Sample records for synaptic depression explains

  1. Synaptic heterogeneity and stimulus-induced modulation of depression in central synapses.

    PubMed

    Hunter, J D; Milton, J G

    2001-08-01

    Short-term plasticity is a pervasive feature of synapses. Synapses exhibit many forms of plasticity operating over a range of time scales. We develop an optimization method that allows rapid characterization of synapses with multiple time scales of facilitation and depression. Investigation of paired neurons that are postsynaptic to the same identified interneuron in the buccal ganglion of Aplysia reveals that the responses of the two neurons differ in the magnitude of synaptic depression. Also, for single neurons, prolonged stimulation of the presynaptic neuron causes stimulus-induced increases in the early phase of synaptic depression. These observations can be described by a model that incorporates two availability factors, e.g., depletable vesicle pools or desensitizing receptor populations, with different time courses of recovery, and a single facilitation component. This model accurately predicts the responses to novel stimuli. The source of synaptic heterogeneity is identified with variations in the relative sizes of the two availability factors, and the stimulus-induced decrement in the early synaptic response is explained by a slowing of the recovery rate of one of the availability factors. The synaptic heterogeneity and stimulus-induced modifications in synaptic depression observed here emphasize that synaptic efficacy depends on both the individual properties of synapses and their past history.

  2. Activity-Dependent Downscaling of Subthreshold Synaptic Inputs during Slow-Wave-Sleep-like Activity In Vivo.

    PubMed

    González-Rueda, Ana; Pedrosa, Victor; Feord, Rachael C; Clopath, Claudia; Paulsen, Ole

    2018-03-21

    Activity-dependent synaptic plasticity is critical for cortical circuit refinement. The synaptic homeostasis hypothesis suggests that synaptic connections are strengthened during wake and downscaled during sleep; however, it is not obvious how the same plasticity rules could explain both outcomes. Using whole-cell recordings and optogenetic stimulation of presynaptic input in urethane-anesthetized mice, which exhibit slow-wave-sleep (SWS)-like activity, we show that synaptic plasticity rules are gated by cortical dynamics in vivo. While Down states support conventional spike timing-dependent plasticity, Up states are biased toward depression such that presynaptic stimulation alone leads to synaptic depression, while connections contributing to postsynaptic spiking are protected against this synaptic weakening. We find that this novel activity-dependent and input-specific downscaling mechanism has two important computational advantages: (1) improved signal-to-noise ratio, and (2) preservation of previously stored information. Thus, these synaptic plasticity rules provide an attractive mechanism for SWS-related synaptic downscaling and circuit refinement. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Retrieval Property of Attractor Network with Synaptic Depression

    NASA Astrophysics Data System (ADS)

    Matsumoto, Narihisa; Ide, Daisuke; Watanabe, Masataka; Okada, Masato

    2007-08-01

    Synaptic connections are known to change dynamically. High-frequency presynaptic inputs induce decrease of synaptic weights. This process is known as short-term synaptic depression. The synaptic depression controls a gain for presynaptic inputs. However, it remains a controversial issue what are functional roles of this gain control. We propose a new hypothesis that one of the functional roles is to enlarge basins of attraction. To verify this hypothesis, we employ a binary discrete-time associative memory model which consists of excitatory and inhibitory neurons. It is known that the excitatory-inhibitory balance controls an overall activity of the network. The synaptic depression might incorporate an activity control mechanism. Using a mean-field theory and computer simulations, we find that the synaptic depression enlarges the basins at a small loading rate while the excitatory-inhibitory balance enlarges them at a large loading rate. Furthermore the synaptic depression does not affect the steady state of the network if a threshold is set at an appropriate value. These results suggest that the synaptic depression works in addition to the effect of the excitatory-inhibitory balance, and it might improve an error-correcting ability in cortical circuits.

  4. Influence of Synaptic Depression on Memory Storage Capacity

    NASA Astrophysics Data System (ADS)

    Otsubo, Yosuke; Nagata, Kenji; Oizumi, Masafumi; Okada, Masato

    2011-08-01

    Synaptic efficacy between neurons is known to change within a short time scale dynamically. Neurophysiological experiments show that high-frequency presynaptic inputs decrease synaptic efficacy between neurons. This phenomenon is called synaptic depression, a short term synaptic plasticity. Many researchers have investigated how the synaptic depression affects the memory storage capacity. However, the noise has not been taken into consideration in their analysis. By introducing ``temperature'', which controls the level of the noise, into an update rule of neurons, we investigate the effects of synaptic depression on the memory storage capacity in the presence of the noise. We analytically compute the storage capacity by using a statistical mechanics technique called Self Consistent Signal to Noise Analysis (SCSNA). We find that the synaptic depression decreases the storage capacity in the case of finite temperature in contrast to the case of the low temperature limit, where the storage capacity does not change.

  5. SYNAPTIC DEPRESSION IN DEEP NEURAL NETWORKS FOR SPEECH PROCESSING.

    PubMed

    Zhang, Wenhao; Li, Hanyu; Yang, Minda; Mesgarani, Nima

    2016-03-01

    A characteristic property of biological neurons is their ability to dynamically change the synaptic efficacy in response to variable input conditions. This mechanism, known as synaptic depression, significantly contributes to the formation of normalized representation of speech features. Synaptic depression also contributes to the robust performance of biological systems. In this paper, we describe how synaptic depression can be modeled and incorporated into deep neural network architectures to improve their generalization ability. We observed that when synaptic depression is added to the hidden layers of a neural network, it reduces the effect of changing background activity in the node activations. In addition, we show that when synaptic depression is included in a deep neural network trained for phoneme classification, the performance of the network improves under noisy conditions not included in the training phase. Our results suggest that more complete neuron models may further reduce the gap between the biological performance and artificial computing, resulting in networks that better generalize to novel signal conditions.

  6. Plastic changes in spinal synaptic transmission following botulinum toxin A in patients with post-stroke spasticity.

    PubMed

    Kerzoncuf, Marjorie; Bensoussan, Laurent; Delarque, Alain; Durand, Jacques; Viton, Jean-Michel; Rossi-Durand, Christiane

    2015-11-01

    The therapeutic effects of intramuscular injections of botulinum toxin-type A on spasticity can largely be explained by its blocking action at the neuromuscular junction. Botulinum toxin-type A is also thought to have a central action on the functional organization of the central nervous system. This study assessed the action of botulinum toxin-type A on spinal motor networks by investigating post-activation depression of the soleus H-reflex in post-stroke patients. Post-activation depression, a presynaptic mechanism controlling the synaptic efficacy of Ia-motoneuron transmission, is involved in the pathophysiology of spasticity. Eight patients with chronic hemiplegia post-stroke presenting with lower limb spasticity and requiring botulinum toxin-type A injection in the ankle extensor muscle. Post-activation depression of soleus H-reflex assessed as frequency-related depression of H-reflex was investigated before and 3, 6 and 12 weeks after botulinum toxin-type A injections in the triceps surae. Post-activation depression was quantified as the ratio between H-reflex amplitude at 0.5 and 0.1 Hz. Post-activation depression of soleus H-reflex, which is reduced on the paretic leg, was affected 3 weeks after botulinum toxin-type A injection. Depending on the residual motor capacity of the post-stroke patients, post-activation depression was either restored in patients with preserved voluntary motor control or further reduced in patients with no residual voluntary control. Botulinum toxin treatment induces synaptic plasticity at the Ia-motoneuron synapse in post-stroke paretic patients, which suggests that the effectiveness of botulinum toxin-type A in post-stroke rehabilitation might be partly due to its central effects.

  7. Multiple vesicle recycling pathways in central synapses and their impact on neurotransmission

    PubMed Central

    Kavalali, Ege T

    2007-01-01

    Short-term synaptic depression during repetitive activity is a common property of most synapses. Multiple mechanisms contribute to this rapid depression in neurotransmission including a decrease in vesicle fusion probability, inactivation of voltage-gated Ca2+ channels or use-dependent inhibition of release machinery by presynaptic receptors. In addition, synaptic depression can arise from a rapid reduction in the number of vesicles available for release. This reduction can be countered by two sources. One source is replenishment from a set of reserve vesicles. The second source is the reuse of vesicles that have undergone exocytosis and endocytosis. If the synaptic vesicle reuse is fast enough then it can replenish vesicles during a brief burst of action potentials and play a substantial role in regulating the rate of synaptic depression. In the last 5 years, we have examined the impact of synaptic vesicle reuse on neurotransmission using fluorescence imaging of synaptic vesicle trafficking in combination with electrophysiological detection of short-term synaptic plasticity. These studies have revealed that synaptic vesicle reuse shapes the kinetics of short-term synaptic depression in a frequency-dependent manner. In addition, synaptic vesicle recycling helps maintain the level of neurotransmission at steady state. Moreover, our studies showed that synaptic vesicle reuse is a highly plastic process as it varies widely among synapses and can adapt to changes in chronic activity levels. PMID:17690145

  8. Hyperconnectivity and slow synapses during early development of medial prefrontal cortex in a mouse model for mental retardation and autism.

    PubMed

    Testa-Silva, Guilherme; Loebel, Alex; Giugliano, Michele; de Kock, Christiaan P J; Mansvelder, Huibert D; Meredith, Rhiannon M

    2012-06-01

    Neuronal theories of neurodevelopmental disorders (NDDs) of autism and mental retardation propose that abnormal connectivity underlies deficits in attentional processing. We tested this theory by studying unitary synaptic connections between layer 5 pyramidal neurons within medial prefrontal cortex (mPFC) networks in the Fmr1-KO mouse model for mental retardation and autism. In line with predictions from neurocognitive theory, we found that neighboring pyramidal neurons were hyperconnected during a critical period in early mPFC development. Surprisingly, excitatory synaptic connections between Fmr1-KO pyramidal neurons were significantly slower and failed to recover from short-term depression as quickly as wild type (WT) synapses. By 4-5 weeks of mPFC development, connectivity rates were identical for both KO and WT pyramidal neurons and synapse dynamics changed from depressing to facilitating responses with similar properties in both groups. We propose that the early alteration in connectivity and synaptic recovery are tightly linked: using a network model, we show that slower synapses are essential to counterbalance hyperconnectivity in order to maintain a dynamic range of excitatory activity. However, the slow synaptic time constants induce decreased responsiveness to low-frequency stimulation, which may explain deficits in integration and early information processing in attentional neuronal networks in NDDs.

  9. Hyperconnectivity and Slow Synapses during Early Development of Medial Prefrontal Cortex in a Mouse Model for Mental Retardation and Autism

    PubMed Central

    Testa-Silva, Guilherme; Loebel, Alex; Giugliano, Michele; de Kock, Christiaan P.J.; Mansvelder, Huibert D.; Meredith, Rhiannon M.

    2013-01-01

    Neuronal theories of neurodevelopmental disorders (NDDs) of autism and mental retardation propose that abnormal connectivity underlies deficits in attentional processing. We tested this theory by studying unitary synaptic connections between layer 5 pyramidal neurons within medial prefrontal cortex (mPFC) networks in the Fmr1-KO mouse model for mental retardation and autism. In line with predictions from neurocognitive theory, we found that neighboring pyramidal neurons were hyperconnected during a critical period in early mPFC development. Surprisingly, excitatory synaptic connections between Fmr1-KO pyramidal neurons were significantly slower and failed to recover from short-term depression as quickly as wild type (WT) synapses. By 4--5 weeks of mPFC development, connectivity rates were identical for both KO and WT pyramidal neurons and synapse dynamics changed from depressing to facilitating responses with similar properties in both groups. We propose that the early alteration in connectivity and synaptic recovery are tightly linked: using a network model, we show that slower synapses are essential to counterbalance hyperconnectivity in order to maintain a dynamic range of excitatory activity. However, the slow synaptic time constants induce decreased responsiveness to low-frequency stimulation, which may explain deficits in integration and early information processing in attentional neuronal networks in NDDs. PMID:21856714

  10. Theory of correlation in a network with synaptic depression

    NASA Astrophysics Data System (ADS)

    Igarashi, Yasuhiko; Oizumi, Masafumi; Okada, Masato

    2012-01-01

    Synaptic depression affects not only the mean responses of neurons but also the correlation of response variability in neural populations. Although previous studies have constructed a theory of correlation in a spiking neuron model by using the mean-field theory framework, synaptic depression has not been taken into consideration. We expanded the previous theoretical framework in this study to spiking neuron models with short-term synaptic depression. On the basis of this theory we analytically calculated neural correlations in a ring attractor network with Mexican-hat-type connectivity, which was used as a model of the primary visual cortex. The results revealed that synaptic depression reduces neural correlation, which could be beneficial for sensory coding. Furthermore, our study opens the way for theoretical studies on the effect of interaction change on the linear response function in large stochastic networks.

  11. Enduring medial perforant path short-term synaptic depression at high pressure.

    PubMed

    Talpalar, Adolfo E; Giugliano, Michele; Grossman, Yoram

    2010-01-01

    The high pressure neurological syndrome develops during deep-diving (>1.1 MPa) involving impairment of cognitive functions, alteration of synaptic transmission and increased excitability in cortico-hippocampal areas. The medial perforant path (MPP), connecting entorhinal cortex with the hippocampal formation, displays synaptic frequency-dependent-depression (FDD) under normal conditions. Synaptic FDD is essential for specific functions of various neuronal networks. We used rat cortico-hippocampal slices and computer simulations for studying the effects of pressure and its interaction with extracellular Ca(2+) ([Ca(2+)](o)) on FDD at the MPP synapses. At atmospheric pressure, high [Ca(2+)](o) (4-6 mM) saturated single MPP field EPSP (fEPSP) and increased FDD in response to short trains at 50 Hz. High pressure (HP; 10.1 MPa) depressed single fEPSPs by 50%. Increasing [Ca(2+)](o) to 4 mM at HP saturated synaptic response at a subnormal level (only 20% recovery of single fEPSPs), but generated a FDD similar to atmospheric pressure. Mathematical model analysis of the fractions of synaptic resources used by each fEPSP during trains (normalized to their maximum) and the total fraction utilized within a train indicate that HP depresses synaptic activity also by reducing synaptic resources. This data suggest that MPP synapses may be modulated, in addition to depression of single events, by reduction of synaptic resources and then may have the ability to conserve their dynamic properties under different conditions.

  12. Enduring Medial Perforant Path Short-Term Synaptic Depression at High Pressure

    PubMed Central

    Talpalar, Adolfo E.; Giugliano, Michele; Grossman, Yoram

    2010-01-01

    The high pressure neurological syndrome develops during deep-diving (>1.1 MPa) involving impairment of cognitive functions, alteration of synaptic transmission and increased excitability in cortico-hippocampal areas. The medial perforant path (MPP), connecting entorhinal cortex with the hippocampal formation, displays synaptic frequency-dependent-depression (FDD) under normal conditions. Synaptic FDD is essential for specific functions of various neuronal networks. We used rat cortico-hippocampal slices and computer simulations for studying the effects of pressure and its interaction with extracellular Ca2+ ([Ca2+]o) on FDD at the MPP synapses. At atmospheric pressure, high [Ca2+]o (4–6 mM) saturated single MPP field EPSP (fEPSP) and increased FDD in response to short trains at 50 Hz. High pressure (HP; 10.1 MPa) depressed single fEPSPs by 50%. Increasing [Ca2+]o to 4 mM at HP saturated synaptic response at a subnormal level (only 20% recovery of single fEPSPs), but generated a FDD similar to atmospheric pressure. Mathematical model analysis of the fractions of synaptic resources used by each fEPSP during trains (normalized to their maximum) and the total fraction utilized within a train indicate that HP depresses synaptic activity also by reducing synaptic resources. This data suggest that MPP synapses may be modulated, in addition to depression of single events, by reduction of synaptic resources and then may have the ability to conserve their dynamic properties under different conditions. PMID:21048901

  13. Long-term potentiation and long-term depression: a clinical perspective

    PubMed Central

    Bliss, Timothy V.P.; Cooke, Sam F

    2011-01-01

    Long-term potentiation and long-term depression are enduring changes in synaptic strength, induced by specific patterns of synaptic activity, that have received much attention as cellular models of information storage in the central nervous system. Work in a number of brain regions, from the spinal cord to the cerebral cortex, and in many animal species, ranging from invertebrates to humans, has demonstrated a reliable capacity for chemical synapses to undergo lasting changes in efficacy in response to a variety of induction protocols. In addition to their physiological relevance, long-term potentiation and depression may have important clinical applications. A growing insight into the molecular mechanisms underlying these processes, and technological advances in non-invasive manipulation of brain activity, now puts us at the threshold of harnessing long-term potentiation and depression and other forms of synaptic, cellular and circuit plasticity to manipulate synaptic strength in the human nervous system. Drugs may be used to erase or treat pathological synaptic states and non-invasive stimulation devices may be used to artificially induce synaptic plasticity to ameliorate conditions arising from disrupted synaptic drive. These approaches hold promise for the treatment of a variety of neurological conditions, including neuropathic pain, epilepsy, depression, amblyopia, tinnitus and stroke. PMID:21779718

  14. Enriched environment ameliorates depression-induced cognitive deficits and restores abnormal hippocampal synaptic plasticity.

    PubMed

    Mahati, K; Bhagya, V; Christofer, T; Sneha, A; Shankaranarayana Rao, B S

    2016-10-01

    Severe depression compromises structural and functional integrity of the brain and results in impaired learning and memory, maladaptive synaptic plasticity as well as degenerative changes in the hippocampus and amygdala. The precise mechanisms underlying cognitive dysfunctions in depression remain largely unknown. On the other hand, enriched environment (EE) offers beneficial effects on cognitive functions, synaptic plasticity in the hippocampus. However, the effect of EE on endogenous depression associated cognitive dysfunction has not been explored. Accordingly, we have attempted to address this issue by investigating behavioural, structural and synaptic plasticity mechanisms in an animal model of endogenous depression after exposure to enriched environment. Our results demonstrate that depression is associated with impaired spatial learning and enhanced anxiety-like behaviour which is correlated with hypotrophy of the dentate gyrus and amygdalar hypertrophy. We also observed a gross reduction in the hippocampal long-term potentiation (LTP). We report a complete behavioural recovery with reduced indices of anhedonia and behavioural despair, reduced anxiety-like behaviour and improved spatial learning along with a complete restoration of dentate gyrus and amygdalar volumes in depressive rats subjected to EE. Enrichment also facilitated CA3-Schaffer collateral LTP. Our study convincingly proves that depression-induces learning deficits and impairs hippocampal synaptic plasticity. It also highlights the role of environmental stimuli in restoring depression-induced cognitive deficits which might prove vital in outlining more effective strategies to treat major depressive disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Antidepressants Rescue Stress-Induced Disruption of Synaptic Plasticity via Serotonin Transporter-Independent Inhibition of L-Type Calcium Channels.

    PubMed

    Normann, Claus; Frase, Sibylle; Haug, Verena; von Wolff, Gregor; Clark, Kristin; Münzer, Patrick; Dorner, Alexandra; Scholliers, Jonas; Horn, Max; Vo Van, Tanja; Seifert, Gabriel; Serchov, Tsvetan; Biber, Knut; Nissen, Christoph; Klugbauer, Norbert; Bischofberger, Josef

    2017-10-19

    Long-term synaptic plasticity is a basic ability of the brain to dynamically adapt to external stimuli and regulate synaptic strength and ultimately network function. It is dysregulated by behavioral stress in animal models of depression and in humans with major depressive disorder. Antidepressants have been shown to restore disrupted synaptic plasticity in both animal models and humans; however, the underlying mechanism is unclear. We examined modulation of synaptic plasticity by selective serotonin reuptake inhibitors (SSRIs) in hippocampal brain slices from wild-type rats and serotonin transporter (SERT) knockout mice. Recombinant voltage-gated calcium (Ca 2+ ) channels in heterologous expression systems were used to determine the modulation of Ca 2+ channels by SSRIs. We tested the behavioral effects of SSRIs in the chronic behavioral despair model of depression both in the presence and in the absence of SERT. SSRIs selectively inhibited hippocampal long-term depression. The inhibition of long-term depression by SSRIs was mediated by a direct block of voltage-activated L-type Ca 2+ channels and was independent of SERT. Furthermore, SSRIs protected both wild-type and SERT knockout mice from behavioral despair induced by chronic stress. Finally, long-term depression was facilitated in animals subjected to the behavioral despair model, which was prevented by SSRI treatment. These results showed that antidepressants protected synaptic plasticity and neuronal circuitry from the effects of stress via a modulation of Ca 2+ channels and synaptic plasticity independent of SERT. Thus, L-type Ca 2+ channels might constitute an important signaling hub for stress response and for pathophysiology and treatment of depression. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Precise Synaptic Efficacy Alignment Suggests Potentiation Dominated Learning.

    PubMed

    Hartmann, Christoph; Miner, Daniel C; Triesch, Jochen

    2015-01-01

    Recent evidence suggests that parallel synapses from the same axonal branch onto the same dendritic branch have almost identical strength. It has been proposed that this alignment is only possible through learning rules that integrate activity over long time spans. However, learning mechanisms such as spike-timing-dependent plasticity (STDP) are commonly assumed to be temporally local. Here, we propose that the combination of temporally local STDP and a multiplicative synaptic normalization mechanism is sufficient to explain the alignment of parallel synapses. To address this issue, we introduce three increasingly complex models: First, we model the idealized interaction of STDP and synaptic normalization in a single neuron as a simple stochastic process and derive analytically that the alignment effect can be described by a so-called Kesten process. From this we can derive that synaptic efficacy alignment requires potentiation-dominated learning regimes. We verify these conditions in a single-neuron model with independent spiking activities but more realistic synapses. As expected, we only observe synaptic efficacy alignment for long-term potentiation-biased STDP. Finally, we explore how well the findings transfer to recurrent neural networks where the learning mechanisms interact with the correlated activity of the network. We find that due to the self-reinforcing correlations in recurrent circuits under STDP, alignment occurs for both long-term potentiation- and depression-biased STDP, because the learning will be potentiation dominated in both cases due to the potentiating events induced by correlated activity. This is in line with recent results demonstrating a dominance of potentiation over depression during waking and normalization during sleep. This leads us to predict that individual spine pairs will be more similar after sleep compared to after sleep deprivation. In conclusion, we show that synaptic normalization in conjunction with coordinated potentiation--in this case, from STDP in the presence of correlated pre- and post-synaptic activity--naturally leads to an alignment of parallel synapses.

  17. Anesthetic Agent-Specific Effects on Synaptic Inhibition

    PubMed Central

    MacIver, M. Bruce

    2014-01-01

    Background Anesthetics enhance gamma-aminobutyric acid (GABA)-mediated inhibition in the central nervous system. Different agents have been shown to act on tonic versus synaptic GABA receptors to different degrees, but it remains unknown whether different forms of synaptic inhibition are also differentially engaged. With this in mind, we tested the hypothesis that different types of GABA-mediated synapses exhibit different anesthetic sensitivities. The present study compared effects produced by isoflurane, halothane, pentobarbital, thiopental and propofol on paired pulse GABAA receptor-mediated synaptic inhibition. Effects on glutamate-mediated facilitation were also studied. Methods Synaptic responses were measured in rat hippocampal brain slices. Orthodromic paired pulse stimulation was used to assess anesthetic effects on either glutamate-mediated excitatory inputs or GABA-mediated inhibitory inputs to CA1 neurons. Antidromic stimulation was used to assess anesthetic effects on CA1 background excitability. Agents were studied at equi-effective concentrations for population spike depression to compare their relative degree of effect on synaptic inhibition. Results Differing degrees of anesthetic effect on paired pulse facilitation at excitatory glutamate synapses were evident, and blocking GABA inhibition revealed a previously unseen presynaptic action for pentobarbital. Although all five anesthetics depressed synaptically evoked excitation of CA1 neurons, the involvement of enhanced GABA-mediated inhibition differed considerably among agents. Single pulse inhibition was enhanced by propofol, thiopental and pentobarbital, but only marginally by halothane and isoflurane. In contrast, isoflurane enhanced paired pulse inhibition strongly, as did thiopental, but propofol, pentobarbital and halothane were less effective. Conclusions These observations support the idea that different GABA synapses use receptors with differing subunit compositions, and that anesthetics exhibit differing degrees of selectivity for these receptors. The differing anesthetic sensitivities seen in the present study, at glutamate and GABA synapses, help explain the unique behavioral/clinical profiles produced by different classes of anesthetics, and indicate that there are selective targets for new agent development. PMID:24977633

  18. Anesthetic agent-specific effects on synaptic inhibition.

    PubMed

    MacIver, M Bruce

    2014-09-01

    Anesthetics enhance γ-aminobutyric acid (GABA)-mediated inhibition in the central nervous system. Different agents have been shown to act on tonic versus synaptic GABA receptors to different degrees, but it remains unknown whether different forms of synaptic inhibition are also differentially engaged. With this in mind, we tested the hypothesis that different types of GABA-mediated synapses exhibit different anesthetic sensitivities. The present study compared effects produced by isoflurane, halothane, pentobarbital, thiopental, and propofol on paired-pulse GABAA receptor-mediated synaptic inhibition. Effects on glutamate-mediated facilitation were also studied. Synaptic responses were measured in rat hippocampal brain slices. Orthodromic paired-pulse stimulation was used to assess anesthetic effects on either glutamate-mediated excitatory inputs or GABA-mediated inhibitory inputs to CA1 neurons. Antidromic stimulation was used to assess anesthetic effects on CA1 background excitability. Agents were studied at equieffective concentrations for population spike depression to compare their relative degree of effect on synaptic inhibition. Differing degrees of anesthetic effect on paired-pulse facilitation at excitatory glutamate synapses were evident, and blocking GABA inhibition revealed a previously unseen presynaptic action for pentobarbital. Although all 5 anesthetics depressed synaptically evoked excitation of CA1 neurons, the involvement of enhanced GABA-mediated inhibition differed considerably among agents. Single-pulse inhibition was enhanced by propofol, thiopental, and pentobarbital, but only marginally by halothane and isoflurane. In contrast, isoflurane enhanced paired-pulse inhibition strongly, as did thiopental, but propofol, pentobarbital, and halothane were less effective. These observations support the idea that different GABA synapses use receptors with differing subunit compositions and that anesthetics exhibit differing degrees of selectivity for these receptors. The differing anesthetic sensitivities seen in the present study, at glutamate and GABA synapses, help explain the unique behavioral/clinical profiles produced by different classes of anesthetics and indicate that there are selective targets for new agent development.

  19. The actions of volatile anaesthetics on synaptic transmission in the dentate gyrus.

    PubMed Central

    Richards, C D; White, A E

    1975-01-01

    1. The action of four volatile anaesthetics on the evoked synaptic potentials of in vitro preparations of the hippocampus were examined. 2. All four anaesthetics (ether, halothane, methoxyflurane and trichloroethylene) depressed the synaptic transmission between the perforant path and the granule cells at concentrations lower than those required to maintain anaesthesia in intact animals. 3. The population excitatory post-synaptic potential (e.p.s.p.) and massed discharge of the cortical cells (population spike) were depressed at concentrations of the anaesthetics lower than those required to depress the compound action potential of the perforant path nerve fibres. None of the anaesthetics studied increased the threshold depolarization required for granule cell discharge. Furthermore, frequency potentiation of the evoked cortical e.p.s.p.s was not impaired by any of the anaesthetics studied. 4. It is concluded that all four anaesthetics depress synaptic transmission in the dentate gyrus either by reducing the amount of transmitter released from each nerve terminal in response to an afferent volley, or by decreasing the sensitivity of the post-synaptic membrane to released transmitted or by both effects together. PMID:1202196

  20. Oscillations in Spurious States of the Associative Memory Model with Synaptic Depression

    NASA Astrophysics Data System (ADS)

    Murata, Shin; Otsubo, Yosuke; Nagata, Kenji; Okada, Masato

    2014-12-01

    The associative memory model is a typical neural network model that can store discretely distributed fixed-point attractors as memory patterns. When the network stores the memory patterns extensively, however, the model has other attractors besides the memory patterns. These attractors are called spurious memories. Both spurious states and memory states are in equilibrium, so there is little difference between their dynamics. Recent physiological experiments have shown that the short-term dynamic synapse called synaptic depression decreases its efficacy of transmission to postsynaptic neurons according to the activities of presynaptic neurons. Previous studies revealed that synaptic depression destabilizes the memory states when the number of memory patterns is finite. However, it is very difficult to study the dynamical properties of the spurious states if the number of memory patterns is proportional to the number of neurons. We investigate the effect of synaptic depression on spurious states by Monte Carlo simulation. The results demonstrate that synaptic depression does not affect the memory states but mainly destabilizes the spurious states and induces periodic oscillations.

  1. Mixed protonic and electronic conductors hybrid oxide synaptic transistors

    NASA Astrophysics Data System (ADS)

    Fu, Yang Ming; Zhu, Li Qiang; Wen, Juan; Xiao, Hui; Liu, Rui

    2017-05-01

    Mixed ionic and electronic conductor hybrid devices have attracted widespread attention in the field of brain-inspired neuromorphic systems. Here, mixed protonic and electronic conductor (MPEC) hybrid indium-tungsten-oxide (IWO) synaptic transistors gated by nanogranular phosphorosilicate glass (PSG) based electrolytes were obtained. Unique field-configurable proton self-modulation behaviors were observed on the MPEC hybrid transistor with extremely strong interfacial electric-double-layer effects. Temporally coupled synaptic plasticities were demonstrated on the MPEC hybrid IWO synaptic transistor, including depolarization/hyperpolarization, synaptic facilitation and depression, facilitation-stead/depression-stead behaviors, spiking rate dependent plasticity, and high-pass/low-pass synaptic filtering behaviors. MPEC hybrid synaptic transistors may find potential applications in neuron-inspired platforms.

  2. Synaptic Neurotransmission Depression in Ventral Tegmental Dopamine Neurons and Cannabinoid-Associated Addictive Learning

    PubMed Central

    Liu, Zhiqiang; Han, Jing; Jia, Lintao; Maillet, Jean-Christian; Bai, Guang; Xu, Lin; Jia, Zhengping; Zheng, Qiaohua; Zhang, Wandong; Monette, Robert; Merali, Zul; Zhu, Zhou; Wang, Wei; Ren, Wei; Zhang, Xia

    2010-01-01

    Drug addiction is an association of compulsive drug use with long-term associative learning/memory. Multiple forms of learning/memory are primarily subserved by activity- or experience-dependent synaptic long-term potentiation (LTP) and long-term depression (LTD). Recent studies suggest LTP expression in locally activated glutamate synapses onto dopamine neurons (local Glu-DA synapses) of the midbrain ventral tegmental area (VTA) following a single or chronic exposure to many drugs of abuse, whereas a single exposure to cannabinoid did not significantly affect synaptic plasticity at these synapses. It is unknown whether chronic exposure of cannabis (marijuana or cannabinoids), the most commonly used illicit drug worldwide, induce LTP or LTD at these synapses. More importantly, whether such alterations in VTA synaptic plasticity causatively contribute to drug addictive behavior has not previously been addressed. Here we show in rats that chronic cannabinoid exposure activates VTA cannabinoid CB1 receptors to induce transient neurotransmission depression at VTA local Glu-DA synapses through activation of NMDA receptors and subsequent endocytosis of AMPA receptor GluR2 subunits. A GluR2-derived peptide blocks cannabinoid-induced VTA synaptic depression and conditioned place preference, i.e., learning to associate drug exposure with environmental cues. These data not only provide the first evidence, to our knowledge, that NMDA receptor-dependent synaptic depression at VTA dopamine circuitry requires GluR2 endocytosis, but also suggest an essential contribution of such synaptic depression to cannabinoid-associated addictive learning, in addition to pointing to novel pharmacological strategies for the treatment of cannabis addiction. PMID:21187978

  3. Pressure-induced depression of synaptic transmission in the cerebellar parallel fibre synapse involves suppression of presynaptic N-type Ca2+ channels.

    PubMed

    Etzion, Y; Grossman, Y

    2000-11-01

    High pressure induces CNS hyperexcitability while markedly depressing synaptic transmitter release. We studied the effect of pressure (up to 10.1 MPa) on the parallel fibre (PF) synaptic response in biplanar cerebellar slices of adult guinea pigs. Pressure mildly reduced the PF volley amplitude and to a greater extent depressed the excitatory field postsynaptic potential (fPSP). The depression of the PF volley was noted even at supramaximal stimulus intensities, indicating an effect of pressure on the amplitude of the action potential in each axon. Low concentrations of TTX mimicked the effects of pressure on the PF volley without affecting the fPSP. Application omega-conotoxin GVIA (omega-CgTx) reduced the synaptic efficacy by 34.3+/-2.7%. However, in the presence of omega-CgTx the synaptic depression at pressure was significantly reduced. Reduced Ca2+ entry by application of Cd2+ or low [Ca2+]o did not have a similar influence on the effects of pressure. Application of omega-AGA IVA, omega-AGA TK and Funnel-web spider toxin did not affect the synaptic response in concentrations that usually block P-type Ca2+ channels, whilst the N/P/Q-type blocker omega-conotoxin MVIIC reduced the response to 52.7+/-5.0% indicating the involvement of Q-type channels and R-type channels in the non-N-type fraction of Ca2+ entry. The results demonstrate that N-type Ca2+ channels play a crucial role in the induction of PF synaptic depression at pressure. This finding suggests a coherent mechanism for the induction of CNS hyperexcitability at pressure.

  4. Running Opposes the Effects of Social Isolation on Synaptic Plasticity and Transmission in a Rat Model of Depression

    PubMed Central

    Gómez-Galán, Marta; Femenía, Teresa; Åberg, Elin; Graae, Lisette; Van Eeckhaut, Ann; Smolders, Ilse; Brené, Stefan; Lindskog, Maria

    2016-01-01

    Stress, such as social isolation, is a well-known risk factor for depression, most probably in combination with predisposing genetic factors. Physical exercise on the other hand, is depicted as a wonder-treatment that makes you healthier, happier and live longer. However, the published results on the effects of exercise are ambiguous, especially when it comes to neuropsychiatric disorders. Here we combine a paradigm of social isolation with a genetic rat model of depression, the Flinders Sensitive Line (FSL), already known to have glutamatergic synaptic alterations. Compared to group-housed FSL rats, we found that social isolation further affects synaptic plasticity and increases basal synaptic transmission in hippocampal CA1 pyramidal neurons. These functional synaptic alterations co-exist with changes in hippocampal protein expression levels: social isolation in FSL rats reduce expression of the glial glutamate transporter GLT-1, and increase expression of the GluA2 AMPA-receptor subunit. We further show that physical exercise in form of voluntary running prevents the stress-induced synaptic effects but do not restore the endogenous mechanisms of depression already present in the FSL rat. PMID:27764188

  5. Running Opposes the Effects of Social Isolation on Synaptic Plasticity and Transmission in a Rat Model of Depression.

    PubMed

    Gómez-Galán, Marta; Femenía, Teresa; Åberg, Elin; Graae, Lisette; Van Eeckhaut, Ann; Smolders, Ilse; Brené, Stefan; Lindskog, Maria

    2016-01-01

    Stress, such as social isolation, is a well-known risk factor for depression, most probably in combination with predisposing genetic factors. Physical exercise on the other hand, is depicted as a wonder-treatment that makes you healthier, happier and live longer. However, the published results on the effects of exercise are ambiguous, especially when it comes to neuropsychiatric disorders. Here we combine a paradigm of social isolation with a genetic rat model of depression, the Flinders Sensitive Line (FSL), already known to have glutamatergic synaptic alterations. Compared to group-housed FSL rats, we found that social isolation further affects synaptic plasticity and increases basal synaptic transmission in hippocampal CA1 pyramidal neurons. These functional synaptic alterations co-exist with changes in hippocampal protein expression levels: social isolation in FSL rats reduce expression of the glial glutamate transporter GLT-1, and increase expression of the GluA2 AMPA-receptor subunit. We further show that physical exercise in form of voluntary running prevents the stress-induced synaptic effects but do not restore the endogenous mechanisms of depression already present in the FSL rat.

  6. Changed Synaptic Plasticity in Neural Circuits of Depressive-Like and Escitalopram-Treated Rats

    PubMed Central

    Li, Xiao-Li; Yuan, Yong-Gui; Xu, Hua; Wu, Di; Gong, Wei-Gang; Geng, Lei-Yu; Wu, Fang-Fang; Tang, Hao; Xu, Lin

    2015-01-01

    Background: Although progress has been made in the detection and characterization of neural plasticity in depression, it has not been fully understood in individual synaptic changes in the neural circuits under chronic stress and antidepressant treatment. Methods: Using electron microscopy and Western-blot analyses, the present study quantitatively examined the changes in the Gray’s Type I synaptic ultrastructures and the expression of synapse-associated proteins in the key brain regions of rats’ depressive-related neural circuit after chronic unpredicted mild stress and/or escitalopram administration. Meanwhile, their depressive behaviors were also determined by several tests. Results: The Type I synapses underwent considerable remodeling after chronic unpredicted mild stress, which resulted in the changed width of the synaptic cleft, length of the active zone, postsynaptic density thickness, and/or synaptic curvature in the subregions of medial prefrontal cortex and hippocampus, as well as the basolateral amygdaloid nucleus of the amygdala, accompanied by changed expression of several synapse-associated proteins. Chronic escitalopram administration significantly changed the above alternations in the chronic unpredicted mild stress rats but had little effect on normal controls. Also, there was a positive correlation between the locomotor activity and the maximal synaptic postsynaptic density thickness in the stratum radiatum of the Cornu Ammonis 1 region and a negative correlation between the sucrose preference and the length of the active zone in the basolateral amygdaloid nucleus region in chronic unpredicted mild stress rats. Conclusion: These findings strongly indicate that chronic stress and escitalopram can alter synaptic plasticity in the neural circuits, and the remodeled synaptic ultrastructure was correlated with the rats’ depressive behaviors, suggesting a therapeutic target for further exploration. PMID:25899067

  7. Spatiotemporal discrimination in neural networks with short-term synaptic plasticity

    NASA Astrophysics Data System (ADS)

    Shlaer, Benjamin; Miller, Paul

    2015-03-01

    Cells in recurrently connected neural networks exhibit bistability, which allows for stimulus information to persist in a circuit even after stimulus offset, i.e. short-term memory. However, such a system does not have enough hysteresis to encode temporal information about the stimuli. The biophysically described phenomenon of synaptic depression decreases synaptic transmission strengths due to increased presynaptic activity. This short-term reduction in synaptic strengths can destabilize attractor states in excitatory recurrent neural networks, causing the network to move along stimulus dependent dynamical trajectories. Such a network can successfully separate amplitudes and durations of stimuli from the number of successive stimuli. Stimulus number, duration and intensity encoding in randomly connected attractor networks with synaptic depression. Front. Comput. Neurosci. 7:59., and so provides a strong candidate network for the encoding of spatiotemporal information. Here we explicitly demonstrate the capability of a recurrent neural network with short-term synaptic depression to discriminate between the temporal sequences in which spatial stimuli are presented.

  8. Differences in chloride gradients allow for three distinct types of synaptic modulation by endocannabinoids.

    PubMed

    Wang, Yanqing; Burrell, Brian D

    2016-08-01

    Endocannabinoids can elicit persistent depression of excitatory and inhibitory synapses, reducing or enhancing (disinhibiting) neural circuit output, respectively. In this study, we examined whether differences in Cl(-) gradients can regulate which synapses undergo endocannabinoid-mediated synaptic depression vs. disinhibition using the well-characterized central nervous system (CNS) of the medicinal leech, Hirudo verbana Exogenous application of endocannabinoids or capsaicin elicits potentiation of pressure (P) cell synapses and depression of both polymodal (Npoly) and mechanical (Nmech) nociceptive synapses. In P synapses, blocking Cl(-) export prevented endocannabinoid-mediated potentiation, consistent with a disinhibition process that has been indicated by previous experiments. In Nmech neurons, which are depolarized by GABA due to an elevated Cl(-) equilibrium potentials (ECl), endocannabinoid-mediated depression was prevented by blocking Cl(-) import, indicating that this decrease in synaptic signaling was due to depression of excitatory GABAergic input (disexcitation). Npoly neurons are also depolarized by GABA, but endocannabinoids elicit depression in these synapses directly and were only weakly affected by disruption of Cl(-) import. Consequently, the primary role of elevated ECl may be to protect Npoly synapses from disinhibition. All forms of endocannabinoid-mediated plasticity required activation of transient potential receptor vanilloid (TRPV) channels. Endocannabinoid/TRPV-dependent synaptic plasticity could also be elicited by distinct patterns of afferent stimulation with low-frequency stimulation (LFS) eliciting endocannabinoid-mediated depression of Npoly synapses and high-frequency stimulus (HFS) eliciting endocannabinoid-mediated potentiation of P synapses and depression of Nmech synapses. These findings demonstrate a critical role of differences in Cl(-) gradients between neurons in determining the sign, potentiation vs. depression, of synaptic modulation under normal physiological conditions. Copyright © 2016 the American Physiological Society.

  9. Differences in chloride gradients allow for three distinct types of synaptic modulation by endocannabinoids

    PubMed Central

    Wang, Yanqing

    2016-01-01

    Endocannabinoids can elicit persistent depression of excitatory and inhibitory synapses, reducing or enhancing (disinhibiting) neural circuit output, respectively. In this study, we examined whether differences in Cl− gradients can regulate which synapses undergo endocannabinoid-mediated synaptic depression vs. disinhibition using the well-characterized central nervous system (CNS) of the medicinal leech, Hirudo verbana. Exogenous application of endocannabinoids or capsaicin elicits potentiation of pressure (P) cell synapses and depression of both polymodal (Npoly) and mechanical (Nmech) nociceptive synapses. In P synapses, blocking Cl− export prevented endocannabinoid-mediated potentiation, consistent with a disinhibition process that has been indicated by previous experiments. In Nmech neurons, which are depolarized by GABA due to an elevated Cl− equilibrium potentials (ECl), endocannabinoid-mediated depression was prevented by blocking Cl− import, indicating that this decrease in synaptic signaling was due to depression of excitatory GABAergic input (disexcitation). Npoly neurons are also depolarized by GABA, but endocannabinoids elicit depression in these synapses directly and were only weakly affected by disruption of Cl− import. Consequently, the primary role of elevated ECl may be to protect Npoly synapses from disinhibition. All forms of endocannabinoid-mediated plasticity required activation of transient potential receptor vanilloid (TRPV) channels. Endocannabinoid/TRPV-dependent synaptic plasticity could also be elicited by distinct patterns of afferent stimulation with low-frequency stimulation (LFS) eliciting endocannabinoid-mediated depression of Npoly synapses and high-frequency stimulus (HFS) eliciting endocannabinoid-mediated potentiation of P synapses and depression of Nmech synapses. These findings demonstrate a critical role of differences in Cl− gradients between neurons in determining the sign, potentiation vs. depression, of synaptic modulation under normal physiological conditions. PMID:27226449

  10. Synaptic Transmission Optimization Predicts Expression Loci of Long-Term Plasticity.

    PubMed

    Costa, Rui Ponte; Padamsey, Zahid; D'Amour, James A; Emptage, Nigel J; Froemke, Robert C; Vogels, Tim P

    2017-09-27

    Long-term modifications of neuronal connections are critical for reliable memory storage in the brain. However, their locus of expression-pre- or postsynaptic-is highly variable. Here we introduce a theoretical framework in which long-term plasticity performs an optimization of the postsynaptic response statistics toward a given mean with minimal variance. Consequently, the state of the synapse at the time of plasticity induction determines the ratio of pre- and postsynaptic modifications. Our theory explains the experimentally observed expression loci of the hippocampal and neocortical synaptic potentiation studies we examined. Moreover, the theory predicts presynaptic expression of long-term depression, consistent with experimental observations. At inhibitory synapses, the theory suggests a statistically efficient excitatory-inhibitory balance in which changes in inhibitory postsynaptic response statistics specifically target the mean excitation. Our results provide a unifying theory for understanding the expression mechanisms and functions of long-term synaptic transmission plasticity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Learning rules for spike timing-dependent plasticity depend on dendritic synapse location.

    PubMed

    Letzkus, Johannes J; Kampa, Björn M; Stuart, Greg J

    2006-10-11

    Previous studies focusing on the temporal rules governing changes in synaptic strength during spike timing-dependent synaptic plasticity (STDP) have paid little attention to the fact that synaptic inputs are distributed across complex dendritic trees. During STDP, propagation of action potentials (APs) back to the site of synaptic input is thought to trigger plasticity. However, in pyramidal neurons, backpropagation of single APs is decremental, whereas high-frequency bursts lead to generation of distal dendritic calcium spikes. This raises the question whether STDP learning rules depend on synapse location and firing mode. Here, we investigate this issue at synapses between layer 2/3 and layer 5 pyramidal neurons in somatosensory cortex. We find that low-frequency pairing of single APs at positive times leads to a distance-dependent shift to long-term depression (LTD) at distal inputs. At proximal sites, this LTD could be converted to long-term potentiation (LTP) by dendritic depolarizations suprathreshold for BAC-firing or by high-frequency AP bursts. During AP bursts, we observed a progressive, distance-dependent shift in the timing requirements for induction of LTP and LTD, such that distal synapses display novel timing rules: they potentiate when inputs are activated after burst onset (negative timing) but depress when activated before burst onset (positive timing). These findings could be explained by distance-dependent differences in the underlying dendritic voltage waveforms driving NMDA receptor activation during STDP induction. Our results suggest that synapse location within the dendritic tree is a crucial determinant of STDP, and that synapses undergo plasticity according to local rather than global learning rules.

  12. A Model of Bidirectional Synaptic Plasticity: From Signaling Network to Channel Conductance

    ERIC Educational Resources Information Center

    Castellani, Gastone C.; Quinlan, Elizabeth M.; Bersani, Ferdinando; Cooper, Leon N.; Shouval, Harel Z.

    2005-01-01

    In many regions of the brain, including the mammalian cortex, the strength of synaptic transmission can be bidirectionally regulated by cortical activity (synaptic plasticity). One line of evidence indicates that long-term synaptic potentiation (LTP) and long-term synaptic depression (LTD), correlate with the phosphorylation/dephosphorylation of…

  13. Hyperforin inhibits vesicular uptake of monoamines by dissipating pH gradient across synaptic vesicle membrane.

    PubMed

    Roz, Netta; Rehavi, Moshe

    2003-06-13

    Extracts of Hypericum perforatum (St. John's wort) have antidepressant properties in depressed patients and exert antidepressant-like action in laboratory animals. The phloroglucinol derivative hyperforin has become a topic of interest, as this Hypericum component is a potent inhibitor of monoamines reuptake. The molecular mechanism by which hyperforin inhibits monoamines uptake is yet unclear. In the present study we try to clarify the mechanism by which hyperforin inhibits the synaptic vesicle transport of monoamines. The pH gradient across the synaptic vesicle membrane, induced by vacuolar type H(+)-ATPase, is the major driving force for vesicular monoamines uptake and storage. We suggest that hyperforin, like the protonophore FCCP, dissipates an existing Delta pH generated by an efflux of inwardly pumped protons. Proton transport was measured by acridine orange fluorescence quenching. Adding Mg-ATP to a medium containing 130 mM KCl and synaptic vesicles caused an immediate decrease in fluorescence of acridine orange and the addition of 1 microM FCCP abolished this effect. H(+)-ATPase dependent proton pumping was inhibited by hyperforin in a dose dependent manner (IC(50) = 1.9 x 10(-7) M). Hyperforin acted similarly to the protonophore FCCP, abolishing the ATP induced fluorescence quenching (IC(50) = 4.3 x 10(-7) M). Hyperforin and FCCP had similar potencies for inhibiting rat brain synaptosomal uptake of [3H]monoamines as well as vesicular monoamine uptake. The efflux of [3H]5HT from synaptic vesicles was sensitive to both drugs, thus 50% of preloaded [3H]5HT was released in the presence of 2.1 x 10(-7) M FCCP and 4 x 10(-7) M hyperforin. The effect of hyperforin on the pH gradient in synaptic vesicle membrane may explain its inhibitory effect on monoamines uptake, but could only partially explain its antidepressant properties.

  14. Brevetoxin Depresses Synaptic Transmission in Guinea Pig Hippocampal Slices

    DTIC Science & Technology

    1993-01-01

    Brevetoxin depresses synaptic transmission in guinea pig hippocampal slices. Brain Res Bull 31(1/2) 201-207, 1993.--Extracellular recordings were...obtained from area CA1 of guinea pig hippocampal slices. PbTx-3, a brevetoxin fraction isolated from the red tide dinoflagellate Ptychodiscus brevis, was

  15. Phase-locking and bistability in neuronal networks with synaptic depression

    NASA Astrophysics Data System (ADS)

    Akcay, Zeynep; Huang, Xinxian; Nadim, Farzan; Bose, Amitabha

    2018-02-01

    We consider a recurrent network of two oscillatory neurons that are coupled with inhibitory synapses. We use the phase response curves of the neurons and the properties of short-term synaptic depression to define Poincaré maps for the activity of the network. The fixed points of these maps correspond to phase-locked modes of the network. Using these maps, we analyze the conditions that allow short-term synaptic depression to lead to the existence of bistable phase-locked, periodic solutions. We show that bistability arises when either the phase response curve of the neuron or the short-term depression profile changes steeply enough. The results apply to any Type I oscillator and we illustrate our findings using the Quadratic Integrate-and-Fire and Morris-Lecar neuron models.

  16. Multiple effects of β-amyloid on single excitatory synaptic connections in the PFC.

    PubMed

    Wang, Yun; Zhou, Thomas H; Zhi, Zhina; Barakat, Amey; Hlatky, Lynn; Querfurth, Henry

    2013-01-01

    Prefrontal cortex (PFC) is recognized as an AD-vulnerable region responsible for defects in cognitive functioning. Pyramidal cell (PC) connections are typically facilitating (F) or depressing (D) in PFC. Excitatory post-synaptic potentials (EPSPs) were recorded using patch-clamp from single connections in PFC slices of rats and ferrets in the presence of β-amyloid (Aβ). Synaptic transmission was significantly enhanced or reduced depending on their intrinsic type (facilitating or depressing), Aβ species (Aβ 40 or Aβ 42) and concentration (1-200 nM vs. 0.3-1 μ M). Nanomolar Aβ 40 and Aβ 42 had opposite effects on F-connections, resulting in fewer or increased EPSP failure rates, strengthening or weakening EPSPs and enhancing or inhibiting short-term potentiation [STP: synaptic augmentation (SA) and post-tetanic potentiation (PTP)], respectively. High Aβ 40 concentrations induced inhibition regardless of synaptic type. D-connections were inhibited regardless of Aβ species or concentration. The inhibition induced with bath application was hard to recover by washout, but a complete recovery was obtained with brief local application and prompt washout. Our data suggests that Aβ 40 acts on the prefrontal neuronal network by modulating facilitating and depressing synapses. At higher levels, both Aβ 40 and Aβ 42 inhibit synaptic activity and cause irreversible toxicity once diffusely accumulated in the synaptic environment.

  17. Forebrain glutamatergic neurons mediate leptin action on depression-like behaviors and synaptic depression

    PubMed Central

    Guo, M; Lu, Y; Garza, J C; Li, Y; Chua, S C; Zhang, W; Lu, B; Lu, X-Y

    2012-01-01

    The glutamatergic system has been implicated in the pathophysiology of depression and the mechanism of action of antidepressants. Leptin, an adipocyte-derived hormone, has antidepressant-like properties. However, the functional role of leptin receptor (Lepr) signaling in glutamatergic neurons remains to be elucidated. In this study, we generated conditional knockout mice in which the long form of Lepr was ablated selectively in glutamatergic neurons located in the forebrain structures, including the hippocampus and prefrontal cortex (Lepr cKO). Lepr cKO mice exhibit normal growth and body weight. Behavioral characterization of Lepr cKO mice reveals depression-like behavioral deficits, including anhedonia, behavioral despair, enhanced learned helplessness and social withdrawal, with no evident signs of anxiety. In addition, loss of Lepr in forebrain glutamatergic neurons facilitates N-methyl--aspartate (NMDA)-induced hippocampal long-term synaptic depression (LTD), whereas conventional LTD or long-term potentiation (LTP) was not affected. The facilitated LTD induction requires activation of the NMDA receptor GluN2B (NR2B) subunit as it was completely blocked by a selective GluN2B antagonist. Moreover, Lepr cKO mice are highly sensitive to the antidepressant-like behavioral effects of the GluN2B antagonist but resistant to leptin. These results support important roles for Lepr signaling in glutamatergic neurons in regulating depression-related behaviors and modulating excitatory synaptic strength, suggesting a possible association between synaptic depression and behavioral manifestation of behavioral depression. PMID:22408745

  18. Frequency-selective augmenting responses by short-term synaptic depression in cat neocortex

    PubMed Central

    Houweling, Arthur R; Bazhenov, Maxim; Timofeev, Igor; Grenier, François; Steriade, Mircea; Sejnowski, Terrence J

    2002-01-01

    Thalamic stimulation at frequencies between 5 and 15 Hz elicits incremental or ‘augmenting’ cortical responses. Augmenting responses can also be evoked in cortical slices and isolated cortical slabs in vivo. Here we show that a realistic network model of cortical pyramidal cells and interneurones including short-term plasticity of inhibitory and excitatory synapses replicates the main features of augmenting responses as obtained in isolated slabs in vivo. Repetitive stimulation of synaptic inputs at frequencies around 10 Hz produced postsynaptic potentials that grew in size and carried an increasing number of action potentials resulting from the depression of inhibitory synaptic currents. Frequency selectivity was obtained through the relatively weak depression of inhibitory synapses at low frequencies, and strong depression of excitatory synapses together with activation of a calcium-activated potassium current at high frequencies. This network resonance is a consequence of short-term synaptic plasticity in a network of neurones without intrinsic resonances. These results suggest that short-term plasticity of cortical synapses could shape the dynamics of synchronized oscillations in the brain. PMID:12122156

  19. A single amino acid difference between the intracellular domains of amyloid precursor protein and amyloid-like precursor protein 2 enables induction of synaptic depression and block of long-term potentiation.

    PubMed

    Trillaud-Doppia, Emilie; Paradis-Isler, Nicolas; Boehm, Jannic

    2016-07-01

    Alzheimer disease (AD) is initially characterized as a disease of the synapse that affects synaptic transmission and synaptic plasticity. While amyloid-beta and tau have been traditionally implicated in causing AD, recent studies suggest that other factors, such as the intracellular domain of the amyloid-precursor protein (APP-ICD), can also play a role in the development of AD. Here, we show that the expression of APP-ICD induces synaptic depression, while the intracellular domain of its homolog amyloid-like precursor protein 2 (APLP2-ICD) does not. We are able to show that this effect by APP-ICD is due to a single alanine vs. proline difference between APP-ICD and APLP2-ICD. The alanine in APP-ICD and the proline in APLP2-ICD lie directly behind a conserved caspase cleavage site. Inhibition of caspase cleavage of APP-ICD prevents the induction of synaptic depression. Finally, we show that the expression of APP-ICD increases and facilitates long-term depression and blocks induction of long-term potentiation. The block in long-term potentiation can be overcome by mutating the aforementioned alanine in APP-ICD to the proline of APLP2. Based on our results, we propose the emergence of a new APP critical domain for the regulation of synaptic plasticity and in consequence for the development of AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A role for synaptic and network plasticity in controlling epileptiform activity in CA1 in the kainic acid-lesioned rat hippocampus in vitro.

    PubMed Central

    Bernard, C; Wheal, H V

    1996-01-01

    1. Stimulation of the surviving afferents in the stratum radiatum of the CA1 area in kainic acid-lesioned hippocampal slices produced graded epileptiform activity, part of which (> 20%) involved the activation of N-methyl-D-aspartate (NMDA) receptors. There was also a failure of synaptic inhibition in this region. In this preparation, we have tested the effects of low-frequency stimulation (LFS; 1 Hz for 15 min) on synaptic responses and epileptiform activity. 2. LFS resulted in long-term depression (LTD) of excitatory synaptic potentials (EPSPs), long-term decrease of population spike amplitudes (PSAs) and EPSP-spike (E-S) potentiation. Evoked epileptiform activity was reduced but neurons had a higher probability of discharge. LTD could be reversed by subsequent tetanic stimulation whereas E-S dissociation remained unchanged. Synaptic and network responses could be saturated towards either potentiation or depression. However, E-S potentiation was maximal following the first conditioning stimulus. 3. NMDA receptor-mediated responses were pharmacologically isolated. LFS resulted in LTD of synaptic responses, long-term decrease of PSAs and E-S depression. These depressions could not be reversed by subsequent tetanic stimulation. alpha-Amino-3-hydroxy-5-methylisoxazolepropionic acid (AMPA) and NMDA receptor-mediated responses were then measured in isolation before and following conditioning stimuli. LFS was shown to simultaneously produce LTD of AMPA and NMDA receptor-mediated responses. E-S potentiation of the AMPA component and E-S depression of the NMDA component occurred coincidentally. 4. LTD of AMPA and NMDA receptor-mediated responses were shown to be NMDA dependent. In contrast, E-S potentiation and depression occurred even when NMDA receptors were pharmacologically blocked. 5. These findings indicate that synaptic responses could be modified bidirectionally in the CA1 area of kainic acid-lesioned rat hippocampus in an NMDA receptor-dependent manner. However, E-S dissociations were independent of the activation of NMDA receptors, hinting at mechanisms different from those of synaptic LTD. We suggest that changes in E-S coupling were caused by a modification of the firing threshold of the CA1 pyramidal neurons. Furthermore, the firing mechanisms controlling NMDA and AMPA receptor-mediated network activity appeared to be different. The possible use of LFS applied to the hippocampus as a clinical intervention to suppress epileptiform activity is discussed. PMID:8866357

  1. Impairment of Release Site Clearance within the Active Zone by Reduced SCAMP5 Expression Causes Short-Term Depression of Synaptic Release.

    PubMed

    Park, Daehun; Lee, Unghwi; Cho, Eunji; Zhao, Haiyan; Kim, Jung Ah; Lee, Byoung Ju; Regan, Philip; Ho, Won-Kyung; Cho, Kwangwook; Chang, Sunghoe

    2018-03-20

    Despite being a highly enriched synaptic vesicle (SV) protein and a candidate gene for autism, the physiological function of SCAMP5 remains mostly enigmatic. Here, using optical imaging and electrophysiological experiments, we demonstrate that SCAMP5 plays a critical role in release site clearance at the active zone. Truncation analysis revealed that the 2/3 loop domain of SCAMP5 directly interacts with adaptor protein 2, and this interaction is critical for its role in release site clearance. Knockdown (KD) of SCAMP5 exhibited pronounced synaptic depression accompanied by a slower recovery of the SV pool. Moreover, it induced a strong frequency-dependent short-term depression of synaptic release, even under the condition of sufficient release-ready SVs. Super-resolution microscopy further proved the defects in SV protein clearance induced by KD. Thus, reduced expression of SCAMP5 may impair the efficiency of SV clearance at the active zone, and this might relate to the synaptic dysfunction observed in autism. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Multiple effects of β-amyloid on single excitatory synaptic connections in the PFC

    PubMed Central

    Wang, Yun; Zhou, Thomas H.; Zhi, Zhina; Barakat, Amey; Hlatky, Lynn; Querfurth, Henry

    2013-01-01

    Prefrontal cortex (PFC) is recognized as an AD-vulnerable region responsible for defects in cognitive functioning. Pyramidal cell (PC) connections are typically facilitating (F) or depressing (D) in PFC. Excitatory post-synaptic potentials (EPSPs) were recorded using patch-clamp from single connections in PFC slices of rats and ferrets in the presence of β-amyloid (Aβ). Synaptic transmission was significantly enhanced or reduced depending on their intrinsic type (facilitating or depressing), Aβ species (Aβ 40 or Aβ 42) and concentration (1–200 nM vs. 0.3–1 μ M). Nanomolar Aβ 40 and Aβ 42 had opposite effects on F-connections, resulting in fewer or increased EPSP failure rates, strengthening or weakening EPSPs and enhancing or inhibiting short-term potentiation [STP: synaptic augmentation (SA) and post-tetanic potentiation (PTP)], respectively. High Aβ 40 concentrations induced inhibition regardless of synaptic type. D-connections were inhibited regardless of Aβ species or concentration. The inhibition induced with bath application was hard to recover by washout, but a complete recovery was obtained with brief local application and prompt washout. Our data suggests that Aβ 40 acts on the prefrontal neuronal network by modulating facilitating and depressing synapses. At higher levels, both Aβ 40 and Aβ 42 inhibit synaptic activity and cause irreversible toxicity once diffusely accumulated in the synaptic environment. PMID:24027495

  3. Stimulus-specific adaptation in a recurrent network model of primary auditory cortex

    PubMed Central

    2017-01-01

    Stimulus-specific adaptation (SSA) occurs when neurons decrease their responses to frequently-presented (standard) stimuli but not, or not as much, to other, rare (deviant) stimuli. SSA is present in all mammalian species in which it has been tested as well as in birds. SSA confers short-term memory to neuronal responses, and may lie upstream of the generation of mismatch negativity (MMN), an important human event-related potential. Previously published models of SSA mostly rely on synaptic depression of the feedforward, thalamocortical input. Here we study SSA in a recurrent neural network model of primary auditory cortex. When the recurrent, intracortical synapses display synaptic depression, the network generates population spikes (PSs). SSA occurs in this network when deviants elicit a PS but standards do not, and we demarcate the regions in parameter space that allow SSA. While SSA based on PSs does not require feedforward depression, we identify feedforward depression as a mechanism for expanding the range of parameters that support SSA. We provide predictions for experiments that could help differentiate between SSA due to synaptic depression of feedforward connections and SSA due to synaptic depression of recurrent connections. Similar to experimental data, the magnitude of SSA in the model depends on the frequency difference between deviant and standard, probability of the deviant, inter-stimulus interval and input amplitude. In contrast to models based on feedforward depression, our model shows true deviance sensitivity as found in experiments. PMID:28288158

  4. Homeostatic synaptic depression is achieved through a regulated decrease in presynaptic calcium channel abundance

    PubMed Central

    Gaviño, Michael A; Ford, Kevin J; Archila, Santiago; Davis, Graeme W

    2015-01-01

    Homeostatic signaling stabilizes synaptic transmission at the neuromuscular junction (NMJ) of Drosophila, mice, and human. It is believed that homeostatic signaling at the NMJ is bi-directional and considerable progress has been made identifying mechanisms underlying the homeostatic potentiation of neurotransmitter release. However, very little is understood mechanistically about the opposing process, homeostatic depression, and how bi-directional plasticity is achieved. Here, we show that homeostatic potentiation and depression can be simultaneously induced, demonstrating true bi-directional plasticity. Next, we show that mutations that block homeostatic potentiation do not alter homeostatic depression, demonstrating that these are genetically separable processes. Finally, we show that homeostatic depression is achieved by decreased presynaptic calcium channel abundance and calcium influx, changes that are independent of the presynaptic action potential waveform. Thus, we identify a novel mechanism of homeostatic synaptic plasticity and propose a model that can account for the observed bi-directional, homeostatic control of presynaptic neurotransmitter release. DOI: http://dx.doi.org/10.7554/eLife.05473.001 PMID:25884248

  5. Short-term Synaptic Depression in the Feedforward Inhibitory Circuit in the Dorsal Lateral Geniculate Nucleus.

    PubMed

    Augustinaite, Sigita; Heggelund, Paul

    2018-05-24

    Synaptic short-term plasticity (STP) regulates synaptic transmission in an activity-dependent manner and thereby has important roles in the signal processing in the brain. In some synapses, a presynaptic train of action potentials elicits post-synaptic potentials that gradually increase during the train (facilitation), but in other synapses, these potentials gradually decrease (depression). We studied STP in neurons in the visual thalamic relay, the dorsal lateral geniculate nucleus (dLGN). The dLGN contains two types of neurons: excitatory thalamocortical (TC) neurons, which transfer signals from retinal afferents to visual cortex, and local inhibitory interneurons, which form an inhibitory feedforward loop that regulates the thalamocortical signal transmission. The overall STP in the retino-thalamic relay is short-term depression, but the distinct kind and characteristics of the plasticity at the different types of synapses are unknown. We studied STP in the excitatory responses of interneurons to stimulation of retinal afferents, in the inhibitory responses of TC neurons to stimulation of afferents from interneurons, and in the disynaptic inhibitory responses of TC neurons to stimulation of retinal afferents. Moreover, we studied STP at the direct excitatory input to TC neurons from retinal afferents. The STP at all types of the synapses showed short-term depression. This depression can accentuate rapid changes in the stream of signals and thereby promote detectability of significant features in the sensory input. In vision, detection of edges and contours is essential for object perception, and the synaptic short-term depression in the early visual pathway provides important contributions to this detection process. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Postsynaptic elevation of calcium induces persistent depression of developing neuromuscular synapses.

    PubMed

    Cash, S; Dan, Y; Poo, M M; Zucker, R

    1996-04-01

    Synaptic activity is known to modulate neuronal connectivity in the nervous system. At developing Xenopus neuromuscular synapses in culture, repetitive postsynaptic application of ACh near the synapse leads to immediate and persistent synaptic depression, which was shown to be caused by reduction of presynaptic evoked transmitter release. However, little depression was found when ACh was applied to the muscle 20 microns or further from the synapse. Fluorescence imaging of cytosolic Ca2+ ([Ca2+]i) showed that each ACh pulse induced a transient elevation of myocyte [Ca2+]i that spread approximately 20 microns. Local photoactivated release of Ca2+ from the caged Ca2+ chelators nitr-5 or nitrophen in the postsynaptic cell was sufficient to induce persistent synaptic depression. These results support a model in which localized Ca2+ influx into the postsynaptic myocyte initiates transsynaptic retrograde modulation of presynaptic secretion mechanisms.

  7. mGluR long-term depression regulates GluA2 association with COPII vesicles and exit from the endoplasmic reticulum.

    PubMed

    Pick, Joseph E; Khatri, Latika; Sathler, Matheus F; Ziff, Edward B

    2017-01-17

    mGluR long-term depression (mGluR-LTD) is a form of synaptic plasticity induced at excitatory synapses by metabotropic glutamate receptors (mGluRs). mGluR-LTD reduces synaptic strength and is relevant to learning and memory, autism, and sensitization to cocaine; however, the mechanism is not known. Here we show that activation of Group I mGluRs in medium spiny neurons induces trafficking of GluA2 from the endoplasmic reticulum (ER) to the synapse by enhancing GluA2 binding to essential COPII vesicle proteins, Sec23 and Sec13. GluA2 exit from the ER further depends on IP3 and Ryanodine receptor-controlled Ca 2+ release as well as active translation. Synaptic insertion of GluA2 is coupled to removal of high-conducting Ca 2+ -permeable AMPA receptors from synapses, resulting in synaptic depression. This work demonstrates a novel mechanism in which mGluR signals release AMPA receptors rapidly from the ER and couple ER release to GluA2 synaptic insertion and GluA1 removal. © 2016 The Authors.

  8. Coordinate synaptic mechanisms contributing to olfactory cortical adaptation.

    PubMed

    Best, Aaron R; Wilson, Donald A

    2004-01-21

    Anterior piriform cortex (aPCX) neurons rapidly filter repetitive odor stimuli despite relatively maintained input from mitral cells. This cortical adaptation is correlated with short-term depression of afferent synapses, in vivo. The purpose of this study was to elucidate mechanisms underlying this nonassociative neural plasticity using in vivo and in vitro preparations and to determine its role in cortical odor adaptation. Lateral olfactory tract (LOT)-evoked responses were recorded in rat aPCX coronal slices. Extracellular and intracellular potentials were recorded before and after simulated odor stimulation of the LOT. Results were compared with in vivo intracellular recordings from aPCX layer II/III neurons and field recordings in urethane-anesthetized rats stimulated with odorants. The onset, time course, and extent of LOT synaptic depression during both in vitro electrical and in vivo odorant stimulation methods were similar. Similar to the odor specificity of cortical odor adaptation in vivo, there was no evidence of heterosynaptic depression between independent inputs in vitro. In vitro evidence suggests at least two mechanisms contribute to this activity-dependent synaptic depression: a rapidly recovering presynaptic depression during the initial 10-20 sec of the post-train recovery period and a longer lasting (approximately 120 sec) depression that can be blocked by the metabotropic glutamate receptor (mGluR) II/III antagonist (RS)-alpha-cyclopropyl-4-phosphonophenylglycine (CPPG) and by the beta-adrenergic receptor agonist isoproterenol. Importantly, in line with the in vitro findings, both adaptation of odor responses in the beta (15-35 Hz) spectral range and the associated synaptic depression can also be blocked by intracortical infusion of CPPG in vivo.

  9. Coordinate Synaptic Mechanisms Contributing to Olfactory Cortical Adaptation

    PubMed Central

    Best, Aaron R.; Wilson, Donald A.

    2008-01-01

    Anterior piriform cortex (aPCX) neurons rapidly filter repetitive odor stimuli despite relatively maintained input from mitral cells. This cortical adaptation is correlated with short-term depression of afferent synapses, in vivo. The purpose of this study was to elucidate mechanisms underlying this nonassociative neural plasticity using in vivo and in vitro preparations and to determine its role in cortical odor adaptation. Lateral olfactory tract (LOT)-evoked responses were recorded in rat aPCX coronal slices. Extracellular and intracellular potentials were recorded before and after simulated odor stimulation of the LOT. Results were compared with in vivo intracellular recordings from aPCX layer II/III neurons and field recordings in urethane-anesthetized rats stimulated with odorants. The onset, time course, and extent of LOT synaptic depression during both in vitro electrical and in vivo odorant stimulation methods were similar. Similar to the odor specificity of cortical odor adaptation in vivo, there was no evidence of heterosynaptic depression between independent inputs in vitro. In vitro evidence suggests at least two mechanisms contribute to this activity-dependent synaptic depression: a rapidly recovering presynaptic depression during the initial 10–20 sec of the post-train recovery period and a longer lasting (~120 sec) depression that can be blocked by the metabotropic glutamate receptor (mGluR) II/III antagonist (RS)-α-cyclopropyl-4-phosphonophenylglycine (CPPG) and by the β-adrenergic receptor agonist isoproterenol. Importantly, in line with the in vitro findings, both adaptation of odor responses in the β (15–35 Hz) spectral range and the associated synaptic depression can also be blocked by intracortical infusion of CPPG in vivo. PMID:14736851

  10. Neurogranin restores amyloid β-mediated synaptic transmission and long-term potentiation deficits.

    PubMed

    Kaleka, Kanwardeep Singh; Gerges, Nashaat Z

    2016-03-01

    Amyloid β (Aβ) is widely considered one of the early causes of cognitive deficits observed in Alzheimer's disease. Many of the deficits caused by Aβ are attributed to its disruption of synaptic function represented by its blockade of long-term potentiation (LTP) and its induction of synaptic depression. Identifying pathways that reverse these synaptic deficits may open the door to new therapeutic targets. In this study, we explored the possibility that Neurogranin (Ng)-a postsynaptic calmodulin (CaM) targeting protein that enhances synaptic function-may rescue Aβ-mediated deficits in synaptic function. Our results show that Ng is able to reverse synaptic depression and LTP deficits induced by Aβ. Furthermore, Ng's restoration of synaptic transmission is through the insertion of GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors (AMPARs). These restorative effects of Ng are dependent on the interaction of Ng and CaM and CaM-dependent activation of CaMKII. Overall, this study identifies a novel mechanism to rescue synaptic deficits induced by Aβ oligomers. It also suggests Ng and CaM signaling as potential therapeutic targets for Alzheimer's disease as well as important tools to further explore the pathophysiology underlying the disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The GABA[subscript A] Receptor Agonist Muscimol Induces an Age- and Region-Dependent Form of Long-Term Depression in the Mouse Striatum

    ERIC Educational Resources Information Center

    Zhang, Xiaoqun; Yao, Ning; Chergui, Karima

    2016-01-01

    Several forms of long-term depression (LTD) of glutamatergic synaptic transmission have been identified in the dorsal striatum and in the nucleus accumbens (NAc). Such experience-dependent synaptic plasticity might play important roles in reward-related learning. The GABA[subscript A] receptor agonist muscimol was recently found to trigger a…

  12. Memory and pattern storage in neural networks with activity dependent synapses

    NASA Astrophysics Data System (ADS)

    Mejias, J. F.; Torres, J. J.

    2009-01-01

    We present recently obtained results on the influence of the interplay between several activity dependent synaptic mechanisms, such as short-term depression and facilitation, on the maximum memory storage capacity in an attractor neural network [1]. In contrast with the case of synaptic depression, which drastically reduces the capacity of the network to store and retrieve activity patterns [2], synaptic facilitation is able to enhance the memory capacity in different situations. In particular, we find that a convenient balance between depression and facilitation can enhance the memory capacity, reaching maximal values similar to those obtained with static synapses, that is, without activity-dependent processes. We also argue, employing simple arguments, that this level of balance is compatible with experimental data recorded from some cortical areas, where depression and facilitation may play an important role for both memory-oriented tasks and information processing. We conclude that depressing synapses with a certain level of facilitation allow to recover the good retrieval properties of networks with static synapses while maintaining the nonlinear properties of dynamic synapses, convenient for information processing and coding.

  13. The fibrinolytic system: A new target for treatment of depression with psychedelics.

    PubMed

    Idell, R D; Florova, G; Komissarov, A A; Shetty, S; Girard, R B S; Idell, S

    2017-03-01

    Current understanding of the neurobiology of depression has grown over the past few years beyond the traditional monoamine theory of depression to include chronic stress, inflammation and disrupted synaptic plasticity. Tissue plasminogen activator (tPA) is a key factor that not only promotes fibrinolysis via the activation of plasminogen, but also contributes to regulation of synaptic plasticity and neurogenesis through plasmin-mediated activation of a probrain derived neurotrophic factor (BDNF) to mature BDNF. ProBDNF activation could potentially be supressed by competition with fibrin for plasmin and tPA. High affinity binding of plasmin and tPA to fibrin could result in a decrease of proBDNF activation during brain inflammation leading to fibrosis further perpetuating depressed mood. There is a paucity of data explaining the possible role of the fibrinolytic system or aberrant extravascular fibrin deposition in depression. We propose that within the brain, an imbalance between tPA and urokinase plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) and neuroserpin favors the inhibitors, resulting in changes in neurogenesis, synaptic plasticity, and neuroinflammation that result in depressive behavior. Our hypothesis is that peripheral inflammation mediates neuroinflammation, and that cytokines such as tumor necrosis factor alpha (TNF-α) can inhibit the fibrinolytic system by up- regulating PAI-1 and potentially neuroserpin. We propose that the decrement of the activity of tPA and uPA occurs with downregulation of uPA in part involving the binding and clearance from the surface of neural cells of uPA/PAI-1 complexes by the urokinase receptor uPAR. We infer that current antidepressants and ketamine mitigate depressive symptoms by restoring the balance of the fibrinolytic system with increased activity of tPA and uPA with down-regulated intracerebral expression of their inhibitors. We lastly hypothesize that psychedelic 5-ht2a receptor agonists, such as psilocybin, can improve mood through anti- inflammatory and pro-fibrinolytic effects that include blockade of TNF-α activity leading to decreased PAI-1 activity and increased clearance. The process involves disinhibition of tPA and uPA with subsequent increased cleavage of proBDNF which promotes neurogenesis, decreased neuroinflammation, decreased fibrin deposition, normalized glial-neuronal cross-talk, and optimally functioning neuro-circuits involved in mood. We propose that psilocybin can alleviate deleterious changes in the brain caused by chronic stress leading to restoration of homeostatic brain fibrinolytic capacity leading to euthymia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, B.; Schulz, D.; Li, B

    The cellular basis of depressive disorders is poorly understood. Recent studies in monkeys indicate that neurons in the lateral habenula (LHb), a nucleus that mediates communication between forebrain and midbrain structures, can increase their activity when an animal fails to receive an expected positive reward or receives a stimulus that predicts aversive conditions (that is, disappointment or anticipation of a negative outcome). LHb neurons project to, and modulate, dopamine-rich regions, such as the ventral tegmental area (VTA), that control reward-seeking behaviour and participate in depressive disorders. Here we show that in two learned helplessness models of depression, excitatory synapses ontomore » LHb neurons projecting to the VTA are potentiated. Synaptic potentiation correlates with an animal's helplessness behaviour and is due to an enhanced presynaptic release probability. Depleting transmitter release by repeated electrical stimulation of LHb afferents, using a protocol that can be effective for patients who are depressed, markedly suppresses synaptic drive onto VTA-projecting LHb neurons in brain slices and can significantly reduce learned helplessness behaviour in rats. Our results indicate that increased presynaptic action onto LHb neurons contributes to the rodent learned helplessness model of depression.« less

  15. Synaptic potentiation onto habenula neurons in learned helplessness model of depression

    PubMed Central

    Li, Bo; Piriz, Joaquin; Mirrione, Martine; Chung, ChiHye; Proulx, Christophe D.; Schulz, Daniela; Henn, Fritz; Malinow, Roberto

    2010-01-01

    The cellular basis of depressive disorders is poorly understood1. Recent studies in monkeys indicate that neurons in the lateral habenula (LHb), a nucleus that mediates communication between forebrain and midbrain structures, can increase their activity when an animal fails to receive an expected positive reward or receives a stimulus that predicts aversive conditions (i.e. disappointment or anticipation of a negative outcome)2, 3, 4. LHb neurons project to and modulate dopamine-rich regions such as the ventral-tegmental area (VTA)2, 5 that control reward-seeking behavior6 and participate in depressive disorders7. Here we show in two learned helplessness models of depression that excitatory synapses onto LHb neurons projecting to the VTA are potentiated. Synaptic potentiation correlates with an animal’s helplessness behavior and is due to an enhanced presynaptic release probability. Depleting transmitter release by repeated electrical stimulation of LHb afferents, using a protocol that can be effective on depressed patients8, 9, dramatically suppresses synaptic drive onto VTA-projecting LHb neurons in brain slices and can significantly reduce learned helplessness behavior in rats. Our results indicate that increased presynaptic action onto LHb neurons contributes to the rodent learned helplessness model of depression. PMID:21350486

  16. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression.

    PubMed

    Li, Bo; Piriz, Joaquin; Mirrione, Martine; Chung, ChiHye; Proulx, Christophe D; Schulz, Daniela; Henn, Fritz; Malinow, Roberto

    2011-02-24

    The cellular basis of depressive disorders is poorly understood. Recent studies in monkeys indicate that neurons in the lateral habenula (LHb), a nucleus that mediates communication between forebrain and midbrain structures, can increase their activity when an animal fails to receive an expected positive reward or receives a stimulus that predicts aversive conditions (that is, disappointment or anticipation of a negative outcome). LHb neurons project to, and modulate, dopamine-rich regions, such as the ventral tegmental area (VTA), that control reward-seeking behaviour and participate in depressive disorders. Here we show that in two learned helplessness models of depression, excitatory synapses onto LHb neurons projecting to the VTA are potentiated. Synaptic potentiation correlates with an animal's helplessness behaviour and is due to an enhanced presynaptic release probability. Depleting transmitter release by repeated electrical stimulation of LHb afferents, using a protocol that can be effective for patients who are depressed, markedly suppresses synaptic drive onto VTA-projecting LHb neurons in brain slices and can significantly reduce learned helplessness behaviour in rats. Our results indicate that increased presynaptic action onto LHb neurons contributes to the rodent learned helplessness model of depression.

  17. A repetitive intracortical microstimulation pattern induces long-lasting synaptic depression in brain slices of the rat primary somatosensory cortex.

    PubMed

    Heusler, P; Cebulla, B; Boehmer, G; Dinse, H R

    2000-12-01

    Repetitive intracortical microstimulation (ICMS) applied to the rat primary somatosensory cortex (SI) in vivo was reported to induce reorganization of receptive fields and cortical maps. The present study was designed to examine the effect of such an ICMS pattern applied to layer IV of brain slices containing SI on the efficacy of synaptic input to layer II/III. Effects of ICMS on the synaptic strength was quantified for the first synaptic component (s1) of cortical field potentials (FPs) recorded from layer II/III of SI. FPs were evoked by stimulation in layer IV. The pattern of ICMS was identical to that used in vivo. However, stimulation intensity had to be raised to induce an alteration of synaptic strength. In brain slices superfused with standard ACSF, repetitive ICMS induced a short-lasting (60 min) reduction of the amplitude (-37%) and the slope (-61%) of s1 evoked from the ICMS site, while the amplitude and the slope of s1 evoked from a control stimulation site in cortical layer IV underwent a slow onset increase (13% and 50%, respectively). In brain slices superfused with ACSF containing 1.25 microM bicuculline, ICMS induced an initial strong reduction of the amplitude (-50%) and the slope (-79%) of s1 evoked from the ICMS site. These effects decayed to a sustained level of depression by -30% (amplitude) and -60% (slope). In contrast to experiments using standard ACSF, s1 evoked from the control site was not affected by ICMS. The presynaptic volley was not affected in either of the two groups of experiments. A conventional high frequency stimulation (HFS) protocol induced input-specific long-term potentiation (LTP) of the amplitude and slope of s1 (25% and 76%, respectively). Low frequency stimulation (LFS) induced input-specific long-term depression (LTD) of the amplitude and slope of s1 (24% and 30%, respectively). Application of common forms of conditioning stimulation (HFS and LFS) resulted in LTP or LTD of s1, indicating normal susceptibility of the brain slices studied to the induction of common forms of synaptic plasticity. Therefore, the effects of repetitive ICMS on synaptic FP components were considered ICMS-specific forms of short-lasting (standard ACSF) or long-lasting synaptic depression (ACSF containing bicuculline), the latter resembling neocortical LTD. Results of this study suggest that synaptic depression of excitatory mechanisms are involved in the cortical reorganization induced by repetitive ICMS in vivo. An additional contribution of an ICMS-induced modification of inhibitory mechanisms to cortical reorganization is discussed.

  18. Short-term plasticity impacts information transfer at glutamate synapses onto parvocellular neuroendocrine cells in the paraventricular nucleus of the hypothalamus

    PubMed Central

    Marty, Vincent; Kuzmiski, J Brent; Baimoukhametova, Dinara V; Bains, Jaideep S

    2011-01-01

    Abstract Glutamatergic synaptic inputs onto parvocellular neurosecretory cells (PNCs) in the paraventricular nucleus of the hypothalamus (PVN) regulate the hypothalamic-pituitary-adrenal (HPA) axis responses to stress and undergo stress-dependent changes in their capacity to transmit information. In spite of their pivotal role in regulating PNCs, relatively little is known about the fundamental rules that govern transmission at these synapses. Furthermore, since salient information in the nervous system is often transmitted in bursts, it is also important to understand the short-term dynamics of glutamate transmission under basal conditions. To characterize these properties, we obtained whole-cell patch clamp recordings from PNCs in brain slices from postnatal day 21–35 male Sprague–Dawley rats and examined EPSCs. EPSCs were elicited by electrically stimulating glutamatergic afferents along the periventricular aspect. In response to a paired-pulse stimulation protocol, EPSCs generally displayed a robust short-term depression that recovered within 5 s. Similarly, trains of synaptic stimuli (5–50 Hz) resulted in a frequency-dependent depression until a near steady state was achieved. Application of inhibitors of AMPA receptor (AMPAR) desensitization or the low-affinity, competitive AMPAR antagonist failed to affect the depression due to paired-pulse and trains of synaptic stimulation indicating that this use-dependent short-term synaptic depression has a presynaptic locus of expression. We used cumulative amplitude profiles during trains of stimulation and variance–mean analysis to estimate synaptic parameters. Finally, we report that these properties contribute to hamper the efficiency with which high frequency synaptic inputs generate spikes in PNCs, indicating that these synapses operate as effective low-pass filters in basal conditions. PMID:21727221

  19. BK Channels Mediate Synaptic Plasticity Underlying Habituation in Rats.

    PubMed

    Zaman, Tariq; De Oliveira, Cleusa; Smoka, Mahabba; Narla, Chakravarthi; Poulter, Michael O; Schmid, Susanne

    2017-04-26

    Habituation is a basic form of implicit learning and represents a sensory filter that is disrupted in autism, schizophrenia, and several other mental disorders. Despite extensive research in the past decades on habituation of startle and other escape responses, the underlying neural mechanisms are still not fully understood. There is evidence from previous studies indicating that BK channels might play a critical role in habituation. We here used a wide array of approaches to test this hypothesis. We show that BK channel activation and subsequent phosphorylation of these channels are essential for synaptic depression presumably underlying startle habituation in rats, using patch-clamp recordings and voltage-sensitive dye imaging in slices. Furthermore, positive modulation of BK channels in vivo can enhance short-term habituation. Although results using different approaches do not always perfectly align, together they provide convincing evidence for a crucial role of BK channel phosphorylation in synaptic depression underlying short-term habituation of startle. We also show that this mechanism can be targeted to enhance short-term habituation and therefore to potentially ameliorate sensory filtering deficits associated with psychiatric disorders. SIGNIFICANCE STATEMENT Short-term habituation is the most fundamental form of implicit learning. Habituation also represents a filter for inundating sensory information, which is disrupted in autism, schizophrenia, and other psychiatric disorders. Habituation has been studied in different organisms and behavioral models and is thought to be caused by synaptic depression in respective pathways. The underlying molecular mechanisms, however, are poorly understood. We here identify, for the first time, a BK channel-dependent molecular synaptic mechanism leading to synaptic depression that is crucial for habituation, and we discuss the significance of our findings for potential treatments enhancing habituation. Copyright © 2017 the authors 0270-6474/17/374540-12$15.00/0.

  20. Glycine inhibits startle-mediating neurons in the caudal pontine reticular formation but is not involved in synaptic depression underlying short-term habituation of startle.

    PubMed

    Geis, Hans-Ruediger; Schmid, Susanne

    2011-10-01

    The mammalian startle response is controlled by glycine inhibition in the spinal cord. Evidence for additional glycine inhibition on the level of the brainstem, namely in the caudal pontine reticular nucleus (PnC), is controversial. Startle mediating PnC neurons receive fast input from sensory pathways and project to cranial and spinal motoneurons. Synaptic depression in the sensory synapses in the PnC has been indicated as underlying mechanism of short-term habituation of startle. We here performed patch-clamp recordings of PnC giant neurons in rat brain slices to test the hypothesis that the activation of glycine receptors inhibits PnC neurons and that this inhibition is involved in synaptic depression in the PnC. Glycine strongly inhibited PnC neuron activity and synaptic signalling, indicating that functional glycine receptors mediate a powerful inhibition of PnC neurons over a wide range of glycine concentrations. Strychnine reversed all glycine effects, but had no effect on PnC neurons itself. Thus, we found no evidence for a tonic glycine inhibition or for glycine activation within the primary startle pathway indicating that baseline startle reactions are unlikely to be controlled by glycine in the PnC. Most importantly, synaptic depression underlying short-term habituation was not affected by glycine or strychnine. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  1. Neuromodulatory changes in short-term synaptic dynamics may be mediated by two distinct mechanisms of presynaptic calcium entry.

    PubMed

    Oh, Myongkeun; Zhao, Shunbing; Matveev, Victor; Nadim, Farzan

    2012-12-01

    Although synaptic output is known to be modulated by changes in presynaptic calcium channels, additional pathways for calcium entry into the presynaptic terminal, such as non-selective channels, could contribute to modulation of short term synaptic dynamics. We address this issue using computational modeling. The neuropeptide proctolin modulates the inhibitory synapse from the lateral pyloric (LP) to the pyloric dilator (PD) neuron, two slow-wave bursting neurons in the pyloric network of the crab Cancer borealis. Proctolin enhances the strength of this synapse and also changes its dynamics. Whereas in control saline the synapse shows depression independent of the amplitude of the presynaptic LP signal, in proctolin, with high-amplitude presynaptic LP stimulation the synapse remains depressing while low-amplitude stimulation causes facilitation. We use simple calcium-dependent release models to explore two alternative mechanisms underlying these modulatory effects. In the first model, proctolin directly targets calcium channels by changing their activation kinetics which results in gradual accumulation of calcium with low-amplitude presynaptic stimulation, leading to facilitation. The second model uses the fact that proctolin is known to activate a non-specific cation current I ( MI ). In this model, we assume that the MI channels have some permeability to calcium, modeled to be a result of slow conformation change after binding calcium. This generates a gradual increase in calcium influx into the presynaptic terminals through the modulatory channel similar to that described in the first model. Each of these models can explain the modulation of the synapse by proctolin but with different consequences for network activity.

  2. Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity

    PubMed Central

    Lovatt, Ditte; Xu, Qiwu; Liu, Wei; Takano, Takahiro; Smith, Nathan A.; Schnermann, Jurgen; Tieu, Kim; Nedergaard, Maiken

    2012-01-01

    Adenosine is a potent anticonvulsant acting on excitatory synapses through A1 receptors. Cellular release of ATP, and its subsequent extracellular enzymatic degradation to adenosine, could provide a powerful mechanism for astrocytes to control the activity of neural networks during high-intensity activity. Despite adenosine's importance, the cellular source of adenosine remains unclear. We report here that multiple enzymes degrade extracellular ATP in brain tissue, whereas only Nt5e degrades AMP to adenosine. However, endogenous A1 receptor activation during cortical seizures in vivo or heterosynaptic depression in situ is independent of Nt5e activity, and activation of astrocytic ATP release via Ca2+ photolysis does not trigger synaptic depression. In contrast, selective activation of postsynaptic CA1 neurons leads to release of adenosine and synaptic depression. This study shows that adenosine-mediated synaptic depression is not a consequence of astrocytic ATP release, but is instead an autonomic feedback mechanism that suppresses excitatory transmission during prolonged activity. PMID:22421436

  3. Energy Efficient Sparse Connectivity from Imbalanced Synaptic Plasticity Rules

    PubMed Central

    Sacramento, João; Wichert, Andreas; van Rossum, Mark C. W.

    2015-01-01

    It is believed that energy efficiency is an important constraint in brain evolution. As synaptic transmission dominates energy consumption, energy can be saved by ensuring that only a few synapses are active. It is therefore likely that the formation of sparse codes and sparse connectivity are fundamental objectives of synaptic plasticity. In this work we study how sparse connectivity can result from a synaptic learning rule of excitatory synapses. Information is maximised when potentiation and depression are balanced according to the mean presynaptic activity level and the resulting fraction of zero-weight synapses is around 50%. However, an imbalance towards depression increases the fraction of zero-weight synapses without significantly affecting performance. We show that imbalanced plasticity corresponds to imposing a regularising constraint on the L 1-norm of the synaptic weight vector, a procedure that is well-known to induce sparseness. Imbalanced plasticity is biophysically plausible and leads to more efficient synaptic configurations than a previously suggested approach that prunes synapses after learning. Our framework gives a novel interpretation to the high fraction of silent synapses found in brain regions like the cerebellum. PMID:26046817

  4. Push-Pull Receptive Field Organization and Synaptic Depression: Mechanisms for Reliably Encoding Naturalistic Stimuli in V1

    PubMed Central

    Kremkow, Jens; Perrinet, Laurent U.; Monier, Cyril; Alonso, Jose-Manuel; Aertsen, Ad; Frégnac, Yves; Masson, Guillaume S.

    2016-01-01

    Neurons in the primary visual cortex are known for responding vigorously but with high variability to classical stimuli such as drifting bars or gratings. By contrast, natural scenes are encoded more efficiently by sparse and temporal precise spiking responses. We used a conductance-based model of the visual system in higher mammals to investigate how two specific features of the thalamo-cortical pathway, namely push-pull receptive field organization and fast synaptic depression, can contribute to this contextual reshaping of V1 responses. By comparing cortical dynamics evoked respectively by natural vs. artificial stimuli in a comprehensive parametric space analysis, we demonstrate that the reliability and sparseness of the spiking responses during natural vision is not a mere consequence of the increased bandwidth in the sensory input spectrum. Rather, it results from the combined impacts of fast synaptic depression and push-pull inhibition, the later acting for natural scenes as a form of “effective” feed-forward inhibition as demonstrated in other sensory systems. Thus, the combination of feedforward-like inhibition with fast thalamo-cortical synaptic depression by simple cells receiving a direct structured input from thalamus composes a generic computational mechanism for generating a sparse and reliable encoding of natural sensory events. PMID:27242445

  5. Bio-mimicked atomic-layer-deposited iron oxide-based memristor with synaptic potentiation and depression functions

    NASA Astrophysics Data System (ADS)

    Wan, Xiang; Gao, Fei; Lian, Xiaojuan; Ji, Xincun; Hu, Ertao; He, Lin; Tong, Yi; Guo, Yufeng

    2018-06-01

    In this study, an iron oxide (FeO x )-based memristor was investigated for the realization of artificial synapses. An FeO x resistive switching layer was prepared by self-limiting atomic layer deposition (ALD). The movement of oxygen vacancies enabled the device to have history-dependent synaptic functions, which was further demonstrated by device modeling and simulation. Analog synaptic potentiation/depression in conductance was emulated by applying consecutive voltage pulses in the simulation. Our results suggest that the ALD FeO x -based memristor can be used as the basic building block for neural networks, neuromorphic systems, and brain-inspired computers.

  6. Mean Field Analysis of Stochastic Neural Network Models with Synaptic Depression

    NASA Astrophysics Data System (ADS)

    Yasuhiko Igarashi,; Masafumi Oizumi,; Masato Okada,

    2010-08-01

    We investigated the effects of synaptic depression on the macroscopic behavior of stochastic neural networks. Dynamical mean field equations were derived for such networks by taking the average of two stochastic variables: a firing-state variable and a synaptic variable. In these equations, the average product of thesevariables is decoupled as the product of their averages because the two stochastic variables are independent. We proved the independence of these two stochastic variables assuming that the synaptic weight Jij is of the order of 1/N with respect to the number of neurons N. Using these equations, we derived macroscopic steady-state equations for a network with uniform connections and for a ring attractor network with Mexican hat type connectivity and investigated the stability of the steady-state solutions. An oscillatory uniform state was observed in the network with uniform connections owing to a Hopf instability. For the ring network, high-frequency perturbations were shown not to affect system stability. Two mechanisms destabilize the inhomogeneous steady state, leading to two oscillatory states. A Turing instability leads to a rotating bump state, while a Hopf instability leads to an oscillatory bump state, which was previously unreported. Various oscillatory states take place in a network with synaptic depression depending on the strength of the interneuron connections.

  7. Synaptic plasticity in the medial vestibular nuclei: role of glutamate receptors and retrograde messengers in rat brainstem slices.

    PubMed

    Grassi, S; Pettorossi, V E

    2001-08-01

    The analysis of cellular-molecular events mediating synaptic plasticity within vestibular nuclei is an attempt to explain the mechanisms underlying vestibular plasticity phenomena. The present review is meant to illustrate the main results, obtained in vitro, on the mechanisms underlying long-term changes in synaptic strength within the medial vestibular nuclei. The synaptic plasticity phenomena taking place at the level of vestibular nuclei could be useful for adapting and consolidating the efficacy of vestibular neuron responsiveness to environmental requirements, as during visuo-vestibular recalibration and vestibular compensation. Following a general introduction on the most salient features of vestibular compensation and visuo-vestibular adaptation, which are two plastic events involving neuronal circuitry within the medial vestibular nuclei, the second and third sections describe the results from rat brainstem slice studies, demonstrating the possibility to induce long-term potentiation and depression in the medial vestibular nuclei, following high frequency stimulation of the primary vestibular afferents. In particular the mechanisms sustaining the induction and expression of vestibular long-term potentiation and depression, such as the role of various glutamate receptors and retrograde messengers have been described. The relevant role of the interaction between the platelet-activating factor, acting as a retrograde messenger, and the presynaptic metabotropic glutamate receptors, in determining the full expression of vestibular long-term potentiation is also underlined. In addition, the mechanisms involved in vestibular long-term potentiation have been compared with those leading to long-term potentiation in the hippocampus to emphasize the most significant differences emerging from vestibular studies. The fourth part, describes recent results demonstrating the essential role of nitric oxide, another retrograde messenger, in the induction of vestibular potentiation. Finally the fifth part suggests the possible functional significance of different action times of the two retrograde messengers and metabotropic glutamate receptors, which are involved in mediating the presynaptic mechanism sustaining vestibular long-term potentiation.

  8. Clarinet (CLA-1), a novel active zone protein required for synaptic vesicle clustering and release

    PubMed Central

    Nelson, Jessica; Richmond, Janet E; Colón-Ramos, Daniel A; Shen, Kang

    2017-01-01

    Active zone proteins cluster synaptic vesicles at presynaptic terminals and coordinate their release. In forward genetic screens, we isolated a novel Caenorhabditis elegans active zone gene, clarinet (cla-1). cla-1 mutants exhibit defects in synaptic vesicle clustering, active zone structure and synapse number. As a result, they have reduced spontaneous vesicle release and increased synaptic depression. cla-1 mutants show defects in vesicle distribution near the presynaptic dense projection, with fewer undocked vesicles contacting the dense projection and more docked vesicles at the plasma membrane. cla-1 encodes three isoforms containing common C-terminal PDZ and C2 domains with homology to vertebrate active zone proteins Piccolo and RIM. The C-termini of all isoforms localize to the active zone. Specific loss of the ~9000 amino acid long isoform results in vesicle clustering defects and increased synaptic depression. Our data indicate that specific isoforms of clarinet serve distinct functions, regulating synapse development, vesicle clustering and release. PMID:29160205

  9. Remodeling of hippocampal spine synapses in the rat learned helplessness model of depression.

    PubMed

    Hajszan, Tibor; Dow, Antonia; Warner-Schmidt, Jennifer L; Szigeti-Buck, Klara; Sallam, Nermin L; Parducz, Arpad; Leranth, Csaba; Duman, Ronald S

    2009-03-01

    Although it has been postulated for many years that depression is associated with loss of synapses, primarily in the hippocampus, and that antidepressants facilitate synapse growth, we still lack ultrastructural evidence that changes in depressive behavior are indeed correlated with structural synaptic modifications. We analyzed hippocampal spine synapses of male rats (n=127) with electron microscopic stereology in association with performance in the learned helplessness paradigm. Inescapable footshock (IES) caused an acute and persistent loss of spine synapses in each of CA1, CA3, and dentate gyrus, which was associated with a severe escape deficit in learned helplessness. On the other hand, IES elicited no significant synaptic alterations in motor cortex. A single injection of corticosterone reproduced both the hippocampal synaptic changes and the behavioral responses induced by IES. Treatment of IES-exposed animals for 6 days with desipramine reversed both the hippocampal spine synapse loss and the escape deficit in learned helplessness. We noted, however, that desipramine failed to restore the number of CA1 spine synapses to nonstressed levels, which was associated with a minor escape deficit compared with nonstressed control rats. Shorter, 1-day or 3-day desipramine treatments, however, had neither synaptic nor behavioral effects. These results indicate that changes in depressive behavior are associated with remarkable remodeling of hippocampal spine synapses at the ultrastructural level. Because spine synapse loss contributes to hippocampal dysfunction, this cellular mechanism may be an important component in the neurobiology of stress-related disorders such as depression.

  10. Bidirectional modulation of hippocampal synaptic plasticity by Dopaminergic D4-receptors in the CA1 area of hippocampus.

    PubMed

    Navakkode, Sheeja; Chew, Katherine C M; Tay, Sabrina Jia Ning; Lin, Qingshu; Behnisch, Thomas; Soong, Tuck Wah

    2017-11-14

    Long-term potentiation (LTP) is the persistent increase in the strength of the synapses. However, the neural networks would become saturated if there is only synaptic strenghthening. Synaptic weakening could be facilitated by active processes like long-term depression (LTD). Molecular mechanisms that facilitate the weakening of synapses and thereby stabilize the synapses are also important in learning and memory. Here we show that blockade of dopaminergic D4 receptors (D4R) promoted the formation of late-LTP and transformed early-LTP into late-LTP. This effect was dependent on protein synthesis, activation of NMDA-receptors and CaMKII. We also show that GABA A -receptor mediated mechanisms are involved in the enhancement of late-LTP. We could show that short-term plasticity and baseline synaptic transmission were unaffected by D4R inhibition. On the other hand, antagonizing D4R prevented both early and late forms of LTD, showing that activation of D4Rs triggered a dual function. Synaptic tagging experiments on LTD showed that D4Rs act as plasticity related proteins rather than the setting of synaptic tags. D4R activation by PD 168077 induced a slow-onset depression that was protein synthesis, NMDAR and CaMKII dependent. The D4 receptors, thus exert a bidirectional modulation of CA1 pyramidal neurons by restricting synaptic strengthening and facilitating synaptic weakening.

  11. Thalamic synaptic transmission of sensory information modulated by synergistic interaction of adenosine and serotonin.

    PubMed

    Yang, Ya-Chin; Hu, Chun-Chang; Huang, Chen-Syuan; Chou, Pei-Yu

    2014-03-01

    The thalamic synapses relay peripheral sensory information to the cortex, and constitute an important part of the thalamocortical network that generates oscillatory activities responsible for different vigilance (sleep and wakefulness) states. However, the modulation of thalamic synaptic transmission by potential sleep regulators, especially by combination of regulators in physiological scenarios, is not fully characterized. We found that somnogen adenosine itself acts similar to wake-promoting serotonin, both decreasing synaptic strength as well as short-term depression, at the retinothalamic synapse. We then combined the two modulators considering the coexistence of them in the hypnagogic (sleep-onset) state. Adenosine plus serotonin results in robust synergistic inhibition of synaptic strength and dramatic transformation of short-term synaptic depression to facilitation. These synaptic effects are not achievable with a single modulator, and are consistent with a high signal-to-noise ratio but a low level of signal transmission through the thalamus appropriate for slow-wave sleep. This study for the first time demonstrates that the sleep-regulatory modulators may work differently when present in combination than present singly in terms of shaping information flow in the thalamocortical network. The major synaptic characters such as the strength and short-term plasticity can be profoundly altered by combination of modulators based on physiological considerations. © 2013 International Society for Neurochemistry.

  12. Paired-Pulse Depression at Photoreceptor Synapses

    PubMed Central

    Rabl, Katalin; Cadetti, Lucia; Thoreson, Wallace B.

    2011-01-01

    Synaptic depression produced by repetitive stimulation is likely to be particularly important in shaping responses of second-order retinal neurons at the tonically active photoreceptor synapse. We analyzed the time course and mechanisms of synaptic depression at rod and cone synapses using paired-pulse protocols involving two complementary measurements of exocytosis: (1) paired whole-cell recordings of the postsynaptic current (PSC) in second-order retinal neurons and (2) capacitance measurements of vesicular membrane fusion in rods and cones. PSCs in ON bipolar, OFF bipolar, and horizontal cells evoked by stimulation of either rods or cones recovered from paired-pulse depression (PPD) at rates similar to the recovery of exocytotic capacitance changes in rods and cones. Correlation between presynaptic and postsynaptic measures of recovery from PPD suggests that 80 –90% of the depression at these synapses is presynaptic in origin. Consistent with a predominantly presynaptic mechanism, inhibiting desensitization of postsynaptic glutamate receptors had little effect on PPD. The depression of exocytotic capacitance changes exceeded depression of the presynaptic calcium current, suggesting that it is primarily caused by a depletion of synaptic vesicles. In support of this idea, limiting Ca2+ influx by using weaker depolarizing stimuli promoted faster recovery from PPD. Although cones exhibit much faster exocytotic kinetics than rods, exocytotic capacitance changes recovered from PPD at similar rates in both cell types. Thus, depression of release is not likely to contribute to differences in the kinetics of transmission from rods and cones. PMID:16510733

  13. Role of group II metabotropic glutamate receptors 2/3 and group I metabotropic glutamate receptor 5 in developing rat medial vestibular nuclei.

    PubMed

    Grassi, Silvarosa; Frondaroli, Adele; Pettorossi, Vito Enrico

    2005-08-22

    In brainstem slices from developing rats, metabotropic glutamate receptors mGluR2/3 and mGluR5 play different inhibitory roles in synaptic transmission and plasticity of the medial vestibular nuclei. The mGluR2/3 block (LY341495) reduces the occurrence of long-term depression after vestibular afferent high frequency stimulation at P8-P10, and increases that of long-term potentiation, while the mGluR5 block prevents high frequency stimulation long-term depression. Later on, the receptor block does not influence high frequency stimulation effects. In addition, while mGluR2/3 agonist (APDC) always provokes a transient reduction of synaptic responses, that of mGluR5 (CHPG) induces long-term depression per se at P8-P10. These results show a key role of mGluR5 in inducing high frequency stimulation long-term depression in developing medial vestibular nuclei, while mGluR2/3 modulate synaptic transmission, probably through presynaptic control of glutamate release.

  14. Altered short-term synaptic plasticity and reduced muscle strength in mice with impaired regulation of presynaptic CaV2.1 Ca2+ channels

    PubMed Central

    Nanou, Evanthia; Yan, Jin; Whitehead, Nicholas P.; Kim, Min Jeong; Froehner, Stanley C.; Scheuer, Todd; Catterall, William A.

    2016-01-01

    Facilitation and inactivation of P/Q-type calcium (Ca2+) currents through the regulation of voltage-gated Ca2+ (CaV) 2.1 channels by Ca2+ sensor (CaS) proteins contributes to the facilitation and rapid depression of synaptic transmission in cultured neurons that transiently express CaV2.1 channels. To examine the modulation of endogenous CaV2.1 channels by CaS proteins in native synapses, we introduced a mutation (IM-AA) into the CaS protein-binding site in the C-terminal domain of CaV2.1 channels in mice, and tested synaptic facilitation and depression in neuromuscular junction synapses that use exclusively CaV2.1 channels for Ca2+ entry that triggers synaptic transmission. Even though basal synaptic transmission was unaltered in the neuromuscular synapses in IM-AA mice, we found reduced short-term facilitation in response to paired stimuli at short interstimulus intervals in IM-AA synapses. In response to trains of action potentials, we found increased facilitation at lower frequencies (10–30 Hz) in IM-AA synapses accompanied by slowed synaptic depression, whereas synaptic facilitation was reduced at high stimulus frequencies (50–100 Hz) that would induce strong muscle contraction. As a consequence of altered regulation of CaV2.1 channels, the hindlimb tibialis anterior muscle in IM-AA mice exhibited reduced peak force in response to 50 Hz stimulation and increased muscle fatigue. The IM-AA mice also had impaired motor control, exercise capacity, and grip strength. Taken together, our results indicate that regulation of CaV2.1 channels by CaS proteins is essential for normal synaptic plasticity at the neuromuscular junction and for muscle strength, endurance, and motor coordination in mice in vivo. PMID:26755585

  15. Involvement of Brain-Derived Neurotrophic Factor in Late-Life Depression

    PubMed Central

    Dwivedi, Yogesh

    2013-01-01

    Brain-derived neurotrophic factor (BDNF), one of the major neurotrophic factors, plays an important role in the maintenance and survival of neurons, synaptic integrity, and synaptic plasticity. Evidence suggests that BDNF is involved in major depression, such that the level of BDNF is decreased in depressed patients and that antidepressants reverse this decrease. Stress, a major factor in depression, also modulates BDNF expression. These studies have led to the proposal of the neurotrophin hypothesis of depression. Late-life depression is associated with disturbances in structural and neural plasticity as well as impairments in cognitive behavior. Stress and aging also play a crucial role in late-life depression. Many recent studies have suggested that not only expression of BDNF is decreased in the serum/plasma of patients with late-life depression, but structural abnormalities in the brain of these patients may be associated with a polymorphism in the BDNF gene, and that there is a relationship between a BDNF polymorphism and antidepressant remission rates. This review provides a critical review of the involvement of BDNF in major depression, in general, and in late-life depression, in particular. PMID:23570887

  16. Synaptic Modifications in the Medial Prefrontal Cortex in Susceptibility and Resilience to Stress

    PubMed Central

    Wang, Minghui; Perova, Zinaida; Arenkiel, Benjamin R.

    2014-01-01

    When facing stress, most individuals are resilient whereas others are prone to developing mood disorders. The brain mechanisms underlying such divergent behavioral responses remain unclear. Here we used the learned helplessness procedure in mice to examine the role of the medial prefrontal cortex (mPFC), a brain region highly implicated in both clinical and animal models of depression, in adaptive and maladaptive behavioral responses to stress. We found that uncontrollable and inescapable stress induced behavioral state-dependent changes in the excitatory synapses onto a subset of mPFC neurons: those that were activated during behavioral responses as indicated by their expression of the activity reporter c-Fos. Whereas synaptic potentiation was linked to learned helplessness, a depression-like behavior, synaptic weakening, was associated with resilience to stress. Notably, enhancing the activity of mPFC neurons using a chemical–genetic method was sufficient to convert the resilient behavior into helplessness. Our results provide direct evidence that mPFC dysfunction is linked to maladaptive behavioral responses to stress, and suggest that enhanced excitatory synaptic drive onto mPFC neurons may underlie the previously reported hyperactivity of this brain region in depression. PMID:24872553

  17. Synaptic depression in the CA1 region of freely behaving mice is highly dependent on afferent stimulation parameters

    PubMed Central

    Goh, Jinzhong J.; Manahan-Vaughan, Denise

    2012-01-01

    Persistent synaptic plasticity has been subjected to intense study in the decades since it was first described. Occurring in the form of long-term potentiation (LTP) and long-term depression (LTD), it shares many cellular and molecular properties with hippocampus-dependent forms of persistent memory. Recent reports of both LTP and LTD occurring endogenously under specific learning conditions provide further support that these forms of synaptic plasticity may comprise the cellular correlates of memory. Most studies of synaptic plasticity are performed using in vitro or in vivo preparations where patterned electrical stimulation of afferent fibers is implemented to induce changes in synaptic strength. This strategy has proven very effective in inducing LTP, even under in vivo conditions. LTD in vivo has proven more elusive: although LTD occurs endogenously under specific learning conditions in both rats and mice, its induction has not been successfully demonstrated with afferent electrical stimulation alone. In this study we screened a large spectrum of protocols that are known to induce LTD either in hippocampal slices or in the intact rat hippocampus, to clarify if LTD can be induced by sole afferent stimulation in the mouse CA1 region in vivo. Low frequency stimulation at 1, 2, 3, 5, 7, or 10 Hz given in the range of 100 through 1800 pulses produced, at best, short-term depression (STD) that lasted for up to 60 min. Varying the administration pattern of the stimuli (e.g., 900 pulses given twice at 5 min intervals), or changing the stimulation intensity did not improve the persistency of synaptic depression. LTD that lasts for at least 24 h occurs under learning conditions in mice. We conclude that a coincidence of factors, such as afferent activity together with neuromodulatory inputs, play a decisive role in the enablement of LTD under more naturalistic (e.g., learning) conditions. PMID:23355815

  18. Remodeling of Hippocampal Spine Synapses in the Rat Learned Helplessness Model of Depression

    PubMed Central

    Hajszan, Tibor; Dow, Antonia; Warner-Schmidt, Jennifer L.; Szigeti-Buck, Klara; Sallam, Nermin L.; Parducz, Arpad; Leranth, Csaba; Duman, Ronald S.

    2009-01-01

    Background Although it has been postulated for many years that depression is associated with loss of synapses, primarily in the hippocampus, and that antidepressants facilitate synapse growth, we still lack ultrastructural evidence that changes in depressive behavior are indeed correlated with structural synaptic modifications. Methods We analyzed hippocampal spine synapses of male rats (n=127) with electron microscopic stereology in association with performance in the learned helplessness paradigm. Results Inescapable footshock (IES) caused an acute and persistent loss of spine synapses in each of CA1, CA3, and dentate gyrus, which was associated with a severe escape deficit in learned helplessness. On the other hand, IES elicited no significant synaptic alterations in motor cortex. A single injection of corticosterone reproduced both the hippocampal synaptic changes and the behavioral responses induced by IES. Treatment of IES-exposed animals for six days with desipramine reversed both the hippocampal spine synapse loss and the escape deficit in learned helplessness. We noted, however, that desipramine failed to restore the number of CA1 spine synapses to nonstressed levels, which was associated with a minor escape deficit compared to nonstressed controls. Shorter, one-day or three-day desipramine treatments, however, had neither synaptic nor behavioral effects. Conclusions These results indicate that changes in depressive behavior are associated with remarkable remodeling of hippocampal spine synapses at the ultrastructural level. Because spine synapse loss contributes to hippocampal dysfunction, this cellular mechanism may be an important component in the neurobiology of stress-related disorders such as depression. PMID:19006787

  19. Spontaneous Activity Drives Local Synaptic Plasticity In Vivo.

    PubMed

    Winnubst, Johan; Cheyne, Juliette E; Niculescu, Dragos; Lohmann, Christian

    2015-07-15

    Spontaneous activity fine-tunes neuronal connections in the developing brain. To explore the underlying synaptic plasticity mechanisms, we monitored naturally occurring changes in spontaneous activity at individual synapses with whole-cell patch-clamp recordings and simultaneous calcium imaging in the mouse visual cortex in vivo. Analyzing activity changes across large populations of synapses revealed a simple and efficient local plasticity rule: synapses that exhibit low synchronicity with nearby neighbors (<12 μm) become depressed in their transmission frequency. Asynchronous electrical stimulation of individual synapses in hippocampal slices showed that this is due to a decrease in synaptic transmission efficiency. Accordingly, experimentally increasing local synchronicity, by stimulating synapses in response to spontaneous activity at neighboring synapses, stabilized synaptic transmission. Finally, blockade of the high-affinity proBDNF receptor p75(NTR) prevented the depression of asynchronously stimulated synapses. Thus, spontaneous activity drives local synaptic plasticity at individual synapses in an "out-of-sync, lose-your-link" fashion through proBDNF/p75(NTR) signaling to refine neuronal connectivity. VIDEO ABSTRACT. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The action of ether and methoxyflurane on synaptic transmission in isolated preparations of the mammalian cortex.

    PubMed Central

    Richards, C D; Russell, W J; Smaje, J C

    1975-01-01

    1. The actions of ether and methoxyflurane on the evoked potentials of in vitro preparations of the guinea-pig olfactory cortex were studied. Following stimulation of the lateral olfactory tract (l.o.t.) evoked potentials could be recorded from the cortical surface; these potentials consisted of an initial wave (the compound action potential of the l.o.t.) followed by a negative field potential which was associated with the synchronous excitation of many superficial excitatory synapses (population e.p.s.p.). Superimposed on the population e.p.s.p. was a number of positive peaks. These positive peaks reflect the synchronous discharge of many neurones and so have been called population spikes. 2. When ether or methoxyflurane was added to the gas stream that superfused the surface of the preparations, the population e.p.s.p.s. and population spikes were depressed at lower concentrations than those required to depress the compound action potential of the afferent fibres. 3. The evoked activity of individual cells in the cortex was depressed by ether and methoxyflurane. However, five of the twelve cells tested in ether showed an increase in their evoked activity at concentrations below 4-5%, but at higher concentrations these cells also became depressed. 4. Both ether and methoxyflurane depressed the sensitivity of cortical neurones to iontophoretically applied L-glutamate and may similarly depress the sensitivity of the post-synaptic membrane to the released transmitter substance. 5. Neither anaesthetic appeared to increase the threshold depolarization required for nerve impulse generation. Thus, the decrease of the discharge of the post-synaptic cells was primarily caused by a depression of chemical transmission. 6. Ether caused some cells in the cortex to alter their normal pattern of synaptically evoked discharge and both anaesthetics induced similar changes during excitation by glutamate. PMID:168356

  1. Non-apoptotic function of BAD and BAX in long-term depression of synaptic transmission

    PubMed Central

    Jiao, Song; Li, Zheng

    2011-01-01

    Summary It has recently been found that caspases not only function in apoptosis, but are also crucial for non-apoptotic processes such as NMDA receptor-dependent long-term depression (LTD) of synaptic transmission. It remains unknown, however, how caspases are activated and how neurons escape death in LTD. Here we show that caspase-3 is activated by the BAD-BAX cascade for LTD induction. This cascade is required specifically for NMDA receptor-dependent LTD but not for mGluR-LTD, and its activation is sufficient to induce synaptic depression. In contrast to apoptosis, however, BAD is activated only moderately and transiently and BAX is not translocated to mitochondria, resulting in only modest caspase-3 activation. We further demonstrate that the intensity and duration of caspase-3 activation determin whether it leads to cell death or LTD, thus fine-tuning of caspase-3 activation is critical in distinguishing between these two pathways. PMID:21609830

  2. Depression-Biased Reverse Plasticity Rule Is Required for Stable Learning at Top-Down Connections

    PubMed Central

    Burbank, Kendra S.; Kreiman, Gabriel

    2012-01-01

    Top-down synapses are ubiquitous throughout neocortex and play a central role in cognition, yet little is known about their development and specificity. During sensory experience, lower neocortical areas are activated before higher ones, causing top-down synapses to experience a preponderance of post-synaptic activity preceding pre-synaptic activity. This timing pattern is the opposite of that experienced by bottom-up synapses, which suggests that different versions of spike-timing dependent synaptic plasticity (STDP) rules may be required at top-down synapses. We consider a two-layer neural network model and investigate which STDP rules can lead to a distribution of top-down synaptic weights that is stable, diverse and avoids strong loops. We introduce a temporally reversed rule (rSTDP) where top-down synapses are potentiated if post-synaptic activity precedes pre-synaptic activity. Combining analytical work and integrate-and-fire simulations, we show that only depression-biased rSTDP (and not classical STDP) produces stable and diverse top-down weights. The conclusions did not change upon addition of homeostatic mechanisms, multiplicative STDP rules or weak external input to the top neurons. Our prediction for rSTDP at top-down synapses, which are distally located, is supported by recent neurophysiological evidence showing the existence of temporally reversed STDP in synapses that are distal to the post-synaptic cell body. PMID:22396630

  3. Depression and synaptic zinc regulation in Alzheimer disease, dementia with lewy bodies, and Parkinson disease dementia.

    PubMed

    Whitfield, David R; Vallortigara, Julie; Alghamdi, Amani; Hortobágyi, Tibor; Ballard, Clive; Thomas, Alan J; O'Brien, John T; Aarsland, Dag; Francis, Paul T

    2015-02-01

    Depression is a common symptom in dementia with Lewy bodies (DLB), Parkinson disease dementia (PDD), and Alzheimer disease (AD), yet its molecular basis remains unclear and current antidepressants do not appear to be effective. Cerebral zinc has been implicated in depression and synaptic dysfunction. We investigated the relationship between synaptic zinc regulation (for which zinc transporter 3 [ZnT3] is responsible) and depression in a large clinicopathologic study. We examined brains from people with PDD (N = 29), DLB (N = 27), and AD (N = 15) and comparison subjects without depression or dementia (N = 24). Individuals were categorized according to the presence and severity of depression (on a scale of 0-3) based on standardized assessments during life (principally Neuropsychiatric Inventory). Western blotting was used to determine ZnT3 levels in Brodmann area 9 (BA9), and regression analysis was used to determine the relationship between ZnT3 and depression. Reductions in ZnT3 in BA9 were significantly associated with elevated depression scores in the study cohort (β = -0.351, df = 93, t = -3.318 p = 0.0004). This association remained when only individuals with DLB, PDD, and no dementia or depression were examined (β = -0.347, df = 78, t = -3.271, p = 0.002) or only individuals with AD and no dementia or depression were examined (β = -0.433, df = 37, t = -2.924, p = 0.006). Although decreased zinc levels have been implicated in the genesis of depression in animal models and in major depressive disorder in humans, this study provides the first evidence of a role for zinc in depression in people with dementia and highlights zinc metabolism as a therapeutic target. Copyright © 2015 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Spreading depression and related events are significant sources of neuronal Zn2+ release and accumulation

    PubMed Central

    Carter, Russell E; Aiba, Isamu; Dietz, Robert M; Sheline, Christian T; Shuttleworth, C William

    2011-01-01

    Spreading depression (SD) involves coordinated depolarizations of neurons and glia that propagate through the brain tissue. Repetitive SD-like events are common following human ischemic strokes, and are believed to contribute to the enlargement of infarct volume. Accumulation of Zn2+ is also implicated in ischemic neuronal injury. Synaptic glutamate release contributes to SD propagation, and because Zn2+ is costored with glutamate in some synaptic vesicles, we examined whether Zn2+ is released by SD and may therefore provide a significant source of Zn2+ in the postischemic period. Spreading depression-like events were generated in acutely prepared murine hippocampal slices by deprivation of oxygen and glucose (OGD), and Zn2+ release was detected extracellularly by a Zn2+-selective indicator FluoZin-3. Deprivation of oxygen and glucose-SD produced large FluoZin-3 increases that propagated with the event, and signals were abolished in tissues from ZnT3 knockout animals lacking synaptic Zn2+. Synaptic Zn2+ release was also maintained with repetitive SDs generated by microinjections of KCl under normoxic conditions. Intracellular Zn2+ accumulation in CA1 neurons, assessed using microinjection of FluoZin-3, showed significant increases following SD that was attributed to synaptic Zn2+ release. These results suggest that Zn2+ is released during SDs and could provide a significant source of Zn2+ that contributes to neurodegeneration in the postischemic period. PMID:20978516

  5. Drug interactions with neuromuscular blockers.

    PubMed

    Feldman, S; Karalliedde, L

    1996-10-01

    Drugs administered to patients undergoing anaesthesia may complicate the use of the neuromuscular blockers that are given to provide good surgical conditions. The various sites of interaction include actions on motor nerve conduction and spinal reflexes, acetylcholine (ACh) synthesis, mobilisation and release, sensitivity of the motor end plate to ACh and the ease of propagation of the motor action potential. In addition, many drugs affect the pharmacokinetics of neuromuscular blockers, especially as most drugs depend to a greater or lesser extent upon renal excretion. The clinically significant interaction between nondepolarisers and depolarisers may be due to blockade of the pre-synaptic nicotinic receptors by the depolarisers, leading to decreased ACh mobilisation and release. Synergism between nondepolarisers probably results from post-synaptic receptor mechanisms. Volatile anaesthetic agents affect the sensitivity of the motor end-plate (post-synaptic receptor blockade) in addition to having effects on pre-synaptic nicotinic function. The effects of nondepolarisers are likely to be potentiated and their action prolonged by large doses of local anaesthetics due to depression of nerve conduction, depression of ACh formation, mobilisation and release, decreases in post-synaptic receptor channel opening times and reductions in muscular contraction. Most antibacterials have effects on pre-synaptic mechanisms. Procainamide and quinidine principally block nicotinic receptor channels. Magnesium has a marked inhibitory effect on ACh release. Calcium antagonists could theoretically interfere with neurotransmitter release and muscle contractility. Phenytoin and lithium decrease ACh release, whilst corticosteroids and furosemide (frusemide) tend to increase the release of the transmitter. Ecothiopate, tacrine, organophosphates, propanidid, metoclopramide and bambuterol depress cholinesterase activity and prolong the duration of the neuromuscular block. The probability of clinically significant interactions increases in patients receiving several drugs with possible effects on neuromuscular transmission and muscle contraction.

  6. Synaptic damage underlies EEG abnormalities in postanoxic encephalopathy: A computational study.

    PubMed

    Ruijter, B J; Hofmeijer, J; Meijer, H G E; van Putten, M J A M

    2017-09-01

    In postanoxic coma, EEG patterns indicate the severity of encephalopathy and typically evolve in time. We aim to improve the understanding of pathophysiological mechanisms underlying these EEG abnormalities. We used a mean field model comprising excitatory and inhibitory neurons, local synaptic connections, and input from thalamic afferents. Anoxic damage is modeled as aggravated short-term synaptic depression, with gradual recovery over many hours. Additionally, excitatory neurotransmission is potentiated, scaling with the severity of anoxic encephalopathy. Simulations were compared with continuous EEG recordings of 155 comatose patients after cardiac arrest. The simulations agree well with six common categories of EEG rhythms in postanoxic encephalopathy, including typical transitions in time. Plausible results were only obtained if excitatory synapses were more severely affected by short-term synaptic depression than inhibitory synapses. In postanoxic encephalopathy, the evolution of EEG patterns presumably results from gradual improvement of complete synaptic failure, where excitatory synapses are more severely affected than inhibitory synapses. The range of EEG patterns depends on the excitation-inhibition imbalance, probably resulting from long-term potentiation of excitatory neurotransmission. Our study is the first to relate microscopic synaptic dynamics in anoxic brain injury to both typical EEG observations and their evolution in time. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  7. Long term potentiation, but not depression, in interlamellar hippocampus CA1.

    PubMed

    Sun, Duk-Gyu; Kang, Hyeri; Tetteh, Hannah; Su, Junfeng; Lee, Jihwan; Park, Sung-Won; He, Jufang; Jo, Jihoon; Yang, Sungchil; Yang, Sunggu

    2018-03-26

    Synaptic plasticity in the lamellar CA3 to CA1 circuitry has been extensively studied while interlamellar CA1 to CA1 connections have not yet received much attention. One of our earlier studies demonstrated that axons of CA1 pyramidal neurons project to neighboring CA1 neurons, implicating information transfer along a longitudinal interlamellar network. Still, it remains unclear whether long-term synaptic plasticity is present within this longitudinal CA1 network. Here, we investigate long-term synaptic plasticity between CA1 pyramidal cells, using in vitro and in vivo extracellular recordings and 3D holography glutamate uncaging. We found that the CA1-CA1 network exhibits NMDA receptor-dependent long-term potentiation (LTP) without direction or layer selectivity. By contrast, we find no significant long-term depression (LTD) under various LTD induction protocols. These results implicate unique synaptic properties in the longitudinal projection suggesting that the interlamellar CA1 network could be a promising structure for hippocampus-related information processing and brain diseases.

  8. Short-Term Depression, Temporal Summation, and Onset Inhibition Shape Interval Tuning in Midbrain Neurons

    PubMed Central

    Baker, Christa A.

    2014-01-01

    A variety of synaptic mechanisms can contribute to single-neuron selectivity for temporal intervals in sensory stimuli. However, it remains unknown how these mechanisms interact to establish single-neuron sensitivity to temporal patterns of sensory stimulation in vivo. Here we address this question in a circuit that allows us to control the precise temporal patterns of synaptic input to interval-tuned neurons in behaviorally relevant ways. We obtained in vivo intracellular recordings under multiple levels of current clamp from midbrain neurons in the mormyrid weakly electric fish Brienomyrus brachyistius during stimulation with electrosensory pulse trains. To reveal the excitatory and inhibitory inputs onto interval-tuned neurons, we then estimated the synaptic conductances underlying responses. We found short-term depression in excitatory and inhibitory pathways onto all interval-tuned neurons. Short-interval selectivity was associated with excitation that depressed less than inhibition at short intervals, as well as temporally summating excitation. Long-interval selectivity was associated with long-lasting onset inhibition. We investigated tuning after separately nullifying the contributions of temporal summation and depression, and found the greatest diversity of interval selectivity among neurons when both mechanisms were at play. Furthermore, eliminating the effects of depression decreased sensitivity to directional changes in interval. These findings demonstrate that variation in depression and summation of excitation and inhibition helps to establish tuning to behaviorally relevant intervals in communication signals, and that depression contributes to neural coding of interval sequences. This work reveals for the first time how the interplay between short-term plasticity and temporal summation mediates the decoding of temporal sequences in awake, behaving animals. PMID:25339741

  9. Substance P and cocaine employ convergent mechanisms to depress excitatory synaptic transmission in the rat nucleus accumbens in vitro.

    PubMed

    Kombian, Samuel B; Ananthalakshmi, Kethireddy V V; Zidichouski, Jeffrey A; Saleh, Tarek M

    2009-04-01

    Substance P (SP) has been reported to produce effects on excitatory synaptic transmission in the nucleus accumbens (NAc) that are similar to those induced by cocaine. To address the question of whether SP serves as an endogenous mediator producing cocaine-like effects that are known to be D1-receptor-mediated, we tested the hypothesis that the effects of SP and cocaine on excitatory postsynaptic currents (EPSCs) in the NAc occlude one another. We report here that SP and SP(5-11) actions occlude the effect of cocaine and vice versa. SP, SP(5-11) and cocaine all depressed evoked, non-N-methyl-D-aspartate (NMDA) receptor-mediated synaptic currents in a concentration-dependent manner, with EC50 values of 0.12, 0.17 and 8.3 microm, respectively. Although cocaine was the least potent, it was most efficacious. SP, SP(5-11) and cocaine all suppressed isolated NMDA receptor-mediated evoked EPSCs. SP(5-11) (1 microm)-induced EPSC depression was blocked by the neurokinin-1 antagonist L732138 and by the D1-like receptor antagonist SCH23390. Pretreatment of slices with cocaine (30 microm) depressed the EPSC by 39.1% +/- 4.8%. Application of SP or SP(5-11) (1 microm) at the peak of the cocaine depressive effect on the EPSC did not produce any additional diminution of the response (5.7% +/- 2.8%). In the reverse experiments, in which either SP or SP(5-11) was applied first, subsequent application of cocaine at the peak of the peptide's effect (30.3% +/- 2.3%) produced a further but smaller depression (15.5% +/- 3.6%) of the remaining EPSC. These data indicate that cocaine and SP produce similar effects on excitatory synaptic transmission in the NAc, and that their actions occlude one another. This suggests that SP may act like cocaine in its absence, and may be an endogenous trigger for the reward and behaviors associated with cocaine.

  10. Adenosine receptors and muscarinic receptors cooperate in acetylcholine release modulation in the neuromuscular synapse.

    PubMed

    Santafe, M M; Priego, M; Obis, T; Garcia, N; Tomàs, M; Lanuza, M A; Tomàs, J

    2015-07-01

    Adenosine receptors (ARs) are present in the motor terminals at the mouse neuromuscular junction. ARs and the presynaptic muscarinic acetylcholine receptors (mAChRs) share the functional control of the neuromuscular junction. We analysed their mutual interaction in transmitter release modulation. In electrophysiological experiments with unaltered synaptic transmission (muscles paralysed by blocking the voltage-dependent sodium channel of the muscle cells with μ-conotoxin GIIIB), we found that: (i) a collaborative action between different AR subtypes reduced synaptic depression at a moderate activity level (40 Hz); (ii) at high activity levels (100 Hz), endogenous adenosine production in the synaptic cleft was sufficient to reduce depression through A1 -type receptors (A1 Rs) and A2 A-type receptors (A2 A Rs); (iii) when the non-metabolizable 2-chloroadenosine (CADO) agonist was used, both the quantal content and depression were reduced; (iv) the protective effect of CADO on depression was mediated by A1 Rs, whereas A2 A Rs seemed to modulate A1 Rs; (v) ARs and mAChRs absolutely depended upon each other for the modulation of evoked and spontaneous acetylcholine release in basal conditions and in experimental conditions with CADO stimulation; (vi) the purinergic and muscarinic mechanisms cooperated in the control of depression by sharing a common pathway although the purinergic control was more powerful than the muscarinic control; and (vii) the imbalance of the ARs created by using subtype-selective and non-selective inhibitory and stimulatory agents uncoupled protein kinase C from evoked transmitter release. In summary, ARs (A1 Rs, A2 A Rs) and mAChRs (M1 , M2 ) cooperated in the control of activity-dependent synaptic depression and may share a common protein kinase C pathway. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Synaptic potentials recorded by the sucrosegap method from the rabbit superior cervical ganglion

    PubMed Central

    Kosterlitz, H. W.; Lees, G. M.; Wallis, D. I.

    1970-01-01

    1. Compound ganglionic potentials evoked by stimulation of the preganglionic nerves to the superior cervical ganglion of the rabbit were recorded by the sucrose-gap method. 2. When the distal part of the ganglion was bathed in flowing isotonic sucrose solution or sodium-deficient solutions, ganglionic action potentials were no longer evoked, only large synaptic potentials. 3. The compound synaptic potential, which remained unaltered for more than 1 h, originated in a population of cells at the interface between the Krebs and sucrose solutions. Hexamethonium reduced the size but did not alter the time course of the synaptic potential. 4. It is suggested that a higher concentration of sodium ions is required for the generation of ganglionic action potentials than for either conduction in the postganglionic axons or production of synaptic potentials. 5. When lithium replaced sodium in the solution bathing the distal part of the ganglion, the synaptic potential was greatly reduced in amplitude. Impulse propagation in the postganglionic axons was only slightly impaired when lithium replaced sodium in the solution bathing the axons. 6. A quantitative assessment of the potency of the ganglion-blocking drugs nicotine, pentolinium, hexamethonium and pempidine was made by measuring the depression of the synaptic potentials produced by bathing the distal part of the ganglion in flowing isotonic sucrose solution. The concentrations which produced a 50% depression were 8·1 μM nicotine, 26·5 μM pentolinium, 111 μM hexamethonium and 22·2 μM pempidine. PMID:5492898

  12. Progesterone Regulation of Synaptic Transmission and Plasticity in Rodent Hippocampus

    ERIC Educational Resources Information Center

    Foy, Michael R.; Akopian, Garnik; Thompson, Richard F.

    2008-01-01

    Ovarian hormones influence memory formation by eliciting changes in neural activity. The effects of various concentrations of progesterone (P4) on synaptic transmission and plasticity associated with long-term potentiation (LTP) and long-term depression (LTD) were studied using in vitro hippocampal slices. Extracellular studies show that the…

  13. Science Signaling Podcast for 10 May 2016: PKCα in Alzheimer's disease.

    PubMed

    Newton, Alexandra C; Tanzi, Rudolph E; VanHook, Annalisa M

    2016-05-10

    This Podcast features an interview with Alexandra Newton and Rudolph Tanzi, authors of a Research Article that appears in the 10 May 2016 issue of Science Signaling, about activating mutations in protein kinase Cα that may promote the type of neural defects that characterize Alzheimer's disease. Alzheimer's disease is a progressive neurodegenerative disorder that causes cognitive loss and, eventually, death. Alzheimer's disease is characterized by the accumulation of amyloid-β (Aβ), synaptic depression, and synaptic degeneration. Alfonso et al found activating mutations in the gene encoding protein kinase Cα (PKCα) in some families with inherited Alzheimer's disease. Loss of PKCα function prevented Aβ-induced synaptic depression in brain tissue from mice, suggesting that activated forms of PKCα may contribute to Alzheimer's disease in some patients.Listen to Podcast. Copyright © 2016, American Association for the Advancement of Science.

  14. Opposite long-term synaptic effects of 17β-estradiol and 5α-dihydrotestosterone and localization of their receptors in the medial vestibular nucleus of rats.

    PubMed

    Grassi, Silvarosa; Scarduzio, Mariangela; Panichi, Roberto; Dall'Aglio, Cecilia; Boiti, Cristiano; Pettorossi, Vito E

    2013-08-01

    In brainstem slices of male rats, we examined in single neurons of the medial vestibular nucleus (MVN) the effect of exogenous administration of estrogenic (17β-estradiol, E2) and androgenic (5α-dihydrotestosterone, DHT) steroids on the synaptic response to vestibular afferent stimulation. By whole cell patch clamp recordings we showed that E2 induced synaptic long-term potentiation (LTP) that was cancelled by the subsequent administration of DHT. Conversely, DHT induced synaptic long-term depression (LTD) that was partially reversed by E2. The electrophysiological findings were supported by immunohistochemical analysis showing the presence of estrogen (ER: α and β) and androgen receptors (AR) in the MVN neurons. We found that a large number of neurons were immunoreactive for ERα, ERβ, and AR and most of them co-localized ERβ and AR. We also showed the presence of P450-aromatase (ARO) in the MVN neurons, clearly proving that E2 can be locally synthesized in the MVN. On the whole, these results demonstrate a role of estrogenic and androgenic signals in modulating vestibular synaptic plasticity and suggest that the enhancement or depression of vestibular synaptic response may depend on the local conversion of T into E2 or DHT. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Vagus nerve stimulation enhances perforant path-CA3 synaptic transmission via the activation of β-adrenergic receptors and the locus coeruleus.

    PubMed

    Shen, Huilian; Fuchino, Yuta; Miyamoto, Daisuke; Nomura, Hiroshi; Matsuki, Norio

    2012-05-01

    Vagus nerve stimulation (VNS) is an approved treatment for epilepsy and depression and has cognition-enhancing effects in patients with Alzheimer's disease. The hippocampus is widely recognized to be related to epilepsy, depression, and Alzheimer's disease. One possible mechanism of VNS involves its effect on the hippocampus; i.e. it increases the release of noradrenaline in the hippocampus. However, the effect of VNS on synaptic transmission in the hippocampus is unknown. To determine whether VNS modulates neurotransmission in the hippocampus, we examined the effects of VNS on perforant path (PP)-CA3 synaptic transmission electrophysiologically in anaesthetized rats. VNS induces a persistent enhancement of PP-CA3 field excitatory post-synaptic potentials (fEPSPs). Arc, an immediate early gene, was used to identify active brain regions after VNS. The locus coeruleus (LC), which contains the perikarya of noradrenergic projections, harboured more Arc-positive cells, as measured by in-situ hybridization, after 10-min VNS. In addition, electrical lesions of LC neurons or intraventricular administration of the β-adrenergic receptor antagonist timolol prevented the enhancement of PP-CA3 responses by VNS. In conclusion, the protracted increase in PP-CA3 synaptic transmission that is induced by VNS entails activation of the LC and β-adrenergic receptors. Our novel findings suggest that information from the periphery modulates synaptic transmission in the CA3 region of the hippocampus.

  16. Synaptotagmin 7 confers frequency invariance onto specialized depressing synapses

    NASA Astrophysics Data System (ADS)

    Turecek, Josef; Jackman, Skyler L.; Regehr, Wade G.

    2017-11-01

    At most synapses in the brain, short-term plasticity dynamically modulates synaptic strength. Rapid frequency-dependent changes in synaptic strength have key roles in sensory adaptation, gain control and many other neural computations. However, some auditory, vestibular and cerebellar synapses maintain constant strength over a wide range of firing frequencies, and as a result efficiently encode firing rates. Despite its apparent simplicity, frequency-invariant transmission is difficult to achieve because of inherent synaptic nonlinearities. Here we study frequency-invariant transmission at synapses from Purkinje cells to deep cerebellar nuclei and at vestibular synapses in mice. Prolonged activation of these synapses leads to initial depression, which is followed by steady-state responses that are frequency invariant for their physiological activity range. We find that synaptotagmin 7 (Syt7), a calcium sensor for short-term facilitation, is present at both synapses. It was unclear why a sensor for facilitation would be present at these and other depressing synapses. We find that at Purkinje cell and vestibular synapses, Syt7 supports facilitation that is normally masked by depression, which can be revealed in wild-type mice but is absent in Syt7 knockout mice. In wild-type mice, facilitation increases with firing frequency and counteracts depression to produce frequency-invariant transmission. In Syt7-knockout mice, Purkinje cell and vestibular synapses exhibit conventional use-dependent depression, weakening to a greater extent as the firing frequency is increased. Presynaptic rescue of Syt7 expression restores both facilitation and frequency-invariant transmission. Our results identify a function for Syt7 at synapses that exhibit overall depression, and demonstrate that facilitation has an unexpected and important function in producing frequency-invariant transmission.

  17. Ephrin-B2 prevents N-methyl-D-aspartate receptor antibody effects on memory and neuroplasticity.

    PubMed

    Planagumà, Jesús; Haselmann, Holger; Mannara, Francesco; Petit-Pedrol, Mar; Grünewald, Benedikt; Aguilar, Esther; Röpke, Luise; Martín-García, Elena; Titulaer, Maarten J; Jercog, Pablo; Graus, Francesc; Maldonado, Rafael; Geis, Christian; Dalmau, Josep

    2016-09-01

    To demonstrate that ephrin-B2 (the ligand of EphB2 receptor) antagonizes the pathogenic effects of patients' N-methyl-D-aspartate receptor (NMDAR) antibodies on memory and synaptic plasticity. One hundred twenty-two C57BL/6J mice infused with cerebrospinal fluid (CSF) from patients with anti-NMDAR encephalitis or controls, with or without ephrin-B2, were investigated. CSF was infused through ventricular catheters connected to subcutaneous osmotic pumps over 14 days. Memory, behavioral tasks, locomotor activity, presence of human antibodies specifically bound to hippocampal NMDAR, and antibody effects on the density of cell-surface and synaptic NMDAR and EphB2 were examined at different time points using reported techniques. Short- and long-term synaptic plasticity were determined in acute brain sections; the Schaffer collateral pathway was stimulated and the field excitatory postsynaptic potentials were recorded in the CA1 region of the hippocampus. Mice infused with patients' CSF, but not control CSF, developed progressive memory deficit and depressive-like behavior along with deposits of NMDAR antibodies in the hippocampus. These findings were associated with a decrease of the density of cell-surface and synaptic NMDAR and EphB2, and marked impairment of long-term synaptic plasticity without altering short-term plasticity. Administration of ephrin-B2 prevented the pathogenic effects of the antibodies in all the investigated paradigms assessing memory, depressive-like behavior, density of cell-surface and synaptic NMDAR and EphB2, and long-term synaptic plasticity. Administration of ephrin-B2 prevents the pathogenic effects of anti-NMDAR encephalitis antibodies on memory and behavior, levels of cell-surface NMDAR, and synaptic plasticity. These findings reveal a strategy beyond immunotherapy to antagonize patients' antibody effects. Ann Neurol 2016;80:388-400. © 2016 American Neurological Association.

  18. Synaptic Scaling in Combination with Many Generic Plasticity Mechanisms Stabilizes Circuit Connectivity

    PubMed Central

    Tetzlaff, Christian; Kolodziejski, Christoph; Timme, Marc; Wörgötter, Florentin

    2011-01-01

    Synaptic scaling is a slow process that modifies synapses, keeping the firing rate of neural circuits in specific regimes. Together with other processes, such as conventional synaptic plasticity in the form of long term depression and potentiation, synaptic scaling changes the synaptic patterns in a network, ensuring diverse, functionally relevant, stable, and input-dependent connectivity. How synaptic patterns are generated and stabilized, however, is largely unknown. Here we formally describe and analyze synaptic scaling based on results from experimental studies and demonstrate that the combination of different conventional plasticity mechanisms and synaptic scaling provides a powerful general framework for regulating network connectivity. In addition, we design several simple models that reproduce experimentally observed synaptic distributions as well as the observed synaptic modifications during sustained activity changes. These models predict that the combination of plasticity with scaling generates globally stable, input-controlled synaptic patterns, also in recurrent networks. Thus, in combination with other forms of plasticity, synaptic scaling can robustly yield neuronal circuits with high synaptic diversity, which potentially enables robust dynamic storage of complex activation patterns. This mechanism is even more pronounced when considering networks with a realistic degree of inhibition. Synaptic scaling combined with plasticity could thus be the basis for learning structured behavior even in initially random networks. PMID:22203799

  19. The interplay between neuronal activity and actin dynamics mimic the setting of an LTD synaptic tag

    PubMed Central

    Szabó, Eszter C.; Manguinhas, Rita; Fonseca, Rosalina

    2016-01-01

    Persistent forms of plasticity, such as long-term depression (LTD), are dependent on the interplay between activity-dependent synaptic tags and the capture of plasticity-related proteins. We propose that the synaptic tag represents a structural alteration that turns synapses permissive to change. We found that modulation of actin dynamics has different roles in the induction and maintenance of LTD. Inhibition of either actin depolymerisation or polymerization blocks LTD induction whereas only the inhibition of actin depolymerisation blocks LTD maintenance. Interestingly, we found that actin depolymerisation and CaMKII activation are involved in LTD synaptic-tagging and capture. Moreover, inhibition of actin polymerisation mimics the setting of a synaptic tag, in an activity-dependent manner, allowing the expression of LTD in non-stimulated synapses. Suspending synaptic activation also restricts the time window of synaptic capture, which can be restored by inhibiting actin polymerization. Our results support our hypothesis that modulation of the actin cytoskeleton provides an input-specific signal for synaptic protein capture. PMID:27650071

  20. Locus Coeruleus Stimulation Facilitates Long-Term Depression in the Dentate Gyrus That Requires Activation of β-Adrenergic Receptors

    PubMed Central

    Hansen, Niels; Manahan-Vaughan, Denise

    2015-01-01

    Synaptic plasticity comprises a cellular mechanism through which the hippocampus most likely enables memory formation. Neuromodulation, related to arousal, is a key aspect in information storage. The activation of locus coeruleus (LC) neurons by novel experience leads to noradrenaline release in the hippocampus at the level of the dentate gyrus (DG). We explored whether synaptic plasticity in the DG is influenced by activation of the LC via electrical stimulation. Coupling of test-pulses that evoked stable basal synaptic transmission in the DG with stimulation of the LC induced β-adrenoreceptor-dependent long-term depression (LTD) at perforant path–DG synapses in adult rats. Furthermore, persistent LTD (>24 h) induced by perforant path stimulation also required activation of β-adrenergic receptors: Whereas a β-adrenergic receptor antagonist (propranolol) prevented, an agonist (isoproterenol) strengthened the persistence of LTD for over 24 h. These findings support the hypothesis that persistent LTD in the DG is modulated by β-adrenergic receptors. Furthermore, LC activation potently facilitates DG LTD. This suggests in turn that synaptic plasticity in the DG is tightly regulated by activity in the noradrenergic system. This may reflect the role of the LC in selecting salient information for subsequent synaptic processing in the hippocampus. PMID:24464942

  1. DREAM (Downstream Regulatory Element Antagonist Modulator) contributes to synaptic depression and contextual fear memory

    PubMed Central

    2010-01-01

    The downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, binds specifically to DNA and several nucleoproteins regulating gene expression and with proteins outside the nucleus to regulate membrane excitability or calcium homeostasis. DREAM is highly expressed in the central nervous system including the hippocampus and cortex; however, the roles of DREAM in hippocampal synaptic transmission and plasticity have not been investigated. Taking advantage of transgenic mice overexpressing a Ca2+-insensitive DREAM mutant (TgDREAM), we used integrative methods including electrophysiology, biochemistry, immunostaining, and behavior tests to study the function of DREAM in synaptic transmission, long-term plasticity and fear memory in hippocampal CA1 region. We found that NMDA receptor but not AMPA receptor-mediated current was decreased in TgDREAM mice. Moreover, synaptic plasticity, such as long-term depression (LTD) but not long-term potentiation (LTP), was impaired in TgDREAM mice. Biochemical experiments found that DREAM interacts with PSD-95 and may inhibit NMDA receptor function through this interaction. Contextual fear memory was significantly impaired in TgDREAM mice. By contrast, sensory responses to noxious stimuli were not affected. Our results demonstrate that DREAM plays a novel role in postsynaptic modulation of the NMDA receptor, and contributes to synaptic plasticity and behavioral memory. PMID:20205763

  2. [Nonuniform distribution and contribution of the P- and P/Q-type calcium channels to short-term inhibitory synaptic transmission in cultured hippocampal neurons].

    PubMed

    Mizerna, O P; Fedulova, S A; Veselovs'kyĭ, M S

    2010-01-01

    In the present study, we investigated the sensitivity of GABAergic short-term plasticity to the selective P- and P/Q-type calcium channels blocker omega-agatoxin-IVA. To block the P-type channels we used 30 nM of this toxin and 200 nM of the toxin was used to block the P/Q channel types. The evoked inhibitory postsynaptic currents (eIPSC) were studied using patch-clamp technique in whole-cell configuration in postsynaptic neuron and local extracellular stimulation of single presynaptic axon by rectangular pulse. The present data show that the contribution of P- and P/Q-types channels to GABAergic synaptic transmission in cultured hippocampal neurons are 30% and 45%, respectively. It was shown that the mediate contribution of the P- and P/Q-types channels to the amplitudes of eIPSC is different to every discovered neuron. It means that distribution of these channels is non-uniform. To study the short-term plasticity of inhibitory synaptic transmission, axons of presynaptic neurons were paired-pulse stimulated with the interpulse interval of 150 ms. Neurons demonstrated both the depression and facilitation. The application of 30 nM and 200 nM of the blocker decreased the depression and increased facilitation to 8% and 11%, respectively. In addition, we found that the mediate contribution of the P- and P/Q-types channels to realization of synaptic transmission after the second stimuli is 4% less compared to that after the first one. Therefore, blocking of both P- and P/Q-types calcium channels can change the efficiency of synaptic transmission. In this instance it facilitates realization of the transmission via decreased depression or increased facilitation. These results confirm that the P- and P/Q-types calcium channels are involved in regulation of the short-term inhibitory synaptic plasticity in cultured hippocampal neurons.

  3. Group 1 mGluR-dependent synaptic long-term depression: mechanisms and implications for circuitry and disease.

    PubMed

    Lüscher, Christian; Huber, Kimberly M

    2010-02-25

    Many excitatory synapses express Group 1, or Gq coupled, metabotropic glutamate receptors (Gp1 mGluRs) at the periphery of their postsynaptic density. Activation of Gp1 mGluRs typically occurs in response to strong activity and triggers long-term plasticity of synaptic transmission in many brain regions, including the neocortex, hippocampus, midbrain, striatum, and cerebellum. Here we focus on mGluR-induced long-term synaptic depression (LTD) and review the literature that implicates Gp1 mGluRs in the plasticity of behavior, learning, and memory. Moreover, recent studies investigating the molecular mechanisms of mGluR-LTD have discovered links to mental retardation, autism, Alzheimer's disease, Parkinson's disease, and drug addiction. We discuss how mGluRs lead to plasticity of neural circuits and how the understanding of the molecular mechanisms of mGluR plasticity provides insight into brain disease.

  4. Actions of (-)-baclofen on rat dorsal horn neurons.

    PubMed

    Kangrga, I; Jiang, M C; Randić, M

    1991-10-25

    The actions of a gamma-aminobutyric acid B (GABAB) agonist, (-)-baclofen, on the electrophysiological properties of neurons and synaptic transmission in the spinal dorsal horn (laminae I-IV) were examined by using intracellular recordings in spinal cord slice from young rats. In addition, the effects of baclofen on the dorsal root stimulation-evoked outflow of glutamate and aspartate from the spinal dorsal horn were examined by using high performance liquid chromatography (HPLC) with flourimetric detection. Superfusion of baclofen (5 nM to 10 microM) hyperpolarized, in a stereoselective and bicuculline-insensitive manner, the majority (86%) of tested neurons. The hyperpolarization was associated with a decrease in membrane resistance and persisted in a nominally zero-Ca2+, 10 mM Mg(2+)- or a TTX-containing solution. Our findings indicate that the hyperpolarizing effect of baclofen is probably due to an increase in conductance to potassium ions. Baclofen decreased the direct excitability of dorsal horn neurons, enhanced accommodation of spike discharge, and reduced the duration of Ca(2+)-dependent action potentials. Baclofen depressed, or blocked, excitatory postsynaptic potentials evoked by electrical stimulation of the dorsal roots. Spontaneously occurring synaptic potentials were also reversibly depressed by baclofen. Whereas baclofen did not produce any consistent change in the rate of the basal outflow of glutamate and aspartate, the stimulation-evoked release of the amino acids was blocked. The present results suggest that baclofen, by activating GABAB receptors, may modulate spinal afferent processing in the superficial dorsal horn by at least two mechanisms: (1) baclofen depresses excitatory synaptic transmission primarily by a presynaptic mechanism involving a decrease in the release of excitatory amino acids, and (2) at higher concentrations, the hyperpolarization and increased membrane conductance may contribute to the depressant effect of baclofen on excitatory synaptic transmission in the rat spinal dorsal horn.

  5. A rapid form of activity-dependent recovery from short-term synaptic depression in the intensity pathway of the auditory brainstem

    PubMed Central

    Horiuchi, Timothy K.

    2011-01-01

    Short-term synaptic plasticity acts as a time- and firing rate-dependent filter that mediates the transmission of information across synapses. In the avian auditory brainstem, specific forms of plasticity are expressed at different terminals of the same auditory nerve fibers and contribute to the divergence of acoustic timing and intensity information. To identify key differences in the plasticity properties, we made patch-clamp recordings from neurons in the cochlear nucleus responsible for intensity coding, nucleus angularis, and measured the time course of the recovery of excitatory postsynaptic currents following short-term synaptic depression. These synaptic responses showed a very rapid recovery, following a bi-exponential time course with a fast time constant of ~40 ms and a dependence on the presynaptic activity levels, resulting in a crossing over of the recovery trajectories following high-rate versus low-rate stimulation trains. We also show that the recorded recovery in the intensity pathway differs from similar recordings in the timing pathway, specifically the cochlear nucleus magnocellularis, in two ways: (1) a fast recovery that was not due to recovery from postsynaptic receptor desensitization and (2) a recovery trajectory that was characterized by a non-monotonic bump that may be due in part to facilitation mechanisms more prevalent in the intensity pathway. We tested whether a previously proposed model of synaptic transmission based on vesicle depletion and sequential steps of vesicle replenishment could account for the recovery responses, and found it was insufficient, suggesting an activity-dependent feedback mechanism is present. We propose that the rapid recovery following depression allows improved coding of natural auditory signals that often consist of sound bursts separated by short gaps. PMID:21409439

  6. Mitochondria Are Critical for BDNF-Mediated Synaptic and Vascular Plasticity of Hippocampus following Repeated Electroconvulsive Seizures.

    PubMed

    Chen, Fenghua; Ardalan, Maryam; Elfving, Betina; Wegener, Gregers; Madsen, Torsten M; Nyengaard, Jens R

    2018-03-01

    Electroconvulsive therapy is a fast-acting and efficient treatment of depression used in the clinic. The underlying mechanism of its therapeutic effect is still unclear. However, recovery of synaptic connections and synaptic remodeling is thought to play a critical role for the clinical efficacy obtained from a rapid antidepressant response. Here, we investigated the relationship between synaptic changes and concomitant nonneuronal changes in microvasculature and mitochondria and its relationship to brain-derived neurotrophic factor level changes after repeated electroconvulsive seizures, an animal model of electroconvulsive therapy. Electroconvulsive seizures or sham treatment was given daily for 10 days to rats displaying a genetically driven phenotype modelling clinical depression: the Flinders Sensitive and Resistant Line rats. Stereological principles were employed to quantify numbers of synapses and mitochondria, and the length of microvessels in the hippocampus. The brain-derived neurotrophic factor protein levels were quantified with immunohistochemistry. In untreated controls, a lower number of synapses and mitochondria was accompanied by shorter microvessels of the hippocampus in "depressive" phenotype (Flinders Sensitive Line) compared with the "nondepressed" phenotype (Flinders Resistant Line). Electroconvulsive seizure administration significantly increased the number of synapses and mitochondria, and length of microvessels both in Flinders Sensitive Line-electroconvulsive seizures and Flinders Resistant Line-electroconvulsive seizures rats. In addition, the amount of brain-derived neurotrophic factor protein was significantly increased in Flinders Sensitive Line and Flinders Resistant Line rats after electroconvulsive seizures. Furthermore, there was a significant positive correlation between brain-derived neurotrophic factor level and mitochondria/synapses. Our results indicate that rapid and efficient therapeutic effect of electroconvulsive seizures may be related to synaptic plasticity, accompanied by brain-derived neurotrophic factor protein level elevation and mitochondrial and vascular support. © The Author(s) 2017. Published by Oxford University Press on behalf of CINP.

  7. Cell-type specific short-term plasticity at auditory nerve synapses controls feed-forward inhibition in the dorsal cochlear nucleus.

    PubMed

    Sedlacek, Miloslav; Brenowitz, Stephan D

    2014-01-01

    Feed-forward inhibition (FFI) represents a powerful mechanism by which control of the timing and fidelity of action potentials in local synaptic circuits of various brain regions is achieved. In the cochlear nucleus, the auditory nerve provides excitation to both principal neurons and inhibitory interneurons. Here, we investigated the synaptic circuit associated with fusiform cells (FCs), principal neurons of the dorsal cochlear nucleus (DCN) that receive excitation from auditory nerve fibers and inhibition from tuberculoventral cells (TVCs) on their basal dendrites in the deep layer of DCN. Despite the importance of these inputs in regulating fusiform cell firing behavior, the mechanisms determining the balance of excitation and FFI in this circuit are not well understood. Therefore, we examined the timing and plasticity of auditory nerve driven FFI onto FCs. We find that in some FCs, excitatory and inhibitory components of FFI had the same stimulation thresholds indicating they could be triggered by activation of the same fibers. In other FCs, excitation and inhibition exhibit different stimulus thresholds, suggesting FCs and TVCs might be activated by different sets of fibers. In addition, we find that during repetitive activation, synapses formed by the auditory nerve onto TVCs and FCs exhibit distinct modes of short-term plasticity. Feed-forward inhibitory post-synaptic currents (IPSCs) in FCs exhibit short-term depression because of prominent synaptic depression at the auditory nerve-TVC synapse. Depression of this feedforward inhibitory input causes a shift in the balance of fusiform cell synaptic input towards greater excitation and suggests that fusiform cell spike output will be enhanced by physiological patterns of auditory nerve activity.

  8. Synaptic plasticity in the hippocampal area CA1-subiculum projection: implications for theories of memory.

    PubMed

    O'Mara, S M; Commins, S; Anderson, M

    2000-01-01

    This paper reviews investigations of synaptic plasticity in the major, and underexplored, pathway from hippocampal area CA1 to the subiculum. This brain area is the major synaptic relay for the majority of hippocampal area CA1 neurons, making the subiculum the last relay of the hippocampal formation prior to the cortex. The subiculum thus has a very major role in mediating hippocampal-cortical interactions. We demonstrate that the projection from hippocampal area CA1 to the subiculum sustains plasticity on a number of levels. We show that this pathway is capable of undergoing both long-term potentiation (LTP) and paired-pulse facilitation (PPF, a short-term plastic effect). Although we failed to induce long-term depression (LTD) of this pathway with low-frequency stimulation (LFS) and two-pulse stimulation (TPS), both protocols can induce a "late-developing" potentiation of synaptic transmission. We further demonstrate that baseline synaptic transmission can be dissociated from paired-pulse stimulation of the same pathway; we also show that it is possible, using appropriate protocols, to change PPF to paired-pulse depression, thus revealing subtle and previously undescribed mechanisms which regulate short-term synaptic plasticity. Finally, we successfully recorded from individual subicular units in the freely-moving animal, and provide a description of the characteristics of such neurons in a pellet-chasing task. We discuss the implications of these findings in relation to theories of the biological consolidation of memory.

  9. Effects of dopamine and glutamate on synaptic plasticity: a computational modeling approach for drug abuse as comorbidity in mood disorders.

    PubMed

    Qi, Z; Kikuchi, S; Tretter, F; Voit, E O

    2011-05-01

    Major depressive disorder (MDD) affects about 16% of the general population and is a leading cause of death in the United States and around the world. Aggravating the situation is the fact that "drug use disorders" are highly comorbid in MDD patients, and VICE VERSA. Drug use and MDD share a common component, the dopamine system, which is critical in many motivation and reward processes, as well as in the regulation of stress responses in MDD. A potentiating mechanism in drug use disorders appears to be synaptic plasticity, which is regulated by dopamine transmission. In this article, we describe a computational model of the synaptic plasticity of GABAergic medium spiny neurons in the nucleus accumbens, which is critical in the reward system. The model accounts for effects of both dopamine and glutamate transmission. Model simulations show that GABAergic medium spiny neurons tend to respond to dopamine stimuli with synaptic potentiation and to glutamate signals with synaptic depression. Concurrent dopamine and glutamate signals cause various types of synaptic plasticity, depending on input scenarios. Interestingly, the model shows that a single 0.5 mg/kg dose of amphetamine can cause synaptic potentiation for over 2 h, a phenomenon that makes synaptic plasticity of medium spiny neurons behave quasi as a bistable system. The model also identifies mechanisms that could potentially be critical to correcting modifications of synaptic plasticity caused by drugs in MDD patients. An example is the feedback loop between protein kinase A, phosphodiesterase, and the second messenger cAMP in the postsynapse. Since reward mechanisms activated by psychostimulants could be crucial in establishing addiction comorbidity in patients with MDD, this model might become an aid for identifying and targeting specific modules within the reward system and lead to a better understanding and potential treatment of comorbid drug use disorders in MDD. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Absence of Wdr13 Gene Predisposes Mice to Mild Social Isolation – Chronic Stress, Leading to Depression-Like Phenotype Associated With Differential Expression of Synaptic Proteins

    PubMed Central

    Mitra, Shiladitya; Sameer Kumar, Ghantasala S.; Jyothi Lakshmi, B.; Thakur, Suman; Kumar, Satish

    2018-01-01

    We earlier reported that the male mice lacking the Wdr13 gene (Wdr13-/0) showed mild anxiety, better memory retention, and up-regulation of synaptic proteins in the hippocampus. With increasing evidences from parallel studies in our laboratory about the possible role of Wdr13 in stress response, we investigated its role in brain. We observed that Wdr13 transcript gets up-regulated in the hippocampus of the wild-type mice exposed to stress. To further dissect its function, we analyzed the behavioral and molecular phenotypes of Wdr13-/0 mice when subjected to mild chronic psychological stress, namely; mild (attenuated) social isolation. We employed iTRAQ based quantitative proteomics, real time PCR and western blotting to investigate molecular changes. Three weeks of social isolation predisposed Wdr13-/0 mice to anhedonia, heightened anxiety-measured by Open field test (OFT), increased behavior despair- measured by Forced swim test (FST) and reduced dendritic branching along with decreased spine density of hippocampal CA1 neurons as compared to wild-type counterparts. This depression-like-phenotype was however ameliorated when treated with anti-depressant imipramine. Molecular analysis revealed that out of 1002 quantified proteins [1% False discovery rate (FDR), at-least two unique peptides], strikingly, a significant proportion of synaptic proteins including, SYN1, CAMK2A, and RAB3A were down-regulated in the socially isolated Wdr13-/0 mice as compared to its wild-type counterparts. This was in contrast to the elevated levels of these proteins in non-stressed mutants as compared to the controls. We hypothesized that a de-regulated transcription factor upstream of the synaptic genes might be responsible for the observed phenotype. Indeed, in the socially isolated Wdr13-/0 mice, there was an up-regulation of GATA1 – a transcription factor that negatively regulates synaptic genes and has been associated with Major Depression (MD) in humans. The present study demonstrates significant genotype × enviornment interaction for Wdr13 gene as shown by the reversal in the expression levels of several synaptic proteins in the mutant vis-à-vis wild-type mouse when exposed to social isolation stress. PMID:29743870

  11. MHC class I immune proteins are critical for hippocampus-dependent memory and gate NMDAR-dependent hippocampal long-term depression

    PubMed Central

    Nelson, P. Austin; Sage, Jennifer R.; Wood, Suzanne C.; Davenport, Christopher M.; Anagnostaras, Stephan G.; Boulanger, Lisa M.

    2013-01-01

    Memory impairment is a common feature of conditions that involve changes in inflammatory signaling in the brain, including traumatic brain injury, infection, neurodegenerative disorders, and normal aging. However, the causal importance of inflammatory mediators in cognitive impairments in these conditions remains unclear. Here we show that specific immune proteins, members of the major histocompatibility complex class I (MHC class I), are essential for normal hippocampus-dependent memory, and are specifically required for NMDAR-dependent forms of long-term depression (LTD) in the healthy adult hippocampus. In β2m−/−TAP−/−mice, which lack stable cell-surface expression of most MHC class I proteins, NMDAR-dependent LTD in area CA1 of adult hippocampus is abolished, while NMDAR-independent forms of potentiation, facilitation, and depression are unaffected. Altered NMDAR-dependent synaptic plasticity in the hippocampus of β2m−/−TAP−/−mice is accompanied by pervasive deficits in hippocampus-dependent memory, including contextual fear memory, object recognition memory, and social recognition memory. Thus normal MHC class I expression is essential for NMDAR-dependent hippocampal synaptic depression and hippocampus-dependent memory. These results suggest that changes in MHC class I expression could be an unexpected cause of disrupted synaptic plasticity and cognitive deficits in the aging, damaged, and diseased brain. PMID:23959708

  12. Exogenous ciliary neurotrophic factor (CNTF) reduces synaptic depression during repetitive stimulation.

    PubMed

    Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Priego, Mercedes; Obis, Teresa; Lanuza, Maria A; Besalduch, Nuria; Tomàs, Josep

    2012-09-01

    It has been shown that ciliary neurotrophic factor (CNTF) has trophic and maintenance effects on several types of peripheral and central neurons, glia, and cells outside the nervous system. Both CNTF and its receptor, CNTF-Rα, are expressed in the muscle. We use confocal immunocytochemistry to show that the trophic cytokine and its receptor are present in the pre- and post-synaptic sites of the neuromuscular junctions (NMJs). Applied CNTF (7.5-200 ng/ml, 60 min-3 h) does not acutely affect spontaneous potentials (size or frequency) or quantal content of the evoked acetylcholine release from post-natal (in weak or strong axonal inputs on dually innervated end plates or in the most mature singly innervated synapses at P6) or adult (P30) NMJ of Levator auris longus muscle of the mice. However, CNTF reduces roughly 50% the depression produced by repetitive stimulation (40 Hz, 2 min) on the adult NMJs. Our findings indicate that, unlike neurotrophins, exogenous CNTF does not acutely modulate transmitter release locally at the mammalian neuromuscular synapse but can protect mature end plates from activity-induced synaptic depression. © 2012 Peripheral Nerve Society.

  13. Carbachol-induced long-term synaptic depression is enhanced during senescence at hippocampal CA3-CA1 synapses.

    PubMed

    Kumar, Ashok

    2010-08-01

    Dysregulation of the cholinergic transmitter system is a hallmark of Alzheimer's disease and contributes to an age-associated decline in memory performance. The current study examined the influence of carbachol, a cholinergic receptor agonist, on synaptic transmission over the course of aging. Extracellular excitatory postsynaptic field potentials were recorded from CA3-CA1 synapses in acute hippocampal slices obtained from young adult (5-8 mo) and aged (22-24 mo) male Fischer 344 rats. Bath application of carbachol elicited a transient depression of synaptic transmission, which was followed by a long-lasting depression (CCh-LTD) observed 90 min after carbachol cessation in both age groups. However, the magnitude of CCh-LTD was significantly larger in senescent animals and was attenuated by N-methyl-D-aspartate receptor blockade in aged animals. Blockade of L-type Ca(2+) channels inhibited CCh-LTD to a greater extent in aged animals compared to young adults. Finally, the expression of CCh-LTD was dependent on protein synthesis. The results indicate that altered Ca(2+) homeostasis or muscarinic activation of Ca(2+) signaling contribute to the enhanced CCh-LTD during senescence.

  14. [Involvement of aquaporin-4 in synaptic plasticity, learning and memory].

    PubMed

    Wu, Xin; Gao, Jian-Feng

    2017-06-25

    Aquaporin-4 (AQP-4) is the predominant water channel in the central nervous system (CNS) and primarily expressed in astrocytes. Astrocytes have been generally believed to play important roles in regulating synaptic plasticity and information processing. However, the role of AQP-4 in regulating synaptic plasticity, learning and memory, cognitive function is only beginning to be investigated. It is well known that synaptic plasticity is the prime candidate for mediating of learning and memory. Long term potentiation (LTP) and long term depression (LTD) are two forms of synaptic plasticity, and they share some but not all the properties and mechanisms. Hippocampus is a part of limbic system that is particularly important in regulation of learning and memory. This article is to review some research progresses of the function of AQP-4 in synaptic plasticity, learning and memory, and propose the possible role of AQP-4 as a new target in the treatment of cognitive dysfunction.

  15. Control of Excitation/Inhibition Balance in a Hippocampal Circuit by Calcium Sensor Protein Regulation of Presynaptic Calcium Channels.

    PubMed

    Nanou, Evanthia; Lee, Amy; Catterall, William A

    2018-05-02

    Activity-dependent regulation controls the balance of synaptic excitation to inhibition in neural circuits, and disruption of this regulation impairs learning and memory and causes many neurological disorders. The molecular mechanisms underlying short-term synaptic plasticity are incompletely understood, and their role in inhibitory synapses remains uncertain. Here we show that regulation of voltage-gated calcium (Ca 2+ ) channel type 2.1 (Ca V 2.1) by neuronal Ca 2+ sensor (CaS) proteins controls synaptic plasticity and excitation/inhibition balance in a hippocampal circuit. Prevention of CaS protein regulation by introducing the IM-AA mutation in Ca V 2.1 channels in male and female mice impairs short-term synaptic facilitation at excitatory synapses of CA3 pyramidal neurons onto parvalbumin (PV)-expressing basket cells. In sharp contrast, the IM-AA mutation abolishes rapid synaptic depression in the inhibitory synapses of PV basket cells onto CA1 pyramidal neurons. These results show that CaS protein regulation of facilitation and inactivation of Ca V 2.1 channels controls the direction of short-term plasticity at these two synapses. Deletion of the CaS protein CaBP1/caldendrin also blocks rapid depression at PV-CA1 synapses, implicating its upregulation of inactivation of Ca V 2.1 channels in control of short-term synaptic plasticity at this inhibitory synapse. Studies of local-circuit function revealed reduced inhibition of CA1 pyramidal neurons by the disynaptic pathway from CA3 pyramidal cells via PV basket cells and greatly increased excitation/inhibition ratio of the direct excitatory input versus indirect inhibitory input from CA3 pyramidal neurons to CA1 pyramidal neurons. This striking defect in local-circuit function may contribute to the dramatic impairment of spatial learning and memory in IM-AA mice. SIGNIFICANCE STATEMENT Many forms of short-term synaptic plasticity in neuronal circuits rely on regulation of presynaptic voltage-gated Ca 2+ (Ca V ) channels. Regulation of Ca V 2.1 channels by neuronal calcium sensor (CaS) proteins controls short-term synaptic plasticity. Here we demonstrate a direct link between regulation of Ca V 2.1 channels and short-term synaptic plasticity in native hippocampal excitatory and inhibitory synapses. We also identify CaBP1/caldendrin as the calcium sensor interacting with Ca V 2.1 channels to mediate rapid synaptic depression in the inhibitory hippocampal synapses of parvalbumin-expressing basket cells to CA1 pyramidal cells. Disruption of this regulation causes altered short-term plasticity and impaired balance of hippocampal excitatory to inhibitory circuits. Copyright © 2018 the authors 0270-6474/18/384430-11$15.00/0.

  16. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress

    PubMed Central

    Kaster, Manuella P.; Machado, Nuno J.; Silva, Henrique B.; Nunes, Ana; Ardais, Ana Paula; Santana, Magda; Baqi, Younis; Müller, Christa E.; Rodrigues, Ana Lúcia S.; Porciúncula, Lisiane O.; Chen, Jiang Fan; Tomé, Ângelo R.; Agostinho, Paula; Canas, Paula M.; Cunha, Rodrigo A.

    2015-01-01

    The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function. PMID:26056314

  17. Maintenance of long-term adaptation of synaptic transmission requires axonal transport following induction in an identified crayfish motoneuron.

    PubMed

    Nguyen, P V; Atwood, H L

    1992-03-01

    Motoneurons can adapt to altered levels of electrical activity by effecting semi-permanent changes in their neuromuscular synaptic physiology. In the present study, we tested the hypothesis that maintenance of activity-dependent long-term adaptation of synaptic transmission in a crayfish abdominal extensor motoneuron (phasic axon 3) required axonal transport following induction. Intact crayfish were chronically wired for periodic in vivo stimulation of axon 3. Periodic unilateral stimulation for 3-5 consecutive days (2 h/day) induced long-term adaptation (LTA) of neuromuscular synaptic transmission in axon 3. Initial EPSP amplitudes (measured at 0.1 Hz) were significantly reduced to approximately 40% of contralateral control amplitudes over a 7-day poststimulation period. Additionally, synaptic depression during 5 Hz test stimulation of axon 3 was significantly less in chronically stimulated neurons: excitatory postsynaptic potential (EPSP) amplitudes measured after 20 min of 5 Hz test stimulation (final EPSPs) were significantly larger in conditioned neurons than in unstimulated controls. The depression of initial EPSP amplitudes persisted for 7 days postinduction, while the increased synaptic stamina persisted for 4 days but was absent at 7 days postinduction. Axotomy of axon 3 following induction of LTA had no effect on long-term maintenance of the activity-induced reduction in initial EPSP amplitudes. Initial EPSP amplitudes in conditioned, axotomized neurons were still reduced to 42% of control amplitudes over the 7-day postinduction period. In contrast, postinduction axotomy of axon 3 elicited an accelerated decay of the enhanced synaptic stamina. Following axotomy, final EPSP amplitudes were significantly larger in conditioned neurons for only 1 day poststimulation.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Effects of 17beta-estradiol on glutamate synaptic transmission and neuronal excitability in the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Frondaroli, A; Scarduzio, M; Dutia, M B; Dieni, C; Pettorossi, V E

    2010-02-17

    We investigated the effects of the neurosteroid 17beta-estradiol (E(2)) on the evoked and spontaneous activity of rat medial vestibular nucleus (MVN) neurons in brainstem slices. E(2) enhances the synaptic response to vestibular nerve stimulation in type B neurons and depresses the spontaneous discharge in both type A and B neurons. The amplitude of the field potential, as well as the excitatory post-synaptic potential (EPSP) and current (EPSC), in type B neurons, are enhanced by E(2). Both effects are long-term phenomena since they outlast the drug washout. The enhancement of synaptic response is mainly due to facilitation of glutamate release mediated by pre-synaptic N-methyl-D-aspartate receptors (NMDARs), since the reduction of paired pulse ratio (PPR) and the increase of miniature EPSC frequency after E(2) are abolished under D-(-)-2-amino-5-phosphonopentanoic acid (AP-5). E(2) also facilitates post-synaptic NMDARs, but it does not affect directly alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and group I-metabotropic glutamate receptors (mGluRs-I). In contrast, the depression of the spontaneous discharge of type A and type B neurons appears to depend on E(2) modulation of intrinsic ion conductances, as the effect remains after blockade of glutamate, GABA and glycine receptors (GlyRs). The net effect of E(2) is to enhance the signal-to-noise ratio of the synaptic response in type B neurons, relative to resting activity of all MVN neurons. These findings provide evidence for a novel potential mechanism to modulate the responsiveness of vestibular neurons to afferent inputs, and so regulate vestibular function in vivo.

  19. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress.

    PubMed

    Kaster, Manuella P; Machado, Nuno J; Silva, Henrique B; Nunes, Ana; Ardais, Ana Paula; Santana, Magda; Baqi, Younis; Müller, Christa E; Rodrigues, Ana Lúcia S; Porciúncula, Lisiane O; Chen, Jiang Fan; Tomé, Ângelo R; Agostinho, Paula; Canas, Paula M; Cunha, Rodrigo A

    2015-06-23

    The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function.

  20. Mitochondrial energy metabolism of rat hippocampus after treatment with the antidepressants desipramine and fluoxetine.

    PubMed

    Villa, Roberto Federico; Ferrari, Federica; Bagini, Laura; Gorini, Antonella; Brunello, Nicoletta; Tascedda, Fabio

    2017-07-15

    Alterations in mitochondrial functions have been hypothesized to participate in the pathogenesis of depression, because brain bioenergetic abnormalities have been detected in depressed patients by neuroimaging in vivo studies. However, this hypothesis is not clearly demonstrated in experimental studies: some suggest that antidepressants are inhibitors of mitochondrial metabolism, while others observe the opposite. In this study, the effects of 21-day treatment with desipramine (15 mg/kg) and fluoxetine (10 mg/kg) were examined on the energy metabolism of rat hippocampus, evaluating the catalytic activity of regulatory enzymes of mitochondrial energy-yielding metabolic pathways. Because of the micro-heterogeneity of brain mitochondria, we have distinguished between (a) non-synaptic mitochondria (FM) of neuronal perikaryon (post-synaptic compartment) and (b) intra-synaptic light (LM) and heavy (HM) mitochondria (pre-synaptic compartment). Desipramine and fluoxetine changed the catalytic activity of specific enzymes in the different types of mitochondria: (a) in FM, both drugs enhanced cytochrome oxidase and glutamate dehydrogenase, (b) in LM, the overall bioenergetics was unaffected and (c) in HM only desipramine increased malate dehydrogenase and decreased the activities of Electron Transport Chain Complexes. These results integrate the pharmacodynamic features of desipramine and fluoxetine at subcellular level, overcoming the previous conflicting data about the effects of antidepressants on brain energy metabolism, mainly referred to whole brain homogenates or to bulk of cerebral mitochondria. With the differentiation in non-synaptic and intra-synaptic mitochondria, this study demonstrates that desipramine and fluoxetine lead to adjustments in the mitochondrial bioenergetics respect to the energy requirements of pre- and post-synaptic compartments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Synaptic Correlates of Working Memory Capacity.

    PubMed

    Mi, Yuanyuan; Katkov, Mikhail; Tsodyks, Misha

    2017-01-18

    Psychological studies indicate that human ability to keep information in readily accessible working memory is limited to four items for most people. This extremely low capacity severely limits execution of many cognitive tasks, but its neuronal underpinnings remain unclear. Here we show that in the framework of synaptic theory of working memory, capacity can be analytically estimated to scale with characteristic time of short-term synaptic depression relative to synaptic current time constant. The number of items in working memory can be regulated by external excitation, enabling the system to be tuned to the desired load and to clear the working memory of currently held items to make room for new ones. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The maturational theory of brain development and cerebral excitability in the multifactorially inherited manic-depressive psychosis and schizophrenia.

    PubMed

    Saugstad, L F

    1994-12-01

    An association has been established between the multifactorially inherited rate of physical maturation and the final step in brain development, when some 40% of synapses are eliminated. This may imply that similarly to endocrine disease entities, we have cerebral disease entities at the extremes of the maturational rate continuum. The restriction of prepubertal pruning to excitatory synapses leaving the number of inhibitory ones fairly constant, implies changes in cerebral excitability as a function of rate of maturation (age at puberty). In early maturation there will be an excess in excitatory drive due to prematurely abridged pruning, which compounds a synchronization tendency inherent in excessive synaptic density. Lowering excitatory level with antiepileptics is hypothesized to be a logical treatment in this type of brain dysfunction. In late maturation, a deficit in excitatory drive due to failure to shut down the pruning process associated with a tendency to the breakdown of circuitry and desynchronization, adds to a similar adversity inherent in reduced synaptic density. Raising the excitatory level with convulsants is hypothesized to be the treatment for this type of CNS dysfunction. The maturational theory of Kraepelin's psychoses holds that they are naturally occurring contrasting chemical signaling disorders in the brain at the extremes of the maturational rate continuum: manic depressive psychosis is a disorder of the early maturer and comprises raised cerebral excitability and a raised density of synapses. This is successfully treated with anti-epileptics like sodium valproate and carbamazepin. Schizophrenia is a disorder in late maturation with reduced cerebral excitability and reduced synaptic density. This is accordingly treated with convulsants such as typical and atypical neuroleptics. However, the conventional effective treatments in both disorders act on inhibition only by either lowering or raising inhibitory level. While the neuroleptics drugs are superior anti-psychotics they nevertheless do not affect the deviation in cerebral excitability which would explain why they do not cure. Disturbed circadian rhythms which precede psychotic episodes in manic depressives accord with a primary dysfunction in the CNS, the suprachiasmatic nucleus of the hypothalamus via its direct input the glutamatergic retinohypothalamic tract. The residual deficits in schizophrenia accord with persistently disconnected circuitry and communication which is a consequence of reduced excitatory level and is manifested in insufficient motivation, a reduced drive associated hypofunction, and neuromuscular dysfunction.

  3. Mice Overexpressing Type 1 Adenylyl Cyclase Show Enhanced Spatial Memory Flexibility in the Absence of Intact Synaptic Long-Term Depression

    ERIC Educational Resources Information Center

    Zhang, Ming; Wang, Hongbing

    2013-01-01

    There is significant interest in understanding the contribution of intracellular signaling and synaptic substrates to memory flexibility, which involves new learning and suppression of obsolete memory. Here, we report that enhancement of Ca[superscript 2+]-stimulated cAMP signaling by overexpressing type 1 adenylyl cyclase (AC1) facilitated…

  4. Synaptic characteristics with strong analog potentiation, depression, and short-term to long-term memory transition in a Pt/CeO2/Pt crossbar array structure

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Jun; Park, Daehoon; Yang, Paul; Beom, Keonwon; Kim, Min Ju; Shin, Chansun; Kang, Chi Jung; Yoon, Tae-Sik

    2018-06-01

    A crossbar array of Pt/CeO2/Pt memristors exhibited the synaptic characteristics such as analog, reversible, and strong resistance change with a ratio of ∼103, corresponding to wide dynamic range of synaptic weight modulation as potentiation and depression with respect to the voltage polarity. In addition, it presented timing-dependent responses such as paired-pulse facilitation and the short-term to long-term memory transition by increasing amplitude, width, and repetition number of voltage pulse and reducing the interval time between pulses. The memory loss with a time was fitted with a stretched exponential relaxation model, revealing the relation of memory stability with the input stimuli strength. The resistance change was further enhanced but its stability got worse as increasing measurement temperature, indicating that the resistance was changed as a result of voltage- and temperature-dependent electrical charging and discharging to alter the energy barrier for charge transport. These detailed synaptic characteristics demonstrated the potential of crossbar array of Pt/CeO2/Pt memristors as artificial synapses in highly connected neuron-synapse network.

  5. Synaptic characteristics with strong analog potentiation, depression, and short-term to long-term memory transition in a Pt/CeO2/Pt crossbar array structure.

    PubMed

    Kim, Hyung Jun; Park, Daehoon; Yang, Paul; Beom, Keonwon; Kim, Min Ju; Shin, Chansun; Kang, Chi Jung; Yoon, Tae-Sik

    2018-06-29

    A crossbar array of Pt/CeO 2 /Pt memristors exhibited the synaptic characteristics such as analog, reversible, and strong resistance change with a ratio of ∼10 3 , corresponding to wide dynamic range of synaptic weight modulation as potentiation and depression with respect to the voltage polarity. In addition, it presented timing-dependent responses such as paired-pulse facilitation and the short-term to long-term memory transition by increasing amplitude, width, and repetition number of voltage pulse and reducing the interval time between pulses. The memory loss with a time was fitted with a stretched exponential relaxation model, revealing the relation of memory stability with the input stimuli strength. The resistance change was further enhanced but its stability got worse as increasing measurement temperature, indicating that the resistance was changed as a result of voltage- and temperature-dependent electrical charging and discharging to alter the energy barrier for charge transport. These detailed synaptic characteristics demonstrated the potential of crossbar array of Pt/CeO 2 /Pt memristors as artificial synapses in highly connected neuron-synapse network.

  6. Ketamine Protects Gamma Oscillations by Inhibiting Hippocampal LTD

    PubMed Central

    Huang, Lanting; Yang, Xiu-Juan; Huang, Ying; Sun, Eve Y.

    2016-01-01

    NMDA receptors have been widely reported to be involved in the regulation of synaptic plasticity through effects on long-term potentiation (LTP) and long-term depression (LTD). LTP and LTD have been implicated in learning and memory processes. Besides synaptic plasticity, it is known that the phenomenon of gamma oscillations is critical in cognitive functions. Synaptic plasticity has been widely studied, however it is still not clear, to what degree synaptic plasticity regulates the oscillations of neuronal networks. Two NMDA receptor antagonists, ketamine and memantine, have been shown to regulate LTP and LTD, to promote cognitive functions, and have even been reported to bring therapeutic effects in major depression and Alzheimer’s disease respectively. These compounds allow us to investigate the putative interrelationship between network oscillations and synaptic plasticity and to learn more about the mechanisms of their therapeutic effects. In the present study, we have identified that ketamine and memantine could inhibit LTD, without impairing LTP in the CA1 region of mouse hippocampus, which may underlie the mechanism of these drugs’ therapeutic effects. Our results suggest that NMDA-induced LTD caused a marked loss in the gamma power, and pretreatment with 10 μM ketamine prevented the oscillatory loss via its inhibitory effect on LTD. Our study provides a new understanding of the role of NMDA receptors on hippocampal plasticity and oscillations. PMID:27467732

  7. The up and down states of cortical networks

    NASA Astrophysics Data System (ADS)

    Ghorbani, Maryam; Levine, Alex J.; Mehta, Mayank; Bruinsma, Robijn

    2011-03-01

    The cortical networks show a collective activity of alternating active and silent states known as up and down states during slow wave sleep or anesthesia. The mechanism of this spontaneous activity as well as the anesthesia or sleep are still not clear. Here, using a mean field approach, we present a simple model to study the spontaneous activity of a homogenous cortical network of excitatory and inhibitory neurons that are recurrently connected. A key new ingredient in this model is that the activity-dependant synaptic depression is considered only for the excitatory neurons. We find depending on the strength of the synaptic depression and synaptic efficacies, the phase space contains strange attractors or stable fixed points at active or quiescent regimes. At the strange attractor phase, we can have oscillations similar to up and down states with flat and noisy up states. Moreover, we show that by increasing the synaptic efficacy corresponding to the connections between the excitatory neurons, the characteristics of the up and down states change in agreement with the changes that we observe in the intracellular recordings of the membrane potential from the entorhinal cortex by varying the depth of anesthesia. Thus, we propose that by measuring the value of this synaptic efficacy, one can quantify the depth of anesthesia which is clinically very important. These findings provide a simple, analytical understanding of the spontaneous cortical dynamics.

  8. The effects of dynamical synapses on firing rate activity: a spiking neural network model.

    PubMed

    Khalil, Radwa; Moftah, Marie Z; Moustafa, Ahmed A

    2017-11-01

    Accumulating evidence relates the fine-tuning of synaptic maturation and regulation of neural network activity to several key factors, including GABA A signaling and a lateral spread length between neighboring neurons (i.e., local connectivity). Furthermore, a number of studies consider short-term synaptic plasticity (STP) as an essential element in the instant modification of synaptic efficacy in the neuronal network and in modulating responses to sustained ranges of external Poisson input frequency (IF). Nevertheless, evaluating the firing activity in response to the dynamical interaction between STP (triggered by ranges of IF) and these key parameters in vitro remains elusive. Therefore, we designed a spiking neural network (SNN) model in which we incorporated the following parameters: local density of arbor essences and a lateral spread length between neighboring neurons. We also created several network scenarios based on these key parameters. Then, we implemented two classes of STP: (1) short-term synaptic depression (STD) and (2) short-term synaptic facilitation (STF). Each class has two differential forms based on the parametric value of its synaptic time constant (either for depressing or facilitating synapses). Lastly, we compared the neural firing responses before and after the treatment with STP. We found that dynamical synapses (STP) have a critical differential role on evaluating and modulating the firing rate activity in each network scenario. Moreover, we investigated the impact of changing the balance between excitation (E) and inhibition (I) on stabilizing this firing activity. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Brivaracetam augments short-term depression and slows vesicle recycling.

    PubMed

    Yang, Xiaofeng; Bognar, Joseph; He, Tianyu; Mohammed, Mouhari; Niespodziany, Isabelle; Wolff, Christian; Esguerra, Manuel; Rothman, Steven M; Dubinsky, Janet M

    2015-12-01

    Brivaracetam (BRV) decreases seizure activity in a number of epilepsy models and binds to the synaptic vesicle glycoprotein 2A (SV2A) with a higher affinity than the antiepileptic drug levetiracetam (LEV). Experiments were performed to determine if BRV acted similarly to LEV to induce or augment short-term depression (STD) under high-frequency neuronal stimulation and slow synaptic vesicle recycling. Electrophysiologic field excitatory postsynaptic potential (fEPSP) recordings were made from CA1 synapses in rat hippocampal slices loaded with BRV or LEV during intrinsic activity or with BRV actively loaded during hypertonic stimulation. STD was examined in response to 5 or 40 Hz stimulus trains. Presynaptic release of FM1-43 was visualized using two-photon microscopy to assess drug effects upon synaptic vesicle mobilization. When hippocampal slices were incubated in 0.1-30 μm BRV or 30 μm-1 mm LEV for 3 h, the relative CA1 field EPSPs decreased over the course of a high-frequency train of stimuli more than for control slices. This STD was frequency- and concentration-dependent, with BRV being 100-fold more potent than LEV. The extent of STD depended on the length of the incubation time for both drugs. Pretreatment with LEV occluded the effects of BRV. Repeated hypertonic sucrose treatments and train stimulation successfully unloaded BRV from recycling vesicles and reversed BRVs effects on STD, as previously reported for LEV. At their maximal concentrations, BRV slowed FM1-43 release to a greater extent than in slices loaded with LEV during prolonged stimulation. BRV, similar to LEV, entered into recycling synaptic vesicles and produced a frequency-dependent decrement of synaptic transmission at 100-fold lower concentrations than LEV. In addition, BRV slowed synaptic vesicle mobilization more effectively than LEV, suggesting that these drugs may modify multiple functions of the synaptic vesicle protein SV2A to curb synaptic transmission and limit epileptic activity. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  10. Reactivation of stalled polyribosomes in synaptic plasticity

    PubMed Central

    Graber, Tyson E.; Hébert-Seropian, Sarah; Khoutorsky, Arkady; David, Alexandre; Yewdell, Jonathan W.; Lacaille, Jean-Claude; Sossin, Wayne S.

    2013-01-01

    Some forms of synaptic plasticity require rapid, local activation of protein synthesis. Although this is thought to reflect recruitment of mRNAs to free ribosomes, this would limit the speed and magnitude of translational activation. Here we provide compelling in situ evidence supporting an alternative model in which synaptic mRNAs are transported as stably paused polyribosomes. Remarkably, we show that metabotropic glutamate receptor activation allows the synthesis of proteins that lead to a functional long-term depression phenotype even when translation initiation has been greatly reduced. Thus, neurons evolved a unique mechanism to swiftly translate synaptic mRNAs into functional protein upon synaptic signaling using stalled polyribosomes to bypass the rate-limiting step of translation initiation. Because dysregulated plasticity is implicated in neurodevelopmental and psychiatric disorders such as fragile X syndrome, this work uncovers a unique translational target for therapies. PMID:24043809

  11. A Computational Analysis of Neural Mechanisms Underlying the Maturation of Multisensory Speech Integration in Neurotypical Children and Those on the Autism Spectrum

    PubMed Central

    Cuppini, Cristiano; Ursino, Mauro; Magosso, Elisa; Ross, Lars A.; Foxe, John J.; Molholm, Sophie

    2017-01-01

    Failure to appropriately develop multisensory integration (MSI) of audiovisual speech may affect a child's ability to attain optimal communication. Studies have shown protracted development of MSI into late-childhood and identified deficits in MSI in children with an autism spectrum disorder (ASD). Currently, the neural basis of acquisition of this ability is not well understood. Here, we developed a computational model informed by neurophysiology to analyze possible mechanisms underlying MSI maturation, and its delayed development in ASD. The model posits that strengthening of feedforward and cross-sensory connections, responsible for the alignment of auditory and visual speech sound representations in posterior superior temporal gyrus/sulcus, can explain behavioral data on the acquisition of MSI. This was simulated by a training phase during which the network was exposed to unisensory and multisensory stimuli, and projections were crafted by Hebbian rules of potentiation and depression. In its mature architecture, the network also reproduced the well-known multisensory McGurk speech effect. Deficits in audiovisual speech perception in ASD were well accounted for by fewer multisensory exposures, compatible with a lack of attention, but not by reduced synaptic connectivity or synaptic plasticity. PMID:29163099

  12. Burst-induced anti-Hebbian depression acts through short-term synaptic dynamics to cancel redundant sensory signals.

    PubMed

    Harvey-Girard, Erik; Lewis, John; Maler, Leonard

    2010-04-28

    Weakly electric fish can enhance the detection and localization of important signals such as those of prey in part by cancellation of redundant spatially diffuse electric signals due to, e.g., their tail bending. The cancellation mechanism is based on descending input, conveyed by parallel fibers emanating from cerebellar granule cells, that produces a negative image of the global low-frequency signals in pyramidal cells within the first-order electrosensory region, the electrosensory lateral line lobe (ELL). Here we demonstrate that the parallel fiber synaptic input to ELL pyramidal cell undergoes long-term depression (LTD) whenever both parallel fiber afferents and their target cells are stimulated to produce paired burst discharges. Paired large bursts (4-4) induce robust LTD over pre-post delays of up to +/-50 ms, whereas smaller bursts (2-2) induce weaker LTD. Single spikes (either presynaptic or postsynaptic) paired with bursts did not induce LTD. Tetanic presynaptic stimulation was also ineffective in inducing LTD. Thus, we have demonstrated a form of anti-Hebbian LTD that depends on the temporal correlation of burst discharge. We then demonstrated that the burst-induced LTD is postsynaptic and requires the NR2B subunit of the NMDA receptor, elevation of postsynaptic Ca(2+), and activation of CaMKIIbeta. A model incorporating local inhibitory circuitry and previously identified short-term presynaptic potentiation of the parallel fiber synapses further suggests that the combination of burst-induced LTD, presynaptic potentiation, and local inhibition may be sufficient to explain the generation of the negative image and cancellation of redundant sensory input by ELL pyramidal cells.

  13. Mechanisms of inert gas narcosis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Experiments describing the mechanism of inert gas narcosis are reported. A strain of mice, genetically altered to increase susceptibility to botulin poisoning (synaptic response) appears to increase metabolic rates while breathing argon; this infers a genetically altered synaptic response to both botulin toxin and narcotic gases. Studies of metabolic depression in human subjects breathing either air or a 30% mixture of nitrous oxide indicate that nitrous oxide narcosis does not produce pronounced metabolic depression. Tests on mice for relative susceptibilities to narcosis and oxygen poisoning as a function of fatty membrane composition show that alteration of the fatty acid composition of phospholipids increases resistance to metabolically depressant effects of argon but bas no effect on nitrous oxide narcosis. Another study suggests that acclimatization to low tension prior to high pressure oxygen treatment enhances susceptibility of mice to convulsions and death; developing biochemical lesions cause CNS metabolite reductions and pulmonary damage.

  14. Sequential neuromodulation of Hebbian plasticity offers mechanism for effective reward-based navigation

    PubMed Central

    Brzosko, Zuzanna; Zannone, Sara; Schultz, Wolfram

    2017-01-01

    Spike timing-dependent plasticity (STDP) is under neuromodulatory control, which is correlated with distinct behavioral states. Previously, we reported that dopamine, a reward signal, broadens the time window for synaptic potentiation and modulates the outcome of hippocampal STDP even when applied after the plasticity induction protocol (Brzosko et al., 2015). Here, we demonstrate that sequential neuromodulation of STDP by acetylcholine and dopamine offers an efficacious model of reward-based navigation. Specifically, our experimental data in mouse hippocampal slices show that acetylcholine biases STDP toward synaptic depression, whilst subsequent application of dopamine converts this depression into potentiation. Incorporating this bidirectional neuromodulation-enabled correlational synaptic learning rule into a computational model yields effective navigation toward changing reward locations, as in natural foraging behavior. Thus, temporally sequenced neuromodulation of STDP enables associations to be made between actions and outcomes and also provides a possible mechanism for aligning the time scales of cellular and behavioral learning. DOI: http://dx.doi.org/10.7554/eLife.27756.001 PMID:28691903

  15. Group 1 mGluR-dependent synaptic long-term depression (mGluR-LTD): mechanisms and implications for circuitry & disease

    PubMed Central

    Lüscher, Christian; Huber, Kimberly M.

    2010-01-01

    Many excitatory synapses express Group 1, or Gq coupled, metabotropic glutamate receptors (Gp1 mGluRs) at the periphery of their postsynaptic density. Activation of Gp1 mGluRs typically occurs in response to strong activity and triggers long-term plasticity of synaptic transmission in many brain regions including the neocortex, hippocampus, midbrain, striatum and cerebellum. Here we focus on mGluR-induced long-term synaptic depression (LTD) and review the literature that implicates Gp1 mGluRs in the plasticity of behavior, learning and memory. Moreover, recent studies investigating the molecular mechanisms of mGluR-LTD have discovered links to mental retardation, autism, Alzheimer’s disease, Parkinson’s disease and drug addiction. We discuss how mGluRs lead to plasticity of neural circuits and how the understanding of the molecular mechanisms of mGluR plasticity provides insight into brain disease. PMID:20188650

  16. miR-191 and miR-135 are required for long-lasting spine remodelling associated with synaptic long-term depression

    NASA Astrophysics Data System (ADS)

    Hu, Zhonghua; Yu, Danni; Gu, Qin-Hua; Yang, Yanqin; Tu, Kang; Zhu, Jun; Li, Zheng

    2014-02-01

    Activity-dependent modification of dendritic spines, subcellular compartments accommodating postsynaptic specializations in the brain, is an important cellular mechanism for brain development, cognition and synaptic pathology of brain disorders. NMDA receptor-dependent long-term depression (NMDAR-LTD), a prototypic form of synaptic plasticity, is accompanied by prolonged remodelling of spines. The mechanisms underlying long-lasting spine remodelling in NMDAR-LTD, however, are largely unclear. Here we show that LTD induction causes global changes in miRNA transcriptomes affecting many cellular activities. Specifically, we show that expression changes of miR-191 and miR-135 are required for maintenance but not induction of spine restructuring. Moreover, we find that actin depolymerization and AMPA receptor exocytosis are regulated for extended periods of time by miRNAs to support long-lasting spine plasticity. These findings reveal a miRNA-mediated mechanism and a role for AMPA receptor exocytosis in long-lasting spine plasticity, and identify a number of candidate miRNAs involved in LTD.

  17. Priming of Short-Term Potentiation and Synaptic Tagging/Capture Mechanisms by Ryanodine Receptor Activation in Rat Hippocampal CA1

    ERIC Educational Resources Information Center

    Sajikumar, Sreedharan; Li, Qin; Abraham, Wickliffe C.; Xiao, Zhi Cheng

    2009-01-01

    Activity-dependent changes in synaptic strength such as long-term potentiation (LTP) and long-term depression (LTD) are considered to be cellular mechanisms underlying learning and memory. Strengthening of a synapse for a few seconds or minutes is termed short-term potentiation (STP) and is normally unable to take part in the processes of synaptic…

  18. The eIF2a Kinase PERK Limits the Expression of Hippocampal Metabotropic Glutamate Receptor-Dependent Long-Term Depression

    ERIC Educational Resources Information Center

    Trinh, Mimi A.; Ma, Tao; Kaphzan, Hanoch; Bhattacharya, Aditi; Antion, Marcia D.; Cavener, Douglas R.; Hoeffer, Charles A.; Klann, Eric

    2014-01-01

    The proper regulation of translation is required for the expression of long-lasting synaptic plasticity. A major site of translational control involves the phosphorylation of eukaryotic initiation factor 2 a (eIF2a) by PKR-like endoplasmic reticulum (ER) kinase (PERK). To determine the role of PERK in hippocampal synaptic plasticity, we used the…

  19. The impact of short term synaptic depression and stochastic vesicle dynamics on neuronal variability

    PubMed Central

    Reich, Steven

    2014-01-01

    Neuronal variability plays a central role in neural coding and impacts the dynamics of neuronal networks. Unreliability of synaptic transmission is a major source of neural variability: synaptic neurotransmitter vesicles are released probabilistically in response to presynaptic action potentials and are recovered stochastically in time. The dynamics of this process of vesicle release and recovery interacts with variability in the arrival times of presynaptic spikes to shape the variability of the postsynaptic response. We use continuous time Markov chain methods to analyze a model of short term synaptic depression with stochastic vesicle dynamics coupled with three different models of presynaptic spiking: one model in which the timing of presynaptic action potentials are modeled as a Poisson process, one in which action potentials occur more regularly than a Poisson process (sub-Poisson) and one in which action potentials occur more irregularly (super-Poisson). We use this analysis to investigate how variability in a presynaptic spike train is transformed by short term depression and stochastic vesicle dynamics to determine the variability of the postsynaptic response. We find that sub-Poisson presynaptic spiking increases the average rate at which vesicles are released, that the number of vesicles released over a time window is more variable for smaller time windows than larger time windows and that fast presynaptic spiking gives rise to Poisson-like variability of the postsynaptic response even when presynaptic spike times are non-Poisson. Our results complement and extend previously reported theoretical results and provide possible explanations for some trends observed in recorded data. PMID:23354693

  20. Synaptic plasticity modulates autonomous transitions between waking and sleep states: Insights from a Morris-Lecar model

    NASA Astrophysics Data System (ADS)

    Ciszak, Marzena; Bellesi, Michele

    2011-12-01

    The transitions between waking and sleep states are characterized by considerable changes in neuronal firing. During waking, neurons fire tonically at irregular intervals and a desynchronized activity is observed at the electroencephalogram. This activity becomes synchronized with slow wave sleep onset when neurons start to oscillate between periods of firing (up-states) and periods of silence (down-states). Recently, it has been proposed that the connections between neurons undergo potentiation during waking, whereas they weaken during slow wave sleep. Here, we propose a dynamical model to describe basic features of the autonomous transitions between such states. We consider a network of coupled neurons in which the strength of the interactions is modulated by synaptic long term potentiation and depression, according to the spike time-dependent plasticity rule (STDP). The model shows that the enhancement of synaptic strength between neurons occurring in waking increases the propensity of the network to synchronize and, conversely, desynchronization appears when the strength of the connections become weaker. Both transitions appear spontaneously, but the transition from sleep to waking required a slight modification of the STDP rule with the introduction of a mechanism which becomes active during sleep and changes the proportion between potentiation and depression in accordance with biological data. At the neuron level, transitions from desynchronization to synchronization and vice versa can be described as a bifurcation between two different states, whose dynamical regime is modulated by synaptic strengths, thus suggesting that transition from a state to an another can be determined by quantitative differences between potentiation and depression.

  1. Dynamics of Multiple Trafficking Behaviors of Individual Synaptic Vesicles Revealed by Quantum-Dot Based Presynaptic Probe

    PubMed Central

    Lee, Suho; Jung, Kyung Jin; Jung, Hyun Suk; Chang, Sunghoe

    2012-01-01

    Although quantum dots (QDs) have provided invaluable information regarding the diffusive behaviors of postsynaptic receptors, their application in presynaptic terminals has been rather limited. In addition, the diffraction-limited nature of the presynaptic bouton has hampered detailed analyses of the behaviors of synaptic vesicles (SVs) at synapses. Here, we created a quantum-dot based presynaptic probe and characterized the dynamic behaviors of individual SVs. As previously reported, the SVs exhibited multiple exchanges between neighboring boutons. Actin disruption induced a dramatic decrease in the diffusive behaviors of SVs at synapses while microtubule disruption only reduced extrasynaptic mobility. Glycine-induced synaptic potentiation produced significant increases in synaptic and inter-boutonal trafficking of SVs, which were NMDA receptor- and actin-dependent while NMDA-induced synaptic depression decreased the mobility of the SVs at synapses. Together, our results show that sPH-AP-QD revealed previously unobserved trafficking properties of SVs around synapses, and the dynamic modulation of SV mobility could regulate presynaptic efficacy during synaptic activity. PMID:22666444

  2. Neuronal and Astrocytic Monoacylglycerol Lipase Limit the Spread of Endocannabinoid Signaling in the Cerebellum.

    PubMed

    Chen, Yao; Liu, Xiaojie; Vickstrom, Casey R; Liu, Michelle J; Zhao, Li; Viader, Andreu; Cravatt, Benjamin F; Liu, Qing-Song

    2016-01-01

    Endocannabinoids are diffusible lipophilic molecules that may spread to neighboring synapses. Monoacylglycerol lipase (MAGL) is the principal enzyme that degrades the endocannabinoid 2-arachidonoylglycerol (2-AG). Using knock-out mice in which MAGL is deleted globally or selectively in neurons and astrocytes, we investigated the extent to which neuronal and astrocytic MAGL limit the spread of 2-AG-mediated retrograde synaptic depression in cerebellar slices. A brief tetanic stimulation of parallel fibers in the molecular layer induced synaptically evoked suppression of excitation (SSE) in Purkinje cells, and both neuronal and astrocytic MAGL contribute to the termination of this form of endocannabinoid-mediated synaptic depression. The spread of SSE among Purkinje cells occurred only after global knock-out of MAGL or pharmacological blockade of either MAGL or glutamate uptake, but no spread was detected following neuron- or astrocyte-specific deletion of MAGL. The spread of endocannabinoid signaling was also influenced by the spatial pattern of synaptic stimulation, because it did not occur at spatially dispersed parallel fiber synapses induced by stimulating the granular layer. The tetanic stimulation of parallel fibers did not induce endocannabinoid-mediated synaptic suppression in Golgi cells even after disruption of MAGL and glutamate uptake, suggesting that heightened release of 2-AG by Purkinje cells does not spread the retrograde signal to parallel fibers that innervate Golgi cells. These results suggest that both neuronal and astrocytic MAGL limit the spatial diffusion of 2-AG and confer synapse-specificity of endocannabinoid signaling.

  3. Dopaminergic neurotransmission dysfunction induced by amyloid-β transforms cortical long-term potentiation into long-term depression and produces memory impairment.

    PubMed

    Moreno-Castilla, Perla; Rodriguez-Duran, Luis F; Guzman-Ramos, Kioko; Barcenas-Femat, Alejandro; Escobar, Martha L; Bermudez-Rattoni, Federico

    2016-05-01

    Alzheimer's disease (AD) is a neurodegenerative condition manifested by synaptic dysfunction and memory loss, but the mechanisms underlying synaptic failure are not entirely understood. Although dopamine is a key modulator of synaptic plasticity, dopaminergic neurotransmission dysfunction in AD has mostly been associated to noncognitive symptoms. Thus, we aimed to study the relationship between dopaminergic neurotransmission and synaptic plasticity in AD models. We used a transgenic model of AD (triple-transgenic mouse model of AD) and the administration of exogenous amyloid-β (Aβ) oligomers into wild type mice. We found that Aβ decreased cortical dopamine levels and converted in vivo long-term potentiation (LTP) into long-term depression (LTD) after high-frequency stimulation delivered at basolateral amygdaloid nucleus-insular cortex projection, which led to impaired recognition memory. Remarkably, increasing cortical dopamine and norepinephrine levels rescued both high-frequency stimulation -induced LTP and memory, whereas depletion of catecholaminergic levels mimicked the Aβ-induced shift from LTP to LTD. Our results suggest that Aβ-induced dopamine depletion is a core mechanism underlying the early synaptopathy and memory alterations observed in AD models and acts by modifying the threshold for the induction of cortical LTP and/or LTD. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Synaptic release and extracellular actions of Zn2+ limit propagation of spreading depression and related events in vitro and in vivo

    PubMed Central

    Aiba, Isamu; Carlson, Andrew P.; Sheline, Christian T.

    2012-01-01

    Cortical spreading depression (CSD) is a consequence of a slowly propagating wave of neuronal and glial depolarization (spreading depolarization; SD). Massive release of glutamate contributes to SD propagation, and it was recently shown that Zn2+ is also released from synaptic vesicles during SD. The present study examined consequences of extracellular Zn2+ accumulation on the propagation of SD. SD mechanisms were studied first in murine brain slices, using focal KCl applications as stimuli and making electrical and optical recordings in hippocampal area CA1. Elevating extracellular Zn2+ concentrations with exogenous ZnCl2 reduced SD propagation rates. Selective chelation of endogenous Zn2+ (using TPEN or CaEDTA) increased SD propagation rates, and these effects appeared due to chelation of Zn2+ derived from synaptic vesicles. Thus, in tissues where synaptic Zn2+ release was absent [knockout (KO) of vesicular Zn2+ transporter ZnT-3], SD propagation rates were increased, and no additional increase was observed following chelation of endogenous Zn2+ in these tissues. The role of synaptic Zn2+ was then examined on CSD in vivo. ZnT-3 KO animals had higher susceptibility to CSD than wild-type controls as evidenced by significantly higher propagation rates and frequencies. Studies of candidate mechanisms excluded changes in neuronal excitability, presynaptic release, and GABA receptors but left open a possible contribution of N-methyl-d-aspartate (NMDA) receptor inhibition. These results suggest the extracellular accumulation of synaptically released Zn2+ can serve as an intrinsic inhibitor to limit SD events. The inhibitory action of extracellular Zn2+ on SD may counteract to some extent the neurotoxic effects of intracellular Zn2+ accumulation in acute brain injury models. PMID:22131381

  5. Synaptic release and extracellular actions of Zn2+ limit propagation of spreading depression and related events in vitro and in vivo.

    PubMed

    Aiba, Isamu; Carlson, Andrew P; Sheline, Christian T; Shuttleworth, C William

    2012-02-01

    Cortical spreading depression (CSD) is a consequence of a slowly propagating wave of neuronal and glial depolarization (spreading depolarization; SD). Massive release of glutamate contributes to SD propagation, and it was recently shown that Zn(2+) is also released from synaptic vesicles during SD. The present study examined consequences of extracellular Zn(2+) accumulation on the propagation of SD. SD mechanisms were studied first in murine brain slices, using focal KCl applications as stimuli and making electrical and optical recordings in hippocampal area CA1. Elevating extracellular Zn(2+) concentrations with exogenous ZnCl(2) reduced SD propagation rates. Selective chelation of endogenous Zn(2+) (using TPEN or CaEDTA) increased SD propagation rates, and these effects appeared due to chelation of Zn(2+) derived from synaptic vesicles. Thus, in tissues where synaptic Zn(2+) release was absent [knockout (KO) of vesicular Zn(2+) transporter ZnT-3], SD propagation rates were increased, and no additional increase was observed following chelation of endogenous Zn(2+) in these tissues. The role of synaptic Zn(2+) was then examined on CSD in vivo. ZnT-3 KO animals had higher susceptibility to CSD than wild-type controls as evidenced by significantly higher propagation rates and frequencies. Studies of candidate mechanisms excluded changes in neuronal excitability, presynaptic release, and GABA receptors but left open a possible contribution of N-methyl-d-aspartate (NMDA) receptor inhibition. These results suggest the extracellular accumulation of synaptically released Zn(2+) can serve as an intrinsic inhibitor to limit SD events. The inhibitory action of extracellular Zn(2+) on SD may counteract to some extent the neurotoxic effects of intracellular Zn(2+) accumulation in acute brain injury models.

  6. Genetic deletion of melanin-concentrating hormone neurons impairs hippocampal short-term synaptic plasticity and hippocampal-dependent forms of short-term memory.

    PubMed

    Le Barillier, Léa; Léger, Lucienne; Luppi, Pierre-Hervé; Fort, Patrice; Malleret, Gaël; Salin, Paul-Antoine

    2015-11-01

    The cognitive role of melanin-concentrating hormone (MCH) neurons, a neuronal population located in the mammalian postero-lateral hypothalamus sending projections to all cortical areas, remains poorly understood. Mainly activated during paradoxical sleep (PS), MCH neurons have been implicated in sleep regulation. The genetic deletion of the only known MCH receptor in rodent leads to an impairment of hippocampal dependent forms of memory and to an alteration of hippocampal long-term synaptic plasticity. By using MCH/ataxin3 mice, a genetic model characterized by a selective deletion of MCH neurons in the adult, we investigated the role of MCH neurons in hippocampal synaptic plasticity and hippocampal-dependent forms of memory. MCH/ataxin3 mice exhibited a deficit in the early part of both long-term potentiation and depression in the CA1 area of the hippocampus. Post-tetanic potentiation (PTP) was diminished while synaptic depression induced by repetitive stimulation was enhanced suggesting an alteration of pre-synaptic forms of short-term plasticity in these mice. Behaviorally, MCH/ataxin3 mice spent more time and showed a higher level of hesitation as compared to their controls in performing a short-term memory T-maze task, displayed retardation in acquiring a reference memory task in a Morris water maze, and showed a habituation deficit in an open field task. Deletion of MCH neurons could thus alter spatial short-term memory by impairing short-term plasticity in the hippocampus. Altogether, these findings could provide a cellular mechanism by which PS may facilitate memory encoding. Via MCH neuron activation, PS could prepare the day's learning by increasing and modulating short-term synaptic plasticity in the hippocampus. © 2015 Wiley Periodicals, Inc.

  7. Elevation of synaptic protein is associated with the antidepressant-like effects of ferulic acid in a chronic model of depression.

    PubMed

    Liu, Ya-Min; Hu, Chun-Yue; Shen, Ji-Duo; Wu, Su-Hui; Li, Yu-Cheng; Yi, Li-Tao

    2017-02-01

    Ferulic acid is a hydroxycinnamic acid that widely presents in plant cell wall components. It has been demonstrated that ferulic acid can reverse depressive-like behaviors in both forced swimming test and tail suspension test. However, it is unclear whether chronic ferulic acid treatment can ameliorate the depressive-like behaviors in chronic unpredictable mild stress (CUMS). Because of the putative relationship between neurotrophic system and antidepressant-like activity, we also investigated the effects of chronic ferulic acid on the brain-derived neurotrophic factor (BDNF), postsynaptic protein PSD95, presynaptic protein synapsin I in both prefrontal cortex and hippocampus. The results showed that ferulic acid significantly alleviated CUMS-induced depressive-like behaviors in sucrose preference test and forced swimming test. In addition, ferulic acid significantly up-regulated the levels of BDNF, PSD95 and synapsin I in the prefrontal cortex and hippocampus. The present data indicated that ferulic acid exerted the antidepressant-like effects on behaviors by increasing neurotrophin-related synaptic protein levels in CUMS mice. Copyright © 2016. Published by Elsevier Inc.

  8. 'It's the way that you look at it'--a cognitive neuropsychological account of SSRI action in depression.

    PubMed

    Harmer, Catherine J; Cowen, Philip J

    2013-01-01

    The fact that selective serotonin reuptake inhibitors (SSRIs) have antidepressant effects in some patients supports the notion that serotonin plays a role in the mode of action of antidepressant drugs. However, neither the way in which serotonin may alleviate depressed mood  nor the reason why several weeks needs to elapse before the full antidepressant effect of treatment is expressed  is known. Here, we propose a neuropsychological theory of SSRI antidepressant action based on the ability of SSRIs to produce positive biases in the processing of emotional information. Both behavioural and neuroimaging studies show that SSRI administration produces positive biases in attention, appraisal and memory from the earliest stages of treatment, well before the time that clinical improvement in mood becomes apparent. We suggest that the delay in the clinical effect of SSRIs can be explained by the time needed for this positive bias in implicit emotional processing to become apparent at a subjective, conscious level. This process is likely to involve the re-learning of emotional associations in a new, more positive emotional environment. This suggests intriguing links between the effect of SSRIs to promote synaptic plasticity and neurogenesis, and their ability to remediate negative emotional biases in depressed patients.

  9. Hippocampal ripples down-regulate synapses.

    PubMed

    Norimoto, Hiroaki; Makino, Kenichi; Gao, Mengxuan; Shikano, Yu; Okamoto, Kazuki; Ishikawa, Tomoe; Sasaki, Takuya; Hioki, Hiroyuki; Fujisawa, Shigeyoshi; Ikegaya, Yuji

    2018-03-30

    The specific effects of sleep on synaptic plasticity remain unclear. We report that mouse hippocampal sharp-wave ripple oscillations serve as intrinsic events that trigger long-lasting synaptic depression. Silencing of sharp-wave ripples during slow-wave states prevented the spontaneous down-regulation of net synaptic weights and impaired the learning of new memories. The synaptic down-regulation was dependent on the N -methyl-d-aspartate receptor and selective for a specific input pathway. Thus, our findings are consistent with the role of slow-wave states in refining memory engrams by reducing recent memory-irrelevant neuronal activity and suggest a previously unrecognized function for sharp-wave ripples. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Diversity of neuropsin (KLK8)-dependent synaptic associativity in the hippocampal pyramidal neuron

    PubMed Central

    Ishikawa, Yasuyuki; Tamura, Hideki; Shiosaka, Sadao

    2011-01-01

    Abstract Hippocampal early (E-) long-term potentiation (LTP) and long-term depression (LTD) elicited by a weak stimulus normally fades within 90 min. Late (L-) LTP and LTD elicited by strong stimuli continue for >180 min and require new protein synthesis to persist. If a strong tetanus is applied once to synaptic inputs, even a weak tetanus applied to another synaptic input can evoke persistent LTP. A synaptic tag is hypothesized to enable the capture of newly synthesized synaptic molecules. This process, referred to as synaptic tagging, is found between not only the same processes (i.e. E- and L-LTP; E- and L-LTD) but also between different processes (i.e. E-LTP and L-LTD; E-LTD and L-LTP) induced at two independent synaptic inputs (cross-tagging). However, the mechanisms of synaptic tag setting remain unclear. In our previous study, we found that synaptic associativity in the hippocampal Schaffer collateral pathway depended on neuropsin (kallikrein-related peptidase 8 or KLK8), a plasticity-related extracellular protease. In the present study, we investigated how neuropsin participates in synaptic tagging and cross-tagging. We report that neuropsin is involved in synaptic tagging during LTP at basal and apical dendritic inputs. Moreover, neuropsin is involved in synaptic tagging and cross-tagging during LTP at apical dendritic inputs via integrin β1 and calcium/calmodulin-dependent protein kinase II signalling. Thus, neuropsin is a candidate molecule for the LTP-specific tag setting and regulates the transformation of E- to L-LTP during both synaptic tagging and cross-tagging. PMID:21646406

  11. Calmodulin activity regulates group I metabotropic glutamate receptor-mediated signal transduction and synaptic depression.

    PubMed

    Sethna, Ferzin; Zhang, Ming; Kaphzan, Hanoch; Klann, Eric; Autio, Dawn; Cox, Charles L; Wang, Hongbing

    2016-05-01

    Group I metabotropic glutamate receptors (mGluR), including mGluR1 and mGluR 5 (mGluR1/5), are coupled to Gq and modulate activity-dependent synaptic plasticity. Direct activation of mGluR1/5 causes protein translation-dependent long-term depression (LTD). Although it has been established that intracellular Ca(2+) and the Gq-regulated signaling molecules are required for mGluR1/5 LTD, whether and how Ca(2+) regulates Gq signaling and upregulation of protein expression remain unknown. Through pharmacological inhibition, we tested the function of the Ca(2+) sensor calmodulin (CaM) in intracellular signaling triggered by the activation of mGluR1/5. CaM inhibitor N-[4-aminobutyl]-5-chloro-2-naphthalenesulfonamide hydrochloride (W13) suppressed the mGluR1/5-stimulated activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and p70-S6 kinase 1 (S6K1) in hippocampal neurons. W13 also blocked the mGluR1/5 agonist-induced synaptic depression in hippocampal slices and in anesthetized mice. Consistent with the function of CaM, inhibiting the downstream targets Ca(2+) /CaM-dependent protein kinases (CaMK) blocked ERK1/2 and S6K1 activation. Furthermore, disruption of the CaM-CaMK-ERK1/2 signaling cascade suppressed the mGluR1/5-stimulated upregulation of Arc expression. Altogether, our data suggest CaM as a new Gq signaling component for coupling Ca(2+) and protein upregulation and regulating mGluR1/5-mediated synaptic modification. © 2016 Wiley Periodicals, Inc.

  12. Zinc signaling in the hippocampus and its relation to pathogenesis of depression.

    PubMed

    Takeda, Atsushi

    2012-06-01

    Histochemically reactive zinc (Zn(2+)) is co-released with glutamate from zincergic neurons, a subclass of glutamatergic neurons. Zn(2+) serves as a signal factor in both the extracellular and intracellular compartments. Glucocorticoid-glutamatergic interactions have been proposed as a potential model to explain stress-mediated impairment of hippocampal function, i.e., cognition. However, it is unknown whether glucocorticoid-zincergic interactions are involved in this impairment. In the present study, involvement of synaptic Zn(2+) in stress-induced attenuation of CA1 LTP was examined in hippocampal slices from young rats after exposure to tail suspension stress for 30s, which significantly increased serum corticosterone. Stress-induced attenuation of CA1 LTP was ameliorated by administration of clioquinol, a membrane permeable zinc chelator, to rats prior to exposure to stress, implying that the reduction of synaptic Zn(2+) by clioquinol participates in this amelioration. To pursue the involvement of corticosterone-mediated Zn(2+) signal in the attenuated CA1 LTP by stress, dynamics of synaptic Zn(2+) was checked in hippocampal slices exposed to corticosterone. Corticosterone increased extracellular Zn(2+) levels measured with ZnAF-2 dose-dependently, as well as the intracellular Ca(2+) levels measured with calcium orange AM, suggesting that corticosterone excites zincergic neurons in the hippocampus and increases Zn(2+) release from the neuron terminals. Intracellular Zn(2+) levels measured with ZnAF-2DA were also increased dose-dependently, but not in the coexistence of CaEDTA, a membrane-impermeable zinc chelator, suggesting that intracellular Zn(2+) levels is increased by the influx of extracellular Zn(2+). Furthermore, corticosterone-induced attenuation of CA1 LTP was abolished in the coexistence of CaEDTA. The present study suggests that corticosterone-mediated increase in postsynaptic Zn(2+) signal in the cytosolic compartment is involved in the attenuation of CA1 LTP after exposure to acute stress. We propose that corticosterone-mediated increase in postsynaptic Zn(2+) signal, which is induced by acute stress, changes hippocampal function and then is possibly a risk factor under chronic stress circumstances to induce depressive symptoms. Copyright © 2012 Elsevier GmbH. All rights reserved.

  13. Roles of somatic A-type K(+) channels in the synaptic plasticity of hippocampal neurons.

    PubMed

    Yang, Yoon-Sil; Kim, Kyeong-Deok; Eun, Su-Yong; Jung, Sung-Cherl

    2014-06-01

    In the mammalian brain, information encoding and storage have been explained by revealing the cellular and molecular mechanisms of synaptic plasticity at various levels in the central nervous system, including the hippocampus and the cerebral cortices. The modulatory mechanisms of synaptic excitability that are correlated with neuronal tasks are fundamental factors for synaptic plasticity, and they are dependent on intracellular Ca(2+)-mediated signaling. In the present review, the A-type K(+) (IA) channel, one of the voltage-dependent cation channels, is considered as a key player in the modulation of Ca(2+) influx through synaptic NMDA receptors and their correlated signaling pathways. The cellular functions of IA channels indicate that they possibly play as integral parts of synaptic and somatic complexes, completing the initiation and stabilization of memory.

  14. Associative, Bidirectional Changes in Neural Signaling Utilizing NMDA Receptor- and Endocannabinoid-Dependent Mechanisms

    ERIC Educational Resources Information Center

    Li, Qin; Burrell, Brian D.

    2011-01-01

    Persistent, bidirectional changes in synaptic signaling (that is, potentiation and depression of the synapse) can be induced by the precise timing of individual pre- and postsynaptic action potentials. However, far less attention has been paid to the ability of paired trains of action potentials to elicit persistent potentiation or depression. We…

  15. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics

    PubMed Central

    Rozov, A; Burnashev, N; Sakmann, B; Neher, E

    2001-01-01

    In connections formed by nerve terminals of layer 2/3 pyramidal cells onto bitufted interneurones in young (postnatal day (P)14–15) rat somatosensory cortex, the efficacy and reliability of synaptic transmission were low. At these connections release was facilitated by paired-pulse stimulation (at 10 Hz). In connections formed by terminals of layer 2/3 pyramids with multipolar interneurones efficacy and reliability were high and release was depressed by paired-pulse stimulation. In both types of terminal, however, the voltage-dependent Ca2+ channels that controlled transmitter release were predominantly of the P/Q- and N-subtypes. The relationship between unitary EPSP amplitude and extracellular calcium concentration ([Ca2+]o) was steeper for facilitating than for depressing terminals. Fits to a Hill equation with nH= 4 indicated that the apparent KD of the Ca2+ sensor for vesicle release was two- to threefold lower in depressing terminals than in facilitating ones. Intracellular loading of pyramidal neurones with the fast and slowly acting Ca2+ buffers BAPTA and EGTA differentially reduced transmitter release in these two types of terminal. Unitary EPSPs evoked by pyramidal cell stimulation in bitufted cells were reduced by presynaptic BAPTA and EGTA with half-effective concentrations of ∼0.1 and ∼1 mm, respectively. Unitary EPSPs evoked in multipolar cells were reduced to one-half of control at higher concentrations of presynaptic BAPTA and EGTA (∼0.5 and ∼7 mm, respectively). Frequency-dependent facilitation of EPSPs in bitufted cells was abolished by EGTA at concentrations of > 0.2 mm, suggesting that accumulation of free Ca2+ is essential for facilitation in the terminals contacting bitufted cells. In contrast, facilitation was unaffected or even slightly increased in the terminals loaded with BAPTA in the concentration range 0.02–0.5 mm. This is attributed to partial saturation of exogenously added BAPTA. However, BAPTA at concentrations > 1 mm also abolished facilitation. Frequency-dependent depression of EPSPs in multipolar cells was not significantly reduced by EGTA. With BAPTA, the depression decreased at concentrations > 0.5 mm, concomitant with a reduction in amplitude of the first EPSP in a train. An analysis is presented that interprets the effects of EGTA and BAPTA on synaptic efficacy and its short-term modification during paired-pulse stimulation in terms of changes in [Ca2+] at the release site ([Ca2+]RS) and that infers the affinity of the Ca2+ sensor from the dependence of unitary EPSPs on [Ca2+]o. The results suggest that the target cell-specific difference in release from the terminals on bitufted or multipolar cells can be explained by a longer diffusional distance between Ca2+ channels and release sites and/or lower Ca2+ channels density in the terminals that contact bitufted cells. This would lead to a lower [Ca2+] at release sites and would also explain the higher apparent KD of the Ca2+ sensor in facilitating terminals. PMID:11251060

  16. The ubiquitin-proteasome system is necessary for long-term synaptic depression in Aplysia.

    PubMed

    Fioravante, Diasinou; Liu, Rong-Yu; Byrne, John H

    2008-10-08

    The neuropeptide Phe-Met-Arg-Phe-NH(2) (FMRFa) can induce transcription-dependent long-term synaptic depression (LTD) in Aplysia sensorimotor synapses. We investigated the role of the ubiquitin-proteasome system and the regulation of one of its components, ubiquitin C-terminal hydrolase (ap-uch), in LTD. LTD was sensitive to presynaptic inhibition of the proteasome and was associated with upregulation of ap-uch mRNA and protein. This upregulation appeared to be mediated by CREB2, which is generally regarded as a transcription repressor. Binding of CREB2 to the promoter region of ap-uch was accompanied by histone hyperacetylation, suggesting that CREB2 cannot only inhibit but also promote gene expression. CREB2 was phosphorylated after FMRFa, and blocking phospho-CREB2 blocked LTD. In addition to changes in the expression of ap-uch, the synaptic vesicle-associated protein synapsin was downregulated in LTD in a proteasome-dependent manner. These results suggest that proteasome-mediated protein degradation is engaged in LTD and that CREB2 may act as a transcription activator under certain conditions.

  17. Kindling alters entorhinal cortex-hippocampal interaction by increased efficacy of presynaptic GABA(B) autoreceptors in layer III of the entorhinal cortex.

    PubMed

    Gloveli, Tengis; Behr, Joachim; Dugladze, Tamar; Kokaia, Zaal; Kokaia, Merab; Heinemann, Uwe

    2003-08-01

    We studied the effect of kindling, a model of temporal lobe epilepsy, on the frequency-dependent information transfer from the entorhinal cortex to the hippocampus in vitro. In control rats repetitive synaptic activation of layer III projection cells resulted in a frequency dependent depression of the synaptic transfer of action potentials to the hippocampus. One-to-two-days after kindling this effect was strongly reduced. Although no substantial change in synaptic inhibition upon single electrical stimulation was detected in kindled rats, there was a significant depression in the prolonged inhibition following high frequency stimulation. In kindled animals, paired-pulse depression (PPD) of stimulus-evoked IPSCs in layer III neurons was significantly stronger than in control rats. The increase of PPD is most likely caused by an increased presynaptic GABA(B) receptor-mediated autoinhibition. In kindled animals activation of presynaptic GABA(B) receptors by baclofen (10 microM) suppressed monosynaptic IPSCs significantly more than in control rats. In contrast, activation of postsynaptic GABA(B) receptors by baclofen was accompanied by comparable changes of the membrane conductance in both animal groups. Thus, in kindled animals activation of the layer III-CA1 pathway is facilitated by an increased GABA(B) receptor-mediated autoinhibition leading to an enhanced activation of the monosynaptic EC-CA1 pathway.

  18. The Influence of Synaptic Weight Distribution on Neuronal Population Dynamics

    PubMed Central

    Buice, Michael; Koch, Christof; Mihalas, Stefan

    2013-01-01

    The manner in which different distributions of synaptic weights onto cortical neurons shape their spiking activity remains open. To characterize a homogeneous neuronal population, we use the master equation for generalized leaky integrate-and-fire neurons with shot-noise synapses. We develop fast semi-analytic numerical methods to solve this equation for either current or conductance synapses, with and without synaptic depression. We show that its solutions match simulations of equivalent neuronal networks better than those of the Fokker-Planck equation and we compute bounds on the network response to non-instantaneous synapses. We apply these methods to study different synaptic weight distributions in feed-forward networks. We characterize the synaptic amplitude distributions using a set of measures, called tail weight numbers, designed to quantify the preponderance of very strong synapses. Even if synaptic amplitude distributions are equated for both the total current and average synaptic weight, distributions with sparse but strong synapses produce higher responses for small inputs, leading to a larger operating range. Furthermore, despite their small number, such synapses enable the network to respond faster and with more stability in the face of external fluctuations. PMID:24204219

  19. Long-term Treatment with Oriental Medicinal Herb Artemisia princeps Alters Neuroplasticity in a Rat Model of Ovarian Hormone Deficiency.

    PubMed

    Kim, Hyun-Bum; Kwon, Byeong-Jae; Cho, Hyun-Ji; Kim, Ji-Won; Chon, Jeong-Woo; Do, Moon-Ho; Park, Sang-Yong; Kim, Sun-Yeou; Maeng, Sung-Ho; Park, Yoo-Kyoung; Park, Ji-Ho

    2015-03-01

    Artemisia princeps (AP) is a flowering perennial used as a traditional medicine and dietary supplement across East Asia. No study has yet assessed its effects on synaptic plasticity in hippocampus and much less in a model of ovarian hormone deficiency. We examined the influence of chronic oral AP ethanol extract treatment in ovariectomized rats on the induction of long-term depression in a representative synapse (CA3-CA1) of the hippocampus. Ovariectomized rats demonstrated lower trabecular mean bone mineral densities than sham, validating the establishment of pathology. Against this background of pathology, AP-treated ovariectomized rats exhibited attenuated long-term depression (LTD) in CA1 relative to water-treated controls as measured by increased field excitatory post-synaptic potentials (fEPSP) activation averages over the post-stimulation period. While pathological significance of long-term depression (LTD) in ovariectomized rats is conflicting, that AP treatment significantly affected its induction offers justification for further study of its influences on plasticity and its related disorders.

  20. Correlations induced by depressing synapses in critically self-organized networks with quenched dynamics

    NASA Astrophysics Data System (ADS)

    Campos, João Guilherme Ferreira; Costa, Ariadne de Andrade; Copelli, Mauro; Kinouchi, Osame

    2017-04-01

    In a recent work, mean-field analysis and computer simulations were employed to analyze critical self-organization in networks of excitable cellular automata where randomly chosen synapses in the network were depressed after each spike (the so-called annealed dynamics). Calculations agree with simulations of the annealed version, showing that the nominal branching ratio σ converges to unity in the thermodynamic limit, as expected of a self-organized critical system. However, the question remains whether the same results apply to the biological case where only the synapses of firing neurons are depressed (the so-called quenched dynamics). We show that simulations of the quenched model yield significant deviations from σ =1 due to spatial correlations. However, the model is shown to be critical, as the largest eigenvalue of the synaptic matrix approaches unity in the thermodynamic limit, that is, λc=1 . We also study the finite size effects near the critical state as a function of the parameters of the synaptic dynamics.

  1. Attractor neural networks with resource-efficient synaptic connectivity

    NASA Astrophysics Data System (ADS)

    Pehlevan, Cengiz; Sengupta, Anirvan

    Memories are thought to be stored in the attractor states of recurrent neural networks. Here we explore how resource constraints interplay with memory storage function to shape synaptic connectivity of attractor networks. We propose that given a set of memories, in the form of population activity patterns, the neural circuit choses a synaptic connectivity configuration that minimizes a resource usage cost. We argue that the total synaptic weight (l1-norm) in the network measures the resource cost because synaptic weight is correlated with synaptic volume, which is a limited resource, and is proportional to neurotransmitter release and post-synaptic current, both of which cost energy. Using numerical simulations and replica theory, we characterize optimal connectivity profiles in resource-efficient attractor networks. Our theory explains several experimental observations on cortical connectivity profiles, 1) connectivity is sparse, because synapses are costly, 2) bidirectional connections are overrepresented and 3) are stronger, because attractor states need strong recurrence.

  2. Synaptic behaviors of thin-film transistor with a Pt/HfO x /n-type indium-gallium-zinc oxide gate stack.

    PubMed

    Yang, Paul; Park, Daehoon; Beom, Keonwon; Kim, Hyung Jun; Kang, Chi Jung; Yoon, Tae-Sik

    2018-07-20

    We report a variety of synaptic behaviors in a thin-film transistor (TFT) with a metal-oxide-semiconductor gate stack that has a Pt/HfO x /n-type indium-gallium-zinc oxide (n-IGZO) structure. The three-terminal synaptic TFT exhibits a tunable synaptic weight with a drain current modulation upon repeated application of gate and drain voltages. The synaptic weight modulation is analog, voltage-polarity dependent reversible, and strong with a dynamic range of multiple orders of magnitude (>10 4 ). This modulation process emulates biological synaptic potentiation, depression, excitatory-postsynaptic current, paired-pulse facilitation, and short-term to long-term memory transition behaviors as a result of repeated pulsing with respect to the pulse amplitude, width, repetition number, and the interval between pulses. These synaptic behaviors are interpreted based on the changes in the capacitance of the Pt/HfO x /n-IGZO gate stack, the channel mobility, and the threshold voltage that result from the redistribution of oxygen ions by the applied gate voltage. These results demonstrate the potential of this structure for three-terminal synaptic transistor using the gate stack composed of the HfO x gate insulator and the IGZO channel layer.

  3. Synaptic transistor with a reversible and analog conductance modulation using a Pt/HfOx/n-IGZO memcapacitor

    NASA Astrophysics Data System (ADS)

    Yang, Paul; Kim, Hyung Jun; Zheng, Hong; Beom, Geon Won; Park, Jong-Sung; Kang, Chi Jung; Yoon, Tae-Sik

    2017-06-01

    A synaptic transistor emulating the biological synaptic motion is demonstrated using the memcapacitance characteristics in a Pt/HfOx/n-indium-gallium-zinc-oxide (IGZO) memcapacitor. First, the metal-oxide-semiconductor (MOS) capacitor with Pt/HfOx/n-IGZO structure exhibits analog, polarity-dependent, and reversible memcapacitance in capacitance-voltage (C-V), capacitance-time (C-t), and voltage-pulse measurements. When a positive voltage is applied repeatedly to the Pt electrode, the accumulation capacitance increases gradually and sequentially. The depletion capacitance also increases consequently. The capacitances are restored by repeatedly applying a negative voltage, confirming the reversible memcapacitance. The analog and reversible memcapacitance emulates the potentiation and depression synaptic motions. The synaptic thin-film transistor (TFT) with this memcapacitor also shows the synaptic motion with gradually increasing drain current by repeatedly applying the positive gate and drain voltages and reversibly decreasing one by applying the negative voltages, representing synaptic weight modulation. The reversible and analog conductance change in the transistor at both the voltage sweep and pulse operations is obtained through the memcapacitance and threshold voltage shift at the same time. These results demonstrate the synaptic transistor operations with a MOS memcapacitor gate stack consisting of Pt/HfOx/n-IGZO.

  4. Synaptic transistor with a reversible and analog conductance modulation using a Pt/HfOx/n-IGZO memcapacitor.

    PubMed

    Yang, Paul; Jun Kim, Hyung; Zheng, Hong; Won Beom, Geon; Park, Jong-Sung; Jung Kang, Chi; Yoon, Tae-Sik

    2017-06-02

    A synaptic transistor emulating the biological synaptic motion is demonstrated using the memcapacitance characteristics in a Pt/HfOx/n-indium-gallium-zinc-oxide (IGZO) memcapacitor. First, the metal-oxide-semiconductor (MOS) capacitor with Pt/HfOx/n-IGZO structure exhibits analog, polarity-dependent, and reversible memcapacitance in capacitance-voltage (C-V), capacitance-time (C-t), and voltage-pulse measurements. When a positive voltage is applied repeatedly to the Pt electrode, the accumulation capacitance increases gradually and sequentially. The depletion capacitance also increases consequently. The capacitances are restored by repeatedly applying a negative voltage, confirming the reversible memcapacitance. The analog and reversible memcapacitance emulates the potentiation and depression synaptic motions. The synaptic thin-film transistor (TFT) with this memcapacitor also shows the synaptic motion with gradually increasing drain current by repeatedly applying the positive gate and drain voltages and reversibly decreasing one by applying the negative voltages, representing synaptic weight modulation. The reversible and analog conductance change in the transistor at both the voltage sweep and pulse operations is obtained through the memcapacitance and threshold voltage shift at the same time. These results demonstrate the synaptic transistor operations with a MOS memcapacitor gate stack consisting of Pt/HfOx/n-IGZO.

  5. Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice.

    PubMed

    Ardiles, Alvaro O; Flores-Muñoz, Carolina; Toro-Ayala, Gabriela; Cárdenas, Ana M; Palacios, Adrian G; Muñoz, Pablo; Fuenzalida, Marco; Sáez, Juan C; Martínez, Agustín D

    2014-01-01

    The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca(2+) concentration and NMDA receptor (NMDAR) composition of GluN2 subunits. Pannexin 1 (Panx1), a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP), it remains unknown whether these channels also modulate long-term depression (LTD) or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory.

  6. Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice

    PubMed Central

    Ardiles, Alvaro O.; Flores-Muñoz, Carolina; Toro-Ayala, Gabriela; Cárdenas, Ana M.; Palacios, Adrian G.; Muñoz, Pablo; Fuenzalida, Marco; Sáez, Juan C.; Martínez, Agustín D.

    2014-01-01

    The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca2+ concentration and NMDA receptor (NMDAR) composition of GluN2 subunits. Pannexin 1 (Panx1), a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP), it remains unknown whether these channels also modulate long-term depression (LTD) or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory. PMID:25360084

  7. Synaptic behaviors of thin-film transistor with a Pt/HfO x /n-type indium–gallium–zinc oxide gate stack

    NASA Astrophysics Data System (ADS)

    Yang, Paul; Park, Daehoon; Beom, Keonwon; Kim, Hyung Jun; Kang, Chi Jung; Yoon, Tae-Sik

    2018-07-01

    We report a variety of synaptic behaviors in a thin-film transistor (TFT) with a metal-oxide-semiconductor gate stack that has a Pt/HfO x /n-type indium–gallium–zinc oxide (n-IGZO) structure. The three-terminal synaptic TFT exhibits a tunable synaptic weight with a drain current modulation upon repeated application of gate and drain voltages. The synaptic weight modulation is analog, voltage-polarity dependent reversible, and strong with a dynamic range of multiple orders of magnitude (>104). This modulation process emulates biological synaptic potentiation, depression, excitatory-postsynaptic current, paired-pulse facilitation, and short-term to long-term memory transition behaviors as a result of repeated pulsing with respect to the pulse amplitude, width, repetition number, and the interval between pulses. These synaptic behaviors are interpreted based on the changes in the capacitance of the Pt/HfO x /n-IGZO gate stack, the channel mobility, and the threshold voltage that result from the redistribution of oxygen ions by the applied gate voltage. These results demonstrate the potential of this structure for three-terminal synaptic transistor using the gate stack composed of the HfO x gate insulator and the IGZO channel layer.

  8. Clinical Findings Documenting Cellular and Molecular Abnormalities of Glia in Depressive Disorders

    PubMed Central

    Czéh, Boldizsár; Nagy, Szilvia A.

    2018-01-01

    Depressive disorders are complex, multifactorial mental disorders with unknown neurobiology. Numerous theories aim to explain the pathophysiology. According to the “gliocentric theory”, glial abnormalities are responsible for the development of the disease. The aim of this review article is to summarize the rapidly growing number of cellular and molecular evidences indicating disturbed glial functioning in depressive disorders. We focus here exclusively on the clinical studies and present the in vivo neuroimaging findings together with the postmortem molecular and histopathological data. Postmortem studies demonstrate glial cell loss while the in vivo imaging data reveal disturbed glial functioning and altered white matter microstructure. Molecular studies report on altered gene expression of glial specific genes. In sum, the clinical findings provide ample evidences on glial pathology and demonstrate that all major glial cell types are affected. However, we still lack convincing theories explaining how the glial abnormalities develop and how exactly contribute to the emotional and cognitive disturbances. Abnormal astrocytic functioning may lead to disturbed metabolism affecting ion homeostasis and glutamate clearance, which in turn, affect synaptic communication. Abnormal oligodendrocyte functioning may disrupt the connectivity of neuronal networks, while microglial activation indicates neuroinflammatory processes. These cellular changes may relate to each other or they may indicate different endophenotypes. A theory has been put forward that the stress-induced inflammation—mediated by microglial activation—triggers a cascade of events leading to damaged astrocytes and oligodendroglia and consequently to their dysfunctions. The clinical data support the “gliocentric” theory, but future research should clarify whether these glial changes are truly the cause or simply the consequences of this devastating disorder. PMID:29535607

  9. Modelling the formation of working memory with networks of integrate-and-fire neurons connected by plastic synapses.

    PubMed

    Del Giudice, Paolo; Fusi, Stefano; Mattia, Maurizio

    2003-01-01

    In this paper we review a series of works concerning models of spiking neurons interacting via spike-driven, plastic, Hebbian synapses, meant to implement stimulus driven, unsupervised formation of working memory (WM) states. Starting from a summary of the experimental evidence emerging from delayed matching to sample (DMS) experiments, we briefly review the attractor picture proposed to underlie WM states. We then describe a general framework for a theoretical approach to learning with synapses subject to realistic constraints and outline some general requirements to be met by a mechanism of Hebbian synaptic structuring. We argue that a stochastic selection of the synapses to be updated allows for optimal memory storage, even if the number of stable synaptic states is reduced to the extreme (bistable synapses). A description follows of models of spike-driven synapses that implement the stochastic selection by exploiting the high irregularity in the pre- and post-synaptic activity. Reasons are listed why dynamic learning, that is the process by which the synaptic structure develops under the only guidance of neural activities, driven in turn by stimuli, is hard to accomplish. We provide a 'feasibility proof' of dynamic formation of WM states in this context the beneficial role of short-term depression (STD) is illustrated. by showing how an initially unstructured network autonomously develops a synaptic structure supporting simultaneously stable spontaneous and WM states in this context the beneficial role of short-term depression (STD) is illustrated. After summarizing heuristic indications emerging from the study performed, we conclude by briefly discussing open problems and critical issues still to be clarified.

  10. Synaptic Basis for Whisker Deprivation-Induced Synaptic Depression in Rat Somatosensory Cortex

    PubMed Central

    Bender, Kevin J.; Allen, Cara B.; Bender, Vanessa A.; Feldman, Daniel E.

    2011-01-01

    Whisker deprivation weakens excitatory layer 4 (L4) inputs to L2/3 pyramidal cells in rat primary somatosensory (S1) cortex, which is likely to contribute to whisker map plasticity. This weakening has been proposed to represent long-term depression (LTD) induced by sensory deprivation in vivo. Here, we studied the synaptic expression mechanisms for deprivation-induced weakening of L4-L2/3 inputs and assessed its similarity to LTD, which is known to be expressed presynaptically at L4-L2/3 synapses. Whisker deprivation increased the paired pulse ratio at L4-L2/3 synapses and slowed the use-dependent block of NMDA receptor currents by MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate], indicating that deprivation reduced transmitter release probability at these synapses. In contrast, deprivation did not alter either miniature EPSC amplitude in L2/3 neurons or the amplitude of quantal L4-L2/3 synaptic responses measured in strontium, indicating that postsynaptic responsiveness was unchanged. In young postnatal day 12 (P12) rats, at least 4 d of deprivation were required to significantly weaken L4-L2/3 synapses. Similar weakening occurred when deprivation began at older ages (P20), when synapses are mostly mature, indicating that weakening is unlikely to represent a failure of synaptic maturation but instead represents a reduction in the strength of existing synapses. Thus, whisker deprivation weakens L4-L2/3 synapses by decreasing presynaptic function, similar to known LTD mechanisms at this synapse. PMID:16624936

  11. Theory of optimal balance predicts and explains the amplitude and decay time of synaptic inhibition

    PubMed Central

    Kim, Jaekyung K.; Fiorillo, Christopher D.

    2017-01-01

    Synaptic inhibition counterbalances excitation, but it is not known what constitutes optimal inhibition. We previously proposed that perfect balance is achieved when the peak of an excitatory postsynaptic potential (EPSP) is exactly at spike threshold, so that the slightest variation in excitation determines whether a spike is generated. Using simulations, we show that the optimal inhibitory postsynaptic conductance (IPSG) increases in amplitude and decay rate as synaptic excitation increases from 1 to 800 Hz. As further proposed by theory, we show that optimal IPSG parameters can be learned through anti-Hebbian rules. Finally, we compare our theoretical optima to published experimental data from 21 types of neurons, in which rates of synaptic excitation and IPSG decay times vary by factors of about 100 (5–600 Hz) and 50 (1–50 ms), respectively. From an infinite range of possible decay times, theory predicted experimental decay times within less than a factor of 2. Across a distinct set of 15 types of neuron recorded in vivo, theory predicted the amplitude of synaptic inhibition within a factor of 1.7. Thus, the theory can explain biophysical quantities from first principles. PMID:28281523

  12. Theory of optimal balance predicts and explains the amplitude and decay time of synaptic inhibition

    NASA Astrophysics Data System (ADS)

    Kim, Jaekyung K.; Fiorillo, Christopher D.

    2017-03-01

    Synaptic inhibition counterbalances excitation, but it is not known what constitutes optimal inhibition. We previously proposed that perfect balance is achieved when the peak of an excitatory postsynaptic potential (EPSP) is exactly at spike threshold, so that the slightest variation in excitation determines whether a spike is generated. Using simulations, we show that the optimal inhibitory postsynaptic conductance (IPSG) increases in amplitude and decay rate as synaptic excitation increases from 1 to 800 Hz. As further proposed by theory, we show that optimal IPSG parameters can be learned through anti-Hebbian rules. Finally, we compare our theoretical optima to published experimental data from 21 types of neurons, in which rates of synaptic excitation and IPSG decay times vary by factors of about 100 (5-600 Hz) and 50 (1-50 ms), respectively. From an infinite range of possible decay times, theory predicted experimental decay times within less than a factor of 2. Across a distinct set of 15 types of neuron recorded in vivo, theory predicted the amplitude of synaptic inhibition within a factor of 1.7. Thus, the theory can explain biophysical quantities from first principles.

  13. Anxiety and Depression: Mouse Genetics and Pharmacological Approaches to the Role of GABAA Receptor Subtypes

    PubMed Central

    Smith, Kiersten S.; Rudolph, Uwe

    2012-01-01

    GABAA receptors mediate fast synaptic inhibitory neurotransmission throughout the central nervous system. Recent work indicates a role for GABAA receptors in physiologically modulating anxiety and depression levels. In this review, we summarize research that led to the identification of the essential role of GABAA receptors in counteracting trait anxiety and depression-related behaviors, and research aimed at identifying individual GABAA receptor subtypes involved in physiological and pharmacological modulation of emotions. PMID:21810433

  14. Unpredictable chronic mild stress induces anxiety and depression-like behaviors and inactivates AMP-activated protein kinase in mice.

    PubMed

    Zhu, Shenghua; Wang, Junhui; Zhang, Yanbo; Li, Victor; Kong, Jiming; He, Jue; Li, Xin-Min

    2014-08-12

    The unpredictable chronic mild stress (UCMS) model was developed based upon the stress-diathesis hypothesis of depression. Most effects of UCMS can be reversed by antidepressants, demonstrating a strong predictive validity of this model for depression. However, the mechanisms underlying the effects induced by UCMS remain incompletely understood. Increasing evidence has shown that AMP-activated protein kinase (AMPK) regulates intracellular energy metabolism and is especially important for neurons because neurons are known to have small energy reserves. Abnormalities in the AMPK pathway disturb normal brain functions and synaptic integrity. In the present study, we first investigated the effects of UCMS on a battery of different tests measuring anxiety and depression-like behaviors in female C57BL/6N mice after 4 weeks of UCMS exposure. Stressed mice showed suppressed body weight gain, heightened anxiety, and increased immobility in the forced swim and tail suspension tests. These results are representative of some of the core symptoms of depression. Simultaneously, we observed decrease of synaptic proteins in the cortex of mice subjected to UCMS, which is associated with decreased levels of phosphorylated AMP-activated protein kinase α (AMPKα) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase). Our findings suggest that AMPKα inactivation might be a mechanism by which UCMS causes anxiety/depression-like behaviors in mice. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A General Model of Synaptic Transmission and Short-Term Plasticity

    PubMed Central

    Pan, Bin; Zucker, Robert S.

    2011-01-01

    SUMMARY Some synapses transmit strongly to action potentials (APs), but weaken with repeated activation; others transmit feebly at first, but strengthen with sustained activity. We measured synchronous and asynchronous transmitter release at “phasic” crayfish neuromuscular junctions (NMJs) showing depression and at facilitating “tonic” junctions, and define the kinetics of depression and facilitation. We offer a comprehensive model of presynaptic processes, encompassing mobilization of reserve vesicles, priming of docked vesicles, their association with Ca2+ channels, and refractoriness of release sites, while accounting for data on presynaptic buffers governing Ca2+ diffusion. Model simulations reproduce many experimentally defined aspects of transmission and plasticity at these synapses. Their similarity to vertebrate central synapses suggests that the model might be of general relevance to synaptic transmission. PMID:19477155

  16. Demonstration of Synaptic Behaviors and Resistive Switching Characterizations by Proton Exchange Reactions in Silicon Oxide

    PubMed Central

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Ting-Chang; Lee, Jack C.

    2016-01-01

    We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes. Minimal synaptic power consumption due to sneak-path current is achieved and the capability for spike-induced synaptic behaviors is demonstrated, representing critical milestones for the use of SiO2–based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation (LTP), long-term depression (LTD) and spike-timing dependent plasticity (STDP) are demonstrated systematically using a comprehensive analysis of spike-induced waveforms, and represent interesting potential applications for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from (SiH)2 to generate the hydrogen bridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with large-scale CMOS manufacturing technology. PMID:26880381

  17. Demonstration of Synaptic Behaviors and Resistive Switching Characterizations by Proton Exchange Reactions in Silicon Oxide

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Ting-Chang; Lee, Jack C.

    2016-02-01

    We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes. Minimal synaptic power consumption due to sneak-path current is achieved and the capability for spike-induced synaptic behaviors is demonstrated, representing critical milestones for the use of SiO2-based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation (LTP), long-term depression (LTD) and spike-timing dependent plasticity (STDP) are demonstrated systematically using a comprehensive analysis of spike-induced waveforms, and represent interesting potential applications for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from (SiH)2 to generate the hydrogen bridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with large-scale CMOS manufacturing technology.

  18. A synaptic device built in one diode-one resistor (1D-1R) architecture with intrinsic SiOx-based resistive switching memory

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Kuan-Chang; Tsai, Tsung-Ming; Chang, Ting-Chang; Sze, Simon M.; Lee, Jack C.

    2016-04-01

    We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes to further minimize total synaptic power consumption due to sneak-path currents and demonstrate the capability for spike-induced synaptic behaviors, representing critical milestones for the use of SiO2-based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation, long-term depression, and spike-timing dependent plasticity are demonstrated systemically with comprehensive investigation of spike waveform analyses and represent a potential application for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from the (SiH)2 defect to generate the hydrogenbridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with largescale complementary metal-oxide semiconductor manufacturing technology.

  19. Stabilization of memory States by stochastic facilitating synapses.

    PubMed

    Miller, Paul

    2013-12-06

    Bistability within a small neural circuit can arise through an appropriate strength of excitatory recurrent feedback. The stability of a state of neural activity, measured by the mean dwelling time before a noise-induced transition to another state, depends on the neural firing-rate curves, the net strength of excitatory feedback, the statistics of spike times, and increases exponentially with the number of equivalent neurons in the circuit. Here, we show that such stability is greatly enhanced by synaptic facilitation and reduced by synaptic depression. We take into account the alteration in times of synaptic vesicle release, by calculating distributions of inter-release intervals of a synapse, which differ from the distribution of its incoming interspike intervals when the synapse is dynamic. In particular, release intervals produced by a Poisson spike train have a coefficient of variation greater than one when synapses are probabilistic and facilitating, whereas the coefficient of variation is less than one when synapses are depressing. However, in spite of the increased variability in postsynaptic input produced by facilitating synapses, their dominant effect is reduced synaptic efficacy at low input rates compared to high rates, which increases the curvature of neural input-output functions, leading to wider regions of bistability in parameter space and enhanced lifetimes of memory states. Our results are based on analytic methods with approximate formulae and bolstered by simulations of both Poisson processes and of circuits of noisy spiking model neurons.

  20. Forced neuronal interactions cause poor communication.

    PubMed

    Krzisch, Marine; Toni, Nicolas

    2017-01-01

    Post-natal hippocampal neurogenesis plays a role in hippocampal function, and neurons born post-natally participate to spatial memory and mood control. However, a great proportion of granule neurons generated in the post-natal hippocampus are eliminated during the first 3 weeks of their maturation, a mechanism that depends on their synaptic integration. In a recent study, we examined the possibility of enhancing the synaptic integration of neurons born post-natally, by specifically overexpressing synaptic cell adhesion molecules in these cells. Synaptic cell adhesion molecules are transmembrane proteins mediating the physical connection between pre- and post-synaptic neurons at the synapse, and their overexpression enhances synapse formation. Accordingly, we found that overexpressing synaptic adhesion molecules increased the synaptic integration and survival of newborn neurons. Surprisingly, the synaptic adhesion molecule with the strongest effect on new neurons' survival, Neuroligin-2A, decreased memory performances in a water maze task. We present here hypotheses explaining these surprising results, in the light of the current knowledge of the mechanisms of synaptic integration of new neurons in the post-natal hippocampus.

  1. Effects of estradiol on learned helplessness and associated remodeling of hippocampal spine synapses in female rats.

    PubMed

    Hajszan, Tibor; Szigeti-Buck, Klara; Sallam, Nermin L; Bober, Jeremy; Parducz, Arpad; Maclusky, Neil J; Leranth, Csaba; Duman, Ronald S

    2010-01-15

    Despite the fact that women are twice as likely to develop depression as men, our understanding of depression neurobiology in female subjects is limited. We have recently reported in male rats that development of helpless behavior is associated with a severe loss of hippocampal spine synapses, which is reversed by treatment with the antidepressant desipramine. Considering that estradiol has a hippocampal synaptogenic effect similar to those of antidepressants, the presence of estradiol during the female reproductive life might influence behavioral and synaptic responses to stress and depression. With electron microscopic stereology, we analyzed hippocampal spine synapses in association with helpless behavior in ovariectomized female rats (n = 70), under different conditions of estradiol exposure. Stress induced an acute and persistent loss of hippocampal spine synapses, whereas subchronic treatment with desipramine reversed the stress-induced synaptic loss. Estradiol supplementation given either before stress or before escape testing of nonstressed animals increased the number of hippocampal spine synapses. Correlation analysis demonstrated a statistically significant negative correlation between the severity of helpless behavior and hippocampal spine synapse numbers. These findings suggest that hippocampal spine synapse remodeling might be a critical factor underlying learned helplessness and, possibly, the neurobiology of depression.

  2. Changes in cortical N-methyl-D-aspartate receptors and post-synaptic density protein 95 in schizophrenia, mood disorders and suicide.

    PubMed

    Dean, Brian; Gibbons, Andrew S; Boer, Simone; Uezato, Akihito; Meador-Woodruff, James; Scarr, Elizabeth; McCullumsmith, Robert E

    2016-03-01

    In humans, depending on dose, blocking the N-methyl-D-aspartate receptor (NMDAR) with ketamine can cause psychomimetic or antidepressant effects. The overall outcome for drugs such as ketamine depends on dose and the number of its available binding sites in the central nervous system, and to understand something of the latter variable we measure NMDAR in the frontal pole, dorsolateral prefrontal, anterior cingulate and parietal cortices from people with schizophrenia, bipolar disorder, major depressive disorders and age/sex matched controls. We measured levels of NMDARs (using [(3)H]MK-801 binding) and NMDAR sub-unit mRNAs (GRINs: using in situ hybridisation) as well as post-synaptic density protein 95 (anterior cingulate cortex only; not major depressive disorders: an NMDAR post-synaptic associated protein) in bipolar disorder, schizophrenia and controls. Compared to controls, levels of NMDAR were lower in the outer laminae of the dorsolateral prefrontal cortex (-17%, p = 0.01) in people with schizophrenia. In bipolar disorder, levels of NMDAR binding (laminae IV-VI; -19%, p < 0.01) and GRIN2C mRNA (laminae I-VI; -27%, p < 0.05) were lower in the anterior cingulate cortex and NMDAR binding was lower in the outer lamina IV of the dorsolateral prefrontal cortex (-19%, p < 0.01). In major depressive disorders, levels of GRIN2D mRNA were higher in frontal pole (+22%, p < 0.05). In suicide completers, levels of GRIN2B mRNA were higher in parietal cortex (+20%, p < 0.01) but lower (-35%, p = 0.02) in dorsolateral prefrontal cortex while post-synaptic density protein 95 was higher (+26%, p < 0.05) in anterior cingulate cortex. These data suggest that differences in cortical NMDAR expression and post-synaptic density protein 95 are present in psychiatric disorders and suicide completion and may contribute to different responses to ketamine. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  3. Restoring mood balance in depression: ketamine reverses deficit in dopamine-dependent synaptic plasticity.

    PubMed

    Belujon, Pauline; Grace, Anthony A

    2014-12-15

    One of the most novel and exciting findings in major depressive disorder research over the last decade is the discovery of the fast-acting and long-lasting antidepressant effects of ketamine. Indeed, the therapeutic effects of classic antidepressants, such as selective serotonin reuptake inhibitors, require a month or longer to be expressed, with about a third of major depressive disorder patients resistant to treatment. Clinical studies have shown that a low dose of ketamine exhibits fast-acting relatively sustained antidepressant action, even in treatment-resistant patients. However, the mechanisms of ketamine action at a systems level remain unclear. Wistar-Kyoto rats were exposed to inescapable, uncontrollable footshocks. To evaluate learned helplessness behavior, we used an active avoidance task in a shuttle box equipped with an electrical grid floor. After helplessness assessment, we performed in vivo electrophysiological recordings first from ventral tegmental area dopaminergic (DA) neurons and second from accumbens neurons responsive to fimbria stimulation. Ketamine was injected and tested on helpless behavior and electrophysiological recordings. We show that ketamine is able to restore the integrity of a network by acting on the DA system and restoring synaptic dysfunction observed in stress-induced depression. We show that part of the antidepressant effect of ketamine is via the DA system. Indeed, injection of ketamine restores a decreased dopamine neuron population activity, as well as synaptic plasticity (long-term potentiation) in the hippocampus-accumbens pathway, via, in part, activation of D1 receptors. This work provides a unique systems perspective on the mechanisms of ketamine on a disrupted limbic system. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Bidirectional Homeostatic Regulation of a Depression-Related Brain State by Gamma-Aminobutyric Acidergic Deficits and Ketamine Treatment.

    PubMed

    Ren, Zhen; Pribiag, Horia; Jefferson, Sarah J; Shorey, Matthew; Fuchs, Thomas; Stellwagen, David; Luscher, Bernhard

    2016-09-15

    Major depressive disorder is increasingly recognized to involve functional deficits in both gamma-aminobutyric acid (GABA)ergic and glutamatergic synaptic transmission. To elucidate the relationship between these phenotypes, we used GABAA receptor γ2 subunit heterozygous (γ2(+/-)) mice, which we previously characterized as a model animal with construct, face, and predictive validity for major depressive disorder. To assess possible consequences of GABAergic deficits on glutamatergic transmission, we quantitated the cell surface expression of N-methyl-D-aspartate (NMDA)-type and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors and the function of synapses in the hippocampus and medial prefrontal cortex of γ2(+/-) mice. We also analyzed the effects of an acute dose of the experimental antidepressant ketamine on all these parameters in γ2(+/-) versus wild-type mice. Modest defects in GABAergic synaptic transmission of γ2(+/-) mice resulted in a strikingly prominent homeostatic-like reduction in the cell surface expression of NMDA-type and AMPA-type glutamate receptors, along with prominent functional impairment of glutamatergic synapses in the hippocampus and medial prefrontal cortex. A single subanesthetic dose of ketamine normalized glutamate receptor expression and synaptic function of γ2(+/-) mice to wild-type levels for a prolonged period, along with antidepressant-like behavioral consequences selectively in γ2(+/-) mice. The GABAergic synapses of γ2(+/-) mice were potentiated by ketamine in parallel but only in the medial prefrontal cortex. Depressive-like brain states that are caused by GABAergic deficits involve a homeostatic-like reduction of glutamatergic transmission that is reversible by an acute, subanesthetic dose of ketamine, along with regionally selective potentiation of GABAergic synapses. The data merge the GABAergic and glutamatergic deficit hypotheses of major depressive disorder. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Neuronal activity determines distinct gliotransmitter release from a single astrocyte

    PubMed Central

    Covelo, Ana

    2018-01-01

    Accumulating evidence indicates that astrocytes are actively involved in brain function by regulating synaptic activity and plasticity. Different gliotransmitters, such as glutamate, ATP, GABA or D-serine, released form astrocytes have been shown to induce different forms of synaptic regulation. However, whether a single astrocyte may release different gliotransmitters is unknown. Here we show that mouse hippocampal astrocytes activated by endogenous (neuron-released endocannabinoids or GABA) or exogenous (single astrocyte Ca2+ uncaging) stimuli modulate putative single CA3-CA1 hippocampal synapses. The astrocyte-mediated synaptic modulation was biphasic and consisted of an initial glutamate-mediated potentiation followed by a purinergic-mediated depression of neurotransmitter release. The temporal dynamic properties of this biphasic synaptic regulation depended on the firing frequency and duration of the neuronal activity that stimulated astrocytes. Present results indicate that single astrocytes can decode neuronal activity and, in response, release distinct gliotransmitters to differentially regulate neurotransmission at putative single synapses. PMID:29380725

  6. Dynamical model of long-term synaptic plasticity

    PubMed Central

    Abarbanel, Henry D. I.; Huerta, R.; Rabinovich, M. I.

    2002-01-01

    Long-term synaptic plasticity leading to enhancement in synaptic efficacy (long-term potentiation, LTP) or decrease in synaptic efficacy (long-term depression, LTD) is widely regarded as underlying learning and memory in nervous systems. LTP and LTD at excitatory neuronal synapses are observed to be induced by precise timing of pre- and postsynaptic events. Modification of synaptic transmission in long-term plasticity is a complex process involving many pathways; for example, it is also known that both forms of synaptic plasticity can be induced by various time courses of Ca2+ introduction into the postsynaptic cell. We present a phenomenological description of a two-component process for synaptic plasticity. Our dynamical model reproduces the spike time-dependent plasticity of excitatory synapses as a function of relative timing between pre- and postsynaptic events, as observed in recent experiments. The model accounts for LTP and LTD when the postsynaptic cell is voltage clamped and depolarized (LTP) or hyperpolarized (LTD) and no postsynaptic action potentials are evoked. We are also able to connect our model with the Bienenstock, Cooper, and Munro rule. We give model predictions for changes in synaptic strength when periodic spike trains of varying frequency and Poisson distributed spike trains with varying average frequency are presented pre- and postsynaptically. When the frequency of spike presentation exceeds ≈30–40 Hz, only LTP is induced. PMID:12114531

  7. Cell-Specific Activity-Dependent Fractionation of Layer 2/3→5B Excitatory Signaling in Mouse Auditory Cortex

    PubMed Central

    Joshi, Ankur; Middleton, Jason W.; Anderson, Charles T.; Borges, Katharine; Suter, Benjamin A.; Shepherd, Gordon M. G.

    2015-01-01

    Auditory cortex (AC) layer 5B (L5B) contains both corticocollicular neurons, a type of pyramidal-tract neuron projecting to the inferior colliculus, and corticocallosal neurons, a type of intratelencephalic neuron projecting to contralateral AC. Although it is known that these neuronal types have distinct roles in auditory processing and different response properties to sound, the synaptic and intrinsic mechanisms shaping their input–output functions remain less understood. Here, we recorded in brain slices of mouse AC from retrogradely labeled corticocollicular and neighboring corticocallosal neurons in L5B. Corticocollicular neurons had, on average, lower input resistance, greater hyperpolarization-activated current (Ih), depolarized resting membrane potential, faster action potentials, initial spike doublets, and less spike-frequency adaptation. In paired recordings between single L2/3 and labeled L5B neurons, the probabilities of connection, amplitude, latency, rise time, and decay time constant of the unitary EPSC were not different for L2/3→corticocollicular and L2/3→corticocallosal connections. However, short trains of unitary EPSCs showed no synaptic depression in L2/3→corticocollicular connections, but substantial depression in L2/3→corticocallosal connections. Synaptic potentials in L2/3→corticocollicular connections decayed faster and showed less temporal summation, consistent with increased Ih in corticocollicular neurons, whereas synaptic potentials in L2/3→corticocallosal connections showed more temporal summation. Extracellular L2/3 stimulation at two different rates resulted in spiking in L5B neurons; for corticocallosal neurons the spike rate was frequency dependent, but for corticocollicular neurons it was not. Together, these findings identify cell-specific intrinsic and synaptic mechanisms that divide intracortical synaptic excitation from L2/3 to L5B into two functionally distinct pathways with different input–output functions. PMID:25698747

  8. β-Adrenergic Control of Hippocampal Function: Subserving the Choreography of Synaptic Information Storage and Memory

    PubMed Central

    Hagena, Hardy; Hansen, Niels; Manahan-Vaughan, Denise

    2016-01-01

    Noradrenaline (NA) is a key neuromodulator for the regulation of behavioral state and cognition. It supports learning by increasing arousal and vigilance, whereby new experiences are “earmarked” for encoding. Within the hippocampus, experience-dependent information storage occurs by means of synaptic plasticity. Furthermore, novel spatial, contextual, or associative learning drives changes in synaptic strength, reflected by the strengthening of long-term potentiation (LTP) or long-term depression (LTD). NA acting on β-adrenergic receptors (β-AR) is a key determinant as to whether new experiences result in persistent hippocampal synaptic plasticity. This can even dictate the direction of change of synaptic strength. The different hippocampal subfields play different roles in encoding components of a spatial representation through LTP and LTD. Strikingly, the sensitivity of synaptic plasticity in these subfields to β-adrenergic control is very distinct (dentate gyrus > CA3 > CA1). Moreover, NA released from the locus coeruleus that acts on β-AR leads to hippocampal LTD and an enhancement of LTD-related memory processing. We propose that NA acting on hippocampal β-AR, that is graded according to the novelty or saliency of the experience, determines the content and persistency of synaptic information storage in the hippocampal subfields and therefore of spatial memories. PMID:26804338

  9. Nicotine Significantly Improves Chronic Stress-Induced Impairments of Cognition and Synaptic Plasticity in Mice.

    PubMed

    Shang, Xueliang; Shang, Yingchun; Fu, Jingxuan; Zhang, Tao

    2017-08-01

    The aim of this study was to examine if nicotine was able to improve cognition deficits in a mouse model of chronic mild stress. Twenty-four male C57BL/6 mice were divided into three groups: control, stress, and stress with nicotine treatment. The animal model was established by combining chronic unpredictable mild stress (CUMS) and isolated feeding. Mice were exposed to CUMS continued for 28 days, while nicotine (0.2 mg/kg) was also administrated for 28 days. Weight and sucrose consumption were measured during model establishing period. The anxiety and behavioral despair were analyzed using the forced swim test (FST) and open-field test (OFT). Spatial cognition was evaluated using Morris water maze (MWM) test. Following behavioral assessment, both long-term potentiation (LTP) and depotentiation (DEP) were recorded in the hippocampal dentate gyrus (DG) region. Both synaptic and Notch1 proteins were measured by Western. Nicotine increased stressed mouse's sucrose consumption. The MWM test showed that spatial learning and reversal learning in stressed animals were remarkably affected relative to controls, whereas nicotine partially rescued cognitive functions. Additionally, nicotine considerably alleviated the level of anxiety and the degree of behavioral despair in stressed mice. It effectively mitigated the depression-induced impairment of hippocampal synaptic plasticity, in which both the LTP and DEP were significantly inhibited in stressed mice. Moreover, nicotine enhanced the expression of synaptic and Notch1 proteins in stressed animals. The results suggest that nicotine ameliorates the depression-like symptoms and improves the hippocampal synaptic plasticity closely associated with activating transmembrane ion channel receptors and Notch signaling components. Graphical Abstract ᅟ.

  10. Memantine alters striatal plasticity inducing a shift of synaptic responses toward long-term depression.

    PubMed

    Mancini, Maria; Ghiglieri, Veronica; Bagetta, Vincenza; Pendolino, Valentina; Vannelli, Anna; Cacace, Fabrizio; Mineo, Desireé; Calabresi, Paolo; Picconi, Barbara

    2016-02-01

    Memantine is an open channel blocker that antagonizes NMDA receptors reducing the inappropriate calcium (Ca(2+)) influx occurring in presence of moderately increased glutamate levels. At the same time, memantine has the ability to preserve the transient physiological activation of NMDA receptor, essential for learning and memory formation at synaptic level. In the present study we investigated the effects exerted by memantine on striatal synaptic plasticity in rat striatal spiny projection neurons (SPNs). In vitro application of memantine in striatal slices elicited a disruption of long-term potentiation (LTP) induction and maintenance, and revealed, in the majority of the recorded neurons, a long-term depression (LTD), whose amplitude was concentration-dependent (0.3-10 μM). Interestingly, preincubation with the dopamine (DA) D2 receptor antagonist sulpiride (10 μM) prevented memantine-induced LTD and restored LTP. Moreover, the DA D2 agonist quinpirole (10 μM), similarly to memantine, induced LTD in a subgroup of SPNs. In addition, memantine-induced LTD was also prevented by the CB1 endocannabinoid receptor antagonist AM 251 (1 μM). These results suggest that the actions exerted by memantine on striatal synaptic plasticity, and in particular the induction of LTD observed in SPNs, could be attributed to its ability to activate DA D2 receptors. By contrast, blockade of NMDA receptor is not involved in memantine-induced LTD since APV (30 μM) and MK801 (10 μM), two NMDA receptor antagonists, failed to induce this form of synaptic plasticity. Our data indicate that memantine could be used as treatment of neurological disorders in which DA D2 receptor represents a possible therapeutic target. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Ketones prevent synaptic dysfunction induced by mitochondrial respiratory complex inhibitors

    PubMed Central

    Kim, Do Young; Vallejo, Johana; Rho, Jong M

    2010-01-01

    Abstract Ketones have previously shown beneficial effects in models of neurodegenerative disorders, particularly against associated mitochondrial dysfunction and cognitive impairment. However, evidence of a synaptic protective effect of ketones remains lacking. We tested the effects of ketones on synaptic impairment induced by mitochondrial respiratory complex (MRC) inhibitors using electrophysiological, reactive oxygen species (ROS) imaging and biochemical techniques. MRC inhibitors dose-dependently suppressed both population spike (PS) and field potential amplitudes in the CA1 hippocampus. Pre-treatment with ketones strongly prevented changes in the PS, whereas partial protection was seen in the field potential. Rotenone (Rot; 100 nmol/L), a MRC I inhibitor, suppressed synaptic function without altering ROS levels and PS depression by Rot was unaffected by antioxidants. In contrast, antioxidant-induced PS recovery against the MRC II inhibitor 3-nitropropionic acid (3-NP; 1 mmol/L) was similar to the synaptic protective effects of ketones. Ketones also suppressed ROS generation induced by 3-NP. Finally, ketones reversed the decreases in ATP levels caused by Rot and 3-NP. In summary, our data demonstrate that ketones can preserve synaptic function in CA1 hippocampus induced by MRC dysfunction, likely through an antioxidant action and enhanced ATP generation. PMID:20374433

  12. Death and rebirth of neural activity in sparse inhibitory networks

    NASA Astrophysics Data System (ADS)

    Angulo-Garcia, David; Luccioli, Stefano; Olmi, Simona; Torcini, Alessandro

    2017-05-01

    Inhibition is a key aspect of neural dynamics playing a fundamental role for the emergence of neural rhythms and the implementation of various information coding strategies. Inhibitory populations are present in several brain structures, and the comprehension of their dynamics is strategical for the understanding of neural processing. In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of neural activity, as expected, but can also promote neural re-activation. In particular, for globally coupled systems, the number of firing neurons monotonically reduces upon increasing the strength of inhibition (neuronal death). However, the random pruning of connections is able to reverse the action of inhibition, i.e. in a random sparse network a sufficiently strong synaptic strength can surprisingly promote, rather than depress, the activity of neurons (neuronal rebirth). Thus, the number of firing neurons reaches a minimum value at some intermediate synaptic strength. We show that this minimum signals a transition from a regime dominated by neurons with a higher firing activity to a phase where all neurons are effectively sub-threshold and their irregular firing is driven by current fluctuations. We explain the origin of the transition by deriving a mean field formulation of the problem able to provide the fraction of active neurons as well as the first two moments of their firing statistics. The introduction of a synaptic time scale does not modify the main aspects of the reported phenomenon. However, for sufficiently slow synapses the transition becomes dramatic, and the system passes from a perfectly regular evolution to irregular bursting dynamics. In this latter regime the model provides predictions consistent with experimental findings for a specific class of neurons, namely the medium spiny neurons in the striatum.

  13. Morvan's syndrome and the sustained absence of all sleep rhythms for months or years: An hypothesis.

    PubMed

    Touzet, Claude

    2016-09-01

    Despite the predation costs, sleep is ubiquitous in the animal realm. Humans spend a third of their life sleeping, and the quality of sleep has been related to co-morbidity, Alzheimer disease, etc. Excessive wakefulness induces rapid changes in cognitive performances, and it is claimed that one could die of sleep deprivation as quickly as by absence of water. In this context, the fact that a few people are able to go without sleep for months, even years, without displaying any cognitive troubles requires explanations. Theories ascribing sleep to memory consolidation are unable to explain such observations. It is not the case of the theory of sleep as the hebbian reinforcement of the inhibitory synapses (ToS-HRIS). Hebbian learning (Long Term Depression - LTD) guarantees that an efficient inhibitory synapse will lose its efficiency just because it is efficient at avoiding the activation of the post-synaptic neuron. This erosion of the inhibition is replenished by hebbian learning (Long Term Potentiation - LTP) when pre and post-synaptic neurons are active together - which is exactly what happens with the travelling depolarization waves of the slow-wave sleep (SWS). The best documented cases of months-long insomnia are reports of patients with Morvan's syndrome. This syndrome has an autoimmune cause that impedes - among many things - the potassium channels of the post-synaptic neurons, increasing LTP and decreasing LTD. We hypothesize that the absence of inhibitory efficiency erosion during wakefulness (thanks to a decrease of inhibitory LTD) is the cause for an absence of slow-wave sleep (SWS), which results also in the absence of REM sleep. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Long-term plasticity in identified hippocampal GABAergic interneurons in the CA1 area in vivo.

    PubMed

    Lau, Petrina Yau-Pok; Katona, Linda; Saghy, Peter; Newton, Kathryn; Somogyi, Peter; Lamsa, Karri P

    2017-05-01

    Long-term plasticity is well documented in synapses between glutamatergic principal cells in the cortex both in vitro and in vivo. Long-term potentiation (LTP) and -depression (LTD) have also been reported in glutamatergic connections to hippocampal GABAergic interneurons expressing parvalbumin (PV+) or nitric oxide synthase (NOS+) in brain slices, but plasticity in these cells has not been tested in vivo. We investigated synaptically-evoked suprathreshold excitation of identified hippocampal neurons in the CA1 area of urethane-anaesthetized rats. Neurons were recorded extracellularly with glass microelectrodes, and labelled with neurobiotin for anatomical analyses. Single-shock electrical stimulation of afferents from the contralateral CA1 elicited postsynaptic action potentials with monosynaptic features showing short delay (9.95 ± 0.41 ms) and small jitter in 13 neurons through the commissural pathway. Theta-burst stimulation (TBS) generated LTP of the synaptically-evoked spike probability in pyramidal cells, and in a bistratified cell and two unidentified fast-spiking interneurons. On the contrary, PV+ basket cells and NOS+ ivy cells exhibited either LTD or LTP. An identified axo-axonic cell failed to show long-term change in its response to stimulation. Discharge of the cells did not explain whether LTP or LTD was generated. For the fast-spiking interneurons, as a group, no correlation was found between plasticity and local field potential oscillations (1-3 or 3-6 Hz components) recorded immediately prior to TBS. The results demonstrate activity-induced long-term plasticity in synaptic excitation of hippocampal PV+ and NOS+ interneurons in vivo. Physiological and pathological activity patterns in vivo may generate similar plasticity in these interneurons.

  15. Simulation of synaptic short-term plasticity using Ba(CF3SO3)2-doped polyethylene oxide electrolyte film.

    PubMed

    Chang, C T; Zeng, F; Li, X J; Dong, W S; Lu, S H; Gao, S; Pan, F

    2016-01-07

    The simulation of synaptic plasticity using new materials is critical in the study of brain-inspired computing. Devices composed of Ba(CF3SO3)2-doped polyethylene oxide (PEO) electrolyte film were fabricated and with pulse responses found to resemble the synaptic short-term plasticity (STP) of both short-term depression (STD) and short-term facilitation (STF) synapses. The values of the charge and discharge peaks of the pulse responses did not vary with input number when the pulse frequency was sufficiently low(~1 Hz). However, when the frequency was increased, the charge and discharge peaks decreased and increased, respectively, in gradual trends and approached stable values with respect to the input number. These stable values varied with the input frequency, which resulted in the depressed and potentiated weight modifications of the charge and discharge peaks, respectively. These electrical properties simulated the high and low band-pass filtering effects of STD and STF, respectively. The simulations were consistent with biological results and the corresponding biological parameters were successfully extracted. The study verified the feasibility of using organic electrolytes to mimic STP.

  16. Simulation of synaptic short-term plasticity using Ba(CF3SO3)2-doped polyethylene oxide electrolyte film

    PubMed Central

    Chang, C. T.; Zeng, F.; Li, X. J.; Dong, W. S.; Lu, S. H.; Gao, S.; Pan, F.

    2016-01-01

    The simulation of synaptic plasticity using new materials is critical in the study of brain-inspired computing. Devices composed of Ba(CF3SO3)2-doped polyethylene oxide (PEO) electrolyte film were fabricated and with pulse responses found to resemble the synaptic short-term plasticity (STP) of both short-term depression (STD) and short-term facilitation (STF) synapses. The values of the charge and discharge peaks of the pulse responses did not vary with input number when the pulse frequency was sufficiently low(~1 Hz). However, when the frequency was increased, the charge and discharge peaks decreased and increased, respectively, in gradual trends and approached stable values with respect to the input number. These stable values varied with the input frequency, which resulted in the depressed and potentiated weight modifications of the charge and discharge peaks, respectively. These electrical properties simulated the high and low band-pass filtering effects of STD and STF, respectively. The simulations were consistent with biological results and the corresponding biological parameters were successfully extracted. The study verified the feasibility of using organic electrolytes to mimic STP. PMID:26739613

  17. Simulation of synaptic short-term plasticity using Ba(CF3SO3)2-doped polyethylene oxide electrolyte film

    NASA Astrophysics Data System (ADS)

    Chang, C. T.; Zeng, F.; Li, X. J.; Dong, W. S.; Lu, S. H.; Gao, S.; Pan, F.

    2016-01-01

    The simulation of synaptic plasticity using new materials is critical in the study of brain-inspired computing. Devices composed of Ba(CF3SO3)2-doped polyethylene oxide (PEO) electrolyte film were fabricated and with pulse responses found to resemble the synaptic short-term plasticity (STP) of both short-term depression (STD) and short-term facilitation (STF) synapses. The values of the charge and discharge peaks of the pulse responses did not vary with input number when the pulse frequency was sufficiently low(~1 Hz). However, when the frequency was increased, the charge and discharge peaks decreased and increased, respectively, in gradual trends and approached stable values with respect to the input number. These stable values varied with the input frequency, which resulted in the depressed and potentiated weight modifications of the charge and discharge peaks, respectively. These electrical properties simulated the high and low band-pass filtering effects of STD and STF, respectively. The simulations were consistent with biological results and the corresponding biological parameters were successfully extracted. The study verified the feasibility of using organic electrolytes to mimic STP.

  18. Synaptic plasticity in a cerebellum-like structure depends on temporal order

    NASA Astrophysics Data System (ADS)

    Bell, Curtis C.; Han, Victor Z.; Sugawara, Yoshiko; Grant, Kirsty

    1997-05-01

    Cerebellum-like structures in fish appear to act as adaptive sensory processors, in which learned predictions about sensory input are generated and subtracted from actual sensory input, allowing unpredicted inputs to stand out1-3. Pairing sensory input with centrally originating predictive signals, such as corollary discharge signals linked to motor commands, results in neural responses to the predictive signals alone that are Negative images' of the previously paired sensory responses. Adding these 'negative images' to actual sensory inputs minimizes the neural response to predictable sensory features. At the cellular level, sensory input is relayed to the basal region of Purkinje-like cells, whereas predictive signals are relayed by parallel fibres to the apical dendrites of the same cells4. The generation of negative images could be explained by plasticity at parallel fibre synapses5-7. We show here that such plasticity exists in the electrosensory lobe of mormyrid electric fish and that it has the necessary properties for such a model: it is reversible, anti-hebbian (excitatory postsynaptic potentials (EPSPs) are depressed after pairing with a postsynaptic spike) and tightly dependent on the sequence of pre- and postsynaptic events, with depression occurring only if the postsynaptic spike follows EPSP onset within 60 ms.

  19. Neuronal inhibition and synaptic plasticity of basal ganglia neurons in Parkinson's disease

    PubMed Central

    Milosevic, Luka; Kalia, Suneil K; Hodaie, Mojgan; Lozano, Andres M; Fasano, Alfonso; Popovic, Milos R; Hutchison, William D

    2018-01-01

    Abstract Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson’s disease symptoms. The therapeutic benefits of deep brain stimulation are frequency-dependent, but the underlying physiological mechanisms remain unclear. To advance deep brain stimulation therapy an understanding of fundamental mechanisms is critical. The objectives of this study were to (i) compare the frequency-dependent effects on cell firing in subthalamic nucleus and substantia nigra pars reticulata; (ii) quantify frequency-dependent effects on short-term plasticity in substantia nigra pars reticulata; and (iii) investigate effects of continuous long-train high frequency stimulation (comparable to conventional deep brain stimulation) on synaptic plasticity. Two closely spaced (600 µm) microelectrodes were advanced into the subthalamic nucleus (n = 27) and substantia nigra pars reticulata (n = 14) of 22 patients undergoing deep brain stimulation surgery for Parkinson’s disease. Cell firing and evoked field potentials were recorded with one microelectrode during stimulation trains from the adjacent microelectrode across a range of frequencies (1–100 Hz, 100 µA, 0.3 ms, 50–60 pulses). Subthalamic firing attenuated with ≥20 Hz (P < 0.01) stimulation (silenced at 100 Hz), while substantia nigra pars reticulata decreased with ≥3 Hz (P < 0.05) (silenced at 50 Hz). Substantia nigra pars reticulata also exhibited a more prominent increase in transient silent period following stimulation. Patients with longer silent periods after 100 Hz stimulation in the subthalamic nucleus tended to have better clinical outcome after deep brain stimulation. At ≥30 Hz the first evoked field potential of the stimulation train in substantia nigra pars reticulata was potentiated (P < 0.05); however, the average amplitude of the subsequent potentials was rapidly attenuated (P < 0.01). This is suggestive of synaptic facilitation followed by rapid depression. Paired pulse ratios calculated at the beginning of the train revealed that 20 Hz (P < 0.05) was the minimum frequency required to induce synaptic depression. Lastly, the average amplitude of evoked field potentials during 1 Hz pulses showed significant inhibitory synaptic potentiation after long-train high frequency stimulation (P < 0.001) and these increases were coupled with increased durations of neuronal inhibition (P < 0.01). The subthalamic nucleus exhibited a higher frequency threshold for stimulation-induced inhibition than the substantia nigra pars reticulata likely due to differing ratios of GABA:glutamate terminals on the soma and/or the nature of their GABAergic inputs (pallidal versus striatal). We suggest that enhancement of inhibitory synaptic plasticity, and frequency-dependent potentiation and depression are putative mechanisms of deep brain stimulation. Furthermore, we foresee that future closed-loop deep brain stimulation systems (with more frequent off stimulation periods) may benefit from inhibitory synaptic potentiation that occurs after high frequency stimulation. PMID:29236966

  20. Changes of cortical excitability as markers of antidepressant response in bipolar depression: preliminary data obtained by combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG).

    PubMed

    Canali, Paola; Sferrazza Papa, Giovanna; Casali, Adenauer G; Schiena, Giandomenico; Fecchio, Matteo; Pigorini, Andrea; Smeraldi, Enrico; Colombo, Cristina; Benedetti, Francesco

    2014-12-01

    It is still unclear which biological changes are needed to recover from a major depressive episode. Current perspectives focus on cortical synaptic neuroplasticity. Measures of cortical responses evoked by transcranial magnetic stimulation (TMS) change with sleep homeostasic pressure in humans and approximate measures of synaptic strength in animal models. Using repeated total sleep deprivation as a model of antidepressant treatment, we aimed to correlate recovery from depression with these measures of cortical excitability. We recorded electroencephalographic responses to TMS in the prefrontal cortex of 21 depressed inpatients with bipolar disorder treated with repeated sleep deprivation combined with light therapy. We performed seven TMS/electroencephalography sessions during one week and calculated three measures of cortical excitability. Cortical excitability progressively increased during the antidepressant treatment and as a function of time awake. Higher values differentiated responders from non-responders at baseline and during and after treatment on all measures. Changes in measures of cortical excitability parallel and predict antidepressant response to combined sleep deprivation and light therapy. Data suggest that promoting cortical plasticity in bipolar depression could be a major effect of successful antidepressant treatments, and that patients not responding could suffer a persistent impairment in their neuroplasticity mechanisms. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. NMDA receptor-mediated long term modulation of electrically evoked field potentials in the rat medial vestibular nuclei.

    PubMed

    Capocchi, G; Della Torre, G; Grassi, S; Pettorossi, V E; Zampolini, M

    1992-01-01

    The effect of high frequency stimulation (HFS) of the primary vestibular afferents on field potentials recorded in the ipsilateral Medial Vestibular Nuclei (MVN) was studied. Our results show that potentiation and depression can be induced in different portions of MVN, which are distinguishable by their anatomical organization. HFS induces potentiation of the monosynaptic component in the ventral portion of the MVN, whereas it provokes depression of the polysynaptic component in the dorsal portion of the same nucleus. The induction of both potentiation and depression was blocked under AP5 perfusion, thus demonstrating that NMDA receptor activation mediates both phenomena. Furthermore, the finding that the field potentials were not modified during perfusion with DL-AP5, as previously reported, supports the hypothesis that NMDA receptors are not involved in the normal synaptic transmission from the primary vestibular afferent fibres, but are only activated following hyperstimulation of this afferent system. Our results suggest that the mechanisms of long term modification of synaptic efficacy observed in MVN may underlie the plasticity phenomena occurring in vestibular nuclei.

  2. Long-term Treatment with Oriental Medicinal Herb Artemisia princeps Alters Neuroplasticity in a Rat Model of Ovarian Hormone Deficiency

    PubMed Central

    Kim, Hyun-Bum; Kwon, Byeong-Jae; Cho, Hyun-Ji; Kim, Ji-Won; Chon, Jeong-Woo; Do, Moon-Ho; Park, Sang-Yong; Kim, Sun-Yeou; Maeng, Sung-Ho; Park, Yoo-Kyoung

    2015-01-01

    Artemisia princeps (AP) is a flowering perennial used as a traditional medicine and dietary supplement across East Asia. No study has yet assessed its effects on synaptic plasticity in hippocampus and much less in a model of ovarian hormone deficiency. We examined the influence of chronic oral AP ethanol extract treatment in ovariectomized rats on the induction of long-term depression in a representative synapse (CA3-CA1) of the hippocampus. Ovariectomized rats demonstrated lower trabecular mean bone mineral densities than sham, validating the establishment of pathology. Against this background of pathology, AP-treated ovariectomized rats exhibited attenuated long-term depression (LTD) in CA1 relative to water-treated controls as measured by increased field excitatory post-synaptic potentials (fEPSP) activation averages over the post-stimulation period. While pathological significance of long-term depression (LTD) in ovariectomized rats is conflicting, that AP treatment significantly affected its induction offers justification for further study of its influences on plasticity and its related disorders. PMID:25792871

  3. Retinohypothalamic Tract Synapses in the Rat Suprachiasmatic Nucleus Demonstrate Short-Term Synaptic Plasticity

    PubMed Central

    Moldavan, Mykhaylo G.

    2010-01-01

    The master circadian pacemaker located in the suprachiasmatic nucleus (SCN) is entrained by light intensity–dependent signals transmitted via the retinohypothalamic tract (RHT). Short-term plasticity at glutamatergic RHT–SCN synapses was studied using stimulus frequencies that simulated the firing of light sensitive retinal ganglion cells. The evoked excitatory postsynaptic current (eEPSC) was recorded from SCN neurons located in hypothalamic brain slices. The eEPSC amplitude was stable during 0.08 Hz stimulation and exhibited frequency-dependent short-term synaptic depression (SD) during 0.5 to 100 Hz stimulus trains in 95 of 99 (96%) recorded neurons. During SD the steady-state eEPSC amplitude decreased, whereas the cumulative charge transfer increased in a frequency-dependent manner and saturated at 20 Hz. SD was similar during subjective day and night and decreased with increasing temperature. Paired-pulse stimulation (PPS) and voltage-dependent Ca2+ channel (VDCC) blockers were used to characterize a presynaptic release mechanism. Facilitation was present in 30% and depression in 70% of studied neurons during PPS. Synaptic transmission was reduced by blocking both N- and P/Q-type presynaptic VDCCs, but only the N-type channel blocker significantly relieved SD. Aniracetam inhibited AMPA receptor desensitization but did not alter SD. Thus we concluded that SD is the principal form of short-term plasticity at RHT synapses, which presynaptically and frequency-dependently attenuates light-induced glutamatergic RHT synaptic transmission protecting SCN neurons against excessive excitation. PMID:20220078

  4. Dysregulation of synaptic plasticity precedes appearance of morphological defects in a Pten conditional knockout mouse model of autism.

    PubMed

    Takeuchi, Koichi; Gertner, Michael J; Zhou, Jing; Parada, Luis F; Bennett, Michael V L; Zukin, R Suzanne

    2013-03-19

    The phosphoinositide signaling system is a crucial regulator of neural development, cell survival, and plasticity. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) negatively regulates phosphatidylinositol 3-kinase signaling and downstream targets. Nse-Cre Pten conditional knockout mice, in which Pten is ablated in granule cells of the dentate gyrus and pyramidal neurons of the hippocampal CA3, but not CA1, recapitulate many of the symptoms of humans with inactivating PTEN mutations, including progressive hypertrophy of the dentate gyrus and deficits in hippocampus-based social and cognitive behaviors. However, the impact of Pten loss on activity-dependent synaptic plasticity in this clinically relevant mouse model of Pten inactivation remains unclear. Here, we show that two phosphatidylinositol 3-kinase- and protein synthesis-dependent forms of synaptic plasticity, theta burst-induced long-term potentiation and metabotropic glutamate receptor (mGluR)-dependent long-term depression, are dysregulated at medial perforant path-to-dentate gyrus synapses of young Nse-Cre Pten conditional knockout mice before the onset of visible morphological abnormalities. In contrast, long-term potentiation and mGluR-dependent long-term depression are normal at CA3-CA1 pyramidal cell synapses at this age. Our results reveal that deletion of Pten in dentate granule cells dysregulates synaptic plasticity, a defect that may underlie abnormal social and cognitive behaviors observed in humans with Pten inactivating mutations and potentially other autism spectrum disorders.

  5. Synaptic activity regulates AMPA receptor trafficking through different recycling pathways

    PubMed Central

    Zheng, Ning; Jeyifous, Okunola; Munro, Charlotte; Montgomery, Johanna M; Green, William N

    2015-01-01

    Changes in glutamatergic synaptic strength in brain are dependent on AMPA-type glutamate receptor (AMPAR) recycling, which is assumed to occur through a single local pathway. In this study, we present evidence that AMPAR recycling occurs through different pathways regulated by synaptic activity. Without synaptic stimulation, most AMPARs recycled in dynamin-independent endosomes containing the GTPase, Arf6. Few AMPARs recycled in dynamin-dependent endosomes labeled by transferrin receptors (TfRs). AMPAR recycling was blocked by alterations in the GTPase, TC10, which co-localized with Arf6 endosomes. TC10 mutants that reduced AMPAR recycling had no effect on increased AMPAR levels with long-term potentiation (LTP) and little effect on decreased AMPAR levels with long-term depression. However, internalized AMPAR levels in TfR-containing recycling endosomes increased after LTP, indicating increased AMPAR recycling through the dynamin-dependent pathway with synaptic plasticity. LTP-induced AMPAR endocytosis is inconsistent with local recycling as a source of increased surface receptors, suggesting AMPARs are trafficked from other sites. DOI: http://dx.doi.org/10.7554/eLife.06878.001 PMID:25970033

  6. Electric Dipole Theory of Chemical Synaptic Transmission

    PubMed Central

    Wei, Ling Y.

    1968-01-01

    In this paper we propose that chemicals such as acetylcholine are electric dipoles which when oriented and arranged in a large array could produce an electric field strong enough to drive positive ions over the junction barrier of the post-synaptic membrane and thus initiate excitation or produce depolarization. This theory is able to explain a great number of facts such as cleft size, synaptic delay, nonregeneration, subthreshold integration, facilitation with repetition, and the calcium and magnesium effects. It also shows why and how acetylcholine could act as excitatory or inhibitory transmitters under different circumstances. Our conclusion is that the nature of synaptic transmission is essentially electrical, be it mediated by electrical or chemical transmitters. PMID:4296121

  7. Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling.

    PubMed

    Chazeau, Anaël; Giannone, Grégory

    2016-08-01

    In the central nervous system, most excitatory post-synapses are small subcellular structures called dendritic spines. Their structure and morphological remodeling are tightly coupled to changes in synaptic transmission. The F-actin cytoskeleton is the main driving force of dendritic spine remodeling and sustains synaptic plasticity. It is therefore essential to understand how changes in synaptic transmission can regulate the organization and dynamics of actin binding proteins (ABPs). In this review, we will provide a detailed description of the organization and dynamics of F-actin and ABPs in dendritic spines and will discuss the current models explaining how the actin cytoskeleton sustains both structural and functional synaptic plasticity.

  8. Stressor-induced NMDAR dysfunction as a unifying hypothesis for the aetiology, pathogenesis and comorbidity of clinical depression.

    PubMed

    Marsden, W N

    2011-10-01

    Typically the monoamine system has been the central focus of neurobiological research into depression and represents the major target of modern antidepressant medications; although the extent to which monoamines such as serotonin play a role in the pathogenesis of depression is still not clear. Recent research advancements have expanded the neurotransmitter-level focus of mood disorders to incorporate intracellular pathways and regional brain circuitry. As such the importance of other systems has emerged including those related to neuroplastic signal transduction and gene transcription cascades within cortico-limbic circuits. Indeed mounting evidence suggests interaction with these pathways is required for the chronic therapeutic effect of current clinical antidepressants. Dysfunction of the glutamatergic system has also emerged as a major pathological feature in depression, and glutamatergic agents have demonstrated rapid and robust antidepressant activity in humans. In particular, the glutamate receptors (AMPAR, NMDAR & mGluR) are intrinsically connected to neuronal efficiency and inefficiency cascades, so their dysfunction may account for alterations to multiple signal transduction pathways in depression. This article presents concepts supporting a NMDA hypothesis of depression, whereby the pathogenesis of depression may arise from stressors inducing excessive NMDAR activity which acts heterogeneously at both cellular and regional levels to disrupt normal neurobiological function and induce the depressive phenotype. In this hypothesis multiple psychological and environmental stressors are united in their capacity to potentiate excessive tonic and phasic NMDAR activation on neurons and glia. Such NMDAR dysfunction may lead to: disruption of glia processes and tripartite signalling; potentiation of extrasynaptic inefficiency/LTD pathways in some regions (e.g. prefrontal cortex & hippocampus); potentiation of synaptic efficiency/LTP pathways in other regions (e.g. amygdala); and regional disruption of cortico-limbic circuits and dopaminergic reward pathways (e.g. nucleus accumbens). This model unites depression with a variety of stressors including glucocorticoids, inflammation, oxidative stress, magnesium deficiency, hyperhomocysteinemia, and bio-energetic dysfunction; and also helps explain comorbidity with other neurological and affective disorders. In particular, a neurometabolic contribution to the aetiology of depressive as well as other neurological and affective disorders is explored. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Effects of Estradiol on Learned Helplessness and Associated Remodeling of Hippocampal Spine Synapses in Female Rats

    PubMed Central

    Hajszan, Tibor; Szigeti-Buck, Klara; Sallam, Nermin L; Bober, Jeremy; Parducz, Arpad; MacLusky, Neil J; Leranth, Csaba; Duman, Ronald S

    2009-01-01

    Background Despite the fact that women are twice as likely to develop depression as men, our understanding of depression neurobiology in females is limited. We have recently reported in male rats that development of helpless behavior is associated with a severe loss of hippocampal spine synapses, which is reversed by treatment with the antidepressant, desipramine. Considering the fact that estradiol has a hippocampal synaptogenic effect similar to those of antidepressants, the presence of estradiol during the female reproductive life may influence behavioral and synaptic responses to stress and depression. Methods Using electron microscopic stereology, we analyzed hippocampal spine synapses in association with helpless behavior in ovariectomized female rats (n=70), under different conditions of estradiol exposure. Results Stress induced an acute and persistent loss of hippocampal spine synapses, while subchronic treatment with desipramine reversed the stress-induced synaptic loss. Estradiol supplementation given either prior to stress or prior to escape testing of nonstressed animals both increased the number of hippocampal spine synapses. Correlation analysis demonstrated a statistically significant negative correlation between the severity of helpless behavior and hippocampal spine synapse numbers. Conclusions These findings suggest that hippocampal spine synapse remodeling may be a critical factor underlying learned helplessness and, possibly, the neurobiology of depression. PMID:19811775

  10. Contributions of Bcl-xL to acute and long term changes in bioenergetics during neuronal plasticity.

    PubMed

    Jonas, Elizabeth A

    2014-08-01

    Mitochondria manufacture and release metabolites and manage calcium during neuronal activity and synaptic transmission, but whether long term alterations in mitochondrial function contribute to the neuronal plasticity underlying changes in organism behavior patterns is still poorly understood. Although normal neuronal plasticity may determine learning, in contrast a persistent decline in synaptic strength or neuronal excitability may portend neurite retraction and eventual somatic death. Anti-death proteins such as Bcl-xL not only provide neuroprotection at the neuronal soma during cell death stimuli, but also appear to enhance neurotransmitter release and synaptic growth and development. It is proposed that Bcl-xL performs these functions through its ability to regulate mitochondrial release of bioenergetic metabolites and calcium, and through its ability to rapidly alter mitochondrial positioning and morphology. Bcl-xL also interacts with proteins that directly alter synaptic vesicle recycling. Bcl-xL translocates acutely to sub-cellular membranes during neuronal activity to achieve changes in synaptic efficacy. After stressful stimuli, pro-apoptotic cleaved delta N Bcl-xL (ΔN Bcl-xL) induces mitochondrial ion channel activity leading to synaptic depression and this is regulated by caspase activation. During physiological states of decreased synaptic stimulation, loss of mitochondrial Bcl-xL and low level caspase activation occur prior to the onset of long term decline in synaptic efficacy. The degree to which Bcl-xL changes mitochondrial membrane permeability may control the direction of change in synaptic strength. The small molecule Bcl-xL inhibitor ABT-737 has been useful in defining the role of Bcl-xL in synaptic processes. Bcl-xL is crucial to the normal health of neurons and synapses and its malfunction may contribute to neurodegenerative disease. Copyright © 2013. Published by Elsevier B.V.

  11. Low-Frequency rTMS Ameliorates Autistic-Like Behaviors in Rats Induced by Neonatal Isolation Through Regulating the Synaptic GABA Transmission

    PubMed Central

    Tan, Tao; Wang, Wei; Xu, Haitao; Huang, Zhilin; Wang, Yu Tian; Dong, Zhifang

    2018-01-01

    Patients with autism spectrum disorder (ASD) display abnormalities in neuronal development, synaptic function and neural circuits. The imbalance of excitatory and inhibitory (E/I) synaptic transmission has been proposed to cause the main behavioral characteristics of ASD. Repetitive transcranial magnetic stimulation (rTMS) can directly or indirectly induce excitability and synaptic plasticity changes in the brain noninvasively. However, whether rTMS can ameliorate autistic-like behaviors in animal model via regulating the balance of E/I synaptic transmission is unknown. By using our recent reported animal model with autistic-like behaviors induced by neonatal isolation (postnatal days 1–9), we found that low-frequency rTMS (LF-rTMS, 1 Hz) treatment for 2 weeks effectively alleviated the acquired autistic-like symptoms, as reflected by an increase in social interaction and decrease in self-grooming, anxiety- and depressive-like behaviors in young adult rats compared to those in untreated animals. Furthermore, the amelioration in autistic-like behavior was accompanied by a restoration of the balance between E/I activity, especially at the level of synaptic transmission and receptors in synaptosomes. These findings indicated that LF-rTMS may alleviate the symptoms of ASD-like behaviors caused by neonatal isolation through regulating the synaptic GABA transmission, suggesting that LF-rTMS may be a potential therapeutic technique to treat ASD. PMID:29541022

  12. Imbalanced pattern completion vs. separation in cognitive disease: network simulations of synaptic pathologies predict a personalized therapeutics strategy.

    PubMed

    Hanson, Jesse E; Madison, Daniel V

    2010-08-13

    Diverse Mouse genetic models of neurodevelopmental, neuropsychiatric, and neurodegenerative causes of impaired cognition exhibit at least four convergent points of synaptic malfunction: 1) Strength of long-term potentiation (LTP), 2) Strength of long-term depression (LTD), 3) Relative inhibition levels (Inhibition), and 4) Excitatory connectivity levels (Connectivity). To test the hypothesis that pathological increases or decreases in these synaptic properties could underlie imbalances at the level of basic neural network function, we explored each type of malfunction in a simulation of autoassociative memory. These network simulations revealed that one impact of impairments or excesses in each of these synaptic properties is to shift the trade-off between pattern separation and pattern completion performance during memory storage and recall. Each type of synaptic pathology either pushed the network balance towards intolerable error in pattern separation or intolerable error in pattern completion. Imbalances caused by pathological impairments or excesses in LTP, LTD, inhibition, or connectivity, could all be exacerbated, or rescued, by the simultaneous modulation of any of the other three synaptic properties. Because appropriate modulation of any of the synaptic properties could help re-balance network function, regardless of the origins of the imbalance, we propose a new strategy of personalized cognitive therapeutics guided by assay of pattern completion vs. pattern separation function. Simulated examples and testable predictions of this theorized approach to cognitive therapeutics are presented.

  13. Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex

    PubMed Central

    Wilson, Daniel E.; Whitney, David E.; Scholl, Benjamin; Fitzpatrick, David

    2016-01-01

    The majority of neurons in primary visual cortex are tuned for stimulus orientation, but the factors that account for the range of orientation selectivities exhibited by cortical neurons remain unclear. To address this issue, we used in vivo 2-photon calcium imaging to characterize the orientation tuning and spatial arrangement of synaptic inputs to the dendritic spines of individual pyramidal neurons in layer 2/3 of ferret visual cortex. The summed synaptic input to individual neurons reliably predicted the neuron’s orientation preference, but did not account for differences in orientation selectivity among neurons. These differences reflected a robust input-output nonlinearity that could not be explained by spike threshold alone, and was strongly correlated with the spatial clustering of co-tuned synaptic inputs within the dendritic field. Dendritic branches with more co-tuned synaptic clusters exhibited greater rates of local dendritic calcium events supporting a prominent role for functional clustering of synaptic inputs in dendritic nonlinearities that shape orientation selectivity. PMID:27294510

  14. Altered impulse activity modifies synaptic physiology and mitochondria in crayfish phasic motor neurons.

    PubMed

    Nguyen, P V; Atwood, H L

    1994-12-01

    1. Crayfish phasic motor synapses produce large initial excitatory postsynaptic potentials (EPSPs) that fatigue rapidly during high-frequency stimulation. Periodic in vivo stimulation of an identified phasic abdominal extensor motor neuron (axon 3) induced long-term adaptation (LTA) of neuromuscular transmission: initial EPSP amplitude became smaller and synaptic depression was significantly reduced. We tested the hypothesis that activity-induced synaptic fatigue-resistance seen during LTA was dependent upon, or correlated with, mitochondrial oxidative competence. 2. Periodic unilateral conditioning stimulation of axon 3 entering each of two adjacent homologous abdominal segments (segments 2 and 3) increased the synaptic stamina in both "conditioned" axons; mean final EPSP amplitudes, recorded after 20 min of 5-Hz test stimulation, were significantly larger than those measured with the same protocol from contralateral unstimulated axons. 3. During 5-Hz test stimulation of the conditioned axon 3 of segment 3, acute superfusion with 0.8 mM dinitrophenol or 20 mM sodium azide [inhibitors of oxidative adenosinetriphosphate (ATP) synthesis] produced increased synaptic depression. Drug-free saline superfusion of the conditioned axon 3 of segment 2 in these same animals did not affect the increased synaptic fatigue resistance seen in this segment. Thus both successful induction (in axon 3 of saline-perfused segment 2) and attenuation (in axon 3 of drug-perfused segment 3) of the increased synaptic stamina can be demonstrated with this twin-segment conditioning protocol. 4. Confocal microscopic imaging of mitochondrial rhodamine-123 (Rh123) fluorescence was used to assess relative oxidative competence of conditioned and unconditioned phasic axons. Conditioned phasic axons showed significantly higher mean mitochondrial Rh123 fluorescence than contralateral unstimulated axons. In the same preparations that showed increased postconditioning Rh123 fluorescence, the synaptic fatigue resistance measured from conditioned axon 3 was also significantly greater than that recorded from contralateral unstimulated axon 3. 5. Axotomy of the phasic extensor nerve root (containing axon 3), before in vivo conditioning stimulation of its decentralized segment, prevented induction of both the increased synaptic stamina in axon 3 and the enhanced mitochondrial fluorescence in decentralized motor axons of the nerve root. Hence, induction of both changes requires axonal transport of materials between the soma and the motor synapses of axon 3. 5. Axotomy of the phasic extensor nerve root (containing axon 3), before in vivo conditioning stimulation of its decentralized segment, Prevented induction of both the increased synaptic stamina in axon 3 and the enhanced mitochondrial fluorescence in decentralized motor axons of the nerve root Hence, induction of both changes requires axonal transport of materials between the soma and the motor synapses of axon 3 6. Because mitochondrial Rh123 fluorescence is primarily dependent upon the oxidative activity of these organelles, our findings suggest that conditioning stimulation of phasic extensor axon 3 increases its mitochondrial oxidative competence and that the enhanced synaptic stamina seen during LTA in axon 3 is correlated with, and dependent upon, oxidative activity.(ABSTRACT TRUNCATED AT 400 WORDS)

  15. Differential and brain region-specific regulation of Rap-1 and Epac in depressed suicide victims.

    PubMed

    Dwivedi, Yogesh; Mondal, Amal C; Rizavi, Hooriyah S; Faludi, Gabor; Palkovits, Miklos; Sarosi, Andrea; Conley, Robert R; Pandey, Ghanshyam N

    2006-06-01

    Depression is a major public health problem. Despite many years of research, the molecular mechanisms associated with depression remain unclear. Rap-1, activated in response to many extracellular stimuli, is one of the major substrates of protein kinase A, which participates in myriad physiologic functions in the brain, including cell survival and synaptic plasticity. Rap-1 is also activated directly by cyclic adenosine monophosphate through Epac, and thus participates in mediating physiologic functions independent of protein kinase A. To examine whether the pathogenesis of depression is associated with altered activation and expression of Rap-1, as well as expression of Epac, in depressed suicide victims. Postmortem study. Tissues were obtained from the Lenhossek Human Brain Program, Semmelweis University, Budapest, Hungary, and the Brain Collection Program of the Maryland Psychiatric Research Center, Baltimore. Postmortem brains of 28 depressed suicide victims and 28 nonpsychiatric control subjects. Examination of brain tissues. Rap-1 activation as well as messenger RNA and protein levels of Rap-1 and Epac in prefrontal cortex, hippocampus, and cerebellum. Rap-1 activation was significantly reduced (P<.001) in prefrontal cortex and hippocampus in the suicide group. This was associated with significant reductions in Rap-1 messenger RNA and protein levels (P<.001). In contrast, protein level of only Epac-2 (P<.001) but not Epac-1 (P = .89) was significantly increased in prefrontal cortex and hippocampus of these subjects. These changes were present whether the 2 cohorts were analyzed together or separately. None of the measures showed any significant change in cerebellum in the suicide group. Given the importance of Rap-1 in neuroprotection and synaptic plasticity, our findings of differential regulation of Rap-1 and Epac between brain regions suggest the relevance of these molecules in the pathophysiology of depression.

  16. NMDA receptor as a newly identified member of the metabotropic glutamate receptor family: clinical implications for neurodegenerative diseases.

    PubMed

    Chung, ChiHye

    2013-08-01

    Recent reports have proposed a novel function for the N-methyl-D-aspartate (NMDA) receptor (NMDAR), a well-known excitatory, ionotropic receptor. A series of observations employing pharmacological techniques has proposed that upon ligand binding, this ionotropic receptor can actually function via signaling cascades independent of traditional ionotropic action. Moreover, the "metabotropic" action of NMDARs is suggested to mediate a form of synaptic plasticity, namely long-term synaptic depression (LTD), which shares cellular mechanisms with the synaptic deficits observed in Alzheimer's disease. Given that a growing body of clinical and preclinical evidence strongly recommends NMDAR antagonists for their therapeutic potentials and advantages in a variety of diseases, further investigation into their molecular and cellular mechanisms is required to better understand the "metabotropic" action of NMDARs.

  17. Signal processing in local neuronal circuits based on activity-dependent noise and competition

    NASA Astrophysics Data System (ADS)

    Volman, Vladislav; Levine, Herbert

    2009-09-01

    We study the characteristics of weak signal detection by a recurrent neuronal network with plastic synaptic coupling. It is shown that in the presence of an asynchronous component in synaptic transmission, the network acquires selectivity with respect to the frequency of weak periodic stimuli. For nonperiodic frequency-modulated stimuli, the response is quantified by the mutual information between input (signal) and output (network's activity) and is optimized by synaptic depression. Introducing correlations in signal structure resulted in the decrease in input-output mutual information. Our results suggest that in neural systems with plastic connectivity, information is not merely carried passively by the signal; rather, the information content of the signal itself might determine the mode of its processing by a local neuronal circuit.

  18. Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses.

    PubMed

    Ocker, Gabriel Koch; Litwin-Kumar, Ashok; Doiron, Brent

    2015-08-01

    The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure.

  19. Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses

    PubMed Central

    Ocker, Gabriel Koch; Litwin-Kumar, Ashok; Doiron, Brent

    2015-01-01

    The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure. PMID:26291697

  20. The Roles of Cortical Slow Waves in Synaptic Plasticity and Memory Consolidation.

    PubMed

    Miyamoto, Daisuke; Hirai, Daichi; Murayama, Masanori

    2017-01-01

    Sleep plays important roles in sensory and motor memory consolidation. Sleep oscillations, reflecting neural population activity, involve the reactivation of learning-related neurons and regulate synaptic strength and, thereby affect memory consolidation. Among sleep oscillations, slow waves (0.5-4 Hz) are closely associated with memory consolidation. For example, slow-wave power is regulated in an experience-dependent manner and correlates with acquired memory. Furthermore, manipulating slow waves can enhance or impair memory consolidation. During slow wave sleep, inter-areal interactions between the cortex and hippocampus (HC) have been proposed to consolidate declarative memory; however, interactions for non-declarative (HC-independent) memory remain largely uninvestigated. We recently showed that the directional influence in a slow-wave range through a top-down cortical long-range circuit is involved in the consolidation of non-declarative memory. At the synaptic level, the average cortical synaptic strength is known to be potentiated during wakefulness and depressed during sleep. Moreover, learning causes plasticity in a subset of synapses, allocating memory to them. Sleep may help to differentiate synaptic strength between allocated and non-allocated synapses (i.e., improving the signal-to-noise ratio, which may facilitate memory consolidation). Herein, we offer perspectives on inter-areal interactions and synaptic plasticity for memory consolidation during sleep.

  1. The Roles of Cortical Slow Waves in Synaptic Plasticity and Memory Consolidation

    PubMed Central

    Miyamoto, Daisuke; Hirai, Daichi; Murayama, Masanori

    2017-01-01

    Sleep plays important roles in sensory and motor memory consolidation. Sleep oscillations, reflecting neural population activity, involve the reactivation of learning-related neurons and regulate synaptic strength and, thereby affect memory consolidation. Among sleep oscillations, slow waves (0.5–4 Hz) are closely associated with memory consolidation. For example, slow-wave power is regulated in an experience-dependent manner and correlates with acquired memory. Furthermore, manipulating slow waves can enhance or impair memory consolidation. During slow wave sleep, inter-areal interactions between the cortex and hippocampus (HC) have been proposed to consolidate declarative memory; however, interactions for non-declarative (HC-independent) memory remain largely uninvestigated. We recently showed that the directional influence in a slow-wave range through a top-down cortical long-range circuit is involved in the consolidation of non-declarative memory. At the synaptic level, the average cortical synaptic strength is known to be potentiated during wakefulness and depressed during sleep. Moreover, learning causes plasticity in a subset of synapses, allocating memory to them. Sleep may help to differentiate synaptic strength between allocated and non-allocated synapses (i.e., improving the signal-to-noise ratio, which may facilitate memory consolidation). Herein, we offer perspectives on inter-areal interactions and synaptic plasticity for memory consolidation during sleep. PMID:29213231

  2. Caffeine Modulates Vesicle Release and Recovery at Cerebellar Parallel Fibre Terminals, Independently of Calcium and Cyclic AMP Signalling

    PubMed Central

    Dobson, Katharine L.; Jackson, Claire; Balakrishnan, Saju; Bellamy, Tomas C.

    2015-01-01

    Background Cerebellar parallel fibres release glutamate at both the synaptic active zone and at extrasynaptic sites—a process known as ectopic release. These sites exhibit different short-term and long-term plasticity, the basis of which is incompletely understood but depends on the efficiency of vesicle release and recycling. To investigate whether release of calcium from internal stores contributes to these differences in plasticity, we tested the effects of the ryanodine receptor agonist caffeine on both synaptic and ectopic transmission. Methods Whole cell patch clamp recordings from Purkinje neurons and Bergmann glia were carried out in transverse cerebellar slices from juvenile (P16-20) Wistar rats. Key Results Caffeine caused complex changes in transmission at both synaptic and ectopic sites. The amplitude of postsynaptic currents in Purkinje neurons and extrasynaptic currents in Bergmann glia were increased 2-fold and 4-fold respectively, but paired pulse ratio was substantially reduced, reversing the short-term facilitation observed under control conditions. Caffeine treatment also caused synaptic sites to depress during 1 Hz stimulation, consistent with inhibition of the usual mechanisms for replenishing vesicles at the active zone. Unexpectedly, pharmacological intervention at known targets for caffeine—intracellular calcium release, and cAMP signalling—had no impact on these effects. Conclusions We conclude that caffeine increases release probability and inhibits vesicle recovery at parallel fibre synapses, independently of known pharmacological targets. This complex effect would lead to potentiation of transmission at fibres firing at low frequencies, but depression of transmission at high frequency connections. PMID:25933382

  3. The neurotrophin-inducible gene Vgf regulates hippocampal function and behavior through a brain-derived neurotrophic factor-dependent mechanism.

    PubMed

    Bozdagi, Ozlem; Rich, Erin; Tronel, Sophie; Sadahiro, Masato; Patterson, Kamara; Shapiro, Matthew L; Alberini, Cristina M; Huntley, George W; Salton, Stephen R J

    2008-09-24

    VGF is a neurotrophin-inducible, activity-regulated gene product that is expressed in CNS and PNS neurons, in which it is processed into peptides and secreted. VGF synthesis is stimulated by BDNF, a critical regulator of hippocampal development and function, and two VGF C-terminal peptides increase synaptic activity in cultured hippocampal neurons. To assess VGF function in the hippocampus, we tested heterozygous and homozygous VGF knock-out mice in two different learning tasks, assessed long-term potentiation (LTP) and depression (LTD) in hippocampal slices from VGF mutant mice, and investigated how VGF C-terminal peptides modulate synaptic plasticity. Treatment of rat hippocampal slices with the VGF-derived peptide TLQP62 resulted in transient potentiation through a mechanism that was selectively blocked by the BDNF scavenger TrkB-Fc, the Trk tyrosine kinase inhibitor K252a (100 nm), and tPA STOP, an inhibitor of tissue plasminogen activator (tPA), an enzyme involved in pro-BDNF cleavage to BDNF, but was not blocked by the NMDA receptor antagonist APV, anti-p75(NTR) function-blocking antiserum, or previous tetanic stimulation. Although LTP was normal in slices from VGF knock-out mice, LTD could not be induced, and VGF mutant mice were impaired in hippocampal-dependent spatial learning and contextual fear conditioning tasks. Our studies indicate that the VGF C-terminal peptide TLQP62 modulates hippocampal synaptic transmission through a BDNF-dependent mechanism and that VGF deficiency in mice impacts synaptic plasticity and memory in addition to depressive behavior.

  4. The Neurotrophin-Inducible Gene Vgf Regulates Hippocampal Function and Behavior Through a BDNF-Dependent Mechanism

    PubMed Central

    Bozdagi, Ozlem; Rich, Erin; Tronel, Sophie; Sadahiro, Masato; Patterson, Kamara; Shapiro, Matthew L.; Alberini, Cristina M.; Huntley, George W.; Salton, Stephen R. J.

    2009-01-01

    VGF is a neurotrophin-inducible, activity-regulated gene product that is expressed in CNS and PNS neurons, where it is processed into peptides and secreted. VGF synthesis is stimulated by BDNF, a critical regulator of hippocampal development and function, and two VGF C-terminal peptides increase synaptic activity in cultured hippocampal neurons. To assess VGF function in the hippocampus, we tested heterozygous and homozygous VGF knockout mice in two different learning tasks, assessed long-term potentiation (LTP) and depression (LTD) in hippocampal slices from VGF mutant mice, and investigated how VGF C-terminal peptides modulate synaptic plasticity. Treatment of rat hippocampal slices with the VGF-derived peptide TLQP62 resulted in transient potentiation through a mechanism that was selectively blocked by the BDNF scavenger TrkB-Fc, the Trk tyrosine kinase inhibitor K252a (100 nM), and by tPASTOP, an inhibitor of tissue plasminogen activator (tPA), an enzyme involved in pro-BDNF cleavage to BDNF, but was not blocked by the NMDA receptor antagonist APV, anti-p75NTR function-blocking antiserum, nor by prior tetanic stimulation. Although LTP was normal in slices from VGF knockout mice, LTD could not be induced, and VGF mutant mice were impaired in hippocampal-dependent spatial learning and contextual fear conditioning tasks. Our studies indicate that the VGF C-terminal peptide TLQP62 modulates hippocampal synaptic transmission through a BDNF-dependent mechanism, and that VGF deficiency in mice impacts synaptic plasticity and memory in addition to depressive behavior. PMID:18815270

  5. Caffeine Reverts Memory But Not Mood Impairment in a Depression-Prone Mouse Strain with Up-Regulated Adenosine A2A Receptor in Hippocampal Glutamate Synapses.

    PubMed

    Machado, Nuno J; Simões, Ana Patrícia; Silva, Henrique B; Ardais, Ana Paula; Kaster, Manuella P; Garção, Pedro; Rodrigues, Diana I; Pochmann, Daniela; Santos, Ana Isabel; Araújo, Inês M; Porciúncula, Lisiane O; Tomé, Ângelo R; Köfalvi, Attila; Vaugeois, Jean-Marie; Agostinho, Paula; El Yacoubi, Malika; Cunha, Rodrigo A; Gomes, Catarina A

    2017-03-01

    Caffeine prophylactically prevents mood and memory impairments through adenosine A 2A receptor (A 2A R) antagonism. A 2A R antagonists also therapeutically revert mood and memory impairments, but it is not known if caffeine is also therapeutically or only prophylactically effective. Since depression is accompanied by mood and memory alterations, we now explored if chronic (4 weeks) caffeine consumption (0.3 g/L) reverts mood and memory impairment in helpless mice (HM, 12 weeks old), a bred-based model of depression. HM displayed higher immobility in the tail suspension and forced swimming tests, greater anxiety in the elevated plus maze, and poorer memory performance (modified Y-maze and object recognition). HM also had reduced density of synaptic (synaptophysin, SNAP-25), namely, glutamatergic (vGluT1; -22 ± 7 %) and GABAergic (vGAT; -23 ± 8 %) markers in the hippocampus. HM displayed higher A 2A R density (72 ± 6 %) in hippocampal synapses, an enhanced facilitation of hippocampal glutamate release by the A 2A R agonist, CGS21680 (30 nM), and a larger LTP amplitude (54 ± 8 % vs. 21 ± 5 % in controls) that was restored to control levels (30 ± 10 %) by the A 2A R antagonist, SCH58261 (50 nM). Notably, caffeine intake reverted memory deficits and reverted the loss of hippocampal synaptic markers but did not affect helpless or anxiety behavior. These results reinforce the validity of HM as an animal model of depression by showing that they also display reference memory deficits. Furthermore, caffeine intake selectively reverted memory but not mood deficits displayed by HM, which are associated with an increased density and functional impact of hippocampal A 2A R controlling synaptic glutamatergic function.

  6. Very low concentrations of ethanol suppress excitatory synaptic transmission in rat visual cortex.

    PubMed

    Luong, Lucas; Bannon, Nicholas M; Redenti, Andrew; Chistiakova, Marina; Volgushev, Maxim

    2017-05-01

    Ethanol is one of the most commonly used substances in the world. Behavioral effects of alcohol are well described, however, cellular mechanisms of its action are poorly understood. There is an apparent contradiction between measurable behavioral changes produced by low concentrations of ethanol, and lack of evidence of synaptic changes at these concentrations. Furthermore, effects of ethanol on synaptic transmission in the neocortex are poorly understood. Here, we set to determine effects of ethanol on excitatory synaptic transmission in the neocortex. We show that 1-50 mm ethanol suppresses excitatory synaptic transmission to layer 2/3 pyramidal neurons in rat visual cortex in a concentration-dependent manner. To the best of our knowledge, this is the first demonstration of the effects of very low concentrations of ethanol (from 1 mm) on synaptic transmission in the neocortex. We further show that a selective antagonist of A 1 adenosine receptors, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), blocks effects of 1-10 mm ethanol on synaptic transmission. However, the reduction in excitatory postsynaptic potential amplitude by 50 mm ethanol was not affected by DPCPX. We propose that ethanol depresses excitatory synaptic transmission in the neocortex by at least two mechanisms, engaged at different concentrations: low concentrations of ethanol reduce synaptic transmission via A 1 R-dependent mechanism and involve presynaptic changes, while higher concentrations activate additional, adenosine-independent mechanisms with predominantly postsynaptic action. Involvement of adenosine signaling in mediating effects of low concentrations of ethanol may have important implications for understanding alcohol's effects on brain function, and provide a mechanistic explanation to the interaction between alcohol and caffeine. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Calcium sensor regulation of the CaV2.1 Ca2+ channel contributes to short-term synaptic plasticity in hippocampal neurons.

    PubMed

    Nanou, Evanthia; Sullivan, Jane M; Scheuer, Todd; Catterall, William A

    2016-01-26

    Short-term synaptic plasticity is induced by calcium (Ca(2+)) accumulating in presynaptic nerve terminals during repetitive action potentials. Regulation of voltage-gated CaV2.1 Ca(2+) channels by Ca(2+) sensor proteins induces facilitation of Ca(2+) currents and synaptic facilitation in cultured neurons expressing exogenous CaV2.1 channels. However, it is unknown whether this mechanism contributes to facilitation in native synapses. We introduced the IM-AA mutation into the IQ-like motif (IM) of the Ca(2+) sensor binding site. This mutation does not alter voltage dependence or kinetics of CaV2.1 currents, or frequency or amplitude of spontaneous miniature excitatory postsynaptic currents (mEPSCs); however, synaptic facilitation is completely blocked in excitatory glutamatergic synapses in hippocampal autaptic cultures. In acutely prepared hippocampal slices, frequency and amplitude of mEPSCs and amplitudes of evoked EPSCs are unaltered. In contrast, short-term synaptic facilitation in response to paired stimuli is reduced by ∼ 50%. In the presence of EGTA-AM to prevent global increases in free Ca(2+), the IM-AA mutation completely blocks short-term synaptic facilitation, indicating that synaptic facilitation by brief, local increases in Ca(2+) is dependent upon regulation of CaV2.1 channels by Ca(2+) sensor proteins. In response to trains of action potentials, synaptic facilitation is reduced in IM-AA synapses in initial stimuli, consistent with results of paired-pulse experiments; however, synaptic depression is also delayed, resulting in sustained increases in amplitudes of later EPSCs during trains of 10 stimuli at 10-20 Hz. Evidently, regulation of CaV2.1 channels by CaS proteins is required for normal short-term plasticity and normal encoding of information in native hippocampal synapses.

  8. SAD-B kinase regulates pre-synaptic vesicular dynamics at hippocampal Schaffer collateral synapses and affects contextual fear memory.

    PubMed

    Watabe, Ayako M; Nagase, Masashi; Hagiwara, Akari; Hida, Yamato; Tsuji, Megumi; Ochiai, Toshitaka; Kato, Fusao; Ohtsuka, Toshihisa

    2016-01-01

    Synapses of amphids defective (SAD)-A/B kinases control various steps in neuronal development and differentiation, such as axon specifications and maturation in central and peripheral nervous systems. At mature pre-synaptic terminals, SAD-B is associated with synaptic vesicles and the active zone cytomatrix; however, how SAD-B regulates neurotransmission and synaptic plasticity in vivo remains unclear. Thus, we used SAD-B knockout (KO) mice to study the function of this pre-synaptic kinase in the brain. We found that the paired-pulse ratio was significantly enhanced at Shaffer collateral synapses in the hippocampal CA1 region in SAD-B KO mice compared with wild-type littermates. We also found that the frequency of the miniature excitatory post-synaptic current was decreased in SAD-B KO mice. Moreover, synaptic depression following prolonged low-frequency synaptic stimulation was significantly enhanced in SAD-B KO mice. These results suggest that SAD-B kinase regulates vesicular release probability at pre-synaptic terminals and is involved in vesicular trafficking and/or regulation of the readily releasable pool size. Finally, we found that hippocampus-dependent contextual fear learning was significantly impaired in SAD-B KO mice. These observations suggest that SAD-B kinase plays pivotal roles in controlling vesicular release properties and regulating hippocampal function in the mature brain. Synapses of amphids defective (SAD)-A/B kinases control various steps in neuronal development and differentiation, but their roles in mature brains were only partially known. Here, we demonstrated, at mature pre-synaptic terminals, that SAD-B regulates vesicular release probability and synaptic plasticity. Moreover, hippocampus-dependent contextual fear learning was significantly impaired in SAD-B KO mice, suggesting that SAD-B kinase plays pivotal roles in controlling vesicular release properties and regulating hippocampal function in the mature brain. © 2015 International Society for Neurochemistry.

  9. Emerging Treatment Mechanisms for Depression: Focus on Glutamate and Synaptic Plasticity

    PubMed Central

    Gerhard, Danielle M.; Wohleb, Eric S.; Duman, Ronald S.

    2016-01-01

    Major depression is a chronic and debilitating illness that effects approximately 1 in 5 people, but currently available treatments are limited by low rates of efficacy, therapeutic time lag, and undesirable side effects. Recent efforts have been directed towards investigating rapid-acting agents that reverse the behavioral and neuronal deficits of chronic stress and depression, notably the glutamate NMDA receptor antagonist ketamine. The cellular mechanisms underlying the rapid antidepressant actions of ketamine and related agents are discussed, as well as novel, selective glutamatergic receptor targets that are safer and have fewer side effects. PMID:26854424

  10. Acute and Chronic Effects of Ethanol on Learning-Related Synaptic Plasticity

    PubMed Central

    Zorumski, Charles F.; Mennerick, Steven; Izumi, Yukitoshi

    2014-01-01

    Alcoholism is associated with acute and long-term cognitive dysfunction including memory impairment, resulting in substantial disability and cost to society. Thus, understanding how ethanol impairs cognition is essential for developing treatment strategies to dampen its adverse impact. Memory processing is thought to involve persistent, use-dependent changes in synaptic transmission, and ethanol alters the activity of multiple signaling molecules involved in synaptic processing, including modulation of the glutamate and gamma-aminobutyric acid (GABA) transmitter systems that mediate most fast excitatory and inhibitory transmission in the brain. Effects on glutamate and GABA receptors contribute to ethanol-induced changes in long-term potentiation (LTP) and long-term depression (LTD), forms of synaptic plasticity thought to underlie memory acquisition. In this paper, we review the effects of ethanol on learning-related forms of synaptic plasticity with emphasis on changes observed in the hippocampus, a brain region that is critical for encoding contextual and episodic memories. We also include studies in other brain regions as they pertain to altered cognitive and mental function. Comparison of effects in the hippocampus to other brain regions is instructive for understanding the complexities of ethanol’s acute and long-term pharmacological consequences. PMID:24447472

  11. Single fluoxetine treatment before but not after stress prevents stress-induced hippocampal long-term depression and spatial memory retrieval impairment in rats

    PubMed Central

    Han, Huili; Dai, Chunfang; Dong, Zhifang

    2015-01-01

    A growing body of evidence has shown that chronic treatment with fluoxetine, a widely prescribed medication for treatment of depression, can affect synaptic plasticity in the adult central nervous system. However, it is not well understood whether acute fluoxetine influences synaptic plasticity, especially on hippocampal CA1 long-term depression (LTD), and if so, whether it subsequently impacts hippocampal-dependent spatial memory. Here, we reported that LTD facilitated by elevated-platform stress in hippocampal slices was completely prevented by fluoxetine administration (10 mg/kg, i.p.) 30 min before stress. The LTD was not, however, significantly inhibited by fluoxetine administration immediately after stress. Similarly, fluoxetine incubation (10 μM) during electrophysiological recordings also displayed no influence on the stress-facilitated LTD. In addition, behavioral results showed that a single fluoxetine treatment 30 min before but not after acute stress fully reversed the impairment of spatial memory retrieval in the Morris water maze paradigm. Taken together, these results suggest that acute fluoxetine treatment only before, but not after stress, can prevent hippocampal CA1 LTD and spatial memory retrieval impairment caused by behavioral stress in adult animals. PMID:26218751

  12. Late onset deficits in synaptic plasticity in the valproic acid rat model of autism.

    PubMed

    Martin, Henry G S; Manzoni, Olivier J

    2014-01-01

    Valproic acid (VPA) is a frequently used drug in the treatment of epilepsy, bipolar disorders and migraines; however it is also a potent teratogen. Prenatal exposure increases the risk of childhood malformations and can result in cognitive deficits. In rodents in utero exposure to VPA also causes neurodevelopmental abnormalities and is an important model of autism. In early postnatal life VPA exposed rat pups show changes in medial prefrontal cortex (mPFC) physiology and synaptic connectivity. Specifically, principal neurons show decreased excitability but increased local connectivity, coupled with an increase in long-term potentiation (LTP) due to an up-regulation of NMDA receptor (NMDAR) expression. However recent evidence suggests compensatory homeostatic mechanisms lead to normalization of synaptic NMDARs during later postnatal development. Here we have extended study of mPFC synaptic physiology into adulthood to better understand the longitudinal consequences of early developmental abnormalities in VPA exposed rats. Surprisingly in contrast to early postnatal life and adolescence, we find that adult VPA exposed rats show reduced synaptic function. Both NMDAR mediated currents and LTP are lower in adult VPA rats, although spontaneous activity and endocannabinoid dependent long-term depression are normal. We conclude that rather than correcting, synaptic abnormalities persist into adulthood in VPA exposed rats, although a quite different synaptic phenotype is present. This switch from hyper to hypo function in mPFC may be linked to some of the neurodevelopmental defects found in prenatal VPA exposure and autism spectrum disorders in general.

  13. Limb segment vibration modulates spinal reflex excitability and muscle mRNA expression after spinal cord injury

    PubMed Central

    Chang, Shuo-Hsiu; Tseng, Shih-Chiao; McHenry, Colleen L.; Littmann, Andrew E.; Suneja, Manish; Shields, Richard K.

    2012-01-01

    Objective We investigated the effect of various doses of vertical oscillation (vibration) on soleus H-reflex amplitude and post-activation depression in individuals with and without SCI. We also explored the acute effect of short-term limb vibration on skeletal muscle mRNA expression of genes associated with spinal plasticity. Methods Six healthy adults and five chronic complete SCI subjects received vibratory stimulation of their tibia over three different gravitational accelerations (0.3g, 0.6g, and 1.2g) at a fixed frequency (30 Hz). Soleus H-reflexes were measured before, during, and after vibration. Two additional chronic complete SCI subjects had soleus muscle biopsies 3 h following a single bout of vibration. Results H-reflex amplitude was depressed over 83% in both groups during vibration. This vibratory-induced inhibition lasted over 2 min in the control group, but not in the SCI group. Post-activation depression was modulated during the long-lasting vibratory inhibition. A single bout of mechanical oscillation altered mRNA expression from selected genes associated with synaptic plasticity. Conclusions Vibration of the lower leg inhibits the H-reflex amplitude, influences post-activation depression, and alters skeletal muscle mRNA expression of genes associated with synaptic plasticity. Significance Limb segment vibration may offer a long term method to reduce spinal reflex excitability after SCI. PMID:21963319

  14. Potentiation of tonic GABAergic inhibition by activation of postsynaptic kainate receptors.

    PubMed

    Jiang, L; Kang, D; Kang, J

    2015-07-09

    Presynaptic kainate-type glutamate ionotropic receptors (KARs) that mediate either the depression or the facilitation of GABA release have been intensively studied. Little attention has been given to the modulation of GABAA receptors (GABAARs) by postsynaptic KARs. Recent studies suggest that two GABAAR populations, synaptic (sGABAAR) and extrasynaptic (eGABAAR) GABAARs, mediate phasic and tonic forms of inhibition, respectively. Tonic inhibition plays an important role in the excitability of neuronal circuits and the occurrence of epileptic seizures. For this study, we are the first to report that the activation of postsynaptic KARs by the KAR agonist, Kainic acid (KA, 5 μM), enhanced tonic inhibition by potentiating eGABAARs. KA enhanced THIP-induced eGABAAR currents and prolonged the rise and decay time of muscimol-induced sGABAAR/eGABAAR currents, but also depressed the amplitude of evoked inhibitory postsynaptic currents (IPSCs), unitary IPSCs (uIPSCs), and muscimol-induced sGABAAR/eGABAAR currents. The PKC inhibitor, staurosporine (1 μM), in the patch pipette solution fully blocked the KA-induced potentiation of tonic inhibition, suggesting the involvement of an intracellular PKC pathway. Our study suggests that the activation of postsynaptic KARs potentiates eGABAARs but depresses sGABAARs. By activating postsynaptic KARs, synaptically released glutamate depresses phasic inhibition to facilitate neuronal plasticity, but potentiates tonic inhibition to protect neurons from over-excitation. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Chronic stress induces a selective decrease in AMPA receptor-mediated synaptic excitation at hippocampal temporoammonic-CA1 synapses.

    PubMed

    Kallarackal, Angy J; Kvarta, Mark D; Cammarata, Erin; Jaberi, Leelah; Cai, Xiang; Bailey, Aileen M; Thompson, Scott M

    2013-10-02

    Chronic stress promotes depression, but how it disrupts cognition and mood remains unknown. Chronic stress causes atrophy of pyramidal cell dendrites in the hippocampus and cortex in human and animal models, and a depressive-like behavioral state. We now test the hypothesis that excitatory temporoammonic (TA) synapses in the distal dendrites of CA1 pyramidal cells in rats are altered by chronic unpredictable stress (CUS) and restored by chronic antidepressant treatment, in conjunction with the behavioral consequences of CUS. We observed a decrease in AMPAR-mediated excitation at TA-CA1 synapses, but not Schaffer collateral-CA1 synapses, after CUS, with a corresponding layer-specific decrease in GluA1 expression. Both changes were reversed by chronic fluoxetine. CUS also disrupted long-term memory consolidation in the Morris water maze, a function of TA-CA1 synapses. The decreases in TA-CA1 AMPAR-mediated excitation and performance in the consolidation test were correlated positively with decreases in sucrose preference, a measure of anhedonia. We conclude that chronic stress selectively decreases AMPAR number and function at specific synapses and suggest that this underlies various depressive endophenotypes. Our findings provide evidence that glutamatergic dysfunction is an underlying cause of depression and that current first-line antidepressant drugs act by restoring excitatory synaptic strength. Our findings suggest novel therapeutic targets for this debilitating disease.

  16. NMDA Receptor as a Newly Identified Member of the Metabotropic Glutamate Receptor Family: Clinical Implications for Neurodegenerative Diseases

    PubMed Central

    Chung, ChiHye

    2013-01-01

    Recent reports have proposed a novel function for the N-methyl-d-aspartate (NMDA) receptor (NMDAR), a well-known excitatory, ionotropic receptor. A series of observations employing pharmacological techniques has proposed that upon ligand binding, this ionotropic receptor can actually function via signaling cascades independent of traditional ionotropic action. Moreover, the “metabotropic” action of NMDARs is suggested to mediate a form of synaptic plasticity, namely long-term synaptic depression (LTD), which shares cellular mechanisms with the synaptic deficits observed in Alzheimer’s disease. Given that a growing body of clinical and preclinical evidence strongly recommends NMDAR antagonists for their therapeutic potentials and advantages in a variety of diseases, further investigation into their molecular and cellular mechanisms is required to better understand the “metabotropic” action of NMDARs. PMID:23740429

  17. Exclusion of close linkage between the synaptic vesicular monoamine transporter locus and schizophrenia spectrum disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persico, A.M.; Uhl, G.R.; Wang, Zhe Wu

    The principal brain synaptic vesicular monoamine transporter (VMAT2) is responsible for the reuptake of serotonin, dopamine, norepinephrine, epinephrine, and histamine from the cytoplasm into synaptic vesicles, thus contributing to determination of the size of releasable neurotransmitter vesicular pools. Potential involvement of VMAT2 gene variants in the etiology of schizophrenia and related disorders was tested using polymorphic VMAT2 gene markers in 156 subjects from 16 multiplex pedigrees with schizophrenia, schizophreniform, schizoaffective, and schizotypal disorders and mood incongruent psychotic depression. Assuming genetic homogeneity, complete ({theta} = 0.0) linkage to the schizophrenia spectrum was excluded under both dominant and recessive models. Allelic variantsmore » at the VMAT2 locus do not appear to provide major genetic contributions to the etiology of schizophrenia spectrum disorders in these pedigrees. 16 refs.« less

  18. Anti-depressant-like effects of Jieyu chufan capsules in a mouse model of unpredictable chronic mild stress

    PubMed Central

    Zhao, Hui; Liang, Bingyu; Yu, Linjie; Xu, Yun

    2017-01-01

    Jieyu chufan (JYCF) is a well-known Chinese traditional medicine used for depression; however, the molecular mechanism underlying its anti-depressant action has remained elusive. In the present study, the anti-depressant effects of JYCF and the potential mechanisms were investigated in a mouse model. Five groups of 12 C57BL/6 mice each were used in the study, including a normal control group (NC group), a model control group (MC group) and three groups, which received different doses of JYCF (1.25, 2.5 and 5 g/kg) orally for 21 days (JYCF groups). The MC group and the three JYCF groups were subjected to 3 weeks of unpredictable chronic mild stress (UCMS) to induce depression-like behavior. All groups were subjected to a sucrose consumption test along with a forced swimming test to confirm depression-like behavior, an open-field test and an elevated plus maze test to confirm anxiety-like behavior, and a Morris water maze test to evaluate spatial learning and memory. In addition, synaptic density in the hippocampus was evaluated and western blot and immunostaining were used to analyze hippocampal expression of postsynaptic density protein-95 (PSD95), synaptophysin (Syn), cyclic adenosine monophosphate response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), Akt and glycogen synthase kinase (GSK)-3β as well as their phosphorylated (p) versions. The results showed that JYCF (2.5 and 5 g/kg) alleviated depressive-like behaviors and increased synaptic density in UCMS mice. Moreover, JYCF upregulated the expression of PSD95, Syn and BDNF and increased phosphorylated Akt, CREB and GSK-3β in the hippocampus. These results suggested that JYCF exerts an anti-depressant-like activity in UCMS-induced mice, which is likely to be mediated by reversing the stress-induced disruption of BDNF and GSK-3β activity. PMID:28810562

  19. An essential role for UBE2A/HR6A in learning and memory and mGLUR-dependent long-term depression.

    PubMed

    Bruinsma, Caroline F; Savelberg, Sanne M C; Kool, Martijn J; Jolfaei, Mehrnoush Aghadavoud; Van Woerden, Geeske M; Baarends, Willy M; Elgersma, Ype

    2016-01-01

    UBE2A deficiency syndrome (also known as X-linked intellectual disability type Nascimento) is an intellectual disability syndrome characterized by prominent dysmorphic features, impaired speech and often epilepsy. The syndrome is caused by Xq24 deletions encompassing the UBE2A (HR6A) gene or by intragenic UBE2A mutations. UBE2A encodes an E2 ubiquitin-conjugating enzyme involved in DNA repair and female fertility. A recent study in Drosophila showed that dUBE2A binds to the E3 ligase Parkin, which is required for mitochondrial function and responsible for juvenile Parkinson's disease. In addition, these studies showed impairments in synaptic transmission in dUBE2A mutant flies. However, a causal role of UBE2A in of cognitive deficits has not yet been established. Here, we show that Ube2a knockout mice have a major deficit in spatial learning tasks, whereas other tested phenotypes, including epilepsy and motor coordination, were normal. Results from electrophysiological measurements in the hippocampus showed no deficits in synaptic transmission nor in the ability to induce long-term synaptic potentiation. However, a small but significant deficit was observed in mGLUR-dependent long-term depression, a pathway previously implied in several other mouse models for neurodevelopmental disorders. Our results indicate a causal role of UBE2A in learning and mGLUR-dependent long-term depression, and further indicate that the Ube2a knockout mouse is a good model to study the molecular mechanisms underlying UBE2A deficiency syndrome. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Synaptic Impairment in Layer 1 of the Prefrontal Cortex Induced by Repeated Stress During Adolescence is Reversed in Adulthood

    PubMed Central

    Negrón-Oyarzo, Ignacio; Dagnino-Subiabre, Alexies; Muñoz Carvajal, Pablo

    2015-01-01

    Chronic stress is a risk factor for the development of psychiatric disorders, some of which involve dysfunction of the prefrontal cortex (PFC). There is a higher prevalence of these chronic stress-related psychiatric disorders during adolescence, when the PFC has not yet fully matured. In the present work we studied the effect of repeated stress during adolescence on synaptic function in the PFC in adolescence and adulthood. To this end, adolescent Sprague-Dawley rats were subjected to seven consecutive days of restraint stress. Afterward, both synaptic transmission and short- and long-term synaptic plasticity were evaluated in layer 1 of medial-PFC (mPFC) slices from adolescent and adult rats. We found that repeated stress significantly reduced the amplitude of evoked field excitatory post-synaptic potential (fEPSP) in the mPFC. Isolation of excitatory transmission reveled that lower-amplitude fEPSPs were associated with a reduction in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated transmission. We also found that repeated stress significantly decreased long-term depression (LTD). Interestingly, AMPA/kainate receptor-mediated transmission and LTD were recovered in adult animals that experienced a three-week stress-free recovery period. The data indicates that the changes in synaptic transmission and plasticity in the mPFC induced by repeated stress during adolescence are reversed in adulthood after a stress-free period. PMID:26617490

  1. Transcriptomics study of neurodegenerative disease: emphasis on synaptic dysfunction mechanism in Alzheimer's disease.

    PubMed

    Karim, Sajjad; Mirza, Zeenat; Ansari, Shakeel A; Rasool, Mahmood; Iqbal, Zafar; Sohrab, Sayed S; Kamal, Mohammad A; Abuzenadah, Adel M; Al-Qahtani, Mohammed H

    2014-01-01

    Alzheimer's disease (AD) is a common neurodegenerative disorder primarily affecting memory and thinking ability; caused by progressive degeneration and death of nerve cells. In this study, we integrated multiple dataset retrieved from the National Center for Biotechnology Information's Gene Expression Omnibus database, and took a systems-biology approach to compare and distinguish the molecular network based synaptic dysregulation associated with AD in particular and neurodegenerative diseases in general. We first identified 832 differentially expressed genes using cut off P value <0.5 and fold change > 2, followed by gene ontology study to identify genes associated with synapse (n=95) [membrane associated guanylate kinase, 2, amyloid beta precursor protein, neurotrophic tyrosine kinase, receptor, type 2], synapse part [γ-aminobutyric acid A receptor, γ1], synaptic vesicle [glutamate receptor, ionotropic, α-amino-3-hydroxy-5- methyl-4-isoxazole propionic acid receptor 2, synaptoporin], pre- and post-synaptic density [neuronal calcium sensor 1, glutamate receptor, metabotropic 3]. We integrated these data with known pathways using Ingenuity Pathway Analysis tool and found following synapse associated pathways to be most affected; γ-aminobutyric acid receptor signaling, synaptic long term potentiation/depression, nuclear factor-erythroid 2-related factor 2-mediated oxidative stress response, huntington's disease signaling and Reelin signaling in neurons. In conclusion, synaptic dysfunction is tightly associated with the development and progression of neurodegenerative diseases like AD.

  2. Does Spike-Timing-Dependent Synaptic Plasticity Couple or Decouple Neurons Firing in Synchrony?

    PubMed Central

    Knoblauch, Andreas; Hauser, Florian; Gewaltig, Marc-Oliver; Körner, Edgar; Palm, Günther

    2012-01-01

    Spike synchronization is thought to have a constructive role for feature integration, attention, associative learning, and the formation of bidirectionally connected Hebbian cell assemblies. By contrast, theoretical studies on spike-timing-dependent plasticity (STDP) report an inherently decoupling influence of spike synchronization on synaptic connections of coactivated neurons. For example, bidirectional synaptic connections as found in cortical areas could be reproduced only by assuming realistic models of STDP and rate coding. We resolve this conflict by theoretical analysis and simulation of various simple and realistic STDP models that provide a more complete characterization of conditions when STDP leads to either coupling or decoupling of neurons firing in synchrony. In particular, we show that STDP consistently couples synchronized neurons if key model parameters are matched to physiological data: First, synaptic potentiation must be significantly stronger than synaptic depression for small (positive or negative) time lags between presynaptic and postsynaptic spikes. Second, spike synchronization must be sufficiently imprecise, for example, within a time window of 5–10 ms instead of 1 ms. Third, axonal propagation delays should not be much larger than dendritic delays. Under these assumptions synchronized neurons will be strongly coupled leading to a dominance of bidirectional synaptic connections even for simple STDP models and low mean firing rates at the level of spontaneous activity. PMID:22936909

  3. The Chemokine MIP-1α/CCL3 impairs mouse hippocampal synaptic transmission, plasticity and memory.

    PubMed

    Marciniak, Elodie; Faivre, Emilie; Dutar, Patrick; Alves Pires, Claire; Demeyer, Dominique; Caillierez, Raphaëlle; Laloux, Charlotte; Buée, Luc; Blum, David; Humez, Sandrine

    2015-10-29

    Chemokines are signaling molecules playing an important role in immune regulations. They are also thought to regulate brain development, neurogenesis and neuroendocrine functions. While chemokine upsurge has been associated with conditions characterized with cognitive impairments, their ability to modulate synaptic plasticity remains ill-defined. In the present study, we specifically evaluated the effects of MIP1-α/CCL3 towards hippocampal synaptic transmission, plasticity and spatial memory. We found that CCL3 (50 ng/ml) significantly reduced basal synaptic transmission at the Schaffer collateral-CA1 synapse without affecting NMDAR-mediated field potentials. This effect was ascribed to post-synaptic regulations, as CCL3 did not impact paired-pulse facilitation. While CCL3 did not modulate long-term depression (LTD), it significantly impaired long-term potentiation (LTP), an effect abolished by Maraviroc, a CCR5 specific antagonist. In addition, sub-chronic intracerebroventricular (icv) injections of CCL3 also impair LTP. In accordance with these electrophysiological findings, we demonstrated that the icv injection of CCL3 in mouse significantly impaired spatial memory abilities and long-term memory measured using the two-step Y-maze and passive avoidance tasks. These effects of CCL3 on memory were inhibited by Maraviroc. Altogether, these data suggest that the chemokine CCL3 is an hippocampal neuromodulator able to regulate synaptic plasticity mechanisms involved in learning and memory functions.

  4. Synaptic Impairment in Layer 1 of the Prefrontal Cortex Induced by Repeated Stress During Adolescence is Reversed in Adulthood.

    PubMed

    Negrón-Oyarzo, Ignacio; Dagnino-Subiabre, Alexies; Muñoz Carvajal, Pablo

    2015-01-01

    Chronic stress is a risk factor for the development of psychiatric disorders, some of which involve dysfunction of the prefrontal cortex (PFC). There is a higher prevalence of these chronic stress-related psychiatric disorders during adolescence, when the PFC has not yet fully matured. In the present work we studied the effect of repeated stress during adolescence on synaptic function in the PFC in adolescence and adulthood. To this end, adolescent Sprague-Dawley rats were subjected to seven consecutive days of restraint stress. Afterward, both synaptic transmission and short- and long-term synaptic plasticity were evaluated in layer 1 of medial-PFC (mPFC) slices from adolescent and adult rats. We found that repeated stress significantly reduced the amplitude of evoked field excitatory post-synaptic potential (fEPSP) in the mPFC. Isolation of excitatory transmission reveled that lower-amplitude fEPSPs were associated with a reduction in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated transmission. We also found that repeated stress significantly decreased long-term depression (LTD). Interestingly, AMPA/kainate receptor-mediated transmission and LTD were recovered in adult animals that experienced a three-week stress-free recovery period. The data indicates that the changes in synaptic transmission and plasticity in the mPFC induced by repeated stress during adolescence are reversed in adulthood after a stress-free period.

  5. Loss of Tsc1 in vivo impairs hippocampal mGluR-LTD and increases excitatory synaptic function.

    PubMed

    Bateup, Helen S; Takasaki, Kevin T; Saulnier, Jessica L; Denefrio, Cassandra L; Sabatini, Bernardo L

    2011-06-15

    The autism spectrum disorder tuberous sclerosis complex (TSC) is caused by mutations in the Tsc1 or Tsc2 genes, whose protein products form a heterodimeric complex that negatively regulates mammalian target of rapamycin-dependent protein translation. Although several forms of synaptic plasticity, including metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD), depend on protein translation at the time of induction, it is unknown whether these forms of plasticity require signaling through the Tsc1/2 complex. To examine this possibility, we postnatally deleted Tsc1 in vivo in a subset of hippocampal CA1 neurons using viral delivery of Cre recombinase in mice. We found that hippocampal mGluR-LTD was abolished by loss of Tsc1, whereas a protein synthesis-independent form of NMDA receptor-dependent LTD was preserved. Additionally, AMPA and NMDA receptor-mediated EPSCs and miniature spontaneous EPSC frequency were enhanced in Tsc1 KO neurons. These changes in synaptic function occurred in the absence of alterations in spine density, morphology, or presynaptic release probability. Our findings indicate that signaling through Tsc1/2 is required for the expression of specific forms of hippocampal synaptic plasticity as well as the maintenance of normal excitatory synaptic strength. Furthermore, these data suggest that perturbations of synaptic signaling may contribute to the pathogenesis of TSC.

  6. Operant conditioning of synaptic and spiking activity patterns in single hippocampal neurons.

    PubMed

    Ishikawa, Daisuke; Matsumoto, Nobuyoshi; Sakaguchi, Tetsuya; Matsuki, Norio; Ikegaya, Yuji

    2014-04-02

    Learning is a process of plastic adaptation through which a neural circuit generates a more preferable outcome; however, at a microscopic level, little is known about how synaptic activity is patterned into a desired configuration. Here, we report that animals can generate a specific form of synaptic activity in a given neuron in the hippocampus. In awake, head-restricted mice, we applied electrical stimulation to the lateral hypothalamus, a reward-associated brain region, when whole-cell patch-clamped CA1 neurons exhibited spontaneous synaptic activity that met preset criteria. Within 15 min, the mice learned to generate frequently the excitatory synaptic input pattern that satisfied the criteria. This reinforcement learning of synaptic activity was not observed for inhibitory input patterns. When a burst unit activity pattern was conditioned in paired and nonpaired paradigms, the frequency of burst-spiking events increased and decreased, respectively. The burst reinforcement occurred in the conditioned neuron but not in other adjacent neurons; however, ripple field oscillations were concomitantly reinforced. Neural conditioning depended on activation of NMDA receptors and dopamine D1 receptors. Acutely stressed mice and depression model mice that were subjected to forced swimming failed to exhibit the neural conditioning. This learning deficit was rescued by repetitive treatment with fluoxetine, an antidepressant. Therefore, internally motivated animals are capable of routing an ongoing action potential series into a specific neural pathway of the hippocampal network.

  7. Neuronal modelling of baroreflex response to orthostatic stress

    NASA Astrophysics Data System (ADS)

    Samin, Azfar

    The accelerations experienced in aerial combat can cause pilot loss of consciousness (GLOC) due to a critical reduction in cerebral blood circulation. The development of smart protective equipment requires understanding of how the brain processes blood pressure (BP) information in response to acceleration. We present a biologically plausible model of the Baroreflex to investigate the neural correlates of short-term BP control under acceleration or orthostatic stress. The neuronal network model, which employs an integrate-and-fire representation of a biological neuron, comprises the sensory, motor, and the central neural processing areas that form the Baroreflex. Our modelling strategy is to test hypotheses relating to the encoding mechanisms of multiple sensory inputs to the nucleus tractus solitarius (NTS), the site of central neural processing. The goal is to run simulations and reproduce model responses that are consistent with the variety of available experimental data. Model construction and connectivity are inspired by the available anatomical and neurophysiological evidence that points to a barotopic organization in the NTS, and the presence of frequency-dependent synaptic depression, which provides a mechanism for generating non-linear local responses in NTS neurons that result in quantifiable dynamic global baroreflex responses. The entire physiological range of BP and rate of change of BP variables is encoded in a palisade of NTS neurons in that the spike responses approximate Gaussian 'tuning' curves. An adapting weighted-average decoding scheme computes the motor responses and a compensatory signal regulates the heart rate (HR). Model simulations suggest that: (1) the NTS neurons can encode the hydrostatic pressure difference between two vertically separated sensory receptor regions at +Gz, and use changes in that difference for the regulation of HR; (2) even though NTS neurons do not fire with a cardiac rhythm seen in the afferents, pulse-rhythmic activity is regained downstream provided the input phase information in preserved centrally; (3) frequency-dependent synaptic depression, which causes temporal variations in synaptic strength due to changes in input frequency, is a possible mechanism of non-linear dynamic baroreflex gain control. Synaptic depression enables the NTS neuron to encode dBP/dt but to lose information about the steady state firing of the afferents.

  8. Pushing the threshold: How NMDAR antagonists induce homeostasis through protein synthesis to remedy depression.

    PubMed

    Raab-Graham, Kimberly F; Workman, Emily R; Namjoshi, Sanjeev; Niere, Farr

    2016-09-15

    Healthy neurons have an optimal operating range, coded globally by the frequency of action potentials or locally by calcium. The maintenance of this range is governed by homeostatic plasticity. Here, we discuss how new approaches to treat depression alter synaptic activity. These approaches induce the neuron to recruit homeostatic mechanisms to relieve depression. Homeostasis generally implies that the direction of activity necessary to restore the neuron's critical operating range is opposite in direction to its current activity pattern. Unconventional antidepressant therapies-deep brain stimulation and NMDAR antagonists-alter the neuron's "depressed" state by pushing the neuron's current activity in the same direction but to the extreme edge. These therapies rally the intrinsic drive of neurons in the opposite direction, thereby allowing the cell to return to baseline activity, form new synapses, and restore proper communication. In this review, we discuss seminal studies on protein synthesis dependent homeostatic plasticity and their contribution to our understanding of molecular mechanisms underlying the effectiveness of NMDAR antagonists as rapid antidepressants. Rapid antidepressant efficacy is likely to require a cascade of mRNA translational regulation. Emerging evidence suggests that changes in synaptic strength or intrinsic excitability converge on the same protein synthesis pathways, relieving depressive symptoms. Thus, we address the question: Are there multiple homeostatic mechanisms that induce the neuron and neuronal circuits to self-correct to regulate mood in vivo? Targeting alternative ways to induce homeostatic protein synthesis may provide, faster, safer, and longer lasting antidepressants. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease. Published by Elsevier B.V.

  9. Addiction-like Synaptic Impairments in Diet-Induced Obesity.

    PubMed

    Brown, Robyn Mary; Kupchik, Yonatan Michael; Spencer, Sade; Garcia-Keller, Constanza; Spanswick, David C; Lawrence, Andrew John; Simonds, Stephanie Elise; Schwartz, Danielle Joy; Jordan, Kelsey Ann; Jhou, Thomas Clayton; Kalivas, Peter William

    2017-05-01

    There is increasing evidence that the pathological overeating underlying some forms of obesity is compulsive in nature and therefore contains elements of an addictive disorder. However, direct physiological evidence linking obesity to synaptic plasticity akin to that occurring in addiction is lacking. We sought to establish whether the propensity to diet-induced obesity (DIO) is associated with addictive-like behavior, as well as synaptic impairments in the nucleus accumbens core considered hallmarks of addiction. Sprague Dawley rats were allowed free access to a palatable diet for 8 weeks then separated by weight gain into DIO-prone and DIO-resistant subgroups. Access to palatable food was then restricted to daily operant self-administration sessions using fixed ratio 1, 3, and 5 and progressive ratio schedules. Subsequently, nucleus accumbens brain slices were prepared, and we tested for changes in the ratio between α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate currents and the ability to exhibit long-term depression. We found that propensity to develop DIO is linked to deficits in the ability to induce long-term depression in the nucleus accumbens, as well as increased potentiation at these synapses as measured by AMPA/N-methyl-D-aspartate currents. Consistent with these impairments, we observed addictive-like behavior in DIO-prone rats, including 1) heightened motivation for palatable food; 2) excessive intake; and 3) increased food seeking when food was unavailable. Our results show overlap between the propensity for DIO and the synaptic changes associated with facets of addictive behavior, supporting partial coincident neurological underpinnings for compulsive overeating and drug addiction. Copyright © 2016 Society of Biological Psychiatry. All rights reserved.

  10. Cocaine sensitization does not alter SP effects on locomotion or excitatory synaptic transmission in the NAc of rats.

    PubMed

    Kombian, Samuel B; Ananthalakshmi, Kethireddy V V; Zidichouski, Jeffrey A; Saleh, Tarek M

    2012-02-01

    Substance P (SP) and cocaine employ similar mechanisms to modify excitatory synaptic transmission in the nucleus accumbens (NAc), a region implicated in substance abuse. Here we explored, using NAc slices, whether SP effects on these synaptic responses were altered in rats that have been sensitized to cocaine and whether SP could mimic cocaine in triggering increased locomotion in sensitized rats. Intraperitoneal (IP) injection of naïve rats with cocaine (15 mg/kg) caused increased locomotion by 408.5 ± 85.9% (n = 5) which further increased by 733.1 ± 157.8% (n = 5) following a week of cocaine sensitization. A similar challenge with 10 mg/kg of SP after cocaine sensitization did not produce significant changes in locomotion (170.6 ± 61.0%; n = 4). In contrast to cocaine, IP injection of rats with SP or SP(5-11) (10-100 mg/kg) with or without phosphoramidon did not elicit changes in locomotion. In electrophysiological studies, both cocaine and SP depressed evoked NMDA and non-NMDA receptor-mediated excitatory synaptic currents (EPSCs) in slices obtained from naïve rats. In slices derived from cocaine-sensitized rats, cocaine but not SP produced a more profound decrease in non-NMDA compared to NMDA responses. Similar to that in naïve rats, cocaine's effect on the EPSCs in these sensitized rats occluded those of SP. Thus, although SP and cocaine may employ similar mechanisms to depress EPSCs in the NAc, IP injection of SP does not mimic cocaine-induced hyperlocomotion indicating that not all of cocaine's effects are mimicked by SP. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. CB1-Dependent Long-Term Depression in Ventral Tegmental Area GABA Neurons: A Novel Target for Marijuana

    PubMed Central

    Friend, Lindsey; Sandoval, Philip; Nufer, Teresa; Ostlund, Isaac

    2017-01-01

    The VTA is necessary for reward behavior with dopamine cells critically involved in reward signaling. Dopamine cells in turn are innervated and regulated by neighboring inhibitory GABA cells. Using whole-cell electrophysiology in juvenile-adolescent GAD67-GFP male mice, we examined excitatory plasticity in fluorescent VTA GABA cells. A novel CB1-dependent LTD was induced in GABA cells that was dependent on metabotropic glutamate receptor 5, and cannabinoid receptor 1 (CB1). LTD was absent in CB1 knock-out mice but preserved in heterozygous littermates. Bath applied Δ9-tetrahydrocannabinol depressed GABA cell activity, therefore downstream dopamine cells will be disinhibited; and thus, this could potentially result in increased reward. Chronic injections of Δ9-tetrahydrocannabinol occluded LTD compared with vehicle injections; however, a single exposure was insufficient to do so. As synaptic modifications by drugs of abuse are often tied to addiction, these data suggest a possible mechanism for the addictive effects of Δ9-tetrahydrocannabinol in juvenile-adolescents, by potentially altering reward behavioral outcomes. SIGNIFICANCE STATEMENT The present study identifies a novel form of glutamatergic synaptic plasticity in VTA GABA neurons, a currently understudied cell type that is critical for the brain's reward circuit, and how Δ9-tetrahydrocannabinol occludes this plasticity. This study specifically addresses a potential unifying mechanism whereby marijuana could exert rewarding and addictive/withdrawal effects. Marijuana use and legalization are a pressing issue for many states in the United States. Although marijuana is the most commonly abused illicit drug, the implications of legalized, widespread, or continued usage are speculative. This study in juvenile-adolescent aged mice identifies a novel form of synaptic plasticity in VTA GABA cells, and the synaptic remodeling that can occur after Δ9-tetrahydrocannabinol use. PMID:29038246

  12. Loss of synaptic zinc transport in progranulin deficient mice may contribute to progranulin-associated psychopathology and chronic pain.

    PubMed

    Hardt, Stefanie; Heidler, Juliana; Albuquerque, Boris; Valek, Lucie; Altmann, Christine; Wilken-Schmitz, Annett; Schäfer, Michael K E; Wittig, Ilka; Tegeder, Irmgard

    2017-11-01

    Affective and cognitive processing of nociception contributes to the development of chronic pain and vice versa, pain may precipitate psychopathologic symptoms. We hypothesized a higher risk for the latter with immanent neurologic diseases and studied this potential interrelationship in progranulin-deficient mice, which are a model for frontotemporal dementia, a disease dominated by behavioral abnormalities in humans. Young naïve progranulin deficient mice behaved normal in tests of short-term memory, anxiety, depression and nociception, but after peripheral nerve injury, they showed attention-deficit and depression-like behavior, over-activity, loss of shelter-seeking, reduced impulse control and compulsive feeding behavior, which did not occur in equally injured controls. Hence, only the interaction of 'pain x progranulin deficiency' resulted in the complex phenotype at young age, but neither pain nor progranulin deficiency alone. A deep proteome analysis of the prefrontal cortex and olfactory bulb revealed progranulin-dependent alterations of proteins involved in synaptic transport, including neurotransmitter transporters of the solute carrier superfamily. In particular, progranulin deficiency was associated with a deficiency of nuclear and synaptic zinc transporters (ZnT9/Slc30a9; ZnT3/Slc30a3) with low plasma zinc. Dietary zinc supplementation partly normalized the attention deficit of progranulin-deficient mice, which was in part reminiscent of autism-like and compulsive behavior of synaptic zinc transporter Znt3-knockout mice. Hence, the molecular studies point to defective zinc transport possibly contributing to progranulin-deficiency-associated psychopathology. Translated to humans, our data suggest that neuropathic pain may precipitate cognitive and psychopathological symptoms of an inherent, still silent neurodegenerative disease. Copyright © 2017. Published by Elsevier B.V.

  13. Kainate Receptors Inhibit Glutamate Release Via Mobilization of Endocannabinoids in Striatal Direct Pathway Spiny Projection Neurons.

    PubMed

    Marshall, John J; Xu, Jian; Contractor, Anis

    2018-04-18

    Kainate receptors are members of the glutamate receptor family that function by both generating ionotropic currents through an integral ion channel pore and coupling to downstream metabotropic signaling pathways. They are highly expressed in the striatum, yet their roles in regulating striatal synapses are not known. Using mice of both sexes, we demonstrate that GluK2-containing kainate receptors expressed in direct pathway spiny projection neurons (dSPNs) inhibit glutamate release at corticostriatal synapses in the dorsolateral striatum. This inhibition requires postsynaptic kainate-receptor-mediated mobilization of a retrograde endocannabinoid (eCB) signal and activation of presynaptic CB1 receptors. This pathway can be activated during repetitive 25 Hz trains of synaptic stimulation, causing short-term depression of corticostriatal synapses. This is the first study to demonstrate a role for kainate receptors in regulating eCB-mediated plasticity at the corticostriatal synapse and demonstrates an important role for these receptors in regulating basal ganglia circuits. SIGNIFICANCE STATEMENT The GRIK2 gene, encoding the GluK2 subunit of the kainate receptor, has been linked to several neuropsychiatric and neurodevelopmental disorders including obsessive compulsive disorder (OCD). Perseverative behaviors associated with OCD are known to result from pathophysiological changes in the striatum and kainate receptor knock-out mice have striatal-dependent phenotypes. However, the role of kainate receptors in striatal synapses is not known. We demonstrate that GluK2-containing kainate receptors regulate corticostriatal synapses by mobilizing endocannabinoids from direct pathway spiny projection neurons. Synaptic activation of GluK2 receptors during trains of synaptic input causes short-term synaptic depression, demonstrating a novel role for these receptors in regulating striatal circuits. Copyright © 2018 the authors 0270-6474/18/383901-10$15.00/0.

  14. Substance P presynaptically depresses the transmission of sensory input to bronchopulmonary neurons in the guinea pig nucleus tractus solitarii

    PubMed Central

    Sekizawa, Shin-ichi; Joad, Jesse P; Bonham, Ann C

    2003-01-01

    Substance P modulates the reflex regulation of respiratory function by its actions both peripherally and in the CNS, particularly in the nucleus tractus solitarii (NTS), the first central site for synaptic contact of the lung and airway afferent fibres. There is considerable evidence that the actions of substance P in the NTS augment respiratory reflex output, but the precise effects on synaptic transmission have not yet been determined. Therefore, we determined the effects of substance P on synaptic transmission at the first central synapses by using whole-cell voltage clamping in an NTS slice preparation. Studies were performed on second-order neurons in the slice anatomically identified as receiving monosynaptic input from sensory nerves in the lungs and airways. This was done by the fluorescent labelling of terminal boutons after 1,1′-dioctadecyl-3,3,3′,3′-tetra-methylindocarbo-cyanine perchlorate (DiI) was applied via tracheal instillation. Substance P (1.0, 0.3 and 0.1 μM) significantly decreased the amplitude of excitatory postsynaptic currents (eEPSCs) evoked by stimulation of the tractus solitarius, in a concentration-dependent manner. The decrease was accompanied by an increase in the paired-pulse ratio of two consecutive eEPSCs, and a decrease in the frequency, but not the amplitude, of spontaneous EPSCs and miniature EPSCs, findings consistent with a presynaptic site of action. The effects were consistently and significantly attenuated by a neurokinin-1 (NK1) receptor antagonist (SR140333, 3 μM). The data suggest a new site of action for substance P in the NTS (NK1 receptors on the central terminals of sensory fibres) and a new mechanism (depression of synaptic transmission) for regulating respiratory reflex function. PMID:14561836

  15. Mechanisms of potentiation of mossy fiber EPSCs in the cerebellar nuclei by coincident synaptic excitation and inhibition

    PubMed Central

    Pugh, Jason R.; Raman, Indira M.

    2008-01-01

    Neurons of the cerebellar nuclei receive synaptic excitation from cerebellar mossy fibers. Unlike in many principal neurons, coincident presynaptic activity and postsynaptic depolarization do not generate long-term potentiation at these synapses. Instead, EPSCs are potentiated by high-frequency trains of presynaptic activity applied with postsynaptic hyperpolarization, in patterns resembling the mossy fiber-mediated excitation and Purkinje cell-mediated inhibition predicted to occur during delay eyelid conditioning. Here, we have used electrophysiology and Ca imaging to test how synaptic excitation and inhibition interact to generate long-lasting synaptic plasticity in nuclear cells in cerebellar slices. We find that the extent of plasticity varies with the relative timing of synaptic excitation and hyperpolarization. Potentiation is most effective when synaptic stimuli precede the post-inhibitory rebound by ~400 ms, whereas with longer intervals, or with a reverse sequence, EPSCs tend to depress. When basal intracellular Ca is raised by spontaneous firing or reduced by voltage-clamping at subthreshold potentials, potentiation is induced as long as the synaptic-rebound temporal sequence is maintained, suggesting that plasticity does not require Ca levels to exceed a threshold or attain a specific concentration. Although rebound and spike-dependent Ca influx are global, potentiation is synapse-specific, and is disrupted by inhibitors of calcineurin or CaMKII, but not PKC. When IPSPs replace the hyperpolarizing step in the induction protocol, potentiation proceeds normally. These results lead us to propose that synaptic and inhibitory/rebound stimuli initiate separate processes, with local NMDA-receptor-mediated Ca influx “priming” synapses, and Ca changes from the inhibition and rebound “triggering” potentiation at recently activated synapses. PMID:18923031

  16. Early-life seizures alter synaptic calcium-permeable AMPA receptor function and plasticity

    PubMed Central

    Lippman-Bell, Jocelyn J.; Zhou, Chengwen; Sun, Hongyu; Feske, Joel S.; Jensen, Frances E.

    2016-01-01

    Calcium (Ca2+)-mediated1 signaling pathways are critical to synaptic plasticity. In adults, the NMDA glutamate receptor (NMDAR) represents a major route for activity-dependent synaptic Ca2+ entry. However, during neonatal development, when synaptic plasticity is high, many AMPA glutamate receptors (AMPARs) are also permeable to Ca2+ (CP-AMPAR) due to low GluA2 subunit expression, providing an additional route for activity- and glutamate-dependent Ca2+ influx and subsequent signaling. Therefore, altered hippocampal Ca2+ signaling may represent an age-specific pathogenic mechanism. We thus aimed to assess Ca2+ responses 48 hours after hypoxia-induced neonatal seizures (HS) in postnatal day (P)10 rats, a post-seizure time point at which we previously reported LTP attenuation. We found that Ca2+ responses were higher in brain slices from post-HS rats than in controls and this increase was CP-AMPAR-dependent. To determine whether synaptic CP-AMPAR expression was also altered post-HS, we assessed the expression of GluA2 at hippocampal synapses and the expression of long-term depression (LTD), which has been linked to the presence of synaptic GluA2. Here we report a decrease 48 hours after HS in synaptic GluA2 expression at synapses and LTD in hippocampal CA1. Given the potentially critical role of AMPAR trafficking in disease progression, we aimed to establish whether post-seizure in vivo AMPAR antagonist treatment prevented the enhanced Ca2+ responses, changes in GluA2 synaptic expression, and diminished LTD. We found that NBQX treatment prevents all three of these post-seizure consequences, further supporting a critical role for AMPARs as an age-specific therapeutic target. PMID:27521497

  17. Modulation of CaV2.1 channels by neuronal calcium sensor-1 induces short-term synaptic facilitation.

    PubMed

    Yan, Jin; Leal, Karina; Magupalli, Venkat G; Nanou, Evanthia; Martinez, Gilbert Q; Scheuer, Todd; Catterall, William A

    2014-11-01

    Facilitation and inactivation of P/Q-type Ca2+ currents mediated by Ca2+/calmodulin binding to Ca(V)2.1 channels contribute to facilitation and rapid depression of synaptic transmission, respectively. Other calcium sensor proteins displace calmodulin from its binding site and differentially modulate P/Q-type Ca2 + currents, resulting in diverse patterns of short-term synaptic plasticity. Neuronal calcium sensor-1 (NCS-1, frequenin) has been shown to enhance synaptic facilitation, but the underlying mechanism is unclear. We report here that NCS-1 directly interacts with IQ-like motif and calmodulin-binding domain in the C-terminal domain of Ca(V)2.1 channel. NCS-1 reduces Ca2 +-dependent inactivation of P/Q-type Ca2+ current through interaction with the IQ-like motif and calmodulin-binding domain without affecting peak current or activation kinetics. Expression of NCS-1 in presynaptic superior cervical ganglion neurons has no effect on synaptic transmission, eliminating effects of this calcium sensor protein on endogenous N-type Ca2+ currents and the endogenous neurotransmitter release machinery. However, in superior cervical ganglion neurons expressing wild-type Ca(V)2.1 channels, co-expression of NCS-1 induces facilitation of synaptic transmission in response to paired pulses and trains of depolarizing stimuli, and this effect is lost in Ca(V)2.1 channels with mutations in the IQ-like motif and calmodulin-binding domain. These results reveal that NCS-1 directly modulates Ca(V)2.1 channels to induce short-term synaptic facilitation and further demonstrate that CaS proteins are crucial in fine-tuning short-term synaptic plasticity.

  18. Reduced sensory synaptic excitation impairs motor neuron function via Kv2.1 in spinal muscular atrophy.

    PubMed

    Fletcher, Emily V; Simon, Christian M; Pagiazitis, John G; Chalif, Joshua I; Vukojicic, Aleksandra; Drobac, Estelle; Wang, Xiaojian; Mentis, George Z

    2017-07-01

    Behavioral deficits in neurodegenerative diseases are often attributed to the selective dysfunction of vulnerable neurons via cell-autonomous mechanisms. Although vulnerable neurons are embedded in neuronal circuits, the contributions of their synaptic partners to disease process are largely unknown. Here we show that, in a mouse model of spinal muscular atrophy (SMA), a reduction in proprioceptive synaptic drive leads to motor neuron dysfunction and motor behavior impairments. In SMA mice or after the blockade of proprioceptive synaptic transmission, we observed a decrease in the motor neuron firing that could be explained by the reduction in the expression of the potassium channel Kv2.1 at the surface of motor neurons. Chronically increasing neuronal activity pharmacologically in vivo led to a normalization of Kv2.1 expression and an improvement in motor function. Our results demonstrate a key role of excitatory synaptic drive in shaping the function of motor neurons during development and the contribution of its disruption to a neurodegenerative disease.

  19. Reduced sensory synaptic excitation impairs motor neuron function via Kv2.1 in spinal muscular atrophy

    PubMed Central

    Fletcher, Emily V.; Simon, Christian M.; Pagiazitis, John G.; Chalif, Joshua I.; Vukojicic, Aleksandra; Drobac, Estelle; Wang, Xiaojian; Mentis, George Z.

    2017-01-01

    Behavioral deficits in neurodegenerative diseases are often attributed to the selective dysfunction of vulnerable neurons via cell-autonomous mechanisms. Although vulnerable neurons are embedded in neuronal circuits, the contribution of their synaptic partners to the disease process is largely unknown. Here, we show that in a mouse model of spinal muscular atrophy (SMA), a reduction in proprioceptive synaptic drive leads to motor neuron dysfunction and motor behavior impairments. In SMA mice or after the blockade of proprioceptive synaptic transmission we observed a decrease in the motor neuron firing which could be explained by the reduction in the expression of the potassium channel Kv2.1 at the surface of motor neurons. Increasing neuronal activity pharmacologically by chronic exposure in vivo led to a normalization of Kv2.1 expression and an improvement in motor function. Our results demonstrate a key role of excitatory synaptic drive in shaping the function of motor neurons during development and the contribution of its disruption to a neurodegenerative disease. PMID:28504671

  20. Patterns of fast synaptic cholinergic activation of neurons in the celiac ganglia of cats.

    PubMed

    Niel, J P; Clerc, N; Jule, Y

    1988-12-01

    Fast nicotinic transmission was studied in vitro in neurons of isolated cat celiac ganglia. In the absence of nerve stimulation, neurons could be classified into three types: silent neurons, synaptically activated neurons, and spontaneously discharging neurons. In all three types, fast synaptic activation could be obtained in single neurons by stimulating with a single pulse both the splanchnic nerves or one of the peripheral nerves connected to the ganglia. During repetitive nerve stimulation, a gradual depression of the central and peripheral fast nicotinic activation occurred, which was not affected by phentolamine plus propranolol, domperidone, atropine, or naloxone. Repetitive nerve stimulation was followed by a long lasting discharge of excitatory postsynaptic potentials and action potentials that decreased gradually with time. This discharge, which was probably due to presynaptic or prejunctional facilitation of acetylcholine release from cholinergic terminals, was reduced by the application of phentolamine plus propranolol, domperidone, or atropine and increased with naloxone. The existence of the mechanisms described in this study reflects the complexity of the integrative processes at work in neurons of the cat celiac ganglia that involve fast synaptic cholinergic activation.

  1. Control of synaptic function by endocannabinoid-mediated retrograde signaling.

    PubMed

    Kano, Masanobu

    2014-01-01

    Since the first reports in 2001, great advances have been made towards the understanding of endocannabinoid-mediated synaptic modulation. Electrophysiological studies have revealed that one of the two major endocannabinoids, 2-arachidonoylglycerol (2-AG), is produced from membrane lipids upon postsynaptic Ca(2+) elevation and/or activation of Gq/11-coupled receptors, and released from postsynaptic neurons. The released 2-AG then acts retrogradely onto presynaptic cannabinoid CB1 receptors and induces suppression of neurotransmitter release either transiently or persistently. These forms of 2-AG-mediated retrograde synaptic modulation are functional throughout the brain. The other major endocannabinoid, anandamide, mediates a certain form of endocannabinoid-mediated long-term depression (LTD). Anandamide also functions as an agonist for transient receptor potential vanilloid receptor type 1 (TRPV1) and mediates endocannabinoid-independent and TRPV1-dependent forms of LTD. It has also been demonstrated that the endocannabinoid system itself is plastic, which can be either up- or down-regulated by experimental or environmental conditions. In this review, I will make an overview of the mechanisms underlying endocannabinoid-mediated synaptic modulation.

  2. Control of synaptic function by endocannabinoid-mediated retrograde signaling

    PubMed Central

    KANO, Masanobu

    2014-01-01

    Since the first reports in 2001, great advances have been made towards the understanding of endocannabinoid-mediated synaptic modulation. Electrophysiological studies have revealed that one of the two major endocannabinoids, 2-arachidonoylglycerol (2-AG), is produced from membrane lipids upon postsynaptic Ca2+ elevation and/or activation of Gq/11-coupled receptors, and released from postsynaptic neurons. The released 2-AG then acts retrogradely onto presynaptic cannabinoid CB1 receptors and induces suppression of neurotransmitter release either transiently or persistently. These forms of 2-AG-mediated retrograde synaptic modulation are functional throughout the brain. The other major endocannabinoid, anandamide, mediates a certain form of endocannabinoid-mediated long-term depression (LTD). Anandamide also functions as an agonist for transient receptor potential vanilloid receptor type 1 (TRPV1) and mediates endocannabinoid-independent and TRPV1-dependent forms of LTD. It has also been demonstrated that the endocannabinoid system itself is plastic, which can be either up- or down-regulated by experimental or environmental conditions. In this review, I will make an overview of the mechanisms underlying endocannabinoid-mediated synaptic modulation. PMID:25169670

  3. A decision-making model based on a spiking neural circuit and synaptic plasticity.

    PubMed

    Wei, Hui; Bu, Yijie; Dai, Dawei

    2017-10-01

    To adapt to the environment and survive, most animals can control their behaviors by making decisions. The process of decision-making and responding according to cues in the environment is stable, sustainable, and learnable. Understanding how behaviors are regulated by neural circuits and the encoding and decoding mechanisms from stimuli to responses are important goals in neuroscience. From results observed in Drosophila experiments, the underlying decision-making process is discussed, and a neural circuit that implements a two-choice decision-making model is proposed to explain and reproduce the observations. Compared with previous two-choice decision making models, our model uses synaptic plasticity to explain changes in decision output given the same environment. Moreover, biological meanings of parameters of our decision-making model are discussed. In this paper, we explain at the micro-level (i.e., neurons and synapses) how observable decision-making behavior at the macro-level is acquired and achieved.

  4. Unsupervised learning in neural networks with short range synapses

    NASA Astrophysics Data System (ADS)

    Brunnet, L. G.; Agnes, E. J.; Mizusaki, B. E. P.; Erichsen, R., Jr.

    2013-01-01

    Different areas of the brain are involved in specific aspects of the information being processed both in learning and in memory formation. For example, the hippocampus is important in the consolidation of information from short-term memory to long-term memory, while emotional memory seems to be dealt by the amygdala. On the microscopic scale the underlying structures in these areas differ in the kind of neurons involved, in their connectivity, or in their clustering degree but, at this level, learning and memory are attributed to neuronal synapses mediated by longterm potentiation and long-term depression. In this work we explore the properties of a short range synaptic connection network, a nearest neighbor lattice composed mostly by excitatory neurons and a fraction of inhibitory ones. The mechanism of synaptic modification responsible for the emergence of memory is Spike-Timing-Dependent Plasticity (STDP), a Hebbian-like rule, where potentiation/depression is acquired when causal/non-causal spikes happen in a synapse involving two neurons. The system is intended to store and recognize memories associated to spatial external inputs presented as simple geometrical forms. The synaptic modifications are continuously applied to excitatory connections, including a homeostasis rule and STDP. In this work we explore the different scenarios under which a network with short range connections can accomplish the task of storing and recognizing simple connected patterns.

  5. A Place at the Table: LTD as a Mediator of Memory Genesis.

    PubMed

    Connor, Steven A; Wang, Yu Tian

    2016-08-01

    Resolving how our brains encode information requires an understanding of the cellular processes taking place during memory formation. Since the 1970s, considerable effort has focused on determining the properties and mechanisms underlying long-term potentiation (LTP) at glutamatergic synapses and how these processes influence initiation of new memories. However, accumulating evidence suggests that long-term depression (LTD) of synaptic strength, particularly at glutamatergic synapses, is a bona fide learning and memory mechanism in the mammalian brain. The known range of mechanisms capable of inducing LTD has been extended to those including NMDAR-independent forms, neuromodulator-dependent LTD, synaptic depression following stress, and non-synaptically induced forms. The examples of LTD observed at the hippocampal CA1 synapse to date demonstrate features consistent with LTP, including homo- and heterosynaptic expression, extended duration beyond induction (several hours to weeks), and association with encoding of distinct types of memories. Canonical mechanisms through which synapses undergo LTD include activation of phosphatases, initiation of protein synthesis, and dynamic regulation of presynaptic glutamate release and/or postsynaptic glutamate receptor endocytosis. Here, we will discuss the pre- and postsynaptic changes underlying LTD, recent advances in the identification and characterization of novel mechanisms underlying LTD, and how engagement of these processes constitutes a cellular analog for the genesis of specific types of memories. © The Author(s) 2015.

  6. Auditory cortical plasticity induced by intracortical microstimulation under pharmacological blockage of inhibitory synapses.

    PubMed

    Yokota, R; Takahashi, H; Funamizu, A; Uchihara, M; Suzurikawa, J; Kanzaki, R

    2006-01-01

    Electrical stimulation that can reorganize our neural system has a potential for promising neurorehabilitation. We previously demonstrated that temporally controlled intracortical microstimulation (ICMS) could induce the spike time-dependant plasticity and modify tuning properties of cortical neurons as desired. A 'pairing' ICMS following tone-induced excitatory post-synaptic potentials (EPSPs) produced potentiation in response to the paired tones, while an 'anti-pairing' ICMS preceding the tone-induced EPSPs resulted in depression. However, the conventional ICMS affected both excitatory and inhibitory synapses, and thereby could not quantify net excitatory synaptic effects. In the present work, we evaluated the ICMS effects under a pharmacological blockage of inhibitory inputs. The pharmacological blockage enhanced the ICMS effects, suggesting that inhibitory inputs determine a plastic degree of the neural system. Alternatively, the conventional ICMS had an inadequate timing to control excitatory synaptic inputs, because inhibitory synapse determined the latency of total neural inputs.

  7. Ultrafast Synaptic Events in a Chalcogenide Memristor

    NASA Astrophysics Data System (ADS)

    Li, Yi; Zhong, Yingpeng; Xu, Lei; Zhang, Jinjian; Xu, Xiaohua; Sun, Huajun; Miao, Xiangshui

    2013-04-01

    Compact and power-efficient plastic electronic synapses are of fundamental importance to overcoming the bottlenecks of developing a neuromorphic chip. Memristor is a strong contender among the various electronic synapses in existence today. However, the speeds of synaptic events are relatively slow in most attempts at emulating synapses due to the material-related mechanism. Here we revealed the intrinsic memristance of stoichiometric crystalline Ge2Sb2Te5 that originates from the charge trapping and releasing by the defects. The device resistance states, representing synaptic weights, were precisely modulated by 30 ns potentiating/depressing electrical pulses. We demonstrated four spike-timing-dependent plasticity (STDP) forms by applying programmed pre- and postsynaptic spiking pulse pairs in different time windows ranging from 50 ms down to 500 ns, the latter of which is 105 times faster than the speed of STDP in human brain. This study provides new opportunities for building ultrafast neuromorphic computing systems and surpassing Von Neumann architecture.

  8. Ultrafast synaptic events in a chalcogenide memristor.

    PubMed

    Li, Yi; Zhong, Yingpeng; Xu, Lei; Zhang, Jinjian; Xu, Xiaohua; Sun, Huajun; Miao, Xiangshui

    2013-01-01

    Compact and power-efficient plastic electronic synapses are of fundamental importance to overcoming the bottlenecks of developing a neuromorphic chip. Memristor is a strong contender among the various electronic synapses in existence today. However, the speeds of synaptic events are relatively slow in most attempts at emulating synapses due to the material-related mechanism. Here we revealed the intrinsic memristance of stoichiometric crystalline Ge2Sb2Te5 that originates from the charge trapping and releasing by the defects. The device resistance states, representing synaptic weights, were precisely modulated by 30 ns potentiating/depressing electrical pulses. We demonstrated four spike-timing-dependent plasticity (STDP) forms by applying programmed pre- and postsynaptic spiking pulse pairs in different time windows ranging from 50 ms down to 500 ns, the latter of which is 10(5) times faster than the speed of STDP in human brain. This study provides new opportunities for building ultrafast neuromorphic computing systems and surpassing Von Neumann architecture.

  9. Molecular mechanisms of fragile X syndrome: a twenty-year perspective.

    PubMed

    Santoro, Michael R; Bray, Steven M; Warren, Stephen T

    2012-01-01

    Fragile X syndrome (FXS) is a common form of inherited intellectual disability and is one of the leading known causes of autism. The mutation responsible for FXS is a large expansion of the trinucleotide CGG repeat in the 5' untranslated region of the X-linked gene FMR1. This expansion leads to DNA methylation of FMR1 and to transcriptional silencing, which results in the absence of the gene product, FMRP, a selective messenger RNA (mRNA)-binding protein that regulates the translation of a subset of dendritic mRNAs. FMRP is critical for mGluR (metabotropic glutamate receptor)-dependent long-term depression, as well as for other forms of synaptic plasticity; its absence causes excessive and persistent protein synthesis in postsynaptic dendrites and dysregulated synaptic function. Studies continue to refine our understanding of FMRP's role in synaptic plasticity and to uncover new functions of this protein, which have illuminated therapeutic approaches for FXS.

  10. BISPHENOL A INTERFERES WITH SYNAPTIC REMODELING

    PubMed Central

    Hajszan, Tibor; Leranth, Csaba

    2010-01-01

    The potential adverse effects of Bisphenol A (BPA), a synthetic xenoestrogen, have long been debated. Although standard toxicology tests have revealed no harmful effects, recent research highlighted what was missed so far: BPA-induced alterations in the nervous system. Since 2004, our laboratory has been investigating one of the central effects of BPA, which is interference with gonadal steroid-induced synaptogenesis and the resulting loss of spine synapses. We have shown in both rats and nonhuman primates that BPA completely negates the ~70–100% increase in the number of hippocampal and prefrontal spine synapses induced by both estrogens and androgens. Synaptic loss of this magnitude may have significant consequences, potentially causing cognitive decline, depression, and schizophrenia, to mention those that our laboratory has shown to be associated with synaptic loss. Finally, we discuss why children may particularly be vulnerable to BPA, which represents future direction of research in our laboratory. PMID:20609373

  11. MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex

    PubMed Central

    Scott, Helen L; Tamagnini, Francesco; Narduzzo, Katherine E; Howarth, Joanna L; Lee, Youn-Bok; Wong, Liang-Fong; Brown, Malcolm W; Warburton, Elizabeth C; Bashir, Zafar I; Uney, James B

    2012-01-01

    Evidence suggests that the acquisition of recognition memory depends upon CREB-dependent long-lasting changes in synaptic plasticity in the perirhinal cortex. The CREB-responsive microRNA miR-132 has been shown to regulate synaptic transmission and we set out to investigate a role for this microRNA in recognition memory and its underlying plasticity mechanisms. To this end we mediated the specific overexpression of miR-132 selectively in the rat perirhinal cortex and demonstrated impairment in short-term recognition memory. This functional deficit was associated with a reduction in both long-term depression and long-term potentiation. These results confirm that microRNAs are key coordinators of the intracellular pathways that mediate experience-dependent changes in the brain. In addition, these results demonstrate a role for miR-132 in the neuronal mechanisms underlying the formation of short-term recognition memory. PMID:22845676

  12. Ultrastructural evidence for synaptic scaling across the wake/sleep cycle.

    PubMed

    de Vivo, Luisa; Bellesi, Michele; Marshall, William; Bushong, Eric A; Ellisman, Mark H; Tononi, Giulio; Cirelli, Chiara

    2017-02-03

    It is assumed that synaptic strengthening and weakening balance throughout learning to avoid runaway potentiation and memory interference. However, energetic and informational considerations suggest that potentiation should occur primarily during wake, when animals learn, and depression should occur during sleep. We measured 6920 synapses in mouse motor and sensory cortices using three-dimensional electron microscopy. The axon-spine interface (ASI) decreased ~18% after sleep compared with wake. This decrease was proportional to ASI size, which is indicative of scaling. Scaling was selective, sparing synapses that were large and lacked recycling endosomes. Similar scaling occurred for spine head volume, suggesting a distinction between weaker, more plastic synapses (~80%) and stronger, more stable synapses. These results support the hypothesis that a core function of sleep is to renormalize overall synaptic strength increased by wake. Copyright © 2017, American Association for the Advancement of Science.

  13. [Progress on metaplasticity and its role in learning and memory].

    PubMed

    Wang, Shao-Li; Lu, Wei

    2016-08-25

    Long-term potentiation (LTP) and long-term depression (LTD) are two major forms of synaptic plasticity that are widely considered as important cellular models of learning and memory. Metaplasticity is defined as the plasticity of synaptic plasticity and thus is an advanced form of plasticity. The history of synaptic activity can affect the subsequent synaptic plasticity induction. Therefore, it is important to study metaplasticity to explore new mechanisms underlying various brain functions including learning and memory. Since the concept of metaplasticity was proposed, it has aroused widespread concerns and attracted numerous researchers to dig more details on this topic. These new-found experimental phenomena and cellular mechanisms have established the basis of theoretical studies on metaplasticity. In recent years, researchers have found that metaplasticity can not only affect the synaptic plasticity, but also regulate the neural network to encode specific content and enhance the learning and memory. These findings have greatly enriched our knowledge on plasticity and opened a new route to study the mechanism of learning and memory. In this review, we discuss the recent progress on metaplasticity on following three aspects: (1) the molecular mechanisms of metaplasticity; (2) the role of metaplasticity in learning and memory; and (3) the outlook of future study on metaplasticity.

  14. Estrogen's Place in the Family of Synaptic Modulators.

    PubMed

    Kramár, Enikö A; Chen, Lulu Y; Rex, Christopher S; Gall, Christine M; Lynch, Gary

    2009-01-01

    Estrogen, in addition to its genomic effects, triggers rapid synaptic changes in hippocampus and cortex. Here we summarize evidence that the acute actions of the steroid arise from actin signaling cascades centrally involved in long-term potentiation (LTP). A 10-min infusion of E2 reversibly increased fast EPSPs and promoted theta burst-induced LTP within adult hippocampal slices. The latter effect reflected a lowered threshold and an elevated ceiling for the potentiation effect. E2's actions on transmission and plasticity were completely blocked by latrunculin, a toxin that prevents actin polymerization. E2 also caused a reversible increase in spine concentrations of filamentous (F-) actin and markedly enhanced polymerization caused by theta burst stimulation (TBS). Estrogen activated the small GTPase RhoA, but not the related GTPase Rac, and phosphorylated (inactivated) synaptic cofilin, an actin severing protein targeted by RhoA. An inhibitor of RhoA kinase (ROCK) thoroughly suppressed the synaptic effects of E2. Collectively, these results indicate that E2 engages a RhoA >ROCK> cofilin> actin pathway also used by brain-derived neurotrophic factor and adenosine, and therefore belongs to a family of 'synaptic modulators' that regulate plasticity. Finally, we describe evidence that the acute signaling cascade is critical to the depression of LTP produced by ovariectomy.

  15. Spreading Activation in an Attractor Network with Latching Dynamics: Automatic Semantic Priming Revisited

    PubMed Central

    Lerner, Itamar; Bentin, Shlomo; Shriki, Oren

    2012-01-01

    Localist models of spreading activation (SA) and models assuming distributed-representations offer very different takes on semantic priming, a widely investigated paradigm in word recognition and semantic memory research. In the present study we implemented SA in an attractor neural network model with distributed representations and created a unified framework for the two approaches. Our models assumes a synaptic depression mechanism leading to autonomous transitions between encoded memory patterns (latching dynamics), which account for the major characteristics of automatic semantic priming in humans. Using computer simulations we demonstrated how findings that challenged attractor-based networks in the past, such as mediated and asymmetric priming, are a natural consequence of our present model’s dynamics. Puzzling results regarding backward priming were also given a straightforward explanation. In addition, the current model addresses some of the differences between semantic and associative relatedness and explains how these differences interact with stimulus onset asynchrony in priming experiments. PMID:23094718

  16. Agomelatine: mechanism of action and pharmacological profile in relation to antidepressant properties

    PubMed Central

    Guardiola-Lemaitre, B; De Bodinat, C; Delagrange, P; Millan, M J; Munoz, C; Mocaër, E

    2014-01-01

    Agomelatine behaves both as a potent agonist at melatonin MT1 and MT2 receptors and as a neutral antagonist at 5-HT2C receptors. Accumulating evidence in a broad range of experimental procedures supports the notion that the psychotropic effects of agomelatine are due to the synergy between its melatonergic and 5-hydroxytryptaminergic effects. The recent demonstration of the existence of heteromeric complexes of MT1 and MT2 with 5-HT2C receptors at the cellular level may explain how these two properties of agomelatine translate into a synergistic action that, for example, leads to increases in hippocampal proliferation, maturation and survival through modulation of multiple cellular pathways (increase in trophic factors, synaptic remodelling, glutamate signalling) and key targets (early genes, kinases). The present review focuses on the pharmacological properties of this novel antidepressant. Its mechanism of action, strikingly different from that of conventional classes of antidepressants, opens perspectives towards a better understanding of the physiopathological bases underlying depression. PMID:24724693

  17. Acid-Sensing Ion Channels Activated by Evoked Released Protons Modulate Synaptic Transmission at the Mouse Calyx of Held Synapse.

    PubMed

    González-Inchauspe, Carlota; Urbano, Francisco J; Di Guilmi, Mariano N; Uchitel, Osvaldo D

    2017-03-08

    Acid-sensing ion channels (ASICs) regulate synaptic activities and play important roles in neurodegenerative diseases. We found that these channels can be activated in neurons of the medial nucleus of the trapezoid body (MNTB) of the auditory system in the CNS. A drop in extracellular pH induces transient inward ASIC currents (I ASIC s) in postsynaptic MNTB neurons from wild-type mice. The inhibition of I ASIC s by psalmotoxin-1 (PcTx1) and the absence of these currents in knock-out mice for ASIC-1a subunit (ASIC1a -/- ) suggest that homomeric ASIC-1as are mediating these currents in MNTB neurons. Furthermore, we detect ASIC1a-dependent currents during synaptic transmission, suggesting an acidification of the synaptic cleft due to the corelease of neurotransmitter and H + from synaptic vesicles. These currents are capable of eliciting action potentials in the absence of glutamatergic currents. A significant characteristic of these homomeric ASIC-1as is their permeability to Ca 2+ Activation of ASIC-1a in MNTB neurons by exogenous H + induces an increase in intracellular Ca 2+ Furthermore, the activation of postsynaptic ASIC-1as during high-frequency stimulation (HFS) of the presynaptic nerve terminal leads to a PcTx1-sensitive increase in intracellular Ca 2+ in MNTB neurons, which is independent of glutamate receptors and is absent in neurons from ASIC1a -/- mice. During HFS, the lack of functional ASICs in synaptic transmission results in an enhanced short-term depression of glutamatergic EPSCs. These results strongly support the hypothesis of protons as neurotransmitters and demonstrate that presynaptic released protons modulate synaptic transmission by activating ASIC-1as at the calyx of Held-MNTB synapse. SIGNIFICANCE STATEMENT The manuscript demonstrates that postsynaptic neurons of the medial nucleus of the trapezoid body at the mouse calyx of Held synapse express functional homomeric Acid-sensing ion channel-1a (ASIC-1as) that can be activated by protons (coreleased with neurotransmitter from acidified synaptic vesicles). These ASIC-1as contribute to the generation of postsynaptic currents and, more relevant, to calcium influx, which could be involved in the modulation of presynaptic transmitter release. Inhibition or deletion of ASIC-1a leads to enhanced short-term depression, demonstrating that they are concerned with short-term plasticity of the synapse. ASICs represent a widespread communication system with unique properties. We expect that our experiments will have an impact in the neurobiology field and will spread in areas related to neuronal plasticity. Copyright © 2017 the authors 0270-6474/17/372589-11$15.00/0.

  18. Acute Increases in Protein O-GlcNAcylation Dampen Epileptiform Activity in Hippocampus

    PubMed Central

    Wang, Kai; Pati, Sandipan; Olsen, Michelle L.; Chatham, John C.

    2017-01-01

    O-GlcNAcylation is a ubiquitous and dynamic post-translational modification involving the O-linkage of β-N-acetylglucosamine to serine/threonine residues of membrane, cytosolic, and nuclear proteins. This modification is similar to phosphorylation and regarded as a key regulator of cell survival and homeostasis. Previous studies have shown that phosphorylation of serine residues on synaptic proteins is a major regulator of synaptic strength and long-term plasticity, suggesting that O-GlcNAcylation of synaptic proteins is likely as important as phosphorylation; however, few studies have investigated its role in synaptic efficacy. We recently demonstrated that acutely increasing O-GlcNAcylation induces a novel form of LTD at CA3-CA1 synapses, O-GlcNAc LTD. Here, using hippocampal slices from young adult male rats and mice, we report that epileptiform activity at CA3-CA1 synapses, generated by GABAAR inhibition, is significantly attenuated when protein O-GlcNAcylation is pharmacologically increased. This dampening effect is lost in slices from GluA2 KO mice, indicating a requirement of GluA2-containing AMPARs, similar to expression of O-GlcNAc LTD. Furthermore, we find that increasing O-GlcNAcylation decreases spontaneous CA3 pyramidal cell activity under basal and hyperexcitable conditions. This dampening effect was also observed on cortical hyperexcitability during in vivo EEG recordings in awake mice where the effects of the proconvulsant pentylenetetrazole are attenuated by acutely increasing O-GlcNAcylation. Collectively, these data demonstrate that the post-translational modification, O-GlcNAcylation, is a novel mechanism by which neuronal and synaptic excitability can be regulated, and suggest the possibility that increasing O-GlcNAcylation could be a novel therapeutic target to treat seizure disorders and epilepsy. SIGNIFICANCE STATEMENT We recently reported that an acute pharmacological increase in protein O-GlcNAcylation induces a novel form of long-term synaptic depression at hippocampal CA3-CA1 synapses (O-GlcNAc LTD). This synaptic dampening effect on glutamatergic networks suggests that increasing O-GlcNAcylation will depress pathological hyperexcitability. Using in vitro and in vivo models of epileptiform activity, we show that acutely increasing O-GlcNAc levels can significantly attenuate ongoing epileptiform activity and prophylactically dampen subsequent seizure activity. Together, our findings support the conclusion that protein O-GlcNAcylation is a regulator of neuronal excitability, and it represents a promising target for further research on seizure disorder therapeutics. PMID:28760863

  19. Cotinine reduces depressive-like behavior, working memory deficits, and synaptic loss associated with chronic stress in mice.

    PubMed

    Grizzell, J Alex; Iarkov, Alexandre; Holmes, Rosalee; Mori, Takahashi; Echeverria, Valentina

    2014-07-15

    Chronic stress underlies and/or exacerbates many psychiatric conditions and often results in memory impairment as well as depressive symptoms. Such afflicted individuals use tobacco more than the general population and this has been suggested as a form of self-medication. Cotinine, the predominant metabolite of nicotine, may underlie such behavior as it has been shown to ameliorate anxiety and memory loss in animal models. In this study, we sought to investigate the effects of cotinine on working memory and depressive-like behavior in mice subjected to prolonged restraint. Cotinine-treated mice displayed better performance than vehicle-treated cohorts on the working memory task, the radial arm water maze test. In addition, with or without chronic stress exposure, cotinine-treated mice engaged in fewer depressive-like behaviors as assessed using the tail suspension and Porsolt's forced swim tests. These antidepressant and nootropic effects of cotinine were associated with an increase in the synaptophysin expression, a commonly used marker of synaptic density, in the hippocampus as well as the prefrontal and entorhinal cortices of restrained mice. The beneficial effects of cotinine in preventing various consequences of chronic stress were underscored by the inhibition of the glycogen synthase kinase 3 β in the hippocampus and prefrontal cortex. Taken together, our results show for the first time that cotinine reduces the negative effects of stress on mood, memory, and the synapse. Published by Elsevier B.V.

  20. Novel synaptic memory device for neuromorphic computing

    NASA Astrophysics Data System (ADS)

    Mandal, Saptarshi; El-Amin, Ammaarah; Alexander, Kaitlyn; Rajendran, Bipin; Jha, Rashmi

    2014-06-01

    This report discusses the electrical characteristics of two-terminal synaptic memory devices capable of demonstrating an analog change in conductance in response to the varying amplitude and pulse-width of the applied signal. The devices are based on Mn doped HfO2 material. The mechanism behind reconfiguration was studied and a unified model is presented to explain the underlying device physics. The model was then utilized to show the application of these devices in speech recognition. A comparison between a 20 nm × 20 nm sized synaptic memory device with that of a state-of-the-art VLSI SRAM synapse showed ~10× reduction in area and >106 times reduction in the power consumption per learning cycle.

  1. SV2 frustrating exocytosis at the semi-diffusor synapse.

    PubMed

    Vautrin, Jean

    2009-04-01

    Presynaptic exocytosis is the mechanism commonly believed to release transmitters by diffusion through a pore opening during vesicular membrane fusion with the plasmalemma, but evidence suggesting that exocytosis and transmitter release are two separate steps of synaptic transmission is accumulating. Vesicular glycoconjugates such as Synaptic Vesicle Protein 2 (SV2) proteoglycans and gangliosides retain transmitters in a nondiffusible form and are transported to the synaptic cleft where they contribute forming a dense synaptomatrix. Transmitters are permanently present in synaptic clefts and readily releasable transmitter is easily accessible from the outer side of the presynaptic membrane suggesting that synaptomatrix glycoconjugates prevent immediate release after PKC-dependent exocytosis. The calcium sensor synaptotagmin is also present at the presynaptic plasma membrane and binds SV2 suggesting a direct coupling between the calcium transient and transmitter release from the synaptomatrix. A quantitative coupling of the cytosolic calcic transient to transmitter release from the synaptomatrix explains better complexity and plasticity of miniature postsynaptic signals hitherto difficult to account for in exocytic terms. This alternative representation of synaptic transmission in which the same components of the synaptomatrix support adhesion and signaling functions may cast new lights on synaptic diseases such as Alzheimer's disease. Copyright 2008 Wiley-Liss, Inc.

  2. Influence of testosterone on synaptic transmission in the rat medial vestibular nuclei: estrogenic and androgenic effects.

    PubMed

    Grassi, S; Frondaroli, A; Di Mauro, M; Pettorossi, V E

    2010-12-15

    In brainstem slices of young male rat, we investigated the influence of the neuroactive steroid testosterone (T) on the synaptic responses by analyzing the field potential evoked in the medial vestibular nucleus (MVN) by vestibular afferent stimulation. T induced three distinct and independent long-term synaptic changes: fast long-lasting potentiation (fLP), slow long-lasting potentiation (sLP) and long-lasting depression (LD). The fLP was mediated by 17β-estradiol (E(2)) since it was abolished by blocking the estrogen receptors (ERs) or the enzyme converting T to E(2). Conversely, sLP and LD were mediated by 5α-dihydrotestosterone (DHT) since they were prevented by blocking the androgen receptors (ARs) or the enzyme converting T to DHT. Therefore, the synaptic effects of T were mediated by its androgenic or estrogenic metabolites. The pathways leading to estrogenic and androgenic conversion of T might be co-localized since, the occurrence of fLP under block of androgenic pathway, and that of sLP and LD under estrogenic block, were higher than those observed without blocks. In case of co-localization, the effect on synaptic transmission should depend on the prevailing enzymatic activity. We conclude that circulating and neuronal T can remarkably influence synaptic responses of the vestibular neurons in different and opposite ways, depending on its conversion to estrogenic or androgenic metabolites. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Physiological Concentrations of Amyloid Beta Regulate Recycling of Synaptic Vesicles via Alpha7 Acetylcholine Receptor and CDK5/Calcineurin Signaling

    PubMed Central

    Lazarevic, Vesna; Fieńko, Sandra; Andres-Alonso, Maria; Anni, Daniela; Ivanova, Daniela; Montenegro-Venegas, Carolina; Gundelfinger, Eckart D.; Cousin, Michael A.; Fejtova, Anna

    2017-01-01

    Despite the central role of amyloid β (Aβ) peptide in the etiopathogenesis of Alzheimer’s disease (AD), its physiological function in healthy brain is still debated. It is well established that elevated levels of Aβ induce synaptic depression and dismantling, connected with neurotoxicity and neuronal loss. Growing evidence suggests a positive regulatory effect of Aβ on synaptic function and cognition; however the exact cellular and molecular correlates are still unclear. In this work, we tested the effect of physiological concentrations of Aβ species of endogenous origin on neurotransmitter release in rat cortical and hippocampal neurons grown in dissociated cultures. Modulation of production and degradation of the endogenous Aβ species as well as applications of the synthetic rodent Aβ40 and Aβ42 affected efficacy of neurotransmitter release from individual presynapses. Low picomolar Aβ40 and Aβ42 increased, while Aβ depletion or application of low micromolar concentration decreased synaptic vesicle recycling, showing a hormetic effect of Aβ on neurotransmitter release. These Aβ-mediated modulations required functional alpha7 acetylcholine receptors as well as extracellular and intracellular calcium, involved regulation of CDK5 and calcineurin signaling and increased recycling of synaptic vesicles. These data indicate that Aβ regulates neurotransmitter release from presynapse and suggest that failure of the normal physiological function of Aβ in the fine-tuning of SV cycling could disrupt synaptic function and homeostasis, which would, eventually, lead to cognitive decline and neurodegeneration. PMID:28785201

  4. Self-organization in Balanced State Networks by STDP and Homeostatic Plasticity

    PubMed Central

    Effenberger, Felix; Jost, Jürgen; Levina, Anna

    2015-01-01

    Structural inhomogeneities in synaptic efficacies have a strong impact on population response dynamics of cortical networks and are believed to play an important role in their functioning. However, little is known about how such inhomogeneities could evolve by means of synaptic plasticity. Here we present an adaptive model of a balanced neuronal network that combines two different types of plasticity, STDP and synaptic scaling. The plasticity rules yield both long-tailed distributions of synaptic weights and firing rates. Simultaneously, a highly connected subnetwork of driver neurons with strong synapses emerges. Coincident spiking activity of several driver cells can evoke population bursts and driver cells have similar dynamical properties as leader neurons found experimentally. Our model allows us to observe the delicate interplay between structural and dynamical properties of the emergent inhomogeneities. It is simple, robust to parameter changes and able to explain a multitude of different experimental findings in one basic network. PMID:26335425

  5. [Domino principle--monoamines in bottom-view].

    PubMed

    Sümegi, András

    2008-06-01

    One of the first neurobiological theories of major depression was the monoamine deficiency hypothesis. The classic monoamine theory of depression suggested that a deficit in monoamine neurotransmitters in the synaptic cleft was the main and primary cause of depression. Recent and newer versions and modifications of the primary classic theory also mainly included this postulate, while other theories of depression preferred departing from the monoamine-based model altogether. Unfortunately, the clear neurobiology of major depression remains an elusive issue, despite intense research. It is clearly held that most, if not all, antidepressant pharmacotherapies treatments produce their therapeutic antidepressant effects, at least in part, by modulating monoamine systems (noradrenergic, serotonergic, and dopaminergic) by a selective or a multi-acting way; however, much less is known about the neurobiological pathology of these monoamine systems in depression. Much of the past 10-15 years of research in the biology of mood disorders has led to considerable evidence in depression implicating multiple system pathology, including abnormalities of monoamine as well as other neurotransmitter systems. These approaches and findings have led researchers to propose broader theories regarding the neurobiology of depression, just like a spreading disorder of specific neuronal networks in the brain. A model for the pathophysiology of depression ill be discussed in the next pages, after describing the main components of depression pathogenesis. Suggestion is that the primary defect emerges in the cross-regulation and vulnerability of special monoaminergic and non-monoaminergic neural networks, which leads to a decrease in the tonic release of neurotransmitters in their projection areas, altering postsynaptic sensitivity, and following, overexaggerated responses to acute increases in the presynaptic firing rate and transmitter release. It is proposed that the primary defect should be involved, in the noradrenergic innervation spreading from the locus coeruleus (LC). Dysregulation of the LC projection activities may lead in turn to malfunction of serotonergic and dopaminergic neurotransmission. Failure of the LC function could explain the basic impairments in the processing of novel information, intensive processing of irrational beliefs, and anxiety. Consecutive deficits in the serotonergic neurotransmission may contribute to the mood changes and reduction in the mesotelencephalic dopaminergic activity to loss of motivation, and anhedonia. Malfunction and dysregulation of CRF and other neuropeptides such as neuropeptide Y, galanin and substance P may reinforce the LC dysfunction and thus further weaken the adaptive ability to stressful stimuli. The new SNRI antidepressants seem to be more superior and effective in the treatment of major depression and in the prophylaxis of recurrent depressive episodes because of their coexistent noradrenergic activity.

  6. Inter-synaptic learning of combination rules in a cortical network model

    PubMed Central

    Lavigne, Frédéric; Avnaïm, Francis; Dumercy, Laurent

    2014-01-01

    Selecting responses in working memory while processing combinations of stimuli depends strongly on their relations stored in long-term memory. However, the learning of XOR-like combinations of stimuli and responses according to complex rules raises the issue of the non-linear separability of the responses within the space of stimuli. One proposed solution is to add neurons that perform a stage of non-linear processing between the stimuli and responses, at the cost of increasing the network size. Based on the non-linear integration of synaptic inputs within dendritic compartments, we propose here an inter-synaptic (IS) learning algorithm that determines the probability of potentiating/depressing each synapse as a function of the co-activity of the other synapses within the same dendrite. The IS learning is effective with random connectivity and without either a priori wiring or additional neurons. Our results show that IS learning generates efficacy values that are sufficient for the processing of XOR-like combinations, on the basis of the sole correlational structure of the stimuli and responses. We analyze the types of dendrites involved in terms of the number of synapses from pre-synaptic neurons coding for the stimuli and responses. The synaptic efficacy values obtained show that different dendrites specialize in the detection of different combinations of stimuli. The resulting behavior of the cortical network model is analyzed as a function of inter-synaptic vs. Hebbian learning. Combinatorial priming effects show that the retrospective activity of neurons coding for the stimuli trigger XOR-like combination-selective prospective activity of neurons coding for the expected response. The synergistic effects of inter-synaptic learning and of mixed-coding neurons are simulated. The results show that, although each mechanism is sufficient by itself, their combined effects improve the performance of the network. PMID:25221529

  7. A VLSI recurrent network of integrate-and-fire neurons connected by plastic synapses with long-term memory.

    PubMed

    Chicca, E; Badoni, D; Dante, V; D'Andreagiovanni, M; Salina, G; Carota, L; Fusi, S; Del Giudice, P

    2003-01-01

    Electronic neuromorphic devices with on-chip, on-line learning should be able to modify quickly the synaptic couplings to acquire information about new patterns to be stored (synaptic plasticity) and, at the same time, preserve this information on very long time scales (synaptic stability). Here, we illustrate the electronic implementation of a simple solution to this stability-plasticity problem, recently proposed and studied in various contexts. It is based on the observation that reducing the analog depth of the synapses to the extreme (bistable synapses) does not necessarily disrupt the performance of the device as an associative memory, provided that 1) the number of neurons is large enough; 2) the transitions between stable synaptic states are stochastic; and 3) learning is slow. The drastic reduction of the analog depth of the synaptic variable also makes this solution appealing from the point of view of electronic implementation and offers a simple methodological alternative to the technological solution based on floating gates. We describe the full custom analog very large-scale integration (VLSI) realization of a small network of integrate-and-fire neurons connected by bistable deterministic plastic synapses which can implement the idea of stochastic learning. In the absence of stimuli, the memory is preserved indefinitely. During the stimulation the synapse undergoes quick temporary changes through the activities of the pre- and postsynaptic neurons; those changes stochastically result in a long-term modification of the synaptic efficacy. The intentionally disordered pattern of connectivity allows the system to generate a randomness suited to drive the stochastic selection mechanism. We check by a suitable stimulation protocol that the stochastic synaptic plasticity produces the expected pattern of potentiation and depression in the electronic network.

  8. Pathogenesis of depression: insights from human and rodent studies

    PubMed Central

    MÉNARD, Caroline; HODES, Georgia E.; RUSSO, Scott J.

    2015-01-01

    Major depressive disorder (MDD) will affect one out of every five people in their lifetime and is the leading cause of disability worldwide. Nevertheless, mechanisms associated with the pathogenesis of MDD have yet to be completely understood and current treatments remain ineffective in a large subset of patients. In this review, we summarize the most recent discoveries and insights for which parallel findings have been obtained in human depressed subjects and rodent models of mood disorders in order to examine the potential etiology of depression. These mechanisms range from synaptic plasticity mechanisms to epigenetics and the immune system where there is strong evidence to support a functional role in the development of specific depression symptomology. Ultimately we conclude by discussing how novel therapeutic strategies targeting central and peripheral processes might ultimately aid in the development of effective new treatments for MDD and related stress disorders. PMID:26037806

  9. Activity-dependent dendritic spine neck changes are correlated with synaptic strength

    PubMed Central

    Araya, Roberto; Vogels, Tim P.; Yuste, Rafael

    2014-01-01

    Most excitatory inputs in the mammalian brain are made on dendritic spines, rather than on dendritic shafts. Spines compartmentalize calcium, and this biochemical isolation can underlie input-specific synaptic plasticity, providing a raison d’etre for spines. However, recent results indicate that the spine can experience a membrane potential different from that in the parent dendrite, as though the spine neck electrically isolated the spine. Here we use two-photon calcium imaging of mouse neocortical pyramidal neurons to analyze the correlation between the morphologies of spines activated under minimal synaptic stimulation and the excitatory postsynaptic potentials they generate. We find that excitatory postsynaptic potential amplitudes are inversely correlated with spine neck lengths. Furthermore, a spike timing-dependent plasticity protocol, in which two-photon glutamate uncaging over a spine is paired with postsynaptic spikes, produces rapid shrinkage of the spine neck and concomitant increases in the amplitude of the evoked spine potentials. Using numerical simulations, we explore the parameter regimes for the spine neck resistance and synaptic conductance changes necessary to explain our observations. Our data, directly correlating synaptic and morphological plasticity, imply that long-necked spines have small or negligible somatic voltage contributions, but that, upon synaptic stimulation paired with postsynaptic activity, they can shorten their necks and increase synaptic efficacy, thus changing the input/output gain of pyramidal neurons. PMID:24982196

  10. SPIN90 Modulates Long-Term Depression and Behavioral Flexibility in the Hippocampus

    PubMed Central

    Kim, Dae Hwan; Kang, Minkyung; Kim, Chong-Hyun; Huh, Yun Hyun; Cho, In Ha; Ryu, Hyun-Hee; Chung, Kyung Hwun; Park, Chul-Seung; Rhee, Sangmyung; Lee, Yong-Seok; Song, Woo Keun

    2017-01-01

    The importance of actin-binding proteins (ABPs) in the regulation of synapse morphology and plasticity has been well established. SH3 protein interacting with Nck, 90 kDa (SPIN90), an Nck-interacting protein highly expressed in synapses, is essential for actin remodeling and dendritic spine morphology. Synaptic targeting of SPIN90 to spine heads or dendritic shafts depends on its phosphorylation state, leading to blockage of cofilin-mediated actin depolymerization and spine shrinkage. However, the physiological role of SPIN90 in long-term plasticity, learning and memory are largely unknown. In this study, we demonstrate that Spin90-knockout (KO) mice exhibit substantial deficits in synaptic plasticity and behavioral flexibility. We found that loss of SPIN90 disrupted dendritic spine density in CA1 neurons of the hippocampus and significantly impaired long-term depression (LTD), leaving basal synaptic transmission and long-term potentiation (LTP) intact. These impairments were due in part to deficits in AMPA receptor endocytosis and its pre-requisites, GluA1 dephosphorylation and postsynaptic density (PSD) 95 phosphorylation, but also by an intrinsic activation of Akt-GSK3β signaling as a result of Spin90-KO. In accordance with these defects, mice lacking SPIN90 were found to carry significant deficits in object-recognition and behavioral flexibility, while learning ability was largely unaffected. Collectively, these findings demonstrate a novel modulatory role for SPIN90 in hippocampal LTD and behavioral flexibility. PMID:28979184

  11. The metabotropic glutamate receptor mGluR3 is critically required for hippocampal long-term depression and modulates long-term potentiation in the dentate gyrus of freely moving rats.

    PubMed

    Pöschel, Beatrice; Wroblewska, Barbara; Heinemann, Uwe; Manahan-Vaughan, Denise

    2005-09-01

    Group II metabotropic glutamate receptors (mGluRs) play an important role in the regulation of hippocampal synaptic plasticity in vivo: long-term potentiation (LTP) is inhibited and long-term depression (LTD) is enhanced by activation of these receptors. The contribution, in vivo, of the individual group II mGluR subtypes has not been characterized. We analysed the involvement of the subtype mGluR3 in LTD and LTP. Rats were implanted with electrodes to enable chronic measurement of evoked potentials from medial perforant path-dentate gyrus synapses. Neither the selective mGluR3 agonist, N-acetylaspartylglutamate (NAAG), nor the antagonist beta-NAAG, given intracerebrally, affected basal synaptic transmission. beta-NAAG significantly inhibited LTD expression. NAAG exhibited transient inhibitory effects on the intermediate phase of LTD. Whereas NAAG altered paired-pulse responses, beta-NAAG had no effect, suggesting that antagonism of mGluR3 prevents LTD via a postsynaptic mechanism, whereas agonist activation of mGluR3 modulates LTD at a presynaptic locus. NAAG impaired the expression of LTP, whereas beta-NAAG had no effect. NAAG effects on LTP were blocked by EGLU, a selective group II mGluR antagonist. Our data suggest an essential role for mGluR3 in LTD, and a modulatory role for mGluR3 in LTP, with effects being mediated by distinct pre- and post-synaptic loci.

  12. Optical implementation of neural learning algorithms based on cross-gain modulation in a semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Wang, Zhi; Le, Yansi; Sun, Chonghui; Song, Xiaojia; Wu, Chongqing

    2016-10-01

    Neuromorphic engineering has a wide range of applications in the fields of machine learning, pattern recognition, adaptive control, etc. Photonics, characterized by its high speed, wide bandwidth, low power consumption and massive parallelism, is an ideal way to realize ultrafast spiking neural networks (SNNs). Synaptic plasticity is believed to be critical for learning, memory and development in neural circuits. Experimental results have shown that changes of synapse are highly dependent on the relative timing of pre- and postsynaptic spikes. Synaptic plasticity in which presynaptic spikes preceding postsynaptic spikes results in strengthening, while the opposite timing results in weakening is called antisymmetric spike-timing-dependent plasticity (STDP) learning rule. And synaptic plasticity has the opposite effect under the same conditions is called antisymmetric anti-STDP learning rule. We proposed and experimentally demonstrated an optical implementation of neural learning algorithms, which can achieve both of antisymmetric STDP and anti-STDP learning rule, based on the cross-gain modulation (XGM) within a single semiconductor optical amplifier (SOA). The weight and height of the potentitation and depression window can be controlled by adjusting the injection current of the SOA, to mimic the biological antisymmetric STDP and anti-STDP learning rule more realistically. As the injection current increases, the width of depression and potentitation window decreases and height increases, due to the decreasing of recovery time and increasing of gain under a stronger injection current. Based on the demonstrated optical STDP circuit, ultrafast learning in optical SNNs can be realized.

  13. Spatial Object Recognition Enables Endogenous LTD that Curtails LTP in the Mouse Hippocampus

    PubMed Central

    Goh, Jinzhong Jeremy

    2013-01-01

    Although synaptic plasticity is believed to comprise the cellular substrate for learning and memory, limited direct evidence exists that hippocampus-dependent learning actually triggers synaptic plasticity. It is likely, however, that long-term potentiation (LTP) works in concert with its counterpart, long-term depression (LTD) in the creation of spatial memory. It has been reported in rats that weak synaptic plasticity is facilitated into persistent plasticity if afferent stimulation is coupled with a novel spatial learning event. It is not known if this phenomenon also occurs in other species. We recorded from the hippocampal CA1 of freely behaving mice and observed that novel spatial learning triggers endogenous LTD. Specifically, we observed that LTD is enabled when test-pulse afferent stimulation is given during the learning of object constellations or during a spatial object recognition task. Intriguingly, LTP is significantly impaired by the same tasks, suggesting that LTD is the main cellular substrate for this type of learning. These data indicate that learning-facilitated plasticity is not exclusive to rats and that spatial learning leads to endogenous LTD in the hippocampus, suggesting an important role for this type of synaptic plasticity in the creation of hippocampus-dependent memory. PMID:22510536

  14. Acute inhibition of estradiol synthesis impacts vestibulo-ocular reflex adaptation and cerebellar long-term potentiation in male rats.

    PubMed

    Dieni, Cristina V; Ferraresi, Aldo; Sullivan, Jacqueline A; Grassi, Sivarosa; Pettorossi, Vito E; Panichi, Roberto

    2018-03-01

    The vestibulo-ocular reflex (VOR) adaptation is an ideal model for investigating how the neurosteroid 17 beta-estradiol (E2) contributes to the modification of behavior by regulating synaptic activities. We hypothesized that E2 impacts VOR adaptation by affecting cerebellar synaptic plasticity at the parallel fiber-Purkinje cell (PF) synapse. To verify this hypothesis, we investigated the acute effect of blocking E2 synthesis on gain increases and decreases in adaptation of the VOR in male rats using an oral dose (2.5 mg/kg) of the aromatase inhibitor letrozole. We also assessed the effect of letrozole on synaptic plasticity at the PF synapse in vitro, using cerebellar slices from male rats. We found that letrozole acutely impaired both gain increases and decreases adaptation of the VOR without altering basal ocular-motor performance. Moreover, letrozole prevented long-term potentiation at the PF synapse (PF-LTP) without affecting long-term depression (PF-LTD). Thus, in male rats neurosteroid E2 has a relevant impact on VOR adaptation and affects exclusively PF-LTP. These findings suggest that E2 might regulate changes in VOR adaptation by acting locally on cerebellar and extra-cerebellar synaptic plasticity sites.

  15. Neutralization of Nogo-A Enhances Synaptic Plasticity in the Rodent Motor Cortex and Improves Motor Learning in Vivo

    PubMed Central

    Weinmann, Oliver; Kellner, Yves; Yu, Xinzhu; Vicente, Raul; Gullo, Miriam; Kasper, Hansjörg; Lussi, Karin; Ristic, Zorica; Luft, Andreas R.; Rioult-Pedotti, Mengia; Zuo, Yi; Zagrebelsky, Marta; Schwab, Martin E.

    2014-01-01

    The membrane protein Nogo-A is known as an inhibitor of axonal outgrowth and regeneration in the CNS. However, its physiological functions in the normal adult CNS remain incompletely understood. Here, we investigated the role of Nogo-A in cortical synaptic plasticity and motor learning in the uninjured adult rodent motor cortex. Nogo-A and its receptor NgR1 are present at cortical synapses. Acute treatment of slices with function-blocking antibodies (Abs) against Nogo-A or against NgR1 increased long-term potentiation (LTP) induced by stimulation of layer 2/3 horizontal fibers. Furthermore, anti-Nogo-A Ab treatment increased LTP saturation levels, whereas long-term depression remained unchanged, thus leading to an enlarged synaptic modification range. In vivo, intrathecal application of Nogo-A-blocking Abs resulted in a higher dendritic spine density at cortical pyramidal neurons due to an increase in spine formation as revealed by in vivo two-photon microscopy. To investigate whether these changes in synaptic plasticity correlate with motor learning, we trained rats to learn a skilled forelimb-reaching task while receiving anti-Nogo-A Abs. Learning of this cortically controlled precision movement was improved upon anti-Nogo-A Ab treatment. Our results identify Nogo-A as an influential molecular modulator of synaptic plasticity and as a regulator for learning of skilled movements in the motor cortex. PMID:24966370

  16. Inflammation Subverts Hippocampal Synaptic Plasticity in Experimental Multiple Sclerosis

    PubMed Central

    Mandolesi, Georgia; Piccinin, Sonia; Berretta, Nicola; Pignatelli, Marco; Feligioni, Marco; Musella, Alessandra; Gentile, Antonietta; Mori, Francesco; Bernardi, Giorgio; Nicoletti, Ferdinando; Mercuri, Nicola B.; Centonze, Diego

    2013-01-01

    Abnormal use-dependent synaptic plasticity is universally accepted as the main physiological correlate of memory deficits in neurodegenerative disorders. It is unclear whether synaptic plasticity deficits take place during neuroinflammatory diseases, such as multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis (EAE). In EAE mice, we found significant alterations of synaptic plasticity rules in the hippocampus. When compared to control mice, in fact, hippocampal long-term potentiation (LTP) induction was favored over long-term depression (LTD) in EAE, as shown by a significant rightward shift in the frequency–synaptic response function. Notably, LTP induction was also enhanced in hippocampal slices from control mice following interleukin-1β (IL-1β) perfusion, and both EAE and IL-1β inhibited GABAergic spontaneous inhibitory postsynaptic currents (sIPSC) without affecting glutamatergic transmission and AMPA/NMDA ratio. EAE was also associated with selective loss of GABAergic interneurons and with reduced gamma-frequency oscillations in the CA1 region of the hippocampus. Finally, we provided evidence that microglial activation in the EAE hippocampus was associated with IL-1β expression, and hippocampal slices from control mice incubated with activated microglia displayed alterations of GABAergic transmission similar to those seen in EAE brains, through a mechanism dependent on enhanced IL-1β signaling. These data may yield novel insights into the basis of cognitive deficits in EAE and possibly of MS. PMID:23355887

  17. Forebrain-specific, conditional silencing of Staufen2 alters synaptic plasticity, learning, and memory in rats.

    PubMed

    Berger, Stefan M; Fernández-Lamo, Iván; Schönig, Kai; Fernández Moya, Sandra M; Ehses, Janina; Schieweck, Rico; Clementi, Stefano; Enkel, Thomas; Grothe, Sascha; von Bohlen Und Halbach, Oliver; Segura, Inmaculada; Delgado-García, José María; Gruart, Agnès; Kiebler, Michael A; Bartsch, Dusan

    2017-11-17

    Dendritic messenger RNA (mRNA) localization and subsequent local translation in dendrites critically contributes to synaptic plasticity and learning and memory. Little is known, however, about the contribution of RNA-binding proteins (RBPs) to these processes in vivo. To delineate the role of the double-stranded RBP Staufen2 (Stau2), we generate a transgenic rat model, in which Stau2 expression is conditionally silenced by Cre-inducible expression of a microRNA (miRNA) targeting Stau2 mRNA in adult forebrain neurons. Known physiological mRNA targets for Stau2, such as RhoA, Complexin 1, and Rgs4 mRNAs, are found to be dysregulated in brains of Stau2-deficient rats. In vivo electrophysiological recordings reveal synaptic strengthening upon stimulation, showing a shift in the frequency-response function of hippocampal synaptic plasticity to favor long-term potentiation and impair long-term depression in Stau2-deficient rats. These observations are accompanied by deficits in hippocampal spatial working memory, spatial novelty detection, and in tasks investigating associative learning and memory. Together, these experiments reveal a critical contribution of Stau2 to various forms of synaptic plasticity including spatial working memory and cognitive management of new environmental information. These findings might contribute to the development of treatments for conditions associated with learning and memory deficits.

  18. Neurotrophin-3 restores synaptic plasticity in the striatum of a mouse model of Huntington's disease.

    PubMed

    Gómez-Pineda, Victor G; Torres-Cruz, Francisco M; Vivar-Cortés, César I; Hernández-Echeagaray, Elizabeth

    2018-04-01

    Neurotrophin-3 (NT-3) is expressed in the mouse striatum; however, it is not clear the NT-3 role in striatal physiology. The expression levels of mRNAs and immune localization of the NT-3 protein and its receptor TrkC are altered in the striatum following damage induced by an in vivo treatment with 3-nitropropionic acid (3-NP), a mitochondrial toxin used to mimic the histopathological hallmarks of Huntington's disease (HD). The aim of this study was to evaluate the role of NT-3 on corticostriatal synaptic transmission and its plasticity in both the control and damaged striatum. Corticostriatal population spikes were electrophysiologically recorded and striatal synaptic plasticity was induced by high-frequency stimulation. Further, the phosphorylation status of Trk receptors was tested under conditions that imitated electrophysiological experiments. NT-3 modulates both synaptic transmission and plasticity in the striatum; nonetheless, synaptic plasticity was modified by the 3-NP treatment, where instead of producing striatal long-term depression (LTD), long-term potentiation (LTP) was obtained. Moreover, the administration of NT-3 in the recording bath restored the plasticity observed under control conditions (LTD) in this model of striatal degeneration. NT-3 modulates corticostriatal transmission through TrkB stimulation and restores striatal LTD by signaling through its TrkC receptor. © 2018 John Wiley & Sons Ltd.

  19. Long-term potentiation and depression after unilateral labyrinthectomy in the medial vestibular nucleus of rats.

    PubMed

    Pettorossi, Vito Enrico; Dutia, Mayank; Frondaroli, Adele; Dieni, Cristina; Grassi, Silvarosa

    2003-01-01

    We previously demonstrated in rat brainstem slices that high-frequency stimulation (HFS) of the vestibular afferents induces long-term potentiation (LTP) in the ventral part (Vp) of the medial vestibular nucleus (MVN) and long-term depression (LTD) in the dorsal part (Dp). Both LTP and LTD depend on N-methyl-D-aspartate receptor activation, which increases synaptic efficacy; however, in the Dp, LTP reverses to LTD because of the activation of gamma-aminobutyric acid-ergic neurons. Here we show that the probability of inducing long-term effects in the MVN of rat brainstem slices is altered after unilateral labyrinthectomy (UL). In fact, LTP occurs less frequently in the ventral contra-lesional side compared with sham-operated rats. In the dorsal ipsi-lesional side, LTD is reduced and LTP enhanced, while the opposite occurs in the dorsal contra-lesional side. These changes in synaptic plasticity may be useful for re-balancing the tonic discharge of the MVN of the two sides during vestibular compensation, and for enhancing the dynamic responses of the deafferented MVN neurons in the long term.

  20. Impairments of long-term depression induction and motor coordination precede Aβ accumulation in the cerebellum of APPswe/PS1dE9 double transgenic mice.

    PubMed

    Kuwabara, Yuki; Ishizeki, Masato; Watamura, Naoto; Toba, Junya; Yoshii, Aya; Inoue, Takafumi; Ohshima, Toshio

    2014-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder that represents the most common type of dementia among elderly people. Amyloid beta (Aβ) peptides in extracellular Aβ plaques, produced from the amyloid precursor protein (APP) via sequential processing by β- and γ-secretases, impair hippocampal synaptic plasticity, and cause cognitive dysfunction in AD patients. Here, we report that Aβ peptides also impair another form of synaptic plasticity; cerebellar long-term depression (LTD). In the cerebellum of commonly used AD mouse model, APPswe/PS1dE9 mice, Aβ plaques were detected from 8 months and profound accumulation of Aβ plaques was observed at 18 onths of age. Biochemical analysis revealed relatively high levels of APP protein and Aβ in the cerebellum of APPswe/PS1dE9 mice. At pre-Aβ accumulation stage, LTD induction, and motor coordination are disturbed. These results indicate that soluble Aβ oligomers disturb LTD induction and cerebellar function in AD mouse model. © 2014 International Society for Neurochemistry.

  1. Structural and synaptic plasticity in stress-related disorders

    PubMed Central

    Christoffel, Daniel J.; Golden, Sam A.; Russo, Scott J.

    2011-01-01

    Stress can have a lasting impact on the structure and function of brain circuitry that results in long-lasting changes in the behavior of an organism. Synaptic plasticity is the mechanism by which information is stored and maintained within individual synapses, neurons, and neuronal circuits to guide the behavior of an organism. Although these mechanisms allow the organism to adapt to its constantly evolving environment, not all of these adaptations are beneficial. Under prolonged bouts of physical or psychological stress, these mechanisms become dysregulated, and the connectivity between brain regions becomes unbalanced, resulting in pathological behaviors. In this review, we highlight the effects of stress on the structure and function of neurons within the mesocorticolimbic brain systems known to regulate mood and motivation. We then discuss the implications of these spine adaptations on neuronal activity and pathological behaviors implicated in mood disorders. Finally, we end by discussing recent brain imaging studies in human depression within the context of these basic findings to provide insight into the underlying mechanisms leading to neural dysfunction in depression. PMID:21967517

  2. Short-term synaptic plasticity and heterogeneity in neural systems

    NASA Astrophysics Data System (ADS)

    Mejias, J. F.; Kappen, H. J.; Longtin, A.; Torres, J. J.

    2013-01-01

    We review some recent results on neural dynamics and information processing which arise when considering several biophysical factors of interest, in particular, short-term synaptic plasticity and neural heterogeneity. The inclusion of short-term synaptic plasticity leads to enhanced long-term memory capacities, a higher robustness of memory to noise, and irregularity in the duration of the so-called up cortical states. On the other hand, considering some level of neural heterogeneity in neuron models allows neural systems to optimize information transmission in rate coding and temporal coding, two strategies commonly used by neurons to codify information in many brain areas. In all these studies, analytical approximations can be made to explain the underlying dynamics of these neural systems.

  3. Spontaneous network activity and synaptic development

    PubMed Central

    Kerschensteiner, Daniel

    2014-01-01

    Throughout development, the nervous system produces patterned spontaneous activity. Research over the last two decades has revealed a core group of mechanisms that mediate spontaneous activity in diverse circuits. Many circuits engage several of these mechanisms sequentially to accommodate developmental changes in connectivity. In addition to shared mechanisms, activity propagates through developing circuits and neuronal pathways (i.e. linked circuits in different brain areas) in stereotypic patterns. Increasing evidence suggests that spontaneous network activity shapes synaptic development in vivo. Variations in activity-dependent plasticity may explain how similar mechanisms and patterns of activity can be employed to establish diverse circuits. Here, I will review common mechanisms and patterns of spontaneous activity in emerging neural networks and discuss recent insights into their contribution to synaptic development. PMID:24280071

  4. Contributions of two types of calcium channels to synaptic transmission and plasticity.

    PubMed

    Edmonds, B; Klein, M; Dale, N; Kandel, E R

    1990-11-23

    In Aplysia sensory and motor neurons in culture, the contributions of the major classes of calcium current can be selectively examined while transmitter release and its modulation are examined. A slowly inactivating, dihydropyridine-sensitive calcium current does not contribute either to normal synaptic transmission or to any of three different forms of plasticity: presynaptic inhibition, homosynaptic depression, and presynaptic facilitation. This current does contribute, however, to a fourth form of plasticity--modulation of transmitter release by tonic depolarization of the sensory neuron. By contrast, a second calcium current, which is rapidly inactivating and dihydropyridine-insensitive, contributes to release elicited by the transient depolarization of an action potential and to the other three forms of plasticity.

  5. Depression: What Every Woman Should Know.

    ERIC Educational Resources Information Center

    National Inst. of Mental Health (DHHS), Bethesda, MD.

    This publication, written in English, explains why women are at greater risk for depression than men. Types of depressive illnesses are explained along with the symptoms. It states that some women are predisposed genetically to depression but biochemical, environmental, psychological, and social factors also contribute to its occurrence.…

  6. Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility.

    PubMed

    Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Lorsch, Zachary S; Walker, Deena M; Wang, Junshi; Huang, Xiaojie; Schlüter, Oliver M; Maze, Ian; Peña, Catherine J; Heller, Elizabeth A; Issler, Orna; Wang, Minghui; Song, Won-Min; Stein, Jason L; Liu, Xiaochuan; Doyle, Marie A; Scobie, Kimberly N; Sun, Hao Sheng; Neve, Rachael L; Geschwind, Daniel; Dong, Yan; Shen, Li; Zhang, Bin; Nestler, Eric J

    2016-06-01

    Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here, we performed RNA sequencing on four brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation, and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. MPTP-meditated hippocampal dopamine deprivation modulates synaptic transmission and activity-dependent synaptic plasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Guoqi; Chen Ying; Huang Yuying

    2011-08-01

    Parkinson's disease (PD)-like symptoms including learning deficits are inducible by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Therefore, it is possible that MPTP may disturb hippocampal memory processing by modulation of dopamine (DA)- and activity-dependent synaptic plasticity. We demonstrate here that intraperitoneal (i.p.) MPTP injection reduces the number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) within 7 days. Subsequently, the TH expression level in SN and hippocampus and the amount of DA and its metabolite DOPAC in striatum and hippocampus decrease. DA depletion does not alter basal synaptic transmission and changes pair-pulse facilitation (PPF) of field excitatory postsynaptic potentials (fEPSPs) only atmore » the 30 ms inter-pulse interval. In addition, the induction of long-term potentiation (LTP) is impaired whereas the duration of long-term depression (LTD) becomes prolonged. Since both LTP and LTD depend critically on activation of NMDA and DA receptors, we also tested the effect of DA depletion on NMDA receptor-mediated synaptic transmission. Seven days after MPTP injection, the NMDA receptor-mediated fEPSPs are decreased by about 23%. Blocking the NMDA receptor-mediated fEPSP does not mimic the MPTP-LTP. Only co-application of D1/D5 and NMDA receptor antagonists during tetanization resembled the time course of fEPSP potentiation as observed 7 days after i.p. MPTP injection. Together, our data demonstrate that MPTP-induced degeneration of DA neurons and the subsequent hippocampal DA depletion alter NMDA receptor-mediated synaptic transmission and activity-dependent synaptic plasticity. - Highlights: > I.p. MPTP-injection mediates death of dopaminergic neurons. > I.p. MPTP-injection depletes DA and DOPAC in striatum and hippocampus. > I.p. MPTP-injection does not alter basal synaptic transmission. > Reduction of LTP and enhancement of LTD after i.p. MPTP-injection. > Attenuation of NMDA-receptors mediated fEPSPs after i.p. MPTP-injection.« less

  8. Spike Pattern Structure Influences Synaptic Efficacy Variability under STDP and Synaptic Homeostasis. I: Spike Generating Models on Converging Motifs

    PubMed Central

    Bi, Zedong; Zhou, Changsong

    2016-01-01

    In neural systems, synaptic plasticity is usually driven by spike trains. Due to the inherent noises of neurons and synapses as well as the randomness of connection details, spike trains typically exhibit variability such as spatial randomness and temporal stochasticity, resulting in variability of synaptic changes under plasticity, which we call efficacy variability. How the variability of spike trains influences the efficacy variability of synapses remains unclear. In this paper, we try to understand this influence under pair-wise additive spike-timing dependent plasticity (STDP) when the mean strength of plastic synapses into a neuron is bounded (synaptic homeostasis). Specifically, we systematically study, analytically and numerically, how four aspects of statistical features, i.e., synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations, as well as their interactions influence the efficacy variability in converging motifs (simple networks in which one neuron receives from many other neurons). Neurons (including the post-synaptic neuron) in a converging motif generate spikes according to statistical models with tunable parameters. In this way, we can explicitly control the statistics of the spike patterns, and investigate their influence onto the efficacy variability, without worrying about the feedback from synaptic changes onto the dynamics of the post-synaptic neuron. We separate efficacy variability into two parts: the drift part (DriftV) induced by the heterogeneity of change rates of different synapses, and the diffusion part (DiffV) induced by weight diffusion caused by stochasticity of spike trains. Our main findings are: (1) synchronous firing and burstiness tend to increase DiffV, (2) heterogeneity of rates induces DriftV when potentiation and depression in STDP are not balanced, and (3) heterogeneity of cross-correlations induces DriftV together with heterogeneity of rates. We anticipate our work important for understanding functional processes of neuronal networks (such as memory) and neural development. PMID:26941634

  9. Mathematical modelling of non-stationary fluctuation analysis for studying channel properties of synaptic AMPA receptors

    PubMed Central

    Benke, Timothy A; Lüthi, Andreas; Palmer, Mary J; Wikström, Martin A; Anderson, William W; Isaac, John T R; Collingridge, Graham L

    2001-01-01

    The molecular properties of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors are an important factor determining excitatory synaptic transmission in the brain. Changes in the number (N) or single-channel conductance (γ) of functional AMPA receptors may underlie synaptic plasticity, such as long-term potentiation (LTP) and long-term depression (LTD). These parameters have been estimated using non-stationary fluctuation analysis (NSFA). The validity of NSFA for studying the channel properties of synaptic AMPA receptors was assessed using a cable model with dendritic spines and a microscopic kinetic description of AMPA receptors. Electrotonic, geometric and kinetic parameters were altered in order to determine their effects on estimates of the underlying γ. Estimates of γ were very sensitive to the access resistance of the recording (RA) and the mean open time of AMPA channels. Estimates of γ were less sensitive to the distance between the electrode and the synaptic site, the electrotonic properties of dendritic structures, recording electrode capacitance and background noise. Estimates of γ were insensitive to changes in spine morphology, synaptic glutamate concentration and the peak open probability (Po) of AMPA receptors. The results obtained using the model agree with biological data, obtained from 91 dendritic recordings from rat CA1 pyramidal cells. A correlation analysis showed that RA resulted in a slowing of the decay time constant of excitatory postsynaptic currents (EPSCs) by approximately 150 %, from an estimated value of 3.1 ms. RA also greatly attenuated the absolute estimate of γ by approximately 50-70 %. When other parameters remain constant, the model demonstrates that NSFA of dendritic recordings can readily discriminate between changes in γvs. changes in N or Po. Neither background noise nor asynchronous activation of multiple synapses prevented reliable discrimination between changes in γ and changes in either N or Po. The model (available online) can be used to predict how changes in the different properties of AMPA receptors may influence synaptic transmission and plasticity. PMID:11731574

  10. Mice lacking the transcriptional regulator Bhlhe40 have enhanced neuronal excitability and impaired synaptic plasticity in the hippocampus.

    PubMed

    Hamilton, Kelly A; Wang, Yue; Raefsky, Sophia M; Berkowitz, Sean; Spangler, Ryan; Suire, Caitlin N; Camandola, Simonetta; Lipsky, Robert H; Mattson, Mark P

    2018-01-01

    Bhlhe40 is a transcription factor that is highly expressed in the hippocampus; however, its role in neuronal function is not well understood. Here, we used Bhlhe40 null mice on a congenic C57Bl6/J background (Bhlhe40 KO) to investigate the impact of Bhlhe40 on neuronal excitability and synaptic plasticity in the hippocampus. Bhlhe40 KO CA1 neurons had increased miniature excitatory post-synaptic current amplitude and decreased inhibitory post-synaptic current amplitude, indicating CA1 neuronal hyperexcitability. Increased CA1 neuronal excitability was not associated with increased seizure severity as Bhlhe40 KO relative to +/+ (WT) control mice injected with the convulsant kainic acid. However, significant reductions in long term potentiation and long term depression at CA1 synapses were observed in Bhlhe40 KO mice, indicating impaired hippocampal synaptic plasticity. Behavioral testing for spatial learning and memory on the Morris Water Maze (MWM) revealed that while Bhlhe40 KO mice performed similarly to WT controls initially, when the hidden platform was moved to the opposite quadrant Bhlhe40 KO mice showed impairments in relearning, consistent with decreased hippocampal synaptic plasticity. To investigate possible mechanisms for increased neuronal excitability and decreased synaptic plasticity, a whole genome mRNA expression profile of Bhlhe40 KO hippocampus was performed followed by a chromatin immunoprecipitation sequencing (ChIP-Seq) screen of the validated candidate genes for Bhlhe40 protein-DNA interactions consistent with transcriptional regulation. Of the validated genes identified from mRNA expression analysis, insulin degrading enzyme (Ide) had the most significantly altered expression in hippocampus and was significantly downregulated on the RNA and protein levels; although Bhlhe40 did not occupy the Ide gene by ChIP-Seq. Together, these findings support a role for Bhlhe40 in regulating neuronal excitability and synaptic plasticity in the hippocampus and that indirect regulation of Ide transcription may be involved in these phenotypes.

  11. Lack of Pannexin 1 Alters Synaptic GluN2 Subunit Composition and Spatial Reversal Learning in Mice.

    PubMed

    Gajardo, Ivana; Salazar, Claudia S; Lopez-Espíndola, Daniela; Estay, Carolina; Flores-Muñoz, Carolina; Elgueta, Claudio; Gonzalez-Jamett, Arlek M; Martínez, Agustín D; Muñoz, Pablo; Ardiles, Álvaro O

    2018-01-01

    Long-term potentiation (LTP) and long-term depression (LTD) are two forms of synaptic plasticity that have been considered as the cellular substrate of memory formation. Although LTP has received considerable more attention, recent evidences indicate that LTD plays also important roles in the acquisition and storage of novel information in the brain. Pannexin 1 (Panx1) is a membrane protein that forms non-selective channels which have been shown to modulate the induction of hippocampal synaptic plasticity. Animals lacking Panx1 or blockade of Pannexin 1 channels precludes the induction of LTD and facilitates LTP. To evaluate if the absence of Panx1 also affects the acquisition of rapidly changing information we trained Panx1 knockout (KO) mice and wild type (WT) littermates in a visual and hidden version of the Morris water maze (MWM). We found that KO mice find the hidden platform similarly although slightly quicker than WT animals, nonetheless, when the hidden platform was located in the opposite quadrant (OQ) to the previous learned location, KO mice spent significantly more time in the previous quadrant than in the new location indicating that the absence of Panx1 affects the reversion of a previously acquired spatial memory. Consistently, we observed changes in the content of synaptic proteins critical to LTD, such as GluN2 subunits of N-methyl-D-aspartate receptors (NMDARs), which changed their contribution to synaptic plasticity in conditions of Panx1 ablation. Our findings give further support to the role of Panx1 channels on the modulation of synaptic plasticity induction, learning and memory processes.

  12. Decreased afferent excitability contributes to synaptic depression during high-frequency stimulation in hippocampal area CA1

    PubMed Central

    Kim, Eunyoung; Owen, Benjamin; Holmes, William R.

    2012-01-01

    Long-term potentiation (LTP) is often induced experimentally by continuous high-frequency afferent stimulation (HFS), typically at 100 Hz for 1 s. Induction of LTP requires postsynaptic depolarization and voltage-dependent calcium influx. Induction is more effective if the same number of stimuli are given as a series of short bursts rather than as continuous HFS, in part because excitatory postsynaptic potentials (EPSPs) become strongly depressed during HFS, reducing postsynaptic depolarization. In this study, we examined mechanisms of EPSP depression during HFS in area CA1 of rat hippocampal brain slices. We tested for presynaptic terminal vesicle depletion by examining minimal stimulation-evoked excitatory postsynaptic currents (EPSCs) during 100-Hz HFS. While transmission failures increased, consistent with vesicle depletion, EPSC latencies also increased during HFS, suggesting a decrease in afferent excitability. Extracellular recordings of Schaffer collateral fiber volleys confirmed a decrease in afferent excitability, with decreased fiber volley amplitudes and increased latencies during HFS. To determine the mechanism responsible for fiber volley changes, we recorded antidromic action potentials in single CA3 pyramidal neurons evoked by stimulating Schaffer collateral axons. During HFS, individual action potentials decreased in amplitude and increased in latency, and these changes were accompanied by a large increase in the probability of action potential failure. Time derivative and phase-plane analyses indicated decreases in both axon initial segment and somato-dendritic components of CA3 neuron action potentials. Our results indicate that decreased presynaptic axon excitability contributes to depression of excitatory synaptic transmission during HFS at synapses between Schaffer collaterals and CA1 pyramidal neurons. PMID:22773781

  13. Adenosine A₁ and A₂A receptor-mediated modulation of acetylcholine release in the mice neuromuscular junction.

    PubMed

    Garcia, Neus; Priego, Mercedes; Obis, Teresa; Santafe, Manel M; Tomàs, Marta; Besalduch, Nuria; Lanuza, M Angel; Tomàs, Josep

    2013-07-01

    Immunocytochemistry shows that purinergic receptors (P1Rs) type A1 and A2A (A1 R and A2 A R, respectively) are present in the nerve endings at the P6 and P30 Levator auris longus (LAL) mouse neuromuscular junctions (NMJs). As described elsewhere, 25 μm adenosine reduces (50%) acetylcholine release in high Mg(2+) or d-tubocurarine paralysed muscle. We hypothesize that in more preserved neurotransmission machinery conditions (blocking the voltage-dependent sodium channel of the muscle cells with μ-conotoxin GIIIB) the physiological role of the P1Rs in the NMJ must be better observed. We found that the presence of a non-selective P1R agonist (adenosine) or antagonist (8-SPT) or selective modulators of A1 R or A2 A R subtypes (CCPA and DPCPX, or CGS-21680 and SCH-58261, respectively) does not result in any changes in the evoked release. However, P1Rs seem to be involved in spontaneous release (miniature endplate potentials MEPPs) because MEPP frequency is increased by non-selective block but decreased by non-selective stimulation, with A1 Rs playing the main role. We assayed the role of P1Rs in presynaptic short-term plasticity during imposed synaptic activity (40 Hz for 2 min of supramaximal stimuli). Depression is reduced by micromolar adenosine but increased by blocking P1Rs with 8-SPT. Synaptic depression is not affected by the presence of selective A1 R and A2 A R modulators, which suggests that both receptors need to collaborate. Thus, A1 R and A2 A R might have no real effect on neuromuscular transmission in resting conditions. However, these receptors can conserve resources by limiting spontaneous quantal leak of acetylcholine and may protect synaptic function by reducing the magnitude of depression during repetitive activity. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. The organization of plasticity in the cerebellar cortex: from synapses to control.

    PubMed

    D'Angelo, Egidio

    2014-01-01

    The cerebellum is thought to play a critical role in procedural learning, but the relationship between this function and the underlying cellular and synaptic mechanisms remains largely speculative. At present, at least nine forms of long-term synaptic and nonsynaptic plasticity (some of which are bidirectional) have been reported in the cerebellar cortex and deep cerebellar nuclei. These include long-term potentiation (LTP) and long-term depression at the mossy fiber-granule cell synapse, at the synapses formed by parallel fibers, climbing fibers, and molecular layer interneurons on Purkinje cells, and at the synapses formed by mossy fibers and Purkinje cells on deep cerebellar nuclear cells, as well as LTP of intrinsic excitability in granule cells, Purkinje cells, and deep cerebellar nuclear cells. It is suggested that the complex properties of cerebellar learning would emerge from the distribution of plasticity in the network and from its dynamic remodeling during the different phases of learning. Intrinsic and extrinsic factors may hold the key to explain how the different forms of plasticity cooperate to select specific transmission channels and to regulate the signal-to-noise ratio through the cerebellar cortex. These factors include regulation of neuronal excitation by local inhibitory networks, engagement of specific molecular mechanisms by spike bursts and theta-frequency oscillations, and gating by external neuromodulators. Therefore, a new and more complex view of cerebellar plasticity is emerging with respect to that predicted by the original "Motor Learning Theory," opening issues that will require experimental and computational testing. © 2014 Elsevier B.V. All rights reserved.

  15. Implementation of a spike-based perceptron learning rule using TiO2-x memristors.

    PubMed

    Mostafa, Hesham; Khiat, Ali; Serb, Alexander; Mayr, Christian G; Indiveri, Giacomo; Prodromakis, Themis

    2015-01-01

    Synaptic plasticity plays a crucial role in allowing neural networks to learn and adapt to various input environments. Neuromorphic systems need to implement plastic synapses to obtain basic "cognitive" capabilities such as learning. One promising and scalable approach for implementing neuromorphic synapses is to use nano-scale memristors as synaptic elements. In this paper we propose a hybrid CMOS-memristor system comprising CMOS neurons interconnected through TiO2-x memristors, and spike-based learning circuits that modulate the conductance of the memristive synapse elements according to a spike-based Perceptron plasticity rule. We highlight a number of advantages for using this spike-based plasticity rule as compared to other forms of spike timing dependent plasticity (STDP) rules. We provide experimental proof-of-concept results with two silicon neurons connected through a memristive synapse that show how the CMOS plasticity circuits can induce stable changes in memristor conductances, giving rise to increased synaptic strength after a potentiation episode and to decreased strength after a depression episode.

  16. Using Inspiration from Synaptic Plasticity Rules to Optimize Traffic Flow in Distributed Engineered Networks.

    PubMed

    Suen, Jonathan Y; Navlakha, Saket

    2017-05-01

    Controlling the flow and routing of data is a fundamental problem in many distributed networks, including transportation systems, integrated circuits, and the Internet. In the brain, synaptic plasticity rules have been discovered that regulate network activity in response to environmental inputs, which enable circuits to be stable yet flexible. Here, we develop a new neuro-inspired model for network flow control that depends only on modifying edge weights in an activity-dependent manner. We show how two fundamental plasticity rules, long-term potentiation and long-term depression, can be cast as a distributed gradient descent algorithm for regulating traffic flow in engineered networks. We then characterize, both by simulation and analytically, how different forms of edge-weight-update rules affect network routing efficiency and robustness. We find a close correspondence between certain classes of synaptic weight update rules derived experimentally in the brain and rules commonly used in engineering, suggesting common principles to both.

  17. Calcium, Synaptic Plasticity and Intrinsic Homeostasis in Purkinje Neuron Models

    PubMed Central

    Achard, Pablo; De Schutter, Erik

    2008-01-01

    We recently reproduced the complex electrical activity of a Purkinje cell (PC) with very different combinations of ionic channel maximum conductances, suggesting that a large parameter space is available to homeostatic mechanisms. It has been hypothesized that cytoplasmic calcium concentrations control the homeostatic activity sensors. This raises many questions for PCs since in these neurons calcium plays an important role in the induction of synaptic plasticity. To address this question, we generated 148 new PC models. In these models the somatic membrane voltages are stable, but the somatic calcium dynamics are very variable, in agreement with experimental results. Conversely, the calcium signal in spiny dendrites shows only small variability. We demonstrate that this localized control of calcium conductances preserves the induction of long-term depression for all models. We conclude that calcium is unlikely to be the sole activity-sensor in this cell but that there is a strong relationship between activity homeostasis and synaptic plasticity. PMID:19129937

  18. Cerebellar Plasticity and Motor Learning Deficits in a Copy Number Variation Mouse Model of Autism

    PubMed Central

    Piochon, Claire; Kloth, Alexander D; Grasselli, Giorgio; Titley, Heather K; Nakayama, Hisako; Hashimoto, Kouichi; Wan, Vivian; Simmons, Dana H; Eissa, Tahra; Nakatani, Jin; Cherskov, Adriana; Miyazaki, Taisuke; Watanabe, Masahiko; Takumi, Toru; Kano, Masanobu; Wang, Samuel S-H; Hansel, Christian

    2014-01-01

    A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behavior and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behavior deficits. We find that in patDp/+ mice delay eyeblink conditioning—a form of cerebellum-dependent motor learning—is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fiber-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibers—a model for activity-dependent synaptic pruning—is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism. PMID:25418414

  19. Memristive Ion Channel-Doped Biomembranes as Synaptic Mimics.

    PubMed

    Najem, Joseph S; Taylor, Graham J; Weiss, Ryan J; Hasan, Md Sakib; Rose, Garrett; Schuman, Catherine D; Belianinov, Alex; Collier, C Patrick; Sarles, Stephen A

    2018-05-22

    Solid-state neuromorphic systems based on transistors or memristors have yet to achieve the interconnectivity, performance, and energy efficiency of the brain due to excessive noise, undesirable material properties, and nonbiological switching mechanisms. Here we demonstrate that an alamethicin-doped, synthetic biomembrane exhibits memristive behavior, emulates key synaptic functions including paired-pulse facilitation and depression, and enables learning and computing. Unlike state-of-the-art devices, our two-terminal, biomolecular memristor features similar structure (biomembrane), switching mechanism (ion channels), and ionic transport modality as biological synapses while operating at considerably lower power. The reversible and volatile voltage-driven insertion of alamethicin peptides into an insulating lipid bilayer creates conductive pathways that exhibit pinched current-voltage hysteresis at potentials above their insertion threshold. Moreover, the synapse-like dynamic properties of the biomolecular memristor allow for simplified learning circuit implementations. Low-power memristive devices based on stimuli-responsive biomolecules represent a major advance toward implementation of full synaptic functionality in neuromorphic hardware.

  20. Synaptic long-term potentiation and depression in the rat medial vestibular nuclei depend on neural activation of estrogenic and androgenic signals.

    PubMed

    Scarduzio, Mariangela; Panichi, Roberto; Pettorossi, Vito Enrico; Grassi, Silvarosa

    2013-01-01

    Estrogenic and androgenic steroids can be synthesised in the brain and rapidly modulate synaptic transmission and plasticity through direct interaction with membrane receptors for estrogens (ERs) and androgens (ARs). We used whole cell patch clamp recordings in brainstem slices of male rats to explore the influence of ER and AR activation and local synthesis of 17β-estradiol (E2) and 5α-dihydrotestosterone (DHT) on the long-term synaptic changes induced in the neurons of the medial vestibular nucleus (MVN). Long-term depression (LTD) and long-term potentiation (LTP) caused by different patterns of high frequency stimulation (HFS) of the primary vestibular afferents were assayed under the blockade of ARs and ERs or in the presence of inhibitors for enzymes synthesizing DHT (5α-reductase) and E2 (P450-aromatase) from testosterone (T). We found that LTD is mediated by interaction of locally produced androgens with ARs and LTP by interaction of locally synthesized E2 with ERs. In fact, the AR block with flutamide prevented LTD while did not affect LTP, and the blockade of ERs with ICI 182,780 abolished LTP without influencing LTD. Moreover, the block of P450-aromatase with letrozole not only prevented the LTP induction, but inverted LTP into LTD. This LTD is likely due to the local activation of androgens, since it was abolished under blockade of ARs. Conversely, LTD was still induced in the presence of finasteride the inhibitor of 5α-reductase demonstrating that T is able to activate ARs and induce LTD even when DHT is not synthesized. This study demonstrates a key and opposite role of sex neurosteroids in the long-term synaptic changes of the MVN with a specific role of T-DHT for LTD and of E2 for LTP. Moreover, it suggests that different stimulation patterns can lead to LTD or LTP by specifically activating the enzymes involved in the synthesis of androgenic or estrogenic neurosteroids.

  1. CB1-Dependent Long-Term Depression in Ventral Tegmental Area GABA Neurons: A Novel Target for Marijuana.

    PubMed

    Friend, Lindsey; Weed, Jared; Sandoval, Philip; Nufer, Teresa; Ostlund, Isaac; Edwards, Jeffrey G

    2017-11-08

    The VTA is necessary for reward behavior with dopamine cells critically involved in reward signaling. Dopamine cells in turn are innervated and regulated by neighboring inhibitory GABA cells. Using whole-cell electrophysiology in juvenile-adolescent GAD67-GFP male mice, we examined excitatory plasticity in fluorescent VTA GABA cells. A novel CB1-dependent LTD was induced in GABA cells that was dependent on metabotropic glutamate receptor 5, and cannabinoid receptor 1 (CB1). LTD was absent in CB1 knock-out mice but preserved in heterozygous littermates. Bath applied Δ 9 -tetrahydrocannabinol depressed GABA cell activity, therefore downstream dopamine cells will be disinhibited; and thus, this could potentially result in increased reward. Chronic injections of Δ 9 -tetrahydrocannabinol occluded LTD compared with vehicle injections; however, a single exposure was insufficient to do so. As synaptic modifications by drugs of abuse are often tied to addiction, these data suggest a possible mechanism for the addictive effects of Δ 9 -tetrahydrocannabinol in juvenile-adolescents, by potentially altering reward behavioral outcomes. SIGNIFICANCE STATEMENT The present study identifies a novel form of glutamatergic synaptic plasticity in VTA GABA neurons, a currently understudied cell type that is critical for the brain's reward circuit, and how Δ 9 -tetrahydrocannabinol occludes this plasticity. This study specifically addresses a potential unifying mechanism whereby marijuana could exert rewarding and addictive/withdrawal effects. Marijuana use and legalization are a pressing issue for many states in the United States. Although marijuana is the most commonly abused illicit drug, the implications of legalized, widespread, or continued usage are speculative. This study in juvenile-adolescent aged mice identifies a novel form of synaptic plasticity in VTA GABA cells, and the synaptic remodeling that can occur after Δ 9 -tetrahydrocannabinol use. Copyright © 2017 the authors 0270-6474/17/3710943-12$15.00/0.

  2. Chronic pain. Decreased motivation during chronic pain requires long-term depression in the nucleus accumbens.

    PubMed

    Schwartz, Neil; Temkin, Paul; Jurado, Sandra; Lim, Byung Kook; Heifets, Boris D; Polepalli, Jai S; Malenka, Robert C

    2014-08-01

    Several symptoms associated with chronic pain, including fatigue and depression, are characterized by reduced motivation to initiate or complete goal-directed tasks. However, it is unknown whether maladaptive modifications in neural circuits that regulate motivation occur during chronic pain. Here, we demonstrate that the decreased motivation elicited in mice by two different models of chronic pain requires a galanin receptor 1-triggered depression of excitatory synaptic transmission in indirect pathway nucleus accumbens medium spiny neurons. These results demonstrate a previously unknown pathological adaption in a key node of motivational neural circuitry that is required for one of the major sequela of chronic pain states and syndromes. Copyright © 2014, American Association for the Advancement of Science.

  3. Depresion: Lo Que Toda Mujer Debe Saber (Depression: What Every Woman Should Know).

    ERIC Educational Resources Information Center

    National Inst. of Mental Health (DHHS), Bethesda, MD.

    This publication, written in Spanish, explains why women are at greater risk for depression than men. Types of depressive illnesses are explained along with the symptoms. It states that some women are predisposed genetically to depression but biochemical, environmental, psychological, and social factors also often contribute to its occurrence.…

  4. Counting numbers of synaptic proteins: absolute quantification and single molecule imaging techniques

    PubMed Central

    Patrizio, Angela; Specht, Christian G.

    2016-01-01

    Abstract. The ability to count molecules is essential to elucidating cellular mechanisms, as these often depend on the absolute numbers and concentrations of molecules within specific compartments. Such is the case at chemical synapses, where the transmission of information from presynaptic to postsynaptic terminals requires complex interactions between small sets of molecules. Be it the subunit stoichiometry specifying neurotransmitter receptor properties, the copy numbers of scaffold proteins setting the limit of receptor accumulation at synapses, or protein packing densities shaping the molecular organization and plasticity of the postsynaptic density, all of these depend on exact quantities of components. A variety of proteomic, electrophysiological, and quantitative imaging techniques have yielded insights into the molecular composition of synaptic complexes. In this review, we compare the different quantitative approaches and consider the potential of single molecule imaging techniques for the quantification of synaptic components. We also discuss specific neurobiological data to contextualize the obtained numbers and to explain how they aid our understanding of synaptic structure and function. PMID:27335891

  5. Counting numbers of synaptic proteins: absolute quantification and single molecule imaging techniques.

    PubMed

    Patrizio, Angela; Specht, Christian G

    2016-10-01

    The ability to count molecules is essential to elucidating cellular mechanisms, as these often depend on the absolute numbers and concentrations of molecules within specific compartments. Such is the case at chemical synapses, where the transmission of information from presynaptic to postsynaptic terminals requires complex interactions between small sets of molecules. Be it the subunit stoichiometry specifying neurotransmitter receptor properties, the copy numbers of scaffold proteins setting the limit of receptor accumulation at synapses, or protein packing densities shaping the molecular organization and plasticity of the postsynaptic density, all of these depend on exact quantities of components. A variety of proteomic, electrophysiological, and quantitative imaging techniques have yielded insights into the molecular composition of synaptic complexes. In this review, we compare the different quantitative approaches and consider the potential of single molecule imaging techniques for the quantification of synaptic components. We also discuss specific neurobiological data to contextualize the obtained numbers and to explain how they aid our understanding of synaptic structure and function.

  6. Robust short-term memory without synaptic learning.

    PubMed

    Johnson, Samuel; Marro, J; Torres, Joaquín J

    2013-01-01

    Short-term memory in the brain cannot in general be explained the way long-term memory can--as a gradual modification of synaptic weights--since it takes place too quickly. Theories based on some form of cellular bistability, however, do not seem able to account for the fact that noisy neurons can collectively store information in a robust manner. We show how a sufficiently clustered network of simple model neurons can be instantly induced into metastable states capable of retaining information for a short time (a few seconds). The mechanism is robust to different network topologies and kinds of neural model. This could constitute a viable means available to the brain for sensory and/or short-term memory with no need of synaptic learning. Relevant phenomena described by neurobiology and psychology, such as local synchronization of synaptic inputs and power-law statistics of forgetting avalanches, emerge naturally from this mechanism, and we suggest possible experiments to test its viability in more biological settings.

  7. Atropine and Other Anticholinergic Drugs

    DTIC Science & Technology

    2007-01-01

    parasympathetic est concern, along with their chemical names and nerves and muscarinic and nicotinic choliner - two-letter military designations, are tabun (o...that hydrolyzes the cholin - tions, tremor, convulsions, electrical seizures and ergic neurotransmitter acetylcholine (ACh), that loss of respiratory... cholin - depress salivation, bronchial secretions and ergic synaptic nerve terminals, this leads to very sweating, increase heart rate, produce pupilary

  8. Input-output features of anatomically identified CA3 neurons during hippocampal sharp wave/ripple oscillation in vitro.

    PubMed

    Hájos, Norbert; Karlócai, Mária R; Németh, Beáta; Ulbert, István; Monyer, Hannah; Szabó, Gábor; Erdélyi, Ferenc; Freund, Tamás F; Gulyás, Attila I

    2013-07-10

    Hippocampal sharp waves and the associated ripple oscillations (SWRs) are implicated in memory processes. These network events emerge intrinsically in the CA3 network. To understand cellular interactions that generate SWRs, we detected first spiking activity followed by recording of synaptic currents in distinct types of anatomically identified CA3 neurons during SWRs that occurred spontaneously in mouse hippocampal slices. We observed that the vast majority of interneurons fired during SWRs, whereas only a small portion of pyramidal cells was found to spike. There were substantial differences in the firing behavior among interneuron groups; parvalbumin-expressing basket cells were one of the most active GABAergic cells during SWRs, whereas ivy cells were silent. Analysis of the synaptic currents during SWRs uncovered that the dominant synaptic input to the pyramidal cell was inhibitory, whereas spiking interneurons received larger synaptic excitation than inhibition. The discharge of all interneurons was primarily determined by the magnitude and the timing of synaptic excitation. Strikingly, we observed that the temporal structure of synaptic excitation and inhibition during SWRs significantly differed between parvalbumin-containing basket cells, axoaxonic cells, and type 1 cannabinoid receptor (CB1)-expressing basket cells, which might explain their distinct recruitment to these synchronous events. Our data support the hypothesis that the active current sources restricted to the stratum pyramidale during SWRs originate from the synaptic output of parvalbumin-expressing basket cells. Thus, in addition to gamma oscillation, these GABAergic cells play a central role in SWR generation.

  9. The roles of protein expression in synaptic plasticity and memory consolidation

    PubMed Central

    Rosenberg, Tali; Gal-Ben-Ari, Shunit; Dieterich, Daniela C.; Kreutz, Michael R.; Ziv, Noam E.; Gundelfinger, Eckart D.; Rosenblum, Kobi

    2014-01-01

    The amount and availability of proteins are regulated by their synthesis, degradation, and transport. These processes can specifically, locally, and temporally regulate a protein or a population of proteins, thus affecting numerous biological processes in health and disease states. Accordingly, malfunction in the processes of protein turnover and localization underlies different neuronal diseases. However, as early as a century ago, it was recognized that there is a specific need for normal macromolecular synthesis in a specific fragment of the learning process, memory consolidation, which takes place minutes to hours following acquisition. Memory consolidation is the process by which fragile short-term memory is converted into stable long-term memory. It is accepted today that synaptic plasticity is a cellular mechanism of learning and memory processes. Interestingly, similar molecular mechanisms subserve both memory and synaptic plasticity consolidation. In this review, we survey the current view on the connection between memory consolidation processes and proteostasis, i.e., maintaining the protein contents at the neuron and the synapse. In addition, we describe the technical obstacles and possible new methods to determine neuronal proteostasis of synaptic function and better explain the process of memory and synaptic plasticity consolidation. PMID:25429258

  10. PRE- AND POST-SYNAPTIC EFFECTS OF MANIPULATING SURFACE CHARGE WITH DIVALENT CATIONS AT THE PHOTORECEPTOR SYNAPSE

    PubMed Central

    CADETTI, L.; THORESON, W. B.; PICCOLINO, M.

    2006-01-01

    Persistence of horizontal cell (HC) light responses in extracellular solutions containing low Ca2+ plus divalent cations to block Ca2+ currents (ICa) has been attributed to Ca2+-independent neurotransmission. Using a retinal slice preparation to record both ICa and light responses, we demonstrate that persistence of HC responses in low [Ca2+]o can instead be explained by a paradoxical increase of Ca2+ influx into photoreceptor terminals arising from surface charge-mediated shifts in ICa activation. Consistent with this explanation, application of Zn2+ or Ni2+ caused a hyperpolarizing block of HC light responses that was relieved by lowering [Ca2+]o. The same concentrations of Zn2+ and Ni2+ reduced the amplitude of ICa at the rod dark potential and this reduction was relieved by a hyperpolarizing shift in voltage dependence induced by lowering [Ca2+]o. Block of ICa by Mg2+, which has weak surface charge effects, was not relieved by low [Ca2+]o. Recovery of HC responses in low [Ca2+]o was assisted by enhancement of rod light responses. To bypass light stimulation, OFF bipolar cells were stimulated by steps to −40 mV applied to presynaptic rods during simultaneous paired recordings. Consistent with surface charge theory, the post-synaptic current was inhibited by Zn2+ and this inhibition was relieved by lowering [Ca2+]o. Nominally divalent-free media produced inversion of HC light responses even though rod light responses remained hyperpolarizing; HC response inversion can be explained by surface charge-mediated shifts in ICa. In summary, HC light responses modifications induced by low divalent cation solutions can be explained by effects on photoreceptor light responses and membrane surface charge without necessitating Ca2+-independent neurotransmission. Furthermore, these results suggest that surface charge effects accompanying physiological changing divalent cation levels in the synaptic cleft may provide a means for modulating synaptic output from photoreceptors. PMID:15541900

  11. Emergence of Slow Collective Oscillations in Neural Networks with Spike-Timing Dependent Plasticity

    NASA Astrophysics Data System (ADS)

    Mikkelsen, Kaare; Imparato, Alberto; Torcini, Alessandro

    2013-05-01

    The collective dynamics of excitatory pulse coupled neurons with spike-timing dependent plasticity is studied. The introduction of spike-timing dependent plasticity induces persistent irregular oscillations between strongly and weakly synchronized states, reminiscent of brain activity during slow-wave sleep. We explain the oscillations by a mechanism, the Sisyphus Effect, caused by a continuous feedback between the synaptic adjustments and the coherence in the neural firing. Due to this effect, the synaptic weights have oscillating equilibrium values, and this prevents the system from relaxing into a stationary macroscopic state.

  12. Anxiety and depression: individual entities or two sides of the same coin?

    PubMed

    Nutt, David

    2004-01-01

    Several factors have led to suggestions that anxiety and depression are actually the same disease: very frequently, they co-exist; there is an overlap of symptoms between the two conditions; a number of similar agents can be used to treat both mental states; the same neurotransmitters are involved in both anxiety and depressive disorders; and stress can predispose both. Selective serotonin reuptake inhibitors (SSRIs) have shown efficacy in a number of neuroses: depression; obsessive-compulsive disorder (OCD) and anxiety disorders (panic disorder [PD], social anxiety disorder [SAD], generalised anxiety disorder and post-traumatic stress disorder). Furthermore, other drugs, for example, tricyclic antidepressants and monoamine oxidase inhibitors, are effective in treating both depression and some anxiety disorders. Yet some drugs are only effective in anxiety, for example, benzodiazepines, and this suggests that the two states are actually different. Despite the broad range of conditions that are treated by SSRIs, a number of differences are clear when SSRIs are used in depressive and anxious states. When used in PD and OCD, the effective dose of the SSRI is often higher than when used to treat depression. Furthermore, SSRIs often work more slowly in patients with anxiety compared with those with depression. In order to assess which serotonergic pathways and mechanisms are involved in these conditions, tryptophan depletion tests can be performed. Tryptophan is the precursor to serotonin (5-HT), so if the SSRI treatment effects are dependent on an increase in synaptic 5-HT levels, depletion will result in a relapse in symptoms. However, if the SSRI treatment works through post-receptor events, then tryptophan depletion will have little effect on the individual's symptoms. In depression, tryptophan depletion induced relapse in patients treated and controlled on SSRIs, but not in those recovered on noradrenergic agents such as desipramine. In some anxious states (PD and SAD), our work has shown that relapse was also experienced following tryptophan depletion, indicating that the SSRIs are acting via increasing 5-HT levels at the synapse in these conditions. However, other studies have found no effect of the tryptophan depletion test. This suggests that in OCD, SSRIs act post-synaptically and therefore have a different mechanism of action in OCD patients compared with depressed patients. In summary, although most SSRIs are effective in the treatment of both depression and anxiety, differences in dose, time to onset of action and, in some cases, mechanism of action are evident when treating the two conditions.

  13. Short-Term Plasticity in a Computational Model of the Tail-Withdrawal Circuit in Aplysia

    PubMed Central

    Baxter, Douglas A.; Byrne, John H.

    2007-01-01

    The tail-withdrawal circuit of Aplysia provides a useful model system for investigating synaptic dynamics. Sensory neurons within the circuit manifest several forms of synaptic plasticity. Here, we developed a model of the circuit and investigated the ways in which depression (DEP) and potentiation (POT) contributed to information processing. DEP limited the amount of motor neuron activity that could be elicited by the monosynaptic pathway alone. POT within the monosynaptic pathway did not compensate for DEP. There was, however, a synergistic interaction between POT and the polysynaptic pathway. This synergism extended the dynamic range of the network, and the interplay between DEP and POT made the circuit responded preferentially to long-duration, low-frequency inputs. PMID:17957237

  14. Disruption of hippocampal–prefrontal cortex activity by dopamine D2R-dependent LTD of NMDAR transmission

    PubMed Central

    Banks, Paul James; Burroughs, Amelia Caroline; Barker, Gareth Robert Isaac; Brown, Jon Thomas; Warburton, Elizabeth Clea; Bashir, Zafar Iqbal

    2015-01-01

    Functional connectivity between the hippocampus and prefrontal cortex (PFC) is essential for associative recognition memory and working memory. Disruption of hippocampal–PFC synchrony occurs in schizophrenia, which is characterized by hypofunction of NMDA receptor (NMDAR)-mediated transmission. We demonstrate that activity of dopamine D2-like receptors (D2Rs) leads selectively to long-term depression (LTD) of hippocampal–PFC NMDAR-mediated synaptic transmission. We show that dopamine-dependent LTD of NMDAR-mediated transmission profoundly disrupts normal synaptic transmission between hippocampus and PFC. These results show how dopaminergic activation induces long-term hypofunction of NMDARs, which can contribute to disordered functional connectivity, a characteristic that is a hallmark of psychiatric disorders such as schizophrenia. PMID:26286993

  15. Andrographolide reduces cognitive impairment in young and mature AβPPswe/PS-1 mice.

    PubMed

    Serrano, Felipe G; Tapia-Rojas, Cheril; Carvajal, Francisco J; Hancke, Juan; Cerpa, Waldo; Inestrosa, Nibaldo C

    2014-12-18

    Alzheimer's disease (AD) is a neurodegenerative disorder in which the amyloid-β (Aβ) oligomers are a key factor in synaptic impairment and in spatial memory decline associated with neuronal dysfunction. This impairment includes synaptic failure associated with the loss of synaptic proteins that contribute to AD progression. Interestingly, the use of natural compounds is an emergent conceptual strategy in the search for drugs with therapeutic potentials for treating neurodegenerative disorders. In the present study, we report that andrographolide (ANDRO), which is a labdane diterpene extracted from Andrographis paniculata, increases slope of field excitatory postsynaptic potentials (fEPSP) in the CA1 region of hippocampal slices and inhibits long-term depression (LTD), protecting the long-term potentiation (LTP) against the damage induced by Aβ oligomers in vitro, most likely by inhibiting glycogen synthase kinase-3β (GSK-3β). Additionally, ANDRO prevents changes in neuropathology in two different age groups (7- and 12-month-old mice) of an AβPPswe/PS-1 Alzheimer's model. ANDRO reduces the Aβ levels, changing the ontogeny of amyloid plaques in hippocampi and cortices in 7-month-old mice, and reduces tau phosphorylation around the Aβ oligomeric species in both age groups. Additionally, we observed that ANDRO recovers spatial memory functions that correlate with protecting synaptic plasticity and synaptic proteins in two different age groups. Our results suggest that ANDRO could be used in a potential preventive therapy during AD progression.

  16. Synaptic transmission at the endbulb of Held deteriorates during age‐related hearing loss

    PubMed Central

    Manis, Paul B.

    2016-01-01

    Key points Synaptic transmission at the endbulb of Held was assessed by whole‐cell patch clamp recordings from auditory neurons in mature (2–4 months) and aged (20–26 months) mice.Synaptic transmission is degraded in aged mice, which may contribute to the decline in neural processing of the central auditory system during age‐related hearing loss.The changes in synaptic transmission in aged mice can be partially rescued by improving calcium buffering, or decreasing action potential‐evoked calcium influx.These experiments suggest potential mechanisms, such as regulating intraterminal calcium, that could be manipulated to improve the fidelity of transmission at the aged endbulb of Held. Abstract Age‐related hearing loss (ARHL) is associated with changes to the auditory periphery that raise sensory thresholds and alter coding, and is accompanied by alterations in excitatory and inhibitory synaptic transmission, and intrinsic excitability in the circuits of the central auditory system. However, it remains unclear how synaptic transmission changes at the first central auditory synapses during ARHL. Using mature (2–4 months) and old (20–26 months) CBA/CaJ mice, we studied synaptic transmission at the endbulb of Held. Mature and old mice showed no difference in either spontaneous quantal synaptic transmission or low frequency evoked synaptic transmission at the endbulb of Held. However, when challenged with sustained high frequency stimulation, synapses in old mice exhibited increased asynchronous transmitter release and reduced synchronous release. This suggests that the transmission of temporally precise information is degraded at the endbulb during ARHL. Increasing intraterminal calcium buffering with EGTA‐AM or decreasing calcium influx with ω‐agatoxin IVA decreased the amount of asynchronous release and restored synchronous release in old mice. In addition, recovery from depression following high frequency trains was faster in old mice, but was restored to a normal time course by EGTA‐AM treatment. These results suggest that intraterminal calcium in old endbulbs may rise to abnormally high levels during high rates of auditory nerve firing, or that calcium‐dependent processes involved in release are altered with age. These observations suggest that ARHL is associated with a decrease in temporal precision of synaptic release at the first central auditory synapse, which may contribute to perceptual deficits in hearing. PMID:27618790

  17. Overexpression of synapsin Ia in the rat calyx of Held accelerates short-term plasticity and decreases synaptic vesicle volume and active zone area

    PubMed Central

    Vasileva, Mariya; Renden, Robert; Horstmann, Heinz; Gitler, Daniel; Kuner, Thomas

    2013-01-01

    Synapsins are synaptic vesicle (SV) proteins organizing a component of the reserve pool of vesicles at most central nervous system synapses. Alternative splicing of the three mammalian genes results in multiple isoforms that may differentially contribute to the organization and maintenance of the SV pools. To address this, we first characterized the expression pattern of synapsin isoforms in the rat calyx of Held. At postnatal day 16, synapsins Ia, Ib, IIb and IIIa were present, while IIa—known to sustain repetitive transmission in glutamatergic terminals—was not detectable. To test if the synapsin I isoforms could mediate IIa-like effect, and if this depends on the presence of the E-domain, we overexpressed either synapsin Ia or synapsin Ib in the rat calyx of Held via recombinant adeno-associated virus-mediated gene transfer. Although the size and overall structure of the perturbed calyces remained unchanged, short-term depression and recovery from depression were accelerated upon overexpression of synapsin I isoforms. Using electron microscopic three-dimensional reconstructions we found a redistribution of SV clusters proximal to the active zones (AZ) alongside with a decrease of both AZ area and SV volume. The number of SVs at individual AZs was strongly reduced. Hence, our data indicate that the amount of synapsin Ia expressed in the calyx regulates the rate and extent of short-term synaptic plasticity by affecting vesicle recruitment to the AZ. Finally, our study reveals a novel contribution of synapsin Ia to define the surface area of AZs. PMID:24391547

  18. Impaired contextual fear extinction and hippocampal synaptic plasticity in adult rats induced by prenatal morphine exposure.

    PubMed

    Tan, Ji-Wei; Duan, Ting-Ting; Zhou, Qi-Xin; Ding, Ze-Yang; Jing, Liang; Cao, Jun; Wang, Li-Ping; Mao, Rong-Rong; Xu, Lin

    2015-07-01

    Prenatal opiate exposure causes a series of neurobehavioral disturbances by affecting brain development. However, the question of whether prenatal opiate exposure increases vulnerability to memory-related neuropsychiatric disorders in adult offspring remains largely unknown. Here, we found that rats prenatally exposed to morphine (PM) showed impaired acquisition but enhanced maintenance of contextual fear memory compared with control animals that were prenatally exposed to saline (PS). The impairment of acquisition was rescued by increasing the intensity of footshocks (1.2 mA rather than 0.8 mA). Meanwhile, we also found that PM rats exhibited impaired extinction of contextual fear, which is associated with enhanced maintenance of fear memory. The impaired extinction lasted for 1 week following extinction training. Furthermore, PM rats exhibited reduced anxiety-like behavior in the elevated plus-maze and light/dark box test without differences in locomotor activity. These alterations in PM rats were mirrored by abnormalities in synaptic plasticity in the Schaffer collateral-CA1 synapses of the hippocampus in vivo. PS rats showed blocked long-term potentiation and enabled long-term depression in CA1 synapses following contextual fear conditioning, while prenatal morphine exposure restricted synaptic plasticity in CA1 synapses. The smaller long-term potentiation in PM rats was not further blocked by contextual fear conditioning, and the long-term depression enabled by contextual fear conditioning was abolished. Taken together, our results provide the first evidence suggesting that prenatal morphine exposure may increase vulnerability to fear memory-related neuropsychiatric disorders in adulthood. © 2014 Society for the Study of Addiction.

  19. Developmental Changes in Short-Term Plasticity at the Rat Calyx of Held Synapse

    PubMed Central

    Crins, Tom T. H.; Rusu, Silviu I.; Rodríguez-Contreras, Adrian; Borst, J. Gerard G.

    2015-01-01

    The calyx of Held synapse of the medial nucleus of the trapezoid body functions as a relay synapse in the auditory brainstem. In vivo recordings have shown that this synapse displays low release probability and that the average size of synaptic potentials does not depend on recent history. We used a ventral approach to make in vivo extracellular recordings from the calyx of Held synapse in rats aged postnatal day 4 (P4) to P29 to study the developmental changes that allow this synapse to function as a relay. Between P4 and P8, we observed evidence for the presence of large short-term depression, which was counteracted by short-term facilitation at short intervals. Major changes occurred in the last few days before the onset of hearing for air-borne sounds, which happened at P13. The bursting pattern changed into a primary-like pattern, the amount of depression and facilitation decreased strongly, and the decay of facilitation became much faster. Whereas short-term plasticity was the most important cause of variability in the size of the synaptic potentials in immature animals, its role became minor around hearing onset and afterward. Similar developmental changes were observed during stimulation experiments both in brain slices and in vivo following cochlear ablation. Our data suggest that the strong reduction in release probability and the speedup of the decay of synaptic facilitation that happen just before hearing onset are important events in the transformation of the calyx of Held synapse into an auditory relay synapse. PMID:21832200

  20. Explaining social class differences in depression and well-being.

    PubMed

    Stansfeld, S A; Head, J; Marmot, M G

    1998-01-01

    Work characteristics, including skill discretion and decision authority, explain most of the socioeconomic status gradient in well-being and depression in middle-aged British civil servants from the Whitehall II Study, London. Social support explained about one-third of the gradient, life events and material difficulties less than one-third. Socioeconomic status was measured by employment grade. Work characteristics were based on the Karasek model, social support was measured by the Close Persons Questionnaire, depression by the General Health Questionnaire and well-being by the Affect Balance Scale. Despite a small contribution from social selective factors measured by upward mobility, the psychosocial work environment explained most of the cross-sectional socioeconomic status gradient in well-being and depression.

  1. An Extract of Artemisia dracunculus L. Promotes Psychological Resilience in a Mouse Model of Depression

    PubMed Central

    Wang, Jun; Fernández, Adelaida Esteban; Tiano, Simoni; Huang, Jing; Floyd, Elizabeth; Poulev, Alexander

    2018-01-01

    Stress-induced peripheral inflammation contributes to depression-like behaviors in both human and experimental models. PMI 5011, a botanical extract of Artemisia dracunculus L., was previously shown to have multiple bioactivities, including anti-inflammatory activity. In this work, using a repeated social defeat stress (RSDS) model of depression, we demonstrate that oral administration of the botanical extract PMI 5011 promotes resilience to RSDS-mediated depression-like phenotypes. We also show that the behavioral improvements are associated with attenuation of stress-mediated induction of inflammatory cytokines in the periphery and alteration of synaptic plasticity in the nucleus accumbens (NAc). Our studies provide experimental evidence that botanical extracts such as PMI 5011, which target pathological mechanisms (i.e., peripheral inflammation) not addressed by currently available antidepressants, could be further developed as novel therapeutics for the treatment of stress disorders and anxiety in humans. PMID:29861834

  2. Regulation of hippocampal synaptic plasticity thresholds and changes in exploratory and learning behavior in dominant negative NPR-B mutant rats

    PubMed Central

    Barmashenko, Gleb; Buttgereit, Jens; Herring, Neil; Bader, Michael; Özcelik, Cemil; Manahan-Vaughan, Denise; Braunewell, Karl H.

    2014-01-01

    The second messenger cyclic GMP affects synaptic transmission and modulates synaptic plasticity and certain types of learning and memory processes. The impact of the natriuretic peptide receptor B (NPR-B) and its ligand C-type natriuretic peptide (CNP), one of several cGMP producing signaling systems, on hippocampal synaptic plasticity and learning is, however, less well understood. We have previously shown that the NPR-B ligand CNP increases the magnitude of long-term depression (LTD) in hippocampal area CA1, while reducing the induction of long-term potentiation (LTP). We have extended this line of research to show that bidirectional plasticity is affected in the opposite way in rats expressing a dominant-negative mutant of NPR-B (NSE-NPR-BΔKC) lacking the intracellular guanylyl cyclase domain under control of a promoter for neuron-specific enolase. The brain cells of these transgenic rats express functional dimers of the NPR-B receptor containing the dominant-negative NPR-BΔKC mutant, and therefore show decreased CNP-stimulated cGMP-production in brain membranes. The NPR-B transgenic rats display enhanced LTP but reduced LTD in hippocampal slices. When the frequency-dependence of synaptic modification to afferent stimulation in the range of 1–100 Hz was assessed in transgenic rats, the threshold for both, LTP and LTD induction, was shifted to lower frequencies. In parallel, NPR-BΔKC rats exhibited an enhancement in exploratory and learning behavior. These results indicate that bidirectional plasticity and learning and memory mechanism are affected in transgenic rats expressing a dominant-negative mutant of NPR-B. Our data substantiate the hypothesis that NPR-B-dependent cGMP signaling has a modulatory role for synaptic information storage and learning. PMID:25520616

  3. TH-9 (a theophylline derivative) induces long-lasting enhancement in excitatory synaptic transmission in the rat hippocampus that is occluded by frequency-dependent plasticity in vitro.

    PubMed

    Nashawi, H; Bartl, T; Bartl, P; Novotny, L; Oriowo, M A; Kombian, S B

    2012-09-18

    Dementia, especially Alzheimer's disease, is a rapidly increasing medical condition that presents with enormous challenge for treatment. It is characterized by impairment in memory and cognitive function often accompanied by changes in synaptic transmission and plasticity in relevant brain regions such as the hippocampus. We recently synthesized TH-9, a conjugate racetam-methylxanthine compound and tested if it had potential for enhancing synaptic function and possibly, plasticity, by examining its effect on hippocampal fast excitatory synaptic transmission and plasticity. Field excitatory postsynaptic potentials (fEPSPs) were recorded in the CA1 hippocampal area of naïve juvenile male Sprague-Dawley rats using conventional electrophysiological recording techniques. TH-9 caused a concentration-dependent, long-lasting enhancement in fEPSPs. This effect was blocked by adenosine A1, acetylcholine (muscarinic and nicotinic) and glutamate (N-methyl-d-aspartate) receptor antagonists but not by a γ-aminobutyric acid receptor type B (GABA(B)) receptor antagonist. The TH-9 effect was also blocked by enhancing intracellular cyclic adenosine monophosphate and inhibiting protein kinase A. Pretreatment with TH-9 did not prevent the induction of long-term potentiation (LTP) or long-term depression (LTD). Conversely, induction of LTP or LTD completely occluded the ability of TH-9 to enhance fEPSPs. Thus, TH-9 utilizes cholinergic and adenosinergic mechanisms to cause long-lasting enhancement in fEPSPs which were occluded by LTP and LTD. TH-9 may therefore employ similar or convergent mechanisms with frequency-dependent synaptic plasticities to produce the observed long-lasting enhancement in synaptic transmission and may thus, have potential for use in improving memory. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Astrocytes, Synapses and Brain Function: A Computational Approach

    NASA Astrophysics Data System (ADS)

    Nadkarni, Suhita

    2006-03-01

    Modulation of synaptic reliability is one of the leading mechanisms involved in long- term potentiation (LTP) and long-term depression (LTD) and therefore has implications in information processing in the brain. A recently discovered mechanism for modulating synaptic reliability critically involves recruitments of astrocytes - star- shaped cells that outnumber the neurons in most parts of the central nervous system. Astrocytes until recently were thought to be subordinate cells merely participating in supporting neuronal functions. New evidence, however, made available by advances in imaging technology has changed the way we envision the role of these cells in synaptic transmission and as modulator of neuronal excitability. We put forward a novel mathematical framework based on the biophysics of the bidirectional neuron-astrocyte interactions that quantitatively accounts for two distinct experimental manifestation of recruitment of astrocytes in synaptic transmission: a) transformation of a low fidelity synapse transforms into a high fidelity synapse and b) enhanced postsynaptic spontaneous currents when astrocytes are activated. Such a framework is not only useful for modeling neuronal dynamics in a realistic environment but also provides a conceptual basis for interpreting experiments. Based on this modeling framework, we explore the role of astrocytes for neuronal network behavior such as synchrony and correlations and compare with experimental data from cultured networks.

  5. Identification of a human synaptotagmin-1 mutation that perturbs synaptic vesicle cycling

    PubMed Central

    Baker, Kate; Gordon, Sarah L.; Grozeva, Detelina; van Kogelenberg, Margriet; Roberts, Nicola Y.; Pike, Michael; Blair, Edward; Hurles, Matthew E.; Chong, W. Kling; Baldeweg, Torsten; Kurian, Manju A.; Boyd, Stewart G.; Cousin, Michael A.; Raymond, F. Lucy

    2015-01-01

    Synaptotagmin-1 (SYT1) is a calcium-binding synaptic vesicle protein that is required for both exocytosis and endocytosis. Here, we describe a human condition associated with a rare variant in SYT1. The individual harboring this variant presented with an early onset dyskinetic movement disorder, severe motor delay, and profound cognitive impairment. Structural MRI was normal, but EEG showed extensive neurophysiological disturbances that included the unusual features of low-frequency oscillatory bursts and enhanced paired-pulse depression of visual evoked potentials. Trio analysis of whole-exome sequence identified a de novo SYT1 missense variant (I368T). Expression of rat SYT1 containing the equivalent human variant in WT mouse primary hippocampal cultures revealed that the mutant form of SYT1 correctly localizes to nerve terminals and is expressed at levels that are approximately equal to levels of endogenous WT protein. The presence of the mutant SYT1 slowed synaptic vesicle fusion kinetics, a finding that agrees with the previously demonstrated role for I368 in calcium-dependent membrane penetration. Expression of the I368T variant also altered the kinetics of synaptic vesicle endocytosis. Together, the clinical features, electrophysiological phenotype, and in vitro neuronal phenotype associated with this dominant negative SYT1 mutation highlight presynaptic mechanisms that mediate human motor control and cognitive development. PMID:25705886

  6. Bidirectional Hebbian Plasticity Induced by Low-Frequency Stimulation in Basal Dendrites of Rat Barrel Cortex Layer 5 Pyramidal Neurons.

    PubMed

    Díez-García, Andrea; Barros-Zulaica, Natali; Núñez, Ángel; Buño, Washington; Fernández de Sevilla, David

    2017-01-01

    According to Hebb's original hypothesis (Hebb, 1949), synapses are reinforced when presynaptic activity triggers postsynaptic firing, resulting in long-term potentiation (LTP) of synaptic efficacy. Long-term depression (LTD) is a use-dependent decrease in synaptic strength that is thought to be due to synaptic input causing a weak postsynaptic effect. Although the mechanisms that mediate long-term synaptic plasticity have been investigated for at least three decades not all question have as yet been answered. Therefore, we aimed at determining the mechanisms that generate LTP or LTD with the simplest possible protocol. Low-frequency stimulation of basal dendrite inputs in Layer 5 pyramidal neurons of the rat barrel cortex induces LTP. This stimulation triggered an EPSP, an action potential (AP) burst, and a Ca 2+ spike. The same stimulation induced LTD following manipulations that reduced the Ca 2+ spike and Ca 2+ signal or the AP burst. Low-frequency whisker deflections induced similar bidirectional plasticity of action potential evoked responses in anesthetized rats. These results suggest that both in vitro and in vivo similar mechanisms regulate the balance between LTP and LTD. This simple induction form of bidirectional hebbian plasticity could be present in the natural conditions to regulate the detection, flow, and storage of sensorimotor information.

  7. Gain-of-function mutations in protein kinase Cα (PKCα) may promote synaptic defects in Alzheimer’s disease

    PubMed Central

    Alfonso, Stephanie I.; Callender, Julia A.; Hooli, Basavaraj; Antal, Corina E.; Mullin, Kristina; Sherman, Mathew A.; Lesné, Sylvain E.; Leitges, Michael; Newton, Alexandra C.; Tanzi, Rudolph E.; Malinow, Roberto

    2016-01-01

    Alzheimer’s disease (AD) is a progressive dementia disorder characterized by synaptic degeneration and amyloid-β (Aβ) accumulation in the brain. Through whole-genome sequencing of 1345 individuals from 410 families with late-onset AD (LOAD), we identified three highly penetrant variants in PRKCA, the gene that encodes protein kinase Cα (PKCα), in five of the families. All three variants linked with LOAD displayed increased catalytic activity relative to wild-type PKCα as assessed in live-cell imaging experiments using a genetically encoded PKC activity reporter. Deleting PRKCA in mice or adding PKC antagonists to mouse hippocampal slices infected with a virus expressing the Aβ precursor CT100 revealed that PKCα was required for the reduced synaptic activity caused by Aβ. In PRKCA−/− neurons expressing CT100, introduction of PKCα, but not PKCα lacking a PDZ interaction moiety, rescued synaptic depression, suggesting that a scaffolding interaction bringing PKCα to the synapse is required for its mediation of the effects of Aβ. Thus, enhanced PKCα activity may contribute to AD, possibly by mediating the actions of Aβ on synapses. In contrast, reduced PKCα activity is implicated in cancer. Hence, these findings reinforce the importance of maintaining a careful balance in the activity of this enzyme. PMID:27165780

  8. Translational control by eIF2α phosphorylation regulates vulnerability to the synaptic and behavioral effects of cocaine

    PubMed Central

    Huang, Wei; Placzek, Andon N; Viana Di Prisco, Gonzalo; Khatiwada, Sanjeev; Sidrauski, Carmela; Krnjević, Krešimir; Walter, Peter; Dani, John A; Costa-Mattioli, Mauro

    2016-01-01

    Adolescents are especially prone to drug addiction, but the underlying biological basis of their increased vulnerability remains unknown. We reveal that translational control by phosphorylation of the translation initiation factor eIF2α (p-eIF2α) accounts for adolescent hypersensitivity to cocaine. In adolescent (but not adult) mice, a low dose of cocaine reduced p-eIF2α in the ventral tegmental area (VTA), potentiated synaptic inputs to VTA dopaminergic neurons, and induced drug-reinforced behavior. Like adolescents, adult mice with reduced p-eIF2α-mediated translational control were more susceptible to cocaine-induced synaptic potentiation and behavior. Conversely, like adults, adolescent mice with increased p-eIF2α became more resistant to cocaine's effects. Accordingly, metabotropic glutamate receptor-mediated long-term depression (mGluR-LTD)—whose disruption is postulated to increase vulnerability to drug addiction—was impaired in both adolescent mice and adult mice with reduced p-eIF2α mediated translation. Thus, during addiction, cocaine hijacks translational control by p-eIF2α, initiating synaptic potentiation and addiction-related behaviors. These insights may hold promise for new treatments for addiction. DOI: http://dx.doi.org/10.7554/eLife.12052.001 PMID:26928234

  9. Synapsin- and Actin-Dependent Frequency Enhancement in Mouse Hippocampal Mossy Fiber Synapses

    PubMed Central

    Owe, Simen G.; Jensen, Vidar; Evergren, Emma; Ruiz, Arnaud; Shupliakov, Oleg; Kullmann, Dimitri M.; Storm-Mathisen, Jon; Walaas, S. Ivar; Hvalby, Øivind

    2009-01-01

    The synapsin proteins have different roles in excitatory and inhibitory synaptic terminals. We demonstrate a differential role between types of excitatory terminals. Structural and functional aspects of the hippocampal mossy fiber (MF) synapses were studied in wild-type (WT) mice and in synapsin double-knockout mice (DKO). A severe reduction in the number of synaptic vesicles situated more than 100 nm away from the presynaptic membrane active zone was found in the synapsin DKO animals. The ultrastructural level gave concomitant reduction in F-actin immunoreactivity observed at the periactive endocytic zone of the MF terminals. Frequency facilitation was normal in synapsin DKO mice at low firing rates (∼0.1 Hz) but was impaired at firing rates within the physiological range (∼2 Hz). Synapses made by associational/commissural fibers showed comparatively small frequency facilitation at the same frequencies. Synapsin-dependent facilitation in MF synapses of WT mice was attenuated by blocking F-actin polymerization with cytochalasin B in hippocampal slices. Synapsin III, selectively seen in MF synapses, is enriched specifically in the area adjacent to the synaptic cleft. This may underlie the ability of synapsin III to promote synaptic depression, contributing to the reduced frequency facilitation observed in the absence of synapsins I and II. PMID:18550596

  10. UV irradiation to mouse skin decreases hippocampal neurogenesis and synaptic protein expression via HPA axis activation.

    PubMed

    Han, Mira; Ban, Jae-Jun; Bae, Jung-Soo; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho

    2017-11-14

    The skin senses external environment, including ultraviolet light (UV). Hippocampus is a brain region that is responsible for memory and emotion. However, changes in hippocampus by UV irradiation to the skin have not been studied. In this study, after 2 weeks of UV irradiation to the mouse skin, we examined molecular changes related to cognitive functions in the hippocampus and activation of the hypothalamic-pituitary-adrenal (HPA) axis. UV exposure to the skin decreased doublecortin-positive immature neurons and synaptic proteins, including N-methyl-D-aspartate receptor 2 A and postsynaptic density protein-95, in the hippocampus. Moreover, we observed that UV irradiation to the skin down-regulated brain-derived neurotrophic factor expression and ERK signaling in the hippocampus, which are known to modulate neurogenesis and synaptic plasticity. The cutaneous and central HPA axes were activated by UV, which resulted in significant increases in serum levels of corticosterone. Subsequently, UV irradiation to the skin activated the glucocorticoid-signaling pathway in the hippocampal dentate gyrus. Interestingly, after 6 weeks of UV irradiation, mice showed depression-like behavior in the tail suspension test. Taken together, our data suggest that repeated UV exposure through the skin may negatively affect hippocampal neurogenesis and synaptic plasticity along with HPA axis activation.

  11. Bidirectional Hebbian Plasticity Induced by Low-Frequency Stimulation in Basal Dendrites of Rat Barrel Cortex Layer 5 Pyramidal Neurons

    PubMed Central

    Díez-García, Andrea; Barros-Zulaica, Natali; Núñez, Ángel; Buño, Washington; Fernández de Sevilla, David

    2017-01-01

    According to Hebb's original hypothesis (Hebb, 1949), synapses are reinforced when presynaptic activity triggers postsynaptic firing, resulting in long-term potentiation (LTP) of synaptic efficacy. Long-term depression (LTD) is a use-dependent decrease in synaptic strength that is thought to be due to synaptic input causing a weak postsynaptic effect. Although the mechanisms that mediate long-term synaptic plasticity have been investigated for at least three decades not all question have as yet been answered. Therefore, we aimed at determining the mechanisms that generate LTP or LTD with the simplest possible protocol. Low-frequency stimulation of basal dendrite inputs in Layer 5 pyramidal neurons of the rat barrel cortex induces LTP. This stimulation triggered an EPSP, an action potential (AP) burst, and a Ca2+ spike. The same stimulation induced LTD following manipulations that reduced the Ca2+ spike and Ca2+ signal or the AP burst. Low-frequency whisker deflections induced similar bidirectional plasticity of action potential evoked responses in anesthetized rats. These results suggest that both in vitro and in vivo similar mechanisms regulate the balance between LTP and LTD. This simple induction form of bidirectional hebbian plasticity could be present in the natural conditions to regulate the detection, flow, and storage of sensorimotor information. PMID:28203145

  12. Tracking slow modulations in synaptic gain using dynamic causal modelling: validation in epilepsy.

    PubMed

    Papadopoulou, Margarita; Leite, Marco; van Mierlo, Pieter; Vonck, Kristl; Lemieux, Louis; Friston, Karl; Marinazzo, Daniele

    2015-02-15

    In this work we propose a proof of principle that dynamic causal modelling can identify plausible mechanisms at the synaptic level underlying brain state changes over a timescale of seconds. As a benchmark example for validation we used intracranial electroencephalographic signals in a human subject. These data were used to infer the (effective connectivity) architecture of synaptic connections among neural populations assumed to generate seizure activity. Dynamic causal modelling allowed us to quantify empirical changes in spectral activity in terms of a trajectory in parameter space - identifying key synaptic parameters or connections that cause observed signals. Using recordings from three seizures in one patient, we considered a network of two sources (within and just outside the putative ictal zone). Bayesian model selection was used to identify the intrinsic (within-source) and extrinsic (between-source) connectivity. Having established the underlying architecture, we were able to track the evolution of key connectivity parameters (e.g., inhibitory connections to superficial pyramidal cells) and test specific hypotheses about the synaptic mechanisms involved in ictogenesis. Our key finding was that intrinsic synaptic changes were sufficient to explain seizure onset, where these changes showed dissociable time courses over several seconds. Crucially, these changes spoke to an increase in the sensitivity of principal cells to intrinsic inhibitory afferents and a transient loss of excitatory-inhibitory balance. Copyright © 2014. Published by Elsevier Inc.

  13. Bioenergetics and synaptic plasticity as potential targets for individualizing treatment for depression.

    PubMed

    Price, J Blair; Bronars, Carrie; Erhardt, Sophie; Cullen, Kathyrn R; Schwieler, Lilly; Berk, Michael; Walder, Ken; McGee, Sean L; Frye, Mark A; Tye, Susannah J

    2018-04-12

    Disruptions of bioenergetic signaling and neurogenesis are hallmarks of depression physiology and are often the product of dysregulation of the inflammatory, stress-response, and metabolic systems. These systems are extensively interrelated at the physiological level, yet the bulk of the literature to date addresses pathophysiological mechanisms in isolation. A more integrated understanding of the etiology, progression, and treatment response profiles of depression is possible through wider consideration of relevant preclinical and clinical studies that examine the result of disruptions in these systems. Here, we review recent data demonstrating the critical effects of bioenergetic disruption on neuroplasticity and the development and progression of depressive illness. We further highlight the interactive and dynamic nature of the inflammatory and stress response systems and how disruption of these systems influences bioenergetic signaling pathways critical to treatment outcomes. In so doing, we underscore the pressing need to reconsider the implications of treatment resistance and present a framework for developing novel, personalized treatment approaches for depression. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. What explains the relation between family poverty and childhood depressive symptoms?

    PubMed

    Tracy, Melissa; Zimmerman, Frederick J; Galea, Sandro; McCauley, Elizabeth; Stoep, Ann Vander

    2008-10-01

    The relation between low socioeconomic status (SES) and depression has been well documented in adult populations. A number of studies suggest that family SES may be associated with depression among children and adolescents as well, although the evidence is mixed. We assessed the relation between family income and depressive symptoms among 457 children aged 11-13 years and examined pathways that may explain this relation. In-person interviews of children and their caregivers were conducted, including assessment of family income and administration of the Computer-based Diagnostic Interview Schedule for Children (C-DISC). Family income was significantly associated with depressive symptoms, with children in the lowest income group (<$35,000) reporting a mean of 8.12 symptoms compared to 6.27 symptoms in the middle income group ($35,000-$74,999) and 5.13 symptoms in the highest income group (> or = $75,000; p<0.001). Controlling for the number of stressful life events experienced in the past 6 months attenuated the effect of low family income on depressive symptoms by 28%. Indicators of the family environment explained 45% and neighborhood median household income and aggravated assault rate explained 12% of the relation. The family environment, including parental divorce or separation and perceived parental support, appears to explain most of the relation between low family income and childhood depressive symptoms. Further exploration of the pathways between family SES and depression may suggest potential interventions to reduce the occurrence and persistence of depressive symptoms in children.

  15. Topographical distribution of fast and slow sleep spindles in medicated depressive patients.

    PubMed

    Nishida, Masaki; Nakashima, Yusaku; Nishikawa, Toru

    2014-10-01

    To compare the properties of sleep spindles between healthy subjects and medicated patients with major depressive episode, including frequency range, spectra power, and spatial distribution of spindle power. Continuous 16-channel EEG was used to record nocturnal sleep in healthy control subjects and medicated depressive patients. Recordings were analyzed for changes in EEG power spectra and power topography. Additionally, we graphically demonstrated the pattern of spatial distribution of each type of sleep spindle, divided into fast (12.5-14 Hz) and slow spindles (11-12.5 Hz). Sleep EEG records of depressive subjects exhibited a significantly higher amplitude of slow spindles in the prefrontal region, compared with the healthy controls (P < 0.01). Fast spindles were dominant in the centroparietal region in both depressive patients and the control group. Enhanced slow spindles in the prefrontal region were observed in the medicated depressive patients and not in the healthy controls. The frequency of fast spindles in depressive patients was globally higher than that in healthy participants. The alteration in sleep spindles seen in medicated depressive subjects may reflect a pharmacological modulation of synaptic function involving the thalamic-reticular and thalamocortical mechanisms.

  16. 17β Estradiol increases resilience and improves hippocampal synaptic function in helpless ovariectomized rats

    PubMed Central

    Bredemann, Teruko M.; McMahon, Lori L.

    2014-01-01

    Summary Memory impairment is the most commonly reported cognitive symptom associated with major depressive disorder. Decreased hippocampal volume and neurogenesis in depression link hippocampal dysfunction with deficits in memory. Stress decreases hippocampal dendritic spine density and long-term potentiation (LTP) at glutamate synapses, a cellular correlate of learning and memory. However, elevated plasma levels of 17β estradiol (E2) during proestrus increase hippocampal structure and function, directly opposing the negative consequences of stress. In women, significant fluctuations in ovarian hormones likely increase vulnerability of hippocampal circuits to stress, potentially contributing to the greater incidence of depression compared to men. Using the learned helplessness model of depression and ovariectomized female rats, we investigated whether acquisition of helplessness and hippocampal synaptic dysfunction is differentially impacted by the presence or absence of plasma E2. We find that inescapable shock induces a greater incidence of helplessness in vehicle- versus E2-treated OVX rats. In the vehicle-treated group, LTP was absent at CA3-CA1 synapses in slices only from helpless rats, and CA1 spine density was decreased compared to resilient rats. In contrast, significant LTP was observed in slices from E2-treated helpless rats; importantly, spine density was not different between E2-treated helpless and resilient rats, dissociating spine density from the LTP magnitude. We also find that E2 replacement can reverse previously established helpless behavior. Thus, our results show that E2 replacement in OVX rats increases resilience and improves hippocampal plasticity, suggesting that E2 therapy may increase resilience to stress and preserve hippocampal function in women experiencing large fluctuations in plasma estrogen levels. PMID:24636504

  17. Experiential Avoidance and Rumination in Parents of Children on Cancer Treatment: Relationships with Posttraumatic Stress Symptoms and Symptoms of Depression.

    PubMed

    Cernvall, Martin; Skogseid, Ellen; Carlbring, Per; Ljungman, Lisa; Ljungman, Gustaf; von Essen, Louise

    2016-03-01

    We conducted a cross-sectional survey study to investigate whether there is a relationship between experiential avoidance (EA), rumination, post-traumatic stress symptoms (PTSS), and symptoms of depression, in parents of children on cancer treatment. Data from 79 parents (55 mothers) of 79 children with a median of three months since their cancer diagnosis were included in cross-sectional analyses. EA and rumination were positively correlated with PTSS and symptoms of depression. EA and rumination did not provide incremental explained variance in PTSS over and above that explained by symptoms of depression, while controlling for symptoms of anxiety and demographic characteristics. However, EA and rumination provided incremental explained variance in symptoms of depression over and above that explained by PTSS, while controlling for symptoms of anxiety and demographic characteristics. Rumination and EA are important constructs in the understanding of PTSS and symptoms of depression in parents of children on cancer treatment. Future research should delineate the temporal relationships between these constructs.

  18. Synaptic P-Rex1 signaling regulates hippocampal long-term depression and autism-like social behavior

    PubMed Central

    Li, Jun; Chai, Anping; Wang, Lifang; Ma, Yuanlin; Wu, Zhiliu; Yu, Hao; Mei, Liwei; Lu, Lin; Zhang, Chen; Yue, Weihua; Xu, Lin; Rao, Yi; Zhang, Dai

    2015-01-01

    Autism spectrum disorders (ASDs) are a group of highly inheritable mental disorders associated with synaptic dysfunction, but the underlying cellular and molecular mechanisms remain to be clarified. Here we report that autism in Chinese Han population is associated with genetic variations and copy number deletion of P-Rex1 (phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 1). Genetic deletion or knockdown of P-Rex1 in the CA1 region of the hippocampus in mice resulted in autism-like social behavior that was specifically linked to the defect of long-term depression (LTD) in the CA1 region through alteration of AMPA receptor endocytosis mediated by the postsynaptic PP1α (protein phosphase 1α)–P-Rex1–Rac1 (Ras-related C3 botulinum toxin substrate 1) signaling pathway. Rescue of the LTD in the CA1 region markedly alleviated autism-like social behavior. Together, our findings suggest a vital role of P-Rex1 signaling in CA1 LTD that is critical for social behavior and cognitive function and offer new insight into the etiology of ASDs. PMID:26621702

  19. Kainate receptor-mediated depression of glutamatergic transmission involving protein kinase A in the lateral amygdala.

    PubMed

    Negrete-Díaz, José Vicente; Duque-Feria, Paloma; Andrade-Talavera, Yuniesky; Carrión, Miriam; Flores, Gonzalo; Rodríguez-Moreno, Antonio

    2012-04-01

    Kainate receptors (KARs) have been described as modulators of synaptic transmission at different synapses. However, this role of KARs has not been well characterized in the amygdala. We have explored the effect of kainate receptor activation at the synapse established between fibers originating at medial geniculate nucleus and the principal cells in the lateral amygdala. We have observed an inhibition of evoked excitatory postsynaptic currents (eEPSCs) amplitude after a brief application of KARs agonists KA and ATPA. Paired-pulse recordings showed a clear pair pulse facilitation that was enhanced after KA or ATPA application. When postsynaptic cells were loaded with BAPTA, the depression of eEPSC amplitude observed after the perfusion of KAR agonists was not prevented. We have also observed that the inhibition of the eEPSCs by KARs agonists was prevented by protein kinase A but not by protein kinase C inhibitors. Taken together our results indicate that KARs present at this synapse are pre-synaptic and their activation mediate the inhibition of glutamate release through a mechanism that involves the activation of protein kinase A. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  20. Long-term depression of inhibitory synaptic transmission induced by spike-timing dependent plasticity requires coactivation of endocannabinoid and muscarinic receptors.

    PubMed

    Ahumada, Juan; Fernández de Sevilla, David; Couve, Alejandro; Buño, Washington; Fuenzalida, Marco

    2013-12-01

    The precise timing of pre-postsynaptic activity is vital for the induction of long-term potentiation (LTP) or depression (LTD) at many central synapses. We show in synapses of rat CA1 pyramidal neurons in vitro that spike timing dependent plasticity (STDP) protocols that induce LTP at glutamatergic synapses can evoke LTD of inhibitory postsynaptic currents or STDP-iLTD. The STDP-iLTD requires a postsynaptic Ca(2+) increase, a release of endocannabinoids (eCBs), the activation of type-1 endocananabinoid receptors and presynaptic muscarinic receptors that mediate a decreased probability of GABA release. In contrast, the STDP-iLTD is independent of the activation of nicotinic receptors, GABAB Rs and G protein-coupled postsynaptic receptors at pyramidal neurons. We determine that the downregulation of presynaptic Cyclic adenosine monophosphate/protein Kinase A pathways is essential for the induction of STDP-iLTD. These results suggest a novel mechanism by which the activation of cholinergic neurons and retrograde signaling by eCBs can modulate the efficacy of GABAergic synaptic transmission in ways that may contribute to information processing and storage in the hippocampus. Copyright © 2013 Wiley Periodicals, Inc.

  1. H2-K(b) and H2-D(b) regulate cerebellar long-term depression and limit motor learning.

    PubMed

    McConnell, Michael J; Huang, Yanhua H; Datwani, Akash; Shatz, Carla J

    2009-04-21

    There are more than 50 class I MHC (MHCI) molecules in the mouse genome, some of which are now known to be expressed in neurons; however, the role of classical MHCI molecules in synaptic plasticity is unknown. We report that the classical MHCI molecules, H2-K(b) and H2-D(b), are co-expressed by Purkinje cells (PCs). In the cerebellum of mice deficient for both H2-K(b) and H2-D(b) (K(b)D(b-/-)), there is a lower threshold for induction of long-term depression (LTD) at parallel fiber to PC synapses. This change may be a result of additional glutamate release observed at K(b)D(b-/-) CF to PC synapses, which are thought to "train" the cerebellar circuit. A behavioral correlate of cerebellar LTD is motor learning; acquisition and retention of a Rotarod behavioral task is significantly better in K(b)D(b-/-) mice than in WT cohorts. These physiological and behavioral phenotypes in K(b)D(b-/-) mice reveal a surprising role for classical MHCI molecules in synaptic plasticity and motor learning.

  2. Plasma BDNF Concentration, Val66Met Genetic Variant, and Depression-Related Personality Traits

    PubMed Central

    Terracciano, Antonio; Martin, Bronwen; Ansari, David; Tanaka, Toshiko; Ferrucci, Luigi; Maudsley, Stuart; Mattson, Mark P.; Costa, Paul T.

    2010-01-01

    Brain derived neurotrophic factor (BDNF) regulates synaptic plasticity and neurogenesis, and BDNF plasma and serum levels have been associated with depression, Alzheimer's disease, and other psychiatric and neurodegenerative disorders. In a relatively large community sample, drawn from the Baltimore Longitudinal Study of Aging (BLSA), we examine whether BDNF plasma concentration is associated with the Val66Met functional polymorphism of the BDNF gene (n = 335) and with depression-related personality traits assessed with the NEO-PI-R (n = 391). Plasma concentration of BDNF was not associated with the Val66Met variant in either men or women. However, in men, but not in women, BDNF plasma level was associated with personality traits linked to depression. Contrary to the notion that low BDNF is associated with negative outcomes, we found lower plasma levels in men who score lower on depression and vulnerability to stress (two facets of Neuroticism) and higher on Conscientiousness and Extraversion. These findings challenge the prevailing hypothesis that lower peripheral levels of BDNF are a marker of depression. PMID:20345896

  3. Synaptic Regulation of a Thalamocortical Circuit Controls Depression-Related Behavior.

    PubMed

    Miller, Oliver H; Bruns, Andreas; Ben Ammar, Imen; Mueggler, Thomas; Hall, Benjamin J

    2017-08-22

    The NMDA receptor (NMDAR) antagonist ketamine elicits a long-lasting antidepressant response in patients with treatment-resistant depression. Understanding how antagonism of NMDARs alters synapse and circuit function is pivotal to developing circuit-based therapies for depression. Using virally induced gene deletion, ex vivo optogenetic-assisted circuit analysis, and in vivo chemogenetics and fMRI, we assessed the role of NMDARs in the medial prefrontal cortex (mPFC) in controlling depression-related behavior in mice. We demonstrate that post-developmental genetic deletion of the NMDAR subunit GluN2B from pyramidal neurons in the mPFC enhances connectivity between the mPFC and limbic thalamus, but not the ventral hippocampus, and reduces depression-like behavior. Using intersectional chemogenetics, we show that activation of this thalamocortical circuit is sufficient to elicit a decrease in despair-like behavior. Our findings reveal that GluN2B exerts input-specific control of pyramidal neuron innervation and identify a medial dorsal thalamus (MDT)→mPFC circuit that controls depression-like behavior. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Reduced cGMP levels in CSF of AD patients correlate with severity of dementia and current depression.

    PubMed

    Hesse, Raphael; Lausser, Ludwig; Gummert, Pauline; Schmid, Florian; Wahler, Anke; Schnack, Cathrin; Kroker, Katja S; Otto, Markus; Tumani, Hayrettin; Kestler, Hans A; Rosenbrock, Holger; von Arnim, Christine A F

    2017-03-09

    Alzheimer's disease (AD) is a neurodegenerative disorder, primarily affecting memory. That disorder is thought to be a consequence of neuronal network disturbances and synapse loss. Decline in cognitive function is associated with a high burden of neuropsychiatric symptoms (NPSs) such as depression. The cyclic nucleotides cyclic adenosine-3',5'-monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) are essential second messengers that play a crucial role in memory processing as well as synaptic plasticity and are potential therapeutic targets. Biomarkers that are able to monitor potential treatment effects and that reflect the underlying pathology are of crucial interest. In this study, we measured cGMP and cAMP in cerebrospinal fluid (CSF) in a cohort of 133 subjects including 68 AD patients and 65 control subjects. To address the association with disease progression we correlated cognitive status with cyclic nucleotide levels. Because a high burden of NPSs is associated with decrease in cognitive function, we performed an exhaustive evaluation of AD-relevant marker combinations in a depressive subgroup. We show that cGMP, but not cAMP, levels in the CSF of AD patients are significantly reduced compared with the control group. Reduced cGMP levels in AD patients correlate with memory impairment based on Mini-Mental State Examination score (r = 0.17, p = 0.048) and tau as a marker of neurodegeneration (r = -0.28, p = 0.001). Moreover, we were able to show that AD patients suffering from current depression show reduced cGMP levels (p = 0.07) and exhibit a higher degree of cognitive impairment than non-depressed AD patients. These results provide further evidence for an involvement of cGMP in AD pathogenesis and accompanying co-morbidities, and may contribute to elucidating synaptic plasticity alterations during disease progression.

  5. Profiling and Co-expression Network Analysis of Learned Helplessness Regulated mRNAs and lncRNAs in the Mouse Hippocampus

    PubMed Central

    Li, Chaoqun; Cao, Feifei; Li, Shengli; Huang, Shenglin; Li, Wei; Abumaria, Nashat

    2018-01-01

    Although studies provide insights into the neurobiology of stress and depression, the exact molecular mechanisms underlying their pathologies remain largely unknown. Long non-coding RNA (lncRNA) has been implicated in brain functions and behavior. A potential link between lncRNA and psychiatric disorders has been proposed. However, it remains undetermined whether IncRNA regulation, in the brain, contributes to stress or depression pathologies. In this study, we used a valid animal model of depression-like symptoms; namely learned helplessness, RNA-seq, Gene Ontology and co-expression network analyses to profile the expression pattern of lncRNA and mRNA in the hippocampus of mice. We identified 6346 differentially expressed transcripts. Among them, 340 lncRNAs and 3559 protein coding mRNAs were differentially expressed in helpless mice in comparison with control and/or non-helpless mice (inescapable stress resilient mice). Gene Ontology and pathway enrichment analyses indicated that induction of helplessness altered expression of mRNAs enriched in fundamental biological functions implicated in stress/depression neurobiology such as synaptic, metabolic, cell survival and proliferation, developmental and chromatin modification functions. To explore the possible regulatory roles of the altered lncRNAs, we constructed co-expression networks composed of the lncRNAs and mRNAs. Among our differentially expressed lncRNAs, 17% showed significant correlation with genes. Functional co-expression analysis linked the identified lncRNAs to several cellular mechanisms implicated in stress/depression neurobiology. Importantly, 57% of the identified regulatory lncRNAs significantly correlated with 18 different synapse-related functions. Thus, the current study identifies for the first time distinct groups of lncRNAs regulated by induction of learned helplessness in the mouse brain. Our results suggest that lncRNA-directed regulatory mechanisms might contribute to stress-induced pathologies; in particular, to inescapable stress-induced synaptic modifications. PMID:29375311

  6. Profiling and Co-expression Network Analysis of Learned Helplessness Regulated mRNAs and lncRNAs in the Mouse Hippocampus.

    PubMed

    Li, Chaoqun; Cao, Feifei; Li, Shengli; Huang, Shenglin; Li, Wei; Abumaria, Nashat

    2017-01-01

    Although studies provide insights into the neurobiology of stress and depression, the exact molecular mechanisms underlying their pathologies remain largely unknown. Long non-coding RNA (lncRNA) has been implicated in brain functions and behavior. A potential link between lncRNA and psychiatric disorders has been proposed. However, it remains undetermined whether IncRNA regulation, in the brain, contributes to stress or depression pathologies. In this study, we used a valid animal model of depression-like symptoms; namely learned helplessness, RNA-seq, Gene Ontology and co-expression network analyses to profile the expression pattern of lncRNA and mRNA in the hippocampus of mice. We identified 6346 differentially expressed transcripts. Among them, 340 lncRNAs and 3559 protein coding mRNAs were differentially expressed in helpless mice in comparison with control and/or non-helpless mice (inescapable stress resilient mice). Gene Ontology and pathway enrichment analyses indicated that induction of helplessness altered expression of mRNAs enriched in fundamental biological functions implicated in stress/depression neurobiology such as synaptic, metabolic, cell survival and proliferation, developmental and chromatin modification functions. To explore the possible regulatory roles of the altered lncRNAs, we constructed co-expression networks composed of the lncRNAs and mRNAs. Among our differentially expressed lncRNAs, 17% showed significant correlation with genes. Functional co-expression analysis linked the identified lncRNAs to several cellular mechanisms implicated in stress/depression neurobiology. Importantly, 57% of the identified regulatory lncRNAs significantly correlated with 18 different synapse-related functions. Thus, the current study identifies for the first time distinct groups of lncRNAs regulated by induction of learned helplessness in the mouse brain. Our results suggest that lncRNA-directed regulatory mechanisms might contribute to stress-induced pathologies; in particular, to inescapable stress-induced synaptic modifications.

  7. Alleviation of N-Methyl-D-Aspartate Receptor-Dependent Long-Term Depression via Regulation of the Glycogen Synthase Kinase-3β Pathway in the Amygdala of a Valproic Acid-Induced Animal Model of Autism.

    PubMed

    Wu, Han-Fang; Chen, Po See; Chen, Yi-Ju; Lee, Chi-Wei; Chen, I-Tuan; Lin, Hui-Ching

    2017-09-01

    The amygdala plays crucial roles in socio-emotional behavior and cognition, both of which are abnormal in autism spectrum disorder (ASD). Valproic acid (VPA)-exposed rat offspring have demonstrated ASD phenotypes and amygdala excitatory/inhibitory imbalance. However, the role of glutamatergic synapses in this imbalance remains unclear. In this study, we used a VPA-induced ASD-like model to assess glutamatergic synapse-dependent long-term depression (LTD) and depotentiation (DPT) in the amygdala. We first confirmed that the VPA-exposed offspring exhibited sociability deficits, anxiety, depression-like behavior, and abnormal nociception thresholds. Then, electrophysiological examination showed a significantly decreased paired-pulse ratio in the amygdala. In addition, both NMDA-dependent LTD and DPT were absent from the amygdala. Furthermore, we found that the levels of glycogen synthase kinase3β (GSK-3β) phosphorylation and β-catenin were significantly higher in the amygdala of the experimental animals than in the controls. Local infusion of phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin into the amygdala reversed the increased phosphorylation level and impaired social behavior. Taken together, the results suggested that NMDA receptor-related synaptic plasticity is dysfunctional in VPA-exposed offspring. In addition, GSK-3β in the amygdala is critical for synaptic plasticity at the glutamatergic synapses and is related to social behavior. Its role in the underlying mechanism of ASD merits further investigation.

  8. Reversible optical switching memristors with tunable STDP synaptic plasticity: a route to hierarchical control in artificial intelligent systems.

    PubMed

    Jaafar, Ayoub H; Gray, Robert J; Verrelli, Emanuele; O'Neill, Mary; Kelly, Stephen M; Kemp, Neil T

    2017-11-09

    Optical control of memristors opens the route to new applications in optoelectronic switching and neuromorphic computing. Motivated by the need for reversible and latched optical switching we report on the development of a memristor with electronic properties tunable and switchable by wavelength and polarization specific light. The device consists of an optically active azobenzene polymer, poly(disperse red 1 acrylate), overlaying a forest of vertically aligned ZnO nanorods. Illumination induces trans-cis isomerization of the azobenzene molecules, which expands or contracts the polymer layer and alters the resistance of the off/on states, their ratio and retention time. The reversible optical effect enables dynamic control of a memristor's learning properties including control of synaptic potentiation and depression, optical switching between short-term and long-term memory and optical modulation of the synaptic efficacy via spike timing dependent plasticity. The work opens the route to the dynamic patterning of memristor networks both spatially and temporally by light, thus allowing the development of new optically reconfigurable neural networks and adaptive electronic circuits.

  9. Involvement of TrkB- and p75NTR-signaling pathways in two contrasting forms of long-lasting synaptic plasticity

    NASA Astrophysics Data System (ADS)

    Sakuragi, Shigeo; Tominaga-Yoshino, Keiko; Ogura, Akihiko

    2013-11-01

    The repetition of experience is often necessary to establish long-lasting memory. However, the cellular mechanisms underlying this repetition-dependent consolidation of memory remain unclear. We previously observed in organotypic slice cultures of the rodent hippocampus that repeated inductions of long-term potentiation (LTP) led to a slowly developing long-lasting synaptic enhancement coupled with synaptogenesis. We also reported that repeated inductions of long-term depression (LTD) produced a long-lasting synaptic suppression coupled with synapse elimination. We proposed these phenomena as useful in vitro models for analyzing repetition-dependent consolidation. Here, we hypothesized that the enhancement and suppression are mediated by the brain-derived neurotrophic factor (BDNF)-TrkB signaling pathway and the proBDNF-p75NTR pathway, respectively. When we masked the respective pathways, reversals of the enhancement and suppression resulted. These results suggest the alternative activation of the p75NTR pathway by BDNF under TrkB-masking conditions and of the TrkB pathway by proBDNF under p75NTR-masking conditions, thus supporting the aforementioned hypothesis.

  10. Interplay between Short- and Long-Term Plasticity in Cell-Assembly Formation

    PubMed Central

    Hiratani, Naoki; Fukai, Tomoki

    2014-01-01

    Various hippocampal and neocortical synapses of mammalian brain show both short-term plasticity and long-term plasticity, which are considered to underlie learning and memory by the brain. According to Hebb’s postulate, synaptic plasticity encodes memory traces of past experiences into cell assemblies in cortical circuits. However, it remains unclear how the various forms of long-term and short-term synaptic plasticity cooperatively create and reorganize such cell assemblies. Here, we investigate the mechanism in which the three forms of synaptic plasticity known in cortical circuits, i.e., spike-timing-dependent plasticity (STDP), short-term depression (STD) and homeostatic plasticity, cooperatively generate, retain and reorganize cell assemblies in a recurrent neuronal network model. We show that multiple cell assemblies generated by external stimuli can survive noisy spontaneous network activity for an adequate range of the strength of STD. Furthermore, our model predicts that a symmetric temporal window of STDP, such as observed in dopaminergic modulations on hippocampal neurons, is crucial for the retention and integration of multiple cell assemblies. These results may have implications for the understanding of cortical memory processes. PMID:25007209

  11. Aß Facilitates LTD at Schaffer Collateral Synapses Preferentially in the Left Hippocampus.

    PubMed

    O'Riordan, Kenneth J; Hu, Neng-Wei; Rowan, Michael J

    2018-02-20

    Promotion of long-term depression (LTD) mechanisms by synaptotoxic soluble oligomers of amyloid-β (Aß) has been proposed to underlie synaptic dysfunction in Alzheimer's disease (AD). Previously, LTD was induced by relatively non-specific electrical stimulation. Exploiting optogenetics, we studied LTD using a more physiologically diffuse spatial pattern of selective pathway activation in the rat hippocampus in vivo. This relatively sparse synaptic LTD requires both the ion channel function and GluN2B subunit of the NMDA receptor but, in contrast to electrically induced LTD, is not facilitated by boosting endogenous muscarinic acetylcholine or metabotropic glutamate 5 receptor activation. Although in the absence of Aß, there is no evidence of hippocampal LTD asymmetry, in the presence of Aß, the induction of LTD is preferentially enhanced in the left hippocampus in an mGluR5-dependent manner. This circuit-selective disruption of synaptic plasticity by Aß provides a route to understanding the development of aberrant brain lateralization in AD. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Hyperforin depletes synaptic vesicles content and induces compartmental redistribution of nerve ending monoamines.

    PubMed

    Roz, Netta; Rehavi, Moshe

    2004-10-22

    Hyperforin, a phloroglucinol derivative found in Hypericum perforatum (St. John's wort) extracts has antidepressant properties in depressed patients. Hyperforin has a unique pharmacological profile and it inhibits uptake of biogenic monoamines as well as amino acid transmitters. We have recently showed that the monoamines uptake inhibition exerted by hyperforin is related to its ability to dissipate the pH gradient across the synaptic vesicle membrane thereby interfering with vesicular monoamines storage. In the present study we demonstrate that hyperforin induces dose-dependent efflux of preloaded [3H]5HT and [3H]DA from rat brain slices. Moreover, we show that hyperforin attenuates depolarization- dependent release of monoamines, while increasing monoamine release by amphetamine or fenfluramine. It is also demonstrated that preincubation of brain slices with reserpine is associated with dose- dependent blunting of efflux due to hyperforin. Our data indicate that hyperforin-induced efflux of [3H]5HT and [3H]DA reflect elevated cytoplasmic concentrations of the two monoamines secondary to the depletion of the synaptic vesicle content and the compartmental redistribution of nerve ending monoamines. Copyright 2004 Elsevier Inc.

  13. Hippocampal dysfunction and cognitive impairment in Fragile-X Syndrome.

    PubMed

    Bostrom, Crystal; Yau, Suk-Yu; Majaess, Namat; Vetrici, Mariana; Gil-Mohapel, Joana; Christie, Brian R

    2016-09-01

    Fragile-X Syndrome (FXS) is the most common form of inherited intellectual disability and the leading genetic cause of autism spectrum disorder. FXS is caused by transcriptional silencing of the Fragile X Mental Retardation 1 (Fmr1) gene due to a CGG repeat expansion, resulting in the loss of Fragile X Mental Retardation Protein (FMRP). FMRP is involved in transcriptional regulation and trafficking of mRNA from the nucleus to the cytoplasm and distal sites both in pre- and post-synaptic terminals. Consequently, FXS is a multifaceted disorder associated with impaired synaptic plasticity. One region of the brain that is significantly impacted by the loss of FMRP is the hippocampus, a structure that plays a critical role in the regulation of mood and cognition. This review provides an overview of the neuropathology of Fragile-X Syndrome, highlighting how structural and synaptic deficits in hippocampal subregions, including the CA1 exhibiting exaggerated metabotropic glutamate receptor dependent long-term depression and the dentate gyrus displaying hypofunction of N-methyl-d-aspartate receptors, contribute to cognitive impairments associated with this neurodevelopmental disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Mind bomb-1 is an essential modulator of long-term memory and synaptic plasticity via the Notch signaling pathway

    PubMed Central

    2012-01-01

    Background Notch signaling is well recognized as a key regulator of the neuronal fate during embryonic development, but its function in the adult brain is still largely unknown. Mind bomb-1 (Mib1) is an essential positive regulator in the Notch pathway, acting non-autonomously in the signal-sending cells. Therefore, genetic ablation of Mib1 in mature neuron would give valuable insight to understand the cell-to-cell interaction between neurons via Notch signaling for their proper function. Results Here we show that the inactivation of Mib1 in mature neurons in forebrain results in impaired hippocampal dependent spatial memory and contextual fear memory. Consistently, hippocampal slices from Mib1-deficient mice show impaired late-phase, but not early-phase, long-term potentiation and long-term depression without change in basal synaptic transmission at SC-CA1 synapses. Conclusions These data suggest that Mib1-mediated Notch signaling is essential for long-lasting synaptic plasticity and memory formation in the rodent hippocampus. PMID:23111145

  15. A novel component of cannabis extract potentiates excitatory synaptic transmission in rat olfactory cortex in vitro.

    PubMed

    Whalley, Benjamin J; Wilkinson, Jonathan D; Williamson, Elizabeth M; Constanti, Andrew

    2004-07-15

    Cannabis is a potential treatment for epilepsy, although the few human studies supporting this use have proved inconclusive. Previously, we showed that a standardized cannabis extract (SCE), isolated Delta9-tetrahydrocannabinol (Delta9-THC), and even Delta9-THC-free SCE inhibited muscarinic agonist-induced epileptiform bursting in rat olfactory cortical brain slices, acting via CB1 receptors. The present work demonstrates that although Delta9-THC (1 microM) significantly depressed evoked depolarizing postsynaptic potentials (PSPs) in rat olfactory cortex neurones, both SCE and Delta9-THC-free SCE significantly potentiated evoked PSPs (all results were fully reversed by the CB1 receptor antagonist SR141716A, 1 microM); interestingly, the potentiation by Delta9-THC-free SCE was greater than that produced by SCE. On comparing the effects of Delta9-THC-free SCE upon evoked PSPs and artificial PSPs (aPSPs; evoked electrotonically following brief intracellular current injection), PSPs were enhanced, whereas aPSPs were unaffected, suggesting that the effect was not due to changes in background input resistance. Similar recordings made using CB1 receptor-deficient knockout mice (CB1-/-) and wild-type littermate controls revealed cannabinoid or extract-induced changes in membrane resistance, cell excitability and synaptic transmission in wild-type mice that were similar to those seen in rat neurones, but no effect on these properties were seen in CB1-/- cells. It appears that the unknown extract constituent(s) effects over-rode the suppressive effects of Delta9-THC on excitatory neurotransmitter release, which may explain some patients' preference for herbal cannabis rather than isolated Delta9-THC (due to attenuation of some of the central Delta9-THC side effects) and possibly account for the rare incidence of seizures in some individuals taking cannabis recreationally.

  16. Sleep-Dependent Synaptic Down-Selection (I): Modeling the Benefits of Sleep on Memory Consolidation and Integration

    PubMed Central

    Nere, Andrew; Hashmi, Atif; Cirelli, Chiara; Tononi, Giulio

    2013-01-01

    Sleep can favor the consolidation of both procedural and declarative memories, promote gist extraction, help the integration of new with old memories, and desaturate the ability to learn. It is often assumed that such beneficial effects are due to the reactivation of neural circuits in sleep to further strengthen the synapses modified during wake or transfer memories to different parts of the brain. A different possibility is that sleep may benefit memory not by further strengthening synapses, but rather by renormalizing synaptic strength to restore cellular homeostasis after net synaptic potentiation in wake. In this way, the sleep-dependent reactivation of neural circuits could result in the competitive down-selection of synapses that are activated infrequently and fit less well with the overall organization of memories. By using computer simulations, we show here that synaptic down-selection is in principle sufficient to explain the beneficial effects of sleep on the consolidation of procedural and declarative memories, on gist extraction, and on the integration of new with old memories, thereby addressing the plasticity-stability dilemma. PMID:24137153

  17. Neuronal activity-regulated gene transcription: how are distant synaptic signals conveyed to the nucleus?

    PubMed Central

    Matamales, Miriam

    2012-01-01

    Synaptic activity can trigger gene expression programs that are required for the stable change of neuronal properties, a process that is essential for learning and memory. Currently, it is still unclear how the stimulation of dendritic synapses can be coupled to transcription in the nucleus in a timely way given that large distances can separate these two cellular compartments. Although several mechanisms have been proposed to explain long distance communication between synapses and the nucleus, the possible co-existence of these models and their relevance in physiological conditions remain elusive. One model suggests that synaptic activation triggers the translocation to the nucleus of certain transcription regulators localised at postsynaptic sites that function as synapto-nuclear messengers. Alternatively, it has been hypothesised that synaptic activity initiates propagating regenerative intracellular calcium waves that spread through dendrites into the nucleus where nuclear transcription machinery is thereby regulated. It has also been postulated that membrane depolarisation of voltage-gated calcium channels on the somatic membrane is sufficient to increase intracellular calcium concentration and activate transcription without the need for transported signals from distant synapses. Here I provide a critical overview of the suggested mechanisms for coupling synaptic stimulation to transcription, the underlying assumptions behind them and their plausible physiological significance. PMID:24327840

  18. Neuronal activity-regulated gene transcription: how are distant synaptic signals conveyed to the nucleus?

    PubMed

    Matamales, Miriam

    2012-12-19

    Synaptic activity can trigger gene expression programs that are required for the stable change of neuronal properties, a process that is essential for learning and memory. Currently, it is still unclear how the stimulation of dendritic synapses can be coupled to transcription in the nucleus in a timely way given that large distances can separate these two cellular compartments. Although several mechanisms have been proposed to explain long distance communication between synapses and the nucleus, the possible co-existence of these models and their relevance in physiological conditions remain elusive. One model suggests that synaptic activation triggers the translocation to the nucleus of certain transcription regulators localised at postsynaptic sites that function as synapto-nuclear messengers. Alternatively, it has been hypothesised that synaptic activity initiates propagating regenerative intracellular calcium waves that spread through dendrites into the nucleus where nuclear transcription machinery is thereby regulated. It has also been postulated that membrane depolarisation of voltage-gated calcium channels on the somatic membrane is sufficient to increase intracellular calcium concentration and activate transcription without the need for transported signals from distant synapses. Here I provide a critical overview of the suggested mechanisms for coupling synaptic stimulation to transcription, the underlying assumptions behind them and their plausible physiological significance.

  19. Neuronal activity-regulated gene transcription: how are distant synaptic signals conveyed to the nucleus?

    PubMed

    Matamales, Miriam

    2012-01-01

    Synaptic activity can trigger gene expression programs that are required for the stable change of neuronal properties, a process that is essential for learning and memory. Currently, it is still unclear how the stimulation of dendritic synapses can be coupled to transcription in the nucleus in a timely way given that large distances can separate these two cellular compartments. Although several mechanisms have been proposed to explain long distance communication between synapses and the nucleus, the possible co-existence of these models and their relevance in physiological conditions remain elusive. One model suggests that synaptic activation triggers the translocation to the nucleus of certain transcription regulators localised at postsynaptic sites that function as synapto-nuclear messengers. Alternatively, it has been hypothesised that synaptic activity initiates propagating regenerative intracellular calcium waves that spread through dendrites into the nucleus where nuclear transcription machinery is thereby regulated. It has also been postulated that membrane depolarisation of voltage-gated calcium channels on the somatic membrane is sufficient to increase intracellular calcium concentration and activate transcription without the need for transported signals from distant synapses. Here I provide a critical overview of the suggested mechanisms for coupling synaptic stimulation to transcription, the underlying assumptions behind them and their plausible physiological significance.

  20. Antidepressant-like effect of Butea superba in mice exposed to chronic mild stress and its possible mechanism of action.

    PubMed

    Mizuki, Daishu; Matsumoto, Kinzo; Tanaka, Ken; Thi Le, Xoan; Fujiwara, Hironori; Ishikawa, Tsutomu; Higuchi, Yoshihiro

    2014-10-28

    Butea superba (BS) is a Thai medicinal plant that has been used as a folk medicine to improve physical and mental conditions and to prevent impaired sexual performance in middle-aged or elderly males. We have previously reported that this plant extract could improve cognitive deficits and depression-like behavior in olfactory bulbectomized mice, an animal model of dementia and depression. In this study we examined the effect of BS on depression-like behavior in mice subjected to unpredictable chronic mild stress (UCMS) to clarify the antidepressant-like activity of BS and the molecular mechanism underlying this effect. UCMS mice were administered BS daily (300 mg of dried herb weight/kg, p.o.) or a reference drug, imipramine (IMP, 10 mg/kg, i.p.), 1 week after starting the UCMS procedure. We employed the sucrose preference test and the tail suspension test to analyze anhedonia and depression-like behavior of mice, respectively. Serum and brain tissues of mice were used for neurochemical and immunohistochemical studies. The UCMS procedure induced anhedonia and depression-like behavior, and BS treatment, as well as IMP treatment, attenuated these symptoms. UCMS caused an elevation of serum corticosterone level, an index of hyper-activation of the hypothalamic-pituitary-adrenal (HPA) axis, in a manner attenuated by BS and IMP treatment. BS treatment also attenuated UCMS-induced decrease in the expression levels of brain-derived neurotrophic factor (BDNF) mRNA, cyclic AMP-responsive element binding protein (CREB) and a phosphorylated form of N-methyl-d-aspartate receptor subunit NR1, synaptic plasticity-related signaling proteins. Moreover, the UCMS procedure reduced doublecortin-positive cells in the dentate gyrus region of the hippocampus. BS administration reversed these UCMS-induced neurochemical and histological abnormalities. These results suggest that BS can ameliorate chronic stress-induced depression-like symptoms and that the effects of BS are mediated by restoring dysfunctions of the HPA axis and synaptic plasticity-related signaling systems and neurogenesis in the hippocampus. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Tomosyn-2 is required for normal motor performance in mice and sustains neurotransmission at motor endplates.

    PubMed

    Geerts, Cornelia J; Plomp, Jaap J; Koopmans, Bastijn; Loos, Maarten; van der Pijl, Elizabeth M; van der Valk, Martin A; Verhage, Matthijs; Groffen, Alexander J A

    2015-07-01

    Tomosyn-1 (STXBP5) is a soluble NSF attachment protein receptor complex-binding protein that inhibits vesicle fusion, but the role of tomosyn-2 (STXBP5L) in the mammalian nervous system is still unclear. Here we generated tomosyn-2 null (Tom2(KO/KO)) mice, which showed impaired motor performance. This was accompanied by synaptic changes at the neuromuscular junction, including enhanced spontaneous acetylcholine release frequency and faster depression of muscle motor endplate potentials during repetitive stimulation. The postsynaptic geometric arrangement and function of acetylcholine receptors were normal. We conclude that tomosyn-2 supports motor performance by regulation of transmitter release willingness to sustain synaptic strength during high-frequency transmission, which makes this gene a candidate for involvement in neuromuscular disorders.

  2. Interactions between behaviorally relevant rhythms and synaptic plasticity alter coding in the piriform cortex

    PubMed Central

    Urban, Nathaniel N.

    2012-01-01

    Understanding how neural and behavioral timescales interact to influence cortical activity and stimulus coding is an important issue in sensory neuroscience. In air-breathing animals, voluntary changes in respiratory frequency alter the temporal patterning olfactory input. In the olfactory bulb, these behavioral timescales are reflected in the temporal properties of mitral/tufted (M/T) cell spike trains. As the odor information contained in these spike trains is relayed from the bulb to the cortex, interactions between presynaptic spike timing and short-term synaptic plasticity dictate how stimulus features are represented in cortical spike trains. Here we demonstrate how the timescales associated with respiratory frequency, spike timing and short-term synaptic plasticity interact to shape cortical responses. Specifically, we quantified the timescales of short-term synaptic facilitation and depression at excitatory synapses between bulbar M/T cells and cortical neurons in slices of mouse olfactory cortex. We then used these results to generate simulated M/T population synaptic currents that were injected into real cortical neurons. M/T population inputs were modulated at frequencies consistent with passive respiration or active sniffing. We show how the differential recruitment of short-term plasticity at breathing versus sniffing frequencies alters cortical spike responses. For inputs at sniffing frequencies, cortical neurons linearly encoded increases in presynaptic firing rates with increased phase locked, firing rates. In contrast, at passive breathing frequencies, cortical responses saturated with changes in presynaptic rate. Our results suggest that changes in respiratory behavior can gate the transfer of stimulus information between the olfactory bulb and cortex. PMID:22553016

  3. Cannabinoid Type 1 Receptors Transiently Silence Glutamatergic Nerve Terminals of Cultured Cerebellar Granule Cells

    PubMed Central

    Ramírez-Franco, Jorge; Bartolomé-Martín, David; Alonso, Beatris; Torres, Magdalena; Sánchez-Prieto, José

    2014-01-01

    Cannabinoid receptors are the most abundant G protein-coupled receptors in the brain and they mediate retrograde short-term inhibition of neurotransmitter release, as well as long-term depression of synaptic transmission at many excitatory synapses. The induction of presynaptically silent synapses is a means of modulating synaptic strength, which is important for synaptic plasticity. Persistent activation of cannabinoid type 1 receptors (CB1Rs) mutes GABAergic terminals, although it is unclear if CB1Rs can also induce silencing at glutamatergic synapses. Cerebellar granule cells were transfected with VGLUT1-pHluorin to visualise the exo-endocytotic cycle. We found that prolonged stimulation (10 min) of cannabinoid receptors with the agonist HU-210 induces the silencing of previously active synapses. However, the presynaptic silencing induced by HU-210 is transient as it reverses after 20 min. cAMP with forskolin prevented CB1R-induced synaptic silencing, via activation of the Exchange Protein directly Activated by cAMP (Epac). Furthermore, Epac activation accelerated awakening of already silent boutons. Electron microscopy revealed that silencing was associated with synaptic vesicle (SV) redistribution within the nerve terminal, which diminished the number of vesicles close to the active zone of the plasma membrane. Finally, by combining functional and immunocytochemical approaches, we observed a strong correlation between the release capacity of the nerve terminals and RIM1α protein content, but not that of Munc13-1 protein. These results suggest that prolonged stimulation of cannabinoid receptors can transiently silence glutamatergic nerve terminals. PMID:24533119

  4. Dynamic afferent synapses to decision-making networks improve performance in tasks requiring stimulus associations and discriminations

    PubMed Central

    Bourjaily, Mark A.

    2012-01-01

    Animals must often make opposing responses to similar complex stimuli. Multiple sensory inputs from such stimuli combine to produce stimulus-specific patterns of neural activity. It is the differences between these activity patterns, even when small, that provide the basis for any differences in behavioral response. In the present study, we investigate three tasks with differing degrees of overlap in the inputs, each with just two response possibilities. We simulate behavioral output via winner-takes-all activity in one of two pools of neurons forming a biologically based decision-making layer. The decision-making layer receives inputs either in a direct stimulus-dependent manner or via an intervening recurrent network of neurons that form the associative layer, whose activity helps distinguish the stimuli of each task. We show that synaptic facilitation of synapses to the decision-making layer improves performance in these tasks, robustly increasing accuracy and speed of responses across multiple configurations of network inputs. Conversely, we find that synaptic depression worsens performance. In a linearly nonseparable task with exclusive-or logic, the benefit of synaptic facilitation lies in its superlinear transmission: effective synaptic strength increases with presynaptic firing rate, which enhances the already present superlinearity of presynaptic firing rate as a function of stimulus-dependent input. In linearly separable single-stimulus discrimination tasks, we find that facilitating synapses are always beneficial because synaptic facilitation always enhances any differences between inputs. Thus we predict that for optimal decision-making accuracy and speed, synapses from sensory or associative areas to decision-making or premotor areas should be facilitating. PMID:22457467

  5. mGlu5 positive allosteric modulation normalizes synaptic plasticity defects and motor phenotypes in a mouse model of Rett syndrome

    PubMed Central

    Gogliotti, Rocco G.; Senter, Rebecca K.; Rook, Jerri M.; Ghoshal, Ayan; Zamorano, Rocio; Malosh, Chrysa; Stauffer, Shaun R.; Bridges, Thomas M.; Bartolome, Jose M.; Daniels, J. Scott; Jones, Carrie K.; Lindsley, Craig W.; Conn, P. Jeffrey; Niswender, Colleen M.

    2016-01-01

    Rett syndrome (RS) is a neurodevelopmental disorder that shares many symptomatic and pathological commonalities with idiopathic autism. Alterations in protein synthesis-dependent synaptic plasticity (PSDSP) are a hallmark of a number of syndromic forms of autism; in the present work, we explore the consequences of disruption and rescue of PSDSP in a mouse model of RS. We report that expression of a key regulator of synaptic protein synthesis, the metabotropic glutamate receptor 5 (mGlu5) protein, is significantly reduced in both the brains of RS model mice and in the motor cortex of human RS autopsy samples. Furthermore, we demonstrate that reduced mGlu5 expression correlates with attenuated DHPG-induced long-term depression in the hippocampus of RS model mice, and that administration of a novel mGlu5 positive allosteric modulator (PAM), termed VU0462807, can rescue synaptic plasticity defects. Additionally, treatment of Mecp2-deficient mice with VU0462807 improves motor performance (open-field behavior and gait dynamics), corrects repetitive clasping behavior, as well as normalizes cued fear-conditioning defects. Importantly, due to the rationale drug discovery approach used in its development, our novel mGlu5 PAM improves RS phenotypes and synaptic plasticity defects without evoking the overt adverse effects commonly associated with potentiation of mGlu5 signaling (i.e. seizures), or affecting cardiorespiratory defects in RS model mice. These findings provide strong support for the continued development of mGlu5 PAMs as potential therapeutic agents for use in RS, and, more broadly, for utility in idiopathic autism. PMID:26936821

  6. Long-term modifications of synaptic efficacy in the human inferior and middle temporal cortex

    NASA Technical Reports Server (NTRS)

    Chen, W. R.; Lee, S.; Kato, K.; Spencer, D. D.; Shepherd, G. M.; Williamson, A.

    1996-01-01

    The primate temporal cortex has been demonstrated to play an important role in visual memory and pattern recognition. It is of particular interest to investigate whether activity-dependent modification of synaptic efficacy, a presumptive mechanism for learning and memory, is present in this cortical region. Here we address this issue by examining the induction of synaptic plasticity in surgically resected human inferior and middle temporal cortex. The results show that synaptic strength in the human temporal cortex could undergo bidirectional modifications, depending on the pattern of conditioning stimulation. High frequency stimulation (100 or 40 Hz) in layer IV induced long-term potentiation (LTP) of both intracellular excitatory postsynaptic potentials and evoked field potentials in layers II/III. The LTP induced by 100 Hz tetanus was blocked by 50-100 microM DL-2-amino-5-phosphonovaleric acid, suggesting that N-methyl-D-aspartate receptors were responsible for its induction. Long-term depression (LTD) was elicited by prolonged low frequency stimulation (1 Hz, 15 min). It was reduced, but not completely blocked, by DL-2-amino-5-phosphonovaleric acid, implying that some other mechanisms in addition to N-methyl-DL-aspartate receptors were involved in LTD induction. LTD was input-specific, i.e., low frequency stimulation of one pathway produced LTD of synaptic transmission in that pathway only. Finally, the LTP and LTD could reverse each other, suggesting that they can act cooperatively to modify the functional state of cortical network. These results suggest that LTP and LTD are possible mechanisms for the visual memory and pattern recognition functions performed in the human temporal cortex.

  7. The barista on the bus: cellular and synaptic mechanisms for visual recognition memory.

    PubMed

    Barth, Alison L; Wheeler, Mark E

    2008-04-24

    Our ability to recognize that something is familiar, often referred to as visual recognition memory, has been correlated with a reduction in neural activity in the perirhinal cortex. In this issue of Neuron, Griffiths et al. now provide evidence that this form of memory requires AMPA receptor endocytosis and long-term depression of excitatory synapses in this brain area.

  8. Glutamate Receptor GluA1 Subunit Is Implicated in Capsaicin Induced Modulation of Amygdala LTP but Not LTD

    ERIC Educational Resources Information Center

    Gebhardt, Christine; Albrecht, Doris

    2018-01-01

    Capsaicin has been shown to modulate synaptic plasticity in various brain regions including the amygdala. Whereas in the lateral amygdala the modulatory effect of capsaicin on long-term potentiation (LA-LTP) is mediated by TRPV1 channels, we have recently shown that capsaicin-induced enhancement of long term depression (LA-LTD) is mediated by…

  9. Staufen 2 Regulates mGluR Long-Term Depression and Map1b mRNA Distribution in Hippocampal Neurons

    ERIC Educational Resources Information Center

    Lebeau, Genevieve; Miller, Linda C.; Tartas, Maylis; McAdam, Robyn; Laplante, Isabel; Badeaux, Frederique; DesGroseillers, Luc; Sossin, Wayne S.; Lacaille, Jean-Claude

    2011-01-01

    The two members of the Staufen family of RNA-binding proteins, Stau1 and Stau2, are present in distinct ribonucleoprotein complexes and associate with different mRNAs. Stau1 is required for protein synthesis-dependent long-term potentiation (L-LTP) in hippocampal pyramidal cells. However, the role of Stau2 in synaptic plasticity remains…

  10. Group II and III metabotropic glutamate receptors and the control of the nucleus reticularis thalami input to rat thalamocortical neurones in vitro.

    PubMed

    Turner, J P; Salt, T E

    2003-01-01

    Intracellular recordings were made from neurones in the thalamic reticular nucleus (TRN) and ventro-basal (VB) thalamus in slices of rat midbrain in vitro. Electrical stimulation of the medial lemniscus or TRN resulted in the generation of complex synaptic potentials containing disynaptic inhibitory post-synaptic potentials (IPSPs) in VB thalamocortical neurones. Analysis of the excitatory synaptic responses in TRN neurones indicates they can produce burst output response irrespective of the level of sub-threshold membrane potential. This suggests that network-evoked IPSPs in VB thalamocortical neurones occur following a burst of TRN action potentials. Using ionotropic glutamate receptor antagonists, the activation of these disynaptic events was blocked, and the monosynaptic IPSPs that resulted from the direct activation of the TRN could be isolated. The selective Group II agonists LY354740 (1-10 microM) and N-acetyl-aspartyl-glutamate (NAAG; 100-500 microM) both caused a reversible depression of these monosynaptic TRN IPSPs without any effect on membrane potential or input resistance. Likewise, the specific Group III agonist L-2-amino-4-phosphonobutanoate (10-500 microM), but not (RS)-4-phosphonophenylglycine (1 and 30 microM) also caused a reversible depression of these IPSPs, again without any effect on membrane potential or input resistance.Thus, the IPSPs recorded in VB thalamocortical neurones, evoked by TRN activation, can be depressed by the activation of either Group II or III metabotropic glutamate receptors. This is consistent with the location of these receptor types on the presynaptic terminals of TRN axons in the VB thalamus. This raises the possibility that, during periods of intense excitatory activity, glutamate release could influence the release of GABA from TRN axon terminals in the thalamus. In addition, as NAAG is located in the axons and terminals arising from the TRN, there is the possibility that this dipeptide is also released by these terminals to control the release of GABA during periods of high activity in the TRN.

  11. Acute food deprivation enhances fear extinction but inhibits long-term depression in the lateral amygdala via ghrelin signaling.

    PubMed

    Huang, Chiung-Chun; Chou, Dylan; Yeh, Che-Ming; Hsu, Kuei-Sen

    2016-02-01

    Fear memory-encoding thalamic input synapses to the lateral amygdala (T-LA) exhibit dynamic efficacy changes that are tightly correlated with fear memory strength. Previous studies have shown that auditory fear conditioning involves strengthening of synaptic strength, and conversely, fear extinction training leads to T-LA synaptic weakening and occlusion of long-term depression (LTD) induction. These findings suggest that the mechanisms governing LTD at T-LA synapses may determine the behavioral outcomes of extinction training. Here, we explored this hypothesis by implementing food deprivation (FD) stress in mice to determine its effects on fear extinction and LTD induction at T-LA synapses. We found that FD increased plasma acylated ghrelin levels and enhanced fear extinction and its retention. Augmentation of fear extinction by FD was blocked by pretreatment with growth hormone secretagogue receptor type-1a antagonist D-Lys(3)-GHRP-6, suggesting an involvement of ghrelin signaling. Confirming previous findings, two distinct forms of LTD coexist at thalamic inputs to LA pyramidal neurons that can be induced by low-frequency stimulation (LFS) or paired-pulse LFS (PP-LFS) paired with postsynaptic depolarization, respectively. Unexpectedly, we found that FD impaired the induction of PP-LFS- and group I metabotropic glutamate receptor agonist (S)-3,5-dihydroxyphenylglycine (DHPG)-induced LTD, but not LFS-induced LTD. Ghrelin mimicked the effects of FD to impair the induction of PP-LFS- and DHPG-induced LTD at T-LA synapses, which were blocked by co-application of D-Lys(3)-GHRP-6. The sensitivity of synaptic transmission to 1-naphthyl acetyl spermine was not altered by either FD or ghrelin treatment. These results highlight distinct features of fear extinction and LTD at T-LA synapses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Maturation- and sex-sensitive depression of hippocampal excitatory transmission in a rat schizophrenia model.

    PubMed

    Patrich, Eti; Piontkewitz, Yael; Peretz, Asher; Weiner, Ina; Attali, Bernard

    2016-01-01

    Schizophrenia is associated with behavioral and brain structural abnormalities, of which the hippocampus appears to be one of the most consistent region affected. Previous studies performed on the poly I:C model of schizophrenia suggest that alterations in hippocampal synaptic transmission and plasticity take place in the offspring. However, these investigations yielded conflicting results and the neurophysiological alterations responsible for these deficits are still unclear. Here we performed for the first time a longitudinal study examining the impact of prenatal poly I:C treatment and of gender on hippocampal excitatory neurotransmission. In addition, we examined the potential preventive/curative effects of risperidone (RIS) treatment during the peri-adolescence period. Excitatory synaptic transmission was determined by stimulating Schaffer collaterals and monitoring fiber volley amplitude and slope of field-EPSP (fEPSP) in CA1 pyramidal neurons in male and female offspring hippocampal slices from postnatal days (PNDs) 18-20, 34, 70 and 90. Depression of hippocampal excitatory transmission appeared at juvenile age in male offspring of the poly I:C group, while it expressed with a delay in female, manifesting at adulthood. In addition, a reduced hippocampal size was found in both adult male and female offspring of poly I:C treated dams. Treatment with RIS at the peri-adolescence period fully restored in males but partly repaired in females these deficiencies. A maturation- and sex-dependent decrease in hippocampal excitatory transmission occurs in the offspring of poly I:C treated pregnant mothers. Pharmacological intervention with RIS during peri-adolescence can cure in a gender-sensitive fashion early occurring hippocampal synaptic deficits. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Strain dependent effects of conditioned fear in adult C57Bl/6 and Balb/C mice following postnatal exposure to chlorpyrifos: relation to expression of brain acetylcholinesterase mRNA

    PubMed Central

    Oriel, Sarit; Kofman, Ora

    2015-01-01

    Following reports of emotional psychopathology in children and adults exposed to organophosphates, the effects of postnatal chlorpyrifos (CPF) on fear-conditioning and depression-like behaviors were tested in adult mice. Concomitant changes in expression of mRNA for synaptic and soluble splice variants of acetylcholinesterase (AChE) were examined in mouse pups and adults of the Balb/C and C57Bl/6 (B6) strains, which differ in their behavioral and hormonal stress response. Mice were injected subcutaneously with 1 mg/kg CPF on postnatal days 4–10 and tested as adults for conditioned fear, sucrose preference, and forced swim. Acetylcholinesterase activity was assessed in the brains of pups on the first and last day of treatment. Expression of soluble and synaptic AChE mRNA was assessed in brains of treated pups and fear-conditioned adults using real-time PCR. Adult Balb/C mice exposed postnatally to CPF showed exacerbated fear-conditioning and impaired active avoidance. Adult B6 mice exposed postnatally to CPF showed a more specific fear response to tones and less freezing in the inter-tone intervals, in contrast to the vehicle-pretreated mice. Chlorpyrifos also attenuated sweet preference and enhanced climbing in the forced swim test. Chlorpyrifos-treated mice had increased expression of both synaptic and readthrough AChE transcripts in the hippocampus of Balb/C mice and decreased expression in the amygdala following fear-conditioning. In conclusion, postnatal CPF had long-term effects on fear and depression, as well as on expression of AChE mRNA. These changes may be related to alteration in the interaction between hippocampus and amygdala in regulating negative emotions. PMID:25972795

  14. Synaptic transmission and short-term plasticity at the calyx of Held synapse revealed by multielectrode array recordings.

    PubMed

    Haustein, Martin D; Reinert, Thomas; Warnatsch, Annika; Englitz, Bernhard; Dietz, Beatrice; Robitzki, Andrea; Rübsamen, Rudolf; Milenkovic, Ivan

    2008-09-30

    We assessed the potential of using multielectrode arrays (MEAs) to investigate several physiological properties of the calyx of Held synapse in the medial nucleus of the trapezoid body of gerbil. Due to the large size of the synapse, it became widely employed in studies on synaptic mechanisms. Electrical stimulation at the midline evoked a characteristic compound signal consisting of a presynaptic volley (C(1)) and a postsynaptic response (C(2)). The C(1) was blocked by tetrodotoxin, whilst the C(2) was blocked by perfusion of low Ca(2+) external solution, or the AMPA-R antagonists CNQX, and GYKI52466. NMDA-R blocker D-AP5, partially inhibited the postsynaptic response at P12, but showed no effect in P30 animals. The inhibitory effects of GABA or glycine on postsynaptic responses were reciprocal with regard to animal's maturity: GABA caused a pronounced reduction of C(2) amplitude in P20-22 animals, while glycine showed a stronger inhibition in P27-28 animals. Low-frequency super-threshold stimulation of the afferents induced facilitation of the postsynaptic C(2) amplitudes and only minor changes in temporal characteristics of the signals. At stimulation frequencies >200 Hz, however, significant depression occurs accompanied by increases in transmission delay and in the width of the postsynaptic response. This study suggests MEAs as a useful tool to study calyx of Held synapse by simultaneous recordings of pre- and postsynaptic elements of synaptically interconnected neurons in the auditory brainstem. Moreover, MEAs enable convenient analysis of activity-dependent depression and modulation of neuronal activity by glycine and GABA at later developmental stages not accessible to patch recordings.

  15. Neo-synthesis of estrogenic or androgenic neurosteroids determine whether long-term potentiation or depression is induced in hippocampus of male rat.

    PubMed

    Di Mauro, Michela; Tozzi, Alessandro; Calabresi, Paolo; Pettorossi, Vito Enrico; Grassi, Silvarosa

    2015-01-01

    Estrogenic and androgenic steroids synthesized in the brain may rapidly modulate synaptic plasticity interacting with specific membrane receptors. We explored by electrophysiological recordings in hippocampal slices of male rat the influence of 17β-estradiol (E2) and 5α-dihydrotestosterone (DHT) neo-synthesis on the synaptic changes induced in the CA1 region. Induction of long-term depression (LTD) and depotentiation (DP) by low frequency stimulation (LFS, 15 min-1 Hz) and of long-term potentiation (LTP) by high frequency stimulation (HFS, 1 s-100 Hz), medium (MFS, 1 s-50 Hz), or weak (WFS, 1 s-25 Hz) frequency stimulation was assayed under inhibitors of enzymes converting testosterone (T) into DHT (5α-reductase) and T into E2 (P450-aromatase). We found that LFS-LTD depends on DHT synthesis, since it was fully prevented under finasteride, an inhibitor of DHT synthesis, and rescued by exogenous DHT, while the E2 synthesis was not involved. Conversely, the full development of HFS-LTP requires the synthesis of E2, as demonstrated by the LTP reduction observed under letrozole, an inhibitor of E2 synthesis, and its full rescue by exogenous E2. For intermediate stimulation protocols DHT, but not E2 synthesis, was involved in the production of a small LTP induced by WFS, while the E2 synthesis was required for the MFS-dependent LTP. Under the combined block of DHT and E2 synthesis all stimulation frequencies induced partial LTP. Overall, these results indicate that DHT is required for converting the partial LTP into LTD whereas E2 is needed for the full expression of LTP, evidencing a key role of the neo-synthesis of sex neurosteroids in determining the direction of synaptic long-term effects.

  16. Two organizational effects of pubertal testosterone in male rats: transient social memory and a shift away from long-term potentiation following a tetanus in hippocampal CA1.

    PubMed

    Hebbard, Pamela C; King, Rebecca R; Malsbury, Charles W; Harley, Carolyn W

    2003-08-01

    The organizational role of pubertal androgen receptor (AR) activation in synaptic plasticity in hippocampal CA1 and in social memory was assessed. Earlier data suggest pubertal testosterone reduces adult hippocampal synaptic plasticity. Four groups were created following gonadectomy at the onset of puberty: rats given testosterone; rats given testosterone but with the AR antagonist flutamide, present during puberty; rats given testosterone at the end of puberty; and rats given cholesterol at the end of puberty. A tetanus normally inducing long-term potentiation (LTP) was used to stimulate CA1 in the urethane-anesthetized adults during the dark phase of their cycle. Social memory was assessed prior to electrophysiology. Social memory for a juvenile rat at 120 min was seen only in rats not exposed to AR activation during puberty. Pubertal AR activation may induce the reduced social memory of male rats. Early CA1 LTP occurred following tetanus in rats with no pubertal testosterone. Short-term potentiation occurred in rats exposed to pubertal testosterone. Unexpectedly, rats with pubertal AR activation developed long-term depression (LTD). The same pattern was seen in normal male rats. Lack of LTP during the dark phase is consistent with other data on circadian modulation of CA1 LTP. No correlations were seen among social memory scores and CA1 plasticity measures. These data argue for two organizational effects of pubertal testosterone: (1) CA1 synaptic plasticity shifts away from potentiation toward depression; (2) social memory is reduced. Enduring effects of pubertal androgen on limbic circuits may contribute to reorganized behaviors in the postpubertal period.

  17. Differential distribution of vesicular glutamate transporters in the rat cerebellar cortex.

    PubMed

    Hioki, H; Fujiyama, F; Taki, K; Tomioka, R; Furuta, T; Tamamaki, N; Kaneko, T

    2003-01-01

    The chemical organization of excitatory axon terminals in the rat cerebellar cortex was examined by immunocytochemistry and in situ hybridization histochemistry of vesicular glutamate transporters 1 and 2 (VGluT1 and VGluT2). Chemical depletion of the inferior olivary complex neurons by 3-acetylpyridine treatment almost completely removed VGluT2 immunoreactivity from the molecular layer, leaving VGluT1 immunoreactivity apparently intact. On the other hand, neuronal deprivation of the cerebellar cortex by kainic acid injection induced a large loss of VGluT1 immunoreactivity in the molecular layer. In the cerebellar granular layer, both VGluT1 and VGluT2 immunoreactivities were found in mossy fiber terminals, and the two immunoreactivities were mostly colocalized in single-axon terminals. Signals for mRNA encoding VGluT2 were found in the inferior olivary complex, and those for VGluT1 and VGluT2 mRNAs were observed in most brainstem precerebellar nuclei sending mossy fibers, such as the pontine, pontine tegmental reticular, lateral reticular and external cuneate nuclei. These results indicate that climbing and parallel fibers selectively use VGluT2 and VGluT1, respectively, whereas mossy fibers apply both VGluT1 and VGluT2 together to accumulate glutamate into synaptic vesicles. Since climbing-fiber and parallel-fiber terminals are known to make depressing and facilitating synapses, respectively, VGluT1 and VGluT2 might have distinct properties associated with those synaptic characteristics. Thus, it would be the next interesting issue to determine whether mossy-fiber terminals co-expressing VGluT1 and VGluT2 show synaptic facilitation or depression.

  18. Transmission to interneurons is via slow excitatory synaptic potentials mediated by P2Y(1) receptors during descending inhibition in guinea-pig ileum.

    PubMed

    Thornton, Peter D J; Gwynne, Rachel M; McMillan, Darren J; Bornstein, Joel C

    2013-01-01

    The nature of synaptic transmission at functionally distinct synapses in intestinal reflex pathways has not been fully identified. In this study, we investigated whether transmission between interneurons in the descending inhibitory pathway is mediated by a purine acting at P2Y receptors to produce slow excitatory synaptic potentials (EPSPs). Myenteric neurons from guinea-pig ileum in vitro were impaled with intracellular microelectrodes. Responses to distension 15 mm oral to the recording site, in a separately perfused stimulation chamber and to electrical stimulation of local nerve trunks were recorded. A subset of neurons, previously identified as nitric oxide synthase immunoreactive descending interneurons, responded to both stimuli with slow EPSPs that were reversibly abolished by a high concentration of PPADS (30 μM, P2 receptor antagonist). When added to the central chamber of a three chambered organ bath, PPADS concentration-dependently depressed transmission through that chamber of descending inhibitory reflexes, measured as inhibitory junction potentials in the circular muscle of the anal chamber. Reflexes evoked by distension in the central chamber were unaffected. A similar depression of transmission was seen when the specific P2Y(1) receptor antagonist MRS 2179 (10 μM) was in the central chamber. Blocking either nicotinic receptors (hexamethonium 200 μM) or 5-HT(3) receptors (granisetron 1 μM) together with P2 receptors had no greater effect than blocking P2 receptors alone. Slow EPSPs mediated by P2Y(1) receptors, play a primary role in transmission between descending interneurons of the inhibitory reflexes in the guinea-pig ileum. This is the first demonstration for a primary role of excitatory metabotropic receptors in physiological transmission at a functionally identified synapse.

  19. Presynaptic control of transmission along the pathway mediating disynaptic reciprocal inhibition in the cat

    PubMed Central

    Enríquez-Denton, M; Nielsen, J; Perreault, M-C; Morita, H; Petersen, N; Hultborn, H

    2000-01-01

    In cat lumbar motoneurones, disynaptic inhibitory postsynaptic potentials (IPSPs) evoked by stimulation of antagonist motor nerves were depressed for at least 150 ms following conditioning stimulation of flexor (1.7-2 times threshold (T)) and ankle extensor (5T) nerves. The aim of the present study was to investigate the possibility that this depression is caused by presynaptic inhibitory mechanisms acting at the terminals of group I afferent fibres projecting to the Ia inhibitory interneurones and/or the terminals of these interneurones to the target motoneurones. Conditioning stimulation of flexor, but not ankle extensor, nerves evoked a depression of the monosynaptic Ia excitatory postsynaptic potentials (EPSPs) recorded intracellularly in Ia inhibitory interneurones. This depression lasted between 200 and 700 ms and was not accompanied by a depression of the monosynaptic EPSPs evoked by stimulation of descending pathways. These results suggest that flexor, but not ankle extensor, group I afferent fibres can modulate sensory transmission at the synapse between Ia afferent fibres and Ia inhibitory interneurones. Conditioning stimulation of flexor muscle nerves, extensor muscle nerves and cutaneous nerves produced a long-lasting increase in excitability of the terminals of the Ia inhibitory interneurones. The increase in the excitability of the terminals was not secondary to an electrotonic spread of synaptic excitation at the soma. Indeed, concomitant with the excitability increase of the terminals there were signs of synaptic inhibition in the soma. The unitary IPSPs induced in target motoneurones following the spike activity of single Ia inhibitory interneurones were depressed by conditioning stimulation of muscle and cutaneous nerves. Since the conditioning stimulation also evoked compound IPSPs in those motoneurones, a firm conclusion as to whether unitary IPSP depression involved presynaptic inhibitory mechanism of the terminals of the interneurones could not be reached. The possibility that the changes in excitability of the Ia interneuronal terminals reflect the presence of a presynaptic inhibitory mechanism similar to that operating at the terminals of the afferent fibres (presynaptic inhibition) is discussed.1. In cat lumbar motoneurones, disynaptic inhibitory postsynaptic potentials (IPSPs) evoked by stimulation of antagonist motor nerves were depressed for at least 150 ms following conditioning stimulation of flexor (1.7-2 times threshold (T)) and ankle extensor (5T) nerves. The aim of the present study was to investigate the possibility that this depression is caused by presynaptic inhibitory mechanisms acting at the terminals of group I afferent fibres projecting to the Ia inhibitory interneurones and/or the terminals of these interneurones to the target motoneurones. PMID:10922013

  20. Are depressive persons capable of describing changes in their reactions without being able to explain them? A proof of a cybernetic hypothesis of depression.

    PubMed

    Leibetseder, Max; Kamolz, Thomas

    2004-01-01

    Many studies on the autobiographical memory and the explanation of reasons for success and failure proved that persons suffering from major depression tend to overgeneralize. This study examines the hypothesis that changes of reactions caused by a depressive disorder can be described by the affected persons but not explained. Persons suffering from major depression and persons with posttraumatic stress disorder or disturbance of accommodation with depressive mood (= reactive form of a depressive disorder) were presented with a list of modalities (behaviour, emotional and physical reactions) characteristic for depression. They were asked to identify modalities applicable to them and to describe and explain them. Their responses were analysed using a content analysis and assigned to the categories description and explanation. Persons with a major depression tended to use explanations or evaluations rather than descriptions for their depression-related modalities. Those persons suffering from a reactive form of depressive disorder tended to prefer evaluations. These results support the assumption that states of depression cause general descriptions of depression-relevant behaviour. The specific characteristics that have been perceived confirm the general concepts, which however make the patient prone to the respective selective perceptions. Persons suffering from a reactive form of depressive mood cannot be assumed to have this tendency of self-affirmation. Their depressive state may be maintained by perseverating general pessimistic schemes. It must however be conceded that it was not possible to control the physical comorbidity methodically and to take its effects into consideration, even though only persons without serious illnesses were included in the samples. This study did not verify whether other clinical groups, like patients suffering from anxiety, show the same patterns of explaining and describing their problems. It should furthermore be reviewed how other actions, e.g. positive ones, are represented by depressive persons. Copyright 2004 S. Karger AG, Basel

  1. Hierarchical Chunking of Sequential Memory on Neuromorphic Architecture with Reduced Synaptic Plasticity

    PubMed Central

    Li, Guoqi; Deng, Lei; Wang, Dong; Wang, Wei; Zeng, Fei; Zhang, Ziyang; Li, Huanglong; Song, Sen; Pei, Jing; Shi, Luping

    2016-01-01

    Chunking refers to a phenomenon whereby individuals group items together when performing a memory task to improve the performance of sequential memory. In this work, we build a bio-plausible hierarchical chunking of sequential memory (HCSM) model to explain why such improvement happens. We address this issue by linking hierarchical chunking with synaptic plasticity and neuromorphic engineering. We uncover that a chunking mechanism reduces the requirements of synaptic plasticity since it allows applying synapses with narrow dynamic range and low precision to perform a memory task. We validate a hardware version of the model through simulation, based on measured memristor behavior with narrow dynamic range in neuromorphic circuits, which reveals how chunking works and what role it plays in encoding sequential memory. Our work deepens the understanding of sequential memory and enables incorporating it for the investigation of the brain-inspired computing on neuromorphic architecture. PMID:28066223

  2. Sleep and the Price of Plasticity: From Synaptic and Cellular Homeostasis to Memory Consolidation and Integration

    PubMed Central

    Tononi, Giulio; Cirelli, Chiara

    2014-01-01

    Summary Sleep is universal, tightly regulated, and its loss impairs cognition. But why does the brain need to disconnect from the environment for hours every day? The synaptic homeostasis hypothesis (SHY) proposes that sleep is the price the brain pays for plasticity. During a waking episode, learning statistical regularities about the current environment requires strengthening connections throughout the brain. This increases cellular needs for energy and supplies, decreases signal-to-noise ratios, and saturates learning. During sleep, spontaneous activity renormalizes net synaptic strength and restores cellular homeostasis. Activity-dependent down-selection of synapses can also explain the benefits of sleep on memory acquisition, consolidation, and integration. This happens through the off-line, comprehensive sampling of statistical regularities incorporated in neuronal circuits over a lifetime. This review considers the rationale and evidence for SHY and points to open issues related to sleep and plasticity. PMID:24411729

  3. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration.

    PubMed

    Tononi, Giulio; Cirelli, Chiara

    2014-01-08

    Sleep is universal, tightly regulated, and its loss impairs cognition. But why does the brain need to disconnect from the environment for hours every day? The synaptic homeostasis hypothesis (SHY) proposes that sleep is the price the brain pays for plasticity. During a waking episode, learning statistical regularities about the current environment requires strengthening connections throughout the brain. This increases cellular needs for energy and supplies, decreases signal-to-noise ratios, and saturates learning. During sleep, spontaneous activity renormalizes net synaptic strength and restores cellular homeostasis. Activity-dependent down-selection of synapses can also explain the benefits of sleep on memory acquisition, consolidation, and integration. This happens through the offline, comprehensive sampling of statistical regularities incorporated in neuronal circuits over a lifetime. This Perspective considers the rationale and evidence for SHY and points to open issues related to sleep and plasticity. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Modulating STDP Balance Impacts the Dendritic Mosaic

    PubMed Central

    Iannella, Nicolangelo; Launey, Thomas

    2017-01-01

    The ability for cortical neurons to adapt their input/output characteristics and information processing capabilities ultimately relies on the interplay between synaptic plasticity, synapse location, and the nonlinear properties of the dendrite. Collectively, they shape both the strengths and spatial arrangements of convergent afferent inputs to neuronal dendrites. Recent experimental and theoretical studies support a clustered plasticity model, a view that synaptic plasticity promotes the formation of clusters or hotspots of synapses sharing similar properties. We have previously shown that spike timing-dependent plasticity (STDP) can lead to synaptic efficacies being arranged into spatially segregated clusters. This effectively partitions the dendritic tree into a tessellated imprint which we have called a dendritic mosaic. Here, using a biophysically detailed neuron model of a reconstructed layer 2/3 pyramidal cell and STDP learning, we investigated the impact of altered STDP balance on forming such a spatial organization. We show that cluster formation and extend depend on several factors, including the balance between potentiation and depression, the afferents' mean firing rate and crucially on the dendritic morphology. We find that STDP balance has an important role to play for this emergent mode of spatial organization since any imbalances lead to severe degradation- and in some case even destruction- of the mosaic. Our model suggests that, over a broad range of of STDP parameters, synaptic plasticity shapes the spatial arrangement of synapses, favoring the formation of clustered efficacy engrams. PMID:28649195

  5. Strong, reliable and precise synaptic connections between thalamic relay cells and neurones of the nucleus reticularis in juvenile rats.

    PubMed

    Gentet, Luc J; Ulrich, Daniel

    2003-02-01

    The thalamic reticular nucleus (nRT) is composed entirely of GABAergic inhibitory neurones that receive input from pyramidal cortical neurones and excitatory relay cells of the ventrobasal complex of the thalamus (VB). It plays a major role in the synchrony of thalamic networks, yet the synaptic connections it receives from VB cells have never been fully physiologically characterised. Here, whole-cell current-clamp recordings were obtained from 22 synaptically connected VB-nRT cell pairs in slices of juvenile (P14-20) rats. At 34-36 degrees C, single presynaptic APs evoked unitary EPSPs in nRT cells with a peak amplitude of 7.4 +/- 1.5 mV (mean +/- S.E.M.) and a decay time constant of 15.1 +/- 0.9 ms. Only four out of 22 pairs showed transmission failures at a mean rate of 6.8 +/- 1.1 %. An NMDA receptor (NMDAR)-mediated component was significant at rest and subsequent EPSPs in a train were depressed. Only one out of 14 pairs tested was reciprocally connected; the observed IPSPs in the VB cell had a peak amplitude of 0.8 mV and were completely abolished in the presence of 10 microM bicuculline. Thus, synaptic connections from VB cells to nRT neurones are mainly 'drivers', while a small subset of cells form closed disynaptic loops.

  6. Age- and Sex-Dependent Impact of Repeated Social Stress on Intrinsic and Synaptic Excitability of the Rat Prefrontal Cortex

    PubMed Central

    Urban, Kimberly R.; Valentino, Rita J.

    2017-01-01

    Abstract Stress is implicated in psychiatric illnesses that are characterized by impairments in cognitive functions that are mediated by the medial prefrontal cortex (mPFC). Because sex and age determine stress vulnerability, the effects of repeated social stress occurring during early adolescence, mid-adolescence, or adulthood on the cellular properties of male and female rat mPFC Layer V neurons in vitro were examined. Repeated resident–intruder stress produced age- and sex-specific effects on mPFC intrinsic and synaptic excitability. Mid-adolescents were particularly vulnerable to effects on intrinsic excitability. The maximum number of action potentials (APs) evoked by increasing current intensity was robustly decreased in stressed male and female mid-adolescent rats compared with age-matched controls. These effects were associated with stress-induced changes in AP half-width, amplitude, threshold, and input resistance. Social stress at all ages generally decreased synaptic excitability by decreasing the amplitude of spontaneous excitatory postsynaptic potentials. The results suggest that whereas social stress throughout life can diminish the influence of afferents driving the mPFC, social stress during mid-adolescence additionally affects intrinsic characteristics of mPFC neurons that determine excitability. The depressant effects of social stress on intrinsic and synaptic mPFC neurons may underlie its ability to affect executive functions and emotional responses, particularly during adolescence. PMID:28013234

  7. Age- and Sex-Dependent Impact of Repeated Social Stress on Intrinsic and Synaptic Excitability of the Rat Prefrontal Cortex.

    PubMed

    Urban, Kimberly R; Valentino, Rita J

    2017-01-01

    Stress is implicated in psychiatric illnesses that are characterized by impairments in cognitive functions that are mediated by the medial prefrontal cortex (mPFC). Because sex and age determine stress vulnerability, the effects of repeated social stress occurring during early adolescence, mid-adolescence, or adulthood on the cellular properties of male and female rat mPFC Layer V neurons in vitro were examined. Repeated resident-intruder stress produced age- and sex-specific effects on mPFC intrinsic and synaptic excitability. Mid-adolescents were particularly vulnerable to effects on intrinsic excitability. The maximum number of action potentials (APs) evoked by increasing current intensity was robustly decreased in stressed male and female mid-adolescent rats compared with age-matched controls. These effects were associated with stress-induced changes in AP half-width, amplitude, threshold, and input resistance. Social stress at all ages generally decreased synaptic excitability by decreasing the amplitude of spontaneous excitatory postsynaptic potentials. The results suggest that whereas social stress throughout life can diminish the influence of afferents driving the mPFC, social stress during mid-adolescence additionally affects intrinsic characteristics of mPFC neurons that determine excitability. The depressant effects of social stress on intrinsic and synaptic mPFC neurons may underlie its ability to affect executive functions and emotional responses, particularly during adolescence. © The Author 2016. Published by Oxford University Press.

  8. Reelin-Haploinsufficiency Disrupts the Developmental Trajectory of the E/I Balance in the Prefrontal Cortex

    PubMed Central

    Bouamrane, Lamine; Scheyer, Andrew F.; Lassalle, Olivier; Iafrati, Jillian; Thomazeau, Aurore; Chavis, Pascale

    2017-01-01

    The reelin gene is a strong candidate in the etiology of several psychiatric disorders such as schizophrenia, major depression, bipolar disorders, and autism spectrum disorders. Most of these diseases are accompanied by cognitive and executive-function deficits associated with prefrontal dysfunctions. Mammalian prefrontal cortex (PFC) development is characterized by a protracted postnatal maturation constituting a period of enhanced vulnerability to psychiatric insults. The identification of the molecular components underlying this prolonged postnatal development is necessary to understand the synaptic properties of defective circuits participating in these psychiatric disorders. We have recently shown that reelin plays a key role in the maturation of glutamatergic functions in the postnatal PFC, but no data are available regarding the GABAergic circuits. Here, we undertook a cross-sectional analysis of GABAergic function in deep layer pyramidal neurons of the medial PFC of wild-type and haploinsufficient heterozygous reeler mice. Using electrophysiological approaches, we showed that decreased reelin levels impair the maturation of GABAergic synaptic transmission without affecting the inhibitory nature of GABA. This phenotype consequently impacted the developmental sequence of the synaptic excitation/inhibition (E/I) balance. These data indicate that reelin is necessary for the correct maturation and refinement of GABAergic synaptic circuits in the postnatal PFC and therefore provide a mechanism for altered E/I balance of prefrontal circuits associated with psychiatric disorders. PMID:28127276

  9. Acetylcholine-modulated plasticity in reward-driven navigation: a computational study.

    PubMed

    Zannone, Sara; Brzosko, Zuzanna; Paulsen, Ole; Clopath, Claudia

    2018-06-21

    Neuromodulation plays a fundamental role in the acquisition of new behaviours. In previous experimental work, we showed that acetylcholine biases hippocampal synaptic plasticity towards depression, and the subsequent application of dopamine can retroactively convert depression into potentiation. We also demonstrated that incorporating this sequentially neuromodulated Spike-Timing-Dependent Plasticity (STDP) rule in a network model of navigation yields effective learning of changing reward locations. Here, we employ computational modelling to further characterize the effects of cholinergic depression on behaviour. We find that acetylcholine, by allowing learning from negative outcomes, enhances exploration over the action space. We show that this results in a variety of effects, depending on the structure of the model, the environment and the task. Interestingly, sequentially neuromodulated STDP also yields flexible learning, surpassing the performance of other reward-modulated plasticity rules.

  10. Relationship Between Depression and Specific Health Indicators Among Hypertensive African American Parents and Grandparents

    PubMed Central

    Taylor, Jacquelyn Y.; Washington, Olivia G. M.; Artinian, Nancy T.; Lichtenberg, Peter

    2010-01-01

    African Americans are at greater risk for hypertension than are other ethnic groups. This study examined relationships among hypertension, stress, and depression among 120 urban African American parents and grandparents. This study is a secondary analysis of a larger nurse-managed randomized clinical trial testing the effectiveness of a telemonitoring intervention. Baseline data used in analyses, with the exception of medication compliance, were collected at 3 months' follow-up. Health indicators, perceived stress, and social support were examined to determine their relationship with depressive symptoms. A total of 48% of the variance in depressive symptomology was explained by perceived stress and support. Health indicators including average systolic blood pressure explained 21% of the variance in depressive symptomology. The regression analysis using average diastolic blood pressure explained 26% of the variance in depressive symptomology. Based on study results, African Americans should be assessed for perceived stress and social support to alleviate depressive symptomology. PMID:18843828

  11. Incoordination among Subcellular Compartments Is Associated with Depression-Like Behavior Induced by Chronic Mild Stress

    PubMed Central

    Xu, Aiping; Cui, Shan

    2016-01-01

    Background: Major depressive disorder is characterized as persistent low mood. A chronically stressful life in genetically susceptible individuals is presumably the major etiology that leads to dysfunctions of monoamine and hypothalamus-pituitary-adrenal axis. These pathogenic factors cause neuron atrophy in the limbic system for major depressive disorder. Cell-specific pathophysiology is unclear, so we investigated prelimbic cortical GABAergic neurons and their interaction with glutamatergic neurons in depression-like mice. Methods: Mice were treated with chronic unpredictable mild stress for 3 weeks until they expressed depression-like behaviors confirmed by sucrose preference, Y-maze, and forced swimming tests. The structures and functions of GABAergic and glutamatergic units in prelimbic cortices were studied by cell imaging and electrophysiology in chronic unpredictable mild stress-induced depression mice vs controls. Results: In depression-like mice, prelimbic cortical GABAergic neurons show incoordination among the subcellular compartments, such as decreased excitability and synaptic outputs as well as increased reception from excitatory inputs. GABAergic synapses on glutamatergic cells demonstrate decreased presynaptic innervation and increased postsynaptic responsiveness. Conclusions: Chronic unpredictable mild stress-induced incoordination in prelimbic cortical GABAergic and glutamatergic neurons dysregulates their target neurons, which may be the pathological basis for depressive mood. The rebalance of compatibility among subcellular compartments would be an ideal strategy to treat neural disorders. PMID:26506857

  12. Hippocampal LTP and contextual learning require surface diffusion of AMPA receptors.

    PubMed

    Penn, A C; Zhang, C L; Georges, F; Royer, L; Breillat, C; Hosy, E; Petersen, J D; Humeau, Y; Choquet, D

    2017-09-21

    Long-term potentiation (LTP) of excitatory synaptic transmission has long been considered a cellular correlate for learning and memory. Early LTP (less than 1 h) had initially been explained either by presynaptic increases in glutamate release or by direct modification of postsynaptic AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor function. Compelling models have more recently proposed that synaptic potentiation can occur by the recruitment of additional postsynaptic AMPA receptors (AMPARs), sourced either from an intracellular reserve pool by exocytosis or from nearby extra-synaptic receptors pre-existing on the neuronal surface. However, the exact mechanism through which synapses can rapidly recruit new AMPARs during early LTP remains unknown. In particular, direct evidence for a pivotal role of AMPAR surface diffusion as a trafficking mechanism in synaptic plasticity is still lacking. Here, using AMPAR immobilization approaches, we show that interfering with AMPAR surface diffusion markedly impairs synaptic potentiation of Schaffer collaterals and commissural inputs to the CA1 area of the mouse hippocampus in cultured slices, acute slices and in vivo. Our data also identify distinct contributions of various AMPAR trafficking routes to the temporal profile of synaptic potentiation. In addition, AMPAR immobilization in vivo in the dorsal hippocampus inhibited fear conditioning, indicating that AMPAR diffusion is important for the early phase of contextual learning. Therefore, our results provide a direct demonstration that the recruitment of new receptors to synapses by surface diffusion is a critical mechanism for the expression of LTP and hippocampal learning. Since AMPAR surface diffusion is dictated by weak Brownian forces that are readily perturbed by protein-protein interactions, we anticipate that this fundamental trafficking mechanism will be a key target for modulating synaptic potentiation and learning.

  13. Signal transduction and functional selectivity of F15599, a preferential post-synaptic 5-HT1A receptor agonist

    PubMed Central

    Newman-Tancredi, A; Martel, J-C; Assié, M-B; Buritova, J; Lauressergues, E; Cosi, C; Heusler, P; Slot, L Bruins; Colpaert, FC; Vacher, B; Cussac, D

    2009-01-01

    Background and purpose: Activation of post-synaptic 5-HT1A receptors may provide enhanced therapy against depression. We describe the signal transduction profile of F15599, a novel 5-HT1A receptor agonist. Experimental approach: F15599 was compared with a chemical congener, F13714, and with (+)8-OH-DPAT in models of signal transduction in vitro and ex vivo. Key results: F15599 was highly selective for 5-HT1A receptors in binding experiments and in [35S]-GTPγS autoradiography of rat brain, where F15599 increased labelling in regions expressing 5-HT1A receptors. In cell lines expressing h5-HT1A receptors, F15599 more potently stimulated extracellular signal-regulated kinase (ERK1/2) phosphorylation, compared with G-protein activation, internalization of h5-HT1A receptors or inhibition of cAMP accumulation. F13714, (+)8-OH-DPAT and 5-HT displayed a different rank order of potency for these responses. F15599 stimulated [35S]-GTPγS binding more potently in frontal cortex than raphe. F15599, unlike 5-HT, more potently and efficaciously stimulated Gαi than Gαo activation. In rat prefrontal cortex (a region expressing post-synaptic 5-HT1A receptors), F15599 potently activated ERK1/2 phosphorylation and strongly induced c-fos mRNA expression. In contrast, in raphe regions (expressing pre-synaptic 5-HT1A receptors) F15599 only weakly or did not induce c-fos mRNA expression. Finally, despite its more modest affinity in vitro, F15599 bound to 5-HT1A receptors in vivo almost as potently as F13714. Conclusions and implications: F15599 showed a distinctive activation profiles for 5-HT1A receptor-mediated signalling pathways, unlike those of reference agonists and consistent with functional selectivity at 5-HT1A receptors. In rat, F15599 potently activated signalling in prefrontal cortex, a feature likely to underlie its beneficial effects in models of depression and cognition. PMID:19154445

  14. Synaptic Long-Term Potentiation and Depression in the Rat Medial Vestibular Nuclei Depend on Neural Activation of Estrogenic and Androgenic Signals

    PubMed Central

    Scarduzio, Mariangela; Panichi, Roberto; Pettorossi, Vito Enrico; Grassi, Silvarosa

    2013-01-01

    Estrogenic and androgenic steroids can be synthesised in the brain and rapidly modulate synaptic transmission and plasticity through direct interaction with membrane receptors for estrogens (ERs) and androgens (ARs). We used whole cell patch clamp recordings in brainstem slices of male rats to explore the influence of ER and AR activation and local synthesis of 17β-estradiol (E2) and 5α-dihydrotestosterone (DHT) on the long-term synaptic changes induced in the neurons of the medial vestibular nucleus (MVN). Long-term depression (LTD) and long-term potentiation (LTP) caused by different patterns of high frequency stimulation (HFS) of the primary vestibular afferents were assayed under the blockade of ARs and ERs or in the presence of inhibitors for enzymes synthesizing DHT (5α-reductase) and E2 (P450-aromatase) from testosterone (T). We found that LTD is mediated by interaction of locally produced androgens with ARs and LTP by interaction of locally synthesized E2 with ERs. In fact, the AR block with flutamide prevented LTD while did not affect LTP, and the blockade of ERs with ICI 182,780 abolished LTP without influencing LTD. Moreover, the block of P450-aromatase with letrozole not only prevented the LTP induction, but inverted LTP into LTD. This LTD is likely due to the local activation of androgens, since it was abolished under blockade of ARs. Conversely, LTD was still induced in the presence of finasteride the inhibitor of 5α-reductase demonstrating that T is able to activate ARs and induce LTD even when DHT is not synthesized. This study demonstrates a key and opposite role of sex neurosteroids in the long-term synaptic changes of the MVN with a specific role of T-DHT for LTD and of E2 for LTP. Moreover, it suggests that different stimulation patterns can lead to LTD or LTP by specifically activating the enzymes involved in the synthesis of androgenic or estrogenic neurosteroids. PMID:24265837

  15. Associations between loneliness, depressive symptoms and perceived togetherness in older people.

    PubMed

    Tiikkainen, P; Heikkinen, R-L

    2005-11-01

    This study explores the associations of loneliness with depressive symptoms in a five-year follow-up and describes how the six dimensions of perceived togetherness explain loneliness and depressive symptoms at baseline. The data were collected on 207 residents of Jyväskylä, central Finland, who at baseline in 1990 were aged 80; and 133 residents who at follow-up in 1995 were aged 85. Loneliness was assessed using a questionnaire item with four preset response options, perceived togetherness using the Social Provisions Scale, and depressive symptoms using the CES-D scale. A recursive structural equation model showed that in women but not in men, depressive symptoms predicted more experiences of loneliness. Those who were lonely were more depressed (CES-D score 16 or over) and experienced less togetherness than those who were not. Loneliness was explained by reliable alliance, social integration and attachment; and depressive symptoms were explained by guidance, reassurance of worth, reliable alliance and attachment. A common feature in both loneliness and depressive symptoms was a lower level of perceived emotional togetherness in social interaction.

  16. Mefloquine in the nucleus accumbens promotes social avoidance and anxiety-like behavior in mice.

    PubMed

    Heshmati, Mitra; Golden, Sam A; Pfau, Madeline L; Christoffel, Daniel J; Seeley, Elena L; Cahill, Michael E; Khibnik, Lena A; Russo, Scott J

    2016-02-01

    Mefloquine continues to be a key drug used for malaria chemoprophylaxis and treatment, despite reports of adverse events like depression and anxiety. It is unknown how mefloquine acts within the central nervous system to cause depression and anxiety or why some individuals are more vulnerable. We show that intraperitoneal injection of mefloquine in mice, when coupled to subthreshold social defeat stress, is sufficient to produce depression-like social avoidance behavior. Direct infusion of mefloquine into the nucleus accumbens (NAc), a key brain reward region, increased stress-induced social avoidance and anxiety behavior. In contrast, infusion into the ventral hippocampus had no effect. Whole cell recordings from NAc medium spiny neurons indicated that mefloquine application increases the frequency of spontaneous excitatory postsynaptic currents, a synaptic adaptation that we have previously shown to be associated with increased susceptibility to social defeat stress. Together, these data demonstrate a role for the NAc in mefloquine-induced depression and anxiety-like behaviors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The impact of stress systems and lifestyle on dyslipidemia and obesity in anxiety and depression.

    PubMed

    van Reedt Dortland, Arianne K B; Vreeburg, Sophie A; Giltay, Erik J; Licht, Carmilla M M; Vogelzangs, Nicole; van Veen, Tineke; de Geus, Eco J C; Penninx, Brenda W J H; Zitman, Frans G

    2013-02-01

    Dyslipidemia and obesity have been observed in persons with severe anxiety or depression, and in tricyclic antidepressant (TCA) users. This likely contributes to the higher risk of cardiovascular disease (CVD) in anxiety and depressive disorders. We aimed to elucidate whether biological stress systems or lifestyle factors underlie these associations. If so, they may be useful targets for CVD prevention and intervention. Within 2850 Netherlands Study of Depression and Anxiety (NESDA) participants, we evaluated the explaining impact of biological stress systems (i.e., the hypothalamic-pituitary-adrenal [HPA] axis, autonomic nervous system [ANS] and inflammation) and lifestyle factors (i.e., tobacco and alcohol use, and physical activity) on adverse associations of anxiety and depression severity and TCA use with high and low-density lipoprotein cholesterol, triglycerides, body mass index and waist circumference. Through linear regression analyses, percentual change (%Δ) in β was determined and considered significant when %Δ>10. The inflammatory marker C-reactive protein had the most consistent impact (explaining 14-53% of the associations of anxiety and depression severity and TCA use with lipid and obesity levels), followed by tobacco use (explaining 34-43% of the associations with lipids). The ANS mediated all associations with TCA use (explaining 32-61%). The HPA axis measures did not explain any of the associations. Increased dyslipidemia and (abdominal) obesity risk in patients with more severe anxiety disorders and depression may be partly explained by chronic low-grade inflammation and smoking. TCAs may increase metabolic risk through enhanced sympathetic and decreased parasympathetic ANS activity. That the HPA axis had no impact in our sample may reflect the possibility that the HPA axis only plays a role in acute stress situations rather than under basal conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Intranasal cotinine improves memory, and reduces depressive-like behavior, and GFAP+ cells loss induced by restraint stress in mice.

    PubMed

    Perez-Urrutia, Nelson; Mendoza, Cristhian; Alvarez-Ricartes, Nathalie; Oliveros-Matus, Patricia; Echeverria, Florencia; Grizzell, J Alex; Barreto, George E; Iarkov, Alexandre; Echeverria, Valentina

    2017-09-01

    Posttraumatic stress disorder (PTSD), chronic psychological stress, and major depressive disorder have been found to be associated with a significant decrease in glial fibrillary acidic protein (GFAP) immunoreactivity in the hippocampus of rodents. Cotinine is an alkaloid that prevents memory impairment, depressive-like behavior and synaptic loss when co-administered during restraint stress, a model of PTSD and stress-induced depression, in mice. Here, we investigated the effects of post-treatment with intranasal cotinine on depressive- and anxiety-like behaviors, visual recognition memory as well as the number and morphology of GFAP+ immunoreactive cells, in the hippocampus and frontal cortex of mice subjected to prolonged restraint stress. The results revealed that in addition to the mood and cognitive impairments, restraint stress induced a significant decrease in the number and arborization of GFAP+ cells in the brain of mice. Intranasal cotinine prevented these stress-derived symptoms and the morphological abnormalities GFAP+ cells in both of these brain regions which are critical to resilience to stress. The significance of these findings for the therapy of PTSD and depression is discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Immediate Early Genes Anchor a Biological Pathway of Proteins Required for Memory Formation, Long-Term Depression and Risk for Schizophrenia

    PubMed Central

    Marballi, Ketan K.; Gallitano, Amelia L.

    2018-01-01

    While the causes of myriad medical and infectious illnesses have been identified, the etiologies of neuropsychiatric illnesses remain elusive. This is due to two major obstacles. First, the risk for neuropsychiatric disorders, such as schizophrenia, is determined by both genetic and environmental factors. Second, numerous genes influence susceptibility for these illnesses. Genome-wide association studies have identified at least 108 genomic loci for schizophrenia, and more are expected to be published shortly. In addition, numerous biological processes contribute to the neuropathology underlying schizophrenia. These include immune dysfunction, synaptic and myelination deficits, vascular abnormalities, growth factor disruption, and N-methyl-D-aspartate receptor (NMDAR) hypofunction. However, the field of psychiatric genetics lacks a unifying model to explain how environment may interact with numerous genes to influence these various biological processes and cause schizophrenia. Here we describe a biological cascade of proteins that are activated in response to environmental stimuli such as stress, a schizophrenia risk factor. The central proteins in this pathway are critical mediators of memory formation and a particular form of hippocampal synaptic plasticity, long-term depression (LTD). Each of these proteins is also implicated in schizophrenia risk. In fact, the pathway includes four genes that map to the 108 loci associated with schizophrenia: GRIN2A, nuclear factor of activated T-cells (NFATc3), early growth response 1 (EGR1) and NGFI-A Binding Protein 2 (NAB2); each of which contains the “Index single nucleotide polymorphism (SNP)” (most SNP) at its respective locus. Environmental stimuli activate this biological pathway in neurons, resulting in induction of EGR immediate early genes: EGR1, EGR3 and NAB2. We hypothesize that dysfunction in any of the genes in this pathway disrupts the normal activation of Egrs in response to stress. This may result in insufficient electrophysiologic, immunologic, and neuroprotective, processes that these genes normally mediate. Continued adverse environmental experiences, over time, may thereby result in neuropathology that gives rise to the symptoms of schizophrenia. By combining multiple genes associated with schizophrenia susceptibility, in a functional cascade triggered by neuronal activity, the proposed biological pathway provides an explanation for both the polygenic and environmental influences that determine the complex etiology of this mental illness. PMID:29520222

  20. Neuromodulation, development and synaptic plasticity.

    PubMed

    Foehring, R C; Lorenzon, N M

    1999-03-01

    We discuss parallels in the mechanisms underlying use-dependent synaptic plasticity during development and long-term potentiation (LTP) and long-term depression (LTD) in neocortical synapses. Neuromodulators, such as norepinephrine, serotonin, and acetylcholine have also been implicated in regulating both developmental plasticity and LTP/LTD. There are many potential levels of interaction between neuromodulators and plasticity. Ion channels are substrates for modulation in many cell types. We discuss examples of modulation of voltage-gated Ca2+ channels and Ca(2+)-dependent K+ channels and the consequences for neocortical pyramidal cell firing behaviour. At the time when developmental plasticity is most evident in rat cortex, the substrate for modulation is changing as the densities and relative proportions of various ion channels types are altered during ontogeny. We discuss examples of changes in K+ and Ca2+ channels and the consequence for modulation of neuronal activity.

  1. Rescue of impaired late-phase long-term depression in a tau transgenic mouse model.

    PubMed

    Ahmed, Tariq; Blum, David; Burnouf, Sylvie; Demeyer, Dominique; Buée-Scherrer, Valérie; D'Hooge, Rudi; Buée, Luc; Balschun, Detlef

    2015-02-01

    Cognitive decline, the hallmark of Alzheimer's disease, and accompanying neuropsychiatric symptoms share dysfunctions of synaptic processes as a common cellular pathomechanism. Long-term potentiation has proven to be a sensitive tool for the "diagnosis" of such synaptic dysfunctions. Much less, however, is known about how long-term depression (LTD), an alternative mechanism for the storage of memory, is affected by Alzheimer's disease progression. Here, we demonstrate that impaired late LTD (>3 hours) in THY-Tau22 mice can be rescued by either inhibition of glycogen synthase kinase-3 (GSK3β) activity or by application of the protein-phosphatase 2A agonist selenate. In line with these findings, we observed increased phosphorylation of GSK3β at Y216 and reduced total phosphatase activity in biochemical assays of hippocampal tissue of THY-Tau22 mice. Interestingly, LTD induction and pharmacologic inhibition of GSK3β appeared to downregulate GSK3ß activity via a marked upregulation of phosphorylation at the inhibitory Ser9 residue. Our results point to alterations in phosphorylation and/or dephosphorylation homeostasis as key mechanisms underlying the deficits in LTD and hippocampus-dependent learning found in THY-Tau22 mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Developmental switch in the contribution of presynaptic and postsynaptic NMDA receptors to long-term depression

    PubMed Central

    Corlew, Rebekah; Wang, Yun; Ghermazien, Haben; Erisir, Alev; Philpot, Benjamin D.

    2010-01-01

    NMDA receptor (NMDAR) activation is required for many forms of learning and memory as well as sensory system receptive field plasticity, yet the relative contribution of pre- and postsynaptic NMDARs over cortical development remains unknown. Here we demonstrate a rapid developmental loss of functional presynaptic NMDARs in the neocortex. Presynaptic NMDARs enhance neurotransmitter release at synapses onto visual cortex pyramidal cells in young mice (< postnatal day 20; P20), but they have no apparent effect after the onset of the critical period for receptive field plasticity (>P21). Immuno-electron microscopy revealed that the loss of presynaptic NMDAR function is likely due in part to a 50% reduction in the prevalence of presynaptic NMDARs. Coincident with the observed loss of presynaptic NMDAR function, there is an abrupt change in the mechanisms of timing-dependent long-term depression (tLTD). Induction of tLTD before the onset of the critical period requires activation of pre- but not postsynaptic NMDARs, while the induction of tLTD in older mice requires activation of postsynaptic NMDARs. By demonstrating that both pre- and postsynaptic NMDARs contribute to the induction of synaptic plasticity, and that their relative roles shift over development, our findings define a novel, and perhaps general, property of synaptic plasticity in emerging cortical circuits. PMID:17855598

  3. Investigating brain functional evolution and plasticity using microelectrode array technology.

    PubMed

    Napoli, Alessandro; Obeid, Iyad

    2015-10-01

    The aim of this work was to investigate long and short-term plasticity responsible for memory formation in dissociated neuronal networks. In order to address this issue, a set of experiments was designed and implemented in which the microelectrode array electrode grid was divided into four quadrants, two of which were chronically stimulated, every two days for one hour with a stimulation paradigm that varied over time. Overall network and quadrant responses were then analyzed to quantify what level of plasticity took place in the network and how this was due to the stimulation interruption. The results demonstrate that there were no spatial differences in the stimulus-evoked activity within quadrants. Furthermore, the implemented stimulation protocol induced depression effects in the neuronal networks as demonstrated by the consistently lower network activity following stimulation sessions. Finally, the analysis demonstrated that the inhibitory effects of the stimulation decreased over time, thus suggesting a habituation phenomenon. These findings are sufficient to conclude that electrical stimulation is an important tool to interact with dissociated neuronal cultures, but localized stimuli are not enough to drive spatial synaptic potentiation or depression. On the contrary, the ability to modulate synaptic temporal plasticity was a feasible task to achieve by chronic network stimulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. How the mechanisms of long-term synaptic potentiation and depression serve experience-dependent plasticity in primary visual cortex

    PubMed Central

    Cooke, Sam F.; Bear, Mark F.

    2014-01-01

    Donald Hebb chose visual learning in primary visual cortex (V1) of the rodent to exemplify his theories of how the brain stores information through long-lasting homosynaptic plasticity. Here, we revisit V1 to consider roles for bidirectional ‘Hebbian’ plasticity in the modification of vision through experience. First, we discuss the consequences of monocular deprivation (MD) in the mouse, which have been studied by many laboratories over many years, and the evidence that synaptic depression of excitatory input from the thalamus is a primary contributor to the loss of visual cortical responsiveness to stimuli viewed through the deprived eye. Second, we describe a less studied, but no less interesting form of plasticity in the visual cortex known as stimulus-selective response potentiation (SRP). SRP results in increases in the response of V1 to a visual stimulus through repeated viewing and bears all the hallmarks of perceptual learning. We describe evidence implicating an important role for potentiation of thalamo-cortical synapses in SRP. In addition, we present new data indicating that there are some features of this form of plasticity that cannot be fully accounted for by such feed-forward Hebbian plasticity, suggesting contributions from intra-cortical circuit components. PMID:24298166

  5. Suicidal ideation, depression, and conduct disorder in a sample of adolescent and young adult twins

    PubMed Central

    Linker, Julie; Gillespie, Nathan A; Maes, Hermine; Eaves, Lindon; Silberg, Judy L.

    2012-01-01

    Background The co-occurrence of suicidal ideation, depression, and conduct disturbance is likely explained in part by correlated genetic and environmental risk factors. Little is known about the specific nature of these associations. Method Structured interviews on 2814 twins from the Virginia Twin Study of Adolescent Behavioral Development (VTSABD) and young adult follow-up (YAFU) yielded data on symptoms of depression, conduct disorder and adolescent and young adult suicidal ideation. Results Univariate analyses revealed that the familial aggregation for each trait was explained by a combination of additive genetic and shared environmental effects. Suicidal ideation in adolescence was explained in part by genetic influences, but predominantly accounted for by environmental factors. A mixture of genetic and shared environmental influences explained ideation occurring in young adulthood. Multivariate analyses revealed that there are genetic and shared environmental effects common to suicidal ideation, depression, and conduct disorder. The association between adolescent suicidal ideation and CD was attributable to the same genetic and environmental risk factors for depression. Conclusions These findings underscore that prevention and intervention strategies should reflect the different underlying mechanisms involving depression and conduct disorder to assist in identifying adolescents at suicidal risk. PMID:22646517

  6. Suicidal ideation, depression, and conduct disorder in a sample of adolescent and young adult twins.

    PubMed

    Linker, Julie; Gillespie, Nathan A; Maes, Hermine; Eaves, Lindon; Silberg, Judy L

    2012-08-01

    The co-occurrence of suicidal ideation, depression, and conduct disturbance is likely explained in part by correlated genetic and environmental risk factors. Little is known about the specific nature of these associations. Structured interviews on 2,814 twins from the Virginia Twin Study of Adolescent Behavioral Development (VTSABD) and Young Adult Follow-Up (YAFU) yielded data on symptoms of depression, conduct disorder, and adolescent and young adult suicidal ideation. Univariate analyses revealed that the familial aggregation for each trait was explained by a combination of additive genetic and shared environmental effects. Suicidal ideation in adolescence was explained in part by genetic influences, but predominantly accounted for by environmental factors. A mixture of genetic and shared environmental influences explained ideation occurring in young adulthood. Multivariate analyses revealed that there are genetic and shared environmental effects common to suicidal ideation, depression, and conduct disorder. The association between adolescent suicidal ideation and CD was attributable to the same genetic and environmental risk factors for depression. These findings underscore that prevention and intervention strategies should reflect the different underlying mechanisms involving depression and conduct disorder to assist in identifying adolescents at suicidal risk. © 2012 The American Association of Suicidology.

  7. Explaining ecological clusters of maternal depression in South Western Sydney.

    PubMed

    Eastwood ED, John; Kemp, Lynn; Jalaludin, Bin

    2014-01-24

    The aim of the qualitative study reported here was to: 1) explain the observed clustering of postnatal depressive symptoms in South Western Sydney; and 2) identify group-level mechanisms that would add to our understanding of the social determinants of maternal depression. Critical realism provided the methodological underpinning for the study. The setting was four local government areas in South Western Sydney, Australia. Child and Family practitioners and mothers in naturally occurring mothers groups were interviewed. Using an open coding approach to maximise emergence of patterns and relationships we have identified seven theoretical concepts that might explain the observed spatial clustering of maternal depression. The theoretical concepts identified were: Community-level social networks; Social Capital and Social Cohesion; "Depressed community"; Access to services at the group level; Ethnic segregation and diversity; Supportive social policy; and Big business. We postulate that these regional structural, economic, social and cultural mechanisms partially explain the pattern of maternal depression observed in families and communities within South Western Sydney. We further observe that powerful global economic and political forces are having an impact on the local situation. The challenge for policy and practice is to support mothers and their families within this adverse regional and global-economic context.

  8. Effect of spike-timing-dependent plasticity on stochastic burst synchronization in a scale-free neuronal network.

    PubMed

    Kim, Sang-Yoon; Lim, Woochang

    2018-06-01

    We consider an excitatory population of subthreshold Izhikevich neurons which cannot fire spontaneously without noise. As the coupling strength passes a threshold, individual neurons exhibit noise-induced burstings. This neuronal population has adaptive dynamic synaptic strengths governed by the spike-timing-dependent plasticity (STDP). However, STDP was not considered in previous works on stochastic burst synchronization (SBS) between noise-induced burstings of sub-threshold neurons. Here, we study the effect of additive STDP on SBS by varying the noise intensity D in the Barabási-Albert scale-free network (SFN). One of our main findings is a Matthew effect in synaptic plasticity which occurs due to a positive feedback process. Good burst synchronization (with higher bursting measure) gets better via long-term potentiation (LTP) of synaptic strengths, while bad burst synchronization (with lower bursting measure) gets worse via long-term depression (LTD). Consequently, a step-like rapid transition to SBS occurs by changing D , in contrast to a relatively smooth transition in the absence of STDP. We also investigate the effects of network architecture on SBS by varying the symmetric attachment degree [Formula: see text] and the asymmetry parameter [Formula: see text] in the SFN, and Matthew effects are also found to occur by varying [Formula: see text] and [Formula: see text]. Furthermore, emergences of LTP and LTD of synaptic strengths are investigated in details via our own microscopic methods based on both the distributions of time delays between the burst onset times of the pre- and the post-synaptic neurons and the pair-correlations between the pre- and the post-synaptic instantaneous individual burst rates (IIBRs). Finally, a multiplicative STDP case (depending on states) with soft bounds is also investigated in comparison with the additive STDP case (independent of states) with hard bounds. Due to the soft bounds, a Matthew effect with some quantitative differences is also found to occur for the case of multiplicative STDP.

  9. Impaired synaptic clustering of postsynaptic density proteins and altered signal transmission in hippocampal neurons, and disrupted learning behavior in PDZ1 and PDZ2 ligand binding-deficient PSD-95 knockin mice

    PubMed Central

    2012-01-01

    Background Postsynaptic density (PSD)-95-like membrane-associated guanylate kinases (PSD-MAGUKs) are scaffold proteins in PSDs that cluster signaling molecules near NMDA receptors. PSD-MAGUKs share a common domain structure, including three PDZ (PDZ1/2/3) domains in their N-terminus. While multiple domains enable the PSD-MAGUKs to bind various ligands, the contribution of each PDZ domain to synaptic organization and function is not fully understood. Here, we focused on the PDZ1/2 domains of PSD-95 that bind NMDA-type receptors, and studied the specific roles of the ligand binding of these domains in the assembly of PSD proteins, synaptic properties of hippocampal neurons, and behavior, using ligand binding-deficient PSD-95 cDNA knockin (KI) mice. Results The KI mice showed decreased accumulation of mutant PSD-95, PSD-93 and AMPA receptor subunits in the PSD fraction of the hippocampus. In the hippocampal CA1 region of young KI mice, basal synaptic efficacy was reduced and long-term potentiation (LTP) was enhanced with intact long-term depression. In adult KI mice, there was no significant change in the magnitude of LTP in CA1, but robustly enhanced LTP was induced at the medial perforant path-dentate gyrus synapses, suggesting that PSD-95 has an age- and subregion-dependent role. In a battery of behavioral tests, KI mice showed markedly abnormal anxiety-like behavior, impaired spatial reference and working memory, and impaired remote memory and pattern separation in fear conditioning test. Conclusions These findings reveal that PSD-95 including its ligand binding of the PDZ1/2 domains controls the synaptic clustering of PSD-MAGUKs and AMPA receptors, which may have an essential role in regulating hippocampal synaptic transmission, plasticity, and hippocampus-dependent behavior. PMID:23268962

  10. Impaired synaptic clustering of postsynaptic density proteins and altered signal transmission in hippocampal neurons, and disrupted learning behavior in PDZ1 and PDZ2 ligand binding-deficient PSD-95 knockin mice.

    PubMed

    Nagura, Hitoshi; Ishikawa, Yasuyuki; Kobayashi, Katsunori; Takao, Keizo; Tanaka, Tomo; Nishikawa, Kouki; Tamura, Hideki; Shiosaka, Sadao; Suzuki, Hidenori; Miyakawa, Tsuyoshi; Fujiyoshi, Yoshinori; Doi, Tomoko

    2012-12-26

    Postsynaptic density (PSD)-95-like membrane-associated guanylate kinases (PSD-MAGUKs) are scaffold proteins in PSDs that cluster signaling molecules near NMDA receptors. PSD-MAGUKs share a common domain structure, including three PDZ (PDZ1/2/3) domains in their N-terminus. While multiple domains enable the PSD-MAGUKs to bind various ligands, the contribution of each PDZ domain to synaptic organization and function is not fully understood. Here, we focused on the PDZ1/2 domains of PSD-95 that bind NMDA-type receptors, and studied the specific roles of the ligand binding of these domains in the assembly of PSD proteins, synaptic properties of hippocampal neurons, and behavior, using ligand binding-deficient PSD-95 cDNA knockin (KI) mice. The KI mice showed decreased accumulation of mutant PSD-95, PSD-93 and AMPA receptor subunits in the PSD fraction of the hippocampus. In the hippocampal CA1 region of young KI mice, basal synaptic efficacy was reduced and long-term potentiation (LTP) was enhanced with intact long-term depression. In adult KI mice, there was no significant change in the magnitude of LTP in CA1, but robustly enhanced LTP was induced at the medial perforant path-dentate gyrus synapses, suggesting that PSD-95 has an age- and subregion-dependent role. In a battery of behavioral tests, KI mice showed markedly abnormal anxiety-like behavior, impaired spatial reference and working memory, and impaired remote memory and pattern separation in fear conditioning test. These findings reveal that PSD-95 including its ligand binding of the PDZ1/2 domains controls the synaptic clustering of PSD-MAGUKs and AMPA receptors, which may have an essential role in regulating hippocampal synaptic transmission, plasticity, and hippocampus-dependent behavior.

  11. TRPC6 channel-mediated neurite outgrowth in PC12 cells and hippocampal neurons involves activation of RAS/MEK/ERK, PI3K, and CAMKIV signaling.

    PubMed

    Heiser, Jeanine H; Schuwald, Anita M; Sillani, Giacomo; Ye, Lian; Müller, Walter E; Leuner, Kristina

    2013-11-01

    The non-selective cationic transient receptor canonical 6 (TRPC6) channels are involved in synaptic plasticity changes ranging from dendritic growth, spine morphology changes and increase in excitatory synapses. We previously showed that the TRPC6 activator hyperforin, the active antidepressant component of St. John's wort, induces neuritic outgrowth and spine morphology changes in PC12 cells and hippocampal CA1 neurons. However, the signaling cascade that transmits the hyperforin-induced transient rise in intracellular calcium into neuritic outgrowth is not yet fully understood. Several signaling pathways are involved in calcium transient-mediated changes in synaptic plasticity, ranging from calmodulin-mediated Ras-induced signaling cascades comprising the mitogen-activated protein kinase, PI3K signal transduction pathways as well as Ca(2+) /calmodulin-dependent protein kinase II (CAMKII) and CAMKIV. We show that several mechanisms are involved in TRPC6-mediated synaptic plasticity changes in PC12 cells and primary hippocampal neurons. Influx of calcium via TRPC6 channels activates different pathways including Ras/mitogen-activated protein kinase/extracellular signal-regulated kinases, phosphatidylinositide 3-kinase/protein kinase B, and CAMKIV in both cell types, leading to cAMP-response element binding protein phosphorylation. These findings are interesting not only in terms of the downstream targets of TRPC6 channels but also because of their potential to facilitate further understanding of St. John's wort extract-mediated antidepressant activity. Alterations in synaptic plasticity are considered to play an important role in the pathogenesis of depression. Beside several other proteins, TRPC6 channels regulate synaptic plasticity. This study demonstrates that different pathways including Ras/MEK/ERK, PI3K/Akt, and CAMKIV are involved in the improvement of synaptic plasticity by the TRPC6 activator hyperforin, the antidepressant active constituent of St. John's wort extract. © 2013 International Society for Neurochemistry.

  12. Preclinical and clinical characterization of the selective 5-HT(1A) receptor antagonist DU-125530 for antidepressant treatment.

    PubMed

    Scorza, M C; Lladó-Pelfort, L; Oller, S; Cortés, R; Puigdemont, D; Portella, M J; Pérez-Egea, R; Alvarez, E; Celada, P; Pérez, V; Artigas, F

    2012-11-01

    The antidepressant efficacy of selective 5-HT reuptake inhibitors (SSRI) and other 5-HT-enhancing drugs is compromised by a negative feedback mechanism involving 5-HT(1A) autoreceptor activation by the excess 5-HT produced by these drugs in the somatodendritic region of 5-HT neurones. 5-HT(1A) receptor antagonists augment antidepressant-like effects in rodents by preventing this negative feedback, and the mixed β-adrenoceptor/5-HT(1A) receptor antagonist pindolol improves clinical antidepressant effects by preferentially interacting with 5-HT(1A) autoreceptors. However, it is unclear whether 5-HT(1A) receptor antagonists not discriminating between pre- and post-synaptic 5-HT(1A) receptors would be clinically effective. We characterized the pharmacological properties of the 5-HT(1A) receptor antagonist DU-125530 using receptor autoradiography, intracerebral microdialysis and electrophysiological recordings. Its capacity to accelerate/enhance the clinical effects of fluoxetine was assessed in a double-blind, randomized, 6 week placebo-controlled trial in 50 patients with major depression (clinicaltrials.gov identifier NCT01119430). DU-125530 showed equal (low nM) potency to displace agonist and antagonist binding to pre- and post-synaptic 5-HT(1A) receptors in rat and human brain. It antagonized suppression of 5-hydroxytryptaminergic activity evoked by 8-OH-DPAT and SSRIs in vivo. DU-125530 augmented SSRI-induced increases in extracellular 5-HT as effectively as in mice lacking 5-HT(1A) receptors, indicating a silent, maximal occupancy of pre-synaptic 5-HT(1A) receptors at the dose used. However, DU-125530 addition to fluoxetine did not accelerate nor augment its antidepressant effects. DU-125530 is an excellent pre- and post-synaptic 5-HT(1A) receptor antagonist. However, blockade of post-synaptic 5- HT(1A) receptors by DU-125530 cancels benefits obtained by enhancing pre-synaptic 5-hydroxytryptaminergic function. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  13. Extensive morphological divergence and rapid evolution of the larval neuromuscular junction in Drosophila.

    PubMed

    Campbell, Megan; Ganetzky, Barry

    2012-03-13

    Although the complexity and circuitry of nervous systems undergo evolutionary change, we lack understanding of the general principles and specific mechanisms through which it occurs. The Drosophila larval neuromuscular junction (NMJ), which has been widely used for studies of synaptic development and function, is also an excellent system for studies of synaptic evolution because the genus spans >40 Myr of evolution and the same identified synapse can be examined across the entire phylogeny. We have now characterized morphology of the NMJ on muscle 4 (NMJ4) in >20 species of Drosophila. Although there is little variation within a species, NMJ morphology and complexity vary extensively between species. We find no significant correlation between NMJ phenotypes and phylogeny for the species examined, suggesting that drift alone cannot explain the phenotypic variation and that selection likely plays an important role. However, the nature of the selective pressure is still unclear because basic parameters of synaptic function remain uniform. Whatever the mechanism, NMJ morphology is evolving rapidly in comparison with other morphological features because NMJ phenotypes differ even between several sibling species pairs. The discovery of this unexpectedly extensive divergence in NMJ morphology among Drosophila species provides unique opportunities to investigate mechanisms that regulate synaptic growth; the interrelationships between synaptic morphology, neural function, and behavior; and the evolution of nervous systems and behavior in natural populations.

  14. Parvalbumin interneuron mediated feedforward inhibition controls signal output in the deep layers of the perirhinal‐entorhinal cortex

    PubMed Central

    Willems, Janske G. P.; Wadman, Wytse J.

    2018-01-01

    Abstract The perirhinal (PER) and lateral entorhinal (LEC) cortex form an anatomical link between the neocortex and the hippocampus. However, neocortical activity is transmitted through the PER and LEC to the hippocampus with a low probability, suggesting the involvement of the inhibitory network. This study explored the role of interneuron mediated inhibition, activated by electrical stimulation in the agranular insular cortex (AiP), in the deep layers of the PER and LEC. Activated synaptic input by AiP stimulation rarely evoked action potentials in the PER‐LEC deep layer excitatory principal neurons, most probably because the evoked synaptic response consisted of a small excitatory and large inhibitory conductance. Furthermore, parvalbumin positive (PV) interneurons—a subset of interneurons projecting onto the axo‐somatic region of principal neurons—received synaptic input earlier than principal neurons, suggesting recruitment of feedforward inhibition. This synaptic input in PV interneurons evoked varying trains of action potentials, explaining the fast rising, long lasting synaptic inhibition received by deep layer principal neurons. Altogether, the excitatory input from the AiP onto deep layer principal neurons is overruled by strong feedforward inhibition. PV interneurons, with their fast, extensive stimulus‐evoked firing, are able to deliver this fast evoked inhibition in principal neurons. This indicates an essential role for PV interneurons in the gating mechanism of the PER‐LEC network. PMID:29341361

  15. Complexin Mutants Reveal Partial Segregation between Recycling Pathways That Drive Evoked and Spontaneous Neurotransmission

    PubMed Central

    Sabeva, Nadezhda; Cho, Richard W.; Vasin, Alexander; Gonzalez, Agustin; Littleton, J. Troy

    2017-01-01

    Synaptic vesicles fuse at morphological specializations in the presynaptic terminal termed active zones (AZs). Vesicle fusion can occur spontaneously or in response to an action potential. Following fusion, vesicles are retrieved and recycled within nerve terminals. It is still unclear whether vesicles that fuse spontaneously or following evoked release share similar recycling mechanisms. Genetic deletion of the SNARE-binding protein complexin dramatically increases spontaneous fusion, with the protein serving as the synaptic vesicle fusion clamp at Drosophila synapses. We examined synaptic vesicle recycling pathways at complexin null neuromuscular junctions, where spontaneous release is dramatically enhanced. We combined loading of the lipophilic dye FM1–43 with photoconversion, electron microscopy, and electrophysiology to monitor evoked and spontaneous recycling vesicle pools. We found that the total number of recycling vesicles was equal to those retrieved through spontaneous and evoked pools, suggesting that retrieval following fusion is partially segregated for spontaneous and evoked release. In addition, the kinetics of FM1–43 destaining and synaptic depression measured in the presence of the vesicle-refilling blocker bafilomycin indicated that spontaneous and evoked recycling pools partially intermix during the release process. Finally, FM1–43 photoconversion combined with electron microscopy analysis indicated that spontaneous recycling preferentially involves synaptic vesicles in the vicinity of AZs, whereas vesicles recycled following evoked release involve a larger intraterminal pool. Together, these results suggest that spontaneous and evoked vesicles use separable recycling pathways and then partially intermix during subsequent rounds of fusion. SIGNIFICANCE STATEMENT Neurotransmitter release involves fusion of synaptic vesicles with the plasma membrane in response to an action potential, or spontaneously in the absence of stimulation. Upon fusion, vesicles are retrieved and recycled, and it is unclear whether recycling pathways for evoked and spontaneous vesicles are segregated after fusion. We addressed this question by taking advantage of preparations lacking the synaptic protein complexin, which have elevated spontaneous release that enables reliable tracking of the spontaneous recycling pool. Our results suggest that spontaneous and evoked recycling pathways are segregated during the retrieval process but can partially intermix during stimulation. PMID:28077717

  16. Pathways from education to depression.

    PubMed

    Lee, Jinkook

    2011-06-01

    We examine educational gradients in depression and identify underlying mechanisms of how education might affect depression. We use a nationally representative sample of community-residing adults aged 45 and older from the 2006 Korean Longitudinal Study of Aging, which collected information about depressive symptoms and education. Using tobit regression, we estimate the effect of education on depression and examine what can explain the education gradients by controlling for proxy variables of different pathways linking education to depression. We found cognitive ability, economic resources, social status, social network, and health behavior explain all of the education gradients. Education affects depression through different underlying mechanisms, and the single most important pathway is through developing cognitive ability. Through these pathways, educational attainment influences not only depression for an individual but also for one's spouse, particularly for women, and parents.

  17. A NMDA receptor glycine site partial agonist, GLYX-13, simultaneously enhances LTP and reduces LTD at Schaffer collateral-CA1 synapses in hippocampus.

    PubMed

    Zhang, Xiao-lei; Sullivan, John A; Moskal, Joseph R; Stanton, Patric K

    2008-12-01

    N-methyl-D-aspartate glutamate receptors (NMDARs) are a key route for Ca2+ influx into neurons important to both activity-dependent synaptic plasticity and, when uncontrolled, triggering events that cause neuronal degeneration and death. Among regulatory binding sites on the NMDAR complex is a glycine binding site, distinct from the glutamate binding site, which must be co-activated for NMDAR channel opening. We developed a novel glycine site partial agonist, GLYX-13, which is both nootropic and neuroprotective in vivo. Here, we assessed the effects of GLYX-13 on long-term synaptic plasticity and NMDAR transmission at Schaffer collateral-CA1 synapses in hippocampal slices in vitro. GLYX-13 simultaneously enhanced the magnitude of long-term potentiation (LTP) of synaptic transmission, while reducing long-term depression (LTD). GLYX-13 reduced NMDA receptor-mediated synaptic currents in CA1 pyramidal neurons evoked by low frequency Schaffer collateral stimulation, but enhanced NMDAR currents during high frequency bursts of activity, and these actions were occluded by a saturating concentration of the glycine site agonist d-serine. Direct two-photon imaging of Schaffer collateral burst-evoked increases in [Ca2+] in individual dendritic spines revealed that GLYX-13 selectively enhanced burst-induced NMDAR-dependent spine Ca2+ influx. Examining the rate of MK-801 block of synaptic versus extrasynaptic NMDAR-gated channels revealed that GLYX-13 selectively enhanced activation of burst-driven extrasynaptic NMDARs, with an action that was blocked by the NR2B-selective NMDAR antagonist ifenprodil. Our data suggest that GLYX-13 may have unique therapeutic potential as a learning and memory enhancer because of its ability to simultaneously enhance LTP and suppress LTD.

  18. Agomelatine (S20098) modulates the expression of cytoskeletal microtubular proteins, synaptic markers and BDNF in the rat hippocampus, amygdala and PFC.

    PubMed

    Ladurelle, Nataly; Gabriel, Cecilia; Viggiano, Adela; Mocaër, Elisabeth; Baulieu, Etienne E; Bianchi, Massimiliano

    2012-06-01

    Agomelatine is described as a novel and clinical effective antidepressant drug with melatonergic (MT(1)/MT(2)) agonist and 5-HT(2C) receptor antagonist properties. Previous studies suggest that modulation of neuronal plasticity and microtubule dynamics may be involved in the treatment of depression. The present study investigated the effects of agomelatine on microtubular, synaptic and brain-derived neurotrophic factor (BDNF) proteins in selected rat brain regions. Adult male rats received agomelatine (40 mg/kg i.p.) once a day for 22 days. The pro-cognitive effect of agomelatine was tested in the novel object recognition task and antidepressant activity in the forced swimming test. Microtubule dynamics markers, microtubule-associated protein type 2 (MAP-2), phosphorylated MAP-2, synaptic markers [synaptophysin, postsynaptic density-95 (PSD-95) and spinophilin] and BDNF were measured by Western blot in the hippocampus, amygdala and prefrontal cortex (PFC). Agomelatine exerted pro-cognitive and antidepressant activity and induced molecular changes in the brain areas examined. Agomelatine enhanced microtubule dynamics in the hippocampus and to a higher magnitude in the amygdala. By contrast, in the PFC, a decrease in microtubule dynamics was observed. Spinophilin (dendritic spines marker) was decreased, and BDNF increased in the hippocampus. Synaptophysin (presynaptic) and spinophilin were increased in the PFC and amygdala, while PSD-95 (postsynaptic marker) was increased in the amygdala, consistent with the phenomena of synaptic remodelling. Agomelatine modulates cytoskeletal microtubule dynamics and synaptic markers. This may play a role in its pharmacological behavioural effects and may result from the melatonergic agonist and 5-HT(2C) antagonist properties of the compound.

  19. Up-regulation of GLT-1 severely impairs LTD at mossy fibre--CA3 synapses.

    PubMed

    Omrani, Azar; Melone, Marcello; Bellesi, Michele; Safiulina, Victoria; Aida, Tomomi; Tanaka, Kohishi; Cherubini, Enrico; Conti, Fiorenzo

    2009-10-01

    Glutamate transporters are responsible for clearing synaptically released glutamate from the extracellular space. By this action, they maintain low levels of ambient glutamate, thus preventing excitotoxic damage, and contribute to shaping synaptic currents. We show that up-regulation of the glutamate transporter GLT-1 by ceftriaxone severely impaired mGluR-dependent long-term depression (LTD), induced at rat mossy fibre (MF)-CA3 synapses by repetitive stimulation of afferent fibres. This effect involved GLT-1, since LTD was rescued by the selective GLT-1 antagonist dihydrokainate (DHK). DHK per se produced a modest decrease in fEPSP amplitude that rapidly regained control levels after DHK wash out. Moreover, the degree of fEPSP inhibition induced by the low-affinity glutamate receptor antagonist gamma-DGG was similar during basal synaptic transmission but not during LTD, indicating that in ceftriaxone-treated rats LTD induction did not alter synaptic glutamate transient concentration. Furthermore, ceftriaxone-induced GLT-1 up-regulation significantly reduced the magnitude of LTP at MF-CA3 synapses but not at Schaffer collateral-CA1 synapses. Postembedding immunogold studies in rats showed an increased density of gold particles coding for GLT-1a in astrocytic processes and in mossy fibre terminals; in the latter, gold particles were located near and within the active zones. In both CEF-treated and untreated GLT-1 KO mice used for verifying the specificity of immunostaining, the density of gold particles in MF terminals was comparable to background levels. The enhanced expression of GLT-1 at release sites may prevent activation of presynaptic receptors, thus revealing a novel mechanism by which GLT-1 regulates synaptic plasticity in the hippocampus.

  20. Modulatory role of androgenic and estrogenic neurosteroids in determining the direction of synaptic plasticity in the CA1 hippocampal region of male rats

    PubMed Central

    Pettorossi, Vito Enrico; Di Mauro, Michela; Scarduzio, Mariangela; Panichi, Roberto; Tozzi, Alessandro; Calabresi, Paolo; Grassi, Silvarosa

    2013-01-01

    Abstract Estrogenic and androgenic neurosteroids can rapidly modulate synaptic plasticity in the brain through interaction with membrane receptors for estrogens (ERs) and androgens (ARs). We used electrophysiological recordings in slices of young and adolescent male rats to explore the influence of sex neurosteroids on synaptic plasticity in the CA1 hippocampal region, by blocking ARs or ERs during induction of long‐term depression (LTD) and depotentiation (DP) by low‐frequency stimulation (LFS) and long‐term potentiation (LTP) by high‐frequency stimulation (HFS). We found that LTD and DP depend on ARs, while LTP on ERs in both age groups. Accordingly, the AR blocker flutamide affected induction of LTD reverting it into LTP, and prevented DP, while having no effect on HFS‐dependent LTP. Conversely, ER blockade with ICI 182,780 (ICI) markedly reduced LTP, but did not influence LTD and DP. However, the receptor blockade did not affect the maintenance of either LTD or LTP. Moreover, we found that similar to LTP and LTD induced in control condition, the LTP unveiled by flutamide during LFS and residual LTP induced by HFS under ICI depended on N‐methyl‐d aspartate receptor (NMDAR) activation. Furthermore, as the synaptic paired‐pulse facilitation (PPF) was not affected by either AR or ER blockade, we suggest that sex neurosteroids act primarily at a postsynaptic level. This study demonstrates for the first time the crucial role of estrogenic and androgenic neurosteroids in determining the sign of hippocampal synaptic plasticity in male rat and the activity‐dependent recruitment of androgenic and estrogenic pathways leading to LTD and LTP, respectively. PMID:24744863

  1. Modulatory role of androgenic and estrogenic neurosteroids in determining the direction of synaptic plasticity in the CA1 hippocampal region of male rats.

    PubMed

    Pettorossi, Vito Enrico; Di Mauro, Michela; Scarduzio, Mariangela; Panichi, Roberto; Tozzi, Alessandro; Calabresi, Paolo; Grassi, Silvarosa

    2013-12-01

    Estrogenic and androgenic neurosteroids can rapidly modulate synaptic plasticity in the brain through interaction with membrane receptors for estrogens (ERs) and androgens (ARs). We used electrophysiological recordings in slices of young and adolescent male rats to explore the influence of sex neurosteroids on synaptic plasticity in the CA1 hippocampal region, by blocking ARs or ERs during induction of long-term depression (LTD) and depotentiation (DP) by low-frequency stimulation (LFS) and long-term potentiation (LTP) by high-frequency stimulation (HFS). We found that LTD and DP depend on ARs, while LTP on ERs in both age groups. Accordingly, the AR blocker flutamide affected induction of LTD reverting it into LTP, and prevented DP, while having no effect on HFS-dependent LTP. Conversely, ER blockade with ICI 182,780 (ICI) markedly reduced LTP, but did not influence LTD and DP. However, the receptor blockade did not affect the maintenance of either LTD or LTP. Moreover, we found that similar to LTP and LTD induced in control condition, the LTP unveiled by flutamide during LFS and residual LTP induced by HFS under ICI depended on N-methyl-d aspartate receptor (NMDAR) activation. Furthermore, as the synaptic paired-pulse facilitation (PPF) was not affected by either AR or ER blockade, we suggest that sex neurosteroids act primarily at a postsynaptic level. This study demonstrates for the first time the crucial role of estrogenic and androgenic neurosteroids in determining the sign of hippocampal synaptic plasticity in male rat and the activity-dependent recruitment of androgenic and estrogenic pathways leading to LTD and LTP, respectively.

  2. Effects of OPC-14523, a combined sigma and 5-HT1a ligand, on pre- and post-synaptic 5-HT1a receptors.

    PubMed

    Bermack, Jordanna E; Debonnel, Guy

    2007-01-01

    OPC-14523 (OPC) is a novel compound with high affinity for sigma and 5-HT1A receptors that shows 'antidepressant-like' effects in animal models of depression. We have previously demonstrated that OPC produces an increase in 5-HT neurotransmission and a decreased response of 5-HT neurons to the acute administration of paroxetine in the DRN, an effect that appears to be mediated by OPC's 5-HT1A receptor affinity. The current study sets out to investigate more specifically the effects of OPC on 5-HT1A pre- and post-synaptic receptors, to assess whether it acts as an agonist or antagonist. Using an electrophysiological model of in vivo extracellular recordings in anaesthetized rats, the effects of OPC was assessed on pre-synaptic DRN 5-HT1A autoreceptors and post-synaptically on hippocampal 5-HT1A receptors of CA3 pyramidal neurons. OPC applied by microiontophoresis, produced a significant decrease in the firing activity of 5-HT neurons of the DRN and of quisqualate-activated CA3 pyramidal neurons of the dorsal hippocampus. The effects of OPC on 5-HT1A receptors were significantly reduced by the co-application of the 5-HT1A antagonist WAY-100635. In addition, the effects of OPC were not blocked by the injection of the sigma antagonists NE-100 or haloperidol. Therefore, OPC is acting as an agonist on both pre- and post-synaptic 5-HT1A receptors. The current findings combined with previous data on OPC suggest a pharmacological profile that warrants further investigation.

  3. Antidepressive effects of targeting ELK-1 signal transduction.

    PubMed

    Apazoglou, Kallia; Farley, Séverine; Gorgievski, Victor; Belzeaux, Raoul; Lopez, Juan Pablo; Grenier, Julien; Ibrahim, El Chérif; El Khoury, Marie-Anne; Tse, Yiu C; Mongredien, Raphaele; Barbé, Alexandre; de Macedo, Carlos E A; Jaworski, Wojciech; Bochereau, Ariane; Orrico, Alejandro; Isingrini, Elsa; Guinaudie, Chloé; Mikasova, Lenka; Louis, Franck; Gautron, Sophie; Groc, Laurent; Massaad, Charbel; Yildirim, Ferah; Vialou, Vincent; Dumas, Sylvie; Marti, Fabio; Mechawar, Naguib; Morice, Elise; Wong, Tak P; Caboche, Jocelyne; Turecki, Gustavo; Giros, Bruno; Tzavara, Eleni T

    2018-05-07

    Depression, a devastating psychiatric disorder, is a leading cause of disability worldwide. Current antidepressants address specific symptoms of the disease, but there is vast room for improvement 1 . In this respect, new compounds that act beyond classical antidepressants to target signal transduction pathways governing synaptic plasticity and cellular resilience are highly warranted 2-4 . The extracellular signal-regulated kinase (ERK) pathway is implicated in mood regulation 5-7 , but its pleiotropic functions and lack of target specificity prohibit optimal drug development. Here, we identified the transcription factor ELK-1, an ERK downstream partner 8 , as a specific signaling module in the pathophysiology and treatment of depression that can be targeted independently of ERK. ELK1 mRNA was upregulated in postmortem hippocampal tissues from depressed suicides; in blood samples from depressed individuals, failure to reduce ELK1 expression was associated with resistance to treatment. In mice, hippocampal ELK-1 overexpression per se produced depressive behaviors; conversely, the selective inhibition of ELK-1 activation prevented depression-like molecular, plasticity and behavioral states induced by stress. Our work stresses the importance of target selectivity for a successful approach for signal-transduction-based antidepressants, singles out ELK-1 as a depression-relevant transducer downstream of ERK and brings proof-of-concept evidence for the druggability of ELK-1.

  4. Ptychodiscus brevis toxin enhances the frequency-dependent depression of the monosynaptic reflex in neonatal rat spinal cord in vitro.

    PubMed

    Deshpande, S B; Singh, J N; Das Gupta, S

    2003-12-10

    The involvement of frequency-dependent depression (FDD) of synaptic transmission for the depressant action of the Ptychodiscus brevis toxin (PbTx) was investigated in neonatal rat spinal cord in vitro. The stimulation of a dorsal root by train of pulses (five stimuli) at different frequencies evoked potentials in the ventral root (monosynaptic reflex, MSR). Amplitude of the fifth response as percent of first response at 0.1, 0.2, 0.5, 1.0 and 2.0 Hz were 90, 80, 75, 70 and 50%, respectively. In Mg2+-free medium, PbTx depressed the MSR and also enhanced the FDD in a concentration-dependent manner. Further, the PbTx-induced depression can well be correlated with the enhancement of FDD (r=0.98). In the presence of Mg2+ (1.3 mM), the FDD was greater than that in the absence of Mg2+. But in the presence of Mg2+ PbTx did not alter FDD, even though there was 25% depression at 28 microM (significantly lesser than in Mg2+-free medium). The results indicate that the Mg2+-sensitive component of PbTx-induced depression of MSR is mediated via the neuronal systems involving FDD.

  5. Comorbidities, medications and depressive symptoms in patients with restless legs syndrome and migraine.

    PubMed

    Ferreira, Karen S; Eckeli, Alan; Dach, Fabíola; Speciali, José G

    2013-02-01

    The pathophysiology of migraine and restless legs syndrome (RLS) seems to involve inherited mechanism and dysfunction of the dopaminergic system. Previous articles have shown that the frequency of RLS is higher in migraine patients than in controls. We conducted a study to evaluate comorbidities, medication used and depressive symptoms that can explain the relation between migraine and RLS. A case-control study was performed in which patients with migraine (n=72) and a control group without migraine (n=72) were interviewed. Data including RLS diagnosis, depressive symptoms, comorbidities and drugs used were evaluated. There was a significant association between migraine and RLS (p=0.01), but comorbidities such as diabetes, hypertension, anemia and drugs used did not explain this association. Depression scores, as measured by the Beck Depression Inventory, were higher in migraine patients with RLS (p =0.04). No specific factors explaining the association between migraine and RLS were found. Symptoms of depression were more frequent in patients with migraine and RLS.

  6. Induction and Consolidation of Calcium-Based Homo- and Heterosynaptic Potentiation and Depression

    PubMed Central

    Li, Yinyun; Kulvicius, Tomas; Tetzlaff, Christian

    2016-01-01

    The adaptive mechanisms of homo- and heterosynaptic plasticity play an important role in learning and memory. In order to maintain plasticity-induced changes for longer time scales (up to several days), they have to be consolidated by transferring them from a short-lasting early-phase to a long-lasting late-phase state. The underlying processes of this synaptic consolidation are already well-known for homosynaptic plasticity, however, it is not clear whether the same processes also enable the induction and consolidation of heterosynaptic plasticity. In this study, by extending a generic calcium-based plasticity model with the processes of synaptic consolidation, we show in simulations that indeed heterosynaptic plasticity can be induced and, furthermore, consolidated by the same underlying processes as for homosynaptic plasticity. Furthermore, we show that by local diffusion processes the heterosynaptic effect can be restricted to a few synapses neighboring the homosynaptically changed ones. Taken together, this generic model reproduces many experimental results of synaptic tagging and consolidation, provides several predictions for heterosynaptic induction and consolidation, and yields insights into the complex interactions between homo- and heterosynaptic plasticity over a broad variety of time (minutes to days) and spatial scales (several micrometers). PMID:27560350

  7. A single high dose of dexamethasone affects the phosphorylation state of glutamate AMPA receptors in the human limbic system

    PubMed Central

    Lopes, M W; Leal, R B; Guarnieri, R; Schwarzbold, M L; Hoeller, A; Diaz, A P; Boos, G L; Lin, K; Linhares, M N; Nunes, J C; Quevedo, J; Bortolotto, Z A; Markowitsch, H J; Lightman, S L; Walz, R

    2016-01-01

    Glucocorticoids (GC) released during stress response exert feedforward effects in the whole brain, but particularly in the limbic circuits that modulates cognition, emotion and behavior. GC are the most commonly prescribed anti-inflammatory and immunosuppressant medication worldwide and pharmacological GC treatment has been paralleled by the high incidence of acute and chronic neuropsychiatric side effects, which reinforces the brain sensitivity for GC. Synapses can be bi-directionally modifiable via potentiation (long-term potentiation, LTP) or depotentiation (long-term depression, LTD) of synaptic transmission efficacy, and the phosphorylation state of Ser831 and Ser845 sites, in the GluA1 subunit of the glutamate AMPA receptors, are a critical event for these synaptic neuroplasticity events. Through a quasi-randomized controlled study, we show that a single high dexamethasone dose significantly reduces in a dose-dependent manner the levels of GluA1-Ser831 phosphorylation in the amygdala resected during surgery for temporal lobe epilepsy. This is the first report demonstrating GC effects on key markers of synaptic neuroplasticity in the human limbic system. The results contribute to understanding how GC affects the human brain under physiologic and pharmacologic conditions. PMID:27959333

  8. Huntingtin-interacting protein 1 influences worm and mouse presynaptic function and protects Caenorhabditis elegans neurons against mutant polyglutamine toxicity.

    PubMed

    Parker, J Alex; Metzler, Martina; Georgiou, John; Mage, Marilyne; Roder, John C; Rose, Ann M; Hayden, Michael R; Néri, Christian

    2007-10-10

    Huntingtin-interacting protein 1 (HIP1) was identified through its interaction with htt (huntingtin), the Huntington's disease (HD) protein. HIP1 is an endocytic protein that influences transport and function of AMPA and NMDA receptors in the brain. However, little is known about its contribution to neuronal dysfunction in HD. We report that the Caenorhabditis elegans HIP1 homolog hipr-1 modulates presynaptic activity and the abundance of synaptobrevin, a protein involved in synaptic vesicle fusion. Presynaptic function was also altered in hippocampal brain slices of HIP1-/- mice demonstrating delayed recovery from synaptic depression and a reduction in paired-pulse facilitation, a form of presynaptic plasticity. Interestingly, neuronal dysfunction in transgenic nematodes expressing mutant N-terminal huntingtin was specifically enhanced by hipr-1 loss of function. A similar effect was observed with several other mutant proteins that are expressed at the synapse and involved in endocytosis, such as unc-11/AP180, unc-26/synaptojanin, and unc-57/endophilin. Thus, HIP1 is involved in presynaptic nerve terminal activity and modulation of mutant polyglutamine-induced neuronal dysfunction. Moreover, synaptic proteins involved in endocytosis may protect neurons against amino acid homopolymer expansion.

  9. The contribution of illness perceptions and metacognitive beliefs to anxiety and depression in adults with diabetes.

    PubMed

    Purewal, Rebecca; Fisher, Peter L

    2018-02-01

    Anxiety and depression are highly prevalent in people with diabetes (PwD). The most widely used psychological model to explain anxiety and depression in PwD is the Common-Sense Model, which gives a central role to illness perceptions. The Self-Regulatory Executive Function (S-REF) model proposes metacognitive beliefs are key to understanding the development and maintenance of emotional disorders. To test the potential utility of the S-REF model in PwD, the study explored if metacognitive beliefs explained additional variance in anxiety and depression after controlling for demographic and illness perceptions. 614 adults with either Type 1 (n = 335) or Type 2 (n = 279) diabetes participated in a cross sectional online survey. All participants completed questionnaires on anxiety, depression, illness perceptions and metacognitive beliefs. Regression analyses showed that metacognitive beliefs were associated with anxiety and depression in PwD and explained additional variance in both anxiety and depression after controlling for demographics and illness perceptions. This is the first study to demonstrate that metacognitive beliefs are associated with anxiety and depression in PwD. The clinical implications of the study are illustrated. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  10. Growth dynamics explain the development of spatiotemporal burst activity of young cultured neuronal networks in detail.

    PubMed

    Gritsun, Taras A; le Feber, Joost; Rutten, Wim L C

    2012-01-01

    A typical property of isolated cultured neuronal networks of dissociated rat cortical cells is synchronized spiking, called bursting, starting about one week after plating, when the dissociated cells have sufficiently sent out their neurites and formed enough synaptic connections. This paper is the third in a series of three on simulation models of cultured networks. Our two previous studies [26], [27] have shown that random recurrent network activity models generate intra- and inter-bursting patterns similar to experimental data. The networks were noise or pacemaker-driven and had Izhikevich-neuronal elements with only short-term plastic (STP) synapses (so, no long-term potentiation, LTP, or depression, LTD, was included). However, elevated pre-phases (burst leaders) and after-phases of burst main shapes, that usually arise during the development of the network, were not yet simulated in sufficient detail. This lack of detail may be due to the fact that the random models completely missed network topology .and a growth model. Therefore, the present paper adds, for the first time, a growth model to the activity model, to give the network a time dependent topology and to explain burst shapes in more detail. Again, without LTP or LTD mechanisms. The integrated growth-activity model yielded realistic bursting patterns. The automatic adjustment of various mutually interdependent network parameters is one of the major advantages of our current approach. Spatio-temporal bursting activity was validated against experiment. Depending on network size, wave reverberation mechanisms were seen along the network boundaries, which may explain the generation of phases of elevated firing before and after the main phase of the burst shape.In summary, the results show that adding topology and growth explain burst shapes in great detail and suggest that young networks still lack/do not need LTP or LTD mechanisms.

  11. The effects of ghrelin on sleep, appetite, and memory, and its possible role in depression: A review of the literature.

    PubMed

    Morin, V; Hozer, F; Costemale-Lacoste, J-F

    2018-06-01

    Ghrelin is an orexigenic digestive hormone that plays a role in sleep and memory. Our work aims is to synthesize the effects of ghrelin on appetite, sleep and memory, and also to evidence its role in depressive disorders. A systematic search was carried out on PubMed with no time boundaries. The following MeSH terms were used: ghrelin AND (appetite regulation OR obesity), (sleep wake disorders OR sleep) (memory OR cognition disorders) (depression OR depressive disorder OR mood disorder). Ghrelin triggers appetite and alters meal patterns by making them longer and richer. This can lead to pathologies, obesity and insulin-resistance. Ghrelin seems to have a favourable effect on sleep in human beings. It tends to make sleep more efficacious and better quality. Finally, it seems to have an effect on synaptic plasticity in the zones involved in memory and it has been shown to improve memory capacity in rodents. Regarding depression, the administration of ghrelin leads to an anti-depressive effect in animals and in humans. Conversely, post anti-depressant ghrelin titrations have generally shown a decrease in ghrelin levels. Resistant patients seem to retain high levels. Finally, the seriousness of depression could be related to ghrelin levels. Ghrelin plays a probable part in depression, especially for particular endophenotypes. A better understanding of ghrelin in depression could potentially help to optimize future therapeutic treatments. Copyright © 2017 L'Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.

  12. Anhedonia and the Relationship Between Other Depressive Symptoms and Aggressive Behavior.

    PubMed

    Salem, Taban; Winer, E Samuel; Jordan, D Gage; Nadorff, Michael R; Fanning, Jennifer R; Bryant, Jessica; Berman, Mitchell E; Veilleux, Jennifer C

    2018-05-01

    Depression has been linked to multiple forms of aggressive behavior in college students; however, it is unclear which aspects of depression explain this connection. Anhedonia, defined as the loss of interest and/or pleasure in previously enjoyed activities, may provide unique information about relationships between depression and aggression. Using cross-sectional data from two independent samples of college students ( N = 747 and N = 736 for Study 1 and Study 2, respectively), we examined whether anhedonia helped explain the relationship between broader depressive symptoms and different forms of aggressive and antisocial behavior. Anhedonia accounted for variance in both self-directed aggression and antisocial behavior independent of gender, hostility, anger, other depressive symptoms, and cognitive distortions (Study 2). In addition, there were significant indirect effects of depressive symptoms on self-directed aggression (Studies 1 and 2) and antisocial behavior (Study 2) via anhedonia. Hypotheses involving other-directed aggression received mixed support, with anhedonia atemporally associated with other-directed aggression independent of broader depressive symptoms in Study 1, but not in Study 2. The current findings suggest that anhedonia is an important individual difference that helps explain the relationship between depression and aggressive and antisocial acts and that anhedonia may be differentially associated with various types of aggressive and antisocial behavior.

  13. The natural products magnolol and honokiol are positive allosteric modulators of both synaptic and extra-synaptic GABAA receptors

    PubMed Central

    Alexeev, Mikhail; Grosenbaugh, Denise K.; Mott, David D.; Fisher, Janet L.

    2012-01-01

    The National Center for Complementary and Alternative Medicine (NCCAM) estimates that nearly 40% of adults in the United States use alternative medicines, often in the form of an herbal supplement. Extracts from the tree bark of magnolia species have been used for centuries in traditional Chinese and Japanese medicines to treat a variety of neurological diseases, including anxiety, depression, and seizures. The active ingredients in the extracts have been identified as the bi-phenolic isomers magnolol and honokiol. These compounds were shown to enhance the activity of GABAA receptors, consistent with their biological effects. The GABAA receptors exhibit substantial subunit heterogeneity, which influences both their functional and pharmacological properties. We examined the activity of magnolol and honokiol at different populations of both neuronal and recombinant GABAA receptors to characterize their mechanism of action and to determine whether sensitivity to modulation was dependent upon the receptor’s subunit composition. We found that magnolol and honokiol enhanced both phasic and tonic GABAergic neurotransmission in hippocampal dentate granule neurons. In addition, all recombinant receptors examined were sensitive to modulation, regardless of the identity of the α, β, or γ subunit subtype, although the compounds showed particularly high efficacy at δ-containing receptors. This direct positive modulation of both synaptic and extra-synaptic populations of GABAA receptors suggests that supplements containing magnolol and/or honokiol would be effective anxiolytics, sedatives, and anti-convulsants. However, significant side-effects and risk of drug interactions would also be expected. PMID:22445602

  14. Strong, reliable and precise synaptic connections between thalamic relay cells and neurones of the nucleus reticularis in juvenile rats

    PubMed Central

    Gentet, Luc J; Ulrich, Daniel

    2003-01-01

    The thalamic reticular nucleus (nRT) is composed entirely of GABAergic inhibitory neurones that receive input from pyramidal cortical neurones and excitatory relay cells of the ventrobasal complex of the thalamus (VB). It plays a major role in the synchrony of thalamic networks, yet the synaptic connections it receives from VB cells have never been fully physiologically characterised. Here, whole-cell current-clamp recordings were obtained from 22 synaptically connected VB-nRT cell pairs in slices of juvenile (P14–20) rats. At 34–36 °C, single presynaptic APs evoked unitary EPSPs in nRT cells with a peak amplitude of 7.4 ± 1.5 mV (mean ± s.e.m.) and a decay time constant of 15.1 ± 0.9 ms. Only four out of 22 pairs showed transmission failures at a mean rate of 6.8 ± 1.1 %. An NMDA receptor (NMDAR)-mediated component was significant at rest and subsequent EPSPs in a train were depressed. Only one out of 14 pairs tested was reciprocally connected; the observed IPSPs in the VB cell had a peak amplitude of 0.8 mV and were completely abolished in the presence of 10 μm bicuculline. Thus, synaptic connections from VB cells to nRT neurones are mainly ‘drivers’, while a small subset of cells form closed disynaptic loops. PMID:12563005

  15. Early Life Stress Differentially Modulates Distinct Forms of Brain Plasticity in Young and Adult Mice

    PubMed Central

    Reichardt, Wilfried; Clark, Kristin; Geiger, Julia; Gross, Claus M.; Heyer, Andrea; Neagu, Valentin; Bhatia, Harsharan; Atas, Hasan C.; Fiebich, Bernd L.; Bischofberger, Josef; Haas, Carola A.; Normann, Claus

    2012-01-01

    Background Early life trauma is an important risk factor for many psychiatric and somatic disorders in adulthood. As a growing body of evidence suggests that brain plasticity is disturbed in affective disorders, we examined the short-term and remote effects of early life stress on different forms of brain plasticity. Methodology/Principal Findings Mice were subjected to early deprivation by individually separating pups from their dam in the first two weeks after birth. Distinct forms of brain plasticity were assessed in the hippocampus by longitudinal MR volumetry, immunohistochemistry of neurogenesis, and whole-cell patch-clamp measurements of synaptic plasticity. Depression-related behavior was assessed by the forced swimming test in adult animals. Neuropeptides and their receptors were determined by real-time PCR and immunoassay. Early maternal deprivation caused a loss of hippocampal volume, which returned to normal in adulthood. Adult neurogenesis was unaffected by early life stress. Long-term synaptic potentiation, however, was normal immediately after the end of the stress protocol but was impaired in adult animals. In the forced swimming test, adult animals that had been subjected to early life stress showed increased immobility time. Levels of substance P were increased both in young and adult animals after early deprivation. Conclusion Hippocampal volume was affected by early life stress but recovered in adulthood which corresponded to normal adult neurogenesis. Synaptic plasticity, however, exhibited a delayed impairment. The modulation of synaptic plasticity by early life stress might contribute to affective dysfunction in adulthood. PMID:23071534

  16. Treatment of Fragile X Syndrome with a Neuroactive Steroid

    DTIC Science & Technology

    2013-08-01

    GABAA activity . We hypothesized that ganaxolone will significantly improve behavioral problems including anxiety, inattention and impulsivity...group I metabotropic glutamate receptors (mGluRs). In the hippocampal field CA1, activation of mGluR5 leads to long-term depression (LTD), which is seen...as a reduction in synaptic responses. Importantly, LTD triggered by mGluR activation (mGluR-LTD) requires the rapid translation of preexisting mRNA in

  17. Predicting relatedness and self-definition depressive experiences in aging women based on personality traits: a preliminary study.

    PubMed

    Henriques-Calado, Joana; Duarte-Silva, Maria Eugénia; Campos, Rui C; Sacoto, Carlota; Keong, Ana Marta; Junqueira, Diana

    2013-01-01

    As part of the research relating personality and depression, this study seeks to predict depressive experiences in aging women according to Sidney Blatt's perspective based on the Five-Factor Model of Personality. The NEO-Five Factor Inventory and the Depressive Experiences Questionnaire were administered. The domains Neuroticism, Agreeableness, and Conscientiousness predicted self-criticism, explaining 68% of the variance; the domains Neuroticism and Extraversion predicted dependency, explaining 62% of the variance. The subfactors Neediness and Connectedness were differently related to personality traits. These findings are relevant to the research relating personality and anaclitic / introjective depressive experiences in late adulthood.

  18. Adolescence and Depression.

    ERIC Educational Resources Information Center

    Wisconsin Clearinghouse, Madison.

    This booklet begins with a poem written by an adolescent undergoing psychotherapy for depression, then goes on to describe what depression is and to examine sex and age differences related to depression. The difference between clinical depression and feeling blue is explained. Various therapies used in the treatment of depression are identified.…

  19. Explaining ecological clusters of maternal depression in South Western Sydney

    PubMed Central

    2014-01-01

    Background The aim of the qualitative study reported here was to: 1) explain the observed clustering of postnatal depressive symptoms in South Western Sydney; and 2) identify group-level mechanisms that would add to our understanding of the social determinants of maternal depression. Methods Critical realism provided the methodological underpinning for the study. The setting was four local government areas in South Western Sydney, Australia. Child and Family practitioners and mothers in naturally occurring mothers groups were interviewed. Results Using an open coding approach to maximise emergence of patterns and relationships we have identified seven theoretical concepts that might explain the observed spatial clustering of maternal depression. The theoretical concepts identified were: Community-level social networks; Social Capital and Social Cohesion; "Depressed community"; Access to services at the group level; Ethnic segregation and diversity; Supportive social policy; and Big business. Conclusions We postulate that these regional structural, economic, social and cultural mechanisms partially explain the pattern of maternal depression observed in families and communities within South Western Sydney. We further observe that powerful global economic and political forces are having an impact on the local situation. The challenge for policy and practice is to support mothers and their families within this adverse regional and global-economic context. PMID:24460690

  20. Prominent facilitation at beta and gamma frequency range revealed with physiological calcium concentration in adult mouse piriform cortex in vitro

    PubMed Central

    Gleizes, Marie; Perrier, Simon P.; Fonta, Caroline

    2017-01-01

    Neuronal activity is characterized by a diversity of oscillatory phenomena that are associated with multiple behavioral and cognitive processes, yet the functional consequences of these oscillations are not fully understood. Our aim was to determine whether and how these different oscillatory activities affect short-term synaptic plasticity (STP), using the olfactory system as a model. In response to odorant stimuli, the olfactory bulb displays a slow breathing rhythm as well as beta and gamma oscillations. Since the firing of olfactory bulb projecting neurons is phase-locked with beta and gamma oscillations, structures downstream from the olfactory bulb should be driven preferentially at these frequencies. We examined STP exhibited by olfactory bulb inputs in slices of adult mouse piriform cortex maintained in vitro in an in vivo-like ACSF (calcium concentration: 1.1 mM). We replaced the presynaptic neuronal firing rate by repeated electrical stimulation (frequency between 3.125 and 100 Hz) applied to the lateral olfactory tract. Our results revealed a considerable enhancement of postsynaptic response amplitude for stimulation frequencies in the beta and gamma range. A phenomenological model of STP fitted to the data suggests that the experimental results can be explained by the interplay between three mechanisms: a short-term facilitation mechanism (time constant ≈160 msec), and two short-term depression mechanisms (recovery time constants <20 msec and ≈140 msec). Increasing calcium concentration (2.2 mM) resulted in an increase in the time constant of facilitation and in a strengthening of the slowest depression mechanism. As a result, response enhancement was reduced and its peak shifted toward the low beta and alpha ranges while depression became predominant in the gamma band. Using environmental conditions corresponding to those that prevail in vivo, our study shows that STP in the lateral olfactory tract to layer Ia synapse allows amplification of olfactory bulb inputs at beta and gamma frequencies. PMID:28820903

  1. Decreased serum BDNF levels in patients with epileptic and psychogenic nonepileptic seizures

    PubMed Central

    LaFrance, W.C.; Leaver, K.; Stopa, E.G.; Papandonatos, G.D.; Blum, A.S.

    2010-01-01

    Objective: Neurotrophins promote neurogenesis and help regulate synaptic reorganization. Their dysregulation has been implicated in a number of neurologic and psychiatric disorders. Previous studies have shown decreased levels of brain-derived neurotrophic factor (BDNF) in the serum of patients with psychiatric disorders such as major depressive disorder (MDD) and conversion disorder (CD). In human patients with temporal lobe epilepsy, there is an increase in both BDNF mRNA and protein levels in surgically resected hippocampi compared to controls. One study of children with epilepsy has found normal to increased serum BDNF levels compared to controls. Serum BDNF levels have not been investigated in adult patients with epileptic seizures (ES). We hypothesized that BDNF would differentiate between ES and psychogenic nonepileptic seizures (PNES). Methods: We assessed serum BDNF immunoreactivity in 15 patients with ES, 12 patients with PNES, and 17 healthy volunteers. Serum BDNF levels were measured using an enzyme-linked immunoassay. Results: Healthy controls showed higher BDNF levels (4,289 ± 1,810 pg/mL) compared to patients with PNES (1,033 ± 435 pg/mL) (p < 0.001). However, unexpectedly, healthy controls also showed higher levels of BDNF compared to patients with ES without comorbid MDD (977 ± 565 pg/mL) (p < 0.001). Conclusions: Unlike children, adults with epilepsy appear to have decreased levels of serum BDNF. Reduced serum BDNF levels can be used to differentiate adult patients with ES or PNES from healthy controls. Further human studies are needed to better understand the pathophysiology explaining the decreased serum BDNF levels found in epilepsy and in PNES. GLOSSARY AED = antiepileptic drug; BDI-II = Beck Depression Inventory II; BDNF = brain-derived neurotrophic factor; CD = conversion disorder; ECS = electroconvulsive seizure; ES = epileptic seizure; GTC = generalized tonic-clonic seizure; HC = healthy control; MDD = major depressive disorder; PNES = psychogenic nonepileptic seizure; PRL = prolactin; RIH = Rhode Island Hospital. PMID:20921514

  2. Depression of NMDA receptor-mediated synaptic transmission by four α2 adrenoceptor agonists on the in vitro rat spinal cord preparation

    PubMed Central

    Faber, E S L; Chambers, J P; Evans, R H

    1998-01-01

    α2-Adrenoceptor agonists have a spinal site of analgesic action. In the current study the synaptic depressant actions of xylazine, detomidine, romifidine and dexmedetomidine have been compared on segmental reflexes containing NMDA receptor-mediated components in the neonatal rat hemisected spinal cord preparation in vitro.Reflexes were evoked in the ventral root following either supramaximal electrical stimulation of the corresponding ipsilateral lumbar dorsal root to evoke the high intensity excitatory postsynaptic potential (e.p.s.p.) involving all primary afferent fibres, or low intensity stimulation to evoke the solely A fibre-mediated low intensity e.p.s.p. The high intensity e.p.s.p. contains a greater NMDA receptor-mediated component.Xylazine, romifidine, detomidine and dexmedetomidine all depressed both the high intensity e.p.s.p. and the low intensity e.p.s.p. giving respective EC50 values of 0.91±0.2 μM (n=12), 23.4±3 nM (n=12), 37.7±7 nM (n=8) and 0.84±0.1 nM (n=4) for depression of the high intensity e.p.s.p. and 0.76±0.1 μM (n=12), 22.0±3 nM (n=12), 24.9±6 nM (n=4) and 2.7±0.6 nM (n=4) for depression of the low intensity e.p.s.p., respectively. Unlike the other three drugs, the two values for dexmedetomidine, showing a greater selectivity for the high intensity e.p.s.p., are significantly different.Each of these depressant actions was reversed by the selective α2-adrenoceptor antagonist atipamezole (1 μM).In contrast to previous reports of the actions of α2-adrenoceptor agonists on the in vitro spinal cord preparation, at concentrations ten fold higher than the above EC50 values xylazine, romifidine, detomidine and dexmedetomidine depressed the initial population spike of motoneurons (MSR). This depression was not reversed by atipamezole.Comparison of the rank order of the present EC50 values for depression of the high intensity e.p.s.p. with potency ratios from in vivo analgesic tests in previous studies show a close correlation between the present in vitro tests and analgesic potency. There is no correlation between the present data and previously obtained affinities of the agonists at non-adrenergic imidazoline binding sites.The current findings therefore suggest that xylazine, romifidine, detomidine and dexmedetomidine are exerting their central analgesic actions at the spinal level principally through α-2-adrenoceptors. All four agonists showed the same profile of selective depression of the NMDA receptor-mediated component of reflexes similar to that reported previously for clonidine. However dexmedetomidine, unlike the other ligands, selectively depressed the high intensity e.p.s.p. PMID:9647475

  3. Using Algorithms in Solving Synapse Transmission Problems.

    ERIC Educational Resources Information Center

    Stencel, John E.

    1992-01-01

    Explains how a simple three-step algorithm can aid college students in solving synapse transmission problems. Reports that all of the students did not completely understand the algorithm. However, many learn a simple working model of synaptic transmission and understand why an impulse will pass across a synapse quantitatively. Students also see…

  4. Novel plasticity rule can explain the development of sensorimotor intelligence

    PubMed Central

    Der, Ralf; Martius, Georg

    2015-01-01

    Grounding autonomous behavior in the nervous system is a fundamental challenge for neuroscience. In particular, self-organized behavioral development provides more questions than answers. Are there special functional units for curiosity, motivation, and creativity? This paper argues that these features can be grounded in synaptic plasticity itself, without requiring any higher-level constructs. We propose differential extrinsic plasticity (DEP) as a new synaptic rule for self-learning systems and apply it to a number of complex robotic systems as a test case. Without specifying any purpose or goal, seemingly purposeful and adaptive rhythmic behavior is developed, displaying a certain level of sensorimotor intelligence. These surprising results require no system-specific modifications of the DEP rule. They rather arise from the underlying mechanism of spontaneous symmetry breaking, which is due to the tight brain body environment coupling. The new synaptic rule is biologically plausible and would be an interesting target for neurobiological investigation. We also argue that this neuronal mechanism may have been a catalyst in natural evolution. PMID:26504200

  5. The Longevity of Hippocampus-Dependent Memory Is Orchestrated by the Locus Coeruleus-Noradrenergic System

    PubMed Central

    2017-01-01

    The locus coeruleus is connected to the dorsal hippocampus via strong fiber projections. It becomes activated after arousal and novelty, whereupon noradrenaline is released in the hippocampus. Noradrenaline from the locus coeruleus is involved in modulating the encoding, consolidation, retrieval, and reversal of hippocampus-based memory. Memory storage can be modified by the activation of the locus coeruleus and subsequent facilitation of hippocampal long-term plasticity in the forms of long-term depression and long-term potentiation. Recent evidence indicates that noradrenaline and dopamine are coreleased in the hippocampus from locus coeruleus terminals, thus fostering neuromodulation of long-term synaptic plasticity and memory. Noradrenaline is an inductor of epigenetic modifications regulating transcriptional control of synaptic long-term plasticity to gate the endurance of memory storage. In conclusion, locus coeruleus activation primes the persistence of hippocampus-based long-term memory. PMID:28695015

  6. High-frequency electroacupuncture evidently reinforces hippocampal synaptic transmission in Alzheimer's disease rats

    PubMed Central

    Li, Wei; Kong, Li-hong; Wang, Hui; Shen, Feng; Wang, Ya-wen; Zhou, Hua; Sun, Guo-jie

    2016-01-01

    The frequency range of electroacupuncture in treatment of Alzheimer's disease in rats is commonly 2–5 Hz (low frequency) and 50–100 Hz (high frequency). We established a rat model of Alzheimer's disease by injecting β-amyloid 1–42 (Aβ1–42) into the bilateral hippocampal dentate gyrus to verify which frequency may be better suited in treatment. Electroacupuncture at 2 Hz or 50 Hz was used to stimulate Baihui (DU20) and Shenshu (BL23) acupoints. The water maze test and electrophysiological studies demonstrated that spatial memory ability was apparently improved, and the ranges of long-term potentiation and long-term depression were increased in Alzheimer's disease rats after electroacupuncture treatment. Moreover, the effects of electroacupuncture at 50 Hz were better than that at 2 Hz. These findings suggest that high-frequency electroacupuncture may enhance hippocampal synaptic transmission and potentially improve memory disorders in Alzheimer's disease rats. PMID:27335565

  7. Mechanisms of Neuronal Computation in Mammalian Visual Cortex

    PubMed Central

    Priebe, Nicholas J.; Ferster, David

    2012-01-01

    Orientation selectivity in the primary visual cortex (V1) is a receptive field property that is at once simple enough to make it amenable to experimental and theoretical approaches and yet complex enough to represent a significant transformation in the representation of the visual image. As a result, V1 has become an area of choice for studying cortical computation and its underlying mechanisms. Here we consider the receptive field properties of the simple cells in cat V1—the cells that receive direct input from thalamic relay cells—and explore how these properties, many of which are highly nonlinear, arise. We have found that many receptive field properties of V1 simple cells fall directly out of Hubel and Wiesel’s feedforward model when the model incorporates realistic neuronal and synaptic mechanisms, including threshold, synaptic depression, response variability, and the membrane time constant. PMID:22841306

  8. Na, K-ATPase activity regulates AMPA receptor turnover through proteasome-mediated proteolysis

    PubMed Central

    Zhang, Dawei; Hou, Qingming; Wang, Min; Lin, Amy; Jarzylo, Larissa; Navis, Allison; Raissi, Aram; Liu, Fang; Man, Heng-Ye

    2009-01-01

    Neuronal activity largely depends on two key components on the membrane: the Na, K-ATPase (NKA) that maintains the ion gradients and sets the foundation of excitability, and the ionotropic glutamatergic AMPA receptors (AMPARs) through which sodium influx forms the driving force for excitation. Because the frequent sodium transients from glutamate receptor activity need to be efficiently extruded, a functional coupling between NKA and AMPARs should be a necessary cellular device for synapse physiology. We show that NKA is enriched at synapses and associates with AMPARs. NKA dysfunction induces a rapid reduction in AMPAR cell-surface expression as well as total protein abundance, leading to a long-lasting depression in synaptic transmission. AMPAR proteolysis requires sodium influx, proteasomal activity and receptor internalization. These data elucidate a novel mechanism by which NKA regulates AMPAR turnover and thereby synaptic strength and brain function. PMID:19357275

  9. Mechanisms of Nicotine Addiction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGehee, Daniel

    Nicotine reinforces the use of tobacco products primarily through its interaction with specific receptor proteins within the brain’s reward centers. A critical step in the process of addiction for many drugs, including nicotine, is the release of the neurotransmitter dopamine. A single nicotine exposure will enhance dopamine levels for hours, however, nicotinic receptors undergo both activation and then desensitization in minutes, which presents an important problem. How does the time course of receptor activity lead to the prolonged release of dopamine? We have found that persistent modulation of both inhibitory and excitatory synaptic connections by nicotine underlies the sustained increasemore » in dopamine release. Because these inputs express different types of nicotinic receptors there is a coordinated shift in the balance of synaptic inputs toward excitation of the dopamine neurons. Excitatory inputs are turned on while inhibitory inputs are depressed, thereby boosting the brain’s reward system.« less

  10. Do secondary conditions explain the relationship between depression and health care cost in women with physical disabilities?

    PubMed

    Morgan, Robert O; Byrne, Margaret M; Hughes, Rosemary B; Petersen, Nancy J; Taylor, Heather B; Robinson-Whelen, Susan; Hasche, Jennifer C; Nosek, Margaret A

    2008-10-01

    To examine the influence of depression on health care utilization and costs among women with disabilities and to determine whether the severity of other secondary health conditions affects this association. A time series of 7 interviews over a 1-year period. Large, southern metropolitan area. Community-dwelling women (N=349) with a self-identified diagnosis of a physical disability. Not applicable. Primary disability, secondary health conditions (Health Conditions Checklist), depressive symptoms (Beck Depression Inventory-Second Edition), and health care utilization (based on the Health and Social Service Utilization Questionnaire and the Stanford Health Assessment Questionnaire). We estimated health care costs using standardized criteria and published average costs. Outpatient and emergency department health care utilization and overall costs were higher in women with depressive symptoms and increased with the frequency and severity of the symptoms. Depressive symptoms were highly correlated with the severity of secondary health conditions. Adjusting for demographics and primary disability, both the presence and severity of depressive symptoms were associated with significantly higher health care costs. However, secondary health condition severity explained the association between depressive symptoms and cost; it also substantially increased the variance in cost that was explained by the multivariate models. Secondary health conditions are significantly associated with depressive symptoms and higher health care costs, with secondary health conditions accounting for the association between depressive symptoms and costs. This association suggests that effective management of secondary health conditions may help reduce both depressive symptomatology and health care costs.

  11. A Cognitive Model Based on Neuromodulated Plasticity

    PubMed Central

    Ruan, Xiaogang

    2016-01-01

    Associative learning, including classical conditioning and operant conditioning, is regarded as the most fundamental type of learning for animals and human beings. Many models have been proposed surrounding classical conditioning or operant conditioning. However, a unified and integrated model to explain the two types of conditioning is much less studied. Here, a model based on neuromodulated synaptic plasticity is presented. The model is bioinspired including multistored memory module and simulated VTA dopaminergic neurons to produce reward signal. The synaptic weights are modified according to the reward signal, which simulates the change of associative strengths in associative learning. The experiment results in real robots prove the suitability and validity of the proposed model. PMID:27872638

  12. Dysregulation of synaptic proteins, dendritic spine abnormalities and pathological plasticity of synapses as experience-dependent mediators of cognitive and psychiatric symptoms in Huntington's disease.

    PubMed

    Nithianantharajah, J; Hannan, A J

    2013-10-22

    Huntington's disease (HD) is an autosomal dominant tandem repeat expansion disorder involving cognitive, psychiatric and motor symptoms. The expanded trinucleotide (CAG) repeat leads to an extended polyglutamine tract in the huntingtin protein and a subsequent cascade of molecular and cellular pathogenesis. One of the key features of neuropathology, which has been shown to precede the eventual loss of neurons in the cerebral cortex, striatum and other areas, are changes to synapses, including the dendritic protrusions known as spines. In this review we will focus on synapse and spine pathology in HD, including molecular and experience-dependent aspects of pathogenesis. Dendritic spine pathology has been found in both the human HD brain at post mortem as well as various transgenic and knock-in animal models. These changes may help explain the symptoms in HD, and synaptopathy within the cerebral cortex may be particularly important in mediating the psychiatric and cognitive manifestations of this disease. The earliest stages of synaptic dysfunction in HD, as assayed in various mouse models, appears to involve changes in synaptic proteins and associated physiological abnormalities such as synaptic plasticity deficits. In mouse models, synaptic and cortical plasticity deficits have been directly correlated with the onset of cognitive deficits, implying a causal link. Furthermore, following the discovery that environmental enrichment can delay onset of affective, cognitive and motor deficits in HD transgenic mice, specific synaptic molecules shown to be dysregulated by the polyglutamine-induced toxicity were also found to be beneficially modulated by environmental stimulation. This identifies potential molecular targets for future therapeutic developments to treat this devastating disease. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Carbamazepine and oxcarbazepine, but not eslicarbazepine, enhance excitatory synaptic transmission onto hippocampal CA1 pyramidal cells through an antagonist action at adenosine A1 receptors.

    PubMed

    Booker, Sam A; Pires, Nuno; Cobb, Stuart; Soares-da-Silva, Patrício; Vida, Imre

    2015-06-01

    This study assessed the anticonvulsant and seizure generation effects of carbamazepine (CBZ), oxcarbazepine (OXC) and eslicarbazepine (S-Lic) in wild-type mice. Electrophysiological recordings were made to discriminate potential cellular and synaptic mechanisms underlying anti- and pro-epileptic actions. The anticonvulsant and pro-convulsant effects were evaluated in the MES, the 6-Hz and the Irwin tests. Whole-cell patch-clamp recordings were used to investigate the effects on fast excitatory and inhibitory synaptic transmission in hippocampal area CA1. The safety window for CBZ, OXC and eslicarbazepine (ED50 value against the MES test and the dose that produces grade 5 convulsions in all mice), was 6.3, 6.0 and 12.5, respectively. At high concentrations the three drugs reduced synaptic transmission. CBZ and OXC enhanced excitatory postsynaptic currents (EPSCs) at low, therapeutically-relevant concentrations. These effects were associated with no change in inhibitory postsynaptic currents (IPSCs) resulting in altered balance between excitation and inhibition. S-Lic had no effect on EPSC or IPSC amplitudes over the same concentration range. The CBZ mediated enhancement of EPSCs was blocked by DPCPX, a selective antagonist, and occluded by CCPA, a selective agonist of the adenosine A1 receptor. Furthermore, reduction of endogenous adenosine by application of the enzyme adenosine deaminase also abolished the CBZ- and OXC-induced increase of EPSCs, indicating that the two drugs act as antagonists at native adenosine receptors. In conclusion, CBZ and OXC possess pro-epileptic actions at clinically-relevant concentrations through the enhancement of excitatory synaptic transmission. S-Lic by comparison has no such effect on synaptic transmission, explaining its lack of seizure exacerbation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Chronic stress exacerbates neuropathic pain via the integration of stress-affect-related information with nociceptive information in the central nucleus of the amygdala.

    PubMed

    Li, Ming-Jia; Liu, Ling-Yu; Chen, Lin; Cai, Jie; Wan, You; Xing, Guo-Gang

    2017-04-01

    Exacerbation of pain by chronic stress and comorbidity of pain with stress-related psychiatric disorders, including anxiety and depression, represent significant clinical challenges. However, the underlying mechanisms still remain unclear. Here, we investigated whether chronic forced swim stress (CFSS)-induced exacerbation of neuropathic pain is mediated by the integration of stress-affect-related information with nociceptive information in the central nucleus of the amygdala (CeA). We first demonstrated that CFSS indeed produces both depressive-like behaviors and exacerbation of spared nerve injury (SNI)-induced mechanical allodynia in rats. Moreover, we revealed that CFSS induces both sensitization of basolateral amygdala (BLA) neurons and augmentation of long-term potentiation (LTP) at the BLA-CeA synapse and meanwhile, exaggerates both SNI-induced sensitization of CeA neurons and LTP at the parabrachial (PB)-CeA synapse. In addition, we discovered that CFSS elevates SNI-induced functional up-regulation of GluN2B-containing NMDA (GluN2B-NMDA) receptors in the CeA, which is proved to be necessary for CFSS-induced augmentation of LTP at the PB-CeA synapse and exacerbation of pain hypersensitivity in SNI rats. Suppression of CFSS-elicited depressive-like behaviors by antidepressants imipramine or ifenprodil inhibits the CFSS-induced exacerbation of neuropathic pain. Collectively, our findings suggest that CFSS potentiates synaptic efficiency of the BLA-CeA pathway, leading to the activation of GluN2B-NMDA receptors and sensitization of CeA neurons, which subsequently facilitate pain-related synaptic plasticity of the PB-CeA pathway, thereby exacerbating SNI-induced neuropathic pain. We conclude that chronic stress exacerbates neuropathic pain via the integration of stress-affect-related information with nociceptive information in the CeA.

  15. S-Ketamine Rapidly Reverses Synaptic and Vascular Deficits of Hippocampus in Genetic Animal Model of Depression.

    PubMed

    Ardalan, Maryam; Wegener, Gregers; Rafati, Ali H; Nyengaard, Jens R

    2017-03-01

    The neurovascular plasticity of hippocampus is an important theory underlying major depression. Ketamine as a novel glutamatergic antidepressant drug can induce a rapid antidepressant effect within hours. In a mechanistic proof of this concept, we examined whether ketamine leads to an increase in synaptogenesis and vascularization within 24 hours after a single injection in a genetic rat model of depression. Flinders Sensitive Line and Flinders Resistant Line rats were given a single intraperitoneal injection of ketamine (15 mg/kg) or saline. One day later, their behavior was evaluated by a modified forced swim test. Microvessel length was evaluated with global spatial sampling and optical microscopy, whereas the number of asymmetric synapses was quantified through serial section electron microscopy by using physical disector method in the CA1.stratum radiatum area of hippocampus. The immobility time in the forced swim test among Flinders Sensitive Line rats with ketamine treatment was significantly lower compared with Flinders Sensitive Line rats without treatment. The number of nonperforated and perforated synapses was significantly higher in the Flinders Sensitive Line-ketamine vs the Flinders Sensitive Line-vehicle group; however, ketamine did not induce a significant increase in the number of shaft synapses. Additionally, total length of microvessels was significantly increased 1 day after ketamine treatment in Flinders Sensitive Line rats in the hippocampal subregions, including the CA1.stratum radiatum. Our findings indicate that hippocampal vascularization and synaptogenesis is co-regulated rapidly after ketamine, and microvascular elongation may be a supportive factor for synaptic plasticity and neuronal activity. These findings go hand-in-hand with the behavioral observations, where ketamine acts as a potent antidepressant. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  16. Dopamine depresses excitatory synaptic transmission onto rat subicular neurons via presynaptic D1-like dopamine receptors.

    PubMed

    Behr, J; Gloveli, T; Schmitz, D; Heinemann, U

    2000-07-01

    Schizophrenia is considered to be associated with an abnormal functioning of the hippocampal output. The high clinical potency of antipsychotics that act as antagonists at dopamine (DA) receptors indicate a hyperfunction of the dopaminergic system. The subiculum obtains information from area CA1 and the entorhinal cortex and represents the major output region of the hippocampal complex. To clarify whether an enhanced dopaminergic activity alters the hippocampal output, the effect of DA on alveus- and perforant path-evoked excitatory postsynaptic currents (EPSCs) in subicular neurons was examined using conventional intracellular and whole cell voltage-clamp recordings. Dopamine (100 microM) depressed alveus-elicited (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated EPSCs to 56 +/- 8% of control while perforant path-evoked EPSCs were attenuated to only 76 +/- 7% of control. Dopamine had no effect on the EPSC kinetics. Dopamine reduced the frequency of spontaneous miniature EPSCs without affecting their amplitudes. The sensitivity of subicular neurons to the glutamate receptor agonist (S)-alpha-amino-3-hydoxy-5-methyl-4-isoxazolepropionic acid was unchanged by DA pretreatment, excluding a postsynaptic mechanism for the observed reduction of excitatory synaptic transmission. The effect of DA on evoked EPSCs was mimicked by the D1 receptor agonist SFK 38393 and partially antagonized by the D1 receptor antagonist SCH 23390. While the D2 receptor agonist quinelorane failed to reduce the EPSCs, the D2 receptor antagonist sulpiride did not block the action of DA. The results indicate that DA strongly depresses the hippocampal and the entorhinal excitatory input onto subicular neurons by decreasing the glutamate release following activation of presynaptic D1-like DA receptors.

  17. Vortioxetine restores reversal learning impaired by 5-HT depletion or chronic intermittent cold stress in rats.

    PubMed

    Wallace, Ashley; Pehrson, Alan L; Sánchez, Connie; Morilak, David A

    2014-10-01

    Current treatments for depression, including serotonin-specific reuptake inhibitors (SSRIs), are only partially effective, with a high incidence of residual symptoms, relapse, and treatment resistance. Loss of cognitive flexibility, a component of depression, is associated with dysregulation of the prefrontal cortex. Reversal learning, a form of cognitive flexibility, is impaired by chronic stress, a risk factor for depression, and the stress-induced impairment in reversal learning is sensitive to chronic SSRI treatment, and is mimicked by serotonin (5-HT) depletion. Vortioxetine, a novel, multimodal-acting antidepressant, is a 5-HT3, 5-HT7 and 5-HT1D receptor antagonist, a 5-HT1B receptor partial agonist, a 5-HT1A receptor agonist, and inhibits the 5-HT transporter. Using adult male rats, we first investigated the direct effects of vortioxetine, acting at post-synaptic 5-HT receptors, on reversal learning that was compromised by 5-HT depletion using 4-chloro-DL-phenylalanine methyl ester hydrochloride (PCPA), effectively eliminating any contribution of 5-HT reuptake blockade. PCPA induced a reversal learning impairment that was alleviated by acute or sub-chronic vortioxetine administration, suggesting that post-synaptic 5-HT receptor activation contributes to the effects of vortioxetine. We then investigated the effects of chronic dietary administration of vortioxetine on reversal learning that had been compromised in intact animals exposed to chronic intermittent cold (CIC) stress, to assess vortioxetine's total pharmacological effect. CIC stress impaired reversal learning, and chronic vortioxetine administration prevented the reversal-learning deficit. Together, these results suggest that the direct effect of vortioxetine at 5-HT receptors may contribute to positive effects on cognitive flexibility deficits, and may enhance the effect of 5-HT reuptake blockade.

  18. Acculturation, Gender, Depression, and Cigarette Smoking Among U.S. Hispanic Youth: The Mediating Role of Perceived Discrimination

    PubMed Central

    Unger, Jennifer B.; Ritt-Olson, Anamara; Soto, Daniel; Baezconde-Garbanati, Lourdes

    2013-01-01

    Hispanic youth are at risk for experiencing depressive symptoms and smoking cigarettes, and risk for depressive symptoms and cigarette use increase as Hispanic youth acculturate to U.S. culture. The mechanism by which acculturation leads to symptoms of depression and cigarette smoking is not well understood. The present study examined whether perceived discrimination explained the associations of acculturation with depressive symptoms and cigarette smoking among 1,124 Hispanic youth (54% female). Youth in Southern California completed surveys in 9th–11th grade. Separate analyses by gender showed that perceived discrimination explained the relationship between acculturation and depressive symptoms for girls only. There was also evidence that discrimination explained the relationship between acculturation and cigarette smoking among girls, but the effect was only marginally significant. Acculturation was associated with depressive symptoms and smoking among girls only. Perceived discrimination predicted depressive symptoms in both genders, and discrimination was positively associated with cigarette smoking for girls but not boys. These results support the notion that, although Hispanic boys and girls experience acculturation and discrimination, their mental health and smoking behaviors are differentially affected by these experiences. Moreover, the results indicate that acculturation, gender, and discrimination are important factors to consider when addressing Hispanic youth’s mental health and substance use behaviors. PMID:21293915

  19. Acculturation, gender, depression, and cigarette smoking among U.S. Hispanic youth: the mediating role of perceived discrimination.

    PubMed

    Lorenzo-Blanco, Elma I; Unger, Jennifer B; Ritt-Olson, Anamara; Soto, Daniel; Baezconde-Garbanati, Lourdes

    2011-11-01

    Hispanic youth are at risk for experiencing depressive symptoms and smoking cigarettes, and risk for depressive symptoms and cigarette use increase as Hispanic youth acculturate to U.S. culture. The mechanism by which acculturation leads to symptoms of depression and cigarette smoking is not well understood. The present study examined whether perceived discrimination explained the associations of acculturation with depressive symptoms and cigarette smoking among 1,124 Hispanic youth (54% female). Youth in Southern California completed surveys in 9th-11th grade. Separate analyses by gender showed that perceived discrimination explained the relationship between acculturation and depressive symptoms for girls only. There was also evidence that discrimination explained the relationship between acculturation and cigarette smoking among girls, but the effect was only marginally significant. Acculturation was associated with depressive symptoms and smoking among girls only. Perceived discrimination predicted depressive symptoms in both genders, and discrimination was positively associated with cigarette smoking for girls but not boys. These results support the notion that, although Hispanic boys and girls experience acculturation and discrimination, their mental health and smoking behaviors are differentially affected by these experiences. Moreover, the results indicate that acculturation, gender, and discrimination are important factors to consider when addressing Hispanic youth's mental health and substance use behaviors.

  20. Reinforcement expectations explain the relationship between depressive history and smoking status in college students.

    PubMed

    McChargue, Dennis E; Spring, Bonnie; Cook, Jessica W; Neumann, Christopher A

    2004-07-01

    Little is understood about biobehavioral mechanisms that mediate the comorbidity between cigarette smoking and depression. We hypothesized that expectancies about nicotine's reinforcing effects are associated with vulnerability to depression, and may partially explain the relationship between history of depression and smoking. Young adult smokers and never smokers (N=175, mean age=19.9 years, S.D.=3.2) were assessed for history of depression and expectations about the negative (e.g., dispels bad moods) and positive (e.g., increases pleasure) reinforcing effects of smoking. Results are inconsistent with the premise that negative reinforcement expectancies mediate the comorbidity between depression and nicotine dependence. Instead, findings suggest that young adults with a prior history of major depression hold exaggerated expectations about nicotine's positive effects, which could enhance their likelihood of initiating smoking. Copyright 2004 Elsevier Ltd.

  1. Perceived Weight Discrimination Mediates the Prospective Relation Between Obesity and Depressive Symptoms in U.S. and U.K. Adults

    PubMed Central

    2016-01-01

    Objective: Obesity has been shown to increase risk of depression. Persons with obesity experience discrimination because of their body weight. Across 3 studies, we tested for the first time whether experiencing (perceived) weight-based discrimination explains why obesity is prospectively associated with increases in depressive symptoms. Method: Data from 3 studies, including the English Longitudinal Study of Ageing (2008/2009–2012/2013), the Health and Retirement Study (2006/2008–2010/2012), and Midlife in the United States (1995/1996–2004/2005), were used to examine associations between obesity, perceived weight discrimination, and depressive symptoms among 20,286 U.S. and U.K. adults. Results: Across all 3 studies, Class II and III obesity were reliably associated with increases in depressive symptoms from baseline to follow-up. Perceived weight-based discrimination predicted increases in depressive symptoms over time and mediated the prospective association between obesity and depressive symptoms in all 3 studies. Persons with Class II and III obesity were more likely to report experiencing weight-based discrimination, and this explained approximately 31% of the obesity-related increase in depressive symptoms on average across the 3 studies. Conclusion: In U.S. and U.K. samples, the prospective association between obesity (defined using body mass index) and increases in depressive symptoms in adulthood may in part be explained by perceived weight discrimination. PMID:27748611

  2. Novel agonists for serotonin 5-HT7 receptors reverse metabotropic glutamate receptor-mediated long-term depression in the hippocampus of wild-type and Fmr1 KO mice, a model of Fragile X Syndrome

    PubMed Central

    Costa, Lara; Sardone, Lara M.; Lacivita, Enza; Leopoldo, Marcello; Ciranna, Lucia

    2015-01-01

    Serotonin 5-HT7 receptors are expressed in the hippocampus and modulate the excitability of hippocampal neurons. We have previously shown that 5-HT7 receptors modulate glutamate-mediated hippocampal synaptic transmission and long-term synaptic plasticity. In particular, we have shown that activation of 5-HT7 receptors reversed metabotropic glutamate receptor-mediated long-term depression (mGluR-LTD) in wild-type (wt) and in Fmr1 KO mice, a mouse model of Fragile X Syndrome in which mGluR-LTD is abnormally enhanced, suggesting that 5-HT7 receptor agonists might be envisaged as a novel therapeutic strategy for Fragile X Syndrome. In this perspective, we have characterized the basic in vitro pharmacokinetic properties of novel molecules with high binding affinity and selectivity for 5-HT7 receptors and we have tested their effects on synaptic plasticity using patch clamp on acute hippocampal slices. Here we show that LP-211, a high affinity selective agonist of 5-HT7 receptors, reverses mGluR-LTD in wt and Fmr1 KO mice, correcting a synaptic malfunction in the mouse model of Fragile X Syndrome. Among novel putative agonists of 5-HT7 receptors, the compound BA-10 displayed improved affinity and selectivity for 5-HT7 receptors and improved in vitro pharmacokinetic properties with respect to LP-211. BA-10 significantly reversed mGluR-LTD in the CA3-CA1 synapse in wt and Fmr1KO mice, indicating that BA-10 behaved as a highly effective agonist of 5-HT7 receptors and reduced exaggerated mGluR-LTD in a mouse model of Fragile X Syndrome. On the other side, the compounds RA-7 and PM-20, respectively arising from in vivo metabolism of LP-211 and BA-10, had no effect on mGluR-LTD thus did not behave as agonists of 5-HT7 receptors in our conditions. The present results provide information about the structure-activity relationship of novel 5-HT7 receptor agonists and indicate that LP-211 and BA-10 might be used as novel pharmacological tools for the therapy of Fragile X Syndrome. PMID:25814945

  3. DYT1 dystonia increases risk taking in humans.

    PubMed

    Arkadir, David; Radulescu, Angela; Raymond, Deborah; Lubarr, Naomi; Bressman, Susan B; Mazzoni, Pietro; Niv, Yael

    2016-06-01

    It has been difficult to link synaptic modification to overt behavioral changes. Rodent models of DYT1 dystonia, a motor disorder caused by a single gene mutation, demonstrate increased long-term potentiation and decreased long-term depression in corticostriatal synapses. Computationally, such asymmetric learning predicts risk taking in probabilistic tasks. Here we demonstrate abnormal risk taking in DYT1 dystonia patients, which is correlated with disease severity, thereby supporting striatal plasticity in shaping choice behavior in humans.

  4. Chlorogenic Acid from Hawthorn Berry (Crataegus pinnatifida Fruit) Prevents Stress Hormone-Induced Depressive Behavior, Through Monoamine Oxidase B-reactive Oxygen Species Signaling in Hippocampal Astrocytes of Mice.

    PubMed

    Lim, Dong Wook; Han, Taewon; Jung, Jonghoon; Song, Yuri; Um, Min Young; Yoon, Minseok; Kim, Yun Tai; Cho, Seungmok; Kim, In-Ho; Han, Daeseok; Lee, Changho; Lee, Jaekwang

    2018-06-12

    Oxidative stress has been implicated in mental disorders, including depression. Chlorogenic acid (CGA), a phenolic compound abundant in herbs and fruits, has been reported to have antioxidant and free-radical scavenging properties. In this study, we investigated the antidepressant-like effects and active mechanisms of CGA from the extract of Crataegus pinnatifida (CP) fruit. Depression-like phenotypes were induced in mice by daily injection of stress hormone for 1-2 weeks. The brains of these animals exhibited reduced brain-derived neurotrophic factor (BDNF) expression and increased astrocytic hypertrophy, which are typical markers of depression in animal models. Stress hormone injection 1) upregulated monoamine oxidase B (MAOB) expression and 2) reduced spine numbers along neuronal dendrites, which indicates synaptic depression. The oral administration of CGA (30 mg/kg) or CP (300 mg/kg) prevented MAOB activation following reactive oxygen species (ROS) production and had an ameliorative effect on depressive behavioral tests (e.g., tail suspension and forced swim tests). In vitro assays performed on cultured C8-D1A cells revealed that CGA and CP inhibited MAOB activity and ROS production. Our study indicates that CGA and CP extracts prevented depressive behavior and thereby have potential as natural antidepressants. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Serotonin receptor 1A–modulated phosphorylation of glycine receptor α3 controls breathing in mice

    PubMed Central

    Manzke, Till; Niebert, Marcus; Koch, Uwe R.; Caley, Alex; Vogelgesang, Steffen; Hülsmann, Swen; Ponimaskin, Evgeni; Müller, Ulrike; Smart, Trevor G.; Harvey, Robert J.; Richter, Diethelm W.

    2010-01-01

    Rhythmic breathing movements originate from a dispersed neuronal network in the medulla and pons. Here, we demonstrate that rhythmic activity of this respiratory network is affected by the phosphorylation status of the inhibitory glycine receptor α3 subtype (GlyRα3), which controls glutamatergic and glycinergic neuronal discharges, subject to serotonergic modulation. Serotonin receptor type 1A–specific (5-HTR1A–specific) modulation directly induced dephosphorylation of GlyRα3 receptors, which augmented inhibitory glycine-activated chloride currents in HEK293 cells coexpressing 5-HTR1A and GlyRα3. The 5-HTR1A–GlyRα3 signaling pathway was distinct from opioid receptor signaling and efficiently counteracted opioid-induced depression of breathing and consequential apnea in mice. Paradoxically, this rescue of breathing originated from enhanced glycinergic synaptic inhibition of glutamatergic and glycinergic neurons and caused disinhibition of their target neurons. Together, these effects changed respiratory phase alternations and ensured rhythmic breathing in vivo. GlyRα3-deficient mice had an irregular respiratory rhythm under baseline conditions, and systemic 5-HTR1A activation failed to remedy opioid-induced respiratory depression in these mice. Delineation of this 5-HTR1A–GlyRα3 signaling pathway offers a mechanistic basis for pharmacological treatment of opioid-induced apnea and other breathing disturbances caused by disorders of inhibitory synaptic transmission, such as hyperekplexia, hypoxia/ischemia, and brainstem infarction. PMID:20978350

  6. Muscarinic Receptor-Dependent Long Term Depression in the Perirhinal Cortex and Recognition Memory are Impaired in the rTg4510 Mouse Model of Tauopathy.

    PubMed

    Scullion, Sarah E; Barker, Gareth R I; Warburton, E Clea; Randall, Andrew D; Brown, Jonathan T

    2018-02-26

    Neurodegenerative diseases affecting cognitive dysfunction, such as Alzheimer's disease and fronto-temporal dementia, are often associated impairments in the visual recognition memory system. Recent evidence suggests that synaptic plasticity, in particular long term depression (LTD), in the perirhinal cortex (PRh) is a critical cellular mechanism underlying recognition memory. In this study, we have examined novel object recognition and PRh LTD in rTg4510 mice, which transgenically overexpress tau P301L . We found that 8-9 month old rTg4510 mice had significant deficits in long- but not short-term novel object recognition memory. Furthermore, we also established that PRh slices prepared from rTg4510 mice, unlike those prepared from wildtype littermates, could not support a muscarinic acetylcholine receptor-dependent form of LTD, induced by a 5 Hz stimulation protocol. In contrast, bath application of the muscarinic agonist carbachol induced a form of chemical LTD in both WT and rTg4510 slices. Finally, when rTg4510 slices were preincubated with the acetylcholinesterase inhibitor donepezil, the 5 Hz stimulation protocol was capable of inducing significant levels of LTD. These data suggest that dysfunctional cholinergic innervation of the PRh of rTg4510 mice, results in deficits in synaptic LTD which may contribute to aberrant recognition memory in this rodent model of tauopathy.

  7. Multiplexed Neurochemical Signaling by Neurons of the Ventral Tegmental Area

    PubMed Central

    Barker, David J.; Root, David H.; Zhang, Shiliang; Morales, Marisela

    2016-01-01

    The ventral tegmental area (VTA) is an evolutionarily conserved structure that has roles in reward-seeking, safety-seeking, learning, motivation, and neuropsychiatric disorders such as addiction and depression. The involvement of the VTA in these various behaviors and disorders is paralleled by its diverse signaling mechanisms. Here we review recent advances in our understanding of neuronal diversity in the VTA with a focus on cell phenotypes that participate in ‘multiplexed’ neurotransmission involving distinct signaling mechanisms. First, we describe the cellular diversity within the VTA, including neurons capable of transmitting dopamine, glutamate or GABA as well as neurons capable of multiplexing combinations of these neurotransmitters. Next, we describe the complex synaptic architecture used by VTA neurons in order to accommodate the transmission of multiple transmitters. We specifically cover recent findings showing that VTA multiplexed neurotransmission may be mediated by either the segregation of dopamine and glutamate into distinct microdomains within a single axon or by the integration of glutamate and GABA into a single axon terminal. In addition, we discuss our current understanding of the functional role that these multiplexed signaling pathways have in the lateral habenula and the nucleus accumbens. Finally, we consider the putative roles of VTA multiplexed neurotransmission in synaptic plasticity and discuss how changes in VTA multiplexed neurons may relate to various psychopathologies including drug addiction and depression. PMID:26763116

  8. Down or up? Explaining positive and negative emotions in parents of children with Down's syndrome: Goals, cognitive coping, and resources.

    PubMed

    Van Der Veek, Shelley M C; Kraaij, Vivian; Garnefski, Nadia

    2009-09-01

    Some studies find that parents of children with Down's syndrome may experience symptoms of depression, while other studies find that parents adapt well. This study aimed to clarify this variability in adaptive strength by investigating a stress-coping model to explain depressive symptoms and positive affect. Questionnaires were completed by 553 parents of children (aged 0-18) with Down's syndrome, containing measures of goal disturbance, cognitive coping, social support, partner bonding, and coping self-efficacy. Different models for positive affect and depressive symptoms were found. The coping strategies of self-blame and rumination were positively related to depressive symptoms, and positive reappraisal was positively related to positive affect. Partner bonding characteristics played relevant roles in both models, as did coping self-efficacy and goal disturbance. Social support seemed mainly relevant in explaining positive affect. Different psychological factors were related to depressive symptoms and positive affect in parents of children with Down's syndrome. Implications are discussed.

  9. Do sex differences in rumination explain sex differences in depression?

    PubMed

    Shors, Tracey J; Millon, Emma M; Chang, Han Yan M; Olson, Ryan L; Alderman, Brandon L

    2017-01-02

    It is generally accepted that women tend to ruminate more than men do and these thought patterns are often associated with depressive symptoms (Nolen-Hoeksema et al., ). Based on these findings, we considered whether the relationship between rumination and depression is stronger in women than in men and if so, whether this might explain the higher prevalence of major depressive disorder (MDD) in women and finally, whether the association can be disrupted through a mind/body intervention. Adult men and women, most of whom were clinically depressed, participated in an intervention known as MAP Training, which combines "mental" training with silent meditation and "physical" training with aerobic exercise (Shors et al., ). After eight weeks of training, both men and women reported significantly fewer symptoms of depression and fewer ruminative thoughts (Alderman et al., ). Statistical correlations between depressive symptoms and ruminative thoughts were strong and significant (rho > 0.50; p < 0.05) for both men and women before and after MAP Training. However, only in women did depressive symptoms relate to "reflective" ruminations, which involve analyses of past events, feelings, and behaviors. This is also the only relationship that dissipated after the intervention. In general, these analyses suggest that the strength of the relationship between depressive symptoms and rumination does not necessarily explain sex differences in depression; but because the relationship is strong, targeting rumination through intervention can reduce the incidence of MDD, which is more prevalent among women. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Hopelessness, Depression, Suicidal Ideation, and Clinical Diagnosis of Depression.

    ERIC Educational Resources Information Center

    Beck, Aaron T.; And Others

    1993-01-01

    Examined relevance of clinical diagnosis of depression for explaining discrepant relationships of hopelessness and depression with suicidal ideation. Administered Beck Depression Inventory, Hopelessness Scale, and Scale for Suicide Ideation to 1,306 patients with mood disorder and 488 patients without mood disorder. Found that hopelessness was 1.3…

  11. Negative cognitive style and cortisol recovery accentuate the relationship between life stress and depressive symptoms.

    PubMed

    Quinn, Meghan E; Grant, Kathryn E; Adam, Emma K

    2018-03-01

    When exposed to stressful life events, a significant number of adolescents will experience depressive symptoms. One model of depression suggests that individuals with a negative cognitive style are most vulnerable to depression following life stress. Alternatively, altered activation of the hypothalamic-pituitary-adrenal axis may explain vulnerability to depression following life stress. Each of these models plausibly explains the emergence of depressive symptoms during adolescence and have been investigated largely independently. The current study recruited a sample of urban adolescents (N = 179) to evaluate whether cortisol response to a laboratory stress induction and negative cognitive style are related and whether they independently interact with exposure to stressful life events to predict symptoms of depression. Negative cognitive style was not associated with cortisol response to the laboratory stressor. Rather, negative cognitive style and cortisol recovery independently interacted with stressful life events to predict current symptoms of depression. Results support a heterogeneous etiology of depression.

  12. Thought Control Ability Is Different from Rumination in Explaining the Association between Neuroticism and Depression: A Three-Study Replication

    PubMed Central

    Lu, Feng-Ying; Yang, Wen-Jing; Zhang, Qing-Lin; Qiu, Jiang

    2017-01-01

    Neuroticism is the most common vulnerability factor of depression. However, the mechanism underlying this vulnerability is still unclear. Previous studies suggested that rumination intensifies the negative effect of neuroticism on depression. However, whether cognitive control could explain the association between neuroticism and depression remains unclear to date. Therefore, this study evaluated the indirect effects of rumination and thought control on the relationship between neuroticism and depression. Seven self-report measures were employed among healthy and main depression disorder (MDD) participants. Three studies were used to examine the hypotheses. Results of the three studies showed significant correlations among neuroticism, rumination, thought control, and depression. Rumination mediated the link between neuroticism and depression among healthy young adults, and this finding replicated previous studies. This study provided new evidence that thought control mediates the association between neuroticism and depression in both healthy and MDD populations. In conclusion, rumination increases neuroticism risk for depression, but high-level thought control decreases the effect of neuroticism on depression. This study may serve as a reference to develop effective and focused interventions for MDD patients. PMID:28620326

  13. Electroconvulsive Therapy: A Primer for Mental Health Counselors.

    ERIC Educational Resources Information Center

    Leinbaugh, Tracy C.

    2001-01-01

    Electroconvulsive therapy is the treatment of choice for severe depressive episodes. Although little definitive research exists to explain its effectiveness, since its development in 1938 it has proven effective for the treatment of depression with psychotic features and suicidal ideation. Explains the procedure and discusses implications for the…

  14. Neo-synthesis of estrogenic or androgenic neurosteroids determine whether long-term potentiation or depression is induced in hippocampus of male rat

    PubMed Central

    Di Mauro, Michela; Tozzi, Alessandro; Calabresi, Paolo; Pettorossi, Vito Enrico; Grassi, Silvarosa

    2015-01-01

    Estrogenic and androgenic steroids synthesized in the brain may rapidly modulate synaptic plasticity interacting with specific membrane receptors. We explored by electrophysiological recordings in hippocampal slices of male rat the influence of 17β-estradiol (E2) and 5α-dihydrotestosterone (DHT) neo-synthesis on the synaptic changes induced in the CA1 region. Induction of long-term depression (LTD) and depotentiation (DP) by low frequency stimulation (LFS, 15 min-1 Hz) and of long-term potentiation (LTP) by high frequency stimulation (HFS, 1 s-100 Hz), medium (MFS, 1 s-50 Hz), or weak (WFS, 1 s-25 Hz) frequency stimulation was assayed under inhibitors of enzymes converting testosterone (T) into DHT (5α-reductase) and T into E2 (P450-aromatase). We found that LFS-LTD depends on DHT synthesis, since it was fully prevented under finasteride, an inhibitor of DHT synthesis, and rescued by exogenous DHT, while the E2 synthesis was not involved. Conversely, the full development of HFS-LTP requires the synthesis of E2, as demonstrated by the LTP reduction observed under letrozole, an inhibitor of E2 synthesis, and its full rescue by exogenous E2. For intermediate stimulation protocols DHT, but not E2 synthesis, was involved in the production of a small LTP induced by WFS, while the E2 synthesis was required for the MFS-dependent LTP. Under the combined block of DHT and E2 synthesis all stimulation frequencies induced partial LTP. Overall, these results indicate that DHT is required for converting the partial LTP into LTD whereas E2 is needed for the full expression of LTP, evidencing a key role of the neo-synthesis of sex neurosteroids in determining the direction of synaptic long-term effects. PMID:26483631

  15. Stability versus neuronal specialization for STDP: long-tail weight distributions solve the dilemma.

    PubMed

    Gilson, Matthieu; Fukai, Tomoki

    2011-01-01

    Spike-timing-dependent plasticity (STDP) modifies the weight (or strength) of synaptic connections between neurons and is considered to be crucial for generating network structure. It has been observed in physiology that, in addition to spike timing, the weight update also depends on the current value of the weight. The functional implications of this feature are still largely unclear. Additive STDP gives rise to strong competition among synapses, but due to the absence of weight dependence, it requires hard boundaries to secure the stability of weight dynamics. Multiplicative STDP with linear weight dependence for depression ensures stability, but it lacks sufficiently strong competition required to obtain a clear synaptic specialization. A solution to this stability-versus-function dilemma can be found with an intermediate parametrization between additive and multiplicative STDP. Here we propose a novel solution to the dilemma, named log-STDP, whose key feature is a sublinear weight dependence for depression. Due to its specific weight dependence, this new model can produce significantly broad weight distributions with no hard upper bound, similar to those recently observed in experiments. Log-STDP induces graded competition between synapses, such that synapses receiving stronger input correlations are pushed further in the tail of (very) large weights. Strong weights are functionally important to enhance the neuronal response to synchronous spike volleys. Depending on the input configuration, multiple groups of correlated synaptic inputs exhibit either winner-share-all or winner-take-all behavior. When the configuration of input correlations changes, individual synapses quickly and robustly readapt to represent the new configuration. We also demonstrate the advantages of log-STDP for generating a stable structure of strong weights in a recurrently connected network. These properties of log-STDP are compared with those of previous models. Through long-tail weight distributions, log-STDP achieves both stable dynamics for and robust competition of synapses, which are crucial for spike-based information processing.

  16. Explaining the sex difference in depression with a unified bargaining model of anger and depression

    PubMed Central

    Hagen, Edward H.; Rosenström, Tom

    2016-01-01

    Background: Women are twice as likely as men to be depressed, a bias that is poorly understood. One evolutionary model proposes that depression is a bargaining strategy to compel reluctant social partners to provide more help in the wake of adversity. An evolutionary model of anger proposes that high upper body strength predisposes individuals to angrily threaten social partners who offer too few benefits or impose too many costs. Here, we propose that when social partners provide too few benefits or impose too many costs, the physically strong become overtly angry and the physically weak become depressed. The sexual dimorphism in upper body strength means that men will be more likely to bargain with anger and physical threats and women with depression. Methodology: We tested this idea using the 2011–12 National Health and Nutrition Examination Survey (NHANES), a large nationally representative sample of US households that included measures of depression and upper body strength. Results: A 2 SD increase in grip strength decreased the odds of depression by more than half (OR=0.4, P=0.0079), which did not appear to be a consequence of confounds with anthropometric, hormonal or socioeconomic variables, but was partially explained by a confound with physical disability. Nevertheless, upper body strength mediated 63% of the effect of sex on depression, but the mediation effect was unexpectedly moderated by age. Conclusions: Low upper body strength is a risk factor for depression, especially in older adults, and the sex difference in body strength appears to explain much of the perplexing sex difference in depression. PMID:26884416

  17. Inhibition of AMP-Activated Protein Kinase Signaling Alleviates Impairments in Hippocampal Synaptic Plasticity Induced by Amyloid β

    PubMed Central

    Ma, Tao; Chen, Yiran; Vingtdeux, Valerie; Zhao, Haitian; Viollet, Benoit; Marambaud, Philippe

    2014-01-01

    The AMP-activated protein kinase (AMPK) is a Ser/Thr kinase that is activated in response to low-energy states to coordinate multiple signaling pathways to maintain cellular energy homeostasis. Dysregulation of AMPK signaling has been observed in Alzheimer's disease (AD), which is associated with abnormal neuronal energy metabolism. In the current study we tested the hypothesis that aberrant AMPK signaling underlies AD-associated synaptic plasticity impairments by using pharmacological and genetic approaches. We found that amyloid β (Aβ)-induced inhibition of long-term potentiation (LTP) and enhancement of long-term depression were corrected by the AMPK inhibitor compound C (CC). Similarly, LTP impairments in APP/PS1 transgenic mice that model AD were improved by CC treatment. In addition, Aβ-induced LTP failure was prevented in mice with genetic deletion of the AMPK α2-subunit, the predominant AMPK catalytic subunit in the brain. Furthermore, we found that eukaryotic elongation factor 2 (eEF2) and its kinase eEF2K are key downstream effectors that mediate the detrimental effects of hyperactive AMPK in AD pathophysiology. Our findings describe a previously unrecognized role of aberrant AMPK signaling in AD-related synaptic pathophysiology and reveal a potential therapeutic target for AD. PMID:25186765

  18. CALHM1 deficiency impairs cerebral neuron activity and memory flexibility in mice.

    PubMed

    Vingtdeux, Valérie; Chang, Eric H; Frattini, Stephen A; Zhao, Haitian; Chandakkar, Pallavi; Adrien, Leslie; Strohl, Joshua J; Gibson, Elizabeth L; Ohmoto, Makoto; Matsumoto, Ichiro; Huerta, Patricio T; Marambaud, Philippe

    2016-04-12

    CALHM1 is a cell surface calcium channel expressed in cerebral neurons. CALHM1 function in the brain remains unknown, but recent results showed that neuronal CALHM1 controls intracellular calcium signaling and cell excitability, two mechanisms required for synaptic function. Here, we describe the generation of Calhm1 knockout (Calhm1(-/-)) mice and investigate CALHM1 role in neuronal and cognitive functions. Structural analysis revealed that Calhm1(-/-) brains had normal regional and cellular architecture, and showed no evidence of neuronal or synaptic loss, indicating that CALHM1 deficiency does not affect brain development or brain integrity in adulthood. However, Calhm1(-/-) mice showed a severe impairment in memory flexibility, assessed in the Morris water maze, and a significant disruption of long-term potentiation without alteration of long-term depression, measured in ex vivo hippocampal slices. Importantly, in primary neurons and hippocampal slices, CALHM1 activation facilitated the phosphorylation of NMDA and AMPA receptors by protein kinase A. Furthermore, neuronal CALHM1 activation potentiated the effect of glutamate on the expression of c-Fos and C/EBPβ, two immediate-early gene markers of neuronal activity. Thus, CALHM1 controls synaptic activity in cerebral neurons and is required for the flexible processing of memory in mice. These results shed light on CALHM1 physiology in the mammalian brain.

  19. Early Growth Response 1 (Egr-1) Regulates N-Methyl-d-aspartate Receptor (NMDAR)-dependent Transcription of PSD-95 and α-Amino-3-hydroxy-5-methyl-4-isoxazole Propionic Acid Receptor (AMPAR) Trafficking in Hippocampal Primary Neurons*

    PubMed Central

    Qin, Xike; Jiang, Yongjun; Tse, Yiu Chung; Wang, Yunling; Wong, Tak Pan; Paudel, Hemant K.

    2015-01-01

    The N-methyl-d-aspartate receptor (NMDAR) controls synaptic plasticity and memory function and is one of the major inducers of transcription factor Egr-1 in the hippocampus. However, how Egr-1 mediates the NMDAR signal in neurons has remained unclear. Here, we show that the hippocampus of mice lacking Egr-1 displays electrophysiology properties and ultrastructure that are similar to mice overexpressing PSD-95, a major scaffolding protein of postsynaptic density involved in synapse formation, synaptic plasticity, and synaptic targeting of AMPA receptors (AMPARs), which mediate the vast majority of excitatory transmission in the CNS. We demonstrate that Egr-1 is a transcription repressor of the PSD-95 gene and is recruited to the PSD-95 promoter in response to NMDAR activation. Knockdown of Egr-1 in rat hippocampal primary neurons blocks NMDAR-induced PSD-95 down-regulation and AMPAR endocytosis. Likewise, overexpression of Egr-1 in rat hippocampal primary neurons causes reduction in PSD-95 protein level and promotes AMPAR endocytosis. Our data indicate that Egr-1 is involved in NMDAR-mediated PSD-95 down-regulation and AMPAR endocytosis, a process important in the expression of long term depression. PMID:26475861

  20. Statistical theory of synaptic connectivity in the neocortex

    NASA Astrophysics Data System (ADS)

    Escobar, Gina

    Learning and long-term memory rely on plasticity of neural circuits. In adult cerebral cortex plasticity can be mediated by modulation of existing synapses and structural reorganization of circuits through growth and retraction of dendritic spines. In the first part of this thesis, we describe a theoretical framework for the analysis of spine remodeling plasticity. New synaptic contacts appear in the neuropil where gaps between axonal and dendritic branches can be bridged by dendritic spines. Such sites are termed potential synapses. We derive expressions for the densities of potential synapses in the neuropil. We calculate the ratio of actual to potential synapses, called the connectivity fraction, and use it to find the number of structurally different circuits attainable with spine remodeling. These parameters are calculated in four systems: mouse occipital cortex, rat hippocampal area CA1, monkey primary visual (V1), and human temporal cortex. The neurogeometric results indicate that a dendritic spine can choose among an average of 4-7 potential targets in rodents, while in primates it can choose from 10-20 potential targets. The potential of the neuropil to undergo circuit remodeling is found to be highest in rat CA1 (4.9-6.0 nats/mum 3) and lowest in monkey V1 (0.9-1.0 nats/mum3). We evaluate the lower bound of neuron selectivity in the choice of synaptic partners and find that post-synaptic excitatory neurons in rodents make synaptic contacts with more than 21-30% of pre-synaptic axons encountered with new spine growth. Primate neurons appear to be more selective, making synaptic connections with more than 7-15% of encountered axons. Another plasticity mechanism is included in the second part of this work: long-term potentiation and depression of excitatory synaptic connections. Because synaptic strength is correlated with the size of the synapse, the former can be inferred from the distribution of spine head volumes. To this end we analyze and compare 166 distributions of spine head volumes and spine lengths from mouse, rat, monkey, and human brains. We develope a statistical theory in which the equilibrium distribution of dendritic spine shapes is governed by the principle of synaptic entropy maximization under a "generalized cost" constraint. We find the generalized cost of dendritic spines and show that it universally depends on the spine shape, i.e. the dependence is the same in all the considered systems. We show that the modulatory and structural plasticity mechanisms in adults are in a statistical equilibrium with each other, the numbers of dendritic spines in different cortical areas are nearly optimally chosen for memory storage, and the distribution of spine shapes is governed by a single parameter -- the effective temperature. Our results suggest that the effective temperature of a cortical area may be viewed as a measure of longevity of stored memories. Finally, we test the hypothesis that the number of spines in the neuropil is chosen to optimize its storage information capacity.

Top