as a framework for future studies. Specifically, we propose that IU is a critical mediator for anxiety in ASD, and explore the relationships between sensory function, alexithymia and IU. We further explore the role of the medial prefrontal cortex (mPFC) in regulating emotional response, in connection with limbic and insula-based networks, and suggest that disrupted integration in these networks underlies difficulties with habituation to strong emotional stimuli, which results in an enhanced perception of threat in many people with ASD. Behavioral and biologically-based treatments for anxiety in ASD will benefit from attending to these specific mechanisms as adjunct to traditional interventions. PMID:28174531
Deschrijver, Eliane; Wiersema, Jan R; Brass, Marcel
2017-02-01
Next to social problems, individuals with autism spectrum disorder (ASD) often report severe sensory difficulties. Altered processing of touch is however a stronger mediator of social symptoms' severity than altered processing of for instance vision or audition. Why is this the case? We reasoned that sensory difficulties may be linked to social problems in ASD through insufficient self-other distinction centred on touch. We investigated by means of EEG whether the brain of adults with ASD adequately signals when a tactile consequence of an observed action does not match own touch, as compared to the brain of matched controls. We employed the action-based somatosensory congruency paradigm. Participants observed a human or wooden hand touching a surface, combined with a tap-like tactile sensation that either matched or mismatched the tactile consequence of the observed movement. The ASD group showed a diminished congruency effect for human hands only in the P3-complex, suggesting difficulties with signalling observed action-based touch of others that does not match own touch experiences. Crucially, this effect reliably correlated with self-reported social and sensory everyday difficulties in ASD. The findings might denote a novel theoretical link between sensory and social impairments in the autism spectrum. © The Author (2016). Published by Oxford University Press.
Involvement of the central somatosensory system in restless legs syndrome: A neuroimaging study.
Lee, Byeong-Yeul; Kim, Jongmyeong; Connor, James R; Podskalny, Gerald D; Ryu, Yeunchul; Yang, Qing X
2018-05-22
To investigate morphologic changes in the somatosensory cortex and the thickness of the corpus callosum subdivisions that provide interhemispheric connections between the 2 somatosensory cortical areas. Twenty-eight patients with severe restless legs syndrome (RLS) symptoms and 51 age-matched healthy controls were examined with high-resolution MRI at 3.0 tesla. The vertex-wise analysis in conjunction with a novel cortical surface classification method was performed to assess the cortical thickness across the whole-brain structures. In addition, the thickness of the midbody of the corpus callosum that links postcentral gyri in the 2 hemispheres was measured. We demonstrated that a morphologic change occurred in the brain somatosensory system in patients with RLS compared to controls. Patients with RLS exhibited a 7.5% decrease in average cortical thickness in the bilateral postcentral gyrus ( p < 0.0001). Accordingly, there was a substantial decrease in the corpus callosum posterior midbody ( p < 0.008) wherein the callosal fibers are connected to the postcentral gyrus, suggesting altered white matter properties in the somatosensory pathway. Our results provide in vivo evidence of morphologic changes in the primary somatosensory system, which could be responsible for the sensory functional symptoms of RLS. These results provide a better understanding of the pathophysiology underlying the RLS sensory symptoms and could lead to a potential imaging marker for RLS. © 2018 American Academy of Neurology.
Autologous Fat Transfer in Secondary Carpal Tunnel Release
Noszczyk, Bartłomiej H.
2015-01-01
Background: Carpal tunnel release is the gold standard for the treatment of median nerve compression disease. Recurrent or persistent symptoms do not occur in most patients, although a small number of them have indicated that such a postoperative condition indeed exists. Some patients undergo repeated treatments. In the majority of the cases, the disease is associated with scarring in the carpal tunnel or even reformation of the carpal ligament. The authors propose the usage of autologous fat grafting during secondary carpal tunnel release to inhibit the scarring process. Methods: Ten patients with recurrent or persistent symptoms underwent autologous fat grafting at the time of their repeated carpal tunnel release. Fat was harvested from the lower abdomen and grafted into the scarred transverse carpal ligament and surrounding tissues. Each patient underwent pre- and postoperative examinations and completed the carpal tunnel questionnaire (Boston) to evaluate their sensory and motor functions. The patients underwent 1 year of follow-up. Results: There were 2 main reasons for continued symptoms: a technical mistake resulting in incomplete release (IR) during the first operation and abundant scarring (ABS) in the operated area. The beneficial effects of the interventions were confirmed by a clinical study and by administering the carpal tunnel questionnaire to all patients (functional severity score decreased from 4.38 to 1.88 in IR and 3.62 to 1.48 in ABS group, sensory severity score from 3.26 to 1.7 in IR and 3.04 to 1.48 in ABS group; P < 0.05) after 12 months of follow-up. Conclusion: Our initial observations suggest the possible efficacy of adipose tissue in secondary carpal tunnel release. PMID:26090291
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeoh, Eric, E-mail: eric.yeoh@health.sa.gov.au; School of Medicine, University of Adelaide, Adelaide; Tam, William
Purpose: To evaluate and compare the effect of argon plasma coagulation (APC) and topical formalin for intractable rectal bleeding and anorectal dysfunction associated with chronic radiation proctitis. Methods and Materials: Thirty men (median age, 72 years; range, 49-87 years) with intractable rectal bleeding (defined as ≥1× per week and/or requiring blood transfusions) after radiation therapy for prostate carcinoma were randomized to treatment with APC (n=17) or topical formalin (n=13). Each patient underwent evaluations of (1) anorectal symptoms (validated questionnaires, including modified Late Effects in Normal Tissues–Subjective, Objective, Management, and Analytic and visual analogue scales for rectal bleeding); (2) anorectal motormore » and sensory function (manometry and graded rectal balloon distension); and (3) anal sphincteric morphology (endoanal ultrasound) before and after the treatment endpoint (defined as reduction in rectal bleeding to 1× per month or better, reduction in visual analogue scales to ≤25 mm, and no longer needing blood transfusions). Results: The treatment endpoint was achieved in 94% of the APC group and 100% of the topical formalin group after a median (range) of 2 (1-5) sessions of either treatment. After a follow-up duration of 111 (29-170) months, only 1 patient in each group needed further treatment. Reductions in rectal compliance and volumes of sensory perception occurred after APC, but no effect on anorectal symptoms other than rectal bleeding was observed. There were no differences between APC and topical formalin for anorectal symptoms and function, nor for anal sphincteric morphology. Conclusions: Argon plasma coagulation and topical formalin had comparable efficacy in the durable control of rectal bleeding associated with chronic radiation proctitis but had no beneficial effect on anorectal dysfunction.« less
Vasterling, Jennifer J; Brailey, Kevin; Tomlin, Holly; Rice, Janet; Sutker, Patricia B
2003-03-01
To explore possible neurotoxic sequelae of Gulf War (GW) participation, olfactory identification performance, neurocognitive functioning, health perceptions, and emotional distress were assessed in 72 veterans deployed to the GW and 33 military personnel activated during the GW but not deployed to the war zone. Findings revealed that war-zone-exposed veterans reported more concerns about health, cognitive functioning, and depression than did their counterparts who did not see war-zone duty. There was no evidence that performances on olfactory or neurocognitive measures were related to war-zone duty or to self-reported exposure to GW toxicants. However, symptoms of emotional distress were positively correlated with self-report of health and cognitive complaints. Results do not provide support for the hypothesis that objectively-measured sensory (i.e., olfactory) or cognitive deficits are related to war-zone participation but do underscore the increasingly demonstrated association between self-reported health concerns and symptoms of emotional distress.
Sullivan, Karen A; Lurie, Janine K
2017-01-01
The study examined the component structure of the Neurobehavioral Symptom Inventory (NSI) under five different models. The evaluated models comprised the full NSI (NSI-22) and the NSI-20 (NSI minus two orphan items). A civilian nonclinical sample was used. The 575 volunteers were predominantly university students who screened negative for mild TBI. The study design was cross-sectional, with questionnaires administered online. The main measure was the Neurobehavioral Symptom Inventory. Subscale, total and embedded validity scores were derived (the Validity-10, the LOW6, and the NIM5). In both models, the principal components analysis yielded two intercorrelated components (psychological and somatic/sensory) with acceptable internal consistency (alphas > 0.80). In this civilian nonclinical sample, the NSI had two underlying components. These components represent psychological and somatic/sensory neurobehavioral symptoms.
Akman, Cigdem; Riviello, James J; Madsen, Joseph R; Bergin, Ann M
2003-06-01
Sensory symptoms are commonly seen in association with focal epilepsy, but viscerosensory auras, such as pharyngeal dysesthesias, are rarely the main clinical manifestation. With the introduction of vagal nerve stimulation (VNS) for medically refractory epilepsy, viscerosensory symptoms commonly occur as an adverse effect of VNS. Voice alterations (hoarseness or tremulousness), local neck or throat pain, and cough are the most common adverse effects seen during active stimulation (on-time). Numbness of the throat, neck, or chin, as well as a tingling sensation of the neck and throat is directly related to stimulation intensity. We present a case in which recurrent pharyngeal sensations caused a diagnostic dilemma and in which monitoring the VNS artifact during video/EEG and correlating this with clinical symptoms helped determine the etiology of the recurrent sensory symptoms.
Parker, H L; Tucker, E; Blackshaw, E; Hoad, C L; Marciani, L; Perkins, A; Menne, D; Fox, M
2017-11-01
Current investigations of stomach function are based on small test meals that do not reliably induce symptoms and analysis techniques that rarely detect clinically relevant dysfunction. This study presents the reference intervals of the modular "Nottingham test meal" (NTM) for assessment of gastric function by gamma scintigraphy (GSc) in a representative population of healthy volunteers (HVs) stratified for age and sex. The NTM comprises 400 mL liquid nutrient (0.75 kcal/mL) and an optional solid component (12 solid agar-beads (0 kcal). Filling and dyspeptic sensations were documented by 100 mm visual analogue scale (VAS). Gamma scintigraphy parameters that describe early and late phase Gastric emptying (GE) were calculated from validated models. Gastric emptying (GE) of the liquid component was measured in 73 HVs (male 34; aged 45±20). The NTM produced normal postprandial fullness (VAS ≥30 in 41/74 subjects). Dyspeptic symptoms were rare (VAS ≥30 in 2/74 subjects). Gastric emptying half-time with the Liquid- and Solid-component -NTM was median 44 (95% reference interval 28-78) minutes and 162 (144-193) minutes, respectively. Gastric accommodation was assessed by the ratio of the liquid-NTM retained in the proximal:total stomach and by Early phase emptying assessed by gastric volume after completing the meal (GCV0). No consistent effect of anthropometric measures on GE parameters was present. Reference intervals are presented for GSc measurements of gastric motor and sensory function assessed by the NTM. Studies involving patients are required to determine whether the reference interval range offers optimal diagnostic sensitivity and specificity. © 2017 The Authors. Neurogastroenterology & Motility Published by John Wiley & Sons Ltd.
Therapeutics for multiple sclerosis symptoms.
Ben-Zacharia, Aliza Bitton
2011-01-01
Symptoms management in multiple sclerosis is an integral part of its care. Accurate assessment and addressing the different symptoms provides increased quality of life among patients with multiple sclerosis. Multiple sclerosis symptoms may be identified as primary, secondary, or tertiary symptoms. Primary symptoms, such as weakness, sensory loss, and ataxia, are directly related to demyelination and axonal loss. Secondary symptoms, such as urinary tract infections as a result of urinary retention, are a result of the primary symptoms. Tertiary symptoms, such as reactive depression or social isolation, are a result of the social and psychological consequences of the disease. Common multiple sclerosis symptoms include fatigue and weakness; decreased balance, spasticity and gait problems; depression and cognitive issues; bladder, bowel, and sexual deficits; visual and sensory loss; and neuropathic pain. Less-common symptoms include dysarthria and dysphagia, vertigo, and tremors. Rare symptoms in multiple sclerosis include seizures, hearing loss, and paralysis. Symptom management includes nonpharmacological methods, such as rehabilitation and psychosocial support, and pharmacological methods, ie, medications and surgical procedures. The keys to symptom management are awareness, knowledge, and coordination of care. Symptoms have to be recognized and management needs to be individualized. Multiple sclerosis therapeutics include nonpharmacological strategies that consist of lifestyle modifications, rehabilitation, social support, counseling, and pharmacological agents or surgical procedures. The goal is vigilant management to improve quality of life and promote realistic expectations and hope. © 2011 Mount Sinai School of Medicine.
van der Lely, Stéphanie; Stefanovic, Martina; Schmidhalter, Melanie R; Pittavino, Marta; Furrer, Reinhard; Liechti, Martina D; Schubert, Martin; Kessler, Thomas M; Mehnert, Ulrich
2016-11-25
Lower urinary tract symptoms are highly prevalent and a large proportion of these symptoms are known to be associated with a dysfunction of the afferent pathways. Diagnostic tools for an objective and reproducible assessment of afferent nerve function of the lower urinary tract are missing. Previous studies showed first feasibility results of sensory evoked potential recordings following electrical stimulation of the lower urinary tract in healthy subjects and patients. Nevertheless, a refinement of the methodology is necessary. This study is a prospective, randomized trial conducted at Balgrist University Hospital, Zürich, Switzerland. Ninety healthy subjects (forty females and fifty males) without lower urinary tract symptoms are planned to be included in the study. All subjects will undergo a screening visit (including standardized questionnaires, 3-day bladder diary, urinalysis, medical history taking, vital signs, physical examination, neuro-urological examination) followed by two measurement visits separated by an interval of 3 to 4 weeks. Electrical stimulations (0.5Hz-5Hz, bipolar, square wave, pulse width 1 ms) will be applied using a custom-made transurethral catheter at different locations of the lower urinary tract including bladder dome, trigone, proximal urethra, membranous urethra and distal urethra. Every subject will be randomly stimulated at one specific site of the lower urinary tract. Sensory evoked potentials (SEP) will be recorded using a 64-channel EEG cap. For an SEP segmental work-up we will place additional electrodes on the scalp (Cpz) and above the spine (C2 and L1). Visit two and three will be conducted identically for reliability assessment. The measurement of lower urinary tract SEPs elicited by electrical stimulation at different locations of the lower urinary tract has the potential to serve as a neurophysiological biomarker for lower urinary tract afferent nerve function in patients with lower urinary tract symptoms or disorders. For implementation of such a diagnostic tool into clinical practice, an optimized setup with efficient and reliable measurements and data acquisition is crucial. In addition, normative data from a larger cohort of healthy subjects would provide information on variability, potential confounding factors and cut-off values for investigations in patients with lower urinary tract dysfunction/symptoms. Clinicaltrials.gov; Identifier: NCT02272309 .
de Gusmão, Claudio M; Guerriero, Réjean M; Bernson-Leung, Miya Elizabeth; Pier, Danielle; Ibeziako, Patricia I; Bujoreanu, Simona; Maski, Kiran P; Urion, David K; Waugh, Jeff L
2014-08-01
In children, functional neurological symptom disorders are frequently the basis for presentation for emergency care. Pediatric epidemiological and outcome data remain scarce. Assess diagnostic accuracy of trainee's first impression in our pediatric emergency room; describe manner of presentation, demographic data, socioeconomic impact, and clinical outcomes, including parental satisfaction. (1) More than 1 year, psychiatry consultations for neurology patients with a functional neurological symptom disorder were retrospectively reviewed. (2) For 3 months, all children whose emergency room presentation suggested the diagnosis were prospectively collected. (3) Three to six months after prospective collection, families completed a structured telephone interview on outcome measures. Twenty-seven patients were retrospectively assessed; 31 patients were prospectively collected. Trainees' accurately predicted the diagnosis in 93% (retrospective) and 94% (prospective) cohorts. Mixed presentations were most common (usually sensory-motor changes, e.g. weakness and/or paresthesias). Associated stressors were mundane and ubiquitous, rarely severe. Families were substantially affected, reporting mean symptom duration 7.4 (standard error of the mean ± 1.33) weeks, missing 22.4 (standard error of the mean ± 5.47) days of school, and 8.3 (standard error of the mean ± 2.88) of parental workdays (prospective cohort). At follow-up, 78% were symptom free. Parental dissatisfaction was rare, attributed to poor rapport and/or insufficient information conveyed. Trainees' clinical impression was accurate in predicting a later diagnosis of functional neurological symptom disorder. Extraordinary life stressors are not required to trigger the disorder in children. Although prognosis is favorable, families incur substantial economic burden and negative educational impact. Improving recognition and appropriately communicating the diagnosis may speed access to treatment and potentially reduce the disability and cost of this disorder. Copyright © 2014 Elsevier Inc. All rights reserved.
Cauda equina syndrome: a comprehensive review.
Gitelman, Alex; Hishmeh, Shuriz; Morelli, Brian N; Joseph, Samuel A; Casden, Andrew; Kuflik, Paul; Neuwirth, Michael; Stephen, Mark
2008-11-01
Cauda equina syndrome (CES) is a rare syndrome that has been described as a complex of symptoms and signs--low back pain, unilateral or bilateral sciatica, motor weakness of lower extremities, sensory disturbance in saddle area, and loss of visceral function--resulting from compression of the cauda equina. CES occurs in approximately 2% of cases of herniated lumbar discs and is one of the few spinal surgical emergencies. In this article, we review information that is critical in understanding, diagnosing, and treating CES.
Prolonged restricted sitting effects in UH-60 helicopters.
Games, Kenneth E; Lakin, Joni M; Quindry, John C; Weimar, Wendi H; Sefton, JoEllen M
2015-01-01
Advances in flight technologies and the demand for long-range flight have increased mission lengths for U.S. Army Black Hawk UH-60 crewmembers. Prolonged mission times have increased reports of pilot discomfort and symptoms of paresthesia thought to be due to UH-60 seat design and areas of locally high pressure. Discomfort created by the seat-system decreases situational awareness, putting aviators and support crew at risk of injury. Therefore, the purpose of this study was to examine the effects of prolonged restricted sitting in a UH-60 on discomfort, sensory function, and vascular measures in the lower extremities. There were 15 healthy men (age = 23.4 ± 3.1 yr) meeting physical flight status requirements who sat in an unpadded, UH-60 pilot's seat for 4 h while completing a common cognitive task. During the session, subjective discomfort, sensory function, and vascular function were measured. Across 4 h of restricted sitting, subjective discomfort increased using the Category Partitioning Scale (30.27 point increase) and McGill Pain Questionnaire (8.53 point increase); lower extremity sensory function was diminished along the S1 dermatome; and skin temperature decreased on both the lateral (2.85°C decrease) and anterior (2.78°C decrease) aspects of the ankle. The results suggest that prolonged sitting in a UH-60 seat increases discomfort, potentially through a peripheral nervous or vascular system mechanism. Further research is needed to understand the etiology and onset of pain and paresthesia during prolonged sitting in UH-60 pilot seats. Games KE, Lakin JM, Quindry JC, Weimar WH, Sefton JM. Prolonged restricted sitting effects in UH-60 helicopters.
Watanabe, Masashi; Matsumoto, Yushi; Okamoto, Kensho; Okuda, Bungo; Mizuta, Ikuko; Mizuno, Toshiki
2017-12-27
A 49-year-old man had developed gradually personality change, gait disturbance, and hearing loss for five years. On admission, he presented with frontal release signs, stuttering, vertical gaze palsy, sensorineural deafness, muscle rigidity, ataxia, and sensory disturbance with areflexia in the lower extremities. Brain MRI demonstrated atrophy in the cerebellum and midbrain tegmentum as well as cerebral atrophy, predominantly in the frontal lobe. He was tentatively diagnosed as progressive supranuclear palsy on the basis of clinical features and imagings. On nerve conduction study, no sensory nerve action potentials were elicited in the upper and lower extremities. Details of family history revealed a hereditary sensory neuropathy with autosomal dominant inheritance in his relatives. Because genetic analysis showed a rare missense mutation (c.1483T>C, p.Y495H) in DNA methyltransferase 1 gene, we diagnosed him as having hereditary sensory and autonomic neuropathy type 1E (HSAN1E). In addition, p.M232R mutation in prion protein gene was detected. It should be kept in mind that there are some patients with HSAN1E presenting with frontal lobe dysfunction as an initial symptom and with clinical features mimicking progressive supranuclear palsy.
Functional neuroimaging of conversion disorder: the role of ancillary activation.
Burke, Matthew J; Ghaffar, Omar; Staines, W Richard; Downar, Jonathan; Feinstein, Anthony
2014-01-01
Previous functional neuroimaging studies investigating the neuroanatomy of conversion disorder have yielded inconsistent results that may be attributed to small sample sizes and disparate methodologies. The objective of this study was to better define the functional neuroanatomical correlates of conversion disorder. Ten subjects meeting clinical criteria for unilateral sensory conversion disorder underwent fMRI during which a vibrotactile stimulus was applied to anesthetic and sensate areas. A block design was used with 4 s of stimulation followed by 26 s of rest, the pattern repeated 10 times. Event-related group averages of the BOLD response were compared between conditions. All subjects were right-handed females, with a mean age of 41. Group analyses revealed 10 areas that had significantly greater activation (p < .05) when stimulation was applied to the anesthetic body part compared to the contralateral sensate mirror region. They included right paralimbic cortices (anterior cingulate cortex and insula), right temporoparietal junction (angular gyrus and inferior parietal lobule), bilateral dorsolateral prefrontal cortex (middle frontal gyri), right orbital frontal cortex (superior frontal gyrus), right caudate, right ventral-anterior thalamus and left angular gyrus. There was a trend for activation of the somatosensory cortex contralateral to the anesthetic region to be decreased relative to the sensate side. Sensory conversion symptoms are associated with a pattern of abnormal cerebral activation comprising neural networks implicated in emotional processing and sensory integration. Further study of the roles and potential interplay of these networks may provide a basis for an underlying psychobiological mechanism of conversion disorder.
Daum, Corinna; Hubschmid, Monica; Aybek, Selma
2014-02-01
Experts in the field of conversion disorder have suggested for the upcoming DSM-V edition to put less weight on the associated psychological factors and to emphasise the role of clinical findings. Indeed, a critical step in reaching a diagnosis of conversion disorder is careful bedside neurological examination, aimed at excluding organic signs and identifying 'positive' signs suggestive of a functional disorder. These positive signs are well known to all trained neurologists but their validity is still not established. The aim of this study is to provide current evidence regarding their sensitivity and specificity. We conducted a systematic search on motor, sensory and gait functional signs in Embase, Medline, PsycINfo from 1965 to June 2012. Studies in English, German or French reporting objective data on more than 10 participants in a controlled design were included in a systematic review. Other relevant signs are discussed in a narrative review. Eleven controlled studies (out of 147 eligible articles) describing 14 signs (7 motor, 5 sensory, 2 gait) reported low sensitivity of 8-100% but high specificity of 92-100%. Studies were evidence class III, only two had a blinded design and none reported on inter-rater reliability of the signs. Clinical signs for functional neurological symptoms are numerous but only 14 have been validated; overall they have low sensitivity but high specificity and their use should thus be recommended, especially with the introduction of the new DSM-V criteria.
Sensory features and repetitive behaviors in children with autism and developmental delays.
Boyd, Brian A; Baranek, Grace T; Sideris, John; Poe, Michele D; Watson, Linda R; Patten, Elena; Miller, Heather
2010-04-01
This study combined parent and observational measures to examine the association between aberrant sensory features and restricted, repetitive behaviors in children with autism (N=67) and those with developmental delays (N=42). Confirmatory factor analysis was used to empirically validate three sensory constructs of interest: hyperresponsiveness, hyporesponsiveness, and sensory seeking. Examining the association between the three derived sensory factor scores and scores on the Repetitive Behavior Scales--Revised revealed the co-occurrence of these behaviors in both clinical groups. Specifically, high levels of hyperresponsive behaviors predicted high levels of repetitive behaviors, and the relationship between these variables remained the same controlling for mental age. We primarily found non-significant associations between hyporesponsiveness or sensory seeking and repetitive behaviors, with the exception that sensory seeking was associated with ritualistic/sameness behaviors. These findings suggest that shared neurobiological mechanisms may underlie hyperresponsive sensory symptoms and repetitive behaviors and have implications for diagnostic classification as well as intervention.
Schwartz, C E; Vollmer, T; Lee, H
1999-01-01
To describe the results of a multicenter study that validated two new patient-reported measures of neurologic impairment and disability for use in MS clinical research. Self-reported data can provide a cost-effective means to assess patient functioning, and can be useful for screening patients who require additional evaluation. Thirteen MS centers from the United States and Canada implemented a cross-sectional validation study of two new measures of neurologic function. The Symptom Inventory is a measure of neurologic impairment with six subscales designed to correlate with localization of brain lesion. The Performance Scales measure disability in eight domains of function: mobility, hand function, vision, fatigue, cognition, bladder/bowel, sensory, and spasticity. Measures given for comparison included a neurologic examination (Expanded Disability Status Scale, Ambulation Index, Disease Steps) as well as the patient-reported Health Status Questionnaire and the Quality of Well-being Index. Participants included 274 MS patients and 296 healthy control subjects who were matched to patients on age, gender, and education. Both the Symptom Inventory and the Performance Scales showed high test-retest and internal consistency reliability. Correlational analyses supported the construct validity of both measures. Discriminant function analysis reduced the Symptom Inventory to 29 items without sacrificing reliability and increased its discriminant validity. The Performance Scales explained more variance in clinical outcomes and global quality of life than the Symptom Inventory, and there was some evidence that the two measures complemented each other in predicting Quality of Well-being Index scores. The Symptom Inventory and the Performance Scales are reliable and valid measures.
[Research progress of conscious pain and neurosensory abnormalities in dry eye disease].
Lin, X; Liu, Z L; Wu, J L; Liu, Z G
2018-02-11
Dry eye is one of the most common ocular problems in ophthalmology clinic. With the change of social environment and people's life style, the prevalence of dry eye disease is increasing. Currently, the diagnosis criteria for dry eye is controversial, diagnosis of dry eye mainly rely on the comprehensive assessment of symptoms and the presence of associated ocular surface signs. However, previous studies have shown a poor correlation between dry eye symptoms and objective clinical signs in patients. Recent studies have found that neuropathic pain plays an important role in the occurrence of discordance between symptoms and signs in dry eye disease. The purpose of this paper is to present the conception of pain, the distribution and function of sensory nerves in ocular surface, the prevalence and mechanism of neuropathic pain and analgesic treatment in dry eye disease. (Chin J Ophthalmol, 2018, 54: 144-148) .
Sciatic Nerve Injury After Proximal Hamstring Avulsion and Repair.
Wilson, Thomas J; Spinner, Robert J; Mohan, Rohith; Gibbs, Christopher M; Krych, Aaron J
2017-07-01
Muscle bellies of the hamstring muscles are intimately associated with the sciatic nerve, putting the sciatic nerve at risk of injury associated with proximal hamstring avulsion. There are few data informing the magnitude of this risk, identifying risk factors for neurologic injury, or determining neurologic outcomes in patients with distal sciatic symptoms after surgery. To characterize the frequency and nature of sciatic nerve injury and distal sciatic nerve-related symptoms after proximal hamstring avulsion and to characterize the influence of surgery on these symptoms. Cohort study; Level of evidence, 3. This was a retrospective review of patients with proximal partial or complete hamstring avulsion. The outcome of interest was neurologic symptoms referable to the sciatic nerve distribution below the knee. Neurologic symptoms in operative patients were compared pre- and postoperatively. The cohort consisted of 162 patients: 67 (41.4%) operative and 95 (58.6%) nonoperative. Sciatic nerve-related symptoms were present in 22 operative and 23 nonoperative patients, for a total of 45 (27.8%) patients (8 [4.9%] motor deficits, 11 [6.8%] sensory deficits, and 36 [22.2%] with neuropathic pain). Among the operative cohort, 3 of 3 (100.0%) patients showed improvement in their motor deficit postoperatively, 3 of 4 (75.0%) patients' sensory symptoms improved, and 17 of 19 (89.5%) patients had improvement in pain. A new or worsening deficit occurred in 5 (7.5%) patients postoperatively (2 [3.1%] motor deficits, 1 [1.5%] sensory deficit, and 3 [4.5%] with new pain). Predictors of operative intervention included lower age (odds ratio [OR], 0.952; 95% CI, 0.921-0.982; P = .001) and complete avulsion (OR, 10.292; 95% CI, 2.526-72.232; P < .001). Presence of neurologic deficit was not predictive. Sciatic nerve-related symptoms after proximal hamstring avulsion are underrecognized. Currently, neurologic symptoms are not considered when determining whether to pursue operative intervention. Given the high likelihood of improvement with surgical treatment, neurologic symptoms should be considered when making a decision regarding operative treatment.
Ethnic Differences in Posttraumatic Distress: Hispanics’ Symptoms Differ in Kind and Degree
Marshall, Grant N.; Schell, Terry L.; Miles, Jeremy N. V.
2010-01-01
Objective This longitudinal study of physical injury survivors examined the degree to which Hispanic and non-Hispanic Caucasians reported similar PTSD symptoms. Methods Adult physical trauma survivors (N = 677) provided information regarding posttraumatic distress by completing an interview-administered version of the PTSD Symptom Checklist (Civilian version) at three timepoints: within days of trauma exposure, and again at 6- and 12-months posttrauma. Structural equation modeling with propensity weights was used to analyze data. Results Results replicated prior research indicating that Hispanics report greater overall PTSD symptom severity. However, the size of this effect varied significantly across the 17 individual PTSD symptoms, and several symptoms were not reported more highly by Hispanics. Relative to non-Hispanic Caucasians, Hispanics tended to report higher levels of symptoms that could be regarded as exaggerated or intensified cognitive and sensory perceptions (e.g., hypervigilance, flashbacks). In contrast, few differences were observed for symptoms characteristic of impaired psychological functioning (e.g., difficulty concentrating, sleep disturbance). Conclusions Findings suggest that the pattern of PTSD symptoms experienced most prominently by Hispanics differs in kind and not merely in degree. Results have implications for theory aimed at explaining this ethnic disparity in posttraumatic psychological distress as well as for clinical intervention with trauma-exposed Hispanics at risk for PTSD. PMID:19968392
Functional auditory disorders.
Baguley, D M; Cope, T E; McFerran, D J
2016-01-01
There are a number of auditory symptom syndromes that can develop without an organic basis. Some of these, such as nonorganic hearing loss, affect populations similar to those presenting with functional somatosensory and motor symptoms, while others, such as musical hallucination, affect populations with a significantly different demographic and require different treatment strategies. Many of these conditions owe their origin to measurably abnormal peripheral sensory pathology or brain network activity, but their pathological impact is often due, at least in part, to overamplification of the salience of these phenomena. For each syndrome, this chapter briefly outlines a definition, demographics, investigations, putative mechanisms, and treatment strategies. Consideration is given to what extent they can be considered to have a functional basis. Treatments are in many cases pragmatic and rudimentary, needing more work to be done in integrating insights from behavioral and cognitive psychology to auditory neuroscience. The audiology literature has historically equated the term functional with malingering, although this perception is, thankfully, slowly changing. These disorders transcend the disciplines of audiology, otorhinolaryngology, neurology and psychiatry, and a multidisciplinary approach is often rewarding. © 2016 Elsevier B.V. All rights reserved.
Schizophrenia: A Cognitive Model and Its Implications for Psychological Intervention.
ERIC Educational Resources Information Center
Hemsley, David R.
1996-01-01
Proposes a cognitive model of schizophrenia stating that schizophrenic behavior is caused by a disturbance in sensory input and stored material integration. Cites research to support this model. Outlines the manner in which a disturbance in sensory input integration relates to schizophrenic symptoms and discusses the model's relevance for…
ERIC Educational Resources Information Center
Mazurek, Micah O.; Vasa, Roma A.; Kalb, Luther G.; Kanne, Stephen M.; Rosenberg, Daniel; Keefer, Amy; Murray, Donna S.; Freedman, Brian; Lowery, Lea Ann
2013-01-01
Children with autism spectrum disorders (ASD) experience high rates of anxiety, sensory processing problems, and gastrointestinal (GI) problems; however, the associations among these symptoms in children with ASD have not been previously examined. The current study examined bivariate and multivariate relations among anxiety, sensory…
Ulnar nerve entrapment in Guyon's canal due to a lipoma.
Ozdemir, O; Calisaneller, T; Gerilmez, A; Gulsen, S; Altinors, N
2010-09-01
Guyon's canal syndrome is an ulnar nerve entrapment at the wrist or palm that can cause motor, sensory or combined motor and sensory loss due to various factors . In this report, we presented a 66-year-old man admitted to our clinic with a history of intermittent pain in the left palm and numbness in 4th and 5th finger for two years. His neurological examination revealed a sensory impairment in the right fifth finger. Also, physical examination displayed a subcutaneous mobile soft tissue in ulnar side of the wrist. Electromyographic examination confirmed the diagnosis of type-1 Guyon's canal syndrome. Under axillary blockage, a lipoma compressing the ulnar nerve was excised totally and ulnar nerve was decompressed. The symptoms were improved after the surgery and patient was symptom free on 3rd postoperative week.
Noyman-Veksler, Gal; Shalev, Hadar; Brill, Silviu; Rudich, Zvia; Shahar, Golan
2017-10-09
We examined the effects of exposure to missile attacks on patients' pain and depressive symptoms, moderated by pain-related catastrophizing. One-hundred Israeli chronic pain patients were assessed both prior and subsequent to military operation "Protective Edge," during which thousands of missiles landed on populated areas across the country. Baseline assessment included pain, depression, and catastrophizing, and postwar assessment tapped exposure to missiles, pain, and depression. Media exposure predicted an increase in sensory pain under high levels of catastrophizing (1 SD above the mean; unstandardized simple slope = 0.57, p = .01), and depression in the entire sample (b = 0.61, p = .01). Perceived stress related to the missiles exhibited an expected effect, predicting an increase in depressive symptoms (b = 1.45, p = .03). Unexpectedly, perceived stress predicted a decrease in sensory pain under high levels of catastrophizing (unstandardized simple slope = -0.49, p = .02). Media exposure to acute stress may render chronic pain patients more vulnerable to experiencing pain and depressive symptoms, depending on their use of pain-based catastrophizing. High catastrophizers may attend more to outside threats, amplifying the sensory and affective aspects of pain they experience. Perceived stress also plays a significant role in eliciting depressive symptoms in this population. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Role of orientation reference selection in motion sickness
NASA Technical Reports Server (NTRS)
Peterka, Robert J.; Black, F. Owen
1990-01-01
Three areas related to human orientation control are investigated: (1) reflexes associated with the control of eye movements and posture; (2) the perception of body rotation and position with respect to gravity; and (3) the strategies used to resolve sensory conflict situations which arise when different sensory systems provide orientation cues which are not consistent with one another or with previous experience. Of particular interest is the possibility that a subject may be able to ignore an inaccurate sensory modality in favor of one or more other sensory modalities which do provide accurate orientation reference information. This process is referred as sensory selection. This proposal will attempt to quantify subject's sensory selection abilities and determine if this ability confers some immunity to the development of motion sickness symptoms.
Cury, Rubens G; Galhardoni, Ricardo; Teixeira, Manoel J; Dos Santos Ghilardi, Maria G; Silva, Valquiria; Myczkowski, Martin L; Marcolin, Marco A; Barbosa, Egberto R; Fonoff, Erich T; Ciampi de Andrade, Daniel
2016-12-01
Subthalamic deep brain stimulation (STN-DBS) is used to treat refractory motor complications in Parkinson disease (PD), but its effects on nonmotor symptoms remain uncertain. Up to 80% of patients with PD may have pain relief after STN-DBS, but it is unknown whether its analgesic properties are related to potential effects on sensory thresholds or secondary to motor improvement. We have previously reported significant and long-lasting pain relief after DBS, which did not correlate with motor symptomatic control. Here we present secondary data exploring the effects of DBS on sensory thresholds in a controlled way and have explored the relationship between these changes and clinical pain and motor improvement after surgery. Thirty-seven patients were prospectively evaluated before STN-DBS and 12 months after the procedure compared with healthy controls. Compared with baseline, patients with PD showed lower thermal and mechanical detection and higher cold pain thresholds after surgery. There were no changes in heat and mechanical pain thresholds. Compared with baseline values in healthy controls, patients with PD had higher thermal and mechanical detection thresholds, which decreased after surgery toward normalization. These sensory changes had no correlation with motor or clinical pain improvement after surgery. These data confirm the existence of sensory abnormalities in PD and suggest that STN-DBS mainly influenced the detection thresholds rather than painful sensations. However, these changes may depend on the specific effects of DBS on somatosensory loops with no correlation to motor or clinical pain improvement.
Jacquin-Courtois, S; Rode, G; Pavani, F; O'Shea, J; Giard, M H; Boisson, D; Rossetti, Y
2010-03-01
Unilateral neglect is a disabling syndrome frequently observed following right hemisphere brain damage. Symptoms range from visuo-motor impairments through to deficient visuo-spatial imagery, but impairment can also affect the auditory modality. A short period of adaptation to a rightward prismatic shift of the visual field is known to improve a wide range of hemispatial neglect symptoms, including visuo-manual tasks, mental imagery, postural imbalance, visuo-verbal measures and number bisection. The aim of the present study was to assess whether the beneficial effects of prism adaptation may generalize to auditory manifestations of neglect. Auditory extinction, whose clinical manifestations are independent of the sensory modalities engaged in visuo-manual adaptation, was examined in neglect patients before and after prism adaptation. Two separate groups of neglect patients (all of whom exhibited left auditory extinction) underwent prism adaptation: one group (n = 6) received a classical prism treatment ('Prism' group), the other group (n = 6) was submitted to the same procedure, but wore neutral glasses creating no optical shift (placebo 'Control' group). Auditory extinction was assessed by means of a dichotic listening task performed three times: prior to prism exposure (pre-test), upon prism removal (0 h post-test) and 2 h later (2 h post-test). The total number of correct responses, the lateralization index (detection asymmetry between the two ears) and the number of left-right fusion errors were analysed. Our results demonstrate that prism adaptation can improve left auditory extinction, thus revealing transfer of benefit to a sensory modality that is orthogonal to the visual, proprioceptive and motor modalities directly implicated in the visuo-motor adaptive process. The observed benefit was specific to the detection asymmetry between the two ears and did not affect the total number of responses. This indicates a specific effect of prism adaptation on lateralized processes rather than on general arousal. Our results suggest that the effects of prism adaptation can extend to unexposed sensory systems. The bottom-up approach of visuo-motor adaptation appears to interact with higher order brain functions related to multisensory integration and can have beneficial effects on sensory processing in different modalities. These findings should stimulate the development of therapeutic approaches aimed at bypassing the affected sensory processing modality by adapting other sensory modalities.
Meyer-Hamme, Gesa; Friedemann, Thomas; Greten, Henry Johannes; Plaetke, Rosemarie; Gerloff, Christian; Schroeder, Sven
2018-04-13
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus with significant clinical sequelae that can affect a patient's quality of life. Metabolic and microvascular factors are responsible for nerve damage, causing loss of nerve function, numbness, painful sensory symptoms, and muscle weakness. Therapy is limited to anti-convulsant or anti-depressant drugs for neuropathic pain and paresthesia. However, reduced sensation, balance and gait problems are insufficiently covered by this treatment. Previous data suggests that acupuncture, which has been in use in Traditional Chinese Medicine for many years, may potentially complement the treatment options for peripheral neuropathy. Nevertheless, more objective data on clinical outcome is necessary to generally recommend acupuncture to the public. We developed a study design for a prospective, randomized (RCT), placebo-controlled, partially double-blinded trial for investigating the effect of acupuncture on DPN as determined by nerve conduction studies (NCS) with the sural sensory nerve action potential amplitude as the primary outcome. The sural sensory nerve conduction velocity, tibial motor nerve action potential amplitude, tibial motor nerve conduction velocity, the neuropathy deficit score, neuropathy symptom score, and numeric rating scale questionnaires are defined as secondary outcomes. One hundred and eighty patients with type 2 diabetes mellitus will be randomized into three groups (needle acupuncture, verum laser acupuncture, and placebo laser acupuncture). We hypothesize that needle and laser acupuncture have beneficial effects on electrophysiological parameters and clinical and subjective symptoms in relation to DPN in comparison with placebo. The ACUDIN trial aims at investigating whether classical needle acupuncture and/or laser acupuncture are efficacious in the treatment of DPN. For the purpose of an objective parameter, NCS were chosen as outcome measures. Acupuncture treatment may potentially improve patients' quality of life and reduce the socio-economic burden caused by DPN. German Clinical Trial Register (DRKS), No. DRKS00008562 , trial search portal of the WHO ( http://apps.who.int/trialsearch/ ).
Lee, Sang-Ho; Chung, Seung-Eun; Paeng, Sung-Suk; Kim, Hye-Sung; Yoon, Sang-Wook; Yu, Jeong-Sik
2006-01-01
Pure epidural cavernous hemangioma of the spine without vertebral involvement is rare. Due to the slow growth of this lesion, the most common symptoms are chronic pain, myelopathy, and radiculopathy. In our case, the patient complained of an acute onset sensory deficit of the C4 dermatome. An MRI revealed an epidural mass with an acute hematoma. Here, we report a case of a pure epidural cavernous hemangioma that presented with acute neurologic symptoms caused by intralesional hemorrhage and an acute epidural hematoma, which were demonstrated on the patient's MRI. PMID:17191320
Jo, Byung-June; Lee, Sang-Ho; Chung, Seung-Eun; Paeng, Sung-Suk; Kim, Hye-Sung; Yoon, Sang-Wook; Yu, Jeong-Sik
2006-12-31
Pure epidural cavernous hemangioma of the spine without vertebral involvement is rare. Due to the slow growth of this lesion, the most common symptoms are chronic pain, myelopathy, and radiculopathy. In our case, the patient complained of an acute onset sensory deficit of the C4 dermatome. An MRI revealed an epidural mass with an acute hematoma. Here, we report a case of a pure epidural cavernous hemangioma that presented with acute neurologic symptoms caused by intralesional hemorrhage and an acute epidural hematoma, which were demonstrated on the patient's MRI.
Sellers, Kristin K.; Bennett, Davis V.; Hutt, Axel; Williams, James H.
2015-01-01
During general anesthesia, global brain activity and behavioral state are profoundly altered. Yet it remains mostly unknown how anesthetics alter sensory processing across cortical layers and modulate functional cortico-cortical connectivity. To address this gap in knowledge of the micro- and mesoscale effects of anesthetics on sensory processing in the cortical microcircuit, we recorded multiunit activity and local field potential in awake and anesthetized ferrets (Mustela putoris furo) during sensory stimulation. To understand how anesthetics alter sensory processing in a primary sensory area and the representation of sensory input in higher-order association areas, we studied the local sensory responses and long-range functional connectivity of primary visual cortex (V1) and prefrontal cortex (PFC). Isoflurane combined with xylazine provided general anesthesia for all anesthetized recordings. We found that anesthetics altered the duration of sensory-evoked responses, disrupted the response dynamics across cortical layers, suppressed both multimodal interactions in V1 and sensory responses in PFC, and reduced functional cortico-cortical connectivity between V1 and PFC. Together, the present findings demonstrate altered sensory responses and impaired functional network connectivity during anesthesia at the level of multiunit activity and local field potential across cortical layers. PMID:25833839
Investigating the structure of the restricted, repetitive behaviours and interests domain of autism.
Szatmari, Peter; Georgiades, Stelios; Bryson, Susan; Zwaigenbaum, Lonnie; Roberts, Wendy; Mahoney, William; Goldberg, Jeremy; Tuff, Lawrence
2006-06-01
The Restricted, Repetitive Behaviours and Interests (RRBIs) are represented in the DSM-IV and measured by the Autism Diagnostic Interview-Revised (ADI-R) as one of the three homogeneous symptom categories of Pervasive Developmental Disorders. Although this conceptualisation is well accepted in the field, the grouping of symptoms is based primarily on clinical judgment rather than on empirical evidence. The objective of this study was to examine the factor structure of the RRBI domain of autism. Eleven items from this domain of the ADI-R were used in a Principal Components Analysis (PCA). Our sample consisted of 339 individuals with a Best Estimate diagnosis of Pervasive Developmental Disorder (PDD). Findings indicate that the RRBI domain is composed of two distinct factors or dimensions: Insistence on Sameness (IS) and Repetitive Sensory and Motor Behaviours (RSMB). RSMB is negatively correlated with adaptive skills; that is, lower functioning individuals tend to have higher levels of repetitive sensory and motor behaviours. On the other hand, IS is positively correlated with autistic symptoms in the communication and language domain. Further analyses suggest moderate familial aggregation among affected sibling pairs within the IS but not the RSMB factor. These results provide evidence for the heterogeneity of the RRBI domain of the ADI-R in terms of both clinical presentation and other correlates. In addition, the IS factor seems to be under familial (presumably genetic) control, while RSMB appears to simply reflect variation in developmental level.
Neuropsychological function and memory suppression in conversion disorder.
Brown, Laura B; Nicholson, Timothy R; Aybek, Selma; Kanaan, Richard A; David, Anthony S
2014-09-01
Conversion disorder (CD) is a condition where neurological symptoms, such as weakness or sensory disturbance, are unexplained by neurological disease and are presumed to be of psychological origin. Contemporary theories of the disorder generally propose dysfunctional frontal control of the motor or sensory systems. Classical (Freudian) psychodynamic theory holds that the memory of stressful life events is repressed. Little is known about the frontal (executive) function of these patients, or indeed their general neuropsychological profile, and psychodynamic theories have been largely untested. This study aimed to investigate neuropsychological functioning in patients with CD, focusing on executive and memory function. A directed forgetting task (DFT) using words with variable emotional valence was also used to investigate memory suppression. 21 patients and 36 healthy controls completed a battery of neuropsychological tests and patients had deficits in executive function and auditory-verbal (but not autobiographical) memory. The executive deficits were largely driven by differences in IQ, anxiety and mood between the groups. A subgroup of 11 patients and 28 controls completed the DFT and whilst patients recalled fewer words overall than controls, there were no significant effects of directed forgetting or valence. This study provides some limited support for deficits in executive, and to a lesser degree, memory function in patients with CD, but did not find evidence of altered memory suppression to support the psychodynamic theory of repression. © 2013 The British Psychological Society.
Sullivan, Jillian C; Miller, Lucy J; Nielsen, Darcy M; Schoen, Sarah A
2014-08-01
Migraine headaches are associated with sensory hyperreactivity and anxiety in the general population, but it is unknown whether this is also the case in autism spectrum disorders. This pilot study asked parents of 81 children (aged 7-17 years) with autism spectrum disorders to report their child's migraine occurrence, sensory hyperreactivity (Sensory Over-Responsivity Inventory), and anxiety symptoms (Spence Child Anxiety Scale). Children with autism spectrum disorders who experienced migraine headaches showed greater sensory hyperreactivity and anxiety symptomatology (p < 0.01; medium effect size for both) than those without migraines. Sensory hyperreactivity and anxiety symptomatology were additionally correlated (ρ = 0.31, p = 0.005). This study provides preliminary evidence for a link between migraine headaches, sensory hyperreactivity, and anxiety symptomatology in autism spectrum disorders, which may suggest strategies for subtyping and exploring a common pathogenesis. © The Author(s) 2013.
Mu, Liancai; Chen, Jingming; Sobotka, Stanislaw; Nyirenda, Themba; Benson, Brian; Gupta, Fiona; Sanders, Ira; Adler, Charles H.; Caviness, John N.; Shill, Holly A.; Sabbagh, Marwan; Samanta, Johan E.; Sue, Lucia I.; Beach, Thomas G.
2015-01-01
Dysphagia is common in Parkinson’s disease (PD) and causes significant morbidity and mortality. PD dysphagia has usually been explained as dysfunction of central motor control, much like other motor symptoms that are characteristic of the disease. However, PD dysphagia does not correlate with severity of motor symptoms nor does it respond to motor therapies. It is known that PD patients have sensory deficits in the pharynx, and that impaired sensation may contribute to dysphagia. However, the underlying cause of the pharyngeal sensory deficits in PD is not known. We hypothesized that PD dysphagia with sensory deficits may be due to degeneration of the sensory nerve terminals in the upper aerodigestive tract (UAT). We have previously shown that Lewy-type synucleinopathy (LTS) is present in the main pharyngeal sensory nerves of PD patients, but not in controls. In this study, the sensory terminals in UAT mucosa were studied to discern the presence and distribution of LTS. Whole-mount specimens (tongue-pharynx-larynx-upper esophagus) were obtained from 10 deceased human subjects with clinically diagnosed and neuropathologically confirmed PD (five with dysphagia and five without) and four age-matched healthy controls. Samples were taken from six sites and immunostained for phosphorylated α-synuclein (PAS). The results showed the presence of PAS-immunoreactive (PAS-ir) axons in all the PD subjects and in none of the controls. Notably, PD patients with dysphagia had more PAS-ir axons in the regions that are critical for initiating the swallowing reflex. These findings suggest that Lewy pathology affects mucosal sensory axons in specific regions of the UAT and may be related to PD dysphagia. PMID:26041249
Mu, Liancai; Chen, Jingming; Sobotka, Stanislaw; Nyirenda, Themba; Benson, Brian; Gupta, Fiona; Sanders, Ira; Adler, Charles H; Caviness, John N; Shill, Holly A; Sabbagh, Marwan; Samanta, Johan E; Sue, Lucia I; Beach, Thomas G
2015-08-01
Dysphagia is common in Parkinson's disease (PD) and causes significant morbidity and mortality. PD dysphagia has usually been explained as dysfunction of central motor control, much like other motor symptoms that are characteristic of the disease. However, PD dysphagia does not correlate with severity of motor symptoms nor does it respond to motor therapies. It is known that PD patients have sensory deficits in the pharynx, and that impaired sensation may contribute to dysphagia. However, the underlying cause of the pharyngeal sensory deficits in PD is not known. We hypothesized that PD dysphagia with sensory deficits may be due to degeneration of the sensory nerve terminals in the upper aerodigestive tract (UAT). We have previously shown that Lewy-type synucleinopathy (LTS) is present in the main pharyngeal sensory nerves of PD patients, but not in controls. In this study, the sensory terminals in UAT mucosa were studied to discern the presence and distribution of LTS. Whole-mount specimens (tongue-pharynx-larynx-upper esophagus) were obtained from 10 deceased human subjects with clinically diagnosed and neuropathologically confirmed PD (five with dysphagia and five without) and four age-matched healthy controls. Samples were taken from six sites and immunostained for phosphorylated α-synuclein (PAS). The results showed the presence of PAS-immunoreactive (PAS-ir) axons in all the PD subjects and in none of the controls. Notably, PD patients with dysphagia had more PAS-ir axons in the regions that are critical for initiating the swallowing reflex. These findings suggest that Lewy pathology affects mucosal sensory axons in specific regions of the UAT and may be related to PD dysphagia.
Sensory Abnormalities in Autism: A Brief Report
ERIC Educational Resources Information Center
Klintwall Lars; Holm, Anette; Eriksson, Mats; Carlsson, Lotta Hoglund; Olsson, Martina Barnevik; Hedvall, Asa; Gillberg, Christopher; Fernell, Elisabeth
2011-01-01
Sensory abnormalities were assessed in a population-based group of 208 20-54-month-old children, diagnosed with autism spectrum disorder (ASD) and referred to a specialized habilitation centre for early intervention. The children were subgrouped based upon degree of autistic symptoms and cognitive level by a research team at the centre. Parents…
The Role of Sensorimotor Difficulties in Autism Spectrum Conditions
Hannant, Penelope; Tavassoli, Teresa; Cassidy, Sarah
2016-01-01
In addition to difficulties in social communication, current diagnostic criteria for autism spectrum conditions (ASC) also incorporate sensorimotor difficulties, repetitive motor movements, and atypical reactivity to sensory input (1). This paper explores whether sensorimotor difficulties are associated with the development and maintenance of symptoms in ASC. First, studies have shown difficulties coordinating sensory input into planning and executing movement effectively in ASC. Second, studies have shown associations between sensory reactivity and motor coordination with core ASC symptoms, suggesting these areas each strongly influence the development of social and communication skills. Third, studies have begun to demonstrate that sensorimotor difficulties in ASC could account for reduced social attention early in development, with a cascading effect on later social, communicative and emotional development. These results suggest that sensorimotor difficulties not only contribute to non-social difficulties such as narrow circumscribed interests, but also to the development of social behaviors such as effectively coordinating eye contact with speech and gesture, interpreting others’ behavior, and responding appropriately. Further research is needed to explore the link between sensory and motor difficulties in ASC and their contribution to the development and maintenance of ASC. PMID:27559329
Approach to Peripheral Neuropathy for the Primary Care Clinician.
Doughty, Christopher T; Seyedsadjadi, Reza
2018-02-02
Peripheral neuropathy is commonly encountered in the primary care setting and is associated with significant morbidity, including neuropathic pain, falls, and disability. The clinical presentation of neuropathy is diverse, with possible symptoms including weakness, sensory abnormalities, and autonomic dysfunction. Accordingly, the primary care clinician must be comfortable using the neurologic examination-including the assessment of motor function, multiple sensory modalities, and deep tendon reflexes-to recognize and characterize neuropathy. Although the causes of peripheral neuropathy are numerous and diverse, careful review of the medical and family history coupled with limited, select laboratory testing can often efficiently lead to an etiologic diagnosis. This review offers an approach for evaluating suspected neuropathy in the primary care setting. It will describe the most common causes, suggest an evidence-based workup to aid in diagnosis, and highlight recent evidence that allows for selection of symptomatic treatment of patients with neuropathy. Copyright © 2018 Elsevier Inc. All rights reserved.
Airway somatosensory deficits and dysphagia in Parkinson's disease.
Hammer, Michael J; Murphy, Caitlin A; Abrams, Trisha M
2013-01-01
Individuals with Parkinson's disease (PD) often experience substantial impairment of swallow control, and are typically unaware of the presence or severity of their impairments suggesting that these individuals may also experience airway sensory deficits. However, the degree to which impaired swallow function in PD may relate to airway sensory deficits has yet to be formally tested. The purpose of this study was to examine whether airway sensory function is associated with swallow impairment in PD. Eighteen PD participants and 18 healthy controls participated in this study and underwent endoscopic assessment of airway somatosensory function, endoscopic assessment of swallow function, and clinical ratings of swallow and disease severity. PD participants exhibited abnormal airway somatosensory function and greater swallow impairment compared with healthy controls. Swallow and sensory deficits in PD were correlated with disease severity. Moreover, PD participants reported similar self-rated swallow function as healthy controls, and swallow deficits were correlated with sensory function suggesting an association between impaired sensory function and poor self-awareness of swallow deficits in PD. These results suggest that control of swallow is influenced by airway somatosensory function, that swallow-related deficits in PD are related to abnormal somatosensation, and that swallow and airway sensory function may degrade as a function of disease severity. Therefore, the basal ganglia and related neural networks may play an important role to integrate airway sensory input for swallow-related motor control. Furthermore, the airway deficits observed in PD suggest a disintegration of swallow-related sensory and motor control.
Szczesniak, Michal Marcin; Fuentealba, Sergio Enrique; Cook, Ian J
2013-01-01
Sensitization of esophageal chemoreceptors, either directly by intermittent acid exposure or indirectly through esophagitis-associated inflammatory mediators, is likely to be the mechanism underlying the perception of heartburn. To compare basal esophageal sensitivity with electrical stimulation and acid, and to compare the degree of acid-induced sensitization in controls and in patient groups across the entire spectrum of gastroesophageal reflux disease: erosive oesophagitis (EO), nonerosive reflux disease (NERD), and functional heartburn (FH). Esophageal sensory and pain thresholds to electrical stimulation were measured before, 30, and 60 minutes after an intraesophageal infusion of saline or HCl. Patients received a 30-minute infusion of 0.15 M HCl and controls were randomized to receive either HCl (n = 11) or saline (n = 10). After electrical sensory threshold testing, participants received another 30-minute infusion of HCl to determine whether sensitivity to acid is increased by prior acid exposure All patient groups had higher basal sensory thresholds than healthy controls (controls, 13 ± 1.4 mA; FH, 20 ± 5.1 mA; NERD, 21 ± 5.1 mA; EO, 23 ± 5.4 mA; P < 0.05). Acute esophageal acid exposure reduced sensory thresholds to electrical stimulation in FH and NERD patients (P < 0.05). The level of acid sensitivity during the first HCl infusion was comparable between all patient groups and controls. The secondary infusion caused increased discomfort in all participants (P < 0.01). This acid-induced sensitization to HCl was significantly elevated in the patient groups ( P < 0.05). (1) Esophageal acid infusion sensitizes it to subsequent electrical and chemical stimulation. (2) The acid-related sensitization is greater in gastroesophageal reflux disease than in controls and may influence in part symptom perception in this population. (3) Acid-related sensitization within the gastroesophageal reflux disease population is not dependant on mucosal inflammation.
Joshi, Ketaki C; Eapen, Charu; Kumar, Senthil P
2013-02-01
The purpose of the study was to determine the normal sensory and range of motion (ROM) responses during the movement components of Thoracic Slump Test (Thoracic ST) in asymptomatic subjects. Sixty asymptomatic subjects were included in the study. Thoracic ST was performed in two sequences, proximal initiation, which was proximal to distal and distal initiation, which was distal to proximal. Subjects were randomized into four groups depending on the order of sequences and sides. Outcome measures of sensory responses (intensity, type, and location) and ROM responses were recorded after each sequence. Friedman's test was done to compare between sensory responses of the subjects. Between-component comparison for prevalence of sensory responses within each sequence was done using Kruskal-Wallis test and Wilcoxonsigned ranks test was used for between-component comparisons of intensity of symptoms within each sequence of testing. Independent t test was used to assess the ROM responses. Results show the prevalence of sensory responses, its nature, area and intensity. These sensory and ROM responses may be considered as normal response of Thoracic ST. The intensity of the symptoms of proximal initiation sequence (1.09±1.35 cm) was significant (P<0.05) when compared to distal initiation sequence (0.08±1.26 cm). The change in the ROM was significant (P<0.05) for distal initiation (7.55±4.51 degrees) when compared to proximal initiation (4.96±3.76 degrees). These normal responses may be used as a reference when using the Thoracic ST as an assessment technique.
Joshi, Ketaki C; Eapen, Charu; Kumar, Senthil P
2013-01-01
The purpose of the study was to determine the normal sensory and range of motion (ROM) responses during the movement components of Thoracic Slump Test (Thoracic ST) in asymptomatic subjects. Sixty asymptomatic subjects were included in the study. Thoracic ST was performed in two sequences, proximal initiation, which was proximal to distal and distal initiation, which was distal to proximal. Subjects were randomized into four groups depending on the order of sequences and sides. Outcome measures of sensory responses (intensity, type, and location) and ROM responses were recorded after each sequence. Friedman’s test was done to compare between sensory responses of the subjects. Between-component comparison for prevalence of sensory responses within each sequence was done using Kruskal–Wallis test and Wilcoxonsigned ranks test was used for between-component comparisons of intensity of symptoms within each sequence of testing. Independent t test was used to assess the ROM responses. Results show the prevalence of sensory responses, its nature, area and intensity. These sensory and ROM responses may be considered as normal response of Thoracic ST. The intensity of the symptoms of proximal initiation sequence (1.09±1.35 cm) was significant (P<0.05) when compared to distal initiation sequence (0.08±1.26 cm). The change in the ROM was significant (P<0.05) for distal initiation (7.55±4.51 degrees) when compared to proximal initiation (4.96±3.76 degrees). These normal responses may be used as a reference when using the Thoracic ST as an assessment technique. PMID:24421610
Lerman, S F; Shahar, G; Rudich, Z
2012-01-01
This longitudinal study examined the role of the trait of self-criticism as a moderator of the relationship between the affective and sensory components of pain, and depression. One hundred and sixty-three chronic pain patients treated at a specialty pain clinic completed self-report questionnaires at two time points assessing affective and sensory components of pain, depression, and self-criticism. Hierarchical linear regression analysis revealed a significant 3-way interaction between self-criticism, affective pain and gender, whereby women with high affective pain and high self-criticism demonstrated elevated levels of depression. Our findings are the first to show within a broad, comprehensive model, that selfcriticism is activated by the affective, but not sensory component of pain in leading to depressive symptoms, and highlight the need to assess patients' personality as part of an effective treatment plan. © 2011 European Federation of International Association for the Study of Pain Chapters.
Physiologic adaptation to space - Space adaptation syndrome
NASA Technical Reports Server (NTRS)
Vanderploeg, J. M.
1985-01-01
The adaptive changes of the neurovestibular system to microgravity, which result in space motion sickness (SMS), are studied. A list of symptoms, which range from vomiting to drowsiness, is provided. The two patterns of symptom development, rapid and gradual, and the duration of the symptoms are described. The concept of sensory conflict and rearrangements to explain SMS is being investigated.
Sensory Guillain-Barré syndrome and related disorders: an attempt at systematization.
Uncini, Antonino; Yuki, Nobuhiro
2012-04-01
The possibility that some patients diagnosed with an acute sensory neuropathy could actually have Guillain-Barré syndrome (GBS) has been repeatedly advanced in the literature, but the number of cases reported is small. The reports have shown different clinical presentations and electrophysiological findings and are variously named, thus generating terminological and nosological confusion. We operatively defined sensory GBS as an acute, monophasic, widespread neuropathy characterized clinically by exclusive sensory symptoms and signs that reach their nadir in a maximum of 6 weeks without related systemic disorders and other diseases or conditions. We reviewed the literature through searches of PubMed from 1980 to March 2011 and our own files. On the basis of the size of fibers involved and the possible site of primary damage, we propose tentatively classifying sensory GBS and related disorders into three subtypes: acute sensory demyelinating polyneuropathy; acute sensory large-fiber axonopathy-ganglionopathy; and acute sensory small-fiber neuropathy-ganglionopathy. Copyright © 2011 Wiley Periodicals, Inc.
'Shell shock' revisited: an examination of the case records of the National Hospital in London.
Linden, Stefanie Caroline; Jones, Edgar
2014-10-01
During the First World War the National Hospital for the Paralysed and Epileptic, in Queen Square, London, then Britain's leading centre for neurology, took a key role in the treatment and understanding of shell shock. This paper explores the case notes of all 462 servicemen who were admitted with functional neurological disorders between 1914 and 1919. Many of these were severe or chronic cases referred to the National Hospital because of its acknowledged expertise and the resources it could call upon. Biographical data was collected together with accounts of the patient's military experience, his symptoms, diagnostic interpretations and treatment outcomes. Analysis of the notes showed that motor syndromes (loss of function or hyperkinesias), often combined with somato-sensory loss, were common presentations. Anxiety and depression as well as vegetative symptoms such as sweating, dizziness and palpitations were also prevalent among this patient population. Conversely, psychogenic seizures were reported much less frequently than in comparable accounts from German tertiary referral centres. As the war unfolded the number of physicians who believed that shell shock was primarily an organic disorder fell as research failed to find a pathological basis for its symptoms. However, little agreement existed among the Queen Square doctors about the fundamental nature of the disorder and it was increasingly categorised as functional disorder or hysteria.
Sensory aspects of movement disorders
Patel, Neepa; Jankovic, Joseph; Hallett, Mark
2016-01-01
Movement disorders, which include disorders such as Parkinson’s disease, dystonia, Tourette’s syndrome, restless legs syndrome, and akathisia, have traditionally been considered to be disorders of impaired motor control resulting predominantly from dysfunction of the basal ganglia. This notion has been revised largely because of increasing recognition of associated behavioural, psychiatric, autonomic, and other non-motor symptoms. The sensory aspects of movement disorders include intrinsic sensory abnormalities and the effects of external sensory input on the underlying motor abnormality. The basal ganglia, cerebellum, thalamus, and their connections, coupled with altered sensory input, seem to play a key part in abnormal sensorimotor integration. However, more investigation into the phenomenology and physiological basis of sensory abnormalities, and about the role of the basal ganglia, cerebellum, and related structures in somatosensory processing, and its effect on motor control, is needed. PMID:24331796
Fast Synaptic Inhibition in Spinal Sensory Processing and Pain Control
Zeilhofer, Hanns Ulrich; Wildner, Hendrik; Yevenes, Gonzalo E.
2013-01-01
The two amino acids γ-amino butyric acid (GABA) and glycine mediate fast inhibitory neurotransmission in different CNS areas and serve pivotal roles in the spinal sensory processing. Under healthy conditions, they limit the excitability of spinal terminals of primary sensory nerve fibers and of intrinsic dorsal horn neurons through pre- and postsynaptic mechanisms, and thereby facilitate the spatial and temporal discrimination of sensory stimuli. Removal of fast inhibition not only reduces the fidelity of normal sensory processing but also provokes symptoms very much reminiscent of pathological and chronic pain syndromes. This review summarizes our knowledge of the molecular bases of spinal inhibitory neurotransmission and its organization in dorsal horn sensory circuits. Particular emphasis is placed on the role and mechanisms of spinal inhibitory malfunction in inflammatory and neuropathic chronic pain syndromes. PMID:22298656
Jasmin, R; Sockalingam, S; Ramanaidu, L P; Goh, K J
2015-03-01
Peripheral neuropathy in systemic lupus erythematosus (SLE) is heterogeneous and its commonest pattern is symmetrical polyneuropathy. The aim of this study was to describe the prevalence, clinical and electrophysiological features, disease associations and effects on function and quality of life of polyneuropathy in SLE patients, defined using combined clinical and electrophysiological diagnostic criteria. Consecutive SLE patients seen at the University of Malaya Medical Centre were included. Patients with medication and other disorders known to cause neuropathy were excluded. Demographic, clinical and laboratory data were obtained using a pre-defined questionnaire. Function and health-related quality of life was assessed using the modified Rankin scale and the SF-36 scores. Nerve conduction studies (NCS) were carried out in both upper and lower limbs. Polyneuropathy was defined as the presence of bilateral clinical symptoms and/or signs and bilateral abnormal NCS parameters. Of 150 patients, 23 (15.3%) had polyneuropathy. SLE-related polyneuropathy was mainly characterized by sensory symptoms of numbness/tingling and pain with mild signs of absent ankle reflexes and reduced pain sensation. Function was minimally affected and there were no differences in quality of life scores. NCS abnormalities suggested mild length-dependent axonal neuropathy, primarily in the distal lower limbs. Compared to those without polyneuropathy, SLE-related polyneuropathy patients were significantly older but had no other significant demographic or disease associations. SLE-related polyneuropathy is a chronic, axonal and predominantly sensory neuropathy, associated with older age. Its underlying pathogenetic mechanisms are unknown, although a possibility could be an increased susceptibility of peripheral nerves in SLE patients to effects of aging. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Kopec, Jacek A.; Colangelo, Linda H.; Land, Stephanie R.; Julian, Thomas B.; Brown, Ann M.; Anderson, Stewart J.; Krag, David N.; Ashikaga, Takamaru; Costantino, Joseph P.; Wolmark, Norman; Ganz, Patricia A.
2012-01-01
Background The impact of arm morbidity following breast cancer surgery on patient-observed changes in daily functioning and health-related quality of life (HRQoL) have not been well-studied. Objective To examine the association of objective measures such as range of motion (ROM) and lymphedema, with patient-reported outcomes (PROs) in the arm and breast, upper extremity function, activities, and HRQoL. Methods The National Surgical Adjuvant Breast and Bowel Project Protocol B-32 was a randomized trial comparing sentinel node resection (SNR) with axillary dissection (AD) in women with node-negative breast cancer. ROM and arm volume were measured objectively. PROs included symptoms; arm function; limitations in social, recreational, occupational, and other regular activities; and a global index of HRQoL. Statistical methods included cross-tabulations and multivariable linear regression models. Results In all, 744 women provided at least 1 postsurgery assessment. About one-third of the patients experienced arm mobility restrictions. A similar number of patients avoided the use of the arm 6 months after surgery. Limitations in work and other regular activities were reported by about a quarter of the patients. In this multivariable analysis, arm mobility and sensory neuropathy were predictors of patient-reported arm function and overall HRQoL. Predictors for activity limitations also included side of surgery (dominant vs nondominant). Edema was not significant after adjustment for sensory neuropathy and ROM. Limitations Arm mobility and edema were measured simultaneously only once during the follow-up (6 months). Conclusion Clinical measures of sensory neuropathy and restrictions in arm mobility following breast cancer surgery are associated with self-reported limitations in activity and reductions in overall HRQoL. PMID:22951047
Peripheral KV7 channels regulate visceral sensory function in mouse and human colon
Hockley, James RF; Reed, David E; Smith, Ewan St. John; Bulmer, David C; Blackshaw, L Ashley
2017-01-01
Background Chronic visceral pain is a defining symptom of many gastrointestinal disorders. The KV7 family (KV7.1–KV7.5) of voltage-gated potassium channels mediates the M current that regulates excitability in peripheral sensory nociceptors and central pain pathways. Here, we use a combination of immunohistochemistry, gut-nerve electrophysiological recordings in both mouse and human tissues, and single-cell qualitative real-time polymerase chain reaction of gut-projecting sensory neurons, to investigate the contribution of peripheral KV7 channels to visceral nociception. Results Immunohistochemical staining of mouse colon revealed labelling of KV7 subtypes (KV7.3 and KV7.5) with CGRP around intrinsic enteric neurons of the myenteric plexuses and within extrinsic sensory fibres along mesenteric blood vessels. Treatment with the KV7 opener retigabine almost completely abolished visceral afferent firing evoked by the algogen bradykinin, in agreement with significant co-expression of mRNA transcripts by single-cell qualitative real-time polymerase chain reaction for KCNQ subtypes and the B2 bradykinin receptor in retrogradely labelled extrinsic sensory neurons from the colon. Retigabine also attenuated responses to mechanical stimulation of the bowel following noxious distension (0–80 mmHg) in a concentration-dependent manner, whereas the KV7 blocker XE991 potentiated such responses. In human bowel tissues, KV7.3 and KV7.5 were expressed in neuronal varicosities co-labelled with synaptophysin and CGRP, and retigabine inhibited bradykinin-induced afferent activation in afferent recordings from human colon. Conclusions We show that KV7 channels contribute to the sensitivity of visceral sensory neurons to noxious chemical and mechanical stimuli in both mouse and human gut tissues. As such, peripherally restricted KV7 openers may represent a viable therapeutic modality for the treatment of gastrointestinal pathologies. PMID:28566000
Filingeri, Davide; Chaseling, Georgia; Hoang, Phu; Barnett, Michael; Davis, Scott L; Jay, Ollie
2017-08-01
What is the central question of this study? Between 60 and 80% of multiple sclerosis (MS) patients experience transient worsening of symptoms with increased body temperature (heat sensitivity). As sensory abnormalities are common in MS, we asked whether afferent thermosensory function is altered in MS following exercise-induced increases in body temperature. What is the main finding and its importance? Increases in body temperature of as little as ∼0.4°C were sufficient to decrease cold, but not warm, skin thermosensitivity (∼10%) in MS, across a wider temperature range than in age-matched healthy individuals. These findings provide new evidence on the impact of heat sensitivity on afferent function in MS, which could be useful for clinical evaluation of this neurological disease. In multiple sclerosis (MS), increases in body temperature result in transient worsening of clinical symptoms (heat sensitivity or Uhthoff's phenomenon). Although the impact of heat sensitivity on efferent physiological function has been investigated, the effects of heat stress on afferent sensory function in MS are unknown. Hence, we quantified afferent thermosensory function in MS following exercise-induced increases in body temperature with a new quantitative sensory test. Eight relapsing-remitting MS patients (three men and five women; 51.4 ± 9.1 years of age; Expanded Disability Status Scale score 2.8 ± 1.1) and eight age-matched control (CTR) subjects (five men and three women; 47.4 ± 9.1 years of age) rated the perceived magnitude of two cold (26 and 22°C) and two warm stimuli (34 and 38°C) applied to the dorsum of the hand before and after 30 min cycling in the heat (30°C air; 30% relative humidity). Exercise produced similar increases in mean body temperature in MS [+0.39°C (95% CI: +0.21, +0.53) P = 0.001] and CTR subjects [+0.41°C (95% CI: +0.25, +0.58) P = 0.001]. These changes were sufficient to decrease thermosensitivity significantly to all cold [26°C stimulus, -9.1% (95% CI: -17.0, -1.5), P = 0.006; 22°C stimulus, -10.6% (95% CI: -17.3, -3.7), P = 0.027], but not warm, stimuli in MS. Contrariwise, CTR subjects showed sensitivity reductions to colder stimuli only [22°C stimulus, -9.7% (95% CI: -16.4, -3.1), P = 0.011]. The observation that reductions in thermal sensitivity in MS were confined to the myelinated cold-sensitive pathway and extended across a wider (including milder and colder) temperature range than what is observed in CTR subjects provides new evidence on the impact of rising body temperature on afferent neural function in MS. Also, our findings support the use of our new approach to investigate afferent sensory function in MS during heat stress. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Agostini, A; Ballotta, D; Righi, S; Moretti, M; Bertani, A; Scarcelli, A; Sartini, A; Ercolani, M; Nichelli, P; Campieri, M; Benuzzi, F
2017-10-01
In Crohn's disease (CD) patients, stress is believed to influence symptoms generation. Stress may act via central nervous system pathways to affect visceral sensitivity and motility thus exacerbating gastrointestinal symptoms. The neural substrate underpinning these mechanisms needs to be investigated in CD. We conducted an explorative functional magnetic resonance imaging (fMRI) study in order to investigate potential differences in the brain stress response in CD patients compared to controls. 17 CD patients and 17 healthy controls underwent a fMRI scan while performing a stressful task consisting in a Stroop color-word interference task designed to induce mental stress in the fMRI environment. Compared to controls, in CD patients the stress task elicited greater blood oxygen level dependent (BOLD) signals in the midcingulate cortex (MCC). The MCC integrate "high" emotional processes with afferent sensory information ascending from the gut. In light of these integrative functions, the stress-evoked MCC hyperactivity in CD patients might represent a plausible neural substrate for the association between stress and symptomatic disease. The MCC dysfunction might be involved in mechanisms of central disinhibition of nociceptive inputs leading to amplify the visceral sensitivity. Finally, the stress-evoked MCC hyperactivity might affect the regulation of intestinal motility resulting in exacerbation of disease symptoms and the autonomic and neuroendocrine regulation of inflammation resulting in enhanced inflammatory activity. © 2017 John Wiley & Sons Ltd.
Sensory Function: Insights From Wave 2 of the National Social Life, Health, and Aging Project
Kern, David W.; Wroblewski, Kristen E.; Chen, Rachel C.; Schumm, L. Philip; McClintock, Martha K.
2014-01-01
Objectives. Sensory function, a critical component of quality of life, generally declines with age and influences health, physical activity, and social function. Sensory measures collected in Wave 2 of the National Social Life, Health, and Aging Project (NSHAP) survey focused on the personal impact of sensory function in the home environment and included: subjective assessment of vision, hearing, and touch, information on relevant home conditions and social sequelae as well as an improved objective assessment of odor detection. Method. Summary data were generated for each sensory category, stratified by age (62–90 years of age) and gender, with a focus on function in the home setting and the social consequences of sensory decrements in each modality. Results. Among both men and women, older age was associated with self-reported impairment of vision, hearing, and pleasantness of light touch. Compared with women, men reported significantly worse hearing and found light touch less appealing. There were no gender differences for vision. Overall, hearing loss seemed to have a greater impact on social function than did visual impairment. Discussion. Sensory function declines across age groups, with notable gender differences for hearing and light touch. Further analysis of sensory measures from NSHAP Wave 2 may provide important information on how sensory declines are related to health, social function, quality of life, morbidity, and mortality in this nationally representative sample of older adults. PMID:25360015
[Diagnosis and treatment of peripheral neuropathy induced by ANCA-associated vasculitis].
Hattori, Naoki
2014-07-01
ANCA-associated vasculitis is induced by necrotizing angiitis of small vessels supplying the peripheral nervous system. Ischemic processes induce neuronal damage and axonal degeneration in the peripheral nerve. Motor dysfunction as well as sensory disturbance and allodynia caused by neuropathic symptoms may influence an individual's activities of daily living and quality of life. Notably, the peripheral nerve is predominantly affected in ANCA-associated vasculitis. We suggest that early diagnosis and appropriate treatment are important to improve survival in and functional prognosis of ANCA-associated vasculitis.
Mori, K; Koike, H; Misu, K; Hattori, N; Ichimura, M; Sobue, G
2001-01-01
OBJECTIVES—To determine spinal cord MRI findings in neuronopathy associated with Sjögren's syndrome and their correlation with severity of sensory impairment. METHODS—Clinical and electrophysiological features, pathological findings in the sural nerve, and hyperintensity on T2* weighted MRI in the spinal dorsal columns were evaluated in 14 patients with neuronopathy associated with Sjögren's syndrome. RESULTS—Of 14 patients, 12 showed high intensity by T2* weighted MRI in the posterior columns of the cervical cord. High intensity areas were seen in both the fasciculus cuneatus and gracilis in nine patients, who showed severe and widespread sensory deficits in the limbs and trunk; these patients also had a high frequency of autonomic symptoms. Somatosensory evoked potentials often could not be elicited. Hyperintensity restricted to the fasciculus gracilis was seen in three patients, who showed sensory deficits restricted to lower limbs without trunk involvement, or with only partial limb involvement; no autonomic symptoms were noted. The two patients who did not show high intensity areas in the dorsal columns showed restricted sensory involvement in the limbs. All patients showed axonal loss predominantly affecting large fibres, without axonal sprouting. CONCLUSIONS—High intensity areas on T2* weighted MRI in the spinal dorsal columns reflect the degree of sensory neuronal involvement in neuronopathy associated with Sjögren's syndrome; this finding could also be a helpful marker for estimating severity of this neuronopathy. PMID:11561032
Shukla, Garima; Bhatia, Manvir; Behari, Madhuri
2005-10-01
Small fiber neuropathy is a common neurological disorder, often missed or ignored by physicians, since examination and routine nerve conduction studies are usually normal in this condition. Many methods including quantitative thermal sensory testing are currently being used for early detection of this condition, so as to enable timely investigation and treatment. This study was conducted to assess the yield of quantitative thermal sensory testing in diagnosis of small fiber neuropathy. We included patients presenting with history suggestive of positive and/or negative sensory symptoms, with normal examination findings, clinically suggestive of small fiber neuropathy, with normal or minimally abnormal routine nerve conduction studies. These patients were subjected to quantitative thermal sensory testing using a Medoc TSA-II Neurosensory analyser at two sites and for two modalities. QST data were compared with those in 120 normal healthy controls. Twenty-five patients (16 males, 9 females) with mean age 46.8+/-16.6 years (range: 21-75 years) were included in the study. The mean duration of symptoms was 1.6+/-1.6 years (range: 3 months-6 years). Eighteen patients (72%) had abnormal thresholds in at least one modality. Thermal thresholds were normal in 7 out of the 25 patients. This study demonstrates that quantitative thermal sensory testing is a fairly sensitive method for detection of small fiber neuropathy especially in patients with normal routine nerve conduction studies.
Au, Ngan Pan Bennett; Kumar, Gajendra; Asthana, Pallavi; Tin, Chung; Mak, Yim Ling; Chan, Leo Lai; Lam, Paul Kwan Sing; Ma, Chi Him Eddie
2016-05-27
Ciguatera fish poisoning (CFP) results from consumption of tropical reef fish containing ciguatoxins (CTXs). Pacific (P)-CTX-1 is among the most potent known CTXs and the predominant source of CFP in the endemic region responsible for the majority of neurological symptoms in patients. Chronic and persistent neurological symptoms occur in some CFP patients, which often result in incomplete functional recovery for years. However, the direct effects of exposure to CTXs remain largely unknown. In present study, we exposed mice to CTX purified from ciguatera fish sourced from the Pacific region. P-CTX-1 was detected in peripheral nerves within hours and persisted for two months after exposure. P-CTX-1 inhibited axonal regrowth from axotomized peripheral neurons in culture. P-CTX-1 exposure reduced motor function in mice within the first two weeks of exposure before returning to baseline levels. These pre-exposed animals exhibited delayed sensory and motor functional recovery, and irreversible motor deficits after peripheral nerve injury in which formation of functional synapses was impaired. These findings are consistent with reduced muscle function, as assessed by electromyography recordings. Our study provides strong evidence that the persistence of P-CTX-1 in peripheral nerves reduces the intrinsic growth capacity of peripheral neurons, resulting in delayed functional recovery after injury.
Sensory Over-Responsivity, Psychopathology, and Family Impairment in School-Aged Children
ERIC Educational Resources Information Center
Carter, Alice S.; Ben-Sasson, Ayelet; Briggs-Gowan, Margaret J.
2011-01-01
Objective: To establish the diagnostic validity of sensory overresponsivity (SOR), there is a need to document rates of SOR and the co-occurrence of SOR with other psychiatric disorders. Although this was not a diagnostic study of SOR, this study was designed to investigate rates of elevated SOR symptoms and associations between elevated SOR…
ERIC Educational Resources Information Center
Ben-Sasson, A.; Soto, T. W.; Martinez-Pedraza, F.; Carter, A. S.
2013-01-01
Background: Sensory over-responsivity (SOR) affects many individuals with autism spectrum disorders (ASD), often leading to stressful encounters during daily routines. Methods: This study describes the associations between early SOR symptoms and the longitudinal course of restrictions in family life activities and parenting stress across three…
Semantic Relevance, Domain Specificity and the Sensory/Functional Theory of Category-Specificity
ERIC Educational Resources Information Center
Sartori, Giuseppe; Gnoato, Francesca; Mariani, Ilenia; Prioni, Sara; Lombardi, Luigi
2007-01-01
According to the sensory/functional theory of semantic memory, Living items rely more on Sensory knowledge than Non-living ones. The sensory/functional explanation of category-specificity assumes that semantic features are organised on the basis of their content. We report here a study on DAT patients with impaired performance on Living items and…
Pedler, Ashley; Kamper, Steven J; Sterling, Michele
2016-08-01
The fear avoidance model (FAM) has been proposed to explain the development of chronic disability in a variety of conditions including whiplash-associated disorders (WADs). The FAM does not account for symptoms of posttraumatic stress and sensory hypersensitivity, which are associated with poor recovery from whiplash injury. The aim of this study was to explore a model for the maintenance of pain and related disability in people with WAD including symptoms of PTSD, sensory hypersensitivity, and FAM components. The relationship between individual components in the model and disability and how these relationships changed over the first 12 weeks after injury were investigated. We performed a longitudinal study of 103 (74 female) patients with WAD. Measures of pain intensity, cold and mechanical pain thresholds, symptoms of posttraumatic stress, pain catastrophising, kinesiophobia, and fear of cervical spine movement were collected within 6 weeks of injury and at 12 weeks after injury. Mixed-model analysis using Neck Disability Index (NDI) scores and average 24-hour pain intensity as the dependent variables revealed that overall model fit was greatest when measures of fear of movement, posttraumatic stress, and sensory hypersensitivity were included. The interactive effects of time with catastrophising and time with fear of activity of the cervical spine were also included in the best model for disability. These results provide preliminary support for the addition of neurobiological and stress system components to the FAM to explain poor outcome in patients with WAD.
Positive impact of the Portuguese smoking law on respiratory health of restaurant workers.
Madureira, Joana; Mendes, Ana; Almeida, Sofia; Teixeira, João Paulo
2012-01-01
The impact of smoke-free law on the respiratory and sensory symptoms among restaurant workers was evaluated. Fifty-two workers in 10 Portuguese restaurants were interviewed before and 2 years after implementation of the smoke-free law. A significant reduction in self-reported workplace environmental tobacco smoke (ETS) exposure was observed after the enforcement of the law, as well as a marked reduction in adverse respiratory and sensory symptoms such as dry, itching, irritated, or watery eyes, nasal problems, and sore or dry throat or cough, between pre- and post-ban. This study demonstrates that the smoking ban was effective in diminishing the exposure symptoms among workers and consequently in improving their respiratory health. These observations may have implications for policymakers and legislators in other countries currently considering the nature and extent of their smoke-free workplace legislation.
Sciatic Nerve Injury After Proximal Hamstring Avulsion and Repair
Wilson, Thomas J.; Spinner, Robert J.; Mohan, Rohith; Gibbs, Christopher M.; Krych, Aaron J.
2017-01-01
Background: Muscle bellies of the hamstring muscles are intimately associated with the sciatic nerve, putting the sciatic nerve at risk of injury associated with proximal hamstring avulsion. There are few data informing the magnitude of this risk, identifying risk factors for neurologic injury, or determining neurologic outcomes in patients with distal sciatic symptoms after surgery. Purpose: To characterize the frequency and nature of sciatic nerve injury and distal sciatic nerve–related symptoms after proximal hamstring avulsion and to characterize the influence of surgery on these symptoms. Study Design: Cohort study; Level of evidence, 3. Methods: This was a retrospective review of patients with proximal partial or complete hamstring avulsion. The outcome of interest was neurologic symptoms referable to the sciatic nerve distribution below the knee. Neurologic symptoms in operative patients were compared pre- and postoperatively. Results: The cohort consisted of 162 patients: 67 (41.4%) operative and 95 (58.6%) nonoperative. Sciatic nerve–related symptoms were present in 22 operative and 23 nonoperative patients, for a total of 45 (27.8%) patients (8 [4.9%] motor deficits, 11 [6.8%] sensory deficits, and 36 [22.2%] with neuropathic pain). Among the operative cohort, 3 of 3 (100.0%) patients showed improvement in their motor deficit postoperatively, 3 of 4 (75.0%) patients’ sensory symptoms improved, and 17 of 19 (89.5%) patients had improvement in pain. A new or worsening deficit occurred in 5 (7.5%) patients postoperatively (2 [3.1%] motor deficits, 1 [1.5%] sensory deficit, and 3 [4.5%] with new pain). Predictors of operative intervention included lower age (odds ratio [OR], 0.952; 95% CI, 0.921-0.982; P = .001) and complete avulsion (OR, 10.292; 95% CI, 2.526-72.232; P < .001). Presence of neurologic deficit was not predictive. Conclusion: Sciatic nerve–related symptoms after proximal hamstring avulsion are underrecognized. Currently, neurologic symptoms are not considered when determining whether to pursue operative intervention. Given the high likelihood of improvement with surgical treatment, neurologic symptoms should be considered when making a decision regarding operative treatment. PMID:28758137
Anson, Eric; Bigelow, Robin T.; Swenor, Bonnielin; Deshpande, Nandini; Studenski, Stephanie; Jeka, John J.; Agrawal, Yuri
2017-01-01
Postural sway increases with age and peripheral sensory disease. Whether, peripheral sensory function is related to postural sway independent of age in healthy adults is unclear. Here, we investigated the relationship between tests of visual function (VISFIELD), vestibular function (CANAL or OTOLITH), proprioceptive function (PROP), and age, with center of mass sway area (COM) measured with eyes open then closed on firm and then a foam surface. A cross-sectional sample of 366 community dwelling healthy adults from the Baltimore Longitudinal Study of Aging was tested. Multiple linear regressions examined the association between COM and VISFIELD, PROP, CANAL, and OTOLITH separately and in multi-sensory models controlling for age and gender. PROP dominated sensory prediction of sway across most balance conditions (β's = 0.09–0.19, p's < 0.001), except on foam eyes closed where CANAL function loss was the only significant sensory predictor of sway (β = 2.12, p < 0.016). Age was not a consistent predictor of sway. This suggests loss of peripheral sensory function explains much of the age-associated increase in sway. PMID:28676758
Liew, Shi Min; Thevaraja, Nishta; Hong, Ryan Y; Magiati, Iliana
2015-03-01
The high prevalence of anxiety symptoms in individuals with autism spectrum disorders has now been well documented. There is also a positive relationship between autistic traits and anxiety symptoms in unselected samples and individuals with anxiety disorders have more autistic traits compared to those without. Less is known, however, regarding which elements of autistic traits (i.e., social versus non-social/behavioral) or which other variables may mediate this relationship. This study investigated the shared and specific role of five autistic-trait related mediators (social problem-solving, social competence, teasing experiences, prevention from/punishment for preferred repetitive behaviors and aversive sensory experiences) in a non-clinical sample of 252 university students. Autistic traits positively correlated with both anxiety and depressive symptoms. Social competence mediated the relationship between autistic traits and social anxiety symptoms only, while only prevention from preferred repetitive behaviors and frequent aversive sensory experiences mediated the relationship between autistic traits, worry and obsessive-compulsive symptoms. Replication of these findings is required in longitudinal studies and with clinical samples. Limitations of the study are discussed and possible implications for intervention are tentatively suggested.
Environmental Enrichment Therapy for Autism: Outcomes with Increased Access
Aronoff, Eyal
2016-01-01
We have previously shown in two randomized clinical trials that environmental enrichment is capable of ameliorating symptoms of autism spectrum disorder (ASD), and in the present study, we determined whether this therapy could be effective under real-world circumstances. 1,002 children were given daily Sensory Enrichment Therapy, by their parents, using personalized therapy instructions given over the Internet. Parents were asked to assess the symptoms of their child every 2 weeks for up to 7 months. An intention-to-treat analysis showed significant overall gains for a wide range of symptoms in these children, including learning, memory, anxiety, attention span, motor skills, eating, sleeping, sensory processing, self-awareness, communication, social skills, and mood/autism behaviors. The children of compliant caregivers were more likely to experience a significant improvement in their symptoms. The treatment was effective across a wide age range and there was equal progress reported for males and females, for USA and international subjects, for those who paid and those who did not pay for the therapy, and for individuals at all levels of initial symptom severity. Environmental enrichment, delivered via an online system, therefore appears to be an effective, low-cost means of treating the symptoms of ASD. PMID:27721995
Think like a sponge: The genetic signal of sensory cells in sponges.
Mah, Jasmine L; Leys, Sally P
2017-11-01
A complex genetic repertoire underlies the apparently simple body plan of sponges. Among the genes present in poriferans are those fundamental to the sensory and nervous systems of other animals. Sponges are dynamic and sensitive animals and it is intuitive to link these genes to behaviour. The proposal that ctenophores are the earliest diverging metazoan has led to the question of whether sponges possess a 'pre-nervous' system or have undergone nervous system loss. Both lines of thought generally assume that the last common ancestor of sponges and eumetazoans possessed the genetic modules that underlie sensory abilities. By corollary extant sponges may possess a sensory cell homologous to one present in the last common ancestor, a hypothesis that has been studied by gene expression. We have performed a meta-analysis of all gene expression studies published to date to explore whether gene expression is indicative of a feature's sensory function. In sponges we find that eumetazoan sensory-neural markers are not particularly expressed in structures with known sensory functions. Instead it is common for these genes to be expressed in cells with no known or uncharacterized sensory function. Indeed, many sensory-neural markers so far studied are expressed during development, perhaps because many are transcription factors. This suggests that the genetic signal of a sponge sensory cell is dissimilar enough to be unrecognizable when compared to a bilaterian sensory or neural cell. It is possible that sensory-neural markers have as yet unknown functions in sponge cells, such as assembling an immunological synapse in the larval globular cell. Furthermore, the expression of sensory-neural markers in non-sensory cells, such as adult and larval epithelial cells, suggest that these cells may have uncharacterized sensory functions. While this does not rule out the co-option of ancestral sensory modules in later evolving groups, a distinct genetic foundation may underlie the sponge sensory system. Copyright © 2017 Elsevier Inc. All rights reserved.
[Neurological soft signs in pervasive developmental disorders].
Halayem, S; Bouden, A; Halayem, M B; Tabbane, K; Amado, I; Krebs, M O
2010-09-01
Many studies have focused on specific motor signs in autism and Asperger's syndrome, but few has been published on the complete range of neurological soft signs (NSS) in children with pervasive developmental disorder (PDD). Scarce are the studies evaluating NSS in children suffering from PDD not otherwise specified (PDDNOS). This study compared performance of 11 autistic children (AD) and 10 children with PDDNOS, with controls matched on age, sex and cognitive performance on Krebs et al.'s NSS scale. Because of the duration of the assessments and specific difficulties encountered in managing some items, an adaptation of the scale had to be made during a pilot study with the agreement of the author. To be eligible, patients had to meet the following inclusion criteria: an age range of 6-16 years, a diagnosis of autistic disorder or PDDNOS based on the DSM IV criteria (American Psychiatric Association 1994). The autism diagnostic interview-revised (ADI-R) was used in order to confirm the diagnosis and to evaluate the association of the symptoms to the severity of the NSS. The childhood autism rating scale (CARS) was completed for the patients in order to evaluate symptoms at the time of the NSS examination. Cognitive ability was assessed with Raven's progressive matrices. Were excluded patients with: history of cerebral palsy, congenital anomaly of the central nervous system, epilepsy, known genetic syndrome, tuberous sclerosis, neurofibromatosis, antecedent of severe head trauma, Asperger's syndrome, obvious physical deformities or sensory deficits that would interfere with neurological assessment, deep mental retardation and recent or chronic substance use or abuse. Healthy controls shared the same exclusion criteria, with no personal history of neurological, psychiatric disorder or substance abuse, no family history of psychiatric disorder and normal or retardation in schooling. All study procedures were approved by the local Ethics Committee (Comité d'éthique, Razi Hospital), according to the declaration of Helsinki. There was no difference between patients and controls with respect to sex, age and cognitive function. All children had an IQ higher than 81. Significant differences were found between AD children and control group in the motor integration function and sensory integration function. Different NSS scores were significantly higher in the PDDNOS group than in controls: the total scores, motor coordination, motor integration function, sensory integration and abnormal movements. Lower performance in motor coordination skills was associated with higher ADI-R communication score in the AD group. No relationship was found between NSS and CARS' total sore. This study confirms the impaired neurological functioning in autistic as well as PDDNOS children. The association of motor impairment with autistic symptoms highlights the argument that motor control problems can be part of the autism spectrum disorders. The lack of relationship between NSS and intellectual aptitude in the clinical sample provides new elements for the neurodevelopment model of the autism spectrum. Copyright © 2010 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
[The portrayal of multiple sclerosis in television series].
Karenberg, A
2009-04-01
An increasing number of television series deal with neurological disorders, including fictional portrayals of multiple sclerosis (MS). The aim of this paper was to analyze every available TV episode with an MS character. Productions were identified by film databases and by hand search. Each episode was evaluated along neurologic and cinematic lines. Between 1985 and 2006, portrayals of MS appeared in 17 episodes produced in Germany, the US, and the UK. The frequency of symptoms shown onscreen strongly differed from epidemiological data. In particular sensory, cognitive, and bladder symptoms as well as difficulties with sexual function were under-represented. The authenticity of the disease depiction was strongly dependent upon the genre. Coping stories could be identified as the most prominent genre. Television patients were often portrayed as "brave fighters", "refined characters", and "afflicted without symptoms". Television series attract millions of viewers and thus shape the public image of a disease. Sound knowledge of how symptoms, diagnosis, and therapeutic options are presented in mass media is therefore indispensable for all who deal with MS patients, relatives, and caregivers.
Murakami, Tatsufumi; Fukai, Yuta; Rikimaru, Mitsue; Henmi, Shoji; Ohsawa, Yutaka; Sunada, Yoshihide
2010-04-15
We describe three patients from the same family with hereditary sensory ataxic neuropathy followed by proximal muscle weakness in the lower extremities. Sensory ataxic gait began as an initial symptom when patients were in their 50s. Mild proximal weakness in the lower extremities appeared several years later. Serum creatine kinase was mildly elevated. Nerve conduction studies revealed sensory dominant axonal neuropathy, and short sensory evoked potentials showed involvement of the sensory nerve axon, dorsal root ganglia and posterior funiculus of the spinal cord. Needle electromyography showed fibrillation, positive sharp waves, and multiple giant motor unit potentials, suggesting the involvement of anterior horn motor neurons or the anterior root. Autosomal recessive inheritance was considered, because of consanguinity. The disorder described here may be a new clinical entity with unique clinical manifestations. Copyright 2009 Elsevier B.V. All rights reserved.
Attentional demands and daily functioning among community-dwelling elders.
Jansen, Debra A
2006-01-01
Everyday life is full of numerous demands for attention that can affect the ability to function. For elders, examples of these attentional demands include negotiating public transportation and driving, sensory losses, and physical discomforts and worries that make it harder to concentrate and complete tasks. The purpose of this study was to examine the relation between attentional demands and the ability to manage daily activities requiring concentration for 54 community-dwelling elders (34 women, 20 men). As theorized, attentional demands correlated (r = -.58) significantly with daily functioning: Elders with more attentional demands perceived themselves as having greater difficulty managing tasks requiring concentration. Attentional demands accounted for a significant proportion of variance in functioning (12%), even after partialling out the effects of depressive symptoms and health. Findings support the theorized relation between attentional demands and daily functioning, as well as nursing interventions aimed at decreasing attentional demands to promote effective functioning for elders.
Prolonged phone-call posture causes changes of ulnar motor nerve conduction across elbow.
Padua, Luca; Coraci, Daniele; Erra, Carmen; Doneddu, Pietro Emiliano; Granata, Giuseppe; Rossini, Paolo Maria
2016-08-01
Postures and work-hobby activities may play a role in the origin and progression of ulnar neuropathy at the elbow (UNE), whose occurrence appears to be increasing. The time spent on mobile-phone has increased in the last decades leading to an increased time spent with flexed elbow (prolonged-phone-posture, PPP). We aimed to assess the effect of PPP both in patients with symptoms of UNE and in symptom-free subjects. Patients with pure sensory symptoms of UNE and negative neurophysiological tests (MIN-UNE) and symptom-free subjects were enrolled. We evaluated ulnar motor nerve conduction velocity across elbow at baseline and after 6, 9, 12, 15, and 18min of PPP in both groups. Fifty-six symptom-free subjects and fifty-eight patients were enrolled. Globally 186 ulnar nerves from 114 subjects were studied. Conduction velocity of ulnar nerve across the elbow significantly changed over PPP time in patients with MIN-UNE, showing a different evolution between the two groups. PPP causes a modification of ulnar nerve functionality in patients with MIN-UNE. PPP may cause transient stress of ulnar nerve at elbow. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Numb rats walk - a behavioural and fMRI comparison of mild and moderate spinal cord injury.
Hofstetter, Christoph P; Schweinhardt, Petra; Klason, Tomas; Olson, Lars; Spenger, Christian
2003-12-01
Assessment of sensory function serves as a sensitive measure for predicting the functional outcome following spinal cord injury in patients. However, little is known about loss and recovery of sensory function in rodent spinal cord injury models as most tests of sensory functions rely on behaviour and thus motor function. We used functional magnetic resonance imaging (fMRI) to investigate cortical and thalamic BOLD-signal changes in response to limb stimulation following mild or moderate thoracic spinal cord weight drop injury in Sprague-Dawley rats. While there was recovery of close to normal hindlimb motor function as determined by open field locomotor testing following both degrees of injury, recovery of hindlimb sensory function as determined by fMRI and hot plate testing was only seen following mild injury and not following moderate injury. Thus, moderate injury can lead to near normal hindlimb motor function in animals with major sensory deficits. Recovered fMRI signals following mild injury had a partly altered cortical distribution engaging also ipsilateral somatosensory cortex and the cingulate gyrus. Importantly, thoracic spinal cord injury also affected sensory representation of the upper nonaffected limbs. Thus, cortical and thalamic activation in response to forelimb stimulation was significantly increased 16 weeks after spinal cord injury compared to control animals. We conclude that both forelimb and hindlimb cortical sensory representation is altered following thoracic spinal cord injury. Furthermore tests of sensory function that are independent of motor behaviour are needed in rodent spinal cord injury research.
DeAngelis, Anthony; Kuchel, George A.
2012-01-01
The prevalence of urinary symptoms increases with age and is a significant source of distress, morbidity, and expense in the elderly. Recent evidence suggests that symptoms in the aged may result from sensory dysfunction, rather than abnormalities of detrusor performance. Therefore, we employed a pressure/flow multichannel urethane-anesthetized mouse cystometry model to test the hypothesis that in vivo detrusor performance does not degrade with aging. Secondarily, we sought to evaluate sensory responsiveness to volume using pressure-volume data generated during bladder filling. Cystometric data from 2-, 12-, 22-, and 26-mo-old female C57BL6 mice were compared. All 2- and 12-mo-old mice, 66% of 22-mo-old mice, and 50% of 26-mo-old mice responded to continuous bladder filling with periodic reflex voiding. Abdominal wall contraction with voiding had a minimal contribution to expulsive pressure, whereas compliance pressure was a significant contributor. Maximum bladder pressure, estimated detrusor pressure, detrusor impulse (pressure-time integral), as well as indices of detrusor power and work, did not decrease with aging. Bladder precontraction pressures decreased, compliance increased, and nonvoiding contraction counts did not change with increasing age. Intervoid intervals, per-void volumes, and voiding flow rates increased with age. Calculations approximating wall stress during filling suggested loss of bladder volume sensitivity with increasing age. We conclude that aging is associated with an impaired ability to respond to the challenge of continuous bladder filling with cyclic voiding, yet among responsive animals, voiding detrusor contraction strength does not degrade with aging in this murine model. Furthermore, indirect measures suggest that bladder volume sensitivity is diminished. Thus, changes in homeostatic reserve and peripheral and/or central sensory mechanisms may be important contributors to aging-associated changes in bladder function. PMID:22204955
Symptoms of Autism among Children with Congenital Deafblindness
ERIC Educational Resources Information Center
Dammeyer, Jesper
2014-01-01
Associations between congenital deafness or blindness and autism have been found. The main consequences of congenital sensory impairment, being barriers for communication, language and social interaction development, may lead to symptoms of autism. To date only few studies have been reported concerning individuals with congenital deafblindness.…
Diagnosis and management of nasal congestion: the role of intranasal corticosteroids.
Benninger, Michael
2009-01-01
Nasal congestion is considered the most bothersome of allergic rhinitis (AR) symptoms and can significantly impair ability to function at work, home, and school. Effective management of AR-related nasal congestion depends on accurate diagnosis and appropriate treatment. Many individuals with AR and AR-related congestion remain undiagnosed and do not receive prescription medication. However, new tools intended to improve the diagnosis of nasal congestion have been developed and validated. Intranasal corticosteroids (INSs) are recommended as first-line therapy for patients with moderate-to-severe AR and also when nasal congestion is a prominent symptom. Double blind, randomized clinical trials have demonstrated greater efficacy of INSs versus placebo, antihistamines, or montelukast for relief of all nasal symptoms, especially congestion. Patient adherence to treatment also affects outcomes, and this may be influenced by patient preferences for the sensory attributes of an individual drug. Increased awareness of the effects of AR-related nasal congestion, the efficacy and safety of available pharmacotherapies, and barriers to adherence may improve clinical outcomes.
TRPV1 may increase the effectiveness of estrogen therapy on neuroprotection and neuroregeneration.
Ramírez-Barrantes, Ricardo; Marchant, Ivanny; Olivero, Pablo
2016-08-01
Aging induces physical deterioration, loss of the blood brain barrier, neuronal loss-induced mental and neurodegenerative diseases. Hypotalamus-hypophysis-gonad axis aging precedes symptoms of menopause or andropause and is a major determinant of sensory and cognitive integrated function. Sexual steroids support important functions, exert pleiotropic effects in different sensory cells, promote regeneration, plasticity and health of the nervous system. Their diminution is associated with impaired cognitive and mental health and increased risk of neurodegenerative diseases. Then, restoring neuroendocrine axes during aging can be key to enhance brain health through neuroprotection and neuroregeneration, depending on the modulation of plasticity mechanisms. Estrogen-dependent transient receptor potential cation channel, subfamily V, member 1 (TRPV1) expression induces neuroprotection, neurogenesis and regeneration on damaged tissues. Agonists of TRPV1 can modulate neuroprotection and repair of sensitive neurons, while modulators as other cognitive enhancers may improve the survival rate, differentiation and integration of neural stem cell progenitors in functional neural network. Menopause constitutes a relevant clinical model of steroidal production decline associated with progressive cognitive and mental impairment, which allows exploring the effects of hormone therapy in health outcomes such as dysfunction of CNS. Simulating the administration of hormone therapy to virtual menopausal individuals allows assessing its hypothetical impact and sensitivity to conditions that modify the effectiveness and efficiency.
Side Effects of Virtual Environments: A Review of the Literature
2004-05-01
Cybersickness symptoms are the unintended psychophysiological side effects of participation in virtual environments. Symptoms can occur both during...induced motion sickness, cybersickness is believed to result from sensory and perceptual mismatches between the visual and vestibular systems, and can...and the task carried out, can affect either incidence or severity of cybersickness . Taking account of these factors may avoid or minimize symptoms. This
Robotic exoskeleton assessment of transient ischemic attack.
Simmatis, Leif; Krett, Jonathan; Scott, Stephen H; Jin, Albert Y
2017-01-01
We used a robotic exoskeleton to quantify specific patterns of abnormal upper limb motor behaviour in people who have had transient ischemic attack (TIA). A cohort of people with TIA was recruited within two weeks of symptom onset. All individuals completed a robotic-based assessment of 8 behavioural tasks related to upper limb motor and proprioceptive function, as well as cognitive function. Robotic task performance was compared to a large cohort of controls without neurological impairments corrected for the influence of age. Impairment in people with TIA was defined as performance below the 5th percentile of controls. Participants with TIA were also assessed with the National Institutes of Health Stroke Scale (NIHSS) score, Chedoke-McMaster Stroke Assessment (CMSA) of the arm, the Behavioural Inattention Test (BIT), the Purdue pegboard test (PPB), and the Montreal Cognitive Assessment (MoCA). Age-related white matter change (ARWMC), prior infarction and cella-media index (CMI) were assessed from baseline CT scan that was performed within 24 hours of TIA. Acute infarction was assessed from diffusion-weighted imaging in a subset of people with TIA. Twenty-two people with TIA were assessed. Robotic assessment showed impaired upper limb motor function in 7/22 people with TIA patients and upper limb sensory impairment in 4/22 individuals. Cognitive tasks involving robotic assessment of the upper limb were completed in 13 participants, of whom 8 (61.5%) showed significant impairment. Abnormal performance in the CMSA arm inventory was present in 12/22 (54.5%) participants. ARWMC was 11.8 ± 6.4 and CMI was 5.4 ± 1.5. DWI was positive in 0 participants. Quantitative robotic assessment showed that people who have had a TIA display a spectrum of upper limb motor and sensory performance deficits as well as cognitive function deficits despite resolution of symptoms and no evidence of tissue infarction.
Utricular hypofunction in patients with type 2 diabetes mellitus.
Jáuregui-Renaud, K; Aranda-Moreno, C; Herrera-Rangel, A
2017-10-01
The aim of this study was to assess the function of the utricle and horizontal semicircular canals in patients with type 2 diabetes mellitus receiving primary health care, with/without a history of falls. 101 patients with type 2 diabetes mellitus, 34 to 84 years old (26 with and 75 without a history of falls) and 51 healthy volunteers (40-83 years old) accepted to participate. They denied having a history of dizziness, vertigo, unsteadiness, hearing loss, or neurological disorders. None of them were seeking care due to sensory or balance decline. After a clinical evaluation and report of symptoms related to balance using a standardised questionnaire, lateral canal function was assessed by sinusoidal rotation at 0.16 Hz and 1.28 Hz (60°/sec peak velocity), otolith function was assessed by static visual vertical (average of 10 trials) and dynamic visual vertical during unilateral centrifugation (300°/sec at 3.5 cm) and static posturography was performed on hard/ soft surface with eyes open/closed. Compared to healthy volunteers, patients showed decreased responses to unilateral centrifugation, but similar responses to horizontal canal stimuli (independently of age, peripheral neuropathy or a history of falls) (ANCoVA p < 0.05) and a larger sway area with a lengthier sway path. Compared to patients with no falls, patients with falls had a higher female/male ratio and a higher frequency of score ≥ 4 on the questionnaire of symptoms related to balance, but similar age, body mass index and frequency of peripheral neuropathy. In patients with type 2 diabetes mellitus, receiving primary healthcare who are not seeking care due to sensory or balance decline, utricular function may be impaired even in the absence of horizontal canal dysfunction or a history of falls. © Copyright by Società Italiana di Otorinolaringologia e Chirurgia Cervico-Facciale, Rome, Italy.
Wallace, Sean W; Singhvi, Aakanksha; Liang, Yupu; Lu, Yun; Shaham, Shai
2016-04-19
Sensory neurons are an animal's gateway to the world, and their receptive endings, the sites of sensory signal transduction, are often associated with glia. Although glia are known to promote sensory-neuron functions, the molecular bases of these interactions are poorly explored. Here, we describe a post-developmental glial role for the PROS-1/Prospero/PROX1 homeodomain protein in sensory-neuron function in C. elegans. Using glia expression profiling, we demonstrate that, unlike previously characterized cell fate roles, PROS-1 functions post-embryonically to control sense-organ glia-specific secretome expression. PROS-1 functions cell autonomously to regulate glial secretion and membrane structure, and non-cell autonomously to control the shape and function of the receptive endings of sensory neurons. Known glial genes controlling sensory-neuron function are PROS-1 targets, and we identify additional PROS-1-dependent genes required for neuron attributes. Drosophila Prospero and vertebrate PROX1 are expressed in post-mitotic sense-organ glia and astrocytes, suggesting conserved roles for this class of transcription factors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Sensory function: insights from Wave 2 of the National Social Life, Health, and Aging Project.
Pinto, Jayant M; Kern, David W; Wroblewski, Kristen E; Chen, Rachel C; Schumm, L Philip; McClintock, Martha K
2014-11-01
Sensory function, a critical component of quality of life, generally declines with age and influences health, physical activity, and social function. Sensory measures collected in Wave 2 of the National Social Life, Health, and Aging Project (NSHAP) survey focused on the personal impact of sensory function in the home environment and included: subjective assessment of vision, hearing, and touch, information on relevant home conditions and social sequelae as well as an improved objective assessment of odor detection. Summary data were generated for each sensory category, stratified by age (62-90 years of age) and gender, with a focus on function in the home setting and the social consequences of sensory decrements in each modality. Among both men and women, older age was associated with self-reported impairment of vision, hearing, and pleasantness of light touch. Compared with women, men reported significantly worse hearing and found light touch less appealing. There were no gender differences for vision. Overall, hearing loss seemed to have a greater impact on social function than did visual impairment. Sensory function declines across age groups, with notable gender differences for hearing and light touch. Further analysis of sensory measures from NSHAP Wave 2 may provide important information on how sensory declines are related to health, social function, quality of life, morbidity, and mortality in this nationally representative sample of older adults. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Jackowich, Robyn A; Pink, Leah; Gordon, Allan; Poirier, Évéline; Pukall, Caroline F
2018-04-01
Persistent genital arousal disorder (PGAD) is an understudied condition characterized by unwanted physiologic genital arousal in the absence of subjective sexual arousal. Markos and Dinsmore (Int J STD AIDS 2013;24:852-858) theorized that PGAD shares a number of similarities with vulvodynia (unexplained chronic vulvar pain [CVP]), including symptom characteristics and comorbidities. To compare medical histories, symptom characteristics, pain characteristics, and daily functioning among women with persistent genital pain (PGA) (n = 42), painful PGA (n = 37), and CVP (n = 42) symptoms. An online cross-sectional survey was conducted from October 2015 through April 2016. Self-report measures of symptoms, diagnosed medical conditions, pain characteristics (McGill Pain Questionnaire), catastrophizing (Pain Catastrophizing Scale), and daily functioning (Functional Status Questionnaire) were collected. All 3 groups reported similar medical diagnoses and high frequencies of other chronic pelvic pain conditions. Women in all 3 groups reported comparable ages at symptom onset and timing of symptom expression (ie, constant vs intermittent). Women in the 2 PGA groups reported significantly greater feelings of helplessness than women in the CVP group. Women in the painful PGA and CVP groups endorsed significantly more sensory terms to describe their symptoms compared with women in the PGA group, whereas women in the painful PGA group reported significantly more affective terms to describe their symptoms compared with women in the CVP group. Women in the 2 PGA groups reported that their symptoms interfered significantly with most areas of daily functioning. Given the similarities between PGA and CVP symptoms, women with PGA may benefit from similar assessment, treatment, and research approaches. Limitations of the present study include its sole use of self-report measures; the presence of PGA or CVP symptoms was not confirmed by clinical assessment. However, the anonymous design of the online survey could have resulted in a larger and more diverse sample. The results of this study provide some initial support for the conceptualization of persistent genital arousal as a subtype of genital paresthesias/discomfort. These results also further highlight the negative impact that PGA symptoms have on many domains of daily living and the need for further research on this distressing condition. Jackowich RA, Pink L, Gordon A, et al. An Online Cross-Sectional Comparison of Women With Symptoms of Persistent Genital Arousal, Painful Persistent Genital Arousal, and Chronic Vulvar Pain. J Sex Med 2018;15:558-567. Copyright © 2018 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Experimental evidence for circular inference in schizophrenia
Jardri, Renaud; Duverne, Sandrine; Litvinova, Alexandra S; Denève, Sophie
2017-01-01
Schizophrenia (SCZ) is a complex mental disorder that may result in some combination of hallucinations, delusions and disorganized thinking. Here SCZ patients and healthy controls (CTLs) report their level of confidence on a forced-choice task that manipulated the strength of sensory evidence and prior information. Neither group's responses can be explained by simple Bayesian inference. Rather, individual responses are best captured by a model with different degrees of circular inference. Circular inference refers to a corruption of sensory data by prior information and vice versa, leading us to ‘see what we expect' (through descending loops), to ‘expect what we see' (through ascending loops) or both. Ascending loops are stronger for SCZ than CTLs and correlate with the severity of positive symptoms. Descending loops correlate with the severity of negative symptoms. Both loops correlate with disorganized symptoms. The findings suggest that circular inference might mediate the clinical manifestations of SCZ. PMID:28139642
Experimental evidence for circular inference in schizophrenia.
Jardri, Renaud; Duverne, Sandrine; Litvinova, Alexandra S; Denève, Sophie
2017-01-31
Schizophrenia (SCZ) is a complex mental disorder that may result in some combination of hallucinations, delusions and disorganized thinking. Here SCZ patients and healthy controls (CTLs) report their level of confidence on a forced-choice task that manipulated the strength of sensory evidence and prior information. Neither group's responses can be explained by simple Bayesian inference. Rather, individual responses are best captured by a model with different degrees of circular inference. Circular inference refers to a corruption of sensory data by prior information and vice versa, leading us to 'see what we expect' (through descending loops), to 'expect what we see' (through ascending loops) or both. Ascending loops are stronger for SCZ than CTLs and correlate with the severity of positive symptoms. Descending loops correlate with the severity of negative symptoms. Both loops correlate with disorganized symptoms. The findings suggest that circular inference might mediate the clinical manifestations of SCZ.
Experimental evidence for circular inference in schizophrenia
NASA Astrophysics Data System (ADS)
Jardri, Renaud; Duverne, Sandrine; Litvinova, Alexandra S.; Denève, Sophie
2017-01-01
Schizophrenia (SCZ) is a complex mental disorder that may result in some combination of hallucinations, delusions and disorganized thinking. Here SCZ patients and healthy controls (CTLs) report their level of confidence on a forced-choice task that manipulated the strength of sensory evidence and prior information. Neither group's responses can be explained by simple Bayesian inference. Rather, individual responses are best captured by a model with different degrees of circular inference. Circular inference refers to a corruption of sensory data by prior information and vice versa, leading us to `see what we expect' (through descending loops), to `expect what we see' (through ascending loops) or both. Ascending loops are stronger for SCZ than CTLs and correlate with the severity of positive symptoms. Descending loops correlate with the severity of negative symptoms. Both loops correlate with disorganized symptoms. The findings suggest that circular inference might mediate the clinical manifestations of SCZ.
USDA-ARS?s Scientific Manuscript database
Neuroimmune interactions and inflammation have been proposed as factors involved in sensory-motor dysfunction and symptom generation in adult irritable bowel syndrome (IBS) patients. In children with IBS and healthy controls, we measured ileocolonic mast cell infiltration and fecal calprotectin and ...
Diagnosis of motor fascicle compression in carpal tunnel syndrome.
Modi, C S; Ho, K; Hegde, V; Boer, R; Turner, S M
2010-06-01
Median nerve motor fascicle compression in patients with carpal tunnel syndrome is usually characterised by reduced finger grip and pinch strength, loss of thumb abduction and opposition strength and thenar atrophy. The functional outcome in patients with advanced changes may be poor due to irreversible intraneural changes. The aim of this study was to investigate patient-reported symptoms, which may enable a clinical diagnosis of median nerve motor fascicle compression to be made irrespective of the presence of advanced signs. One hundred and twelve patients (166 hands) with a clinical diagnosis of carpal tunnel syndrome were referred to the neurophysiology department and completed symptom severity questionnaires with subsequent neurophysiological testing. An increasing frequency of pain experienced by patients was significantly associated with an increased severity of median nerve motor fascicle compression with prolonged motor latencies measured in patients that described pain as a predominant symptom. An increasing frequency of paraesthesia and numbness and weakness associated with dropping objects was significantly associated with both motor and sensory involvement but not able to distinguish between them. This study suggests that patients presenting with a clinical diagnosis of carpal tunnel syndrome with pain as a frequently experienced and predominant symptom require consideration for urgent investigation and surgical treatment to prevent chronic motor fascicle compression with permanent functional deficits. Copyright 2010 Elsevier Masson SAS. All rights reserved.
Chou, Chung-Hsing; Lin, Jiann-Chyun; Hsueh, Chun-Jen; Peng, Giia-Sheun
2008-09-01
Neuropsychiatric symptoms as the initial presentation of dural arteriovenous fistula (DAVF) are unusual. Anticoagulation therapy may be warranted for prevention of further thromboembolism if an underlying thrombophilia condition is diagnosed. We present a 70-year-old woman with sensory aphasia, who was diagnosed with a DAVF, Cognard type II a + b, by cerebral angiography. Her stroke-like syndrome resolved after transarterial embolization of the left occipital and middle meningeal arteries. Meanwhile, hypercoagulability was found because of hyperhomocysteinemia and the presence of a lupus anticoagulant. One month later, she suffered an acute pulmonary embolism and was started on anticoagulation therapy before stereotactic radiosurgery. Sensory aphasia may be the initial manifestation of a transverse-sigmoid sinus DAVF even if there are no symptoms such as headache or tinnitus. We postulate that early anticoagulation therapy is indicated for preventing thromboembolism in DAVF patients with thrombophilia because the possibility of intracranial bleeding has been reduced by embolization.
The Effect of Prenatal and Childhood Development on Hearing, Vision and Cognition in Adulthood
Dawes, Piers; Cruickshanks, Karen J.; Moore, David R.; Fortnum, Heather; Edmondson-Jones, Mark; McCormack, Abby; Munro, Kevin J.
2015-01-01
It is unclear what the contribution of prenatal versus childhood development is for adult cognitive and sensory function and age-related decline in function. We examined hearing, vision and cognitive function in adulthood according to self-reported birth weight (an index of prenatal development) and adult height (an index of early childhood development). Subsets (N = 37,505 to 433,390) of the UK Biobank resource were analysed according to visual and hearing acuity, reaction time and fluid IQ. Sensory and cognitive performance was reassessed after ~4 years (N = 2,438 to 17,659). In statistical modelling including age, sex, socioeconomic status, educational level, smoking, maternal smoking and comorbid disease, adult height was positively associated with sensory and cognitive function (partial correlations; pr 0.05 to 0.12, p < 0.001). Within the normal range of birth weight (10th to 90th percentile), there was a positive association between birth weight and sensory and cognitive function (pr 0.06 to 0.14, p < 0.001). Neither adult height nor birth weight was associated with change in sensory or cognitive function. These results suggest that adverse prenatal and childhood experiences are a risk for poorer sensory and cognitive function and earlier development of sensory and cognitive impairment in adulthood. This finding could have significant implications for preventing sensory and cognitive impairment in older age. PMID:26302374
Sensory Impairments and Cognitive Function in Middle-Aged Adults.
Schubert, Carla R; Cruickshanks, Karen J; Fischer, Mary E; Chen, Yanjun; Klein, Barbara E K; Klein, Ronald; Pinto, A Alex
2017-08-01
Hearing, visual, and olfactory impairments have been associated with cognitive impairment in older adults but less is known about associations with cognitive function in middle-aged adults. Sensory and cognitive functions were measured on participants in the baseline examination (2005-2008) of the Beaver Dam Offspring Study. Cognitive function was measured with the Trail Making tests A (TMTA) and B (TMTB) and the Grooved Peg Board test. Pure-tone audiometry, Pelli-Robson letter charts, and the San Diego Odor Identification test were used to measure hearing, contrast sensitivity, and olfaction, respectively. There were 2,836 participants aged 21-84 years with measures of hearing, visual, olfactory, and cognitive function at the baseline examination. Nineteen percent of the cohort had one sensory impairment and 3% had multiple sensory impairments. In multivariable adjusted linear regression models that included all three sensory impairments, hearing impairment, visual impairment, and olfactory impairment were each independently associated with poorer performance on the TMTA, TMTB, and Grooved Peg Board (p < .05 for all sensory impairments in all models). Participants with a sensory impairment took on average from 2 to 10 seconds longer than participants without the corresponding sensory impairment to complete these tests. Results were similar in models that included adjustment for hearing aid use. Hearing, visual and olfactory impairment were associated with poorer performance on cognitive function tests independent of the other sensory impairments and factors associated with cognition. Sensory impairments in midlife are associated with subtle deficits in cognitive function which may be indicative of early brain aging. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Kim, Sang-Hee; Byun, Youngsoon
Symptom clusters must be identified in patients with high-grade brain cancers for effective symptom management during cancer-related therapy. The aims of this study were to identify symptom clusters in patients with high-grade brain cancers and to determine the relationship of each cluster with the performance status and quality of life (QOL) during concurrent chemoradiotherapy (CCRT). Symptoms were assessed using the Memorial Symptom Assessment Scale, and the performance status was evaluated using the Karnofsky Performance Scale. Quality of life was assessed using the Functional Assessment of Cancer Therapy-General. This prospective longitudinal survey was conducted before CCRT and at 2 to 3 weeks and 4 to 6 weeks after the initiation of CCRT. A total of 51 patients with newly diagnosed primary malignant brain cancer were included. Six symptom clusters were identified, and 2 symptom clusters were present at each time point (ie, "negative emotion" and "neurocognitive" clusters before CCRT, "negative emotion and decreased vitality" and "gastrointestinal and decreased sensory" clusters at 2-3 weeks, and "body image and decreased vitality" and "gastrointestinal" clusters at 4-6 weeks). The symptom clusters at each time point demonstrated a significant relationship with the performance status or QOL. Differences were observed in symptom clusters in patients with high-grade brain cancers during CCRT. In addition, the symptom clusters were correlated with the performance status and QOL of patients, and these effects could change during CCRT. The results of this study will provide suggestions for interventions to treat or prevent symptom clusters in patients with high-grade brain cancer during CCRT.
Camilleri, Michael; Bharucha, Adil E; Ueno, Ryuji; Burton, Duane; Thomforde, George M; Baxter, Kari; McKinzie, Sanna; Zinsmeister, Alan R
2006-05-01
Chloride channels modulate gastrointestinal neuromuscular functions in vitro. Lubiprostone, a selective type 2 chloride channel (ClC-2) activator, induces intestinal secretion and has been shown to relieve constipation in clinical trials; however, the effects of lubiprostone on gastric function and whole gut transit in humans are unclear. Our aim was to compare the effects of the selective ClC-2 activator lubiprostone on maximum tolerated volume (MTV) of a meal, postprandial symptoms, gastric volumes, and gastrointestinal and colonic transit in humans. We performed a randomized, parallel-group, double-blind, placebo-controlled study evaluating the effects of lubiprostone (24 microg bid) in 30 healthy volunteers. Validated methods were used: scintigraphic gastrointestinal and colonic transit, SPECT to measure gastric volumes, and the nutrient drink ("satiation") test to measure MTV and postprandial symptoms. Lubiprostone accelerated small bowel and colonic transit, increased fasting gastric volume, and retarded gastric emptying. MTV values were reduced compared with placebo; however, the MTV was within the normal range for healthy adults in 13 of 14 participants, and there was no significant change compared with baseline measurements. Lubiprostone had no significant effect on postprandial gastric volume or aggregate symptoms but did decrease fullness 30 min after the fully satiating meal. Thus the ClC-2 activator lubiprostone accelerates small intestinal and colonic transit, which confers potential in the treatment of constipation.
‘Shell shock’ Revisited: An Examination of the Case Records of the National Hospital in London
Linden, Stefanie Caroline; Jones, Edgar
2014-01-01
During the First World War the National Hospital for the Paralysed and Epileptic, in Queen Square, London, then Britain’s leading centre for neurology, took a key role in the treatment and understanding of shell shock. This paper explores the case notes of all 462 servicemen who were admitted with functional neurological disorders between 1914 and 1919. Many of these were severe or chronic cases referred to the National Hospital because of its acknowledged expertise and the resources it could call upon. Biographical data was collected together with accounts of the patient’s military experience, his symptoms, diagnostic interpretations and treatment outcomes. Analysis of the notes showed that motor syndromes (loss of function or hyperkinesias), often combined with somato-sensory loss, were common presentations. Anxiety and depression as well as vegetative symptoms such as sweating, dizziness and palpitations were also prevalent among this patient population. Conversely, psychogenic seizures were reported much less frequently than in comparable accounts from German tertiary referral centres. As the war unfolded the number of physicians who believed that shell shock was primarily an organic disorder fell as research failed to find a pathological basis for its symptoms. However, little agreement existed among the Queen Square doctors about the fundamental nature of the disorder and it was increasingly categorised as functional disorder or hysteria. PMID:25284893
Schizophrenia and the alpha7 nicotinic acetylcholine receptor.
Martin, Laura F; Freedman, Robert
2007-01-01
In addition to the devastating symptoms of psychosis, many people with schizophrenia also suffer from cognitive impairment. These cognitive symptoms lead to marked dysfunction and can impact employability, treatment adherence, and social skills. Deficits in P50 auditory gating are associated with attentional impairment and may contribute to cognitive symptoms and perceptual disturbances. This nicotinic cholinergic-mediated inhibitory process represents a potential new target for therapeutic intervention in schizophrenia. This chapter will review evidence implicating the nicotinic cholinergic, and specifically, the alpha7 nicotinic receptor system in the pathology of schizophrenia. Impaired auditory sensory gating has been linked to the alpha7 nicotinic receptor gene on the chromosome 15q14 locus. A majority of persons with schizophrenia are heavy smokers. Although nicotine can acutely reverse diminished auditory sensory gating in people with schizophrenia, this effect is lost on a chronic basis due to receptor desensitization. The alpha7 nicotinic agonist 3-(2,4 dimethoxy)benzylidene-anabaseine (DMXBA) can also enhance auditory sensory gating in animal models. DMXBA is well tolerated in humans and a new study in persons with schizophrenia has found that DMXBA enhances both P50 auditory gating and cognition. alpha7 Nicotinic acetylcholine receptor agonists appear to be viable candidates for the treatment of cognitive disturbances in schizophrenia.
The sensory side of post-stroke motor rehabilitation.
Bolognini, Nadia; Russo, Cristina; Edwards, Dylan J
2016-04-11
Contemporary strategies to promote motor recovery following stroke focus on repetitive voluntary movements. Although successful movement relies on efficient sensorimotor integration, functional outcomes often bias motor therapy toward motor-related impairments such as weakness, spasticity and synergies; sensory therapy and reintegration is implied, but seldom targeted. However, the planning and execution of voluntary movement requires that the brain extracts sensory information regarding body position and predicts future positions, by integrating a variety of sensory inputs with ongoing and planned motor activity. Neurological patients who have lost one or more of their senses may show profoundly affected motor functions, even if muscle strength remains unaffected. Following stroke, motor recovery can be dictated by the degree of sensory disruption. Consequently, a thorough account of sensory function might be both prognostic and prescriptive in neurorehabilitation. This review outlines the key sensory components of human voluntary movement, describes how sensory disruption can influence prognosis and expected outcomes in stroke patients, reports on current sensory-based approaches in post-stroke motor rehabilitation, and makes recommendations for optimizing rehabilitation programs based on sensory stimulation.
The sensory side of post-stroke motor rehabilitation
Bolognini, Nadia; Russo, Cristina; Edwards, Dylan J.
2017-01-01
Contemporary strategies to promote motor recovery following stroke focus on repetitive voluntary movements. Although successful movement relies on efficient sensorimotor integration, functional outcomes often bias motor therapy toward motor-related impairments such as weakness, spasticity and synergies; sensory therapy and reintegration is implied, but seldom targeted. However, the planning and execution of voluntary movement requires that the brain extracts sensory information regarding body position and predicts future positions, by integrating a variety of sensory inputs with ongoing and planned motor activity. Neurological patients who have lost one or more of their senses may show profoundly affected motor functions, even if muscle strength remains unaffected. Following stroke, motor recovery can be dictated by the degree of sensory disruption. Consequently, a thorough account of sensory function might be both prognostic and prescriptive in neurorehabilitation. This review outlines the key sensory components of human voluntary movement, describes how sensory disruption can influence prognosis and expected outcomes in stroke patients, reports on current sensory-based approaches in post-stroke motor rehabilitation, and makes recommendations for optimizing rehabilitation programs based on sensory stimulation. PMID:27080070
Tong, Ling-Ling; Ding, You-Quan; Jing, Hong-Bo; Li, Xuan-Yang; Qi, Jian-Guo
2015-05-06
Peripheral nerve functional recovery after injuries relies on both axon regeneration and remyelination. Both axon regeneration and remyelination require intimate interactions between regenerating neurons and their accompanying Schwann cells. Previous studies have shown that motor and sensory neurons are intrinsically different in their regeneration potentials. Moreover, denervated Schwann cells accompanying myelinated motor and sensory axons have distinct gene expression profiles for regeneration-associated growth factors. However, it is unknown whether differential motor and sensory functional recovery exists. If so, the particular one among axon regeneration and remyelination responsible for this difference remains unclear. Here, we aimed to establish an adult rat sciatic nerve crush model with the nonserrated microneedle holders and measured rat motor and sensory functions during regeneration. Furthermore, axon regeneration and remyelination was evaluated by morphometric analysis of electron microscopic images on the basis of nerve fiber classification. Our results showed that Aα fiber-mediated motor function was successfully recovered in both male and female rats. Aδ fiber-mediated sensory function was partially restored in male rats, but completely recovered in female littermates. For both male and female rats, the numbers of regenerated motor and sensory axons were quite comparable. However, remyelination was diverse among myelinated motor and sensory nerve fibers. In detail, Aβ and Aδ fibers incompletely remyelinated in male, but not female rats, whereas Aα fibers fully remyelinated in both sexes. Our result indicated that differential motor and sensory functional recovery in male but not female adult rats is associated with remyelination rather than axon regeneration after sciatic nerve crush.
Cutaneous somatic and autonomic nerve TDP-43 deposition in amyotrophic lateral sclerosis.
Ren, Yuting; Liu, Wenxiu; Li, Yifan; Sun, Bo; Li, Yanran; Yang, Fei; Wang, Hongfen; Li, Mao; Cui, Fang; Huang, Xusheng
2018-05-26
To evaluate the involvement of the sensory and autonomic nervous system in amyotrophic lateral sclerosis (ALS) and to determine whether TDP-43/pTDP-43 deposits in skin nerve fibers signify a valuable biomarker for ALS. Eighteen patients with ALS and 18 age- and sex-matched control subjects underwent physical examinations, in addition to donating skin biopsies from the distal leg. The density of epidermal, Meissner's corpuscle (MC), sudomotor, and pilomotor nerve fibers were measured. Confocal microscopy was used to determine the cutaneous somatic and autonomic nerve fiber density and TDP-43/pTDP-43 deposition. Intraepidermal nerve fiber density (IENFD) was reduced in individuals with ALS (P < 0.001). MC density (MCD) (P = 0.001), sweat gland nerve fiber density (SGNFD) (P < 0.001), and pilomotor nerve fiber density (PNFD) (P < 0.001) were all reduced in ALS patients. The SGNFD correlated with the small-fiber neuropathy Symptoms Inventory Questionnaire (SFN-SIQ), VAS and age. The SFN-SIQ was higher in ALS with sensory symptoms than without sensory symptoms (P = 0.000). Furthermore, the SFN-SIQ was higher in ALS with autonomic symptoms than without autonomic symptoms (P = 0.002). SFN-SIQ was higher in ALS patients that were pTDP-43 positive than pTDP-43 negative (P = 0.04), respectively. We established in the peripheral nervous system that higher SFN-SIQ and VAS was involved in ALS, indicating the loss of SGNF. The deposition of TDP-43/pTDP-43 in ALS nerve fibers may indicate an important role in the underlying pathogenesis of ALS. This observation might be used as a potential biomarker for diagnosing ALS.
Ben-Sasson, A; Soto, T W; Martínez-Pedraza, F; Carter, A S
2013-08-01
Sensory over-responsivity (SOR) affects many individuals with autism spectrum disorders (ASD), often leading to stressful encounters during daily routines. This study describes the associations between early SOR symptoms and the longitudinal course of restrictions in family life activities and parenting stress across three time-points in families raising a child with ASD (n = 174). Covariates were child diagnostic severity, emotional problems, and maternal affective symptoms. At time 1 mean chronological age was 28.5 months. Children were administered the Autism Diagnostic Observation Schedule (ADOS) and Mullen Scales of Early Learning (MSEL). Parents completed the Infant Toddler Sensory Profile (ITSP), Infant-Toddler Social Emotional Assessment (ITSEA), Beck Anxiety Index (BAI), and the Center for Epidemiologic Studies Depression Inventory (CES-D) at time 1; and the Parenting Stress Index (PSI) and Family Life Impairment Scale (FLIS) at the three annual time-points. Latent Growth Curve Models indicated that higher SOR scores on the ITSP at time 1 were associated with higher initial levels of family life impairment and parenting stress and with a smaller magnitude of change over time. These associations were independent of severity of ADOS social-communication symptoms, MSEL composite score, ITSEA externalizing and anxiety symptoms, and maternal affective symptoms as measured by the BAI and CES-D. On average FLIS and PSI did not change over time, however, there was significant individual variability. Concurrently, SOR at time 1 explained 39-45% of the variance in family stress and impairment variables. An evaluation of SOR should be integrated into the assessment of toddlers with ASD considering their role in family life impairment and stress. © 2013 The Authors. Journal of Child Psychology and Psychiatry © 2013 Association for Child and Adolescent Mental Health.
Traumatic Brain Injury – Modeling Neuropsychiatric Symptoms in Rodents
Malkesman, Oz; Tucker, Laura B.; Ozl, Jessica; McCabe, Joseph T.
2013-01-01
Each year in the US, ∼1.5 million people sustain a traumatic brain injury (TBI). Victims of TBI can suffer from chronic post-TBI symptoms, such as sensory and motor deficits, cognitive impairments including problems with memory, learning, and attention, and neuropsychiatric symptoms such as depression, anxiety, irritability, aggression, and suicidal rumination. Although partially associated with the site and severity of injury, the biological mechanisms associated with many of these symptoms – and why some patients experience differing assortments of persistent maladies – are largely unknown. The use of animal models is a promising strategy for elucidation of the mechanisms of impairment and treatment, and learning, memory, sensory, and motor tests have widespread utility in rodent models of TBI and psychopharmacology. Comparatively, behavioral tests for the evaluation of neuropsychiatric symptomatology are rarely employed in animal models of TBI and, as determined in this review, the results have been inconsistent. Animal behavioral studies contribute to the understanding of the biological mechanisms by which TBI is associated with neurobehavioral symptoms and offer a powerful means for pre-clinical treatment validation. Therefore, further exploration of the utility of animal behavioral tests for the study of injury mechanisms and therapeutic strategies for the alleviation of emotional symptoms are relevant and essential. PMID:24109476
Wang, Jia-Chi; Liao, Kwong-Kum; Lin, Kon-Ping; Chou, Chen-Liang; Yang, Tsui-Fen; Huang, Yu-Fang; Wang, Kevin A; Chiu, Jan-Wei
2017-05-01
To compare the effectiveness of local steroid injection plus splinting with that of local steroid injection alone using clinical and electrophysiological parameters in patients with carpal tunnel syndrome (CTS). Randomized controlled study with 12 weeks of follow-up. Tertiary care center. Volunteer sample of patients (N=52) diagnosed with CTS. Participants were randomly assigned to the steroid injection group (n=26) or the steroid injection-plus-splinting group (n=26). Patients of both groups received ultrasound-guided steroid injection with 1mL of 10mg (10mg/mL) triamcinolone acetonide (Shincort) and 1mL of 2% lidocaine hydrochloride (Xylocaine). Participants in the second group also wore a volar splint in the neutral position while sleeping and also during daytime whenever possible for the 12-week intervention period. Participants were evaluated before the treatment and at 6 and 12 weeks after the onset of treatment. The primary outcome measure was Boston Carpal Tunnel Questionnaire scores. The secondary outcome measures were as follows: scores on the visual analog scale for pain; electrophysiological parameters, including median nerve distal motor latency, sensory nerve conduction velocity (SNCV), and compound muscle action potential and sensory nerve action potential (SNAP) amplitudes; and patient's subjective impression of improvement. At 12-week follow-up, improvements in symptom severity and functional status scores on the Boston Carpal Tunnel Questionnaire as well as SNCV and SNAP amplitudes were greater in the group that received steroid injection combined with splinting than in the group that received steroid injection alone. The between-group difference was .48 points (95% confidence interval [CI], .09-.88 points; P=.032) in the Symptom Severity Scale score, .37 points (95% CI, .06-.67 points; P=.019) in the Functional Status Scale score, 3.38m/s (95% CI, 0.54-6.22m/s; P=.015) in the SNCV amplitude, and 3.21μV (95% CI, 0.00-6.46μV; P=.025) in the SNAP amplitude. In people with CTS, steroid injection combined with splinting resulted in modestly greater reduction of symptoms, superior functional recovery, and greater improvement in nerve function at 12-week follow-up as compared with steroid injection alone. However, these small differences are of unclear clinical significance. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Gadkaree, Shekhar K; Sun, Daniel Q; Li, Carol; Lin, Frank R; Ferrucci, Luigi; Simonsick, Eleanor M; Agrawal, Yuri
2016-01-01
Objectives . To investigate whether sensory function declines independently or in parallel with age within a single individual. Methods . Cross-sectional analysis of Baltimore Longitudinal Study of Aging (BLSA) participants who underwent vision (visual acuity threshold), proprioception (ankle joint proprioceptive threshold), vestibular function (cervical vestibular-evoked myogenic potential), hearing (pure-tone average audiometric threshold), and Health ABC physical performance battery testing. Results . A total of 276 participants (mean age 70 years, range 26-93) underwent all four sensory tests. The function of all four systems declined with age. After age adjustment, there were no significant associations between sensory systems. Among 70-79-year-olds, dual or triple sensory impairment was associated with poorer physical performance. Discussion . Our findings suggest that beyond the common mechanism of aging, other distinct (nonshared) etiologic mechanisms may contribute to decline in each sensory system. Multiple sensory impairments influence physical performance among individuals in middle old-age (age 70-79).
Gadkaree, Shekhar K.; Sun, Daniel Q.; Li, Carol; Lin, Frank R.; Ferrucci, Luigi; Simonsick, Eleanor M.
2016-01-01
Objectives. To investigate whether sensory function declines independently or in parallel with age within a single individual. Methods. Cross-sectional analysis of Baltimore Longitudinal Study of Aging (BLSA) participants who underwent vision (visual acuity threshold), proprioception (ankle joint proprioceptive threshold), vestibular function (cervical vestibular-evoked myogenic potential), hearing (pure-tone average audiometric threshold), and Health ABC physical performance battery testing. Results. A total of 276 participants (mean age 70 years, range 26–93) underwent all four sensory tests. The function of all four systems declined with age. After age adjustment, there were no significant associations between sensory systems. Among 70–79-year-olds, dual or triple sensory impairment was associated with poorer physical performance. Discussion. Our findings suggest that beyond the common mechanism of aging, other distinct (nonshared) etiologic mechanisms may contribute to decline in each sensory system. Multiple sensory impairments influence physical performance among individuals in middle old-age (age 70–79). PMID:27774319
Park, Yeong-Dong; Park, Yun-Jin; Park, Sang-Seo; Lee, Hae-Lim; Moon, Hyeong-Hun; Kim, Myung-Ki
2017-06-01
Taping therapy is one of the most conservative treatments for carpal tunnel syndrome (CTS). Preceding research studied on pain control, grip strength, and wrist function but no studies have been reported on electrophysiolgical changes after taping therapy. The aim of this study is to evaluate the effects of taping therapy for carpal space expansion on electrophysiological in 20 female patients aged from 40s to 60s with CTS. Experimental group applied taping therapy for carpal space expansion twice a week for 4 weeks and control group did not. There were significant differences between distal motor latency (DML) and sensory nerve conduction velocity (SNCV), but no difference between compound muscle action potential and sensory nerve action potential (SNAP) after 4 weeks taping treatment. Also, there was a significant difference in DML, SNCV, and SNAP in between groups. In conclusion, taping therapy for carpal space expansion can help to reduce the pressure of the carpal tunnel in CTS patients with mild symptoms.
Bonvini, Sara J; Birrell, Mark A; Grace, Megan S; Maher, Sarah A; Adcock, John J; Wortley, Michael A; Dubuis, Eric; Ching, Yee-Man; Ford, Anthony P; Shala, Fisnik; Miralpeix, Montserrat; Tarrason, Gema; Smith, Jaclyn A; Belvisi, Maria G
2016-07-01
Sensory nerves innervating the airways play an important role in regulating various cardiopulmonary functions, maintaining homeostasis under healthy conditions and contributing to pathophysiology in disease states. Hypo-osmotic solutions elicit sensory reflexes, including cough, and are a potent stimulus for airway narrowing in asthmatic patients, but the mechanisms involved are not known. Transient receptor potential cation channel, subfamily V, member 4 (TRPV4) is widely expressed in the respiratory tract, but its role as a peripheral nociceptor has not been explored. We hypothesized that TRPV4 is expressed on airway afferents and is a key osmosensor initiating reflex events in the lung. We used guinea pig primary cells, tissue bioassay, in vivo electrophysiology, and a guinea pig conscious cough model to investigate a role for TRPV4 in mediating sensory nerve activation in vagal afferents and the possible downstream signaling mechanisms. Human vagus nerve was used to confirm key observations in animal tissues. Here we show TRPV4-induced activation of guinea pig airway-specific primary nodose ganglion cells. TRPV4 ligands and hypo-osmotic solutions caused depolarization of murine, guinea pig, and human vagus and firing of Aδ-fibers (not C-fibers), which was inhibited by TRPV4 and P2X3 receptor antagonists. Both antagonists blocked TRPV4-induced cough. This study identifies the TRPV4-ATP-P2X3 interaction as a key osmosensing pathway involved in airway sensory nerve reflexes. The absence of TRPV4-ATP-mediated effects on C-fibers indicates a distinct neurobiology for this ion channel and implicates TRPV4 as a novel therapeutic target for neuronal hyperresponsiveness in the airways and symptoms, such as cough. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Age-dependent effects on sensory axonal excitability in normal mice.
Banzrai, Chimeglkham; Nodera, Hiroyuki; Higashi, Saki; Okada, Ryo; Osaki, Yusuke; Mori, Atsuko; Kaji, Ryuji
2016-01-12
Serial recordings were performed to measure sensory excitability in peripheral nerves and elucidate age-dependent changes in neuronal ion currents in the peripheral sensory nervous system. The threshold tracking technique was used to measure multiple excitability indices in the tail sensory nerves of five normal male mice at four time points (6, 10, 14, and 19 weeks of age). A separate group of four mice was also measured at 43 weeks and at 60 weeks of age. Maturation was accompanied by an increase in early hyperpolarization and superexcitability at 10 weeks. At 60 weeks, the hyperpolarizing electrotonus shifted downward, while superexcitability became greater and subexcitability (double stimuli) decreased. Computer modeling showed that the most notable age-related interval changes in excitability parameters were Barrett-Barrett, H, and slow K(+) conductances. Understanding age-related changes in the excitability of sensory axons may provide a platform for understanding age-dependent sensory symptoms and developing age-specific channel-targeting therapies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Quantitative sensory testing of temperature, pain, and touch in adults with Down syndrome.
de Knegt, Nanda; Defrin, Ruth; Schuengel, Carlo; Lobbezoo, Frank; Evenhuis, Heleen; Scherder, Erik
2015-12-01
The spinothalamic pathway mediates sensations of temperature, pain, and touch. These functions seem impaired in children with Down syndrome (DS), but have not been extensively examined in adults. The objective of the present study was to compare the spinothalamic-mediated sensory functions between adults with DS and adults from the general population and to examine in the DS group the relationship between the sensory functions and level of intellectual functioning. Quantitative sensory testing (QST) was performed in 188 adults with DS (mean age 37.5 years) and 142 age-matched control participants (median age 40.5 years). Temperature, pain, and touch were evaluated with tests for cold-warm discrimination, sharp-dull discrimination (pinprick), and tactile threshold, respectively. Level of intellectual functioning was estimated with the Social Functioning Scale for Intellectual Disability (intellectual disability level) and the Wechsler Preschool and Primary Scale of Intelligence--Revised (intelligence level). Overall, the difference in spinothalamic-mediated sensory functions between the DS and control groups was not statistically significant. However, DS participants with a lower intelligence level had a statistically significant lower performance on the sharp-dull discrimination test than DS participants with higher intelligence level (adjusted p=.006) and control participants (adjusted p=.017). It was concluded that intellectual functioning level is an important factor to take into account for the assessment of spinothalamic-mediated sensory functioning in adults with DS: a lower level could coincide with impaired sensory functioning, but could also hamper QST assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Time discrimination deficits in schizophrenia patients with first-rank (passivity) symptoms.
Waters, Flavie; Jablensky, Assen
2009-05-15
Schizophrenia patients with first-rank (passivity) symptoms (FRS) report a loss of clear boundaries between the self and others and that their thoughts and actions are controlled by external forces. One of the more widely accepted explanatory models of FRS suggests a dysfunction in the 'forward model' system, whose role consists in predicting the sensory consequences of actions [Frith, C., 2006. The neural basis of hallucinations and delusions. Comptes Rendus Biologies 328, 169-175.]. There has been recent interest in the importance of timing precision underlying both the functioning of the forward model, and in processes contributing to the mechanisms of self-recognition [Haggard, P., Martin, F., Taylor-Clarke, M., Jeannerod, M., Franck, N., 2003. Awareness of action in schizophrenia. Neuroreport 14, 1081-1085.]. In the current study, we examined whether schizophrenia patients with FRS have a time perception impairment, using an auditory discrimination task requiring judgments of temporal intervals. Thirty-five schizophrenia patients (15 with, and 20 without, FRS), and 16 non-clinical controls completed the task. The results showed that patients with FRS experienced time differently by underestimating the duration of time intervals. Given the role of timing in shaping sensory awareness and in the formation of causal mental associations, a breakdown in timing mechanisms may affect the processes relating to the perceived control of actions and mental events, leading to disturbances of self-recognition in FRS.
Sinclair, D.; Oranje, B.; Razak, K.A.; Siegel, S.J.; Schmid, S.
2017-01-01
Brains are constantly flooded with sensory information that needs to be filtered at the pre-attentional level and integrated into endogenous activity in order to allow for detection of salient information and an appropriate behavioral response. People with Autism Spectrum Disorder (ASD) or Fragile X Syndrome (FXS) are often over- or under-reactive to stimulation, leading to a wide range of behavioral symptoms. This altered sensitivity may be caused by disrupted sensory processing, signal integration and/or gating, and is often being neglected. Here, we review translational experimental approaches that are used to investigate sensory processing in humans with ASD and FXS, and in relevant rodent models. This includes electroencephalographic measurement of event related potentials, neural oscillations and mismatch negativity, as well as habituation and pre-pulse inhibition of startle. We outline robust evidence of disrupted sensory processing in individuals with ASD and FXS, and in respective animal models, focusing on the auditory sensory domain. Animal models provide an excellent opportunity to examine common mechanisms of sensory pathophysiology in order to develop therapeutics. PMID:27235081
[Guitarist's cramp: management with sensory re-education].
Chaná-Cuevas, P; Kunstmann-Rioseco, C; Rodríguez-Riquelme, T
Dystonia is defined as a sustained co-contraction of agonistic and antagonistic muscles that can cause twisting, twitching and abnormal postures. Occupational dystonias are included in a special group of pathologies that are secondary to a repeated effort related to the professional activity carried out by the sufferer, as can occur in guitarists, violinists and trumpet players, for example. Its pathophysiology includes descriptions of disorders affecting the peripheral and central nervous systems. Studies conducted in monkeys have shown that, through sensory stimulation, repeated movements can give rise to central anomalies in the somatosensory cortex, with growth of the receptive fields that are stimulated and deformation of the separations between those fields. We describe the case of a professional guitarist with a seven-year history of symptoms. A neurological examination revealed a co-contraction in the right hand that triggered the extension of the index and little fingers, which made it difficult for him to play his instrument. The patient was submitted to sensory re-education therapy with the use of a splint and a two-month routine of exercises. The response was evaluated using a subjective scale of the patient's symptoms and measurements of the maximum angles of flexion and extension of the affected fingers. Both methods reduced the patient's discomfort and allowed him to exhibit greater skill when playing the guitar. Occupational dystonias produced by repeated stimulation present alterations in the sensory region of the cortex, with the involvement of motor performance that improves with sensory re-education therapy.
TRP channel functions in the gastrointestinal tract.
Yu, Xiaoyun; Yu, Mingran; Liu, Yingzhe; Yu, Shaoyong
2016-05-01
Transient receptor potential (TRP) channels are predominantly distributed in both somatic and visceral sensory nervous systems and play a crucial role in sensory transduction. As the largest visceral organ system, the gastrointestinal (GI) tract frequently accommodates external inputs, which stimulate sensory nerves to initiate and coordinate sensory and motor functions in order to digest and absorb nutrients. Meanwhile, the sensory nerves in the GI tract are also able to detect potential tissue damage by responding to noxious irritants. This nocifensive function is mediated through specific ion channels and receptors expressed in a subpopulation of spinal and vagal afferent nerve called nociceptor. In the last 18 years, our understanding of TRP channel expression and function in GI sensory nervous system has been continuously improved. In this review, we focus on the expressions and functions of TRPV1, TRPA1, and TRPM8 in primary extrinsic afferent nerves innervated in the esophagus, stomach, intestine, and colon and briefly discuss their potential roles in relevant GI disorders.
Intestinal microbiota in pathophysiology and management of irritable bowel syndrome
Lee, Kang Nyeong; Lee, Oh Young
2014-01-01
Irritable bowel syndrome (IBS) is a functional bowel disorder without any structural or metabolic abnormalities that sufficiently explain the symptoms, which include abdominal pain and discomfort, and bowel habit changes such as diarrhea and constipation. Its pathogenesis is multifactorial: visceral hypersensitivity, dysmotility, psychosocial factors, genetic or environmental factors, dysregulation of the brain-gut axis, and altered intestinal microbiota have all been proposed as possible causes. The human intestinal microbiota are composed of more than 1000 different bacterial species and 1014 cells, and are essential for the development, function, and homeostasis of the intestine, and for individual health. The putative mechanisms that explain the role of microbiota in the development of IBS include altered composition or metabolic activity of the microbiota, mucosal immune activation and inflammation, increased intestinal permeability and impaired mucosal barrier function, sensory-motor disturbances provoked by the microbiota, and a disturbed gut-microbiota-brain axis. Therefore, modulation of the intestinal microbiota through dietary changes, and use of antibiotics, probiotics, and anti-inflammatory agents has been suggested as strategies for managing IBS symptoms. This review summarizes and discusses the accumulating evidence that intestinal microbiota play a role in the pathophysiology and management of IBS. PMID:25083061
Esophageal motor and sensory disorders: presentation, evaluation, and treatment.
Massey, Benson T
2007-09-01
Esophageal motor and sensory disorders are relatively rare conditions in the general population and afflicted patients are often initially misdiagnosed as having gastroesophageal reflux disease. Tests for these disorders have imperfect gold standards and are adjuncts to sound diagnostic reasoning. Treatments are palliative and have not been rigorously evaluated for some disorders. Symptoms and complications from disease progression and relapse are common, so that patients need continued follow-up.
Featherstone, R.; Naschek, M.; Nam, J.; Du, A.; Wright, S.; Weger, R.; Akuzawa, S.
2017-01-01
Abstract Fragile X syndrome is a genetic condition resulting from FMR1 gene mutation that leads to intellectual disability, autism-like symptoms, and sensory hypersensitivity. Arbaclofen, a GABA-B agonist, has shown efficacy in some individuals with FXS but has become unavailable after unsuccessful clinical trials, prompting interest in publicly available, racemic baclofen. The present study investigated whether racemic baclofen can remediate abnormalities of neural circuit function, sensory processing, and behavior in Fmr1 knockout mice, a rodent model of fragile X syndrome. Fmr1 knockout mice showed increased baseline and auditory-evoked high-frequency gamma (30–80 Hz) power relative to C57BL/6 controls, as measured by electroencephalography. These deficits were accompanied by decreased T maze spontaneous alternation, decreased social interactions, and increased open field center time, suggestive of diminished working memory, sociability, and anxiety-like behavior, respectively. Abnormal auditory-evoked gamma oscillations, working memory, and anxiety-related behavior were normalized by treatment with baclofen, but impaired sociability was not. Improvements in working memory were evident predominantly in mice whose auditory-evoked gamma oscillations were dampened by baclofen. These findings suggest that racemic baclofen may be useful for targeting sensory and cognitive disturbances in fragile X syndrome. PMID:28451631
Rethinking autism: implications of sensory and movement differences for understanding and support
Donnellan, Anne M.; Hill, David A.; Leary, Martha R.
2012-01-01
For decades autism has been defined as a triad of deficits in social interaction, communication, and imaginative play. Though there is now broad acknowledgment of the neurological basis of autism, there is little attention paid to the contribution of such neurological differences to a person's development and functioning. Communication, relationship, and participation require neurological systems to coordinate and synchronize the organization and regulation of sensory information and movement. Developmental differences in these abilities are likely to result in differences in the way a person behaves and expresses intention and meaning. The present paper shares our emerging awareness that people may struggle with difficulties that are not immediately evident to an outsider. This paper explores the symptoms of sensory and movement differences and the possible implications for autistic people. It provides a review of the history and literature that describes the neurological basis for many of the socalled behavioral differences that people experience. The paper emphasizes the importance of our acknowledgment that a social interpretation of differences in behavior, relationship, and communication can lead us far away from the lived experience of individuals with the autism label and those who support them. We suggest alternative ways to address the challenges faced by people with autism. PMID:23372546
Pharmacologic attenuation of cross-modal sensory augmentation within the chronic pain insula
Harte, Steven E.; Ichesco, Eric; Hampson, Johnson P.; Peltier, Scott J.; Schmidt-Wilcke, Tobias; Clauw, Daniel J.; Harris, Richard E.
2016-01-01
Abstract Pain can be elicited through all mammalian sensory pathways yet cross-modal sensory integration, and its relationship to clinical pain, is largely unexplored. Centralized chronic pain conditions such as fibromyalgia are often associated with symptoms of multisensory hypersensitivity. In this study, female patients with fibromyalgia demonstrated cross-modal hypersensitivity to visual and pressure stimuli compared with age- and sex-matched healthy controls. Functional magnetic resonance imaging revealed that insular activity evoked by an aversive level of visual stimulation was associated with the intensity of fibromyalgia pain. Moreover, attenuation of this insular activity by the analgesic pregabalin was accompanied by concomitant reductions in clinical pain. A multivariate classification method using support vector machines (SVM) applied to visual-evoked brain activity distinguished patients with fibromyalgia from healthy controls with 82% accuracy. A separate SVM classification of treatment effects on visual-evoked activity reliably identified when patients were administered pregabalin as compared with placebo. Both SVM analyses identified significant weights within the insular cortex during aversive visual stimulation. These data suggest that abnormal integration of multisensory and pain pathways within the insula may represent a pathophysiological mechanism in some chronic pain conditions and that insular response to aversive visual stimulation may have utility as a marker for analgesic drug development. PMID:27101425
MacCalman, Laura; Semple, Sean; Galea, Karen S; Van Tongeren, Martie; Dempsey, Scott; Hilton, Shona; Gee, Ivan; Ayres, Jon G
2012-05-02
The evaluation of smoke-free legislation (SFL) in the UK examined the impacts on exposure to second-hand smoke, workers' attitudes and changes in respiratory health. Studies that investigate changes in the health of groups of people often use self-reported symptoms. Due to the subjective nature it is of interest to determine whether workers' attitudes towards the change in their working conditions may be linked to the change in health they report. Bar workers were recruited before the introduction of the SFL in Scotland and England with the aim of investigating their changes to health, attitudes and exposure as a result of the SFL. They were asked about their attitudes towards SFL and the presence of respiratory and sensory symptoms both before SFL and one year later. Here we examine the possibility of a relationship between initial attitudes and changes in reported symptoms, through the use of regression analyses. There was no difference in the initial attitudes towards SFL between those working in Scotland and England. Bar workers who were educated to a higher level tended to be more positive towards SFL. Attitude towards SFL was not found to be related to change in reported symptoms for bar workers in England (Respiratory, p = 0.755; Sensory, p = 0.910). In Scotland there was suggestion of a relationship with reporting of respiratory symptoms (p = 0.042), where those who were initially more negative to SFL experienced a greater improvement in self-reported health. There was no evidence that workers who were more positive towards SFL reported greater improvements in respiratory and sensory symptoms. This may not be the case in all interventions and we recommend examining subjects' attitudes towards the proposed intervention when evaluating possible health benefits using self-reported methods.
2012-01-01
Background The evaluation of smoke-free legislation (SFL) in the UK examined the impacts on exposure to second-hand smoke, workers’ attitudes and changes in respiratory health. Studies that investigate changes in the health of groups of people often use self-reported symptoms. Due to the subjective nature it is of interest to determine whether workers’ attitudes towards the change in their working conditions may be linked to the change in health they report. Methods Bar workers were recruited before the introduction of the SFL in Scotland and England with the aim of investigating their changes to health, attitudes and exposure as a result of the SFL. They were asked about their attitudes towards SFL and the presence of respiratory and sensory symptoms both before SFL and one year later. Here we examine the possibility of a relationship between initial attitudes and changes in reported symptoms, through the use of regression analyses. Results There was no difference in the initial attitudes towards SFL between those working in Scotland and England. Bar workers who were educated to a higher level tended to be more positive towards SFL. Attitude towards SFL was not found to be related to change in reported symptoms for bar workers in England (Respiratory, p = 0.755; Sensory, p = 0.910). In Scotland there was suggestion of a relationship with reporting of respiratory symptoms (p = 0.042), where those who were initially more negative to SFL experienced a greater improvement in self-reported health. Conclusions There was no evidence that workers who were more positive towards SFL reported greater improvements in respiratory and sensory symptoms. This may not be the case in all interventions and we recommend examining subjects’ attitudes towards the proposed intervention when evaluating possible health benefits using self-reported methods. PMID:22551087
Posttraumatic stress disorder (PTSD) and the dermatology patient.
Gupta, Madhulika A; Jarosz, Patricia; Gupta, Aditya K
Dermatologic symptoms can be associated with posttraumatic stress disorder (PTSD) in several situations: (1) as features of some core PTSD symptoms, such as intrusion symptoms manifesting as cutaneous sensory flashbacks, as autonomic arousal manifesting as night sweats and idiopathic urticaria, and as dissociation manifesting as numbness and dermatitis artefacta; (2) the cutaneous psychosomatic effects of emotional and physical neglect and sexual abuse (eg, infantile eczema, cutaneous self-injury, and body-focused repetitive behaviors such as trichotillomania and skin picking disorder) and eating disorders, which can have dermatologic effects; (3) the direct effect of physical or sexual abuse or catastrophic life events (eg, earthquakes) on the skin; and (4) as a result of significant alterations in hypothalamic-pituitary-adrenal and sympatho-adrenal medullary axes, which can affect neuroendocrine and immune functions, and can lead to exacerbations of stress-reactive inflammatory dermatoses such as psoriasis, chronic urticaria, and atopic dermatitis. Elevated levels of inflammatory biomarkers and impaired epidermal barrier function have been reported in situations involving sustained psychologic stress and sleep deprivation. Some PTSD patients show hypothalamic-pituitary-adrenal axis hyporesponsiveness and higher circulating T lymphocytes, which can exacerbate immune-mediated dermatologic disorders. PTSD should be considered an underlying factor in the chronic, recurrent, or treatment-resistant stress-reactive dermatoses and in patients with self-induced dermatoses. Copyright © 2017 Elsevier Inc. All rights reserved.
Aging and the interaction of sensory cortical function and structure.
Peiffer, Ann M; Hugenschmidt, Christina E; Maldjian, Joseph A; Casanova, Ramon; Srikanth, Ryali; Hayasaka, Satoru; Burdette, Jonathan H; Kraft, Robert A; Laurienti, Paul J
2009-01-01
Even the healthiest older adults experience changes in cognitive and sensory function. Studies show that older adults have reduced neural responses to sensory information. However, it is well known that sensory systems do not act in isolation but function cooperatively to either enhance or suppress neural responses to individual environmental stimuli. Very little research has been dedicated to understanding how aging affects the interactions between sensory systems, especially cross-modal deactivations or the ability of one sensory system (e.g., audition) to suppress the neural responses in another sensory system cortex (e.g., vision). Such cross-modal interactions have been implicated in attentional shifts between sensory modalities and could account for increased distractibility in older adults. To assess age-related changes in cross-modal deactivations, functional MRI studies were performed in 61 adults between 18 and 80 years old during simple auditory and visual discrimination tasks. Results within visual cortex confirmed previous findings of decreased responses to visual stimuli for older adults. Age-related changes in the visual cortical response to auditory stimuli were, however, much more complex and suggested an alteration with age in the functional interactions between the senses. Ventral visual cortical regions exhibited cross-modal deactivations in younger but not older adults, whereas more dorsal aspects of visual cortex were suppressed in older but not younger adults. These differences in deactivation also remained after adjusting for age-related reductions in brain volume of sensory cortex. Thus, functional differences in cortical activity between older and younger adults cannot solely be accounted for by differences in gray matter volume. (c) 2007 Wiley-Liss, Inc.
Managing daily life with age-related sensory loss: cognitive resources gain in importance.
Heyl, Vera; Wahl, Hans-Werner
2012-06-01
This paper investigates the role of cognitive resources in everyday functioning, comparing visually impaired, hearing impaired, and sensory unimpaired older adults. According to arguments that cognitive resources are of increased importance and a greater awareness of cognitive restrictions exists among sensory impaired individuals, in particular among visually impaired individuals, we hypothesized differential relationships between resources and outcomes when comparing sensory impaired and sensory unimpaired older adults. Findings are based on samples of 121 visually impaired, 116 hearing impaired, and 150 sensory unimpaired older adults (M = 82 years). Results from a sample of 43 dual sensory impaired older adults are reported for comparison. Assessment relied on established instruments (e.g., WAIS-R, ADL/IADL). Structural equation modeling showed that cognitive resources and behavior-related everyday functioning were more strongly related in the sensory impaired groups as compared to the sensory unimpaired group. Cognitive resources and evaluation of everyday functioning were significantly linked only among the sensory impaired groups. When medical condition was controlled for, these effects persisted. It is concluded that both cognitive training as well as psychosocial support may serve as important additions to classic vision and hearing loss rehabilitation. PsycINFO Database Record (c) 2012 APA, all rights reserved
Maturation of Sensori-Motor Functional Responses in the Preterm Brain.
Allievi, Alessandro G; Arichi, Tomoki; Tusor, Nora; Kimpton, Jessica; Arulkumaran, Sophie; Counsell, Serena J; Edwards, A David; Burdet, Etienne
2016-01-01
Preterm birth engenders an increased risk of conditions like cerebral palsy and therefore this time may be crucial for the brain's developing sensori-motor system. However, little is known about how cortical sensori-motor function matures at this time, whether development is influenced by experience, and about its role in spontaneous motor behavior. We aimed to systematically characterize spatial and temporal maturation of sensori-motor functional brain activity across this period using functional MRI and a custom-made robotic stimulation device. We studied 57 infants aged from 30 + 2 to 43 + 2 weeks postmenstrual age. Following both induced and spontaneous right wrist movements, we saw consistent positive blood oxygen level-dependent functional responses in the contralateral (left) primary somatosensory and motor cortices. In addition, we saw a maturational trend toward faster, higher amplitude, and more spatially dispersed functional responses; and increasing integration of the ipsilateral hemisphere and sensori-motor associative areas. We also found that interhemispheric functional connectivity was significantly related to ex-utero exposure, suggesting the influence of experience-dependent mechanisms. At term equivalent age, we saw a decrease in both response amplitude and interhemispheric functional connectivity, and an increase in spatial specificity, culminating in the establishment of a sensori-motor functional response similar to that seen in adults. © The Author 2015. Published by Oxford University Press.
ERIC Educational Resources Information Center
Gonthier, Corentin; Longuépée, Lucie; Bouvard, Martine
2016-01-01
Sensory processing abnormalities are relatively universal in individuals with autism spectrum disorder, and can be very disabling. Surprisingly, very few studies have investigated these abnormalities in low-functioning adults with autism. The goals of the present study were (a) to characterize distinct profiles of sensory dysfunction, and (b) to…
Peripheral KV7 channels regulate visceral sensory function in mouse and human colon.
Peiris, Madusha; Hockley, James Rf; Reed, David E; Smith, Ewan St John; Bulmer, David C; Blackshaw, L Ashley
2017-01-01
Background Chronic visceral pain is a defining symptom of many gastrointestinal disorders. The K V 7 family (K V 7.1-K V 7.5) of voltage-gated potassium channels mediates the M current that regulates excitability in peripheral sensory nociceptors and central pain pathways. Here, we use a combination of immunohistochemistry, gut-nerve electrophysiological recordings in both mouse and human tissues, and single-cell qualitative real-time polymerase chain reaction of gut-projecting sensory neurons, to investigate the contribution of peripheral K V 7 channels to visceral nociception. Results Immunohistochemical staining of mouse colon revealed labelling of K V 7 subtypes (K V 7.3 and K V 7.5) with CGRP around intrinsic enteric neurons of the myenteric plexuses and within extrinsic sensory fibres along mesenteric blood vessels. Treatment with the K V 7 opener retigabine almost completely abolished visceral afferent firing evoked by the algogen bradykinin, in agreement with significant co-expression of mRNA transcripts by single-cell qualitative real-time polymerase chain reaction for KCNQ subtypes and the B 2 bradykinin receptor in retrogradely labelled extrinsic sensory neurons from the colon. Retigabine also attenuated responses to mechanical stimulation of the bowel following noxious distension (0-80 mmHg) in a concentration-dependent manner, whereas the K V 7 blocker XE991 potentiated such responses. In human bowel tissues, K V 7.3 and K V 7.5 were expressed in neuronal varicosities co-labelled with synaptophysin and CGRP, and retigabine inhibited bradykinin-induced afferent activation in afferent recordings from human colon. Conclusions We show that K V 7 channels contribute to the sensitivity of visceral sensory neurons to noxious chemical and mechanical stimuli in both mouse and human gut tissues. As such, peripherally restricted K V 7 openers may represent a viable therapeutic modality for the treatment of gastrointestinal pathologies.
Kalron, Alon; Givon, Uri; Frid, Lior; Dolev, Mark; Achiron, Anat
2016-01-01
Balance impairment is common in people with multiple sclerosis (PwMS) and frequently impacts quality of life by decreasing mobility and increasing the risk of falling. However, there are only scarce data examining the contribution of specific neurological functional systems on balance measures in MS. Therefore, the primary aim of our study was to examine the differences in posturography parameters and fall incidence according to the pyramidal, cerebellar and sensory systems functional systems in PwMS. The study included 342 PwMS, 211 women and mean disease duration of 8.2 (S.D = 8.3) years. The study sample was divided into six groups according to the pyramidal, cerebellar and sensory functional system scores, derived from the Expanded Disability Status Scale (EDSS) data. Static postural control parameters were obtained from the Zebris FDM-T Treadmill (zebris® Medical GmbH, Germany). Participants were defined as "fallers" and "non-fallers" based on their fall history. Our findings revealed a trend that PwMS affected solely in the pyramidal system, have reduced stability compared to patients with cerebellar and sensory dysfunctions. Moreover, the addition of sensory impairments to pyramidal dysfunction does not exacerbate postural control. The patients in the pure sensory group demonstrated increased stability compared to each of the three combined groups; pyramidal-cerebellar, pyramidal-sensory and pyramidal-cerebellar-sensory groups. As for fall status, the percentage of fallers in the pure pyramidal, cerebellar and sensory groups were 44.3%, 33.3% and 19.5%, respectively. As for the combined functional system groups, the percentage of fallers in the pyramidal-cerebellar, pyramidal-sensory and pyramidal-cerebellar-sensory groups were 59.7%, 40.7% and 65%, respectively. This study confirms that disorders in neurological functional systems generate different effects on postural control and incidence of falls in the MS population. From a clinical standpoint, the present information can benefit all those engaged in physical rehabilitation of PwMS. PMID:27741268
The bothersomeness of sciatica: patients' self-report of paresthesia, weakness and leg pain.
Grøvle, Lars; Haugen, Anne Julsrud; Keller, Anne; Natvig, Bård; Brox, Jens Ivar; Grotle, Margreth
2010-02-01
The objective of the study was to investigate how patients with sciatica due to disc herniation rate the bothersomeness of paresthesia and weakness as compared to leg pain, and how these symptoms are associated with socio-demographic and clinical characteristics. A cross-sectional study was conducted on 411 patients with clinical signs of radiculopathy. Items from the Sciatica Bothersomeness Index (0 = none to 6 = extremely) were used to establish values for paresthesia, weakness and leg pain. Associations with socio-demographic and clinical variables were analyzed by multiple linear regression. Mean scores (SD) were 4.5 (1.5) for leg pain, 3.4 (1.8) for paresthesia and 2.6 (2.0) for weakness. Women reported higher levels of bothersomeness for all three symptoms with mean scores approximately 10% higher than men. In the multivariate models, more severe symptoms were associated with lower physical function and higher emotional distress. Muscular paresis explained 19% of the variability in self-reported weakness, sensory findings explained 10% of the variability in paresthesia, and straight leg raising test explained 9% of the variability in leg pain. In addition to leg pain, paresthesia and weakness should be assessed when measuring symptom severity in sciatica.
Psychotic symptoms in narcolepsy: phenomenology and a comparison with schizophrenia.
Fortuyn, Hal A Droogleever; Lappenschaar, G A; Nienhuis, Fokko J; Furer, Joop W; Hodiamont, Paul P; Rijnders, Cees A; Lammers, Gert Jan; Renier, Willy O; Buitelaar, Jan K; Overeem, Sebastiaan
2009-01-01
Patients with narcolepsy often experience pervasive hypnagogic hallucinations, sometimes even leading to confusion with schizophrenia. We aimed to provide a detailed qualitative description of hypnagogic hallucinations and other "psychotic" symptoms in patients with narcolepsy and contrast these with schizophrenia patients and healthy controls. We also compared the prevalence of formal psychotic disorders between narcolepsy patients and controls. We used SCAN 2.1 interviews to compare psychotic symptoms between 60 patients with narcolepsy, 102 with schizophrenia and 120 matched population controls. In addition, qualitative data was collected to enable a detailed description of hypnagogic hallucinations in narcolepsy. There were clear differences in the pattern of hallucinatory experiences in narcolepsy vs. schizophrenia patients. Narcoleptics reported multisensory "holistic" hallucinations rather than the predominantly verbal-auditory sensory mode of schizophrenia patients. Psychotic symptoms such as delusions were not more frequent in narcolepsy compared to population controls. In addition, the prevalence of formal psychotic disorders was not increased in patients with narcolepsy. Almost half of narcoleptics reported moderate interference with functioning due to hypnagogic hallucinations, mostly due to related anxiety. Hypnagogic hallucinations in narcolepsy can be differentiated on a phenomenological basis from hallucinations in schizophrenia which is useful in differential diagnostic dilemmas.
[Operative treatment of painful neuromas].
Stokvis, Annemieke; Coert, J Henk
2011-01-01
3-5% of patients with traumatic or iatrogenic peripheral nerve injury develop a painful neuroma, especially following trauma of small cutaneous sensory nerve branches. Neuroma pain is difficult to treat and often leads to loss of function and reduction of quality of life. Patients with a painful neuroma present with spontaneous electric, shooting or burning pain, allodynia, hyperalgesia and cold intolerance. The diagnosis is based on the medical history and physical examination, supplemented by Tinel's test and a diagnostic nerve blockade. Lasting pain relief is possible by means of surgical neuroma treatment performed by a plastic surgeon. Surgical treatment consists of repair or denervation of the nerve with relocation of the nerve stump in bone or muscle tissue or a vein. Referral of neuroma patients without delay to a plastic surgeon or multidisciplinary consultation is important, because the symptoms become increasingly difficult to treat over time. 3-5% of patients with traumatic or iatrogenic peripheral nerve injury develop a painful neuroma, especially following trauma of small cutaneous sensory nerve branches. Neuroma pain is difficult to treat and often leads to loss of function and reduction of quality of life. Patients with a painful neuroma present with spontaneous electric, shooting or burning pain, allodynia, hyperalgesia and cold intolerance. The diagnosis is based on the medical history and physical examination, supplemented by Tinel's test and a diagnostic nerve blockade. Lasting pain relief is possible by means of surgical neuroma treatment performed by a plastic surgeon. Surgical treatment consists of repair or denervation of the nerve with relocation of the nerve stump in bone or muscle tissue or a vein. Referral of neuroma patients without delay to a plastic surgeon or multidisciplinary consultation is important, because the symptoms become increasingly difficult to treat over time.
Sensory impairments of the lower limb after stroke: a pooled analysis of individual patient data.
Tyson, Sarah F; Crow, J Lesley; Connell, Louise; Winward, Charlotte; Hillier, Susan
2013-01-01
To obtain more generalizable information on the frequency and factors influencing sensory impairment after stroke and their relationship to mobility and function. A pooled analysis of individual data of stroke survivors (N = 459); mean (SD) age = 67.2 (14.8) years, 54% male, mean (SD) time since stroke = 22.33 (63.1) days, 50% left-sided weakness. Where different measurement tools were used, data were recorded. Descriptive statistics described frequency of sensory impairments, kappa coefficients investigated relationships between sensory modalities, binary logistic regression explored the factors influencing sensory impairments, and linear regression assessed the impact of sensory impairments on activity limitations. Most patients' sensation was intact (55%), and individual sensory modalities were highly associated (κ = 0.60, P < .001). Weakness and neglect influenced sensory impairment (P < .001), but demographics, stroke pathology, and spasticity did not. Sensation influenced independence in activities of daily living, mobility, and balance but less strongly than weakness. Pooled individual data analysis showed sensation of the lower limb is grossly preserved in most stroke survivors but, when present, it affects function. Sensory modalities are highly interrelated; interventions that treat the motor system during functional tasks may be as effective at treating the sensory system as sensory retraining alone.
Sneeze related area in the medulla: localisation of the human sneezing centre?
Seijo-Martínez, M; Varela-Freijanes, A; Grandes, J; Vázquez, F
2006-04-01
Sneezing is a rarely explored symptom in neurological practice. In the cat, a sneeze evoking centre is located in the medulla. The existence of a sneezing centre has not been confirmed in humans. A case with abnormal sneezing secondary to a strategic infarct in the right latero-medullary region is presented. A 66 year old man suddenly presented paroxysmal sneezing followed by ataxia, right sided motor and sensory symptoms, and hoarseness. The application of stimuli to the right nasal fossa did not evoke sneezing nor the wish to sneeze. The same stimuli to the contralateral nasal fossa evoked normal sneezing. The preservation of the superficial sensitivity of the nasal fossa indicates that the lesion was localised in the hypothetical human sneezing centre, very close to the spinal trigeminal tract and nucleus. This centre appears to be bilateral and functionally independent on both sides.
Sneeze related area in the medulla: localisation of the human sneezing centre?
Seijo‐Martínez, M; Varela‐Freijanes, A; Grandes, J; Vázquez, F
2006-01-01
Sneezing is a rarely explored symptom in neurological practice. In the cat, a sneeze evoking centre is located in the medulla. The existence of a sneezing centre has not been confirmed in humans. A case with abnormal sneezing secondary to a strategic infarct in the right latero‐medullary region is presented. A 66 year old man suddenly presented paroxysmal sneezing followed by ataxia, right sided motor and sensory symptoms, and hoarseness. The application of stimuli to the right nasal fossa did not evoke sneezing nor the wish to sneeze. The same stimuli to the contralateral nasal fossa evoked normal sneezing. The preservation of the superficial sensitivity of the nasal fossa indicates that the lesion was localised in the hypothetical human sneezing centre, very close to the spinal trigeminal tract and nucleus. This centre appears to be bilateral and functionally independent on both sides. PMID:16354739
[Pain and analgesia : Mutations of voltage-gated sodium channels].
Eberhardt, M J; Leffler, A
2017-02-01
Voltage-gated sodium channels (Navs) are crucial for the generation and propagation of action potentials in all excitable cells, and therefore for the function of sensory neurons as well. Preclinical research over the past 20 years identified three Nav-isoforms in sensory neurons, namely Nav1.7, Nav1.8 and Nav1.9. A specific role for the function of nociceptive neurons was postulated for each. Whereas no selective sodium channel inhibitors have been established in the clinic so far, the relevance of all three isoforms regarding the pain sensitivity in humans is currently undergoing a remarkable verification through the translation of preclinical data into clinically manifest pictures. For the last ten years, Nav1.7 has been the main focus of clinical interest, as a large number of hereditary mutants were identified. The so-called "gain-of-function" mutations of Nav1.7 cause the pain syndromes hereditary erythromelalgia and paroxysmal extreme pain disorder. In addition, several Nav1.7 mutants were shown to be associated with small-fiber neuropathies. On the contrary, "loss-of-function" Nav1.7 mutants lead to a congenital insensitivity to pain. Recently, several gain-of-function mutations in Nav1.8 and Nav1.9 have been identified in patients suffering from painful peripheral neuropathies. However, another gain-of-function Nav1.9 mutation is associated with congenital insensitivity to pain. This review offers an overview of published work on painful Nav mutations with clinical relevance, and proposes possible consequences for the therapy of different pain symptoms resulting from these findings.
Mak, Anselm; Ren, Tao; Fu, Erin Hui-yun; Cheak, Alicia Ai-cia; Ho, Roger Chun-man
2012-06-01
To study the functional brain activation signals before and after sufficient disease control in patients with systemic lupus erythematosus (SLE) without clinical neuropsychiatric symptoms. Blood-oxygen-level-dependent signals during event-related functional magnetic resonance imaging brain were recorded, while 14 new-onset SLE patients and 14 demographically and intelligence quotient matched healthy controls performed the computer-based Wisconsin card sorting test for assessing executive function, which probes strategic planning and goal-directed task performance during feedback evaluation (FE) and response selection (RS), respectively. Composite beta maps were constructed by a general linear model to identify regions of cortical activation. Blood-oxygen-level-dependent functional magnetic resonance imaging signals were compared between (1) new-onset SLE patients and healthy controls and (2) SLE patients before and after sufficient control of their disease activity. During RS, SLE patients demonstrated significantly higher activation than healthy controls in both caudate bodies and Brodmann area (BA) 9 to enhance event anticipation, attention, and working memory, respectively, to compensate for the reduced activation during FE in BA6, 13, 24, and 32, which serve complex motor planning and decision-making, sensory integration, error detection, and conflict processing, respectively. Despite significant reduction of SLE activity, BA32 was activated during RS to compensate for reduced activation during FE in BA6, 9, 37, and 23/32, which serve motor planning, response inhibition and attention, color processing and word recognition, error detection, and conflict evaluation, respectively. Even without clinically overt neuropsychiatric symptoms, SLE patients recruited additional pathways to execute goal-directed tasks to compensate for their reduced strategic planning skill despite clinically sufficient disease control. Copyright © 2012 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Skewes, Joshua C.; Gebauer, Line
2016-01-01
Convergent research suggests that people with ASD have difficulties localizing sounds in space. These difficulties have implications for communication, the development of social behavior, and quality of life. Recently, a theory has emerged which treats perceptual symptoms in ASD as the product of impairments in implicit Bayesian inference; as…
Contribution of Insula in Parkinson’s Disease: A Quantitative Meta-Analysis Study
Criaud, Marion; Christopher, Leigh; Boulinguez, Philippe; Ballanger, Benedicte; Lang, Anthony E.; Cho, Sang S.; Houle, Sylvain; Strafella, Antonio P.
2016-01-01
The insula region is known to be an integrating hub interacting with multiple brain networks involved in cognitive, affective, sensory, and autonomic processes. There is growing evidence suggesting that this region may have an important role in Parkinson’s disease (PD). Thus, to investigate the functional organization of the insular cortex and its potential role in parkinsonian features, we used a coordinate-based quantitative meta-analysis approach, the activation likelihood estimation. A total of 132 insular foci were selected from 96 published experiments comprising the five functional categories: cognition, affective/behavioral symptoms, bodily awareness/autonomic function, sensorimotor function, and nonspecific resting functional changes associated with the disease. We found a significant convergence of activation maxima related to PD in different insular regions including anterior and posterior regions bilaterally. This study provides evidence of an important functional distribution of different domains within the insular cortex in PD, particularly in relation to nonmotor aspects, with an influence of medication effect. PMID:26800238
Contribution of insula in Parkinson's disease: A quantitative meta-analysis study.
Criaud, Marion; Christopher, Leigh; Boulinguez, Philippe; Ballanger, Benedicte; Lang, Anthony E; Cho, Sang S; Houle, Sylvain; Strafella, Antonio P
2016-04-01
The insula region is known to be an integrating hub interacting with multiple brain networks involved in cognitive, affective, sensory, and autonomic processes. There is growing evidence suggesting that this region may have an important role in Parkinson's disease (PD). Thus, to investigate the functional organization of the insular cortex and its potential role in parkinsonian features, we used a coordinate-based quantitative meta-analysis approach, the activation likelihood estimation. A total of 132 insular foci were selected from 96 published experiments comprising the five functional categories: cognition, affective/behavioral symptoms, bodily awareness/autonomic function, sensorimotor function, and nonspecific resting functional changes associated with the disease. We found a significant convergence of activation maxima related to PD in different insular regions including anterior and posterior regions bilaterally. This study provides evidence of an important functional distribution of different domains within the insular cortex in PD, particularly in relation to nonmotor aspects, with an influence of medication effect. © 2016 Wiley Periodicals, Inc.
Kage-Nakadai, Eriko; Ohta, Akane; Ujisawa, Tomoyo; Sun, Simo; Nishikawa, Yoshikazu; Kuhara, Atsushi; Mitani, Shohei
2016-09-01
The Caenorhabditis elegans (C. elegans) amphid sensory organ contains only 4 glia-like cells and 24 sensory neurons, providing a simple model for analyzing glia or neuron-glia interactions. To better characterize glial development and function, we carried out RNA interference screening for transcription factors that regulate the expression of an amphid sheath glial cell marker and identified pros-1, which encodes a homeodomain transcription factor homologous to Drosophila prospero/mammalian Prox1, as a positive regulator. The functional PROS-1::EGFP fusion protein was localized in the nuclei of the glia and the excretory cell but not in the amphid sensory neurons. pros-1 deletion mutants exhibited larval lethality, and rescue experiments showed that pros-1 and human Prox1 transgenes were able to rescue the larval lethal phenotype, suggesting that pros-1 is a functional homologue of mammalian Prox1, at least partially. We further found that the structure and functions of sensory neurons, such as the morphology of sensory endings, sensory behavior and sensory-mediated cold tolerance, appeared to be affected by the pros-1 RNAi. Together, our results show that the C. elegans PROS-1 is a transcriptional regulator in the glia but is involved not only in sensory behavior but also in sensory-mediated physiological tolerance. © 2016 The Authors Genes to Cells published by Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
Evaluation of vestibular functions in children with vertigo attacks
Uneri, A; Turkdogan, D
2003-01-01
Aim: To examine vestibular system functions in children with episodic vertigo attacks. Methods: Thirty four children (20 males) aged 4–18 years with paroxysmal dizziness and/or vertigo attacks were evaluated. A medical history for vestibular symptoms and migraine was taken. Vestibular and auditory functions were assessed. Results: Chronic headache attacks consistent with migraine were reported in 12 children and motion sickness was reported in 30. Family history in first degree relatives was positive for migraine in 29 children and for episodic vertigo in 22. Electronystagmography and videonystagmography showed two types of nystagmus: spontaneous vestibular nystagmus (41%) and benign paroxysmal positional nystagmus (BPPN) (59%). The first type of nystagmus was assessed as a sign of vestibulopathy and the patients with BPPN were diagnosed as having benign paroxysmal positional vertigo (BPPV). Audiometric examination in four cases revealed bilateral sensory neural hearing loss in low frequencies. Pure tone averages in 30 cases were within normal ranges; however low frequencies in 28 of them were approximately 10 dB lower than high frequencies. Unilateral caloric responses diminished in eight children. Conclusions: Peripheral vestibular problems in childhood present in a wide spectrum, which varies from a short episode of dizziness to a typical vestibular attack with fluctuating sensory neural hearing loss or episodes of BPPV. A considerable number of these vestibular problems might be related to the migraine syndrome. PMID:12765917
First-rank symptoms in schizophrenia: reexamining mechanisms of self-recognition.
Waters, Flavie A V; Badcock, Johanna C
2010-05-01
Disturbances of self are a common feature of schizophrenic psychopathology, with patients reporting that their thoughts and actions are controlled by external forces, as shown in first-rank symptoms (FRS). One widely accepted explanatory model of FRS suggests a deficiency in the internal forward model system. Recent studies in the field of cognitive sciences, however, have generated new insights into how complex sensory and motor systems contribute to the sense of self-recognition, and it is becoming clear that the forward model conceptualization does not have unique access to representations about the self. We briefly evaluate the forward model explanation of FRS, reassess the distinction made between the sense of agency and body ownership, and outline recent developments in 4 domains of sensory-motor control that have supplemented our understanding of the processes underlying the sense of self-recognition. The application of these findings to FRS will open up new research directions into the processes underlying these symptoms.
La Cesa, S; Sammartino, P; Mollica, C; Cascialli, G; Cruccu, G; Truini, A; Framarino-Dei-Malatesta, M
2018-04-29
Intercostobrachial neuropathy, often resulting in neuropathic pain, is a common complication of breast cancer surgery. In this 1-year longitudinal study, we aimed at seeking information on the frequency, clinical features, and course of painless and painful intercostobrachial neuropathy. We enrolled 40 women previously undergoing breast cancer surgery. In these patients, we collected, at 3, 6 and 12 months after surgery, clinical and quantitative sensory testing (QST) variables to diagnose intercostobrachial neuropathy, DN4 questionnaire to identify neuropathic pain, Neuropathic Pain Symptom Inventory to assess the different neuropathic pain symptoms, the Beck Depression Inventory to assess depressive symptoms, and SF36 to assess quality of life and Patient Global Impression of Change. Clinical and QST examination showed an intercostobrachial neuropathy in 23 patients (57.5%). Out of the 23 patients, five experienced neuropathic pain, as assessed with clinical examination and DN4. Axillary surgery clearance was associated with an increased risk of intercostobrachial neuropathy. Whereas sensory disturbances improved during the 1-year observation, neuropathic pain did not. Nevertheless, Beck Depression Inventory, SF36, and the Patient Global Impression of Change scores significantly improved over time. Our study shows that although intercostobrachial neuropathy is a common complication of breast cancer surgery, neuropathic pain affects only a minor proportion of patients. After 1 year, sensory disturbances partially improve and have only a mild impact on mood and quality of life.
Lijffijt, Marijn; Cox, Blake; Acas, Michelle D.; Lane, Scott D.; Moeller, F. Gerard; Swann, Alan C.
2013-01-01
Limited information is available on the relationship between antisocial personality disorder (ASPD) and early filtering, or gating, of information, even though this could contribute to the repeatedly reported impairment in ASPD of higher-order information processing. In order to investigate early filtering in ASPD, we compared electrophysiological measures of auditory sensory gating assessed by the paired-click paradigm in males with ASPD (n = 37) to healthy controls (n = 28). Stimulus encoding was measured by P50, N100, and P200 auditory evoked potentials; auditory sensory gating (ASG) was measured by a reduction in amplitude of evoked potentials following click repetition. Effects were studied of co-existing past alcohol or drug use disorders, ASPD symptom counts, and trait impulsivity. Controls and ASPD did not differ in P50, N100, or P200 amplitude or ASG. Past alcohol or drug use disorders had no effect. In controls, impulsivity related to improved P50 and P200 gating. In ASPD, P50 or N100 gating was impaired with more symptoms or increased impulsivity, respectively, suggesting impaired early filtering of irrelevant information. In controls the relationship between P50 and P200 gating and impulsivity was reversed, suggesting better gating with higher impulsivity scores. This could reflect different roles of ASG in behavioral regulation in controls versus ASPD. PMID:22464943
Kerasnoudis, Antonios; Pitarokoili, Kallia; Behrendt, Volker; Gold, Ralf; Yoon, Min-Suk
2015-06-01
The aim of this study was to evaluate whether a nerve ultrasound score (Bochum ultrasound score, BUS), clinical, and electrophysiological parameters could distinguish subacute chronic (CIDP) from acute inflammatory demyelinating polyneuropathy (AIDP). Phase 1: The charts of 35 patients with polyradiculoneuropathy were evaluated retrospectively regarding BUS, clinical, and electrophysiological parameters (A-waves, sural nerve sparing pattern, sensory ratio>1). Phase 2: All parameters were evaluated prospectively in 10 patients with subacute polyradiculoneuropathy. Phase 1: A sum score of ≥2 points in BUS and the presence of sensory symptoms were significantly more frequent in the subacute CIDP group than in the AIDP group (P<0.001).The electrophysiological parameters showed no significant changes between the 2 groups. Phase 2: BUS (83.3%; 100%;), sensory symptoms (100%; 75%), absence of autonomic nervous system dysfunction (83.3%; 75%), or bulbar palsy (83.3%; 50%) showed the best sensitivity and specificity in distinguishing subacute CIDP from AIDP. BUS is a useful diagnostic tool for distinguishing subacute CIDP from AIDP. © 2014 Wiley Periodicals, Inc.
Binocular rivalry transitions predict inattention symptom severity in adult ADHD.
Jusyte, Aiste; Zaretskaya, Natalia; Höhnle, Nina Maria; Bartels, Andreas; Schönenberg, Michael
2018-06-01
Attention deficit and hyperactivity disorder (ADHD) is a prevalent childhood disorder that is often maintained throughout the development and persists into adulthood. Established etiology models suggest that deficient inhibition underlies the core ADHD symptoms. While experimental evidence for impaired motor inhibition is overwhelming, little is known about the sensory inhibition processes, their changes throughout the development, and the relationship to ADHD symptoms. Here, we used the well-established binocular rivalry (BR) paradigm to investigate for the very first time the inhibitory processes related to visual perception in adults with ADHD. In BR, perception alternates between two dichoptically presented images throughout the viewing period, with shorter dominant percept durations and longer transition periods indicating poorer suppression/inhibition. Healthy controls (N = 28) and patients with ADHD (N = 32) were presented with two dissimilar images (orthogonal gratings) separately to each eye through a mirror stereoscope and asked to report their perceptual experiences. There were no differences between groups in any of the BR markers. However, an association between transition durations and symptom severity emerged in the ADHD group. Importantly, an exploratory multiple regression analysis revealed that inattention symptoms were the sole predictor for the duration of transition periods. The lack of impairments to sensory inhibition in adult, but not pediatric ADHD may reflect compensatory changes associated with development, while a correlation between inhibition and inattention symptoms may reveal an invariant core of the disorder.
Helping Children with Sensory Processing Disorders: The Role of Occupational Therapy
ERIC Educational Resources Information Center
Sweet, Margarita
2010-01-01
Normally functioning sensory systems develop through sensory experiences. Children are stimulated through their senses in many different ways. Even though a person's sensory system is intact, he or she may have a sensory processing disorder (SPD), also known as sensory integration dysfunction. This means the person's brain does not correctly…
Neural correlates of inhibitory spillover in adolescence: associations with internalizing symptoms
Del Piero, Larissa; Margolin, Gayla; Kaplan, Jonas T; Saxbe, Darby E
2017-01-01
Abstract This study used an emotional go/no-go task to explore inhibitory spillover (how intentional cognitive inhibition ‘spills over’ to inhibit neural responses to affective stimuli) within 23 adolescents. Adolescents were shown emotional faces and asked to press a button depending on the gender of the face. When asked to inhibit with irrelevant affective stimuli present, adolescents recruited prefrontal cognitive control regions (rIFG, ACC) and ventral affective areas (insula, amygdala). In support of the inhibitory spillover hypothesis, increased activation of the rIFG and down-regulation of the amygdala occurred during negative, but not positive, inhibition trials compared with go trials. Functional connectivity analysis revealed coupling of the rIFG pars opercularis and ventral affective areas during negative no-go trials. Age was negatively associated with activation in frontal and temporal regions associated with inhibition and sensory integration. Internalizing symptoms were positively associated with increased bilateral IFG, ACC, putamen and pallidum. This is the first study to test the inhibitory spillover emotional go/no-go task within adolescents, who may have difficulties with inhibitory control, and to tie it to internalizing symptoms. PMID:28981903
Sex Differences and Self-Reported Attention Problems During Baseline Concussion Testing.
Brooks, Brian L; Iverson, Grant L; Atkins, Joseph E; Zafonte, Ross; Berkner, Paul D
2016-01-01
Amateur athletic programs often use computerized cognitive testing as part of their concussion management programs. There is evidence that athletes with preexisting attention problems will have worse cognitive performance and more symptoms at baseline testing. The purpose of this study was to examine whether attention problems affect assessments differently for male and female athletes. Participants were drawn from a database that included 6,840 adolescents from Maine who completed Immediate Postconcussion Assessment and Cognitive Testing (ImPACT) at baseline (primary outcome measure). The final sample included 249 boys and 100 girls with self-reported attention problems. Each participant was individually matched for sex, age, number of past concussions, and sport to a control participant (249 boys, 100 girls). Boys with attention problems had worse reaction time than boys without attention problems. Girls with attention problems had worse visual-motor speed than girls without attention problems. Boys with attention problems reported more total symptoms, including more cognitive-sensory and sleep-arousal symptoms, compared with boys without attention problems. Girls with attention problems reported more cognitive-sensory, sleep-arousal, and affective symptoms than girls without attention problems. When considering the assessment, management, and outcome from concussions in adolescent athletes, it is important to consider both sex and preinjury attention problems regarding cognitive test results and symptom reporting.
Hypnosis Treatment of Gastrointestinal Disorders: A Comprehensive Review of the Empirical Evidence.
Palsson, Olafur S
2015-10-01
Hypnotherapy has been investigated for 30 years as a treatment for gastrointestinal (GI) disorders. There are presently 35 studies in the published empirical literature, including 17 randomized controlled trials (RCTs) that have assessed clinical outcomes of such treatment. This body of research is reviewed comprehensively in this article. Twenty-four of the studies have tested hypnotherapy for adult irritable bowel syndrome (IBS) and 5 have focused on IBS or abdominal pain in children. All IBS hypnotherapy studies have reported significant improvement in gastrointestinal symptoms, and 7 out of 10 RCTs in adults and all 3 RCTs in pediatric patient samples found superior outcomes for hypnosis compared to control groups. Collectively this body of research shows unequivocally that for both adults and children with IBS, hypnosis treatment is highly efficacious in reducing bowel symptoms and can offer lasting and substantial symptom relief for a large proportion of patients who do not respond adequately to usual medical treatment approaches. For other GI disorders the evidence is more limited, but preliminary indications of therapeutic potential can be seen in the single randomized controlled trials published to date on hypnotherapy for functional dyspepsia, functional chest pain, and ulcerative colitis. Further controlled hypnotherapy trials in those three disorders should be a high priority. The mechanisms underlying the impact of hypnosis on GI problems are still unclear, but findings from a number of studies suggest that they involve both modulation of gut functioning and changes in the brain's handling of sensory signals from the GI tract.
... think about eating. In response to this sensory stimulation, the brain sends impulses through the nerves that ... it based on symptoms, medical history, and a physical exam. Problems With the Pancreas, Liver, and Gallbladder ...
[Chronic Inflammatory Demyelinating Polyneuropathy].
Balke, M; Wunderlich, G; Brunn, A; Fink, G R; Lehmann, H C
2016-12-01
Chronic inflammatory demyelinating polyneuropathy (CIDP) is a chronic progressive or relapsing autoimmune neuropathy with heterogeneous clinical presentation. Symptoms typically include symmetrical, proximal and/or distal paresis and sensory loss. Atypical CIDP variants are increasingly recognized, including subtypes with rapid onset as well as variants with pure sensory, focal or marked asymmetrical deficits. Diagnosis is established by compatible symptoms, characteristic electrophysiological features and cerebrospinal fluid analysis. In unequivocal cases, inflammatory infiltrates in sural nerve biopsy support the diagnosis. Recent studies suggest that diagnostic imaging techniques such as MRI and nerve ultrasound may become useful tools for establishing the diagnosis. First-line therapies include immunoglobulines, steroids, and plasmapheresis. Immunosuppressant agents and monoclonal antibodies are used in therapy-refractory cases or as cortison-saving agents. © Georg Thieme Verlag KG Stuttgart · New York.
Assessing Decreased Sensation and Increased Sensory Phenomena in Diabetic Polyneuropathies
Herrmann, David N.; Staff, Nathan P.; Dyck, P. James B.
2013-01-01
Loss of sensation and increased sensory phenomena are major expressions of varieties of diabetic polyneuropathies needing improved assessments for clinical and research purposes. We provide a neurobiological explanation for the apparent paradox between decreased sensation and increased sensory phenomena. Strongly endorsed is the use of the 10-g monofilaments for screening of feet to detect sensation loss, with the goal of improving diabetic management and prevention of foot ulcers and neurogenic arthropathy. We describe improved methods to assess for the kind, severity, and distribution of both large- and small-fiber sensory loss and which approaches and techniques may be useful for conducting therapeutic trials. The abnormality of attributes of nerve conduction may be used to validate the dysfunction of large sensory fibers. The abnormality of epidermal nerve fibers/1 mm may be used as a surrogate measure of small-fiber sensory loss but appear not to correlate closely with severity of pain. Increased sensory phenomena are recognized by the characteristic words patients use to describe them and by the severity and persistence of these symptoms. Tests of tactile and thermal hyperalgesia are additional markers of neural hyperactivity that are useful for diagnosis and disease management. PMID:24158999
The Inversion of Sensory Processing by Feedback Pathways: A Model of Visual Cognitive Functions.
ERIC Educational Resources Information Center
Harth, E.; And Others
1987-01-01
Explains the hierarchic structure of the mammalian visual system. Proposes a model in which feedback pathways serve to modify sensory stimuli in ways that enhance and complete sensory input patterns. Investigates the functioning of the system through computer simulations. (ML)
Sensory processing disorder: any of a nurse practitioner's business?
Byrne, Mary W
2009-06-01
Children who exhibit the confusing symptom patterns associated with sensory processing deficits are often seen first by primary care providers, including family and pediatric nurse practitioners (NPs). The purpose of this article is to alert NPs to the state of the science for these disorders and to the roles NPs could play in filling the knowledge gaps in assessment, treatment, education, and research. Literature searches using PubMed and MedLine databases and clinical practice observations. Sensory integration disorders have only begun to be defined during the past 35 years. They are not currently included in the DSM IV standard terminology, and are not yet substantively incorporated into most health disciplines' curricula or practice, including those of the NP. NPs are in a unique position to test hypothesized terminology for Sensory Processing Disorder (SPD) by contributing precise clinical descriptions of children who match as well as deviate from the criteria for three proposed diagnostic groups: Sensory Modulation Disorder (SMD), Sensory Discrimination Disorder (SDD), and Sensory-Based Motor Disorder (SBMD). Beyond the SPD diagnostic debate, for children with sensory deficit patterns the NP role can incorporate participating in interdisciplinary treatment plans, refining differential diagnoses, providing frontline referral and support for affected children and their families, and making both secondary prevention and critical causal research possible through validation of consistently accepted diagnostic criteria.
Predictors of Mental Health in Chinese Parents of Children with Autism Spectrum Disorder (ASD)
ERIC Educational Resources Information Center
Su, Xueyun; Cai, Ru Ying; Uljarevic, Mirko
2018-01-01
The aim of this study was to explore the influence of parental intolerance of Uncertainty (IU), sensory sensitivity (SS) and Broader Autism Phenotype (BAP), as well as the severity of their children's autism symptoms and co-morbid symptoms, on the mental health of Chinese parents of children with autism spectrum disorder (ASD). One hundred and…
Nicotinic Acetylcholine Receptors in Sensory Cortex
ERIC Educational Resources Information Center
Metherate, Raju
2004-01-01
Acetylcholine release in sensory neocortex contributes to higher-order sensory function, in part by activating nicotinic acetylcholine receptors (nAChRs). Molecular studies have revealed a bewildering array of nAChR subtypes and cellular actions; however, there is some consensus emerging about the major nAChR subtypes and their functions in…
Modulation of gastrointestinal vagal neurocircuits by hyperglycemia
Browning, Kirsteen N.
2013-01-01
Glucose sensing within autonomic neurocircuits is critical for the effective integration and regulation of a variety of physiological homeostatic functions including the co-ordination of vagally-mediated reflexes regulating gastrointestinal (GI) functions. Glucose regulates GI functions via actions at multiple sites of action, from modulating the activity of enteric neurons, endocrine cells, and glucose transporters within the intestine, to regulating the activity and responsiveness of the peripheral terminals, cell bodies and central terminals of vagal sensory neurons, to modifying both the activity and synaptic responsiveness of central brainstem neurons. Unsurprisingly, significant impairment in GI functions occurs in pathophysiological states where glucose levels are dysregulated, such as diabetes. A substantial obstacle to the development of new therapies to modify the disease, rather than treat the symptoms, are the gaps in our understanding of the mechanisms by which glucose modulates GI functions, particularly vagally-mediated responses and a more complete understanding of disease-related plasticity within these neurocircuits may open new avenues and targets for research. PMID:24324393
Susceptibility of Primary Sensory Cortex to Spreading Depolarizations.
Bogdanov, Volodymyr B; Middleton, Natalie A; Theriot, Jeremy J; Parker, Patrick D; Abdullah, Osama M; Ju, Y Sungtaek; Hartings, Jed A; Brennan, K C
2016-04-27
Spreading depolarizations (SDs) are recognized as actors in neurological disorders as diverse as migraine and traumatic brain injury (TBI). Migraine aura involves sensory percepts, suggesting that sensory cortices might be intrinsically susceptible to SDs. We used optical imaging, MRI, and field potential and potassium electrode recordings in mice and electrocorticographic recordings in humans to determine the susceptibility of different brain regions to SDs. Optical imaging experiments in mice under isoflurane anesthesia showed that both cortical spreading depression and terminal anoxic depolarization arose preferentially in the whisker barrel region of parietal sensory cortex. MRI recordings under isoflurane, ketamine/xylazine, ketamine/isoflurane, and urethane anesthesia demonstrated that the depolarizations did not propagate from a subcortical source. Potassium concentrations showed larger increases in sensory cortex, suggesting a mechanism of susceptibility. Sensory stimulation biased the timing but not the location of depolarization onset. In humans with TBI, there was a trend toward increased incidence of SDs in parietal/temporal sensory cortex compared with other regions. In conclusion, SDs are inducible preferentially in primary sensory cortex in mice and most likely in humans. This tropism can explain the predominant sensory phenomenology of migraine aura. It also demonstrates that sensory cortices are vulnerable in brain injury. Spreading depolarizations (SDs) are involved in neurologic disorders as diverse as migraine and traumatic brain injury. In migraine, the nature of aura symptoms suggests that sensory cortex may be preferentially susceptible. In brain injury, SDs occur at a vulnerable time, during which the issue of sensory stimulation is much debated. We show, in mouse and human, that sensory cortex is more susceptible to SDs. We find that sensory stimulation biases the timing but not the location of the depolarizations. Finally, we show a relative impairment of potassium clearance in sensory cortex, providing a potential mechanism for the susceptibility. Our data help to explain the sensory nature of the migraine aura and reveal that sensory cortices are vulnerable in brain injury. Copyright © 2016 the authors 0270-6474/16/364733-11$15.00/0.
Susceptibility of Primary Sensory Cortex to Spreading Depolarizations
Bogdanov, Volodymyr B.; Middleton, Natalie A.; Theriot, Jeremy J.; Parker, Patrick D.; Abdullah, Osama M.; Ju, Y. Sungtaek; Hartings, Jed A.
2016-01-01
Spreading depolarizations (SDs) are recognized as actors in neurological disorders as diverse as migraine and traumatic brain injury (TBI). Migraine aura involves sensory percepts, suggesting that sensory cortices might be intrinsically susceptible to SDs. We used optical imaging, MRI, and field potential and potassium electrode recordings in mice and electrocorticographic recordings in humans to determine the susceptibility of different brain regions to SDs. Optical imaging experiments in mice under isoflurane anesthesia showed that both cortical spreading depression and terminal anoxic depolarization arose preferentially in the whisker barrel region of parietal sensory cortex. MRI recordings under isoflurane, ketamine/xylazine, ketamine/isoflurane, and urethane anesthesia demonstrated that the depolarizations did not propagate from a subcortical source. Potassium concentrations showed larger increases in sensory cortex, suggesting a mechanism of susceptibility. Sensory stimulation biased the timing but not the location of depolarization onset. In humans with TBI, there was a trend toward increased incidence of SDs in parietal/temporal sensory cortex compared with other regions. In conclusion, SDs are inducible preferentially in primary sensory cortex in mice and most likely in humans. This tropism can explain the predominant sensory phenomenology of migraine aura. It also demonstrates that sensory cortices are vulnerable in brain injury. SIGNIFICANCE STATEMENT Spreading depolarizations (SDs) are involved in neurologic disorders as diverse as migraine and traumatic brain injury. In migraine, the nature of aura symptoms suggests that sensory cortex may be preferentially susceptible. In brain injury, SDs occur at a vulnerable time, during which the issue of sensory stimulation is much debated. We show, in mouse and human, that sensory cortex is more susceptible to SDs. We find that sensory stimulation biases the timing but not the location of the depolarizations. Finally, we show a relative impairment of potassium clearance in sensory cortex, providing a potential mechanism for the susceptibility. Our data help to explain the sensory nature of the migraine aura and reveal that sensory cortices are vulnerable in brain injury. PMID:27122032
[Two cases of hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P)].
Mori, Chiaki; Saito, Tomoko; Saito, Toshio; Fujimura, Harutoshi; Sakoda, Saburo
2015-01-01
We, herein, report two independent cases with hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) inherited in an autosomal dominant fashion. Their common clinical features are slowly progressive proximal dominant muscular atrophy, fasciculations and mild to moderate distal sensory disturbance with areflexia. Nerve conduction study revealed an absence of sensory nerve action potentials, in contrast to almost normal compound muscle action potentials. Gene analysis in both patients elucidated heterozygous mutation (c.854C>T, p.Pro285Leu) in the TFG, which is an identical mutation, already described by Ishiura et al. Okinawa and Shiga are two foci of HMSN-P in Japan. Eventually, one patient is from Okinawa and the other is from a mountain village in Shiga prefecture. When we see a patient who has symptoms suggestive of motor neuron disease with sensory neuropathy, HMSN-P should be considered as a differential diagnosis despite the patient's actual resident place.
Tudela-Torras, M; Abad-Mas, L; Tudela-Torras, E
2017-02-24
Today, the fact that sensory integration difficulties with a neurological basis exist and that they seriously condition the development of those individuals who suffer from them is widely accepted and acknowledged as being obvious by the vast majority of professionals working in the field of community healthcare. However, less is known and there is more controversy about effective treatments that can be applied to them. This is because many professionals criticise the fact that there is not enough scientific evidence to prove, both quantitatively and empirically, the outcomes of the interventions implemented as alternatives to pharmacological therapy. Consequently, when the symptoms and repercussions on the quality of life deriving from a distorted sensory integration are really disabling for the person, pharmacological treatment is used as the only possible approach, with the side effects that this entails. The reason for this is largely the fact that little is known about other effective therapeutic approaches, such as occupational therapy based on sensory integration.
Sensation during Active Behaviors
Cardin, Jessica A.; Chiappe, M. Eugenia; Halassa, Michael M.; McGinley, Matthew J.; Yamashita, Takayuki
2017-01-01
A substantial portion of our sensory experience happens during active behaviors such as walking around or paying attention. How do sensory systems work during such behaviors? Neural processing in sensory systems can be shaped by behavior in multiple ways ranging from a modulation of responsiveness or sharpening of tuning to a dynamic change of response properties or functional connectivity. Here, we review recent findings on the modulation of sensory processing during active behaviors in different systems: insect vision, rodent thalamus, and rodent sensory cortices. We discuss the circuit-level mechanisms that might lead to these modulations and their potential role in sensory function. Finally, we highlight the open questions and future perspectives of this exciting new field. PMID:29118211
Boone, Kelly M; Gracious, Barbara; Klebanoff, Mark A; Rogers, Lynette K; Rausch, Joseph; Coury, Daniel L; Keim, Sarah A
2017-12-01
Despite advances in the health and long-term survival of infants born preterm, they continue to face developmental challenges including higher risk for autism spectrum disorder (ASD) and atypical sensory processing patterns. This secondary analysis aimed to describe sensory profiles and explore effects of combined dietary docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and gamma-linolenic acid (GLA) supplementation on parent-reported sensory processing in toddlers born preterm who were exhibiting ASD symptoms. 90-day randomized, double blinded, placebo-controlled trial. 31 children aged 18-38months who were born at ≤29weeks' gestation. Mixed effects regression analyses followed intent to treat and explored effects on parent-reported sensory processing measured by the Infant/Toddler Sensory Profile (ITSP). Baseline ITSP scores reflected atypical sensory processing, with the majority of atypical scores falling below the mean. Sensory processing sections: auditory (above=0%, below=65%), vestibular (above=13%, below=48%), tactile (above=3%, below=35%), oral sensory (above=10%; below=26%), visual (above=10%, below=16%); sensory processing quadrants: low registration (above=3%; below=71%), sensation avoiding (above=3%; below=39%), sensory sensitivity (above=3%; below=35%), and sensation seeking (above=10%; below=19%). Twenty-eight of 31 children randomized had complete outcome data. Although not statistically significant (p=0.13), the magnitude of the effect for reduction in behaviors associated with sensory sensitivity was medium to large (effect size=0.57). No other scales reflected a similar magnitude of effect size (range: 0.10 to 0.32). The findings provide support for larger randomized trials of omega fatty acid supplementation for children at risk of sensory processing difficulties, especially those born preterm. Copyright © 2017 Elsevier B.V. All rights reserved.
NEUROPHYSIOLOGICAL EVALUATION OF SENSORY SYSTEMS'
Exposure to many neurotoxic compounds has been shown to produce a sensory system dysfunction. Neurophysiological assessment of sensory function in humans and animal models often uses techniques known as sensory evoked potentials. Because both humans and animals show analogous res...
2013-01-01
Background Cervical facet block (FB) procedures are often used as a diagnostic precursor to radiofrequency neurotomies (RFN) in the management of chronic whiplash associated disorders (WAD). Some individuals will respond to the FB procedures and others will not respond. Such responders and non-responders provided a sample of convenience to question whether there were differences in their physical and psychological features. This information may inform future predictive studies and ultimately the clinical selection of patients for FB procedures. Methods This cross-sectional study involved 58 individuals with chronic WAD who responded to cervical FB procedures (WAD_R); 32 who did not respond (WAD_NR) and 30 Healthy Controls (HC)s. Measures included: quantitative sensory tests (pressure; thermal pain thresholds; brachial plexus provocation test); nociceptive flexion reflex (NFR); motor function (cervical range of movement (ROM); activity of the superficial neck flexors during the cranio-cervical flexion test (CCFT). Self-reported measures were gained from the following questionnaires: neuropathic pain (s-LANSS); psychological distress (General Health Questionnaire-28), post-traumatic stress (PDS) and pain catastrophization (PCS). Individuals with chronic whiplash attended the laboratory once the effects of the blocks had abated and symptoms had returned. Results Following FB procedures, both WAD groups demonstrated generalized hypersensitivity to all sensory tests, decreased neck ROM and increased superficial muscle activity with the CCFT compared to controls (p < 0.05). There were no significant differences between WAD groups (all p > 0.05). Both WAD groups demonstrated psychological distress (GHQ-28; p < 0.05), moderate post-traumatic stress symptoms and pain catastrophization. The WAD_NR group also demonstrated increased medication intake and elevated PCS scores compared to the WAD_R group (p < 0.05). Conclusions Chronic WAD responders and non-responders to FB procedures demonstrate a similar presentation of sensory disturbance, motor dysfunction and psychological distress. Higher levels of pain catastrophization and greater medication intake were the only factors found to differentiate these groups. PMID:24188899
Huang, Peng; Sengupta, Dilip K
2014-04-15
A single-center retrospective study. To compare the speed of recovery of different sensory symptoms, pain, numbness, and paresthesia, after lumbar nerve root decompression. Lumbar radiculopathy is characterized by different sensory symptoms like pain, numbness, and paresthesia, which may resolve at different rates after surgical decompression. Eighty-five cases with predominant lumbar radiculopathy treated surgically were reviewed. Oswestry Disability Index score, 36-Item Short Form Health Survey scores (Physical Component Summary and Mental Component Summary), and pain drawing at preoperative and at 6 weeks, 3 months, 6 months, and 1-year follow-up were reviewed. Recovery rate between different sensory symptoms were compared in all patients, and between the short-term compression (<6 mo) and long-term compression groups. At baseline, 73 (85.8%) patients had pain, 63 (74.1%) had numbness, and 38 (44.7%) had paresthesia; 28 (32.9%) had all these 3 component of sensory symptoms. Mean pain score improved fastest (55.3% at 6 wk); further resolution until 1 year was slow and not significant compared with each previous visit. Both numbness and paresthesia scores showed a trend of faster recovery during the initial 6-week period (20.5% and 24%, respectively); paresthesia recovery reached a plateau at 3 months postoperatively, but numbness continued a slow recovery until 1-year follow-up. Both Oswestry Disability Index score and Physical Component Summary scores (54.02 ± 1.87 and 26.29 ± 0.93, respectively, at baseline) improved significantly compared with each previous visits at 6 weeks and 3 months postoperatively, but further improvement was insignificant. Mental Component Summary showed a similar trend but smaller improvement. The short-term compression group had faster recovery of pain than the long-term compression group. In lumbar radiculopathy patients after surgical decompression, pain recovers fastest, in the first 6 weeks postoperatively, followed by paresthesia recovery that plateaus at 3 months postoperatively. Numbness recovers at a slower pace but continues until 1 year. 4.
Clauw, Daniel J; Williams, David A
2002-05-01
Pain and fatigue are commonly associated with work-related upper extremity disorders. Occasionally these symptoms persist beyond a reasonable healing period. One potential explanation for prolonged symptom expression is the concurrent development of a stress-mediated illness or CMI (Chronic Multi-Symptom Illness). In such a scenario, the chronic regional pain and other symptoms that the individual is experiencing would be attributable to the CMI rather than to tissue damage or a biomechanical dysfunction of the upper-extremity. This article critically reviews the case definitions of the new class of CMI disorders and evaluates the existing evidence supporting centrally mediated physiological changes (e.g., sensory hypervigilance, dysautonomia) that manifest as symptoms of pain and fatigue in some individuals experiencing chronic stressors. While explanations for prolonged pain and fatigue have historically focused on mechanisms involving peripheral pathology or psychiatric explanations, ample evidences support the role of altered Central Nervous System function in accounting for symptom manifestation in CMI. A model is presented that unites seemingly disparate findings across numerous investigations and provides a framework for understanding how genetics, triggering events, stressors, and early life events can affect CNS activity. Resultant symptom expression (e.g., pain and fatigue) from central dysregulation would be expected to occur in a subset of individuals in the population, including a subset of individuals with work-related upper extremity disorders. Thus when symptoms such as pain and fatigue persist beyond a reasonable period, consideration of CMI and associated assessment and interventions focused on central mechanisms may be worthwhile.
Johnston, Venerina; Jimmieson, Nerina L; Jull, Gwendolen; Souvlis, Tina
2009-10-01
This study investigated the relative contribution of individual, workplace, psychosocial and physiological features associated with neck pain in female office workers towards developing appropriate intervention programs. Workers without disability (Neck Disability Index (NDI) score < or = 8, n=33); workers with neck pain and disability (NDI > or = 9/100, n=52) and 22 controls (women who did not work and without neck pain) participated in this study. Two logistic regression models were constructed to test the association between various measures in (1) workers with and without disability, and (2) workers without disability and controls. Measures included those found to be significantly associated with higher NDI in our previous studies: psychosocial domains; individual factors; task demands; quantitative sensory measures and measures of motor function. In the final model, higher score on negative affectivity scale (OR=4.47), greater activity in the neck flexors during cranio-cervical flexion (OR=1.44), cold hyperalgesia (OR=1.27) and longer duration of symptoms (OR=1.19) remained significantly associated with neck pain in workers. Workers without disability and controls could only be differentiated by greater muscle activity in the cervical flexors and extensors during a typing task. No psychosocial domains remained in either regression model. These results suggest that impairments in the sensory and motor system should be considered in any assessment of the office worker with neck pain and may have stronger influences on the presenting symptoms than workplace and psychosocial features.
Computational Psychiatry: towards a mathematically informed understanding of mental illness
Huys, Quentin J M; Roiser, Jonathan P
2016-01-01
Computational Psychiatry aims to describe the relationship between the brain's neurobiology, its environment and mental symptoms in computational terms. In so doing, it may improve psychiatric classification and the diagnosis and treatment of mental illness. It can unite many levels of description in a mechanistic and rigorous fashion, while avoiding biological reductionism and artificial categorisation. We describe how computational models of cognition can infer the current state of the environment and weigh up future actions, and how these models provide new perspectives on two example disorders, depression and schizophrenia. Reinforcement learning describes how the brain can choose and value courses of actions according to their long-term future value. Some depressive symptoms may result from aberrant valuations, which could arise from prior beliefs about the loss of agency (‘helplessness’), or from an inability to inhibit the mental exploration of aversive events. Predictive coding explains how the brain might perform Bayesian inference about the state of its environment by combining sensory data with prior beliefs, each weighted according to their certainty (or precision). Several cortical abnormalities in schizophrenia might reduce precision at higher levels of the inferential hierarchy, biasing inference towards sensory data and away from prior beliefs. We discuss whether striatal hyperdopaminergia might have an adaptive function in this context, and also how reinforcement learning and incentive salience models may shed light on the disorder. Finally, we review some of Computational Psychiatry's applications to neurological disorders, such as Parkinson's disease, and some pitfalls to avoid when applying its methods. PMID:26157034
Cognitive, sensory and physical factors enabling driving safety in older adults.
Anstey, Kaarin J; Wood, Joanne; Lord, Stephen; Walker, Janine G
2005-01-01
We reviewed literature on cognitive, sensory, motor and physical factors associated with safe driving and crash risk in older adults with the goal of developing a model of factors enabling safe driving behaviour. Thirteen empirical studies reporting associations between cognitive, sensory, motor and physical factors and either self-reported crashes, state crash records or on-road driving measures were identified. Measures of attention, reaction time, memory, executive function, mental status, visual function, and physical function variables were associated with driving outcome measures. Self-monitoring was also identified as a factor that may moderate observed effects by influencing driving behavior. We propose that three enabling factors (cognition, sensory function and physical function/medical conditions) predict driving ability, but that accurate self-monitoring of these enabling factors is required for safe driving behaviour.
The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse".
Perez-Burgos, Azucena; Mao, Yu-Kang; Bienenstock, John; Kunze, Wolfgang A
2014-07-01
It is generally accepted that intestinal sensory vagal fibers are primary afferent, responding nonsynaptically to luminal stimuli. The gut also contains intrinsic primary afferent neurons (IPANs) that respond to luminal stimuli. A psychoactive Lactobacillus rhamnosus (JB-1) that affects brain function excites both vagal fibers and IPANs. We wondered whether, contrary to its primary afferent designation, the sensory vagus response to JB-1 might depend on IPAN to vagal fiber synaptic transmission. We recorded ex vivo single- and multiunit afferent action potentials from mesenteric nerves supplying mouse jejunal segments. Intramural synaptic blockade with Ca(2+) channel blockers reduced constitutive or JB-1-evoked vagal sensory discharge. Firing of 60% of spontaneously active units was reduced by synaptic blockade. Synaptic or nicotinic receptor blockade reduced firing in 60% of vagal sensory units that were stimulated by luminal JB-1. In control experiments, increasing or decreasing IPAN excitability, respectively increased or decreased nerve firing that was abolished by synaptic blockade or vagotomy. We conclude that >50% of vagal afferents function as interneurons for stimulation by JB-1, receiving input from an intramural functional "sensory synapse." This was supported by myenteric plexus nicotinic receptor immunohistochemistry. These data offer a novel therapeutic target to modify pathological gut-brain axis activity.-Perez-Burgos, A., Mao, Y.-K., Bienenstock, J., Kunze, W. A. The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse." © FASEB.
He, Qianru; Man, Lili; Ji, Yuhua; Zhang, Shuqiang; Jiang, Maorong; Ding, Fei; Gu, Xiaosong
2012-06-01
Peripheral sensory and motor nerves have different functions and different approaches to regeneration, especially their distinct ability to accurately reinervate terminal nerve pathways. To understand the molecular aspects underlying these differences, the proteomics technique by coupling isobaric tags for relative and absolute quantitation (iTRAQ) with online two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) was used to investigate the protein profile of sensory and motor nerve samples from rats. A total of 1472 proteins were identified in either sensory or motor nerve. Of them, 100 proteins showed differential expressions between both nerves, and some of them were validated by quantitative real time RT-PCR, Western blot analysis, and immunohistochemistry. In the light of functional categorization, the differentially expressed proteins in sensory and motor nerves, belonging to a broad range of classes, were related to a diverse array of biological functions, which included cell adhesion, cytoskeleton, neuronal plasticity, neurotrophic activity, calcium-binding, signal transduction, transport, enzyme catalysis, lipid metabolism, DNA-binding, synaptosome function, actin-binding, ATP-binding, extracellular matrix, and commitment to other lineages. The relatively higher expressed proteins in either sensory or motor nerve were tentatively discussed in combination with their specific molecular characteristics. It is anticipated that the database generated in this study will provide a solid foundation for further comprehensive investigation of functional differences between sensory and motor nerves, including the specificity of their regeneration.
Oswald, Matthew C. W.; West, Ryan J. H.; Lloyd-Evans, Emyr; Sweeney, Sean T.
2015-01-01
Hereditary sensory and autonomic neuropathy type 1 (HSAN1) is characterized by a loss of distal peripheral sensory and motorneuronal function, neuropathic pain and tissue necrosis. The most common cause of HSAN1 is due to dominant mutations in serine palmitoyl-transferase subunit 1 (SPT1). SPT catalyses the condensation of serine with palmitoyl-CoA, the initial step in sphingolipid biogenesis. Identified mutations in SPT1 are known to both reduce sphingolipid synthesis and generate catalytic promiscuity, incorporating alanine or glycine into the precursor sphingolipid to generate a deoxysphingoid base (DSB). Why either loss of function in SPT1, or generation of DSBs should generate deficits in distal sensory function remains unclear. To address these questions, we generated a Drosophila model of HSAN1. Expression of dSpt1 bearing a disease-related mutation induced morphological deficits in synapse growth at the larval neuromuscular junction consistent with a dominant-negative action. Expression of mutant dSpt1 globally was found to be mildly toxic, but was completely toxic when the diet was supplemented with alanine, when DSBs were observed in abundance. Expression of mutant dSpt1 in sensory neurons generated developmental deficits in dendritic arborization with concomitant sensory deficits. A membrane trafficking defect was observed in soma of sensory neurons expressing mutant dSpt1, consistent with endoplasmic reticulum (ER) to Golgi block. We found that we could rescue sensory function in neurons expressing mutant dSpt1 by co-expressing an effector of ER–Golgi function, Rab1 suggesting compromised ER function in HSAN1 affected dendritic neurons. Our Drosophila model identifies a novel strategy to explore the pathological mechanisms of HSAN1. PMID:26395456
ERIC Educational Resources Information Center
Pagano, John
2005-01-01
Functionally Approached Body (FAB) Strategies offer a clinical approach to help parents of young children with behavioral and sensory processing strategies. This article introduces the FAB Strategies, clinical strategies developed by the author for understanding and addressing young children's behavioral and sensory processing challenges. The FAB…
Barbosa, Rafael Inácio; Fonseca, Marisa de Cássia Registro; Rodrigues, Eula Katucha da Silva; Tamanini, Guilherme; Marcolino, Alexandre Marcio; Mazzer, Nilton; Guirro, Rinaldo Roberto de Jesus; MacDermid, Joy
2016-08-10
Compare the efficacy of orthoses and patient education with and without the addition to Low-Level Laser Therapy (LLLT - 660 nm, 30 mW, a continuous regime and bean area of 0.06 cm2). The laser irradiation was delivered with the fluency of 10J/cm2 in patients with mild and moderate Carpal Tunnel Syndrome (CTS). 48 patients were randomized and 30 finished the protocol (a sample loss of 37.5%), 90% female and 10% males. Randomization was applied to allocate the patients in each one of the groups, with association or not to LLLT (group orthoses or LLLT and orthoses). All of them were submitted to ergonomic home orientations. The short-term symptoms and function outcome were assessed through: Boston Carpal Tunnel Questionnaire (BCTQ) - Severity of Symptoms (SS) Functional Score (FS). Pain (VAS), Semmes-Weinstein monofilaments, 2PD and pinch strength was used for characterization of the sample. Most of the participants were women, over 4th decade enrolled on heavy hand duties occupations, right-handed, 66.7% affected on dominant hand, without alterations in sensory median nerve thresholds or pinch strength. Both groups showed a reduction of total BCTQ score and its subdomains after six weeks, with significant difference (p< 0.05), comparing to baseline. No significant difference was found between groups. A Minimal clinical change was observed after the intervention in 92.3% of participants for BCTQ subdomain severity of symptoms at individual comparison for LLLT and orthoses group and 76.5% for the orthoses group, demonstrating clinical relevance. Effect size Cohen's index was moderate for the severity of symptoms. LLLT in association to orthoses and ergonomic orientation seems to be effective in short-term symptoms relieve for patients with mild and moderate CTS.
Saunders, Gabrielle H; Echt, Katharina V
2012-01-01
Combat exposures to blast can result in both peripheral damage to the ears and eyes and central damage to the auditory and visual processing areas in the brain. The functional effects of the latter include visual, auditory, and cognitive processing difficulties that manifest as deficits in attention, memory, and problem solving--symptoms similar to those seen in individuals with visual and auditory processing disorders. Coexisting damage to the auditory and visual system is referred to as dual sensory impairment (DSI). The number of Operation Iraqi Freedom/Operation Enduring Freedom Veterans with DSI is vast; yet currently no established models or guidelines exist for assessment, rehabilitation, or service-delivery practice. In this article, we review the current state of knowledge regarding blast exposure and DSI and outline the many unknowns in this area. Further, we propose a model for clinical assessment and rehabilitation of blast-related DSI that includes development of a coordinated team-based approach to target activity limitations and participation restrictions in order to enhance reintegration, recovery, and quality of life.
[Sensory functions and Alzheimer's disease: a multi-disciplinary approach].
Kenigsberg, Paul-Ariel; Aquino, Jean-Pierre; Berard, Alain; Boucart, Muriel; Bouccara, Didier; Brand, Gérard; Charras, Kevin; Garcia-Larrea, Luis; Gzil, Fabrice; Krolak-Salmon, Pierre; Madjlessi, Arach; Malaquin-Pavan, Évelyne; Penicaud, Luc; Platel, Hervé; Pozzo, Thierry; Reintjens, Christophe; Salmon, Éric; Vergnon, Laurent; Robert, Philippe
2015-09-01
Relations between sensory functions and Alzheimer's disease are still under-explored. To understand them better, the Fondation Médéric Alzheimer has brought together a multi-disciplinary expert group. Aristote's five senses must be enhanced by today's knowledge of proprioception, motor cognition and pain perception. When cognition breaks down, the person with dementia perceives the world around her with her sensory experience, yet is unable to integrate all this information to understand the context. The treatment of multiple sensory inputs by the brain is closely linked to cognitive processes. Sensory deficits reduce considerably the autonomy of people with dementia in their daily life and their relations with others, increase their social isolation and the risk of accidents. Professionals involved with neurodegenerative diseases remain poorly aware of sensory deficits, which can bias the results of cognitive tests. However, there are simple tools to detect these deficits, notably for vision, hearing and balance disorders, which can be corrected. Many interventions for cognitive rehabilitation or quality of life improvement are based on sensory functions. The environment of people with dementia must be adapted to become understandable, comfortable, safe and eventually therapeutic.
Upper gastrointestinal sensory-motor dysfunction in diabetes mellitus
Zhao, Jing-Bo; Frøkjær, Jens Brøndum; Drewes, Asbjørn Mohr; Ejskjaer, Niels
2006-01-01
Gastrointestinal (GI) sensory-motor abnormalities are common in patients with diabetes mellitus and may involve any part of the GI tract. Abnormalities are frequently sub-clinical, and fortunately only rarely do severe and life-threatening problems occur. The pathogenesis of abnormal upper GI sensory-motor function in diabetes is incompletely understood and is most likely multi-factorial of origin. Diabetic autonomic neuropathy as well as acute suboptimal control of diabetes has been shown to impair GI motor and sensory function. Morphological and biomechanical remodeling of the GI wall develops during the duration of diabetes, and may contribute to motor and sensory dysfunction. In this review sensory and motility disorders of the upper GI tract in diabetes is discussed; and the morphological changes and biomechanical remodeling related to the sensory-motor dysfunction is also addressed. PMID:16718808
Ion channels and neuronal hyperexcitability in chemotherapy-induced peripheral neuropathy
Goldstein, Peter A
2017-01-01
Cancer is the second leading cause of death worldwide and is a major global health burden. Significant improvements in survival have been achieved, due in part to advances in adjuvant antineoplastic chemotherapy. The most commonly used antineoplastics belong to the taxane, platinum, and vinca alkaloid families. While beneficial, these agents are frequently accompanied by severe side effects, including chemotherapy-induced peripheral neuropathy (CPIN). While CPIN affects both motor and sensory systems, the majority of symptoms are sensory, with pain, tingling, and numbness being the predominant complaints. CPIN not only decreases the quality of life of cancer survivors but also can lead to discontinuation of treatment, thereby adversely affecting survival. Consequently, minimizing the incidence or severity of CPIN is highly desirable, but strategies to prevent and/or treat CIPN have proven elusive. One difficulty in achieving this goal arises from the fact that the molecular and cellular mechanisms that produce CPIN are not fully known; however, one common mechanism appears to be changes in ion channel expression in primary afferent sensory neurons. The processes that underlie chemotherapy-induced changes in ion channel expression and function are poorly understood. Not all antineoplastic agents directly affect ion channel function, suggesting additional pathways may contribute to the development of CPIN Indeed, there are indications that these drugs may mediate their effects through cellular signaling pathways including second messengers and inflammatory cytokines. Here, we focus on ion channelopathies as causal mechanisms for CPIN and review the data from both pre-clinical animal models and from human studies with the aim of facilitating the development of appropriate strategies to prevent and/or treat CPIN. PMID:28580836
Söderlund, Göran B. W.; Jobs, Elisabeth Nilsson
2016-01-01
The most common neuropsychiatric condition in the in children is attention deficit hyperactivity disorder (ADHD), affecting ∼6–9% of the population. ADHD is distinguished by inattention and hyperactive, impulsive behaviors as well as poor performance in various cognitive tasks often leading to failures at school. Sensory and perceptual dysfunctions have also been noticed. Prior research has mainly focused on limitations in executive functioning where differences are often explained by deficits in pre-frontal cortex activation. Less notice has been given to sensory perception and subcortical functioning in ADHD. Recent research has shown that children with ADHD diagnosis have a deviant auditory brain stem response compared to healthy controls. The aim of the present study was to investigate if the speech recognition threshold differs between attentive and children with ADHD symptoms in two environmental sound conditions, with and without external noise. Previous research has namely shown that children with attention deficits can benefit from white noise exposure during cognitive tasks and here we investigate if noise benefit is present during an auditory perceptual task. For this purpose we used a modified Hagerman’s speech recognition test where children with and without attention deficits performed a binaural speech recognition task to assess the speech recognition threshold in no noise and noise conditions (65 dB). Results showed that the inattentive group displayed a higher speech recognition threshold than typically developed children and that the difference in speech recognition threshold disappeared when exposed to noise at supra threshold level. From this we conclude that inattention can partly be explained by sensory perceptual limitations that can possibly be ameliorated through noise exposure. PMID:26858679
Schrepf, Andrew; Williams, David A; Gallop, Robert; Naliboff, Bruce; Basu, Neil; Kaplan, Chelsea; Harper, Daniel E; Landis, Richard; Clemens, J Quentin; Strachan, Eric; Griffith, James W; Afari, Niloofar; Hassett, Afton; Pontari, Michel A; Clauw, Daniel J; Harte, Steven E
2018-05-28
Chronic Overlapping Pain Conditions (COPCs) are characterized by aberrant central nervous system processing of pain. This 'centralized pain' phenotype has been described using a large and diverse set of symptom domains, including the spatial distribution of pain, pain intensity, fatigue, mood imbalances, cognitive dysfunction, altered somatic sensations, and hypersensitivity to external stimuli. Here we used three cohorts, including patients with Urologic Chronic Pelvic Pain Syndrome (UCPPS), a mixed pain cohort with other COPCs, and healthy individuals (total n = 1039) from the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network to explore the factor structure of symptoms of centralized pain. Using exploratory and confirmatory factor analysis, we identified two general factors in all three cohorts, one characterized by a broad increased sensitivity to internal somatic sensations and environmental stimuli, and diffuse pain, termed Generalized Sensory Sensitivity (GSS), and one characterized by constitutional symptoms - Sleep, Pain, Affect, Cognition, Energy (SPACE). Longitudinal analyses in the UCPPS cohort found the same two factor structure at month six and one year, suggesting that the two factor structure is reproducible over time. In secondary analyses we found that GSS particularly is associated with the presence of comorbid COPCs, while SPACE shows modest associations with measures of disability and urinary symptoms. These factors may represent important and distinct continuum of symptoms that are indicative of the centralized pain phenotype at high levels. Future research of COPCs should accommodate the measurement of each factor.
Somatization disorders in dermatology.
Gupta, Madhulika A
2006-02-01
This paper reviews a wide range of somatization-related symptoms that are encountered in dermatology. These include the unexplained cutaneous sensory syndromes especially the cutaneous dysesthesias associated with pain, numbness and pruritus; traumatic memories in post-traumatic stress disorder (PTSD) which are experienced on a sensory level as 'body memories' and may present as local or generalized pruritic states, urticaria and angioedema; and unexplained flushing reactions and profuse perspiration, in addition to unexplained exacerbations of stress-reactive dermatoses such as psoriasis and atopic eczema secondary to the autonomic hyperarousal in PTSD; classic 'pseudoneurologic' symptoms associated with dissociation including unexplained loss of touch or pain, in addition to the self-induced dermatoses such as dermatitis artefacta and trichotillomania that are encountered with dissociative states; and body dysmorphic disorder where the patient often presents with a somatic preoccupation involving the skin or hair.
Mental and behavioral disorders among people with congenital deafblindness.
Dammeyer, Jesper
2011-01-01
The population of people with congenital deafblindness faces challenges concerning communication and mobility. Due to the significance of the sensory loss it is difficult to diagnose mental and behavioral disorders. This article investigates the prevalence of mental and behavioral disorders among 95 congenitally deafblind adults. Seventy-four percent were found to have a mental and/or behavioral diagnose. Mental retardation was found among 34%, psychosis among 13%. Mental and behavioral disorders, especially with symptoms of psychosis and mental retardation, are common among people with congenital deafblindness. Clinical experience is needed, as well as cross-disciplinary cooperation and specialized diagnostic methods together with a observation and intervention period in order to be able to assess and differentiate mental and behavioral symptoms from sensory deprivation in people with congenital deafblindness. Copyright © 2010 Elsevier Ltd. All rights reserved.
The bothersomeness of sciatica: patients’ self-report of paresthesia, weakness and leg pain
Haugen, Anne Julsrud; Keller, Anne; Natvig, Bård; Brox, Jens Ivar; Grotle, Margreth
2009-01-01
The objective of the study was to investigate how patients with sciatica due to disc herniation rate the bothersomeness of paresthesia and weakness as compared to leg pain, and how these symptoms are associated with socio-demographic and clinical characteristics. A cross-sectional study was conducted on 411 patients with clinical signs of radiculopathy. Items from the Sciatica Bothersomeness Index (0 = none to 6 = extremely) were used to establish values for paresthesia, weakness and leg pain. Associations with socio-demographic and clinical variables were analyzed by multiple linear regression. Mean scores (SD) were 4.5 (1.5) for leg pain, 3.4 (1.8) for paresthesia and 2.6 (2.0) for weakness. Women reported higher levels of bothersomeness for all three symptoms with mean scores approximately 10% higher than men. In the multivariate models, more severe symptoms were associated with lower physical function and higher emotional distress. Muscular paresis explained 19% of the variability in self-reported weakness, sensory findings explained 10% of the variability in paresthesia, and straight leg raising test explained 9% of the variability in leg pain. In addition to leg pain, paresthesia and weakness should be assessed when measuring symptom severity in sciatica. PMID:19488793
Streckmann, Fiona; Balke, Maryam; Lehmann, Helmar C; Rustler, Vanessa; Koliamitra, Christina; Elter, Thomas; Hallek, Michael; Leitzmann, Michael; Steinmetz, Tilman; Heinen, Petra; Baumann, Freerk T; Bloch, Wilhelm
2018-01-10
Chemotherapy-induced peripheral neuropathy (CIPN) is a common and clinically relevant side effect of chemotherapy. Approximately 50% of all leukemia, lymphoma, colorectal- and breast cancer patients are affected. CIPN is induced by neurotoxic chemotherapeutic agents and can manifest with sensory and/or motor deficits. It is associated with significant disability and poor recovery. Common symptoms include pain, altered sensation, reduced or absent reflexes, muscle weakness, reduced balance control and insecure gait. These symptoms not only affect activities of daily living, subsequently reducing patients' quality of life, they have far more become a decisive limiting factor for medical therapy, causing treatment delays, dose reductions, or even discontinuation of therapy, which can affect the outcome and compromise survival. To date, CIPN cannot be prevented and its occurrence presents a diagnostic dilemma since approved and effective treatment options are lacking. Promising results have recently been achieved with exercise. We have revealed that sensorimotor training (SMT) or whole body vibration (WBV) can reduce the symptoms of CIPN and attenuate motor and sensory deficits. We furthermore detected a tendency that it may also have a preventive effect on the onset of CIPN. We are therefore conducting a prospective, multicentre, controlled clinical trial involving 236 oncological patients receiving either oxaliplatin (N = 118) or vinca-alkaloid (N = 118) who are randomized to one of two interventions (SMT or WBV) or a treatment as usual (TAU) group. Primary endpoint is the time to incidence of neurologically confirmed CIPN. Secondary endpoints are pain, maintenance of the functionality of sensory as well as motor nerve fibres as well as the level of physical activity. The baseline assessment is performed prior to the first cycle of chemotherapy. Subsequent follow-up assessments are conducted at 12 weeks, after completion of chemotherapy, and at a 3-month follow-up. Patients who develop CIPN receive an additional assessment at this time point, as it represents the primary endpoint. We hypothesize that SMT and WBV prevent the onset or delay the progression of CIPN, decrease the likelihood of dose reductions or discontinuation of cancer treatment and improve patients' quality of life. Deutsche Register Klinischer Studien ( DRKS00006088 , registered 07.05.2014).
Somatosensory disturbance by methylmercury exposure.
Takaoka, Shigeru; Kawakami, Yoshinobu; Fujino, Tadashi; Oh-ishi, Fumihiro; Motokura, Fukuo; Kumagai, Yoshio; Miyaoka, Tetsu
2008-05-01
Minamata disease is methylmercury poisoning from consuming fish and shellfish contaminated by industrial waste. The polluted seafood was widely consumed in the area around Minamata, but many individuals were never examined for or classified as having Minamata disease. Following the determination of the Supreme Court of Japan in October 2004 that the Japanese Government was responsible for spreading Minamata disease, over 13,000 residents came forward to be examined for Minamata disease. We studied 197 residents from the Minamata area who had a history of fish consumption during the polluted period to determine the importance of sensory symptoms and findings in making a diagnosis of Minamata disease. We divided the exposed subjects into non-complicated (E) and complicated (E+N) groups based on the absence or presence of other neurological or neurologically related disorders and compared them to residents in control area (C) after matching for age and sex. We quantitatively measured four somatosensory modalities (minimal tactile sense by Semmes-Weinstein monofilaments, vibration sense, position sense, and two-point discrimination) and did psychophysical tests of fine-surface-texture discrimination. Subjective complaints were higher in groups E and E+N than C. Over 90% of E+N and E subjects displayed a sensory disturbance on conventional neurological examination and 28% had visual constriction. About 50% of the E and E +N groups had upper and lower extremity ataxia and about 70% had truncal ataxia. The prevalence of these neurological findings was significantly higher in exposed subjects than controls. All sensory modalities were impaired in the E and E+N groups. All four quantitatively measured sensory modalities were correlated. The prevalence of complaints, neurological findings, and sensory impairment was similar or a little worse in group E+N than in group E. We conclude that sensory symptoms and findings are important in making the diagnosis of Minamata disease and that they can be determined even in the presence of neurological or neurologically related diseases.
The Effects of Blood Glucose Levels on Cognitive Performance: A Review of the Literature
NASA Technical Reports Server (NTRS)
Feldman, Jolene; Barshi, Immanuel
2007-01-01
The purpose of this review paper is to discuss the research literature on the effects of blood glucose levels on executive and non-executive functions in humans. The review begins with a brief description of blood glucose, how it has been studied, previous syntheses of prior studies, and basic results regarding the role of blood glucose on cognitive functioning. The following sections describe work that investigated the effect of blood glucose on both non-executive and executive functions (e.g., sensory processing, psychomotor functioning, attention, vigilance, memory, language and communication, judgement and decision-making, and complex task performance). Within each section, summaries of the findings and challenges to the literature are included. Measurement conversions of blood glucose levels, blood glucose values, and associated symptoms are depicted. References to the types of tests used to investigate blood glucose and cognitive performance are provided. For more detailed descriptions of references within (and in addition to) this paper, an annotated bibliography is also provided. Several moderator variables including individual differences and contextual variables related to the effects of blood glucose levels on performance (e.g., age, gender, time of day, familiarity with the task and symptom awareness, expectancy effects, dose dependent effects, time dependent effects, task specific effects, rising and falling blood glucose levels, and speed and/or accuracy trade-offs) are addressed later in the paper. Some suggestions for future experimental methodologies are also made.
ERIC Educational Resources Information Center
Hilton, Claudia L.; Harper, Jacquelyn D.; Kueker, Rachel Holmes; Lang, Andrea Runzi; Abbacchi, Anna M.; Todorov, Alexandre; LaVesser, Patricia D.
2010-01-01
This study examines the relationship between sensory responsiveness and social severity in children with high functioning autism spectrum disorders (HFASD; N = 36) and age-matched controls (N = 26) between 6 and 10 years old. Significant relationships were found between social responsiveness scale scores and each of the six sensory profile sensory…
ERIC Educational Resources Information Center
Zachor, Ditza A.; Ben-Itzchak, Esther
2014-01-01
Unusual responses to sensory stimuli have been described in autism spectrum disorder (ASD).The study examined the frequencies of "unusual sensory interests" and "negative sensory responses" and their relation to functioning in a large ASD population (n = 679). Having "unusual sensory interests" was reported in 70.4%…
Sensory Processing Dysfunction in the Personal Experience and Neuronal Machinery of Schizophrenia
Javitt, Daniel C.; Freedman, Robert
2015-01-01
Sensory processing deficits, first investigated by Kraeplin and Bleuler as possible pathophysiological mechanisms in schizophrenia, are now being re-characterized in the context of modern understanding of the involved molecular and neurobiological brain mechanisms. The National Institute of Mental Health Research Domain Criteria position these deficits as intermediaries between molecular and cellular mechanisms and clinical symptoms of schizophrenia such as hallucinations. The pre-pulse inhibition of startle responses by a weaker preceding tone, the inhibitory gating of response to paired sensory stimuli characterized using the auditory P50 evoked response, and the detection of slightly different stimuli that elicits the cortical Mismatch Negativity potential demonstrate deficits in early sensory processing mechanisms, whose molecular and neurobiological bases are increasingly well understood. Deficits in sensory processing underlie more complex cognitive dysfunction and, vice versa, are affected by higher-level cognitive difficulties. These deficits are now being used to identify genes involved in familial transmission of the illness and to monitor potentially therapeutic drug effects for both treatment and prevention. This research also provides a clinical reminder that patients’ sensory perception of the surrounding world, even during treatment sessions, may differ considerable from others’ perceptions. A person’s ability to understand and interact effectively with surrounding world ultimately depends upon an underlying sensory experience of it. PMID:25553496
Assessment of Dementia in Individuals with Dual Sensory Loss: Application of a Tactile Test Battery
Bruhn, Peter; Dammeyer, Jesper
2018-01-01
Background/Aims Individuals with dual sensory loss (DSL) are more likely to experience cognitive decline with age than individuals without sensory loss. Other studies have pointed to the challenges in assessing cognitive abilities in individuals with DSL, as most existing instruments rely on use of vision and hearing. The aim of this study was to develop and evaluate a Tactile Test Battery (TTB) for cognitive assessment in individuals with DSL. Method Twenty elderly individuals with DSL, 20 with diagnosed dementia, and 20 without dementia or DSL (controls) completed the following tactile tests developed for the present study: Spatial learning, Spatial recall, Tactile form board, Clock reading, and Naming. The participants with dementia and controls also completed the Mini-Mental State Examination (MMSE). Results Overall, participants with dementia performed significantly worse on the tactile tests than participants with DSL and control participants. No significant differences on the tactile tests were found between participants with DSL and controls. The TTB and MMSE scores correlated significantly. Conclusion The findings from this study of applying tactile tests for cognitive examination in individuals with DSL are promising. They indicate that symptoms of dementia can be differentiated from symptoms related to DSL. PMID:29515619
Functional hierarchy underlies preferential connectivity disturbances in schizophrenia.
Yang, Genevieve J; Murray, John D; Wang, Xiao-Jing; Glahn, David C; Pearlson, Godfrey D; Repovs, Grega; Krystal, John H; Anticevic, Alan
2016-01-12
Schizophrenia may involve an elevated excitation/inhibition (E/I) ratio in cortical microcircuits. It remains unknown how this regulatory disturbance maps onto neuroimaging findings. To address this issue, we implemented E/I perturbations within a neural model of large-scale functional connectivity, which predicted hyperconnectivity following E/I elevation. To test predictions, we examined resting-state functional MRI in 161 schizophrenia patients and 164 healthy subjects. As predicted, patients exhibited elevated functional connectivity that correlated with symptom levels, and was most prominent in association cortices, such as the fronto-parietal control network. This pattern was absent in patients with bipolar disorder (n = 73). To account for the pattern observed in schizophrenia, we integrated neurobiologically plausible, hierarchical differences in association vs. sensory recurrent neuronal dynamics into our model. This in silico architecture revealed preferential vulnerability of association networks to E/I imbalance, which we verified empirically. Reported effects implicate widespread microcircuit E/I imbalance as a parsimonious mechanism for emergent inhomogeneous dysconnectivity in schizophrenia.
Functional hierarchy underlies preferential connectivity disturbances in schizophrenia
Yang, Genevieve J.; Murray, John D.; Wang, Xiao-Jing; Glahn, David C.; Pearlson, Godfrey D.; Repovs, Grega; Krystal, John H.; Anticevic, Alan
2016-01-01
Schizophrenia may involve an elevated excitation/inhibition (E/I) ratio in cortical microcircuits. It remains unknown how this regulatory disturbance maps onto neuroimaging findings. To address this issue, we implemented E/I perturbations within a neural model of large-scale functional connectivity, which predicted hyperconnectivity following E/I elevation. To test predictions, we examined resting-state functional MRI in 161 schizophrenia patients and 164 healthy subjects. As predicted, patients exhibited elevated functional connectivity that correlated with symptom levels, and was most prominent in association cortices, such as the fronto-parietal control network. This pattern was absent in patients with bipolar disorder (n = 73). To account for the pattern observed in schizophrenia, we integrated neurobiologically plausible, hierarchical differences in association vs. sensory recurrent neuronal dynamics into our model. This in silico architecture revealed preferential vulnerability of association networks to E/I imbalance, which we verified empirically. Reported effects implicate widespread microcircuit E/I imbalance as a parsimonious mechanism for emergent inhomogeneous dysconnectivity in schizophrenia. PMID:26699491
de Campos, Ana Carolina; Kukke, Sahana N; Hallett, Mark; Alter, Katharine E; Damiano, Diane L
2014-05-01
The authors assessed bilateral motor and sensory function in individuals with upper limb dystonia due to unilateral perinatal stroke and explored interrelationships of motor function and sensory ability. Reach kinematics and tactile sensation were measured in 7 participants with dystonia and 9 healthy volunteers. The dystonia group had poorer motor (hold time, reach time, shoulder/elbow correlation) and sensory (spatial discrimination, stereognosis) outcomes than the control group on the nondominant side. On the dominant side, only sensation (spatial discrimination, stereognosis) was poorer in the dystonia group compared with the control group. In the dystonia group, although sensory and motor outcomes were uncorrelated, dystonia severity was related to poorer stereognosis, longer hold and reach times, and decreased shoulder/elbow coordination. Findings of bilateral sensory deficits in dystonia can be explained by neural reorganization. Visual compensation for somatosensory changes in the nonstroke hemisphere may explain the lack of bilateral impairments in reaching.
de Campos, Ana Carolina; Kukke, Sahana N.; Hallett, Mark; Alter, Katharine E.; Damiano, Diane L.
2014-01-01
We assessed bilateral motor and sensory function in individuals with upper limb dystonia due to unilateral perinatal stroke and explored interrelationships of motor function and sensory ability. Reach kinematics and tactile sensation were measured in seven participants with dystonia and nine healthy volunteers. The dystonia group had poorer motor (hold time, reach time, shoulder/elbow correlation) and sensory (spatial discrimination, stereognosis) outcomes than the control group on the non-dominant side. On the dominant side, only sensation (spatial discrimination, stereognosis) was poorer in the dystonia group compared to the control group. In the dystonia group, although sensory and motor outcomes were uncorrelated, dystonia severity was related to poorer stereognosis, longer hold and reach times, and decreased shoulder/elbow coordination. Findings of bilateral sensory deficits in dystonia may be explained by neural reorganization. Visual compensation for somatosensory changes in the non-stroke hemisphere may explain the lack of bilateral impairments in reaching. PMID:24396131
Sharfi, Kineret; Rosenblum, Sara
2015-01-01
Following the International Classification of Functioning, Disability and Health (ICF) concepts, this study examines body functions such as sensory modulation and sleep quality among adults with learning disabilities (LD). One hundred and ten participants, 55 adults with LD and 55 matched controls (mean age 30 years) filled in a socio-demographic questionnaire, the Adults/Adolescents Sensory Profile (AASP), and the Mini Sleep Questionnaire (MSQ). Chi-tests, Mann-Whitney tests, and Kolmogorov-Smirnov tests were conducted to examine group differences related to socio-demographic characteristics and body functions. Correlation and regression analyses were conducted to examine relationships between body functions. Significant differences were found between the groups in: (a) unique socio-demographic variables: high-schools attended, family status and number of children; (b) body functions: low registration and sensory sensitivity (p < .001), sensory avoiding (p = .002), sensory seeking (p = .021) and sleep quality (p < .001). Significant correlations were found between AASP subscale scores and the MSQ final score in each group. Regression analysis revealed that for the entire sample (N = 108), low registration accounted for 10.2% of the variance of sleep quality above group membership (p < .001), while in a separate examination of adults with LD (n = 53), low registration accounted for 19.9% of the variance of sleep quality (p < .001). Adults with LD need to be studied through a health-related perspective such as the ICF model to gain further understanding of their unique characteristics and daily needs. Sensory and sleep functions of adults with LD should be further studied in the context of health related quality of life.
Impact of Sensory Impairments on Functional Disability in Adults With Arthritis
Fisher, Diana E.; Ward, Michael M.; Hoffman, Howard J.; Li, Chuan-Ming; Cotch, Mary Frances
2015-01-01
Introduction Mobility is reduced in people with sensory impairments and those with arthritis. The joint impact of these conditions may be underappreciated. This study examines the associations between impairments in vision, hearing, and balance and functional ability in adults with versus without arthritis. Methods Using National Health and Nutrition Examination Survey data from 1999–2004, arthritis status, functional ability, and sensory impairments (vision, hearing, and balance) were assessed from self-reported responses by 6,654 individuals aged ≥50 years (mean age, 63.4 years; 46.3% male). Multivariable regression analyses, conducted in 2014, assessed the associations between sensory impairment and arthritis on functional ability and mobility. Results Among study participants, 41.8% reported having arthritis; of these, 27.1%, 44.9%, and 35.1% reported impaired vision, hearing, or balance, respectively. Having multiple sensory impairments was significantly associated with reduced functional ability in people with arthritis; individuals with three sensory impairments reported the highest levels of disability for all functional domains (compared with no impairment; lower extremity mobility, 80.2% vs 39.1%; general physical activities, 94.7% vs 75.9%; activities of daily living, 69.7% vs 27.2%; instrumental activities of daily living, 77.2% vs 37.4%; leisure and social activities, 66.3% vs 30.6%; impaired gait speed, 48.1% vs 16.3%; all p<0.001). Importantly, visual deficits, in combination with arthritis, had the greatest impact on mobility, with odds of impaired mobility at least twice as high as for individuals without arthritis. Conclusions Addressing sensory deficits, especially difficulties with vision, may improve functional ability, which may be particularly helpful for adults with arthritis. PMID:26410186
Akerman, Simon; Romero-Reyes, Marcela; Holland, Philip R
2017-04-01
Migraine headache and its associated symptoms have plagued humans for two millennia. It is manifest throughout the world, and affects more than 1/6 of the global population. It is the most common brain disorder, and is characterized by moderate to severe unilateral headache that is accompanied by vomiting, nausea, photophobia, phonophobia, and other hypersensitive symptoms of the senses. While there is still a clear lack of understanding of its neurophysiology, it is beginning to be understood, and it seems to suggest migraine is a disorder of brain sensory processing, characterized by a generalized neuronal hyperexcitability. The complex symptomatology of migraine indicates that multiple neuronal systems are involved, including brainstem and diencephalic systems, which function abnormally, resulting in premonitory symptoms, ultimately evolving to affect the dural trigeminovascular system, and the pain phase of migraine. The migraineur also seems to be particularly sensitive to fluctuations in homeostasis, such as sleep, feeding and stress, reflecting the abnormality of functioning in these brainstem and diencephalic systems. Implications for therapeutic development have grown out of our understanding of migraine neurophysiology, leading to major drug classes, such as triptans, calcitonin gene-related peptide receptor antagonists, and 5-HT 1F receptor agonists, as well as neuromodulatory approaches, with the promise of more to come. The present review will discuss the current understanding of the neurophysiology of migraine, particularly migraine headache, and novel insights into the complex neural networks responsible for associated neurological symptoms, and how interaction of these networks with migraine pain pathways has implications for the development of novel therapeutics. Copyright © 2016 Elsevier Inc. All rights reserved.
Perera, Lilani P; Ananthakrishnan, Ashwin N; Guilday, Corinne; Remshak, Kristin; Zadvornova, Yelena; Naik, Amar S; Stein, Daniel J; Massey, Benson T
2013-12-01
Introduction of biologic agents in inflammatory bowel disease (IBD) has increased the likelihood of disease remission. Despite resolution of active inflammation, a subset of IBD patients report persistent defecatory symptoms. To evaluate a group of patients with inflammatory bowel disease with suspected functional defecatory disorders, by use of anorectal manometric testing and subsequent biofeedback therapy. A group of IBD patients with persistent defecatory problems despite clinical improvement were included in this study. These patients had no evidence of left-sided disease. Endoscopic and radiographic study findings and timing in relation to the manometry study were recorded. Anorectal manometry was performed by the standard protocol and included rectal sensory assessment, ability to expel a balloon, and pressure dynamics with simulated defecation. Thirty IBD patients (Crohn's 23 patients; ulcerative colitis six patients) presented with defecatory disorders including constipation (67%) increased stooling (10%), and rectal urgency and/or incontinence and rectal pain (6%). All but one patient had anorectal manometric criteria of dyssynergia (presence of anismus motor pattern and inability to expel the balloon). Of the patients who completed biofeedback therapy, 30% had a clinically significant (≥7-point) improvement in SIBDQ score, with a reduction in health-care utilization after a six-month period (p=0.02). Despite remission, some inflammatory bowel disease patients have persistent defecatory symptoms. Defecatory symptoms may not be predictive of an underlying inflammatory disorder. Lack of inflammatory activity and absence of left-sided disease should prompt investigation of functional disorders. Anorectal manometric testing and biofeedback therapy for patients with a diagnosis of dyssynergia may be a useful therapy.
Khan, Amanda J; Nair, Aarti; Keown, Christopher L; Datko, Michael C; Lincoln, Alan J; Müller, Ralph-Axel
2015-11-01
The cerebellum plays important roles in sensori-motor and supramodal cognitive functions. Cellular, volumetric, and functional abnormalities of the cerebellum have been found in autism spectrum disorders (ASD), but no comprehensive investigation of cerebro-cerebellar connectivity in ASD is available. We used resting-state functional connectivity magnetic resonance imaging in 56 children and adolescents (28 subjects with ASD, 28 typically developing subjects) 8-17 years old. Partial and total correlation analyses were performed for unilateral regions of interest (ROIs), distinguished in two broad domains as sensori-motor (premotor/primary motor, somatosensory, superior temporal, and occipital) and supramodal (prefrontal, posterior parietal, and inferior and middle temporal). There were three main findings: 1) Total correlation analyses showed predominant cerebro-cerebellar functional overconnectivity in the ASD group; 2) partial correlation analyses that emphasized domain specificity (sensori-motor vs. supramodal) indicated a pattern of robustly increased connectivity in the ASD group (compared with the typically developing group) for sensori-motor ROIs but predominantly reduced connectivity for supramodal ROIs; and 3) this atypical pattern of connectivity was supported by significantly increased noncanonical connections (between sensori-motor cerebral and supramodal cerebellar ROIs and vice versa) in the ASD group. Our findings indicate that sensori-motor intrinsic functional connectivity is atypically increased in ASD, at the expense of connectivity supporting cerebellar participation in supramodal cognition. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Functional sensorial complementation during host orientation in an Asilidae parasitoid larva.
Pueyrredon, J M; Crespo, J E; Castelo, M K
2017-10-01
Changes in environmental conditions influence the performance of organisms in every aspect of their life. Being capable of accurately sensing these changes allow organisms to better adapt. The detection of environmental conditions involves different sensory modalities. There are many studies on the morphology of different sensory structures but not so many studies showing their function. Here we studied the morphology of different sensory structures in the larva of a dipteran parasitoid. We occluded the putative sensory structures coupling the morphology with their function. First, we could develop a non-invasive method in which we occluded the putative sensorial structures annulling their function temporarily. Regarding their functionality, we found that larvae of Mallophora ruficauda require simultaneously of the sensilla found both in the antennae and those of the maxillary palps in order to orient to its host. When either both antennae or both maxillary palps were occluded, no orientation to the host was observed. We also found that these structures are not involved in the acceptance of the host because high and similar proportion of parasitized hosts was found in host acceptance experiments. We propose that other sensilla could be involved in host acceptance and discuss how the different sensilla in the antennae and maxillary palps complement each other to provide larvae with the information for locating its host.
Kiedrowski, Megan; Waugh, Stacey; Miller, Roger; Johnson, Claud; Krajnak, Kristine
2016-01-01
Exposure to hand-transmitted vibration in the work-place can result in the loss of sensation and pain in workers. These effects may be exacerbated by pre-existing conditions such as diabetes or the presence of primary Raynaud's phenomena. The goal of these studies was to use an established model of vibration-induced injury in Zucker rats. Lean Zucker rats have a normal metabolic profile, while obese Zucker rats display symptoms of metabolic disorder or Type II diabetes. This study examined the effects of vibration in obese and lean rats. Zucker rats were exposed to 4 h of vibration for 10 consecutive days at a frequency of 125 Hz and acceleration of 49 m/s2 for 10 consecutive days. Sensory function was checked using transcutaneous electrical stimulation on days 1, 5 and 9 of the exposure. Once the study was complete the ventral tail nerves, dorsal root ganglia and spinal cord were dissected, and levels of various transcripts involved in sensorineural dysfunction were measured. Sensorineural dysfunction was assessed using transcutaneous electrical stimulation. Obese Zucker rats displayed very few changes in sensorineural function. However they did display significant changes in transcript levels for factors involved in synapse formation, peripheral nerve remodeling, and inflammation. The changes in transcript levels suggested that obese Zucker rats had some level of sensory nerve injury prior to exposure, and that exposure to vibration activated pathways involved in injury and re-innervation. PMID:26433044
Assessment of sensory function in the National Social Life, Health, and Aging Project.
Schumm, L Philip; McClintock, Martha; Williams, Sharon; Leitsch, Sara; Lundstrom, Johan; Hummel, Thomas; Lindau, Stacy Tessler
2009-11-01
The National Social Life, Health, and Aging Project assessed functioning of all 5 senses using both self-report and objective measures. We evaluate the performance of the objective measures and model differences in sensory function by gender and age. In the process, we demonstrate how to use and interpret these measures. Distance vision was assessed using a standard Sloan eye chart, and touch was measured using a stationary 2-point discrimination test applied to the index fingertip of the dominant hand. Olfactory function (both intensity detection and odor identification) was assessed using odorants administered via felt-tip pens. Gustatory function was measured via identification of four taste strips. The performance of the objective measures was similar to that reported for previous studies, as was the relationship between sensory function and both gender and age. Sensory function is important in studies of aging and health both because it is an important health outcome and also because a decline in functioning can be symptomatic of or predict other health conditions. Although the objective measures provide considerably more precision than the self-report items, the latter can be valuable for imputation of missing data and for understanding differences in how older adults perceive their own sensory ability.
Assessment of Sensory Function in the National Social Life, Health, and Aging Project
McClintock, Martha; Williams, Sharon; Leitsch, Sara; Lundstrom, Johan; Hummel, Thomas; Lindau, Stacy Tessler
2009-01-01
Objectives The National Social Life, Health, and Aging Project assessed functioning of all 5 senses using both self-report and objective measures. We evaluate the performance of the objective measures and model differences in sensory function by gender and age. In the process, we demonstrate how to use and interpret these measures. Methods Distance vision was assessed using a standard Sloan eye chart, and touch was measured using a stationary 2-point discrimination test applied to the index fingertip of the dominant hand. Olfactory function (both intensity detection and odor identification) was assessed using odorants administered via felt-tip pens. Gustatory function was measured via identification of four taste strips. Results The performance of the objective measures was similar to that reported for previous studies, as was the relationship between sensory function and both gender and age. Discussion Sensory function is important in studies of aging and health both because it is an important health outcome and also because a decline in functioning can be symptomatic of or predict other health conditions. Although the objective measures provide considerably more precision than the self-report items, the latter can be valuable for imputation of missing data and for understanding differences in how older adults perceive their own sensory ability. PMID:19549923
Stool-based biomarkers of interstitial cystitis/bladder pain syndrome.
Braundmeier-Fleming, A; Russell, Nathan T; Yang, Wenbin; Nas, Megan Y; Yaggie, Ryan E; Berry, Matthew; Bachrach, Laurie; Flury, Sarah C; Marko, Darlene S; Bushell, Colleen B; Welge, Michael E; White, Bryan A; Schaeffer, Anthony J; Klumpp, David J
2016-05-18
Interstitial cystitis/bladder pain syndrome (IC) is associated with significant morbidity, yet underlying mechanisms and diagnostic biomarkers remain unknown. Pelvic organs exhibit neural crosstalk by convergence of visceral sensory pathways, and rodent studies demonstrate distinct bacterial pain phenotypes, suggesting that the microbiome modulates pelvic pain in IC. Stool samples were obtained from female IC patients and healthy controls, and symptom severity was determined by questionnaire. Operational taxonomic units (OTUs) were identified by16S rDNA sequence analysis. Machine learning by Extended Random Forest (ERF) identified OTUs associated with symptom scores. Quantitative PCR of stool DNA with species-specific primer pairs demonstrated significantly reduced levels of E. sinensis, C. aerofaciens, F. prausnitzii, O. splanchnicus, and L. longoviformis in microbiota of IC patients. These species, deficient in IC pelvic pain (DIPP), were further evaluated by Receiver-operator characteristic (ROC) analyses, and DIPP species emerged as potential IC biomarkers. Stool metabolomic studies identified glyceraldehyde as significantly elevated in IC. Metabolomic pathway analysis identified lipid pathways, consistent with predicted metagenome functionality. Together, these findings suggest that DIPP species and metabolites may serve as candidates for novel IC biomarkers in stool. Functional changes in the IC microbiome may also serve as therapeutic targets for treating chronic pelvic pain.
Motor imagery learning modulates functional connectivity of multiple brain systems in resting state.
Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun
2014-01-01
Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning.
Jerosch-Herold, C.; Houghton, J.; Miller, L.; Shepstone, L.
2016-01-01
Despite surgery for carpal tunnel syndrome being effective in 80%–90% of cases, chronic numbness and hand disability can occur. The aim of this study was to investigate whether sensory relearning improves tactile discrimination and hand function after decompression. In a multi-centre, pragmatic, randomized, controlled trial, 104 patients were randomized to a sensory relearning (n = 52) or control (n = 52) group. A total of 93 patients completed a 12-week follow-up. Primary outcome was the shape-texture identification test at 6 weeks. Secondary outcomes were touch threshold, touch localization, dexterity and self-reported hand function. No significant group differences were seen for the primary outcome (Shape-Texture Identification) at 6 weeks or 12 weeks. Similarly, no significant group differences were observed on secondary outcomes, with the exception of self-reported hand function. A secondary complier-averaged-causal-effects analysis showed no statistically significant treatment effect on the primary outcome. Sensory relearning for tactile sensory and functional deficits after carpal tunnel decompression is not effective. Level of Evidence: II PMID:27402282
How mechanisms of perceptual decision-making affect the psychometric function
Gold, Joshua I.; Ding, Long
2012-01-01
Psychometric functions are often interpreted in the context of Signal Detection Theory, which emphasizes a distinction between sensory processing and non-sensory decision rules in the brain. This framework has helped to relate perceptual sensitivity to the “neurometric” sensitivity of sensory-driven neural activity. However, perceptual sensitivity, as interpreted via Signal Detection Theory, is based on not just how the brain represents relevant sensory information, but also how that information is read out to form the decision variable to which the decision rule is applied. Here we discuss recent advances in our understanding of this readout process and describe its effects on the psychometric function. In particular, we show that particular aspects of the readout process can have specific, identifiable effects on the threshold, slope, upper asymptote, time dependence, and choice dependence of psychometric functions. To illustrate these points, we emphasize studies of perceptual learning that have identified changes in the readout process that can lead to changes in these aspects of the psychometric function. We also discuss methods that have been used to distinguish contributions of the sensory representation versus its readout to psychophysical performance. PMID:22609483
Bonhof, Cynthia S; Mols, Floortje; Vos, M Caroline; Pijnenborg, Johanna M A; Boll, Dorry; Vreugdenhil, Gerard; Ezendam, Nicole P M; van de Poll-Franse, Lonneke V
2018-06-01
Chemotherapy-induced peripheral neuropathy (CIPN) presents itself as sensory peripheral neuropathy (SPN) or motor peripheral neuropathy (MPN). Our aim was to examine the course of SPN and MPN, and their impact on health-related quality of life (HRQoL) among ovarian cancer patients. All newly diagnosed ovarian cancer patients from twelve hospitals in the South of the Netherlands were eligible for participation. Patients (N=174) completed questions on CIPN (EORTC QLQ-OV28) and HRQoL (EORTC QLQ-C30) after initial treatment and at 6, 12, and 24months (response rates were 70%, 71%, 58%, and 43% respectively). Generalized linear mixed models showed that among chemotherapy-treated patients (N=98), SPN levels were stable over time. For MPN, symptoms significantly improved at 12months. At 2years, 13% still reported high SPN. Also, 11% still reported high MPN. Regarding HRQoL, patients with high SPN reported a worse physical, role, emotional, social, and cognitive functioning compared to those with low SPN. Moreover, those who changed from low to high SPN over time worsened on physical functioning. For MPN, a worse global quality of life and a worse functioning was reported among patients with high MPN. Also, those who changed from low to high MPN over time worsened on global quality of life and on physical, role, social, and cognitive functioning. Among chemotherapy-treated ovarian cancer patients, SPN levels were stable over time. In contrast, MPN symptoms significantly improved at 12months. These symptoms seriously impacted HRQoL. Future studies should examine the impact of different treatment decisions and alterations on CIPN, so recommendations can be made to reduce CIPN (prevalence). Copyright © 2018 Elsevier Inc. All rights reserved.
Siebenhühner, Felix; Wang, Sheng H; Palva, J Matias; Palva, Satu
2016-09-26
Neuronal activity in sensory and fronto-parietal (FP) areas underlies the representation and attentional control, respectively, of sensory information maintained in visual working memory (VWM). Within these regions, beta/gamma phase-synchronization supports the integration of sensory functions, while synchronization in theta/alpha bands supports the regulation of attentional functions. A key challenge is to understand which mechanisms integrate neuronal processing across these distinct frequencies and thereby the sensory and attentional functions. We investigated whether such integration could be achieved by cross-frequency phase synchrony (CFS). Using concurrent magneto- and electroencephalography, we found that CFS was load-dependently enhanced between theta and alpha-gamma and between alpha and beta-gamma oscillations during VWM maintenance among visual, FP, and dorsal attention (DA) systems. CFS also connected the hubs of within-frequency-synchronized networks and its strength predicted individual VWM capacity. We propose that CFS integrates processing among synchronized neuronal networks from theta to gamma frequencies to link sensory and attentional functions.
Carlsson, Håkan; Rosén, Birgitta; Pessah-Rasmussen, Hélène; Björkman, Anders; Brogårdh, Christina
2018-04-17
Many stroke survivors suffer from sensory impairments of their affected upper limb (UL). Although such impairments can affect the ability to use the UL in everyday activities, very little attention is paid to sensory impairments in stroke rehabilitation. The purpose of this trial is to investigate if sensory re-learning in combination with task-specific training may prove to be more effective than task-specific training alone to improve sensory function of the hand, dexterity, the ability to use the hand in daily activities, perceived participation, and life satisfaction. This study is a single-blinded pilot randomized controlled trial (RCT) with two treatment arms. The participants will be randomly assigned either to sensory re-learning in combination with task-specific training (sensory group) or to task-specific training only (control group). The training will consist of 2.5 h of group training per session, 2 times per week for 5 weeks. The primary outcome measures to assess sensory function are as follows: Semmes-Weinstein monofilament, Shape/Texture Identification (STI™) test, Fugl-Meyer Assessment-upper extremity (FMA-UE; sensory section), and tactile object identification test. The secondary outcome measures to assess motor function are as follows: Box and Block Test (BBT), mini Sollerman Hand Function Test (mSHFT), Modified Motor Assessment Scale (M-MAS), and Grippit. To assess the ability to use the hand in daily activities, perceived participation, and life satisfaction, the Motor Activity Log (MAL), Canadian Occupational Performance Measure (COPM), Stroke Impact Scale (SIS) participation domain, and Life Satisfaction checklist will be used. Assessments will be performed pre- and post-training and at 3-month follow-up by independent assessors, who are blinded to the participants' group allocation. At the 3-month follow-up, the participants in the sensory group will also be interviewed about their general experience of the training and how effective they perceived the training. The results from this study can add new knowledge about the effectiveness of sensory re-learning in combination with task-specific training on UL functioning after stroke. If the new training approach proves efficient, the results can provide information on how to design a larger RCT in the future in persons with sensory impairments of the UL after stroke. ClinicalTrials.gov, NCT03336749 . Registered on 8 November 2017.
Regional cerebral blood flow correlates of the severity of writer's cramp symptoms.
Lerner, Alicja; Shill, Holly; Hanakawa, Takashi; Bushara, Khalaf; Goldfine, Andrew; Hallett, Mark
2004-03-01
Writer's cramp is a type of idiopathic focal dystonia with incompletely understood pathophysiology. Recent studies provide evidence that one element might be a sensory processing defect. We performed a PET study with O(15) H(2)O to find out in which brain areas activity correlates with the severity of writer's cramp symptoms. We studied 10 patients with writer's cramp and 10 age- and gender-matched control subjects. There were seven conditions, each repeated twice: rest, writing, tapping with index finger for 2, 3, 4, and 5 min. For each scan, we obtained EMG recordings from the flexor digitorum superficialis (FDS), extensor indicis proprius (EIP) muscles, and a subjective score of severity of dystonia. Scans were realigned, normalized, smoothed, and analyzed using SPM99. Analysis included both intra- and intergroup comparisons and a correlation analysis where we used EMG recordings and subjective dystonia score as covariates. Random effect analysis of the writing task showed overactivity of the primary sensory cortex and no significant underactivity. Correlation analysis of dystonia patients showed activation of SI when we used the subjective dystonia score as a covariate, and activation of both the SI and primary motor cortex when the normalized EMG score of FDS was used. While some overactivity of MI is not surprising, overactivity of SI is more dramatic and suggests a primary deficit in processing sensory feedback. Writer's cramp may arise in part as a dysfunction of sensory circuits, which causes defective sensorimotor integration resulting in co-contractions of muscles and overflow phenomena.
Hallucinations Experienced by Visually Impaired: Charles Bonnet Syndrome.
Pang, Linda
2016-12-01
: Charles Bonnet Syndrome is a condition where visual hallucinations occur as a result of damage along the visual pathway. Patients with Charles Bonnet Syndrome maintain partial or full insight that the hallucinations are not real, absence of psychological conditions, and absence of hallucinations affecting other sensory modalities, while maintaining intact intellectual functioning. Charles Bonnet Syndrome has been well documented in neurologic, geriatric medicine, and psychiatric literature, but there is lack of information in optometric and ophthalmologic literature. Therefore, increased awareness of signs and symptoms associated with Charles Bonnet Syndrome is required among practicing clinicians. This review of the literature will also identify other etiologies of visual hallucinations, pathophysiology of Charles Bonnet Syndrome, and effective management strategies.
Hallucinations Experienced by Visually Impaired: Charles Bonnet Syndrome
Pang, Linda
2016-01-01
ABSTRACT Charles Bonnet Syndrome is a condition where visual hallucinations occur as a result of damage along the visual pathway. Patients with Charles Bonnet Syndrome maintain partial or full insight that the hallucinations are not real, absence of psychological conditions, and absence of hallucinations affecting other sensory modalities, while maintaining intact intellectual functioning. Charles Bonnet Syndrome has been well documented in neurologic, geriatric medicine, and psychiatric literature, but there is lack of information in optometric and ophthalmologic literature. Therefore, increased awareness of signs and symptoms associated with Charles Bonnet Syndrome is required among practicing clinicians. This review of the literature will also identify other etiologies of visual hallucinations, pathophysiology of Charles Bonnet Syndrome, and effective management strategies. PMID:27529611
Impey, Danielle; de la Salle, Sara; Knott, Verner
2016-06-01
Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which uses a very weak constant current to temporarily excite (anodal stimulation) or inhibit (cathodal stimulation) activity in the brain area of interest via small electrodes placed on the scalp. Currently, tDCS of the frontal cortex is being used as a tool to investigate cognition in healthy controls and to improve symptoms in neurological and psychiatric patients. tDCS has been found to facilitate cognitive performance on measures of attention, memory, and frontal-executive functions. Recently, a short session of anodal tDCS over the temporal lobe has been shown to increase auditory sensory processing as indexed by the Mismatch Negativity (MMN) event-related potential (ERP). This preliminary pilot study examined the separate and interacting effects of both anodal and cathodal tDCS on MMN-indexed auditory pitch discrimination. In a randomized, double blind design, the MMN was assessed before (baseline) and after tDCS (2mA, 20min) in 2 separate sessions, one involving 'sham' stimulation (the device is turned off), followed by anodal stimulation (to temporarily excite cortical activity locally), and one involving cathodal stimulation (to temporarily decrease cortical activity locally), followed by anodal stimulation. Results demonstrated that anodal tDCS over the temporal cortex increased MMN-indexed auditory detection of pitch deviance, and while cathodal tDCS decreased auditory discrimination in baseline-stratified groups, subsequent anodal stimulation did not significantly alter MMN amplitudes. These findings strengthen the position that tDCS effects on cognition extend to the neural processing of sensory input and raise the possibility that this neuromodulatory technique may be useful for investigating sensory processing deficits in clinical populations. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Reynolds, Stacey; Bendixen, Roxanna M.; Lawrence, Tami; Lane, Shelly J.
2011-01-01
This pilot study explored activity patterns in children with and without ASD and examined the role of sensory responsiveness in determining children's level of competence in activity performance. Twenty-six children with high functioning ASD and twenty-six typically-developing children 6-12 years old were assessed using the Sensory Profile and the…
Patel, Atit A.; Cox, Daniel N.
2017-01-01
To investigate cellular, molecular and behavioral mechanisms of noxious cold detection, we developed cold plate behavioral assays and quantitative means for evaluating the predominant noxious cold-evoked contraction behavior. To characterize neural activity in response to noxious cold, we implemented a GCaMP6-based calcium imaging assay enabling in vivo studies of intracellular calcium dynamics in intact Drosophila larvae. We identified Drosophila class III multidendritic (md) sensory neurons as multimodal sensors of innocuous mechanical and noxious cold stimuli and to dissect the mechanistic bases of multimodal sensory processing we developed two independent functional assays. First, we developed an optogenetic dose response assay to assess whether levels of neural activation contributes to the multimodal aspects of cold sensitive sensory neurons. Second, we utilized CaMPARI, a photo-switchable calcium integrator that stably converts fluorescence from green to red in presence of high intracellular calcium and photo-converting light, to assess in vivo functional differences in neural activation levels between innocuous mechanical and noxious cold stimuli. These novel assays enable investigations of behavioral and functional roles of peripheral sensory neurons and multimodal sensory processing in Drosophila larvae. PMID:28835907
Animal models of the non-motor features of Parkinson’s disease
McDowell, Kimberly; Chesselet, Marie-Françoise
2012-01-01
The non-motor symptoms (NMS) of Parkinson’s disease (PD) occur in roughly 90% of patients, have a profound negative impact on their quality of life, and often go undiagnosed. NMS typically involve many functional systems, and include sleep disturbances, neuropsychiatric and cognitive deficits, and autonomic and sensory dysfunction. The development and use of animal models have provided valuable insight into the classical motor symptoms of PD over the past few decades. Toxin-induced models provide a suitable approach to study aspects of the disease that derive from the loss of nigrostriatal dopaminergic neurons, a cardinal feature of PD. This also includes some NMS, primarily cognitive dysfunction. However, several NMS poorly respond to dopaminergic treatments, suggesting that they may be due to other pathologies. Recently developed genetic models of PD are providing new ways to model these NMS and identify their mechanisms. This review summarizes the current available literature on the ability of both toxin-induced and genetically-based animal models to reproduce the NMS of PD. PMID:22236386
Taxane induced neuropathy in patients affected by breast cancer: Literature review.
De Iuliis, Francesca; Taglieri, Ludovica; Salerno, Gerardo; Lanza, Rosina; Scarpa, Susanna
2015-10-01
Taxane induced neuropathy (TIN) is the most limiting side effect of taxane based chemotherapy, relative to the majority of breast cancer patients undergoing therapy with both docetaxel and paclitaxel. The symptoms begin symmetrically from the toes, because the tips of the longest nerves are affected for first. The patients report sensory symptoms such as paresthesia, dysesthesia, numbness, electric shock-like sensation, motor impairment and neuropathic pain. There is a great inter-individual variability among breast cancer women treated with taxanes, in fact 20-30% of them don't develop neurotoxicity. Actually, there is no standard therapy for TIN, although many medications, antioxidants and natural substances have been tested in vitro and in vivo. We will summarize all most recent literature data on TIN prevention and treatment, in order to reach an improvement in TIN management. Further studies are needed to evaluate new therapies that restore neuronal function and improve life quality of patients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Potulska-Chromik, Anna; Zakrzewska-Pniewska, Beata; Szmidt-Sałkowska, Elżbieta; Lewandowski, Jacek; Siński, Maciej; Przyjałkowski, Witold; Kostera-Pruszczyk, Anna
2013-10-30
Botulism is an acute form of poisoning caused by one of four types (A, B, E, F) toxins produced by Clostridium botulinum, ananaerobic, spore forming bacillus. Usually diagnosis of botulism is considered in patients with predominant motor symptoms: muscle weakness with intact sensation and preserved mental function. We report a case of 56-year-old Caucasian female with a history of arterial hypertension, who presented with acute respiratory failure and bilateral ptosis misdiagnosed as brainstem ischemia. She had severe external and internal ophtalmoplegia, and autonomic dysfunction with neither motor nor sensory symptoms from upper and lower limbs. Diagnosis of botulinum toxin poisoning was made and confirmed by serum antibody testing in the mouse inoculation test. Ophtalmoplegia, autonomic dysfunction and respiratory failure can be caused by botulism. Early treatment and intensive care is essential for survival and recovery. The electrophysiological tests are crucial to correct and rapid diagnosis. Botulism (especially type B) should be considered in any case of acute or predominant isolated autonomic dysfunction.
Mijwel, Sara; Backman, Malin; Bolam, Kate A; Jervaeus, Anna; Sundberg, Carl Johan; Margolin, Sara; Browall, Maria; Rundqvist, Helene; Wengström, Yvonne
2018-02-01
Exercise training is an effective and safe way to counteract cancer-related fatigue (CRF) and to improve health-related quality of life (HRQoL). High-intensity interval training has proven beneficial for the health of clinical populations. The aim of this randomized controlled trial was to compare the effects of resistance and high-intensity interval training (RT-HIIT), and moderate-intensity aerobic and high-intensity interval training (AT-HIIT) to usual care (UC) in women with breast cancer undergoing chemotherapy. The primary endpoint was CRF and the secondary endpoints were HRQoL and cancer treatment-related symptoms. Two hundred and forty women planned to undergo chemotherapy were randomized to supervised RT-HIIT, AT-HIIT, or UC. Measurements were performed at baseline and at 16 weeks. Questionnaires included Piper Fatigue Scale, EORTC-QLQ-C30, and Memorial Symptom Assessment Scale. The RT-HIIT group was superior to UC for CRF: total CRF (p = 0.02), behavior/daily life (p = 0.01), and sensory/physical (p = 0.03) CRF. Role functioning significantly improved while cognitive functioning was unchanged for RT-HIIT compared to declines shown in the UC group (p = 0.04). AT-HIIT significantly improved emotional functioning versus UC (p = 0.01) and was superior to UC for pain symptoms (p = 0.03). RT-HIIT reported a reduced symptom burden, while AT-HIIT remained stable compared to deteriorations shown by UC (p < 0.01). Only RT-HIIT was superior to UC for total symptoms (p < 0.01). 16 weeks of resistance and HIIT was effective in preventing increases in CRF and in reducing symptom burden for patients during chemotherapy for breast cancer. These findings add to a growing body of evidence supporting the inclusion of structured exercise prescriptions, including HIIT, as a vital component of cancer rehabilitation. Clinicaltrials.gov Registration Number: NCT02522260.
Shen, Mark D; Li, Deana D; Keown, Christopher L; Lee, Aaron; Johnson, Ryan T; Angkustsiri, Kathleen; Rogers, Sally J; Müller, Ralph-Axel; Amaral, David G; Nordahl, Christine Wu
2016-09-01
The objective of this study was to determine whether functional connectivity of the amygdala is altered in preschool-age children with autism spectrum disorder (ASD) and to assess the clinical relevance of observed alterations in amygdala connectivity. A resting-state functional connectivity magnetic resonance imaging study of the amygdala (and a parallel study of primary visual cortex) was conducted in 72 boys (mean age 3.5 years; n = 43 with ASD; n = 29 age-matched controls). The ASD group showed significantly weaker connectivity between the amygdala and several brain regions involved in social communication and repetitive behaviors, including bilateral medial prefrontal cortex, temporal lobes, and striatum (p < .05, corrected). Weaker connectivity between the amygdala and frontal and temporal lobes was significantly correlated with increased autism severity in the ASD group (p < .05). In a parallel analysis examining the functional connectivity of primary visual cortex, the ASD group showed significantly weaker connectivity between visual cortex and sensorimotor regions (p < .05, corrected). Weaker connectivity between visual cortex and sensorimotor regions was not correlated with core autism symptoms, but instead was correlated with increased sensory hypersensitivity in the visual/auditory domain (p < .05). These findings indicate that preschool-age children with ASD have disrupted functional connectivity between the amygdala and regions of the brain important for social communication and language, which might be clinically relevant because weaker connectivity was associated with increased autism severity. Moreover, although amygdala connectivity was associated with behavioral domains that are diagnostic of ASD, altered connectivity of primary visual cortex was related to sensory hypersensitivity. Copyright © 2016 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Schneider, Mary L.; Moore, Colleen F.; Larson, Julie A.; Barr, Christina S.; DeJesus, Onofre T.; Roberts, Andrew D.
2009-01-01
Sensory processing disorder, characterized by over- or under-responsivity to non-noxious environmental stimuli, is a common but poorly understood disorder. We examined the role of prenatal alcohol exposure, serotonin transporter gene polymorphic region variation (rh5-HTTLPR), and striatal dopamine (DA) function on behavioral measures of sensory responsivity to repeated non-noxious sensory stimuli in macaque monkeys. Results indicated that early gestation alcohol exposure induced behavioral under-responsivity to environmental stimuli in monkeys carrying the short (s) rh5-HTTLPR allele compared to both early-exposed monkeys homozygous for the long (l) allele and monkeys from middle-to-late exposed pregnancies and controls, regardless of genotype. Moreover, prenatal timing of alcohol exposure altered the relationship between sensory scores and DA D2R availability. In early-exposed monkeys, a positive relationship was shown between sensory scores and DA D2R availability, with low or blunted DA function associated with under-responsive sensory function. The opposite pattern was found for the middle-to-late gestation alcohol-exposed group. These findings raise questions about how the timing of prenatal perturbation and genotype contributes to effects on neural processing and possibly alters neural connections. PMID:19936317
Moon, Hyun Im; Pyun, Sung-Bom; Tae, Woo-Suk; Kwon, Hee Kyu
2016-07-01
Stroke impairs motor, balance, and gait function and influences activities of daily living. Understanding the relationship between brain lesions and deficits can help clinicians set goals during rehabilitation. We sought to elucidate the neural substrates of lower extremity motor, balance, and ambulation function using voxel-based lesion symptom mapping (VLSM) in supratentorial stroke patients. We retrospectively screened patients who met the following criteria: first-ever stroke, supratentorial lesion, and available brain magnetic resonance imaging (MRI) data. MRIs of 133 stroke patients were selected for VLSM analysis. We generated statistical maps of lesions related to lower extremity motor (lower extremity Fugl-Meyer assessment, LEFM), balance (Berg Balance Scale, BBS), and gait (Functional Ambulation Category, FAC) using VLSM. VLSM revealed that lower LEFM scores were associated with damage to the bilateral basal ganglia, insula, internal capsule, and subgyral white matter adjacent to the corona radiata. The lesions were more widely distributed in the left than in the right hemisphere, representing motor and praxis function necessary for performing tasks. However, no associations between lesion maps and balance and gait function were established. Motor impairment of the lower extremities was associated with lesions in the basal ganglia, insula, internal capsule, and white matter adjacent to the corona radiata. However, VLSM revealed no specific lesion locations with regard to balance and gait function. This might be because balance and gait are complex skills that require spatial and temporal integration of sensory input and execution of movement patterns. For more accurate prediction, factors other than lesion location need to be investigated.
Indolent anti-Hu-associated paraneoplastic sensory neuropathy.
Graus, F; Bonaventura, I; Uchuya, M; Valls-Solé, J; Reñé, R; Leger, J M; Tolosa, E; Delattre, J Y
1994-12-01
Paraneoplastic sensory neuropathy (PSN) usually runs a subacute progressive course, leaving the patient with severe sensory dysfunction in weeks to months. We describe five patients with PSN, high titers of anti-Hu antibodies (type 1 antineuronal nuclear autoantibodies), and an indolent clinical course. The patients had a median age of 55 years (range, 41 to 72). Four had small-cell (3) or undifferentiated large-cell (1) lung cancer. Patients presented with mild, asymmetric sensory symptoms; in two, the neuropathy was predominant in the arms. Two patients also had a visceral neuropathy causing gastrointestinal dysfunction. The PSN was stable or progressed very slowly without treatment for a median of 18 months (range, 5 to 32) and remained so after treatment with immunoglobulins (1 patient), chemotherapy (3), or both therapies (1). All patients were ambulatory, leading an independent life up until the time of the last visit or until death from the tumor (2 patients). The median follow-up was 36 months (range, 22 to 52). A paraneoplastic origin should be considered in patients with mild, very slowly progressive sensory neuropathies.
Scolapio, J S; Camilleri, M
1996-03-01
There is considerable confusion in the literature about the entity of nonulcer dyspepsia and its epidemiology, mechanisms, and management. In this review, we discuss the mechanisms and develop a strategy for diagnosis and management of nonulcer dyspepsia in the era of cost-containment. This analysis was based on a computerized literature search on epidemiology, pathophysiology, and management of nonulcer dyspepsia. Inconsistencies in the inclusion criteria of several studies result in disparities in the data from epidemiological and physiology-based studies. We propose that the inclusion criteria need to be unrestricted by the symptom of "pain," and that epidemiological features must be refined further because recent data used pain/discomfort as the dominant feature for identifying "dyspepsia." The interplay between three factors (impaired motor and sensory functions, psychosocial factors, and Helicobacter pylori infection) deserves further study. Advances in this field will follow rigorous reappraisal of the epidemiology using an unrestricted definition of the symptom complex and development of strategies in clinical practice that focus on either the cost-effective investigation of the mechanism and its treatment or an effective sequence of therapeutic trials. An algorithm proposed for patient evaluation needs to be tested, with emphasis on outcome (i.e., symptom control, cost efficacy, and societal costs).
First-Hand Accounts of Sensory Perceptual Experiences in Autism: A Qualitative Analysis.
ERIC Educational Resources Information Center
Jones, Robert S. P.; Quigney, Ciara; Huws, Jaci C.
2003-01-01
Five first-hand Web page accounts of unusual sensory perceptual experiences written by persons with high-functioning autism were selected for qualitative analysis. Four core categories emerged: turbulent sensory perceptual experiences; coping mechanisms; enjoyable sensory perceptual experiences; and awareness of being different, suggesting they…
Brief Report: Further Evidence of Sensory Subtypes in Autism
ERIC Educational Resources Information Center
Lane, Alison E.; Dennis, Simon J.; Geraghty, Maureen E.
2011-01-01
Distinct sensory processing (SP) subtypes in autism have been reported previously. This study sought to replicate the previous findings in an independent sample of thirty children diagnosed with an Autism Spectrum Disorder. Model-based cluster analysis of parent-reported sensory functioning (measured using the Short Sensory Profile) confirmed the…
... and can detect abnormalities in sensory nerves. Laboratory tests of blood, urine, or other substances can rule out muscle diseases and other disorders that may have symptoms similar to those of MND. For example, analysis of the fluid that surrounds the brain ...
Genetics Home Reference: hereditary sensory neuropathy type IA
... by nerve abnormalities in the legs and feet (peripheral neuropathy). Many people with this condition experience prickling or ... Research Network: Inherited Neuropathies Consortium The Foundation for Peripheral Neuropathy: Symptoms General Information from MedlinePlus (5 links) Diagnostic ...
Chronic inflammatory joint disease revealing borderline leprosy.
Miladi, Mohamed Imed; Feki, Imed; Bahloul, Zouhir; Jlidi, Rachid; Mhiri, Chokri
2006-05-01
Musculoskeletal symptoms are not infrequent in leprosy and, when inaugural, may be difficult to differentiate from other conditions, most notably rheumatoid arthritis. We report the case of a 24 year-old man with a 5 year history of intermittent inflammatory arthritis and fever. Physical findings and radiographs were normal initially. Several years later, he had severe wasting of the hand muscles, stocking-glove sensory loss, burn scars on the hands, and plantar ulcers. Electrophysiological test results indicated sensory-motor neuropathy with predominant demyelination. Laboratory tests showed inflammation without immunological abnormalities. A prominent endoneurial inflammatory infiltrate composed of mononuclear cells was seen on a nerve biopsy specimen, suggesting leprosy. A family study then revealed that the patient's aunt had been diagnosed with leprosy. Dapsone, clofazimine, and rifampin were given. The joint manifestations and laboratory tests for inflammation improved. However, no changes were noted in the neurological symptoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lou, H.C.; Henriksen, L.; Bruhn, P.
We have previously reported that periventricular structures are hypoperfused in attention deficit and hyperactivity disorder (ADHD). This study has expanded the number of patients, who were divided into two groups: six patients with pure ADHD, and 13 patients with ADHD in combination with other neurologic symptoms. By using xenon 133 inhalation and emission tomography, the regional cerebral blood flow distribution was determined and compared with a control group. Striatal regions were found to be hypoperfused and, by inference, hypofunctional in both groups. This hypoperfusion was statistically significant in the right striatum in ADHD, and in both striatal regions in ADHDmore » with other neuropsychologic and neurologic symptoms. The primary sensory and sensorimotor cortical regions were highly perfused. Methylphenidate increased flow to striatal and posterior periventricular regions, and tended to decrease flow to primary sensory regions. Low striatal activity, partially reversible with methylphenidate, appears to be a cardinal feature in ADHD.« less
The diagnostic challenge of small fibre neuropathy: clinical presentations, evaluations, and causes.
Terkelsen, Astrid J; Karlsson, Páll; Lauria, Giuseppe; Freeman, Roy; Finnerup, Nanna B; Jensen, Troels S
2017-11-01
Small fibre neuropathies are a heterogeneous group of disorders affecting thinly myelinated Aδ-fibres and unmyelinated C-fibres. Although multiple causes of small nerve fibre degeneration have been reported, including via genetic mutations, the cause of small fibre neuropathy remains unknown in up to 50% of cases. The typical clinical presentation of small fibre neuropathy is that of a symmetrical, length-dependent polyneuropathy associated with sensory or autonomic symptoms. More rarely, the clinical presentation is characterised by non-length-dependent, focal, or multifocal symptoms. The diagnostic tests to identify small fibre neuropathy include skin biopsy, quantitative sensory, and autonomic testing. Additional tests, such as those measuring small fibre-related evoked potentials and corneal confocal microscopy, might contribute to a better understanding of these neuropathies. Biochemical markers can also help in screening patients for the presence of small fibre neuropathy and to assess disease progression. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kakinoki, Ryosuke; Duncan, Scott F M; Ikeguchi, Ryosuke; Ohta, Souichi; Nankaku, Manabu; Sakai, Hiroshi; Noguchi, Takashi; Kaizawa, Yukitoshi; Akagi, Masao
2017-06-01
Previous animal studies demonstrated that the sensory and motor functions in ipsilesional upper limbs that had been reconstructed by CC7 transfer eventually associated with the contralesional brain cortices that had originally mediated the functions of the ipsilesional upper limbs before brachial plexus injury (BPI). Our hypothesis was that the same findings would be seen in humans. Four patients with total BPI treated with CC7 transfer were included. Changes in the locations of the activated areas in the primary motor (M1) and somatosensory (S1) cortices corresponding to the motor outputs to and sensory inputs from the ipsilesional limbs were investigated using functional near-infrared spectroscopy (fNIRS) 2-3 years and 6-7 years after surgery. One patient was excluded from the evaluation of motor function after CC7 transfer. The motor and sensory functions of the ipsilesional upper limb in all patients were still controlled by the ipsilesional brain hemisphere 2-3 years after CC7 transfer. The reconstructed motions of the ipsilesional upper limbs correlated with the contralesional M1 in one patient and the bilateral M1s in another patient (both of whom demonstrated good motor recovery in the ipsilesional upper limbs) and with the ipsilesional M1 in a third patient with poor motor recovery in the ipsilesional upper limb. Sensory stimulation of the ipsilesional hands 6-7 years after CC7 transfer activated the contralesional S1 in two patients who achieved good sensory recovery in the ipsilesional hands but activated the ipsilesional S1 in the other two patients with poor sensory recovery of the ipsilesional hands. Transhemispheric transposition of the activated brain cortices associated with the recovery of motor and sensory functions of the ipsilesional upper limbs was seen in patients with CC7 transfer as has been reported for animal models of CC7 transfer.
Sensation, mechanoreceptor, and nerve fiber function after nerve regeneration.
Krarup, Christian; Rosén, Birgitta; Boeckstyns, Michel; Ibsen Sørensen, Allan; Lundborg, Göran; Moldovan, Mihai; Archibald, Simon J
2017-12-01
Sensation is essential for recovery after peripheral nerve injury. However, the relationship between sensory modalities and function of regenerated fibers is uncertain. We have investigated the relationships between touch threshold, tactile gnosis, and mechanoreceptor and sensory fiber function after nerve regeneration. Twenty-one median or ulnar nerve lesions were repaired by a collagen nerve conduit or direct suture. Quantitative sensory hand function and sensory conduction studies by near-nerve technique, including tactile stimulation of mechanoreceptors, were followed for 2 years, and results were compared to noninjured hands. At both repair methods, touch thresholds at the finger tips recovered to 81 ± 3% and tactile gnosis only to 20 ± 4% (p < 0.001) of control. The sensory nerve action potentials (SNAPs) remained dispersed and areas recovered to 23 ± 2% and the amplitudes only to 7 ± 1% (P < 0.001). The areas of SNAPs after tactile stimulation recovered to 61 ± 11% and remained slowed. Touch sensation correlated with SNAP areas (p < 0.005) and was negatively related to the prolongation of tactile latencies (p < 0.01); tactile gnosis was not related to electrophysiological parameters. The recovered function of regenerated peripheral nerve fibers and reinnervated mechanoreceptors may differentially influence recovery of sensory modalities. Touch was affected by the number and function of regenerated fibers and mechanoreceptors. In contrast, tactile gnosis depends on the input and plasticity of the central nervous system (CNS), which may explain the absence of a direct relation between electrophysiological parameters and poor recovery. Dispersed maturation of sensory nerve fibers with desynchronized inputs to the CNS also contributes to the poor recovery of tactile gnosis. Ann Neurol 2017. Ann Neurol 2017;82:940-950. © 2017 American Neurological Association.
Hansson, Bill S.; Hilker, Monika; Reinecke, Andreas
2012-01-01
Introduction Below ground orientation in insects relies mainly on olfaction and taste. The economic impact of plant root feeding scarab beetle larvae gave rise to numerous phylogenetic and ecological studies. Detailed knowledge of the sensory capacities of these larvae is nevertheless lacking. Here, we present an atlas of the sensory organs on larval head appendages of Melolontha melolontha. Our ultrastructural and electrophysiological investigations allow annotation of functions to various sensory structures. Results Three out of 17 ascertained sensillum types have olfactory, and 7 gustatory function. These sensillum types are unevenly distributed between antennae and palps. The most prominent chemosensory organs are antennal pore plates that in total are innervated by approximately one thousand olfactory sensory neurons grouped into functional units of three-to-four. In contrast, only two olfactory sensory neurons innervate one sensillum basiconicum on each of the palps. Gustatory sensilla chaetica dominate the apices of all head appendages, while only the palps bear thermo-/hygroreceptors. Electrophysiological responses to CO2, an attractant for many root feeders, are exclusively observed in the antennae. Out of 54 relevant volatile compounds, various alcohols, acids, amines, esters, aldehydes, ketones and monoterpenes elicit responses in antennae and palps. All head appendages are characterized by distinct olfactory response profiles that are even enantiomer specific for some compounds. Conclusions Chemosensory capacities in M. melolontha larvae are as highly developed as in many adult insects. We interpret the functional sensory units underneath the antennal pore plates as cryptic sensilla placodea and suggest that these perceive a broad range of secondary plant metabolites together with CO2. Responses to olfactory stimulation of the labial and maxillary palps indicate that typical contact chemo-sensilla have a dual gustatory and olfactory function. PMID:22848471
Romand, Raymond; Ripp, Raymond; Poidevin, Laetitia; Boeglin, Marcel; Geffers, Lars; Dollé, Pascal; Poch, Olivier
2015-01-01
An in situ hybridization (ISH) study was performed on 2000 murine genes representing around 10% of the protein-coding genes present in the mouse genome using data generated by the EURExpress consortium. This study was carried out in 25 tissues of late gestation embryos (E14.5), with a special emphasis on the developing ear and on five distinct developing sensory organs, including the cochlea, the vestibular receptors, the sensory retina, the olfactory organ, and the vibrissae follicles. The results obtained from an analysis of more than 11,000 micrographs have been integrated in a newly developed knowledgebase, called ImAnno. In addition to managing the multilevel micrograph annotations performed by human experts, ImAnno provides public access to various integrated databases and tools. Thus, it facilitates the analysis of complex ISH gene expression patterns, as well as functional annotation and interaction of gene sets. It also provides direct links to human pathways and diseases. Hierarchical clustering of expression patterns in the 25 tissues revealed three main branches corresponding to tissues with common functions and/or embryonic origins. To illustrate the integrative power of ImAnno, we explored the expression, function and disease traits of the sensory epithelia of the five presumptive sensory organs. The study identified 623 genes (out of 2000) concomitantly expressed in the five embryonic epithelia, among which many (∼12%) were involved in human disorders. Finally, various multilevel interaction networks were characterized, highlighting differential functional enrichments of directly or indirectly interacting genes. These analyses exemplify an under-represention of "sensory" functions in the sensory gene set suggests that E14.5 is a pivotal stage between the developmental stage and the functional phase that will be fully reached only after birth.
Assessments of sensory plasticity after spinal cord injury across species.
Haefeli, Jenny; Huie, J Russell; Morioka, Kazuhito; Ferguson, Adam R
2017-06-23
Spinal cord injury (SCI) is a multifaceted phenomenon associated with alterations in both motor function and sensory function. A majority of patients with SCI report sensory disturbances, including not only loss of sensation, but in many cases enhanced abnormal sensation, dysesthesia and pain. Development of therapeutics to treat these abnormal sensory changes require common measurement tools that can enable cross-species translation from animal models to human patients. We review the current literature on translational nociception/pain measurement in SCI and discuss areas for further development. Although a number of tools exist for measuring both segmental and affective sensory changes, we conclude that there is a pressing need for better, integrative measurement of nociception/pain outcomes across species to enhance precise therapeutic innovation for sensory dysfunction in SCI. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Hsu, Hsiu-Yun; Kuo, Li-Chieh; Chiu, Haw-Yen; Jou, I-Ming; Su, Fong-Chin
2009-11-01
Patients with median nerve compression at the carpal tunnel often have poor sensory afferents. Without adequate sensory modulation control, these patients frequently exhibit clumsy performance and excessive force output in the affected hand. We analyzed precision grip function after the sensory recovery of patients with carpal tunnel syndrome (CTS) who underwent carpal tunnel release (CTR). Thirteen CTS patients were evaluated using a custom-designed pinch device and conventional sensory tools before and after CTR to measure sensibility, maximum pinch strength, and anticipated pinch force adjustments to movement-induced load fluctuations in a pinch-holding-up activity. Based on these tests, five force-related parameters and sensory measurements were used to determine improvements in pinch performance after sensory recovery. The force ratio between the exerted pinch force and maximum load force of the lifting object was used to determine pinch force coordination and to prove that CTR enabled precision motor output. The magnitude of peak pinch force indicated an economic force output during manipulations following CTR. The peak pinch force, force ratio, and percentage of maximum pinch force also demonstrated a moderate correlation with the Semmes-Weinstein test. Analysis of these tests revealed that improved sensory function helped restore patients' performance in precise pinch force control evaluations. These results suggest that sensory information plays an important role in adjusting balanced force output in dexterous manipulation. (c) 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Behavioural and psychiatric symptoms in cognitive neurology.
Robles Bayón, A; Gude Sampedro, F
2017-03-01
Behavioural and psychiatric symptoms (BPS) are frequent in neurological patients, contribute to disability, and decrease quality of life. We recorded BPS prevalence and type, as well as any associations with specific diagnoses, brain regions, and treatments, in consecutive outpatients examined in a cognitive neurology clinic. A retrospective analysis of 843 consecutive patients was performed, including a review of BPS, diagnosis, sensory impairment, lesion topography (neuroimaging), and treatment. The total sample was considered, and the cognitive impairment (CI) group (n=607) was compared to the non-CI group. BPS was present in 59.9% of the patients (61.3% in the CI group, 56.4% in the non-CI group). One BPS was present in 31.1%, two in 17.4%, and three or more in 11.4%. BPS, especially depression and anxiety, are more frequent in women than in men. Psychotic and behavioural symptoms predominate in subjects aged 65 and older, and anxiety in those younger than 65. Psychotic symptoms appear more often in patients with sensory impairment. Psychotic and behavioural symptoms are more prevalent in patients with degenerative dementia; depression and anxiety in those who suffer a psychiatric disease or adverse effects of substances; emotional lability in individuals with a metabolic or hormonal disorder; hypochondria in those with a pain syndrome; and irritability in subjects with chronic hypoxia. Behavioural symptoms are more frequent in patients with anomalies in the frontal or right temporal or parietal lobes, and antipsychotics constitute the first line of treatment. Leaving standard treatments aside, associations were observed between dysthymia and opioid analgesics, betahistine and statins, and between psychotic symptoms and levodopa, piracetam, and vasodilators. Copyright © 2014 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Motor Imagery Learning Modulates Functional Connectivity of Multiple Brain Systems in Resting State
Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun
2014-01-01
Background Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. Methodology/Principal Findings We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. Conclusions/Significance These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning. PMID:24465577
Design of a robotic device for assessment and rehabilitation of hand sensory function.
Lambercy, Olivier; Robles, Alejandro Juárez; Kim, Yeongmi; Gassert, Roger
2011-01-01
This paper presents the design and implementation of the Robotic Sensory Trainer, a robotic interface for assessment and therapy of hand sensory function. The device can provide three types of well controlled stimuli: (i) angular displacement at the metacarpophalangeal (MCP) joint using a remote-center-of-motion double-parallelogram structure, (ii) vibration stimuli at the fingertip, proximal phalange and palm, and (iii) pressure at the fingertip, while recording position, interaction force and feedback from the user over a touch screen. These stimuli offer a novel platform to investigate sensory perception in healthy subjects and patients with sensory impairments, with the potential to assess deficits and actively train detection of specific sensory cues in a standardized manner. A preliminary study with eight healthy subjects demonstrates the feasibility of using the Robotic Sensory Trainer to assess the sensory perception threshold in MCP angular position. An average just noticeable difference (JND) in the MCP joint angle of 2.46° (14.47%) was found, which is in agreement with previous perception studies. © 2011 IEEE
Haptic wearables as sensory replacement, sensory augmentation and trainer - a review.
Shull, Peter B; Damian, Dana D
2015-07-20
Sensory impairments decrease quality of life and can slow or hinder rehabilitation. Small, computationally powerful electronics have enabled the recent development of wearable systems aimed to improve function for individuals with sensory impairments. The purpose of this review is to synthesize current haptic wearable research for clinical applications involving sensory impairments. We define haptic wearables as untethered, ungrounded body worn devices that interact with skin directly or through clothing and can be used in natural environments outside a laboratory. Results of this review are categorized by degree of sensory impairment. Total impairment, such as in an amputee, blind, or deaf individual, involves haptics acting as sensory replacement; partial impairment, as is common in rehabilitation, involves haptics as sensory augmentation; and no impairment involves haptics as trainer. This review found that wearable haptic devices improved function for a variety of clinical applications including: rehabilitation, prosthetics, vestibular loss, osteoarthritis, vision loss and hearing loss. Future haptic wearables development should focus on clinical needs, intuitive and multimodal haptic displays, low energy demands, and biomechanical compliance for long-term usage.
Cerliani, Leonardo; Mennes, Maarten; Thomas, Rajat M.; Di Martino, Adriana; Thioux, Marc; Keysers, Christian
2016-01-01
Importance Individuals with autism spectrum disorder (ASD) exhibit severe difficulties in social interaction, motor coordination, behavioral flexibility, and atypical sensory processing, with considerable interindividual variability. This heterogeneous set of symptoms recently led to investigating the presence of abnormalities in the interaction across large-scale brain networks. To date, studies have focused either on constrained sets of brain regions or whole-brain analysis, rather than focusing on the interaction between brain networks. Objectives To compare the intrinsic functional connectivity between brain networks in a large sample of individuals with ASD and typically developing control subjects and to estimate to what extent group differences would predict autistic traits and reflect different developmental trajectories. Design, Setting, and Participants We studied 166 male individuals (mean age, 17.6 years; age range, 7-50 years) diagnosed as having DSM-IV-TR autism or Asperger syndrome and 193 typical developing male individuals (mean age, 16.9 years; age range, 6.5-39.4 years) using resting-state functional magnetic resonance imaging (MRI). Participants were matched for age, IQ, head motion, and eye status (open or closed) in the MRI scanner. We analyzed data from the Autism Brain Imaging Data Exchange (ABIDE), an aggregated MRI data set from 17 centers, made public in August 2012. Main Outcomes and Measures We estimated correlations between time courses of brain networks extracted using a data-driven method (independent component analysis). Subsequently, we associated estimates of interaction strength between networks with age and autistic traits indexed by the Social Responsiveness Scale. Results Relative to typically developing control participants, individuals with ASD showed increased functional connectivity between primary sensory networks and subcortical networks (thalamus and basal ganglia) (all t ≥ 3.13, P < .001 corrected). The strength of such connections was associated with the severity of autistic traits in the ASD group (all r ≥ 0.21, P < .0067 corrected). In addition, subcortico-cortical interaction decreased with age in the entire sample (all r ≤ −0.09, P < .012 corrected), although this association was significant only in typically developing participants (all r ≤ −0.13, P < .009 corrected). Conclusions and Relevance Our results showing ASD-related impairment in the interaction between primary sensory cortices and subcortical regions suggest that the sensory processes they subserve abnormally influence brain information processing in individuals with ASD. This might contribute to the occurrence of hyposensitivity or hypersensitivity and of difficulties in top-down regulation of behavior. PMID:26061743
Sensory Cortical Plasticity Participates in the Epigenetic Regulation of Robust Memory Formation
Phan, Mimi L.; Bieszczad, Kasia M.
2016-01-01
Neuroplasticity remodels sensory cortex across the lifespan. A function of adult sensory cortical plasticity may be capturing available information during perception for memory formation. The degree of experience-dependent remodeling in sensory cortex appears to determine memory strength and specificity for important sensory signals. A key open question is how plasticity is engaged to induce different degrees of sensory cortical remodeling. Neural plasticity for long-term memory requires the expression of genes underlying stable changes in neuronal function, structure, connectivity, and, ultimately, behavior. Lasting changes in transcriptional activity may depend on epigenetic mechanisms; some of the best studied in behavioral neuroscience are DNA methylation and histone acetylation and deacetylation, which, respectively, promote and repress gene expression. One purpose of this review is to propose epigenetic regulation of sensory cortical remodeling as a mechanism enabling the transformation of significant information from experiences into content-rich memories of those experiences. Recent evidence suggests how epigenetic mechanisms regulate highly specific reorganization of sensory cortical representations that establish a widespread network for memory. Thus, epigenetic mechanisms could initiate events to establish exceptionally persistent and robust memories at a systems-wide level by engaging sensory cortical plasticity for gating what and how much information becomes encoded. PMID:26881129
Descending polyneuropathy in an intravenous drug user.
O'Sullivan, Jean M; McMahon, Geraldine
2005-10-01
A 27-year-old male intravenous drug user presented to the Emergency Department of St James's Hospital with a 1-week history of progressive dysphasia, dysphagia and difficulty 'holding his head up' and 'keeping his eyes open'. He also complained of increasing weakness in his upper limbs, as a result of which he kept dropping things. He was on a methadone program but was using both intravenous heroin and cocaine at the time of presentation. Examination of his motor function revealed generalized hypotonia, hyporeflexia and reduced power in both upper limbs. No sensory loss was observed. Co-ordination was intact. The clinical picture of a proximal symmetrical descending weakness and an absence of sensory loss was suggestive of botulism. Clostridium botulinum is a spore-forming, obligate anaerobe. The three forms of human botulism are food-borne, wound and intestinal. A fourth man-made form is produced from aerosolized botulinum toxin and results in inhalational botulism. A little as 1 g of aerosolized botulinum toxin has the potential to kill 1.5 million people. Toxin is detected in serum or stool specimens in only approximately 46% of clinically diagnosed cases. Treatment involves supportive care and early passive immunization with equine antitoxin. Patients should be regularly assessed for loss of gag and cough reflex, control of oropharyngeal secretions, oxygen saturation, vital capacity and inspiratory force. When respiratory function begins to deteriorate, anticipatory intubation is indicated. Early symptom recognition and early treatment with antitoxin are essential in order to prevent mortality, and to prevent additional cases, it is important to ascertain the presence of similar symptoms in contacts of the patient and local public health officials must be notified as one case may herald an outbreak. Given the continued threat of bioterrorism, the Centre for Disease Control Surveillance System in the United States must also be notified of any cases of botulism.
Krause, Thomas; Asseyer, Susanna; Geisler, Frederik; Fiebach, Jochen B; Oeltjenbruns, Jochen; Kopf, Andreas; Villringer, Kersten; Villringer, Arno; Jungehulsing, Gerhard J
2016-01-01
Approximately 20% of patients suffering from stroke with pure or predominant sensory symptoms (referred to as sensory stroke patients) develop central poststroke pain (CPSP). It is largely unknown what distinguishes these patients from those who remain pain free. Using quantitative sensory testing (QST), we analyzed the somatosensory profiles of 50 patients with chronic sensory stroke, of which 25 suffered from CPSP. As compared with reference data from healthy controls, patients with CPSP showed alterations of thermal and mechanical thresholds on the body area contralateral to their stroke (P < 0.01). Patients with sensory stroke but without CPSP (non-pain sensory stroke [NPSS] patients) exhibited similar albeit less pronounced contralesional changes. Paradoxical heat sensation (PHS) and dynamic mechanical allodynia (DMA) showed higher values in CPSP, and an elevated cold detection threshold (CDT) was seen more often in CPSP than in patients with NPSS (P < 0.05). In patients with CPSP, changes in CDT, PHS, dynamic mechanical allodynia, and temporal pain summation (wind-up ratio) each correlated with the presence of pain (P < 0.05). On the homologous ipsilesional body area, both patient groups showed additional significant abnormalities as compared with the reference data, which strongly resembled the contralesional changes. In summary, our analysis reveals that CPSP is associated with impaired temperature perception and positive sensory signs, but differences between patients with CPSP and NPSS are subtle. Both patients with CPSP and NPSS show considerable QST changes on the ipsilesional body side. These results are in part paralleled by recent findings of bilaterally spread cortical atrophy in CPSP and might reflect chronic maladaptive cortical plasticity, particularly in patients with CPSP.
How mechanisms of perceptual decision-making affect the psychometric function.
Gold, Joshua I; Ding, Long
2013-04-01
Psychometric functions are often interpreted in the context of Signal Detection Theory, which emphasizes a distinction between sensory processing and non-sensory decision rules in the brain. This framework has helped to relate perceptual sensitivity to the "neurometric" sensitivity of sensory-driven neural activity. However, perceptual sensitivity, as interpreted via Signal Detection Theory, is based on not just how the brain represents relevant sensory information, but also how that information is read out to form the decision variable to which the decision rule is applied. Here we discuss recent advances in our understanding of this readout process and describe its effects on the psychometric function. In particular, we show that particular aspects of the readout process can have specific, identifiable effects on the threshold, slope, upper asymptote, time dependence, and choice dependence of psychometric functions. To illustrate these points, we emphasize studies of perceptual learning that have identified changes in the readout process that can lead to changes in these aspects of the psychometric function. We also discuss methods that have been used to distinguish contributions of the sensory representation versus its readout to psychophysical performance. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dixon, Eric A.; Benham, Grant; Sturgeon, John A.; Mackey, Sean; Johnson, Kevin A.; Younger, Jarred
2016-01-01
Sensory hypersensitivity is one manifestation of the central sensitization that may underlie conditions such as fibromyalgia and chronic fatigue syndrome. We conducted five studies designed to develop and validate the Sensory Hypersensitive Scale (SHS); a 25-item self-report measure of sensory hypersensitivity. The SHS assesses both general sensitivity and modality-specific sensitivity (e.g. touch, taste, and hearing). 1202 participants (157 individuals with chronic pain) completed the SHS, which demonstrated an adequate overall internal reliability (Cronbach’s alpha) of 0.81, suggesting the tool can be used as a cross-modality assessment of sensitivity. SHS scores demonstrated only modest correlations (Pearson’s r) with depressive symptoms (0.19) and anxiety (0.28), suggesting a low level of overlap with psychiatric complaints. Overall SHS scores showed significant but relatively modest correlations (Pearson’s r) with three measures of sensory testing: cold pain tolerance (−0.34); heat pain tolerance (−0.285); heat pain threshold (−0.271). Women reported significantly higher scores on the SHS than did men, although gender-based differences were small. In a chronic pain sample, individuals with fibromyalgia syndrome demonstrated significantly higher SHS scores than did individuals with osteoarthritis or back pain. The SHS appears suitable as a screening measure for sensory hypersensitivity, though additional research is warranted to determine its suitability as a proxy for central sensitization. PMID:26873609
Gandolfi, Marialuisa; Munari, Daniele; Geroin, Christian; Gajofatto, Alberto; Benedetti, Maria Donata; Midiri, Alessandro; Carla, Fontana; Picelli, Alessandro; Waldner, Andreas; Smania, Nicola
2015-10-01
Impaired sensory integration contributes to balance disorders in patients with multiple sclerosis (MS). The objective of this paper is to compare the effects of sensory integration balance training against conventional rehabilitation on balance disorders, the level of balance confidence perceived, quality of life, fatigue, frequency of falls, and sensory integration processing on a large sample of patients with MS. This single-blind, randomized, controlled trial involved 80 outpatients with MS (EDSS: 1.5-6.0) and subjective symptoms of balance disorders. The experimental group (n = 39) received specific training to improve central integration of afferent sensory inputs; the control group (n = 41) received conventional rehabilitation (15 treatment sessions of 50 minutes each). Before, after treatment, and at one month post-treatment, patients were evaluated by a blinded rater using the Berg Balance Scale (BBS), Activities-specific Balance Confidence Scale (ABC), Multiple Sclerosis Quality of Life-54, Fatigue Severity Scale (FSS), number of falls and the Sensory Organization Balance Test (SOT). The experimental training program produced greater improvements than the control group training on the BBS (p < 0.001), the FSS (p < 0.002), number of falls (p = 0.002) and SOT (p < 0.05). Specific training to improve central integration of afferent sensory inputs may ameliorate balance disorders in patients with MS. Clinical Trial Registration (NCT01040117). © The Author(s), 2015.
Thalamic control of sensory selection in divided attention.
Wimmer, Ralf D; Schmitt, L Ian; Davidson, Thomas J; Nakajima, Miho; Deisseroth, Karl; Halassa, Michael M
2015-10-29
How the brain selects appropriate sensory inputs and suppresses distractors is unknown. Given the well-established role of the prefrontal cortex (PFC) in executive function, its interactions with sensory cortical areas during attention have been hypothesized to control sensory selection. To test this idea and, more generally, dissect the circuits underlying sensory selection, we developed a cross-modal divided-attention task in mice that allowed genetic access to this cognitive process. By optogenetically perturbing PFC function in a temporally precise window, the ability of mice to select appropriately between conflicting visual and auditory stimuli was diminished. Equivalent sensory thalamocortical manipulations showed that behaviour was causally dependent on PFC interactions with the sensory thalamus, not sensory cortex. Consistent with this notion, we found neurons of the visual thalamic reticular nucleus (visTRN) to exhibit PFC-dependent changes in firing rate predictive of the modality selected. visTRN activity was causal to performance as confirmed by bidirectional optogenetic manipulations of this subnetwork. Using a combination of electrophysiology and intracellular chloride photometry, we demonstrated that visTRN dynamically controls visual thalamic gain through feedforward inhibition. Our experiments introduce a new subcortical model of sensory selection, in which the PFC biases thalamic reticular subnetworks to control thalamic sensory gain, selecting appropriate inputs for further processing.
Physiological Targets of Artificial Gravity: The Sensory-Motor System. Chapter 4
NASA Technical Reports Server (NTRS)
Paloski, William; Groen, Eric; Clarke, Andrew; Bles, Willem; Wuyts, Floris; Paloski, William; Clement, Gilles
2006-01-01
This chapter describes the pros and cons of artificial gravity applications in relation to human sensory-motor functioning in space. Spaceflight creates a challenge for sensory-motor functions that depend on gravity, which include postural balance, locomotion, eye-hand coordination, and spatial orientation. The sensory systems, and in particular the vestibular system, must adapt to weightlessness on entering orbit, and again to normal gravity upon return to Earth. During this period of adaptation, which persists beyond the actual gravity-level transition itself the sensory-motor systems are disturbed. Although artificial gravity may prove to be beneficial for the musculoskeletal and cardiovascular systems, it may well have negative side effects for the neurovestibular system, such as spatial disorientation, malcoordination, and nausea.
Hand function in workers with hand-arm vibration syndrome.
Cederlund, R; Isacsson, A; Lundborg, G
1999-01-01
Hand-arm vibration syndrome has been specially addressed in the Scandinavian countries in recent years, but the syndrome is still not sufficiently recognized in many countries. The object of this preliminary study was to describe the nature and character of vibration-induced impairment in the hands of exposed workers. Twenty symptomatic male workers (aged 28 to 65 years) subjected to vibration by hand-held tools were interviewed about subjective symptoms and activities of daily living and were assessed with a battery of objective tests for sensibility, dexterity, grip function, and grip strength. The test results were compared with normative data. The majority of patients complained of cold intolerance, numbness, pain, sensory impairment, and difficulties in handling manual tools and in handwriting. The various objective tests showed considerable variation in indications of pathologic outcome, revealing differences in sensitivity to detect impaired hand function. Semmes-Weinstein monofilament testing for perception of light touch-deep pressure sensation, the small-object shape identification test, and moving two-point discrimination testing for functional sensibility provided the most indications of pathologic outcomes. The authors conclude that vibration-exposed patients present considerable impairment in hand function.
Oxytocin mediates early experience-dependent cross-modal plasticity in the sensory cortices.
Zheng, Jing-Jing; Li, Shu-Jing; Zhang, Xiao-Di; Miao, Wan-Ying; Zhang, Dinghong; Yao, Haishan; Yu, Xiang
2014-03-01
Sensory experience is critical to development and plasticity of neural circuits. Here we report a new form of plasticity in neonatal mice, where early sensory experience cross-modally regulates development of all sensory cortices via oxytocin signaling. Unimodal sensory deprivation from birth through whisker deprivation or dark rearing reduced excitatory synaptic transmission in the correspondent sensory cortex and cross-modally in other sensory cortices. Sensory experience regulated synthesis and secretion of the neuropeptide oxytocin as well as its level in the cortex. Both in vivo oxytocin injection and increased sensory experience elevated excitatory synaptic transmission in multiple sensory cortices and significantly rescued the effects of sensory deprivation. Together, these results identify a new function for oxytocin in promoting cross-modal, experience-dependent cortical development. This link between sensory experience and oxytocin is particularly relevant to autism, where hypersensitivity or hyposensitivity to sensory inputs is prevalent and oxytocin is a hotly debated potential therapy.
Siebenhühner, Felix; Wang, Sheng H; Palva, J Matias; Palva, Satu
2016-01-01
Neuronal activity in sensory and fronto-parietal (FP) areas underlies the representation and attentional control, respectively, of sensory information maintained in visual working memory (VWM). Within these regions, beta/gamma phase-synchronization supports the integration of sensory functions, while synchronization in theta/alpha bands supports the regulation of attentional functions. A key challenge is to understand which mechanisms integrate neuronal processing across these distinct frequencies and thereby the sensory and attentional functions. We investigated whether such integration could be achieved by cross-frequency phase synchrony (CFS). Using concurrent magneto- and electroencephalography, we found that CFS was load-dependently enhanced between theta and alpha–gamma and between alpha and beta-gamma oscillations during VWM maintenance among visual, FP, and dorsal attention (DA) systems. CFS also connected the hubs of within-frequency-synchronized networks and its strength predicted individual VWM capacity. We propose that CFS integrates processing among synchronized neuronal networks from theta to gamma frequencies to link sensory and attentional functions. DOI: http://dx.doi.org/10.7554/eLife.13451.001 PMID:27669146
Acute transient hemiparesis induced by lightning strike.
Rahmani, Seyed Hesam; Faridaalaee, Gholamreza; Jahangard, Samira
2015-07-01
According to data from the National Oceanic and Atmospheric Administration,in the years from 1959 to 1994, lightning was responsible for more than 3000 deaths and nearly 10,000 casualties. The most important characteristic features of lightning injuries are multisystem involvement and widely variable severity. Lightning strikes are primarily a neurologic injury that affects all 3 components of the nervous system: central, autonomic,and peripheral. Neurologic complications of lightning strikes vary from transient benign symptoms to permanent disability. Many patients experience a temporary paralysis called keraunoparalysis. Here we reported a 22-year-old mountaineer man with complaining of left sided hemiparesis after being hit by a lightning strike in the mountain 3 hours ago. There was no loss of consciousness at hitting time. On arrival the patient was alert, awake and hemodynamically stable. In neurologic examination cranial nerves were intact, left sided upper and lower extremity muscle force was I/V with a combination of complete sensory loss, and right-sided muscle force and sensory examination were normal. There is not any evidence of significant vascular impairment in the affected extremities. Brain MRI and CT scan and cervical MRI were normal. During 2 days of admission, with intravenous hydration, heparin 5000 unit SC q12hr and physical therapy of the affected limbs, motor and sensory function improved and was normal except mild paresthesia. He was discharged 1 day later for outpatient follow up while vitamin B1 100mg orally was prescribed.Paresthesia improved after 3 days without further sequels.
Impaired hand size estimation in CRPS.
Peltz, Elena; Seifert, Frank; Lanz, Stefan; Müller, Rüdiger; Maihöfner, Christian
2011-10-01
A triad of clinical symptoms, ie, autonomic, motor and sensory dysfunctions, characterizes complex regional pain syndromes (CRPS). Sensory dysfunction comprises sensory loss or spontaneous and stimulus-evoked pain. Furthermore, a disturbance in the body schema may occur. In the present study, patients with CRPS of the upper extremity and healthy controls estimated their hand sizes on the basis of expanded or compressed schematic drawings of hands. In patients with CRPS we found an impairment in accurate hand size estimation; patients estimated their own CRPS-affected hand to be larger than it actually was when measured objectively. Moreover, overestimation correlated significantly with disease duration, neglect score, and increase of two-point-discrimination-thresholds (TPDT) compared to the unaffected hand and to control subjects' estimations. In line with previous functional imaging studies in CRPS patients demonstrating changes in central somatotopic maps, we suggest an involvement of the central nervous system in this disruption of the body schema. Potential cortical areas may be the primary somatosensory and posterior parietal cortices, which have been proposed to play a critical role in integrating visuospatial information. CRPS patients perceive their affected hand to be bigger than it is. The magnitude of this overestimation correlates with disease duration, decreased tactile thresholds, and neglect-score. Suggesting a disrupted body schema as the source of this impairment, our findings corroborate the current assumption of a CNS involvement in CRPS. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.
Pregnenolone blocks cannabinoid-induced acute psychotic-like states in mice
Busquets-Garcia, Arnau; Soria-Gómez, Edgar; Redon, Bastien; Mackenbach, Yarmo; Chaouloff, Francis; Varilh, Marjorie; Ferreira, Guillaume; Piazza, Pier-Vincenzo; Marsicano, Giovanni
2017-01-01
Cannabis-induced acute psychotic-like states (CIAPS) represent a growing health issue, but their underlying neurobiological mechanisms are poorly understood. The use of antipsychotics and benzodiazepines against CIAPS is limited by side-effects and/or by their ability to tackle only certain aspects of psychosis. Thus, safer wide-spectrum treatments are currently needed. Although the blockade of cannabinoid type-1 receptor (CB1) had been suggested as a therapeutical means against CIAPS, the use of orthosteric CB1 receptor full antagonists is strongly limited by undesired side effects and low efficacy. The neurosteroid pregnenolone has been recently shown to act as a potent endogenous allosteric signal-specific inhibitor of CB1 receptors. Thus, we tested in mice the potential therapeutic use of pregnenolone against acute psychotic-like effects of Δ9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis. We found that pregnenolone blocks a wide spectrum of THC-induced endophenotypes typically associated with psychotic-like states, including impairments in cognitive functions, somatosensory gating and social interaction. In order to capture THC-induced positive psychotic-like symptoms (e.g. perceptual delusions), we adapted a behavioral paradigm based on associations between different sensory modalities and selective devaluation, allowing the measurement of mental sensory representations in mice. Acting at hippocampal CB1 receptors, THC impaired the correct processing of mental sensory representations (reality testing) in an antipsychotic- and pregnenolone-sensitive manner. Overall, this work reveals that signal-specific inhibitors mimicking pregnenolone effects can be considered as promising new therapeutic tools to treat CIAPS. PMID:28220044
Wright, W Geoffrey; Handy, Justin D; Avcu, Pelin; Ortiz, Alejandro; Haran, F Jay; Doria, Michael; Servatius, Richard J
2018-03-01
Postural control and stress reactivity were investigated in active duty coast guard personnel to determine whether they are sensitive to lifetime effects of mild traumatic brain injury (mTBI). A custom-designed and validated virtual reality-based computerized posturography device was used to assess postural stability, whereas emotional reactivity was assessed using the acoustic startle response (ASR), and neurocognitive performance was assessed using the defense-automated neurobehavioral assessment (DANA). It was hypothesized that residual and subtle postural control imbalance and deficits in cognitive and sensory reactivity would be evident in those reporting multiple lifetime mTBI. Active duty military personnel (N = 36; 7 females and 29 males) with no Deployment Limiting Medical Condition were recruited and tested on all assessments. Medical history information provided a history of head injury. Thirty-nine percent of participants reported having a previous mTBI (nine reporting one and five reporting more than one incident). No participant had experienced a head injury within the past year and all were symptom free. A significant effect of number of mTBI was found in the postural assessment (p = 0.002). Lifetime mTBI was associated with suppressed ASR magnitude (p = 0.03) but did not affect neurocognitive performance. The current findings provide new insight into ongoing controversies concerning sensitivity to functional deficits following mTBI and when the window for treatment or restoration ends.
The temporolimbic system theory of paranoid schizophrenia.
Casanova, M F
1997-01-01
The hippocampus serves as a funnel for heavily processed sensory information that has converged at the entorhinal cortex. Lesions of the hippocampus do not alter incoming sensory or motor information but, rather, alter their integration with our baggage of emotional experiences and social values. According to Bogerts, such a lesion would be ideally situated to result in laboriously processed sensory information that is out of context to our outside environment. In this regard, Bogerts describes the pathological findings of a patient with a gross delusional disorder. The salient finding at autopsy was a developmental lesion in the left posterior parahippocampal gyrus. Although a number of lesions have been described in the brains of patients with schizophrenia, Bogerts believes that those in the limbic system appear critical to the expression of paranoid symptoms.
Vaccarino, Anthony L; Evans, Kenneth R; Sills, Terrence L; Kalali, Amir H
2008-01-01
Although diagnostically dissociable, anxiety is strongly co-morbid with depression. To examine further the clinical symptoms of anxiety in major depressive disorder (MDD), a non-parametric item response analysis on "blinded" data from four pharmaceutical company clinical trials was performed on the Hamilton Anxiety Rating Scale (HAMA) across levels of depressive severity. The severity of depressive symptoms was assessed using the 17-item Hamilton Depression Rating Scale (HAMD). HAMA and HAMD measures were supplied for each patient on each of two post-screen visits (n=1,668 observations). Option characteristic curves were generated for all 14 HAMA items to determine the probability of scoring a particular option on the HAMA in relation to the total HAMD score. Additional analyses were conducted using Pearson's product-moment correlations. Results showed that anxiety-related symptomatology generally increased as a function of overall depressive severity, though there were clear differences between individual anxiety symptoms in their relationship with depressive severity. In particular, anxious mood, tension, insomnia, difficulties in concentration and memory, and depressed mood were found to discriminate over the full range of HAMD scores, increasing continuously with increases in depressive severity. By contrast, many somatic-related symptoms, including muscular, sensory, cardiovascular, respiratory, gastro-intestinal, and genito-urinary were manifested primarily at higher levels of depression and did not discriminate well at lower HAMD scores. These results demonstrate anxiety as a core feature of depression, and the relationship between anxiety-related symptoms and depression should be considered in the assessment of depression and evaluation of treatment strategies and outcome.
Santos, Daniel; González-Pérez, Francisco; Giudetti, Guido; Micera, Silvestro; Udina, Esther; Del Valle, Jaume; Navarro, Xavier
2016-01-01
After peripheral nerve injury, motor and sensory axons are able to regenerate but inaccuracy of target reinnervation leads to poor functional recovery. Extracellular matrix (ECM) components and neurotrophic factors (NTFs) exert their effect on different neuronal populations creating a suitable environment to promote axonal growth. Here, we assessed in vitro and in vivo the selective effects of combining different ECM components with NTFs on motor and sensory axons regeneration and target reinnervation. Organotypic cultures with collagen, laminin and nerve growth factor (NGF)/neurotrophin-3 (NT3) or collagen, fibronectin and brain-derived neurotrophic factor (BDNF) selectively enhanced sensory neurite outgrowth of DRG neurons and motor neurite outgrowth from spinal cord slices respectively. For in vivo studies, the rat sciatic nerve was transected and repaired with a silicone tube filled with a collagen and laminin matrix with NGF/NT3 encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres (MP) (LM + MP.NGF/NT3), or a collagen and fibronectin matrix with BDNF in PLGA MPs (FN + MP.BDNF). Retrograde labeling and functional tests showed that LM + MP.NGF/NT3 increased the number of regenerated sensory neurons and improved sensory functional recovery, whereas FN + MP.BDNF preferentially increased regenerated motoneurons and enhanced motor functional recovery. Therefore, combination of ECM molecules with NTFs may be a good approach to selectively enhance motor and sensory axons regeneration and promote appropriate target reinnervation. PMID:28036084
Listening to Another Sense: Somatosensory Integration in the Auditory System
Wu, Calvin; Stefanescu, Roxana A.; Martel, David T.
2014-01-01
Conventionally, sensory systems are viewed as separate entities, each with its own physiological process serving a different purpose. However, many functions require integrative inputs from multiple sensory systems, and sensory intersection and convergence occur throughout the central nervous system. The neural processes for hearing perception undergo significant modulation by the two other major sensory systems, vision and somatosensation. This synthesis occurs at every level of the ascending auditory pathway: the cochlear nucleus, inferior colliculus, medial geniculate body, and the auditory cortex. In this review, we explore the process of multisensory integration from 1) anatomical (inputs and connections), 2) physiological (cellular responses), 3) functional, and 4) pathological aspects. We focus on the convergence between auditory and somatosensory inputs in each ascending auditory station. This review highlights the intricacy of sensory processing, and offers a multisensory perspective regarding the understanding of sensory disorders. PMID:25526698
Ghosh, S K; Chakrabarti, P
2010-08-01
The cellular organisation of the olfactory rosettes of Etroplus suratensis was studied by light and scanning electron microscopy. The oval shaped olfactory rosette of the fish consists of 12 lamellae radiating from a central raphe. The olfactory lamellae are comprised of restricted areas of sensory epithelium and broad areas of non-sensory epithelium in the apical, middle, and basal regions. The sensory epithelium contains three types of receptor cells: microvillus, ciliated, and rod cells, as well as labyrinth cells and supporting cells. The non-sensory epithelium consists of stratified epithelial and mucous cells. The transitional region between the sensory and non-sensory epithelium consists of ciliated receptor cells, mucous cells, and stratified epithelial cells. The different cells on the olfactory epithelium were discussed regarding the functional significance of the fish concerned.
How to Diagnose and Treat Functional Chest Pain.
Remes-Troche, Jose M
2016-12-01
Chest pain that is not explained by reflux disease or cardiac, musculoskeletal, mucosal, or motor esophageal abnormalities is classified as functional chest pain (FCP). Although several mechanisms are involved, esophageal hypersensitivity plays a major role and it could be considered a biomarker for FCP. Psychologic comorbidity such as anxiety, neuroticism, depression, and somatization is common. When the diagnosis of FCP is suspected, patients should undergo evaluation with esophageal motility testing, endoscopy, 24-h esophageal pH monitoring, and in some cases, sensory tests. Once the diagnosis of FCP has been established, treatment options rely on controlling patients' symptoms. Medical treatment has focused predominantly on medications that target pain, such as antidepressants and other pain neuromodulators. Non-pharmacologic interventions with complementary behavioral treatments, such as cognitive behavioral therapy, biofeedback, and hypnosis, have recently been recognized as useful in FCP patients. The latest findings on the evaluation and treatment of FCP are outlined herein.
Clinical correlates of distorted auditory perception in first-episode psychosis.
Morenz, Rachel; Woolverton, Cindy; Frost, R Brock; Kiewel, Nicole A; Breitborde, Nicholas J K
2015-06-01
Auditory hallucinations are hypothesized to be based in distorted sensory perceptions, with increasingly distorted perceptions of reality possibly prompting the first psychotic phase of schizophrenia spectrum disorders. Our goal was to examine the association between distorted auditory perceptions and psychotic symptomatology, social functioning and quality of life among individuals with first-episode psychosis. Forty individuals with first-episode psychosis completed assessments of distorted auditory perception, psychotic symptomatology, social functioning and quality of life. Both negative (greater symptomatology) and positive clinical correlates (better quality of life) were associated with greater distorted auditory perceptions. Our findings suggest that distorted auditory perceptions are associated with both positive and negative clinical correlates among individuals with first-episode psychosis. These results highlight the potential clinical importance of balancing the goal of symptomatic reduction with the need to maintain healthy coping strategies that may be biologically and psychologically entwined with the symptoms of psychosis, themselves. © 2014 Wiley Publishing Asia Pty Ltd.
Exposure to unpredictable maternal sensory signals influences cognitive development across species.
Davis, Elysia Poggi; Stout, Stephanie A; Molet, Jenny; Vegetabile, Brian; Glynn, Laura M; Sandman, Curt A; Heins, Kevin; Stern, Hal; Baram, Tallie Z
2017-09-26
Maternal care is a critical determinant of child development. However, our understanding of processes and mechanisms by which maternal behavior influences the developing human brain remains limited. Animal research has illustrated that patterns of sensory information is important in shaping neural circuits during development. Here we examined the relation between degree of predictability of maternal sensory signals early in life and subsequent cognitive function in both humans ( n = 128 mother/infant dyads) and rats ( n = 12 dams; 28 adolescents). Behaviors of mothers interacting with their offspring were observed in both species, and an entropy rate was calculated as a quantitative measure of degree of predictability of transitions among maternal sensory signals (visual, auditory, and tactile). Human cognitive function was assessed at age 2 y with the Bayley Scales of Infant Development and at age 6.5 y with a hippocampus-dependent delayed-recall task. Rat hippocampus-dependent spatial memory was evaluated on postnatal days 49-60. Early life exposure to unpredictable sensory signals portended poor cognitive performance in both species. The present study provides evidence that predictability of maternal sensory signals early in life impacts cognitive function in both rats and humans. The parallel between experimental animal and observational human data lends support to the argument that predictability of maternal sensory signals causally influences cognitive development.
Sensory Dysfunction and Sexuality in the U.S. Population of Older Adults.
Zhong, Selena; Pinto, Jayant M; Wroblewski, Kristen E; McClintock, Martha K
2018-04-01
The sexual experience is shaped by sensory function; with aging, sensory dysfunction may interfere with sexuality and sexual behavior between partners. Specifically, older adults with age-related sensory dysfunction may have less sexual activity than those with better sensory function. In addition, since sexual desire and attraction rests in part upon sensory function, sensory dysfunction may also be associated with less sexual motivation. To test the association between sexual activity and motivation in older adults and their sensory dysfunction. Sensory dysfunction was measured both by global sensory impairment (a validated measure of dysfunction shared among the 5 classic senses: olfaction, vision, taste, touch, hearing) and by total sensory burden (cumulative sensory loss). Sexual activity was quantified by frequency and type of sexual behavior. Sexual motivation was measured by the frequency of sexual ideation and the importance of sex to the respondent. We used cross-sectional data from a nationally representative sample of community-dwelling older adults (aged 57-85 years) in the United States (National Social Life, Health, and Aging Project, N = 3,005) in logistic regression analyses. Sexual activity, sexual motivation, and satisfaction with the sexual relationship were self-reported. Older adults with sensory dysfunction were less likely to be sexually active-an association that persisted when accounting for other factors that also affected sexual activity (age, gender, partnered status, mental and physical health, and relationship satisfaction). Nonetheless, sensory dysfunction did not impair sexual motivation, nor affect the physical and emotional satisfaction with the sexual relationship. Among currently sexually active older adults, sensory dysfunction did not affect the frequency of sex or the type of sexual activity (foreplay, vaginal intercourse, or oral sex). These results were the same for 2 different measures of sensory dysfunction. This is the first nationally representative study of sexuality and multisensory dysfunction in community-dwelling older adults. 4 of the 5 classic senses were measured with objective tests, and hearing was rated by interviewers in the context of their conversation. Medical and health care interventions that can reduce the burden of sensory dysfunction may improve older adults' sexual experience. Sensory dysfunction is associated with sexual inactivity, but not with sexual motivation. Among those who are sexually active, sensory dysfunction did not interfere with sexual expression. Improving the sexual experience of older adults requires a focus on sensory dysfunction as an impediment to sexual activity given that older adults remain sexually motivated. Zhong S, Pinto JM, Wroblewski KE, et al. Sensory Dysfunction and Sexuality in the U.S. Population of Older Adults. J Sex Med 2018;15:502-509. Copyright © 2018 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
A continued role for signaling functions in the early evolution of feathers.
Ruxton, Graeme D; Persons Iv, W Scott; Currie, Philip J
2017-03-01
Persons and Currie (2015) argued against either flight, thermoregulation, or signaling as a functional benefit driving the earliest evolution of feathers; rather, they favored simple feathers having an initial tactile sensory function, which changed to a thermoregulatory function as density increased. Here, we explore the relative merits of early simple feathers that may have originated as tactile sensors progressing instead toward a signaling, rather than (or in addition to) a thermoregulatory function. We suggest that signaling could act in concert with a sensory function more naturally than could thermoregulation. As such, the dismissal of a possible signaling function and the presumption that an initial sensory function led directly to a thermoregulatory function (implicit in the title "bristles before down") are premature. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Characterization of Frequency-Dependent Responses of the Vascular System to Repetitive Vibration
Krajnak, Kristine; Miller, G. Roger; Waugh, Stacey; Johnson, Claud; Kashon, Michael L.
2015-01-01
Objective Occupational exposure to hand-transmitted vibration can result in damage to nerves and sensory loss. The goal of this study was to assess the frequency-dependent effects of repeated bouts of vibration on sensory nerve function and associated changes in nerves. Methods The tails of rats were exposed to vibration at 62.5, 125, or 250 Hz (constant acceleration of 49m/s2) for 10 days. The effects on sensory nerve function, nerve morphology, and transcript expression in ventral tail nerves were measured. Results Vibration at all frequencies had effects on nerve function and physiology. However, the effects tended to be more prominent with exposure at 250 Hz. Conclusion Exposure to vibration has detrimental effects on sensory nerve function and physiology. However, many of these changes are more prominent at 250-Hz exposure than at lower frequencies. PMID:22785326
Changes in Ionic Conductance Signature of Nociceptive Neurons Underlying Fabry Disease Phenotype
Namer, Barbara; Ørstavik, Kirstin; Schmidt, Roland; Mair, Norbert; Kleggetveit, Inge Petter; Zeidler, Maximillian; Martha, Theresa; Jorum, Ellen; Schmelz, Martin; Kalpachidou, Theodora; Kress, Michaela; Langeslag, Michiel
2017-01-01
The first symptom arising in many Fabry patients is neuropathic pain due to changes in small myelinated and unmyelinated fibers in the periphery, which is subsequently followed by a loss of sensory perception. Here we studied changes in the peripheral nervous system of Fabry patients and a Fabry mouse model induced by deletion of α-galactosidase A (Gla−/0). The skin innervation of Gla−/0 mice resembles that of the human Fabry patients. In Fabry diseased humans and Gla−/0 mice, we observed similar sensory abnormalities, which were also observed in nerve fiber recordings in both patients and mice. Electrophysiological recordings of cultured Gla−/0 nociceptors revealed that the conductance of voltage-gated Na+ and Ca2+ currents was decreased in Gla−/0 nociceptors, whereas the activation of voltage-gated K+ currents was at more depolarized potentials. Conclusively, we have observed that reduced sensory perception due to small-fiber degeneration coincides with altered electrophysiological properties of sensory neurons. PMID:28769867
Llorca, P M; Pereira, B; Jardri, R; Chereau-Boudet, I; Brousse, G; Misdrahi, D; Fénelon, G; Tronche, A-M; Schwan, R; Lançon, C; Marques, A; Ulla, M; Derost, P; Debilly, B; Durif, F; de Chazeron, I
2016-12-01
Hallucinations have been described in various clinical populations, but they are neither disorder nor disease specific. In schizophrenia patients, hallucinations are hallmark symptoms and auditory ones are described as the more frequent. In Parkinson's disease, the descriptions of hallucination modalities are sparse, but the hallucinations do tend to have less negative consequences. Our study aims to explore the phenomenology of hallucinations in both hallucinating schizophrenia patients and Parkinson's disease patients using the Psycho-Sensory hAllucinations Scale (PSAS). The main objective is to describe the phenomena of these clinical symptoms in those two specific populations. Each hallucinatory sensory modality significantly differed between Parkinson's disease and schizophrenia patients. Auditory, olfactory/gustatory and cœnesthetic hallucinations were more frequent in schizophrenia than visual hallucinations. The guardian angel item, usually not explored in schizophrenia, was described by 46% of these patients. The combination of auditory and visual hallucinations was the most frequent for both Parkinson's disease and schizophrenia. The repercussion index summing characteristics of each hallucination (frequency, duration, negative aspects, conviction, impact, control and sound intensity) was always higher for schizophrenia. A broader view including widespread characteristics and interdisciplinary works must be encouraged to better understand the complexity of the process involved in hallucinations.
Llorca, P. M.; Pereira, B.; Jardri, R.; Chereau-Boudet, I.; Brousse, G.; Misdrahi, D.; Fénelon, G.; Tronche, A.-M.; Schwan, R.; Lançon, C.; Marques, A.; Ulla, M.; Derost, P.; Debilly, B.; Durif, F.; de Chazeron, I.
2016-01-01
Hallucinations have been described in various clinical populations, but they are neither disorder nor disease specific. In schizophrenia patients, hallucinations are hallmark symptoms and auditory ones are described as the more frequent. In Parkinson’s disease, the descriptions of hallucination modalities are sparse, but the hallucinations do tend to have less negative consequences. Our study aims to explore the phenomenology of hallucinations in both hallucinating schizophrenia patients and Parkinson’s disease patients using the Psycho-Sensory hAllucinations Scale (PSAS). The main objective is to describe the phenomena of these clinical symptoms in those two specific populations. Each hallucinatory sensory modality significantly differed between Parkinson’s disease and schizophrenia patients. Auditory, olfactory/gustatory and cœnesthetic hallucinations were more frequent in schizophrenia than visual hallucinations. The guardian angel item, usually not explored in schizophrenia, was described by 46% of these patients. The combination of auditory and visual hallucinations was the most frequent for both Parkinson’s disease and schizophrenia. The repercussion index summing characteristics of each hallucination (frequency, duration, negative aspects, conviction, impact, control and sound intensity) was always higher for schizophrenia. A broader view including widespread characteristics and interdisciplinary works must be encouraged to better understand the complexity of the process involved in hallucinations. PMID:27905557
Paraesthesia and peripheral neuropathy.
Beran, Roy
2015-03-01
Paraesthesia reflects an abnormality affecting the sensory pathways anywhere between the peripheral sensory nervous system and the sensory cortex. As with all neurology, the fundamental diagnostic tool is a concise history, devoid of potentially ambiguous jargon, which properly reflects the true nature of what the patient is experiencing, provocateurs, precipitating and relieving factors, concomitant illnesses, such as diabetes, and any treatments that could evoke neuropathies. Some localised neuropathies, such as carpal tunnel syndrome (CTS) or ulnar neuropathy, produce classical features, such as weakness of the 'LOAF' (lateral two lumbricals, opponens pollicis, abductor pollicis brevis and flexor pollicis brevis) median innervated muscles, thereby obviating need for further neurophysiology. Nerve conduction studies may be necessary to diagnose peripheral neuropathy, but they may also be normal with small fibre neuropathy. Even with a diagnosis of peripheral neuropathy, definition of the underlying cause may remain elusive in a significant proportion of cases, despite involvement of consultants. Treatment is based on the relevant diagnosis and mechanism to address the cause. This includes better glycaemic control for diabetes, night splint for CTS or elbow padding for ulnar neuropathy, modifying lifestyle with reduced alcohol consumption or replacing dietary deficiencies or changing medications where appropriate and practical. Should such intervention fail to relieve symptoms, consideration of intervention to relieve symptoms of neuropathic pain may be required.
Usher syndrome with psychotic symptoms: two cases in the same family.
Wu, Chen-Ying; Chiu, Chih-Chiang
2006-10-01
Usher syndrome is a heterogeneous autosomal recessive disorder characterized by hearing and visual sensory impairment. Retinitis pigmentosa is essential for its diagnosis. There are only a few reports describing patients with Usher syndrome presenting with psychotic features and the etiology of its psychiatric manifestation is still unknown. Herein, the authors report variable congenital hearing impairment and progressive visual loss occurring in five of seven family members and two of them meeting the diagnostic criteria of Usher syndrome with psychotic features. Furthermore, the authors compare their psychiatric symptoms with other reports and the possible etiologies of psychotic symptoms are discussed.
ERIC Educational Resources Information Center
Mays, Nicole M.; Beal-Alvarez, Jennifer; Jolivette, Kristine
2011-01-01
This article outlines a three-step process to help teachers determine whether or not the function of a student's stereotypical behavior is sensory-based and if so, how to select and monitor an appropriate sensory intervention to promote instructional engagement. In particular, characteristics of students who are seeking to gain sensory input in…
Sensory Clusters of Adults with and without Autism Spectrum Conditions
ERIC Educational Resources Information Center
Elwin, Marie; Schröder, Agneta; Ek, Lena; Wallsten, Tuula; Kjellin, Lars
2017-01-01
We identified clusters of atypical sensory functioning adults with ASC by hierarchical cluster analysis. A new scale for commonly self-reported sensory reactivity was used as a measure. In a low frequency group (n = 37), all subscale scores were relatively low, in particular atypical sensory/motor reactivity. In the intermediate group (n = 17)…
Gelfo, Francesca; Cutuli, Debora; Foti, Francesca; Laricchiuta, Daniela; De Bartolo, Paola; Caltagirone, Carlo; Petrosini, Laura; Angelucci, Francesco
2011-01-01
Environmental enrichment (EE) defined as "a combination of complex inanimate and social stimulation" influences brain function and anatomy by enhancing sensory, cognitive, motor, and social stimulation. The beneficial effects of EE in the presence of brain damage have been partially attributed to upregulation of neurotrophins, proteins involved in neuronal survival and in activity-dependent plasticity. The authors tested the hypothesis that EE may have advantageous effects on recovery of motor function after cerebellar damage, associated with changes in local neurotrophin production. They performed a hemicerebellectomy in rats previously exposed to EE or reared in standard conditions. The time course of compensation of motor symptoms was analyzed in both lesioned groups. Then, the local production of the nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in the spared hemicerebellum and other extracerebellar regions was evaluated. Long-term exposure to EE accelerated the motor recovery in hemicerebellectomized rats and elicited an increase in NGF levels in the spared hemicerebellum, as compared with nonenriched lesioned and control rats. BDNF levels were higher in hemicerebellectomized rats but not influenced by EE. In the frontal cortex, both NGF and BDNF levels were upregulated in hemicerebellectomized enriched rats as compared with hemicerebellectomized nonenriched and control rats. This study suggests that the beneficial effects of EE on motor symptoms after cerebellar damage may be, at least partly, because of modulation of neurotrophic proteins involved in the regeneration processes.
Wilson, Samuel J; Garner, John C; Loprinzi, Paul D
2016-06-01
Studies have looked at the individual associations of sensory impairment on balance, but no population-based studies have examined their combined association on balance and difficulty with falls. Thus, the purpose of this study was to examine both the independent associations and combined associations of visual impairment, peripheral neuropathy, and self-reported hearing loss with the odds of reporting difficulty with falls and functional balance. Data from the 2003-2004 National Health and Nutrition Examination Survey were used. Vision and peripheral neuropathy were objectively measured, and hearing was self-reported. Balance testing consisted of a modified Romberg test. After exclusions, 1662 (40-85years of age) participants provided complete data on the study variables. Sensory impairment was associated with perceived difficulty of falls and functional balance. Participants who presented a single sensory impairment had 29% reduced odds of having functional balance (95% CI=0.54-0.93, p=0.01) and increased odds of reporting difficulty with falls by 61% (95% CI=0.99-2.60, p=0.05). Moreover, our multisensory models showed some evidence of a dose-response relationship, in that sensory impairment of multiple sensory systems was associated with worse balance (OR =0.59, CI=0.35-1.00, p=0.05) and perceived difficulty of falls (OR =5.02, 95% CI=1.99-12.66, p=0.002) when compared to those with less sensory impairment. Multiple sensory impairment is associated with significantly higher odds of both reporting difficulty with falls and balance dysfunction, which may lead to a subsequent fall, ultimately compromising the individual's health. Copyright © 2016 Elsevier Inc. All rights reserved.
Toward an interdisciplinary approach to understanding sensory function in autism spectrum disorder.
Cascio, Carissa J; Woynaroski, Tiffany; Baranek, Grace T; Wallace, Mark T
2016-09-01
Heightened interest in sensory function in persons with autism spectrum disorder (ASD) presents an unprecedented opportunity for impactful, interdisciplinary work between neuroscientists and clinical practitioners for whom sensory processing is a focus. In spite of this promise, and a number of overlapping perspectives on sensory function in persons with ASD, neuroscientists and clinical practitioners are faced with significant practical barriers to transcending disciplinary silos. These barriers include divergent goals, values, and approaches that shape each discipline, as well as different lexical conventions. This commentary is itself an interdisciplinary effort to describe the shared perspectives, and to conceptualize a framework that may guide future investigation in this area. We summarize progress to date and issue a call for clinical practitioners and neuroscientists to expand cross-disciplinary dialogue and to capitalize on the complementary strengths of each field to unveil the links between neural and behavioral manifestations of sensory differences in persons with ASD. Joining forces to face these challenges in a truly interdisciplinary way will lead to more clinically informed neuroscientific investigation of sensory function, and better translation of those findings to clinical practice. Likewise, a more coordinated effort may shed light not only on how current approaches to treating sensory processing differences affect brain and behavioral responses to sensory stimuli in individuals with ASD, but also on whether such approaches translate to gains in broader characteristics associated with ASD. It is our hope that such interdisciplinary undertakings will ultimately converge to improve assessment and interventions for persons with ASD. Autism Res 2016, 9: 920-925. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Zangen, Tsili; Ciarla, Carla; Zangen, Samuel; Di Lorenzo, Carlo; Flores, Alex F; Cocjin, Jose; Reddy, Sarabudla Narasimha; Rowhani, Anita; Schwankovsky, Lenore; Hyman, Paul E
2003-09-01
In chronically ill children who refuse to eat, surgery to correct anatomic problems and behavioral treatments to overcome oral aversion often succeed. A few patients fail with standard treatments. The aims of the study were to: 1) investigate motility and gastric sensory abnormalities and 2) describe treatment that was individualized based on pathophysiology in children who failed surgery and behavioral treatments. We studied 14 patients (age 1.5-6; mean 2.5; M/F: 7/7). All had a lifelong history of food aversion and retching or vomiting persisting after feeding therapy and fundoplication. All were fed through gastrostomy or gastro-jejunostomy tubes. We studied esophageal and antroduodenal manometry, and gastric volume threshold for retching. We identified when gastric antral contractions were associated with retching and pain. A multidisciplinary treatment program included a variable combination of continuous post-pyloric feedings, drugs to decrease visceral pain, drugs for motility disorders, and behavioral, cognitive, and family therapy. We interviewed parents 2-6 months following testing to evaluate symptoms, mode of feeding and emotional health. We found a motility disorder alone in 2, decreased threshold for retching alone in 5 and both motility and sensory abnormalities in 7. After treatment, 6 of 14 (43%) began eating orally and 80% had improved emotional health. Retching decreased from 15 episodes per day to an average of 1.4 per day (p <0.01). Upper gastrointestinal motor and/or sensory disorders contributed to reduced quality of life for a majority of children and families with persistent feeding problems. A multidisciplinary approach improved symptoms and problems in these children
Baseline vestibular and auditory findings in a trial of post-concussive syndrome
Meehan, Anna; Searing, Elizabeth; Weaver, Lindell; Lewandowski, Andrew
2016-01-01
Previous studies have reported high rates of auditory and vestibular-balance deficits immediately following head injury. This study uses a comprehensive battery of assessments to characterize auditory and vestibular function in 71 U.S. military service members with chronic symptoms following mild traumatic brain injury that did not resolve with traditional interventions. The majority of the study population reported hearing loss (70%) and recent vestibular symptoms (83%). Central auditory deficits were most prevalent, with 58% of participants failing the SCAN3:A screening test and 45% showing abnormal responses on auditory steady-state response testing presented at a suprathreshold intensity. Only 17% of the participants had abnormal hearing (⟩25 dB hearing loss) based on the pure-tone average. Objective vestibular testing supported significant deficits in this population, regardless of whether the participant self-reported active symptoms. Composite score on the Sensory Organization Test was lower than expected from normative data (mean 69.6 ±vestibular tests, vestibulo-ocular reflex, central auditory dysfunction, mild traumatic brain injury, post-concussive symptoms, hearing15.6). High abnormality rates were found in funduscopy torsion (58%), oculomotor assessments (49%), ocular and cervical vestibular evoked myogenic potentials (46% and 33%, respectively), and monothermal calorics (40%). It is recommended that a full peripheral and central auditory, oculomotor, and vestibular-balance evaluation be completed on military service members who have sustained head trauma.
Bowel urgency in patients with irritable bowel syndrome.
Basilisco, Guido; De Marco, Elisabetta; Tomba, Carolina; Cesana, Bruno Mario
2007-01-01
Bowel urgency is the most bothersome symptom in irritable bowel syndrome patients with diarrhea, but its pathophysiology is poorly understood. Our aim was to assess the relationships among reporting the symptom, the reservoir functions of the colon and rectum, and the patients' psychologic profile. The study involved 28 consecutive patients with irritable bowel syndrome and 17 healthy subjects. The presence or absence of bowel urgency was verified by means of a questionnaire during the 3 days required for the ingestion of radio-opaque markers. On the fourth day, an abdominal x-ray was taken to assess colonic transit time, and rectal sensory and motor responses were measured during rectal distention. The subjects' psychologic profiles were assessed using a psychologic symptoms checklist. Forty-six percent of the patients reported urgency associated with at least 1 defecation. The multivariate logistic regression analysis showed that colonic transit was the only variable independently associated with reported bowel urgency, but the threshold for the sensation of urgency was not removed from the model since its borderline significance level. Rectal compliance was closely associated with the threshold for the sensation of urgency during rectal distention but was not an independent factor for reporting the sensation. The patients with and without urgency showed altered psychologic profiles. The symptom of urgency is associated with objective alterations in the colonic and rectal reservoir of patients with irritable bowel syndrome.
Saar-Ashkenazy, Rotem; Veksler, Ronel; Guez, Jonathan; Jacob, Yael; Shelef, Ilan; Shalev, Hadar; Friedman, Alon; Cohen, Jonathan E.
2016-01-01
Altered brain anatomy in specific gray-matter regions has been shown in patients with posttraumatic stress disorder (PTSD). Recently, white-matter tracts have become a focus of research in PTSD. The corpus callosum (CC) is the principal white-matter fiber bundle, crucial in relaying sensory, motor and cognitive information between hemispheres. Alterations in CC fibers have been reported in PTSD and might be assumed to underlie substantial behavioral and cognitive sequelae; however most diffusion tensor imaging (DTI) studies in adult-onset PTSD failed to address the clinical correlates between imaging and PTSD symptoms severity, behavioral manifestation and cognitive functions. In the current study we examined (a) to what extent microstructural integrity of the CC is associated with memory performance and (b) whether imaging and cognitive parameters are associated with PTSD symptom severity. DTI data were obtained and fractional anisotropy (FA) values were computed for 16 patients and 14 controls. PTSD symptom severity was assessed by employing the clinician administered PTSD scale (CAPS) and memory was tested using a task probing item and associative memory for words and pictures. Significant correlations were found between PTSD symptoms severity, memory accuracy and reaction-time to CC FA values in the PTSD group. This study demonstrates meaningful clinical and cognitive correlates of microstructural connectivity. These results have implications for diagnostic tools and future studies aimed at identifying individuals at risk for PTSD. PMID:26863536
Beef assessments using functional magnetic resonance imaging and sensory evaluation.
Tapp, W N; Davis, T H; Paniukov, D; Brooks, J C; Brashears, M M; Miller, M F
2017-04-01
Functional magnetic resonance imaging (fMRI) has been used to unveil how some foods and basic rewards are processed in the human brain. This study evaluated how resting state functional connectivity in regions of the human brain changed after differing qualities of beef steaks were consumed. Functional images of participants (n=8) were collected after eating high or low quality beef steaks on separate days, after consumption a sensory ballot was administered to evaluate consumers' perceptions of tenderness, juiciness, flavor, and overall liking. Imaging data showed that high quality steak samples resulted in greater functional connectivity to the striatum, medial orbitofrontal cortex, and insular cortex at various stages after consumption (P≤0.05). Furthermore, high quality steaks elicited higher sensory ballot scores for each palatability trait (P≤0.01). Together, these results suggest that resting state fMRI may be a useful tool for evaluating the neural process that follows positive sensory experiences such as the enjoyment of high quality beef steaks. Published by Elsevier Ltd.
Díaz-Vela, Juan; Totosaus, Alfonso; Escalona-Buendía, Héctor B; Pérez-Chabela, M Lourdes
2017-02-01
The sensory analysis of new products is essential for subsequent acceptance by consumers, moreover in the functional food market. The acceptance and food neophobia of cooked sausages formulated with cactus pear fiber or pineapple pear fiber, as functional ingredient, was complemented with a sensory characterization by R-index and qualitative descriptive analysis (QDA). Female consumers aged between 40 and 50 years showed greater interest in the consumption of healthy foods, with a higher level of food neophobia towards pineapple fiber sausages. R-index for taste was higher in pineapple fiber samples. Cactus pear fiber samples presented higher R-index score for texture. In QDA, color, sweet, astringent and bitter flavors, pork meat smell and a firm and plastic texture were significant, with a good relationship (38%) between the evaluated attributes. Sensory attributes are important on the acceptance and neophobia of functional foods like cooked sausages with fruit peel fiber as functional ingredient.
Altered topography of intrinsic functional connectivity in childhood risk for social anxiety
Taber-Thomas, Bradley C.; Morales, Santiago; Hillary, Frank G.; Pérez-Edgar, Koraly E.
2016-01-01
Background Extreme shyness in childhood arising from behavioral inhibition (BI) is among the strongest risk factors for developing social anxiety. Although no imaging studies of intrinsic brain networks in BI children have been reported, adults with a history of BI exhibit altered functioning of frontolimbic circuits and enhanced processing of salient, personally-relevant information. BI in childhood may be marked by increased coupling of salience (insula) and default (ventromedial prefrontal cortex) network hubs. Methods We tested this potential relation in 42 children ages 9 to 12, oversampled for high-BI. Participants provided resting-state functional magnetic resonance imaging. A novel topographical pattern analysis of salience network intrinsic functional connectivity was conducted, and the impact of salience-default coupling on the relation between BI and social anxiety symptoms was assessed via moderation analysis. Results High-BI children exhibit altered salience network topography, marked by reduced insula connectivity to dorsal anterior cingulate and increased insula connectivity to ventromedial prefrontal cortex. Whole-brain analyses revealed increased connectivity of salience, executive, and sensory networks with default network hubs in children higher in BI. Finally, the relation between insula-ventromedial prefrontal connectivity and social anxiety symptoms was strongest among the highest BI children. Conclusions BI is associated with an increase in connectivity to default network hubs that may bias processing toward personally-relevant information during development. These altered patterns of connectivity point to potential biomarkers of the neural profile of risk for anxiety in childhood. PMID:27093074
Topological Alterations of the Intrinsic Brain Network in Patients with Functional Dyspepsia.
Nan, Jiaofen; Zhang, Li; Zhu, Fubao; Tian, Xiaorui; Zheng, Qian; Deneen, Karen M von; Liu, Jixin; Zhang, Ming
2016-01-31
Previous studies reported that integrated information in the brain ultimately determines the subjective experience of patients with chronic pain, but how the information is integrated in the brain connectome of functional dyspepsia (FD) patients remains largely unclear. The study aimed to quantify the topological changes of the brain network in FD patients. Small-world properties, network efficiency and nodal centrality were utilized to measure the changes in topological architecture in 25 FD patients and 25 healthy controls based on functional magnetic resonance imaging. Pearson's correlation assessed the relationship of each topological property with clinical symptoms. FD patients showed an increase of clustering coefficients and local efficiency relative to controls from the perspective of a whole network as well as elevated nodal centrality in the right orbital part of the inferior frontal gyrus, left anterior cingulate gyrus and left hippocampus, and decreased nodal centrality in the right posterior cingulate gyrus, left cuneus, right putamen, left middle occipital gyrus and right inferior occipital gyrus. Moreover, the centrality in the anterior cingulate gyrus was significantly associated with symptom severity and duration in FD patients. Nevertheless, the inclusion of anxiety and depression scores as covariates erased the group differences in nodal centralities in the orbital part of the inferior frontal gyrus and hippocampus. The results suggest topological disruption of the functional brain networks in FD patients, presumably in response to disturbances of sensory information integrated with emotion, memory, pain modulation, and selective attention in patients.
Episodic Memory Retrieval Functionally Relies on Very Rapid Reactivation of Sensory Information.
Waldhauser, Gerd T; Braun, Verena; Hanslmayr, Simon
2016-01-06
Episodic memory retrieval is assumed to rely on the rapid reactivation of sensory information that was present during encoding, a process termed "ecphory." We investigated the functional relevance of this scarcely understood process in two experiments in human participants. We presented stimuli to the left or right of fixation at encoding, followed by an episodic memory test with centrally presented retrieval cues. This allowed us to track the reactivation of lateralized sensory memory traces during retrieval. Successful episodic retrieval led to a very early (∼100-200 ms) reactivation of lateralized alpha/beta (10-25 Hz) electroencephalographic (EEG) power decreases in the visual cortex contralateral to the visual field at encoding. Applying rhythmic transcranial magnetic stimulation to interfere with early retrieval processing in the visual cortex led to decreased episodic memory performance specifically for items encoded in the visual field contralateral to the site of stimulation. These results demonstrate, for the first time, that episodic memory functionally relies on very rapid reactivation of sensory information. Remembering personal experiences requires a "mental time travel" to revisit sensory information perceived in the past. This process is typically described as a controlled, relatively slow process. However, by using electroencephalography to measure neural activity with a high time resolution, we show that such episodic retrieval entails a very rapid reactivation of sensory brain areas. Using transcranial magnetic stimulation to alter brain function during retrieval revealed that this early sensory reactivation is causally relevant for conscious remembering. These results give first neural evidence for a functional, preconscious component of episodic remembering. This provides new insight into the nature of human memory and may help in the understanding of psychiatric conditions that involve the automatic intrusion of unwanted memories. Copyright © 2016 the authors 0270-6474/16/360251-10$15.00/0.
Psychological Factors Associated With Painful Versus Non-Painful HIV-Associated Sensory Neuropathy.
Pillay, Prinisha; Wadley, Antonia L; Cherry, Catherine L; Karstaedt, Alan S; Kamerman, Peter R
2018-05-01
HIV-associated sensory neuropathy (HIV-SN) is a common, and frequently painful complication of HIV, but factors that determine the presence of pain are unresolved. We investigated: (i) if psychological factors associated with painful (n = 125) versus non-painful HIV-SN (n = 72), and (ii) if pain and psychological factors affected quality of life (QoL). We assessed anxiety and depression using the Hopkins Symptoms Checklist-25. Pain catastrophizing and QoL were assessed using the Pain Catastrophizing Scale and Euroqol-5D, respectively. Presence of neuropathy was detected using the Brief Neuropathy Screening Tool, and pain was characterised using the Wisconsin Brief Pain Questionnaire. Overall, there was a high burden of pain, depression and anxiety in the cohort. None of the psychological variables associated with having painful HIV-SN. Greater depressive symptoms and presence of pain were independently associated with lower QoL. In those participants with painful HIV-SN, greater depressive symptom scores were associated with increased pain intensity. In conclusion, in a cohort with high background levels of psychological dysfunction, psychological factors do not predict the presence of pain, but both depression and presence of pain are associated with poor quality of life.
Perinatal choline deficiency produces abnormal sensory inhibition in Sprague-Dawley rats
Stevens, Karen E.; Adams, Catherine E.; Mellott, Tiffany J.; Robbins, Emily; Kisley, Michael A.
2008-01-01
Adequate choline levels in rodents during gestation have been shown to be critical to several functions, including certain learning and memory functions, when tested at adulthood. Choline is a selective agonist for the α7 nicotinic receptor which appears in development before acetylcholine is present. Normal sensory inhibition is dependent, in part, upon sufficient numbers of this receptor in the hippocampus. The present study assessed sensory inhibition in Sprague-Dawley rats gestated on normal (1.1 g/kg), deficient (0 g/kg) or supplemented (5 g/kg) choline in the maternal diet during the critical period for cholinergic cell development (E12-18). Rats gestated on deficient choline showed abnormal sensory inhibition when tested at adulthood, while rats gestated on normal or supplemented choline showed normal sensory inhibition. Assessment of hippocampal α-bungarotoxin to visualize nicotinic α7 receptors revealed no difference between the gestational choline levels. These data suggest that attention to maternal choline levels for human pregnancy may be important to the normal functioning of the offspring. PMID:18778692
Perinatal choline deficiency produces abnormal sensory inhibition in Sprague-Dawley rats.
Stevens, Karen E; Adams, Catherine E; Mellott, Tiffany J; Robbins, Emily; Kisley, Michael A
2008-10-27
Adequate choline levels in rodents during gestation have been shown to be critical to several functions, including certain learning and memory functions, when tested at adulthood. Choline is a selective agonist for the alpha7 nicotinic receptor which appears in development before acetylcholine is present. Normal sensory inhibition is dependent, in part, upon sufficient numbers of this receptor in the hippocampus. The present study assessed sensory inhibition in Sprague-Dawley rats gestated on normal (1.1 g/kg), deficient (0 g/kg) or supplemented (5 g/kg) choline in the maternal diet during the critical period for cholinergic cell development (E12-18). Rats gestated on deficient choline showed abnormal sensory inhibition when tested at adulthood, while rats gestated on normal or supplemented choline showed normal sensory inhibition. Assessment of hippocampal alpha-bungarotoxin to visualize nicotinic alpha7 receptors revealed no difference between the gestational choline levels. These data suggest that attention to maternal choline levels for human pregnancy may be important to the normal functioning of the offspring.
Afschrift, Maarten; De Groote, Friedl; Verschueren, Sabine; Jonkers, Ilse
2018-01-01
The response to stance perturbations changes with age. The shift from an ankle to a hip strategy with increasing perturbation magnitude occurs at lower accelerations in older than in young adults. This strategy shift has been related to age-related changes in muscle and sensory function. However, the effect of isolated changes in muscle or sensory function on the responses following stance perturbations cannot be determined experimentally since changes in muscle and sensory function occur simultaneously. Therefore, we used predictive simulations to estimate the effect of isolated changes in (rates of change in) maximal joint torques, functional base of support, and sensory noise on the response to backward platform translations. To evaluate whether these modeled changes in muscle and sensory function could explain the observed changes in strategy; simulated postural responses with a torque-driven double inverted pendulum model controlled using optimal state feedback were compared to measured postural responses in ten healthy young and ten healthy older adults. The experimentally observed peak hip angle during the response was significantly larger (5°) and the functional base of support was smaller (0.04m) in the older than in the young adults but peak joint torques and rates of joint torque were similar during the recovery. The addition of noise to the sensed states in the predictive simulations could explain the observed increase in peak hip angle in the elderly, whereas changes in muscle function could not. Hence, our results suggest that strength training alone might be insufficient to improve postural control in elderly. Copyright © 2017 Elsevier B.V. All rights reserved.
Liljas, A E M; Wannamethee, S G; Whincup, P H; Papacosta, O; Walters, K; Iliffe, S; Lennon, L T; Carvalho, L A; Ramsay, S E
2016-06-01
Hearing and vision problems are common in older adults. We investigated the association of self-reported sensory impairment with lifestyle factors, chronic conditions, physical functioning, quality of life and social interaction. A population-based cross-sectional study of participants of the British Regional Heart Study aged 63-85 years. A total of 3981 men (82% response rate) provided data. Twenty-seven per cent (n = 1074) reported hearing impairment including being able to hear with aid (n = 482), being unable to hear (no aid) (n = 424) and being unable to hear despite aid (n = 168). Three per cent (n = 124) reported vision impairment. Not being able to hear, irrespective of use of hearing aid, was associated with poor quality of life, poor social interaction and poor physical functioning. Men who could not hear despite hearing aid were more likely to report coronary heart disease (CHD) [age-adjusted odds ratios (ORs) 1.89 (95% confidence interval 1.36-2.63)]. Vision impairment was associated with symptoms of CHD including breathlessness [OR 2.06 (1.38-3.06)] and chest pain [OR 1.58 (1.07-2.35)]. Vision impairment was also associated with poor quality of life, poor social interaction and poor physical functioning. Sensory impairment is associated with poor physical functioning, poor health and poor social interaction in older men. Further research is warranted on pathways underlying these associations. © The Author 2015. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
STANDARDS OF FUNCTIONAL MEASUREMENTS IN OCULAR TOXICOLOGY.
The visual system, like other sensory systems, may be a frequent target of exposure to toxic chemicals. A thorough evaluation of visual toxicity should include both structural and functional measures. Sensory evoked potentials are one set of neurophysiological procedures that...
Postnatal Experience Modulates Functional Properties of Mouse Olfactory Sensory Neurons
He, Jiwei; Tian, Huikai; Lee, Anderson C.; Ma, Minghong
2012-01-01
Early experience considerably modulates the organization and function of all sensory systems. In the mammalian olfactory system, deprivation of the sensory inputs via neonatal, unilateral naris closure has been shown to induce structural, molecular, and functional changes from the olfactory epithelium to the olfactory bulb and cortex. However, it remains unknown how early experience shapes functional properties of individual olfactory sensory neurons (OSNs), the primary odor detectors in the nose. To address this question, we examined odorant response properties of mouse OSNs in both the closed and open nostril after four weeks of unilateral naris closure with age-matched untreated animals as control. Using patch-clamp technique on genetically-tagged OSNs with defined odorant receptors (ORs), we found that sensory deprivation increased the sensitivity of MOR23 neurons in the closed side while overexposure caused the opposite effect in the open side. We next analyzed the response properties including rise time, decay time, and adaptation induced by repeated stimulation in MOR23 and M71 neurons. Even though these two types of neurons showed distinct properties in dynamic range and response kinetics, sensory deprivation significantly slowed down the decay phase of odorant-induced transduction events in both types. Using western blotting and antibody staining, we confirmed upregulation of several signaling proteins in the closed side as compared with the open side. This study suggests that early experience modulates functional properties of OSNs, probably via modifying the signal transduction cascade. PMID:22703547
Ives, Angela M.
2017-01-01
ABSTRACT Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) infect and establish latency in peripheral neurons, from which they can reactivate to cause recurrent disease throughout the life of the host. Stress is associated with the exacerbation of clinical symptoms and the induction of recurrences in humans and animal models. The viruses preferentially replicate and establish latency in different subtypes of sensory neurons, as well as in neurons of the autonomic nervous system that are highly responsive to stress hormones. To determine if stress-related hormones modulate productive HSV-1 and HSV-2 infections within sensory and autonomic neurons, we analyzed viral DNA and the production of viral progeny after treatment of primary adult murine neuronal cultures with the stress hormones epinephrine and corticosterone. Both sensory trigeminal ganglion (TG) and sympathetic superior cervical ganglion (SCG) neurons expressed adrenergic receptors (activated by epinephrine) and the glucocorticoid receptor (activated by corticosterone). Productive HSV infection colocalized with these receptors in SCG but not in TG neurons. In productively infected neuronal cultures, epinephrine treatment significantly increased the levels of HSV-1 DNA replication and production of viral progeny in SCG neurons, but no significant differences were found in TG neurons. In contrast, corticosterone significantly decreased the levels of HSV-2 DNA replication and production of viral progeny in SCG neurons but not in TG neurons. Thus, the stress-related hormones epinephrine and corticosterone selectively modulate acute HSV-1 and HSV-2 infections in autonomic, but not sensory, neurons. IMPORTANCE Stress exacerbates acute disease symptoms resulting from HSV-1 and HSV-2 infections and is associated with the appearance of recurrent skin lesions in millions of people. Although stress hormones are thought to impact HSV-1 and HSV-2 through immune system suppression, sensory and autonomic neurons that become infected by HSV-1 and HSV-2 express stress hormone receptors and are responsive to hormone fluctuations. Our results show that autonomic neurons are more responsive to epinephrine and corticosterone than are sensory neurons, demonstrating that the autonomic nervous system plays a substantial role in HSV pathogenesis. Furthermore, these results suggest that stress responses have the potential to differentially impact HSV-1 and HSV-2 so as to produce divergent outcomes of infection. PMID:28404850
Is sensory urgency part of the same spectrum of bladder dysfunction as detrusor overactivity?
Haylen, Bernard T; Chetty, Naven; Logan, Vanessa; Schulz, Serena; Verity, Louise; Law, Matthew; Zhou, Jialun
2007-02-01
It has been suggested that the urogynecological diagnosis of sensory urgency is an early form of detrusor overactivity and may be just earlier in the spectrum of disease. The former term is generally defined as increased perceived bladder sensation during filling, a low first desire to void and low bladder capacity in the absence of recorded urinary tract infection (UTI) or detrusor overactivity. The aims of this study are to determine the prevalence and associations of sensory urgency in comparison with detrusor overactivity, and whether sensory urgency is shown to be in the same spectrum of bladder dysfunction as detrusor overactivity. Five hundred and ninety-two women attending for an initial urogynecological/urodynamic assessment took part in this prospective study. In addition to a full clinical assessment, all women underwent free uroflowmetry, residual urine volume measurement (by vaginal ultrasound) and multichannel filling and voiding cystometry. Data were separated into those having (1) sensory urgency or (2) detrusor overactivity. Apart from prevalence figures, comparative associations were sought for (3) age; (4) parity; (5) presenting symptoms; (6) presence of at least one (medically) documented UTI in the previous 12 months; (7) two or more (recurrent) documented UTIs in the previous 12 months; (8) prior hysterectomy; (9) prior continence surgery; (10) menopause; (11) menopause and HRT use; (12) sign of clinical stress leakage; (13) retroverted uterus; (14) anterior vaginal wall prolapse; (15) uterine prolapse; (16) posterior vaginal wall prolapse; (17) apical vaginal prolapse; (18, 19) maximum, average urine flow rate (MUFR, AUFR) centiles, Liverpool Nomograms; (20) median residual urine volume (RUV) in milliliters; (21, 22) voiding difficulty: VD1,VD2 (MUFR, AUFR under 10th centile Liverpool Nomogram and/or RUV >30 ml); (23) diagnosis of urodynamic stress incontinence and (24) diagnosis of uterine and/or vaginal prolapse (grade >0). The prevalence of sensory urgency was 13%. The only differences in the clinical and urodynamic profiles of it and detrusor overactivity were (1) significantly increased prevalence of the symptom of urge incontinence and (2) (by definition) abnormal detrusor contractions during filling cystometry in women with detrusor overactivity. Overall, sensory urgency and detrusor overactivity appear to be part of the same spectrum of bladder dysfunction.
Calabrò, Rocco Salvatore; Naro, Antonino; Russo, Margherita; Leo, Antonino; Balletta, Tina; Saccá, Ileana; De Luca, Rosaria; Bramanti, Placido
2015-01-01
Tilt-table equipped with the dynamic foot-support (ERIGO) and the functional electric stimulation could be a safe and suitable device for stabilization of vital signs, increasing patient's motivation for further recovery, decreasing the duration of hospitalization, and accelerating the adaptation to vertical posture in bedridden patients with brain-injury. Moreover, it is conceivable that verticalization may improve cognitive functions, and induce plastic changes at sensory motor and vestibular system level that may in turn facilitate motor functional recovery. To test the safety and effectiveness of ERIGO treatment on motor and cognitive functions, cortical plasticity within vestibular and sensory-motor systems in a bedridden post-stroke sample. 20 patients were randomly divided in two groups that performed ERIGO training (30 sessions) (G1) or physiotherapist-assisted verticalization training (same duration) (G2), beyond conventional neurorehabilitation treatment. Motor and cognitive functions as well as sensory-motor and vestibular system plasticity were investigated either before (T0) or after (T1) the rehabilitative protocols. Both the verticalization treatments were well-tolerated. Notably, the G1 patients had a significant improvement in cognitive function (p = 0.03), global motor function (p = 0.006), sensory-motor (p < 0.001) and vestibular system plasticity (p = 0.02) as compared to G2. ERIGO training could be a valuable tool for the adaptation to the vertical position with a better global function improvement, as also suggested by the sensory-motor and vestibular system plasticity induction.
Miller, Kelly J.; Lange, Rael T.; Cooper, Douglas B.; Tate, David F.; Bailie, Jason; Brickell, Tracey A.; French, Louis M.; Asmussen, Sarah; Kennedy, Jan E.
2014-01-01
Abstract Explosive devices have been the most frequent cause of traumatic brain injury (TBI) among deployed contemporary U.S. service members. The purpose of this study was to examine the influence of previous cumulative blast exposures (that did or did not result in TBI) on later post-concussion and post-traumatic symptom reporting after sustaining a mild TBI (MTBI). Participants were 573 service members who sustained MTBI divided into four groups by number of blast exposures (1, 2, 3, and 4–10) and a nonblast control group. Post-concussion symptoms were measured using the Neurobehavioral Symptom Inventory (NSI) and post-traumatic stress disorder (PTSD) symptoms using the Post-traumatic Checklist-Civilian version (PCL-C). Results show groups significantly differed on total NSI scores (p<0.001), where symptom endorsement increased as number of reported blast exposures increased. Total NSI scores were significantly higher for the 3– and 4–10 blast groups compared with the 1- and 2-blast groups with effect sizes ranging from small to moderate (d=0.31 to 0.63). After controlling for PTSD symptoms using the PCL-C total score, NSI total score differences remained between the 4–10-blast group and the 1- and 2-blast groups, but were less pronounced (d=0.35 and d=0.24, respectively). Analyses of NSI subscale scores using PCL-C scores as a covariate revealed significant between-blast group differences on cognitive, sensory, and somatic, but not affective symptoms. Regression analyses revealed that cumulative blast exposures accounted for a small but significant amount of the variance in total NSI scores (4.8%; p=0.009) and total PCL-C scores (2.3%; p<0.001). Among service members exposed to blast, post-concussion symptom reporting increased as a function of cumulative blast exposures. Future research will need to determine the relationship between cumulative blast exposures, symptom reporting, and neuropathological changes. PMID:25036531
Ciguatoxins activate specific cold pain pathways to elicit burning pain from cooling
Vetter, Irina; Touska, Filip; Hess, Andreas; Hinsbey, Rachel; Sattler, Simon; Lampert, Angelika; Sergejeva, Marina; Sharov, Anastasia; Collins, Lindon S; Eberhardt, Mirjam; Engel, Matthias; Cabot, Peter J; Wood, John N; Vlachová, Viktorie; Reeh, Peter W; Lewis, Richard J; Zimmermann, Katharina
2012-01-01
Ciguatoxins are sodium channel activator toxins that cause ciguatera, the most common form of ichthyosarcotoxism, which presents with peripheral sensory disturbances, including the pathognomonic symptom of cold allodynia which is characterized by intense stabbing and burning pain in response to mild cooling. We show that intraplantar injection of P-CTX-1 elicits cold allodynia in mice by targeting specific unmyelinated and myelinated primary sensory neurons. These include both tetrodotoxin-resistant, TRPA1-expressing peptidergic C-fibres and tetrodotoxin-sensitive A-fibres. P-CTX-1 does not directly open heterologously expressed TRPA1, but when co-expressed with Nav channels, sodium channel activation by P-CTX-1 is sufficient to drive TRPA1-dependent calcium influx that is responsible for the development of cold allodynia, as evidenced by a large reduction of excitatory effect of P-CTX-1 on TRPA1-deficient nociceptive C-fibres and of ciguatoxin-induced cold allodynia in TRPA1-null mutant mice. Functional MRI studies revealed that ciguatoxin-induced cold allodynia enhanced the BOLD (Blood Oxygenation Level Dependent) signal, an effect that was blunted in TRPA1-deficient mice, confirming an important role for TRPA1 in the pathogenesis of cold allodynia. PMID:22850668
Buchsbaum, Bradley R.; Baldo, Juliana; Okada, Kayoko; Berman, Karen F.; Dronkers, Nina; D’Esposito, Mark; Hickok, Gregory
2011-01-01
Conduction aphasia is a language disorder characterized by frequent speech errors, impaired verbatim repetition, a deficit in phonological short-term memory, and naming difficulties in the presence of otherwise fluent and grammatical speech output. While traditional models of conduction aphasia have typically implicated white matter pathways, recent advances in lesions reconstruction methodology applied to groups of patients have implicated left temporoparietal zones. Parallel work using functional magnetic resonance imaging (fMRI) has pinpointed a region in the posterior most portion of the left planum temporale, area Spt, which is critical for phonological working memory. Here we show that the region of maximal lesion overlap in a sample of 14 patients with conduction aphasia perfectly circumscribes area Spt, as defined in an aggregate fMRI analysis of 105 subjects performing a phonological working memory task. We provide a review of the evidence supporting the idea that Spt is an interface site for the integration of sensory and vocal tract-related motor representations of complex sound sequences, such as speech and music and show how the symptoms of conduction aphasia can be explained by damage to this system. PMID:21256582
Buchsbaum, Bradley R; Baldo, Juliana; Okada, Kayoko; Berman, Karen F; Dronkers, Nina; D'Esposito, Mark; Hickok, Gregory
2011-12-01
Conduction aphasia is a language disorder characterized by frequent speech errors, impaired verbatim repetition, a deficit in phonological short-term memory, and naming difficulties in the presence of otherwise fluent and grammatical speech output. While traditional models of conduction aphasia have typically implicated white matter pathways, recent advances in lesions reconstruction methodology applied to groups of patients have implicated left temporoparietal zones. Parallel work using functional magnetic resonance imaging (fMRI) has pinpointed a region in the posterior most portion of the left planum temporale, area Spt, which is critical for phonological working memory. Here we show that the region of maximal lesion overlap in a sample of 14 patients with conduction aphasia perfectly circumscribes area Spt, as defined in an aggregate fMRI analysis of 105 subjects performing a phonological working memory task. We provide a review of the evidence supporting the idea that Spt is an interface site for the integration of sensory and vocal tract-related motor representations of complex sound sequences, such as speech and music and show how the symptoms of conduction aphasia can be explained by damage to this system. 2011 Elsevier Inc. All rights reserved.
Kasanen, J P; Pasanen, A L; Pasanen, P; Liesivuori, J; Kosma, V M; Alarie, Y
1999-05-28
The standard mouse bioassay was used for obtaining the RD50 (i.e., the concentration that causes a 50% decrease in respiratory frequency) and for estimating the irritation properties of d-delta3-carene (i.e., (+)-delta3-carene) and commercial turpentine. The chemicals studied possess mainly sensory irritation properties similar to the previously studied monoterpenes, pinenes. The irritation potency of d-delta3-carene (RD50 = 1345 ppm) was almost equal to that of d-pinenes. Thus, d-delta3-carene was about four times more potent as a sensory irritant than I-beta-pinene, whereas the difference with I-alpha-pinene was more marked; as a sensory irritant, I-alpha-pinene is almost inactive. Based on sensory irritation potency and physicochemical and structural properties of pinenes and delta3-carene, the potency of a closely related monoterpene, limonene, is discussed. For commercial turpentine, a mixture of monoterpenes (mainly d-delta3-carene, I-beta-pinene, alpha-pinenes, and limonenes), the RD50 (1173 ppm) was the same order of magnitude as those of d-pinenes and d-delta3-carene. Apparently, d-monoterpenes are responsible for the sensory irritation caused by turpentine. In the wood industry and in the indoor air of nonindustrial environments, monoterpenes are thought to be one of the causative agents for irritation symptoms. The occupational exposure limit (OEL) of turpentine (100 ppm in Finland and the United States) is also used for individual monoterpenes, excluding limonene. Using results from this and our previous study, proposed OELs and recommended indoor levels (RILs) for selected monoterpenes and turpentine were determined based on their RD50 values. According to our studies, the present OEL of turpentine (100 ppm; 560 mg/m3) in Finland and in the United States seems to be suitable only for I-pinenes. For d-monoterpenes and turpentine, an OEL about three times lower is suggested. Our results show that recommended indoor levels (RILs) for monoterpenes are high compared to the concentrations measured indoors in nonindustrial environments. Thus, it is very unlikely that monoterpenes alone can cause irritation symptoms in homes or offices under normal conditions.
Landmann, Gunther; Dumat, Wolfgang; Egloff, Niklaus; Gantenbein, Andreas R.; Matter, Sibylle; Pirotta, Roberto; Sándor, Peter S.; Schleinzer, Wolfgang; Seifert, Burkhardt; Sprott, Heiko; Stockinger, Lenka; Riederer, Franz
2016-01-01
Objectives Widespread sensory deficits resembling hemihypoaesthesia occur in 20-40% of chronic pain patients on the side of pain, independent of pain aetiology, and have been termed nondermatomal sensory deficits (NDSD). Sensory profiles have rarely been investigated in NDSD. Methods Quantitative sensory testing (QST) according to the protocol of the German Research Network on Neuropathic Pain (DFNS) was performed in the face, hand and foot of the painful body side and in contralateral regions in chronic pain patients. Twenty-five patients with NDSD and 23 without NDSD (termed pain-only group) were included after exclusion of neuropathic pain. Comprehensive clinical and psychiatric evaluations were done. Results NDSD in chronic pain was associated with high burden of disease and more widespread pain. Only in the NDSD group significantly higher thresholds for mechanical and painful stimuli were found in at least 2 of 3 regions ipsilateral to pain. In addition, we found a bilateral loss of function for temperature and vibration detection, and a gain of function for pressure pain in certain regions in patients with NDSD. Sensory loss and gain of function for pressure pain correlated with pain intensity in several regions. Discussion This may indicate a distinct sensory profile in chronic non-neuropathic pain and NDSD, probably attributable to altered central pain processing and sensitisation. The presence of NDSD in chronic non-neuropathic pain may be regarded as a marker for higher burden of pain disease. PMID:27841837
Distrust of the senses and its association with obsessive-compulsive symptoms.
Wong, Shiu F; Williams, Alishia D; Grisham, Jessica R
2017-12-01
Leading cognitive theories of OCD suggests that despite prevalent and persistent doubt, individuals with OCD do not have perceptual deficits. An alternate cognitive theory, the Seeking Proxies for Internal States hypothesis (SPIS), proposes that sensory distrust in OCD stems from actual deficits in accessing internal states. Consistent with the SPIS, previous research has found that high-OC individuals were less accurate than low-OC individuals in producing target levels of muscle tension in a biofeedback task and that OC symptoms were positively associated with reliance on an external proxy. The current study aimed to replicate and extend the SPIS hypothesis in two experiments using a modified version of the biofeedback-aided muscle tensing task using grip strength as the sensory input and a distance perception task. We contrasted the performance of undergraduate students self-reporting high- and low-OC symptoms. Overall, our findings failed to substantially support the SPIS hypothesis such that OC symptoms were not associated with deficient access to internal states of grip strength and distance perception or increased reliance on feedback. As this study was conducted in a non-clinical sample, we were unable to generalise our findings to a clinical population. Findings are commensurate with the wider OCD literature suggesting the absence of cognitive and perceptual deficits in OCD individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.
2010-01-01
Background There is little qualitative insight into how persons with chronic Whiplash-Associated Disorder cope on a day to day basis. This study seeks to identify the symptoms persons with Whiplash-Associated Disorder describe as dominating and explore their self-initiated coping strategies. Methods Qualitative study using focus groups interviews. Fourteen Norwegian men and women with Whiplash-Associated Disorder (I or II) were recruited to participate in two focus groups. Data were analyzed according to a phenomenological approach, and discussed within the model of Cognitive Activation Theory of Stress (CATS). Results Participants reported neck and head pain, sensory hypersensitivity, and cognitive dysfunction following their whiplash injury. Based on the intensity of symptoms, participants divided everyday life into good and bad periods. In good periods the symptoms were perceived as manageable. In bad periods the symptoms intensified and took control of the individual. Participants expressed a constant notion of trying to balance their three main coping strategies; rest, exercise, and social withdrawal. In good periods participants experienced coping by expecting good results from the strategies they used. In bad periods they experienced no or negative relationships between their behavioral strategies and their complaints. Conclusions Neck and head pain, sensory hypersensitivity, and cognitive dysfunction were reported as participants' main complaints. A constant notion of balancing between their three main coping strategies; rest, exercise, and social withdrawal, was described. PMID:20626855
Krohne, Kariann; Ihlebaek, Camilla
2010-07-13
There is little qualitative insight into how persons with chronic Whiplash-Associated Disorder cope on a day to day basis. This study seeks to identify the symptoms persons with Whiplash-Associated Disorder describe as dominating and explore their self-initiated coping strategies. Qualitative study using focus groups interviews. Fourteen Norwegian men and women with Whiplash-Associated Disorder (I or II) were recruited to participate in two focus groups. Data were analyzed according to a phenomenological approach, and discussed within the model of Cognitive Activation Theory of Stress (CATS). Participants reported neck and head pain, sensory hypersensitivity, and cognitive dysfunction following their whiplash injury. Based on the intensity of symptoms, participants divided everyday life into good and bad periods. In good periods the symptoms were perceived as manageable. In bad periods the symptoms intensified and took control of the individual. Participants expressed a constant notion of trying to balance their three main coping strategies; rest, exercise, and social withdrawal. In good periods participants experienced coping by expecting good results from the strategies they used. In bad periods they experienced no or negative relationships between their behavioral strategies and their complaints. Neck and head pain, sensory hypersensitivity, and cognitive dysfunction were reported as participants' main complaints. A constant notion of balancing between their three main coping strategies; rest, exercise, and social withdrawal, was described.
Heuser, Mark; Thomann, Philipp A; Essig, Marco; Bachmann, Silke; Schröder, Johannes
2011-05-31
Neurological soft signs (NSS) comprise a broad range of minor motor and sensory deficits which are frequently found in schizophrenia. However, the cerebral changes underlying NSS are only partly understood. We therefore investigated the cerebral correlates of NSS by using magnetic resonance imaging (MRI) in 102 patients with first episode schizophrenia. NSS were assessed after remission of acute psychotic symptoms using the Heidelberg scale (HS), which consists of five NSS subscales ("motor coordination", "complex motor tasks", "orientation", "integrative functions", and "hard signs"). Correlations between NSS scores and cerebral changes were established by optimized voxel-based morphometry. NSS total scores were significantly associated with reduced gray matter densities in the precentral and postcentral gyri, the inferior parietal lobule and the inferior occipital gyrus. Both of the NSS subscales "motor coordination" and "complex motor tasks", referred to motor strip changes but showed differential correlations with parietal, insular, cerebellar or frontal sites, respectively. The NSS subscales "orientation" and "integrative functions" were associated with left frontal, parietal, and occipital changes or bihemispheric frontal changes, respectively. The NSS subscale "hard signs" was associated with deficits in the right cerebellum and right parastriate cortex. Repeated analyses for white matter changes revealed similar results. These findings confirm the associations between NSS and cerebral changes in areas important for motor and sensory functioning. This variety of cerebral sites corresponds to the heterogeneity of NSS and are consistent with the hypothesis that NSS reflect both a rather generalized cerebral dysfunction and localized deficits specific for particular signs. 2010 Elsevier Ireland Ltd. All rights reserved.
A Web-Accessible Protein Structure Prediction Pipeline
2009-06-01
Abstract Proteins are the molecular basis of nearly all structural, catalytic, sensory, and regulatory functions in living organisms. The biological...sensory, and regulatory functions in living organisms. The structure of a protein is essential in understanding its function at the molecular level...Characterizing sequence-structure and structure-function relationships have been the goals of molecular biology for more than three decades
ERIC Educational Resources Information Center
Boyd, Brian A.; McBee, Matthew; Holtzclaw, Tia; Baranek, Grace T.; Bodfish, James W.
2009-01-01
This study examined the relationship between repetitive behaviors and sensory processing issues in school-aged children with high functioning autism (HFA). Children with HFA (N = 61) were compared to healthy, typical controls (N = 64) to determine the relationship between these behavioral classes and to examine whether executive dysfunction…
Error-based analysis of optimal tuning functions explains phenomena observed in sensory neurons.
Yaeli, Steve; Meir, Ron
2010-01-01
Biological systems display impressive capabilities in effectively responding to environmental signals in real time. There is increasing evidence that organisms may indeed be employing near optimal Bayesian calculations in their decision-making. An intriguing question relates to the properties of optimal encoding methods, namely determining the properties of neural populations in sensory layers that optimize performance, subject to physiological constraints. Within an ecological theory of neural encoding/decoding, we show that optimal Bayesian performance requires neural adaptation which reflects environmental changes. Specifically, we predict that neuronal tuning functions possess an optimal width, which increases with prior uncertainty and environmental noise, and decreases with the decoding time window. Furthermore, even for static stimuli, we demonstrate that dynamic sensory tuning functions, acting at relatively short time scales, lead to improved performance. Interestingly, the narrowing of tuning functions as a function of time was recently observed in several biological systems. Such results set the stage for a functional theory which may explain the high reliability of sensory systems, and the utility of neuronal adaptation occurring at multiple time scales.
Viventi, Serena; Dottori, Mirella
2018-07-01
Sensory neurons of the dorsal root ganglia (DRG) are the primary responders to stimuli inducing feelings of touch, pain, temperature, vibration, pressure and muscle tension. They consist of multiple subpopulations based on their morphology, molecular and functional properties. Our understanding of DRG sensory neurons has been predominantly driven by rodent studies and using transformed cell lines, whereas less is known about human sensory DRG neurons simply because of limited availability of human tissue. Although these previous studies have been fundamental for our understanding of the sensory system, it is imperative to profile human DRG subpopulations as it is becoming evident that human sensory neurons do not share the identical molecular and functional properties found in other species. Furthermore, there are wide range of diseases and disorders that directly/indirectly cause sensory neuronal degeneration or dysfunctionality. Having an in vitro source of human DRG sensory neurons is paramount for studying their development, unique neuronal properties and for accelerating regenerative therapies to treat sensory neuropathies. Here we review the major studies describing generation of DRG sensory neurons from human pluripotent stem cells and fibroblasts and the gaps that need to be addressed for using in vitro-generated human DRG neurons to model human DRG tissue. Copyright © 2018 Elsevier Ltd. All rights reserved.
A new treatment for frostbite sequelae; Botulinum toxin
Norheim, Arne Johan; Mercer, James; Musial, Frauke; de Weerd, Louis
2017-01-01
ABSTRACT Frostbite sequelae are a relevant occupational injury outcome for soldiers in arctic environments. A Caucasian male soldier suffered frostbite to both hands during a military winter exercise. He developed sensory-motor disturbances and cold hypersensitivity. Angiography and thermography revealed impaired blood flow while Quantitative Sensory Testing indicated impaired somato-sensory nerve function. Two years after the initial event, he received an off label treatment with Botulinum toxin distributed around the neurovascular bundles of each finger. After treatment, cold sensitivity was reduced while blood flow and somato-sensory nerve function improved. The successful treatment enabled the soldier to successfully pursue his career in the army. PMID:28452678
Do early sensory cortices integrate cross-modal information?
Kayser, Christoph; Logothetis, Nikos K
2007-09-01
Our different senses provide complementary evidence about the environment and their interaction often aids behavioral performance or alters the quality of the sensory percept. A traditional view defers the merging of sensory information to higher association cortices, and posits that a large part of the brain can be reduced into a collection of unisensory systems that can be studied in isolation. Recent studies, however, challenge this view and suggest that cross-modal interactions can already occur in areas hitherto regarded as unisensory. We review results from functional imaging and electrophysiology exemplifying cross-modal interactions that occur early during the evoked response, and at the earliest stages of sensory cortical processing. Although anatomical studies revealed several potential origins of these cross-modal influences, there is yet no clear relation between particular functional observations and specific anatomical connections. In addition, our view on sensory integration at the neuronal level is coined by many studies on subcortical model systems of sensory integration; yet, the patterns of cross-modal interaction in cortex deviate from these model systems in several ways. Consequently, future studies on cortical sensory integration need to leave the descriptive level and need to incorporate cross-modal influences into models of the organization of sensory processing. Only then will we be able to determine whether early cross-modal interactions truly merit the label sensory integration, and how they increase a sensory system's ability to scrutinize its environment and finally aid behavior.
Local GABAergic signaling within sensory ganglia controls peripheral nociceptive transmission
Du, Xiaona; Hao, Han; Yang, Yuehui; Huang, Sha; Wang, Caixue; Gigout, Sylvain; Ramli, Rosmaliza; Li, Xinmeng; Jaworska, Ewa; Edwards, Ian; Yanagawa, Yuchio; Qi, Jinlong; Guan, Bingcai; Jaffe, David B.; Zhang, Hailin
2017-01-01
The integration of somatosensory information is generally assumed to be a function of the central nervous system (CNS). Here we describe fully functional GABAergic communication within rodent peripheral sensory ganglia and show that it can modulate transmission of pain-related signals from the peripheral sensory nerves to the CNS. We found that sensory neurons express major proteins necessary for GABA synthesis and release and that sensory neurons released GABA in response to depolarization. In vivo focal infusion of GABA or GABA reuptake inhibitor to sensory ganglia dramatically reduced acute peripherally induced nociception and alleviated neuropathic and inflammatory pain. In addition, focal application of GABA receptor antagonists to sensory ganglia triggered or exacerbated peripherally induced nociception. We also demonstrated that chemogenetic or optogenetic depolarization of GABAergic dorsal root ganglion neurons in vivo reduced acute and chronic peripherally induced nociception. Mechanistically, GABA depolarized the majority of sensory neuron somata, yet produced a net inhibitory effect on the nociceptive transmission due to the filtering effect at nociceptive fiber T-junctions. Our findings indicate that peripheral somatosensory ganglia represent a hitherto underappreciated site of somatosensory signal integration and offer a potential target for therapeutic intervention. PMID:28375159
Evaluation of Trigeminal Sensitivity to Ammonia in Asthmatics and Healthy Human Volunteers
Petrova, Maja; Diamond, Jeanmarie; Schuster, Benno; Dalton, Pamela
2009-01-01
Background Asthmatics often report the triggering or exacerbation of respiratory symptoms following exposure to airborne irritants, which in some cases may result from stimulation of irritant receptors in the upper airways inducing reflexive broncho-constriction. Ammonia (NH3) is a common constituent of commercially available household products, and in high concentration has the potential to elicit sensory irritation in the eyes and upper respiratory tract of humans. The goal of the present study was to evaluate the irritation potential of ammonia in asthmatics and healthy volunteers and to determine whether differences in nasal or ocular irritant sensitivity to ammonia between these two groups could account for the exacerbation of symptoms reported by asthmatics following exposure to an irritant. Methods 25 healthy and 15 mild/moderate persistent asthmatic volunteers, with reported sensitivity to household cleaning products, were evaluated for their sensitivity to the ocular and nasal irritancy of NH3. Lung function was evaluated at baseline and multiple time points following exposure. Results Irritation thresholds did not differ between asthmatics and healthy controls, nor did ratings of odor intensity, annoyance and irritancy following exposure to NH3 concentrations at and above the irritant threshold for longer periods of time (30 sec).Importantly, no changes in lung function occurred following exposure to NH3 for any individuals in either group. Conclusion Despite heightened symptom reports to environmental irritants among asthmatics, the ocular and nasal trigeminal system of mild-moderate asthmatics does not appear to be more sensitive or more reactive than that of non-asthmatics, nor does short duration exposure to ammonia at irritant levels induce changes in lung function. At least in brief exposures, the basis for some asthmatics to experience adverse responses to volatile compounds in everyday life may arise from factors other than trigeminally-mediated reflexes. PMID:18728993
The neurological manifestations of trauma: lessons from World War I.
Linden, Stefanie C; Hess, Volker; Jones, Edgar
2012-04-01
Changes in the clinical presentation of functional disorders and the influence of social and cultural factors can be investigated through the historical case notes from mental hospitals. World War I (WWI) was a potent trigger of functional disorders with neurological or psychiatric symptoms. We analysed 100 randomly selected case files of German servicemen admitted to the Department of Psychiatry of the Charité Medical School of Berlin University during WWI and classified them according to contemporaneous and retrospective modern diagnoses. We compared the clinical presentations with accounts in the German and British medical literature of the time. Most patients obtained the contemporaneous diagnosis of 'psychopathic constitution' or hysteria reflecting the general view of German psychiatrists that not the war but an individual predisposition was the basis for the development of symptoms. The clinical picture was dominated by pseudoneurological motor or sensory symptoms as well as pseudoseizures. Some soldiers relived combat experiences in dream-like dissociative states that partly resemble modern-day post-traumatic stress disorder. Most servicemen were classified as unfit for military service but very few of them were granted compensation. Severe functional disorders of a neurological character could develop even without traumatic exposure in combat, which is of interest for the current debate on triggers of stress disorders. The high incidence of pseudoseizures accords with the psychiatric literature of the time and contrasts with accounts of war-related disorders in Britain. The tendency of German psychiatrists not to send traumatised servicemen back to active duty also distinguished between German and British practice. Our data contribute to the debate on the changing patterns of human responses to traumatic experience and their historical and social context.
A neuromorphic model of motor overflow in focal hand dystonia due to correlated sensory input
NASA Astrophysics Data System (ADS)
Sohn, Won Joon; Niu, Chuanxin M.; Sanger, Terence D.
2016-10-01
Objective. Motor overflow is a common and frustrating symptom of dystonia, manifested as unintentional muscle contraction that occurs during an intended voluntary movement. Although it is suspected that motor overflow is due to cortical disorganization in some types of dystonia (e.g. focal hand dystonia), it remains elusive which mechanisms could initiate and, more importantly, perpetuate motor overflow. We hypothesize that distinct motor elements have low risk of motor overflow if their sensory inputs remain statistically independent. But when provided with correlated sensory inputs, pre-existing crosstalk among sensory projections will grow under spike-timing-dependent-plasticity (STDP) and eventually produce irreversible motor overflow. Approach. We emulated a simplified neuromuscular system comprising two anatomically distinct digital muscles innervated by two layers of spiking neurons with STDP. The synaptic connections between layers included crosstalk connections. The input neurons received either independent or correlated sensory drive during 4 days of continuous excitation. The emulation is critically enabled and accelerated by our neuromorphic hardware created in previous work. Main results. When driven by correlated sensory inputs, the crosstalk synapses gained weight and produced prominent motor overflow; the growth of crosstalk synapses resulted in enlarged sensory representation reflecting cortical reorganization. The overflow failed to recede when the inputs resumed their original uncorrelated statistics. In the control group, no motor overflow was observed. Significance. Although our model is a highly simplified and limited representation of the human sensorimotor system, it allows us to explain how correlated sensory input to anatomically distinct muscles is by itself sufficient to cause persistent and irreversible motor overflow. Further studies are needed to locate the source of correlation in sensory input.
On the dependence of response inhibition processes on sensory modality.
Bodmer, Benjamin; Beste, Christian
2017-04-01
The ability to inhibit responses is a central sensorimotor function but only recently the importance of sensory processes for motor inhibition mechanisms went more into the research focus. In this regard it is elusive, whether there are differences between sensory modalities to trigger response inhibition processes. Due to functional neuroanatomical considerations strong differences may exist, for example, between the visual and the tactile modality. In the current study we examine what neurophysiological mechanisms as well as functional neuroanatomical networks are modulated during response inhibition. Therefore, a Go/NoGo-paradigm employing a novel combination of visual, tactile, and visuotactile stimuli was used. The data show that the tactile modality is more powerful than the visual modality to trigger response inhibition processes. However, the tactile modality loses its efficacy to trigger response inhibition processes when being combined with the visual modality. This may be due to competitive mechanisms leading to a suppression of certain sensory stimuli and the response selection level. Variations in sensory modalities specifically affected conflict monitoring processes during response inhibition by modulating activity in a frontal parietal network including the right inferior frontal gyrus, anterior cingulate cortex and the temporoparietal junction. Attentional selection processes are not modulated. The results suggest that the functional neuroanatomical networks involved in response inhibition critically depends on the nature of the sensory input. Hum Brain Mapp 38:1941-1951, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
A hierarchy of time-scales and the brain.
Kiebel, Stefan J; Daunizeau, Jean; Friston, Karl J
2008-11-01
In this paper, we suggest that cortical anatomy recapitulates the temporal hierarchy that is inherent in the dynamics of environmental states. Many aspects of brain function can be understood in terms of a hierarchy of temporal scales at which representations of the environment evolve. The lowest level of this hierarchy corresponds to fast fluctuations associated with sensory processing, whereas the highest levels encode slow contextual changes in the environment, under which faster representations unfold. First, we describe a mathematical model that exploits the temporal structure of fast sensory input to track the slower trajectories of their underlying causes. This model of sensory encoding or perceptual inference establishes a proof of concept that slowly changing neuronal states can encode the paths or trajectories of faster sensory states. We then review empirical evidence that suggests that a temporal hierarchy is recapitulated in the macroscopic organization of the cortex. This anatomic-temporal hierarchy provides a comprehensive framework for understanding cortical function: the specific time-scale that engages a cortical area can be inferred by its location along a rostro-caudal gradient, which reflects the anatomical distance from primary sensory areas. This is most evident in the prefrontal cortex, where complex functions can be explained as operations on representations of the environment that change slowly. The framework provides predictions about, and principled constraints on, cortical structure-function relationships, which can be tested by manipulating the time-scales of sensory input.
Zock, E; Kerkhoff, H; Kleyweg, R P; van Bavel-Ta, T B V; Scott, S; Kruyt, N D; Nederkoorn, P J; van de Beek, D
2016-11-25
Patients with acute stroke often do not seek immediate medical help, which is assumed to be driven by lack of knowledge of stroke symptoms. We explored the process of help seeking behavior in patients with acute stroke, evaluating knowledge about stroke symptoms, socio-demographic and clinical characteristics, and onset-to-alarm time (OAT). In a sub-study of the Preventive Antibiotics in Stroke Study (PASS), 161 acute stroke patients were prospectively included in 3 Dutch hospitals. A semi-structured questionnaire was used to assess knowledge, recognition and interpretation of stroke symptoms. With in-depth interviews, response actions and reasons were explored. OAT was recorded and associations with socio-demographic, clinical parameters were assessed. Knowledge about stroke symptoms does not always result in correct recognition of own stroke symptoms, neither into correct interpretation of the situation and subsequent action. In our study population of 161 patients with acute stroke, median OAT was 30 min (interquartile range [IQR] 10-150 min). Recognition of one-sided weakness and/or sensory loss (p = 0.046) and adequate interpretation of the stroke situation (p = 0.003), stroke at daytime (p = 0.002), severe stroke (p = 0.003), calling the emergency telephone number (p = 0.004), and transport by ambulance (p = 0.040) were associated with shorter OAT. Help seeking behavior after acute stroke is a complex process. A shorter OAT after stroke is associated with correct recognition of one-sided weakness and/or sensory loss, adequate interpretation of the stroke situation by the patient and stroke characteristics and logistics of stroke care, but not by knowledge of stroke symptoms.
Rzeszutek, Marcin; Oniszczenko, Włodzimierz; Schier, Katarzyna; Biernat-Kałuża, Edyta; Gasik, Robert
2016-04-01
The main goal of our study was to investigate the relationship between age, duration of pain, pain intensity, temperament traits as postulated by the Regulative Theory of Temperament (RTT), social support dimensions and the level of trauma symptoms, as appear in post-traumatic stress disorder (PTSD) in a sample of 300 patients suffering from chronic pain in two groups comprised of 150 patients with a clinical diagnosis of rheumatoid arthritis (RA) and 150 patients with a clinical diagnosis of low-back pain (LBP). They were analyzed together as a one group of 300 patients with chronic pain. Temperament was measured with the Formal Characteristics of Behaviour - Temperament Inventory (FCB-TI). Social support was tested with the Berlin Social Support Scales (BSSS). The Numerical Rating Scale (NRS-11) was used to measure pain intensity. The level of trauma symptoms was assessed with the Post-Traumatic Stress Disorder Factorial Version Inventory (PTSDF). The results of our study suggest that the intensity of pain, participants' age, Emotional Reactivity and Sensory Sensitivity as temperament traits, need for support, and actually received social support were related to the level of trauma symptoms. The sum of the squared semi-partial correlations showed that all six variables (age, pain intensity, Emotional Reactivity, Sensory Sensitivity, need for support and actually received support), account for 20% of the variance of general trauma symptoms level. The importance of temperament traits, social support and trauma symptoms should be taken into an account in psychotherapy accompanying pharmacotherapy for pain. © 2015 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.
SUSCEPTIBILITY TO POLLUTANT-INDUCED AIRWAY INFLAMMATION IS NEUROGENICALLY MEDIATED.
Neurogenic inflammation in the airways involves the activation of sensory irritant receptors (capsaicin, VR1) by noxious stimuli and the subsequent release of neuropeptides (e.g., SP, CGRP, NKA) from these fibers. Once released, these peptides initiate and sustain symptoms of ...
NASA Astrophysics Data System (ADS)
Takatsuji, Toshiyuki; Tanaka, Ken-ichi
1996-06-01
A procedure is derived by which sensory attributes can be scaled as a function of various physical and/or chemical properties of the object to be tested. This procedure consists of four successive steps: (i) design and experiment, (ii) fabrication of specimens according to the design parameters, (iii) assessment of a sensory attribute using sensory evaluation and (iv) derivation of the relationship between the parameters and the sensory attribute. In these steps an experimental design using orthogonal arrays, analysis of variance and regression analyses are used strategically. When a specimen with the design parameters cannot be physically fabricated, an alternative specimen having parameters closest to the design is selected from a group of specimens which can be physically made. The influence of the deviation of actual parameters from the desired ones is also discussed. A method of confirming the validity of the regression equation is also investigated. The procedure is applied to scale the sensory sharpness of kitchen knives as a function of the edge angle and the roughness of the cutting edge.
Clancy, Kevin; Ding, Mingzhou; Bernat, Edward; Schmidt, Norman B; Li, Wen
2017-07-01
Post-traumatic stress disorder is characterized by exaggerated threat response, and theoretical accounts to date have focused on impaired threat processing and dysregulated prefrontal-cortex-amygdala circuitry. Nevertheless, evidence is accruing for broad, threat-neutral sensory hyperactivity in post-traumatic stress disorder. As low-level, sensory processing impacts higher-order operations, such sensory anomalies can contribute to widespread dysfunctions, presenting an additional aetiological mechanism for post-traumatic stress disorder. To elucidate a sensory pathology of post-traumatic stress disorder, we examined intrinsic visual cortical activity (based on posterior alpha oscillations) and bottom-up sensory-driven causal connectivity (Granger causality in the alpha band) during a resting state (eyes open) and a passive, serial picture viewing state. Compared to patients with generalized anxiety disorder (n = 24) and healthy control subjects (n = 20), patients with post-traumatic stress disorder (n = 25) demonstrated intrinsic sensory hyperactivity (suppressed posterior alpha power, source-localized to the visual cortex-cuneus and precuneus) and bottom-up inhibition deficits (reduced posterior→frontal Granger causality). As sensory input increased from resting to passive picture viewing, patients with post-traumatic stress disorder failed to demonstrate alpha adaptation, highlighting a rigid, set mode of sensory hyperactivity. Interestingly, patients with post-traumatic stress disorder also showed heightened frontal processing (augmented frontal gamma power, source-localized to the superior frontal gyrus and dorsal cingulate cortex), accompanied by attenuated top-down inhibition (reduced frontal→posterior causality). Importantly, not only did suppressed alpha power and bottom-up causality correlate with heightened frontal gamma power, they also correlated with increased severity of sensory and executive dysfunctions (i.e. hypervigilance and impulse control deficits, respectively). Therefore, sensory aberrations help construct a vicious cycle in post-traumatic stress disorder that is in action even at rest, implicating dysregulated triangular sensory-prefrontal-cortex-amygdala circuitry: intrinsic sensory hyperactivity and disinhibition give rise to frontal overload and disrupt executive control, fuelling and perpetuating post-traumatic stress disorder symptoms. Absent in generalized anxiety disorder, these aberrations highlight a unique sensory pathology of post-traumatic stress disorder (ruling out effects merely reflecting anxious hyperarousal), motivating new interventions targeting sensory processing and the sensory brain in these patients. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Schmid, Florian; Wachsmuth, Lydia; Schwalm, Miriam; Prouvot, Pierre-Hugues; Jubal, Eduardo Rosales; Fois, Consuelo; Pramanik, Gautam; Zimmer, Claus; Faber, Cornelius; Stroh, Albrecht
2016-11-01
Encoding of sensory inputs in the cortex is characterized by sparse neuronal network activation. Optogenetic stimulation has previously been combined with fMRI (ofMRI) to probe functional networks. However, for a quantitative optogenetic probing of sensory-driven sparse network activation, the level of similarity between sensory and optogenetic network activation needs to be explored. Here, we complement ofMRI with optic fiber-based population Ca 2+ recordings for a region-specific readout of neuronal spiking activity in rat brain. Comparing Ca 2+ responses to the blood oxygenation level-dependent signal upon sensory stimulation with increasing frequencies showed adaptation of Ca 2+ transients contrasted by an increase of blood oxygenation level-dependent responses, indicating that the optical recordings convey complementary information on neuronal network activity to the corresponding hemodynamic response. To study the similarity of optogenetic and sensory activation, we quantified the density of cells expressing channelrhodopsin-2 and modeled light propagation in the tissue. We estimated the effectively illuminated volume and numbers of optogenetically stimulated neurons, being indicative of sparse activation. At the functional level, upon either sensory or optogenetic stimulation we detected single-peak short-latency primary Ca 2+ responses with similar amplitudes and found that blood oxygenation level-dependent responses showed similar time courses. These data suggest that ofMRI can serve as a representative model for functional brain mapping. © The Author(s) 2015.
Does hippotherapy effect use of sensory information for balance in people with multiple sclerosis?
Lindroth, Jodi L; Sullivan, Jessica L; Silkwood-Sherer, Debbie
2015-01-01
This case-series study aimed to determine if there were observable changes in sensory processing for postural control in individuals with multiple sclerosis (MS) following physical therapy using hippotherapy (HPOT), or changes in balance and functional gait. This pre-test non-randomized design study, with follow-up assessment at 6 weeks, included two females and one male (age range 37-60 years) with diagnoses of relapse-remitting or progressive MS. The intervention consisted of twelve 40-min physical therapy sessions which included HPOT twice a week for 6 weeks. Sensory organization and balance were assessed by the Sensory Organization Test (SOT) and Berg Balance Scale (BBS). Gait was assessed using the Functional Gait Assessment (FGA). Following the intervention period, all three participants showed improvements in SOT (range 1-8 points), BBS (range 2-6 points), and FGA (average 4 points) scores. These improvements were maintained or continued to improve at follow-up assessment. Two of the three participants no longer over-relied on vision and/or somatosensory information as the primary sensory input for postural control, suggesting improved use of sensory information for balance. The results indicate that HPOT may be a beneficial physical therapy treatment strategy to improve balance, functional gait, and enhance how some individuals with MS process sensory cues for postural control. Randomized clinical trials will be necessary to validate results of this study.
Riso, R R
1999-01-01
A continuing challenge for prostheses developers is to replace the sensory function of the hand. This includes tactile sensitivity such as finger contact, grip force, object slippage, surface texture and temperature, as well as proprioceptive sense. One approach is sensory substitution whereby an intact sensory system such as vision, hearing or cutaneous sensation elsewhere on the body is used as an input channel for information related to the prosthesis. A second technique involves using electrical stimulation to deliver sensor derived information directly to the peripheral afferent nerves within the residual limb. Stimulation of the relevant afferent nerves can ultimately come closest to restoring the original sensory perceptions of the hand, and to this end, researchers have already demonstrated some degree of functionality of the transected sensory nerves in studies with amputee subjects. This paper provides an overview of different types of nerve interface components and the advantages and disadvantages of employing each of them in sensory feedback systems. Issues of sensory perception, neurophysiology and anatomy relevant to hand sensation and function are discussed with respect to the selection of the different types of nerve interfaces. The goal of this paper is to outline what can be accomplished for implementing sensation into artificial arms in the near term by applying what is present or presently attainable technology.
Ecstatic Epileptic Seizures: A Glimpse into the Multiple Roles of the Insula.
Gschwind, Markus; Picard, Fabienne
2016-01-01
Ecstatic epileptic seizures are a rare but compelling epileptic entity. During the first seconds of these seizures, ecstatic auras provoke feelings of well-being, intense serenity, bliss, and "enhanced self-awareness." They are associated with the impression of time dilation, and can be described as a mystic experience by some patients. The functional neuroanatomy of ecstatic seizures is still debated. During recent years several patients presenting with ecstatic auras have been reported by others and us (in total n = 52); a few of them in the setting of presurgical evaluation including electrical brain stimulation. According to the recently recognized functions of the insula, and the results of nuclear brain imaging and electrical stimulation, the ecstatic symptoms in these patients seem to localize to a functional network centered around the anterior insular cortex, where we thus propose to locate this rare ictal phenomenon. Here we summarize the role of the multiple sensory, autonomic, affective, and cognitive functions of the insular cortex, which are integrated into the creation of self-awareness, and we suggest how this system may become dysfunctional on several levels during ecstatic aura.
Baranek, Grace T; Woynaroski, Tiffany G; Nowell, Sallie; Turner-Brown, Lauren; DuBay, Michaela; Crais, Elizabeth R; Watson, Linda R
2018-01-01
Recent work suggests sensory seeking predicts later social symptomatology through reduced social orienting in infants who are at high-risk for autism spectrum disorder (ASD) based on their status as younger siblings of children diagnosed with ASD. We drew on extant longitudinal data from a community sample of at-risk infants who were identified at 12 months using the First Year Inventory, and followed to 3-5 years. We replicate findings of Damiano et al. (in this issue) that a) high-risk infants who go on to be diagnosed with ASD show heightened sensory seeking in the second year of life relative to those who do not receive a diagnosis, and b) increased sensory seeking indirectly relates to later social symptomatology via reduced social orienting. We extend previous findings to show that sensory seeking has more clinical utility later in the second year of life (20-24 months) than earlier (13-15 months). Further, this study suggests that diminished attention disengagement at 12-15 months may precede and predict increased sensory seeking at 20-24 months. Findings add support for the notion that sensory features produce cascading effects on social development in infants at risk for ASD, and suggest that reduced attention disengagement early in life may set off this cascade. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Integrated Approach for Pain Management in Parkinson Disease.
Geroin, Christian; Gandolfi, Marialuisa; Bruno, Veronica; Smania, Nicola; Tinazzi, Michele
2016-04-01
Pain, one of the most frequent nonmotor symptoms of Parkinson disease (PD), is recognized as an important component of the illness that adversely affects patient quality of life. The aims of this review are to summarize the current knowledge on the clinical assessment and to provide a detailed overview of the evidence-based pharmacologic and nonpharmacologic approaches to treating pain. Results of a literature search include studies investigating pain/sensory abnormalities in PD. The effects of levodopa administration, deep brain stimulation (DBS), pallidotomy, spinal cord stimulation, rehabilitation, and complementary/alternative medicine are reviewed critically. PD patients have altered pain and sensory thresholds; levodopa and DBS improve pain and change sensory abnormalities toward normal levels through antinociceptive and/or modulatory effects that remain unknown. A wide range of nonpharmacologic approaches require further investigation. A multidisciplinary approach is fundamental in managing pain syndromes in PD.
Autonomous Sensory Meridian Response (ASMR): a flow-like mental state.
Barratt, Emma L; Davis, Nick J
2015-01-01
Autonomous Sensory Meridian Response (ASMR) is a previously unstudied sensory phenomenon, in which individuals experience a tingling, static-like sensation across the scalp, back of the neck and at times further areas in response to specific triggering audio and visual stimuli. This sensation is widely reported to be accompanied by feelings of relaxation and well-being. The current study identifies several common triggers used to achieve ASMR, including whispering, personal attention, crisp sounds and slow movements. Data obtained also illustrates temporary improvements in symptoms of depression and chronic pain in those who engage in ASMR. A high prevalence of synaesthesia (5.9%) within the sample suggests a possible link between ASMR and synaesthesia, similar to that of misophonia. Links between number of effective triggers and heightened flow state suggest that flow may be necessary to achieve sensations associated with ASMR.
Torres Lacomba, María; de la Villa Polo, Pedro
2017-01-01
Study design Cross-sectional study. Objectives To assess the effect of structural differentiation on sensory responses of asymptomatic individuals to standard neurodynamic tests of straight leg raise (SLR) and to evaluate the relevance of leg dominance, gender, and age. Background SLR test is a well-known neurodynamic test among physical therapists; no studies to date have investigated the influence of gender, age, and leg dominance to the sensory responses of this neurodynamic test and its structured differentiating maneuver. Methods Thirty (16 women) asymptomatic individuals enrolled in this study. Dominancy test was performed for each participant. Pain intensity using visual analogue scale (VAS), symptoms location in a body chart, nature of symptoms evoked, and hip range of motion (ROM) were recorded and compared at ankle neutral position (N-SLR) and dorsiflexion (DF-SLR) in both legs at the point of pain tolerance during SLR (P2). In addition, hip ROM was recorded at the onset of pain (P1). Results There was a statistically significant sex main effect for P1 and P2 between N-SLR and DF-SLR (p < 0.05). Mean hip ROM during the SLR was more than 10° greater in women than men. There was no statistically significant interaction between leg dominance and age group in N-SLR, DF-SLR, and VAS. Pain intensity was moderate for each SLR test. Symptoms most often described were stretch (96.7%), followed by tightness (70%) in the posterior thigh and leg. Conclusions SLR hip ROM is influenced by sex in asymptomatic individuals, leading to a greater hip ROM in SLR in women. Age and limb dominance are not relevant to SLR hip ROM or pain intensity. PMID:28559668
Vikström, Pernilla; Rosén, Birgitta; Carlsson, Ingela K; Björkman, Anders
2018-01-01
Twenty patients randomized to early sensory relearning (nine patients) or traditional relearning (11 patients) were assessed regarding sensory recovery 4 to 9 years after median or ulnar nerve repair. Outcomes were assessed with the Rosen score, questionnaires, and self-reported single-item questions regarding function and activity. The patients with early sensory relearning had significantly better sensory recovery in the sensory domain of the Rosen score, specifically, discriminative touch or tactile gnosis and dexterity. They had significantly less self-reported problems in gripping, clumsiness, and fine motor skills. No differences were found in questionnaires between the two groups. We conclude that early sensory relearning improves long-term sensory recovery following nerve repair. I.
Pickpocket1 Is an Ionotropic Molecular Sensory Transducer*
Boiko, Nina; Kucher, Volodymyr; Stockand, James D.; Eaton, Benjamin A.
2012-01-01
The molecular transformation of an external stimulus into changes in sensory neuron activity is incompletely described. Although a number of molecules have been identified that can respond to stimuli, evidence that these molecules can transduce stimulation into useful neural activity is lacking. Here we demonstrate that pickpocket1 (ppk1), a Drosophila homolog of mammalian Degenerin/epithelial sodium channels, encodes an acid-sensing sodium channel that conducts a transient depolarizing current in multidendritic sensory neurons of Drosophila melanogaster. Stimulation of Ppk1 is sufficient to bring these sensory neurons to threshold, eliciting a burst of action potentials. The transient nature of the neural activity produced by Ppk1 activation is the result of Ppk1 channel gating properties. This model is supported by the observation of enhanced bursting activity in neurons expressing a gain of function ppk1 mutant harboring the degenerin mutation. These findings demonstrate that Ppk1 can function as an ionotropic molecular sensory transducer capable of transforming the perception of a stimulus into phasic neuronal activity in sensory neurons. PMID:23033486
[The mirror neuron system in motor and sensory rehabilitation].
Oouchida, Yutaka; Izumi, Shinichi
2014-06-01
The discovery of the mirror neuron system has dramatically changed the study of motor control in neuroscience. The mirror neuron system provides a conceptual framework covering the aspects of motor as well as sensory functions in motor control. Previous studies of motor control can be classified as studies of motor or sensory functions, and these two classes of studies appear to have advanced independently. In rehabilitation requiring motor learning, such as relearning movement after limb paresis, however, sensory information of feedback for motor output as well as motor command are essential. During rehabilitation from chronic pain, motor exercise is one of the most effective treatments for pain caused by dysfunction in the sensory system. In rehabilitation where total intervention unifying the motor and sensory aspects of motor control is important, learning through imitation, which is associated with the mirror neuron system can be effective and suitable. In this paper, we introduce the clinical applications of imitated movement in rehabilitation from motor impairment after brain damage and phantom limb pain after limb amputation.