Anchoring and synaptic stability of PSD-95 is driven by ephrin-B3.
Hruska, Martin; Henderson, Nathan T; Xia, Nan L; Le Marchand, Sylvain J; Dalva, Matthew B
2015-11-01
Organization of signaling complexes at excitatory synapses by membrane-associated guanylate kinase (MAGUK) proteins regulates synapse development, plasticity, senescence and disease. Post-translational modification of MAGUK family proteins can drive their membrane localization, yet it is unclear how these intracellular proteins are targeted to sites of synaptic contact. Here we show using super-resolution imaging, biochemical approaches and in vivo models that the trans-synaptic organizing protein ephrin-B3 controls the synaptic localization and stability of PSD-95 and links these events to changes in neuronal activity via negative regulation of a newly identified mitogen-associated protein kinase (MAPK)-dependent phosphorylation site on ephrin-B3, Ser332. Unphosphorylated ephrin-B3 was enriched at synapses, and interacted directly with and stabilized PSD-95 at synapses. Activity-induced phosphorylation of Ser332 dispersed ephrin-B3 from synapses, prevented the interaction with PSD-95 and enhanced the turnover of PSD-95. Thus, ephrin-B3 specifies the synaptic localization of PSD-95 and likely links the synaptic stability of PSD-95 to changes in neuronal activity.
Anchoring and Synaptic stability of PSD-95 is driven by ephrin-B3
Hruska, Martin; Henderson, Nathan T.; Xia, Nan L.; Le Marchand, Sylvain J.; Dalva, Matthew B.
2015-01-01
Summary Organization of signaling complexes at excitatory synapses by Membrane Associated Guanylate Kinase (MAGUK) proteins regulates synapse development, plasticity, senescence, and disease. Post-translational modification of MAGUK family proteins can drive their membrane localization, yet it is unclear how these intracellular proteins are targeted to sites of synaptic contact. Here we show using super-resolution imaging, biochemical approaches, and in vivo models that the trans-synaptic organizing protein, ephrin-B3, controls the synaptic localization and stability of PSD-95 and links these events to changes in neuronal activity via negative regulation of a novel MAPK-dependent phosphorylation site on ephrin-B3 (S332). Unphosphorylated ephrin-B3 is enriched at synapses, interacts directly with and stabilizes PSD-95 at synapses. Activity induced phosphorylation of S332 disperses ephrin-B3 from synapses, prevents the interaction with, and enhances the turnover of PSD-95. Thus, ephrin-B3 specifies the synaptic localization of PSD-95 and likely links the synaptic stability of PSD-95 to changes in neuronal activity. PMID:26479588
Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress
Grønli, Janne; Soulé, Jonathan; Bramham, Clive R.
2014-01-01
Sleep has been ascribed a critical role in cognitive functioning. Several lines of evidence implicate sleep in the consolidation of synaptic plasticity and long-term memory. Stress disrupts sleep while impairing synaptic plasticity and cognitive performance. Here, we discuss evidence linking sleep to mechanisms of protein synthesis-dependent synaptic plasticity and synaptic scaling. We then consider how disruption of sleep by acute and chronic stress may impair these mechanisms and degrade sleep function. PMID:24478645
O'Connor, Eoin C; Bariselli, Sebastiano; Bellone, Camilla
2014-04-01
Most of us engage in social interactions on a daily basis and the repertoire of social behaviors we acquire during development and later in life are incredibly varied. However, in many neurodevelopmental disorders, including autism spectrum disorders (ASDs), social behavior is severely compromised and indeed this represents a key diagnostic component for such conditions. From genetic association studies, it is increasingly apparent that genes identified as altered in individuals with ASDs often encode synaptic proteins. Moreover, these synaptic proteins typically serve to scaffold group-I metabotropic glutamate receptors (group-I mGluRs) and ionotropic glutamate receptors (iGluRs; AMPARs and NMDARs), or to enable group-I mGluR to iGluR crosstalk via protein synthesis. Here we aim to explore the possibility of a causal link between altered function of such synaptic proteins and impaired social behaviors that feature in neurodevelopmental disorders, such as ASDs. We review the known synaptic function and role in social behaviors of selected post-synaptic structural proteins (Shank, SAPAP and neuroligin) and regulators of protein synthesis (TSC1/2, FMRP and PTEN). While manipulations of proteins involved in group-I mGluR and iGluR scaffolding or crosstalk frequently lead to profound alterations in synaptic function and one or more components of social behavior, the neuronal circuits responsible for impairments in specific social behaviors are often poorly defined. We argue for an improved understanding of the neuronal circuits underlying specific social behaviors to aid the development of new ASD therapies. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Gelinas, Jennifer N.; Banko, Jessica L.; Peters, Melinda M.; Klann, Eric; Weeber, Edwin J.; Nguyen, Peter V.
2008-01-01
cAMP is a critical second messenger implicated in synaptic plasticity and memory in the mammalian brain. Substantial evidence links increases in intracellular cAMP to activation of cAMP-dependent protein kinase (PKA) and subsequent phosphorylation of downstream effectors (transcription factors, receptors, protein kinases) necessary for long-term…
Wang, James K. T.; Langfelder, Peter; Horvath, Steve; Palazzolo, Michael J.
2017-01-01
Huntington's disease (HD) is a progressive and autosomal dominant neurodegeneration caused by CAG expansion in the huntingtin gene (HTT), but the pathophysiological mechanism of mutant HTT (mHTT) remains unclear. To study HD using systems biological methodologies on all published data, we undertook the first comprehensive curation of two key PubMed HD datasets: perturbation genes that impact mHTT-driven endpoints and therefore are putatively linked causally to pathogenic mechanisms, and the protein interactome of HTT that reflects its biology. We perused PubMed articles containing co-citation of gene IDs and MeSH terms of interest to generate mechanistic gene sets for iterative enrichment analyses and rank ordering. The HD Perturbation database of 1,218 genes highly overlaps the HTT Interactome of 1,619 genes, suggesting links between normal HTT biology and mHTT pathology. These two HD datasets are enriched for protein networks of key genes underlying two mechanisms not previously implicated in HD nor in each other: exosome synaptic functions and homeostatic synaptic plasticity. Moreover, proteins, possibly including HTT, and miRNA detected in exosomes from a wide variety of sources also highly overlap the HD datasets, suggesting both mechanistic and biomarker links. Finally, the HTT Interactome highly intersects protein networks of pathogenic genes underlying Parkinson's, Alzheimer's and eight non-HD polyglutamine diseases, ALS, and spinal muscular atrophy. These protein networks in turn highly overlap the exosome and homeostatic synaptic plasticity gene sets. Thus, we hypothesize that HTT and other neurodegeneration pathogenic genes form a large interlocking protein network involved in exosome and homeostatic synaptic functions, particularly where the two mechanisms intersect. Mutant pathogenic proteins cause dysfunctions at distinct points in this network, each altering the two mechanisms in specific fashion that contributes to distinct disease pathologies, depending on the gene mutation and the cellular and biological context. This protein network is rich with drug targets, and exosomes may provide disease biomarkers, thus enabling drug discovery. All the curated datasets are made available for other investigators. Elucidating the roles of pathogenic neurodegeneration genes in exosome and homeostatic synaptic functions may provide a unifying framework for the age-dependent, progressive and tissue selective nature of multiple neurodegenerative diseases. PMID:28611571
Wang, James K T; Langfelder, Peter; Horvath, Steve; Palazzolo, Michael J
2017-01-01
Huntington's disease (HD) is a progressive and autosomal dominant neurodegeneration caused by CAG expansion in the huntingtin gene ( HTT ), but the pathophysiological mechanism of mutant HTT (mHTT) remains unclear. To study HD using systems biological methodologies on all published data, we undertook the first comprehensive curation of two key PubMed HD datasets: perturbation genes that impact mHTT-driven endpoints and therefore are putatively linked causally to pathogenic mechanisms, and the protein interactome of HTT that reflects its biology. We perused PubMed articles containing co-citation of gene IDs and MeSH terms of interest to generate mechanistic gene sets for iterative enrichment analyses and rank ordering. The HD Perturbation database of 1,218 genes highly overlaps the HTT Interactome of 1,619 genes, suggesting links between normal HTT biology and mHTT pathology. These two HD datasets are enriched for protein networks of key genes underlying two mechanisms not previously implicated in HD nor in each other: exosome synaptic functions and homeostatic synaptic plasticity. Moreover, proteins, possibly including HTT, and miRNA detected in exosomes from a wide variety of sources also highly overlap the HD datasets, suggesting both mechanistic and biomarker links. Finally, the HTT Interactome highly intersects protein networks of pathogenic genes underlying Parkinson's, Alzheimer's and eight non-HD polyglutamine diseases, ALS, and spinal muscular atrophy. These protein networks in turn highly overlap the exosome and homeostatic synaptic plasticity gene sets. Thus, we hypothesize that HTT and other neurodegeneration pathogenic genes form a large interlocking protein network involved in exosome and homeostatic synaptic functions, particularly where the two mechanisms intersect. Mutant pathogenic proteins cause dysfunctions at distinct points in this network, each altering the two mechanisms in specific fashion that contributes to distinct disease pathologies, depending on the gene mutation and the cellular and biological context. This protein network is rich with drug targets, and exosomes may provide disease biomarkers, thus enabling drug discovery. All the curated datasets are made available for other investigators. Elucidating the roles of pathogenic neurodegeneration genes in exosome and homeostatic synaptic functions may provide a unifying framework for the age-dependent, progressive and tissue selective nature of multiple neurodegenerative diseases.
Stochastic lattice model of synaptic membrane protein domains.
Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A
2017-05-01
Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.
Emerging Synaptic Molecules as Candidates in the Etiology of Neurological Disorders
Torres, Viviana I.; Vallejo, Daniela
2017-01-01
Synapses are complex structures that allow communication between neurons in the central nervous system. Studies conducted in vertebrate and invertebrate models have contributed to the knowledge of the function of synaptic proteins. The functional synapse requires numerous protein complexes with specialized functions that are regulated in space and time to allow synaptic plasticity. However, their interplay during neuronal development, learning, and memory is poorly understood. Accumulating evidence links synapse proteins to neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. In this review, we describe the way in which several proteins that participate in cell adhesion, scaffolding, exocytosis, and neurotransmitter reception from presynaptic and postsynaptic compartments, mainly from excitatory synapses, have been associated with several synaptopathies, and we relate their functions to the disease phenotype. PMID:28331639
1993-01-01
Stiff-Man syndrome (SMS) is a rare disease of the central nervous system (CNS) characterized by progressive rigidity of the body musculature with superimposed painful spasms. An autoimmune origin of the disease has been proposed. In a caseload of more than 100 SMS patients, 60% were found positive for autoantibodies directed against the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD). Few patients, all women affected by breast cancer, were negative for GAD autoantibodies but positive for autoantibodies directed against a 128- kD synaptic protein. We report here that this antigen is amphiphysin. GAD and amphiphysin are nonintrinsic membrane proteins that are concentrated in nerve terminals, where a pool of both proteins is associated with the cytoplasmic surface of synaptic vesicles. GAD and amphiphysin are the only two known targets of CNS autoimmunity with this distribution. This finding suggests a possible link between autoimmunity directed against cytoplasmic proteins associated with synaptic vesicles and SMS. PMID:8245793
Cellular and synaptic network defects in autism
Peça, João; Feng, Guoping
2012-01-01
Many candidate genes are now thought to confer susceptibility to autism spectrum disorder (ASD). Here we review four interrelated complexes, each composed of multiple families of genes that functionally coalesce on common cellular pathways. We illustrate a common thread in the organization of glutamatergic synapses and suggest a link between genes involved in Tuberous Sclerosis Complex, Fragile X syndrome, Angelman syndrome and several synaptic ASD candidate genes. When viewed in this context, progress in deciphering the molecular architecture of cellular protein-protein interactions together with the unraveling of synaptic dysfunction in neural networks may prove pivotal to advancing our understanding of ASDs. PMID:22440525
Adducin at the Neuromuscular Junction in Amyotrophic Lateral Sclerosis: Hanging on for Dear Life
Krieger, Charles; Wang, Simon Ji Hau; Yoo, Soo Hyun; Harden, Nicholas
2016-01-01
The neurological dysfunction in amyotrophic lateral sclerosis (ALS)/motor neurone disease (MND) is associated with defective nerve-muscle contacts early in the disease suggesting that perturbations of cell adhesion molecules (CAMs) linking the pre- and post-synaptic components of the neuromuscular junction (NMJ) are involved. To search for candidate proteins implicated in this degenerative process, researchers have studied the Drosophila larval NMJ and find that the cytoskeleton-associated protein, adducin, is ideally placed to regulate synaptic contacts. By controlling the levels of synaptic proteins, adducin can de-stabilize synaptic contacts. Interestingly, elevated levels of phosphorylated adducin have been reported in ALS patients and in a mouse model of the disease. Adducin is regulated by phosphorylation through protein kinase C (PKC), some isoforms of which exhibit Ca2+-dependence, raising the possibility that changes in intracellular Ca2+ might alter PKC activation and secondarily influence adducin phosphorylation. Furthermore, adducin has interactions with the alpha subunit of the Na+/K+-ATPase. Thus, the phosphorylation of adducin may secondarily influence synaptic stability at the NMJ and so influence pre- and post-synaptic integrity at the NMJ in ALS. PMID:26858605
Nie, Jingjing; Yang, Xiaosu
2017-01-01
In recent years, rehabilitation of ischemic stroke draws more and more attention in the world, and has been linked to changes of synaptic plasticity. Exercise training improves motor function of ischemia as well as cognition which is associated with formation of learning and memory. The molecular basis of learning and memory might be synaptic plasticity. Research has therefore been conducted in an attempt to relate effects of exercise training to neuroprotection and neurogenesis adjacent to the ischemic injury brain. The present paper reviews the current literature addressing this question and discusses the possible mechanisms involved in modulation of synaptic plasticity by exercise training. This review shows the pathological process of synaptic dysfunction in ischemic roughly and then discusses the effects of exercise training on scaffold proteins and regulatory protein expression. The expression of scaffold proteins generally increased after training, but the effects on regulatory proteins were mixed. Moreover, the compositions of postsynaptic receptors were changed and the strength of synaptic transmission was enhanced after training. Finally, the recovery of cognition is critically associated with synaptic remodeling in an injured brain, and the remodeling occurs through a number of local regulations including mRNA translation, remodeling of cytoskeleton, and receptor trafficking into and out of the synapse. We do provide a comprehensive knowledge of synaptic plasticity enhancement obtained by exercise training in this review.
Rohrbough, Jeffrey; Rushton, Emma; Woodruff, Elvin; Fergestad, Tim; Vigneswaran, Krishanthan; Broadie, Kendal
2007-01-01
Formation and regulation of excitatory glutamatergic synapses is essential for shaping neural circuits throughout development. In a Drosophila genetic screen for synaptogenesis mutants, we identified mind the gap (mtg), which encodes a secreted, extracellular N-glycosaminoglycan-binding protein. MTG is expressed neuronally and detected in the synaptic cleft, and is required to form the specialized transsynaptic matrix that links the presynaptic active zone with the post-synaptic glutamate receptor (GluR) domain. Null mtg embryonic mutant synapses exhibit greatly reduced GluR function, and a corresponding loss of localized GluR domains. All known post-synaptic signaling/scaffold proteins functioning upstream of GluR localization are also grossly reduced or mislocalized in mtg mutants, including the dPix–dPak–Dock cascade and the Dlg/PSD-95 scaffold. Ubiquitous or neuronally targeted mtg RNA interference (RNAi) similarly reduce post-synaptic assembly, whereas post-synaptically targeted RNAi has no effect, indicating that presynaptic MTG induces and maintains the post-synaptic pathways driving GluR domain formation. These findings suggest that MTG is secreted from the presynaptic terminal to shape the extracellular synaptic cleft domain, and that the cleft domain functions to mediate transsynaptic signals required for post-synaptic development. PMID:17901219
Stephenson, Jason R; Wang, Xiaohan; Perfitt, Tyler L; Parrish, Walker P; Shonesy, Brian C; Marks, Christian R; Mortlock, Douglas P; Nakagawa, Terunaga; Sutcliffe, James S; Colbran, Roger J
2017-02-22
Characterizing the functional impact of novel mutations linked to autism spectrum disorder (ASD) provides a deeper mechanistic understanding of the underlying pathophysiological mechanisms. Here we show that a de novo Glu183 to Val (E183V) mutation in the CaMKIIα catalytic domain, identified in a proband diagnosed with ASD, decreases both CaMKIIα substrate phosphorylation and regulatory autophosphorylation, and that the mutated kinase acts in a dominant-negative manner to reduce CaMKIIα-WT autophosphorylation. The E183V mutation also reduces CaMKIIα binding to established ASD-linked proteins, such as Shank3 and subunits of l-type calcium channels and NMDA receptors, and increases CaMKIIα turnover in intact cells. In cultured neurons, the E183V mutation reduces CaMKIIα targeting to dendritic spines. Moreover, neuronal expression of CaMKIIα-E183V increases dendritic arborization and decreases both dendritic spine density and excitatory synaptic transmission. Mice with a knock-in CaMKIIα-E183V mutation have lower total forebrain CaMKIIα levels, with reduced targeting to synaptic subcellular fractions. The CaMKIIα-E183V mice also display aberrant behavioral phenotypes, including hyperactivity, social interaction deficits, and increased repetitive behaviors. Together, these data suggest that CaMKIIα plays a previously unappreciated role in ASD-related synaptic and behavioral phenotypes. SIGNIFICANCE STATEMENT Many autism spectrum disorder (ASD)-linked mutations disrupt the function of synaptic proteins, but no single gene accounts for >1% of total ASD cases. The molecular networks and mechanisms that couple the primary deficits caused by these individual mutations to core behavioral symptoms of ASD remain poorly understood. Here, we provide the first characterization of a mutation in the gene encoding CaMKIIα linked to a specific neuropsychiatric disorder. Our findings demonstrate that this ASD-linked de novo CAMK2A mutation disrupts multiple CaMKII functions, induces synaptic deficits, and causes ASD-related behavioral alterations, providing novel insights into the synaptic mechanisms contributing to ASD. Copyright © 2017 the authors 0270-6474/17/372217-18$15.00/0.
Synaptic markers of cognitive decline in neurodegenerative diseases: a proteomic approach.
Bereczki, Erika; Branca, Rui M; Francis, Paul T; Pereira, Joana B; Baek, Jean-Ha; Hortobágyi, Tibor; Winblad, Bengt; Ballard, Clive; Lehtiö, Janne; Aarsland, Dag
2018-02-01
See Attems and Jellinger (doi:10.1093/brain/awx360) for a scientific commentary on this article.Cognitive changes occurring throughout the pathogenesis of neurodegenerative diseases are directly linked to synaptic loss. We used in-depth proteomics to compare 32 post-mortem human brains in the prefrontal cortex of prospectively followed patients with Alzheimer's disease, Parkinson's disease with dementia, dementia with Lewy bodies and older adults without dementia. In total, we identified 10 325 proteins, 851 of which were synaptic proteins. Levels of 25 synaptic proteins were significantly altered in the various dementia groups. Significant loss of SNAP47, GAP43, SYBU (syntabulin), LRFN2, SV2C, SYT2 (synaptotagmin 2), GRIA3 and GRIA4 were further validated on a larger cohort comprised of 92 brain samples using ELISA or western blot. Cognitive impairment before death and rate of cognitive decline significantly correlated with loss of SNAP47, SYBU, LRFN2, SV2C and GRIA3 proteins. Besides differentiating Parkinson's disease dementia, dementia with Lewy bodies, and Alzheimer's disease from controls with high sensitivity and specificity, synaptic proteins also reliably discriminated Parkinson's disease dementia from Alzheimer's disease patients. Our results suggest that these particular synaptic proteins have an important predictive and discriminative molecular fingerprint in neurodegenerative diseases and could be a potential target for early disease intervention. © The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ogundele, Olalekan M; Pardo, Joaquin; Francis, Joseph; Goya, Rodolfo G; Lee, Charles C
2018-01-01
Insulin-like growth factor 1 receptor (IGF-1R) signaling regulates the activity and phosphorylation of downstream kinases linked to inflammation, neurodevelopment, aging and synaptic function. In addition to the control of Ca 2+ currents, IGF-1R signaling modulates the activity of calcium-calmodulin-dependent kinase 2 alpha (CaMKIIα) and mitogen activated protein kinase (MAPK/ErK) through multiple signaling pathways. These proteins (CaMKIIα and MAPK) regulate Ca 2+ movement and long-term potentiation (LTP). Since IGF-1R controls the synaptic activity of Ca 2+ , CaMKIIα and MAPK signaling, the possible mechanism through which an age-dependent change in IGF-1R can alter the synaptic expression and phosphorylation of these proteins in aging needs to be investigated. In this study, we evaluated the relationship between an age-dependent change in brain IGF-1R and phosphorylation of CaMKIIα/MAPK. Furthermore, we elucidated possible mechanisms through which dysregulated CaMKIIα/MAPK interaction may be linked to a change in neurotransmitter processing and synaptic function. Male C57BL/6 VGAT-Venus mice at postnatal days 80 (P80), 365 and 730 were used to study age-related neural changes in two brain regions associated with cognitive function: hippocampus and prefrontal cortex (PFC). By means of high throughput confocal imaging and quantitative immunoblotting, we evaluated the distribution and expression of IGF-1, IGF-1R, CaMKIIα, p-CaMKIIα, MAPK and p-MAPK in whole brain lysate, hippocampus and cortex. Furthermore, we compared protein expression patterns and regional changes at P80, P365 and P730. Ultimately, we determined the relative phosphorylation pattern of CaMKIIα and MAPK through quantification of neural p-CaMKIIα and p-MAPK/ErK, and IGF-1R expression for P80, P365 and P730 brain samples. In addition to a change in synaptic function, our results show a decrease in neural IGF-1/IGF-1R expression in whole brain, hippocampus and cortex of aged mice. This was associated with a significant upregulation of phosphorylated neural MAPK (p-MAPK) and decrease in total brain CaMKIIα (i.e., CaMKIIα and p-CaMKIIα) in the aged brain. Taken together, we showed that brain aging is associated with a change in neural IGF-1/IGF-1R expression and may be linked to a change in phosphorylation of synaptic kinases (CaMKIIα and MAPK) that are involved in the modulation of LTP.
Characterization of the zinc-induced Shank3 interactome of mouse synaptosome.
Lee, Yeunkum; Ryu, Jae Ryun; Kang, Hyojin; Kim, Yoonhee; Kim, Shinhyun; Zhang, Yinhua; Jin, Chunmei; Cho, Hyo Min; Kim, Won-Ki; Sun, Woong; Han, Kihoon
2017-12-16
Variants of the SHANK3 gene, which encodes a core scaffold protein of the postsynaptic density of excitatory synapses, have been causally associated with numerous brain disorders. Shank3 proteins directly bind zinc ions through their C-terminal sterile α motif domain, which enhances the multimerization and synaptic localization of Shank3, to regulate excitatory synaptic strength. However, no studies have explored whether zinc affects the protein interactions of Shank3, which might contribute to the synaptic changes observed after zinc application. To examine this, we first purified Shank3 protein complexes from mouse brain synaptosomal lysates that were incubated with different concentrations of ZnCl 2 , and analyzed them with mass spectrometry. We used strict criteria to identify 71 proteins that specifically interacted with Shank3 when extra ZnCl 2 was added to the lysate. To characterize the zinc-induced Shank3 interactome, we performed various bioinformatic analyses that revealed significant associations of the interactome with subcellular compartments, including mitochondria, and brain disorders, such as bipolar disorder and schizophrenia. Together, our results showing that zinc affected the Shank3 protein interactions of in vitro mouse synaptosomes provided an additional link between zinc and core synaptic proteins that have been implicated in multiple brain disorders. Copyright © 2017 Elsevier Inc. All rights reserved.
Conserved properties of Drosophila Insomniac link sleep regulation and synaptic function.
Li, Qiuling; Kellner, David A; Hatch, Hayden A M; Yumita, Tomohiro; Sanchez, Sandrine; Machold, Robert P; Frank, C Andrew; Stavropoulos, Nicholas
2017-05-01
Sleep is an ancient animal behavior that is regulated similarly in species ranging from flies to humans. Various genes that regulate sleep have been identified in invertebrates, but whether the functions of these genes are conserved in mammals remains poorly explored. Drosophila insomniac (inc) mutants exhibit severely shortened and fragmented sleep. Inc protein physically associates with the Cullin-3 (Cul3) ubiquitin ligase, and neuronal depletion of Inc or Cul3 strongly curtails sleep, suggesting that Inc is a Cul3 adaptor that directs the ubiquitination of neuronal substrates that impact sleep. Three proteins similar to Inc exist in vertebrates-KCTD2, KCTD5, and KCTD17-but are uncharacterized within the nervous system and their functional conservation with Inc has not been addressed. Here we show that Inc and its mouse orthologs exhibit striking biochemical and functional interchangeability within Cul3 complexes. Remarkably, KCTD2 and KCTD5 restore sleep to inc mutants, indicating that they can substitute for Inc in vivo and engage its neuronal targets relevant to sleep. Inc and its orthologs localize similarly within fly and mammalian neurons and can traffic to synapses, suggesting that their substrates may include synaptic proteins. Consistent with such a mechanism, inc mutants exhibit defects in synaptic structure and physiology, indicating that Inc is essential for both sleep and synaptic function. Our findings reveal that molecular functions of Inc are conserved through ~600 million years of evolution and support the hypothesis that Inc and its orthologs participate in an evolutionarily conserved ubiquitination pathway that links synaptic function and sleep regulation.
Belluzzi, Elisa; Gonnelli, Adriano; Cirnaru, Maria-Daniela; Marte, Antonella; Plotegher, Nicoletta; Russo, Isabella; Civiero, Laura; Cogo, Susanna; Carrion, Maria Perèz; Franchin, Cinzia; Arrigoni, Giorgio; Beltramini, Mariano; Bubacco, Luigi; Onofri, Franco; Piccoli, Giovanni; Greggio, Elisa
2016-01-13
Lrrk2, a gene linked to Parkinson's disease, encodes a large scaffolding protein with kinase and GTPase activities implicated in vesicle and cytoskeletal-related processes. At the presynaptic site, LRRK2 associates with synaptic vesicles through interaction with a panel of presynaptic proteins. Here, we show that LRRK2 kinase activity influences the dynamics of synaptic vesicle fusion. We therefore investigated whether LRRK2 phosphorylates component(s) of the exo/endocytosis machinery. We have previously observed that LRRK2 interacts with NSF, a hexameric AAA+ ATPase that couples ATP hydrolysis to the disassembling of SNARE proteins allowing them to enter another fusion cycle during synaptic exocytosis. Here, we demonstrate that NSF is a substrate of LRRK2 kinase activity. LRRK2 phosphorylates full-length NSF at threonine 645 in the ATP binding pocket of D2 domain. Functionally, NSF phosphorylated by LRRK2 displays enhanced ATPase activity and increased rate of SNARE complex disassembling. Substitution of threonine 645 with alanine abrogates LRRK2-mediated increased ATPase activity. Given that the most common Parkinson's disease LRRK2 G2019S mutation displays increased kinase activity, our results suggest that mutant LRRK2 may impair synaptic vesicle dynamics via aberrant phosphorylation of NSF.
Caccamo, Antonella; Branca, Caterina; Talboom, Joshua S.; Shaw, Darren M.; Turner, Dharshaun; Ma, Luyao; Messina, Angela; Huang, Zebing; Wu, Jie
2015-01-01
Aging is the most important risk factor associated with Alzheimer's disease (AD); however, the molecular mechanisms linking aging to AD remain unclear. Suppression of the ribosomal protein S6 kinase 1 (S6K1) increases healthspan and lifespan in several organisms, from nematodes to mammals. Here we show that S6K1 expression is upregulated in the brains of AD patients. Using a mouse model of AD, we found that genetic reduction of S6K1 improved synaptic plasticity and spatial memory deficits, and reduced the accumulation of amyloid-β and tau, the two neuropathological hallmarks of AD. Mechanistically, these changes were linked to reduced translation of tau and the β-site amyloid precursor protein cleaving enzyme 1, a key enzyme in the generation of amyloid-β. Our results implicate S6K1 dysregulation as a previously unidentified molecular mechanism underlying synaptic and memory deficits in AD. These findings further suggest that therapeutic manipulation of S6K1 could be a valid approach to mitigate AD pathology. SIGNIFICANCE STATEMENT Aging is the most important risk factor for Alzheimer's disease (AD). However, little is known about how it contributes to AD pathogenesis. S6 kinase 1 (S6K1) is a protein kinase involved in regulation of protein translation. Reducing S6K1 activity increases lifespan and healthspan. We report the novel finding that reducing S6K1 activity in 3xTg-AD mice ameliorates synaptic and cognitive deficits. These improvement were associated with a reduction in amyloid-β and tau pathology. Mechanistically, lowering S6K1 levels reduced translation of β-site amyloid precursor protein cleaving enzyme 1 and tau, two key proteins involved in AD pathogenesis. These data suggest that S6K1 may represent a molecular link between aging and AD. Given that aging is the most important risk factor for most neurodegenerative diseases, our results may have far-reaching implications into other diseases. PMID:26468204
DE NOVO MUTATIONS IN AUTISM IMPLICATE THE SYNAPTIC ELIMINATION NETWORK.
Ram Venkataraman, Guhan; O'Connell, Chloe; Egawa, Fumiko; Kashef-Haghighi, Dorna; Wall, Dennis P
2017-01-01
Autism has been shown to have a major genetic risk component; the architecture of documented autism in families has been over and again shown to be passed down for generations. While inherited risk plays an important role in the autistic nature of children, de novo (germline) mutations have also been implicated in autism risk. Here we find that autism de novo variants verified and published in the literature are Bonferroni-significantly enriched in a gene set implicated in synaptic elimination. Additionally, several of the genes in this synaptic elimination set that were enriched in protein-protein interactions (CACNA1C, SHANK2, SYNGAP1, NLGN3, NRXN1, and PTEN) have been previously confirmed as genes that confer risk for the disorder. The results demonstrate that autism-associated de novos are linked to proper synaptic pruning and density, hinting at the etiology of autism and suggesting pathophysiology for downstream correction and treatment.
Fung, Samantha J.; Sivagnanasundaram, Sinthuja; Shannon Weickert, Cynthia
2010-01-01
Background Reduced synaptic connectivity in frontal cortex may contribute to schizophrenia symptoms. While altered mRNA and protein expression of various synaptic genes has been found, discrepancies between studies mean a generalisable synaptic pathology in schizophrenia has not been identified. Methods We determined if mRNAs encoding presynaptic proteins enriched in inhibitory [vesicular GABA transporter (VGAT) and complexin 1] and/or excitatory [vesicular glutamate transporter (VGluT1) and complexin 2] terminals are altered in the dorsolateral prefrontal cortex of subjects with schizophrenia (n=37 patients, n=37 controls). We also measured mRNA expression of markers associated with synaptic plasticity/neurite outgrowth [growth associated protein 43 (GAP43) and neuronal navigators 1 and 2 (NAV1 and NAV2)]; and mRNAs of other synaptic-associated proteins previously implicated in schizophrenia: dysbindin and vesicle-associated membrane protein (VAMP1) mRNAs using quantitative RT-PCR. Results No significant changes in complexin 1, VGAT, complexin 2, VGluT1, dysbindin, NAV2, or VAMP1 mRNA expression were found, however we observed reduced expression of mRNAs associated with plasticity/cytoskeletal modification (GAP43 and NAV1) in schizophrenia. Although dysbindin mRNA did not differ in schizophrenia compared to controls, dysbindin mRNA positively correlated with GAP-43 and NAV1 in schizophrenia, but not in controls, suggesting low levels of dysbindin may be linked to reduced plasticity in the disease state. No relationships between three dysbindin genetic polymorphisms previously associated with dysbindin mRNA levels were found. Conclusions A reduction in the plasticity of synaptic terminals supports the hypothesis that reduced modifiability of synaptic terminals may contribute to neuropathology and working memory deficits in schizophrenia. PMID:21145444
Molecular mechanisms of fragile X syndrome: a twenty-year perspective.
Santoro, Michael R; Bray, Steven M; Warren, Stephen T
2012-01-01
Fragile X syndrome (FXS) is a common form of inherited intellectual disability and is one of the leading known causes of autism. The mutation responsible for FXS is a large expansion of the trinucleotide CGG repeat in the 5' untranslated region of the X-linked gene FMR1. This expansion leads to DNA methylation of FMR1 and to transcriptional silencing, which results in the absence of the gene product, FMRP, a selective messenger RNA (mRNA)-binding protein that regulates the translation of a subset of dendritic mRNAs. FMRP is critical for mGluR (metabotropic glutamate receptor)-dependent long-term depression, as well as for other forms of synaptic plasticity; its absence causes excessive and persistent protein synthesis in postsynaptic dendrites and dysregulated synaptic function. Studies continue to refine our understanding of FMRP's role in synaptic plasticity and to uncover new functions of this protein, which have illuminated therapeutic approaches for FXS.
Nuclear envelope: positioning nuclei and organizing synapses
Razafsky, David; Hodzic, Didier
2015-01-01
The nuclear envelope plays an essential role in nuclear positioning within cells and tissues. This review highlights advances in understanding the mechanisms of nuclear positioning during skeletal muscle and central nervous system development. New findings, particularly about Atype lamins and Nesprin1, may link nuclear envelope integrity to synaptic integrity. Thus synaptic defects, rather than nuclear mispositioning, may underlie human pathologies associated with mutations of nuclear envelope proteins. PMID:26079712
Eadie, Brennan D; Cushman, Jesse; Kannangara, Timal S; Fanselow, Michael S; Christie, Brian R
2012-02-01
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability in humans. This X-linked disorder is caused by the transcriptional repression of a single gene, Fmr1. The loss of Fmr1 transcription prevents the production of Fragile X mental retardation protein (FMRP) which in turn disrupts the expression of a variety of key synaptic proteins that appear to be important for intellectual ability. A clear link between synaptic dysfunction and behavioral impairment has been elusive, despite the fact that several animal models of FXS have been generated. Here we report that Fmr1 knockout mice exhibit impaired bidirectional synaptic plasticity in the dentate gyrus (DG) of the hippocampus. These deficits are associated with a novel decrease in functional NMDARs (N-methyl-D-aspartate receptors). In addition, mice lacking the Fmr1 gene show impaired performance in a context discrimination task that normally requires functional NMDARs in the DG. These data indicate that Fmr1 deletion results in significant NMDAR-dependent electrophysiological and behavioral impairments specific to the DG. Copyright © 2010 Wiley Periodicals, Inc.
Cuthbert, Peter C; Stanford, Lianne E; Coba, Marcelo P; Ainge, James A; Fink, Ann E; Opazo, Patricio; Delgado, Jary Y; Komiyama, Noboru H; O'Dell, Thomas J; Grant, Seth G N
2007-03-07
Understanding the mechanisms whereby information encoded within patterns of action potentials is deciphered by neurons is central to cognitive psychology. The multiprotein complexes formed by NMDA receptors linked to synaptic membrane-associated guanylate kinase (MAGUK) proteins including synapse-associated protein 102 (SAP102) and other associated proteins are instrumental in these processes. Although humans with mutations in SAP102 show mental retardation, the physiological and biochemical mechanisms involved are unknown. Using SAP102 knock-out mice, we found specific impairments in synaptic plasticity induced by selective frequencies of stimulation that also required extracellular signal-regulated kinase signaling. This was paralleled by inflexibility and impairment in spatial learning. Improvement in spatial learning performance occurred with extra training despite continued use of a suboptimal search strategy, and, in a separate nonspatial task, the mutants again deployed a different strategy. Double-mutant analysis of postsynaptic density-95 and SAP102 mutants indicate overlapping and specific functions of the two MAGUKs. These in vivo data support the model that specific MAGUK proteins couple the NMDA receptor to distinct downstream signaling pathways. This provides a mechanism for discriminating patterns of synaptic activity that lead to long-lasting changes in synaptic strength as well as distinct aspects of cognition in the mammalian nervous system.
Parente, Daniel J; Garriga, Caryn; Baskin, Berivan; Douglas, Ganka; Cho, Megan T; Araujo, Gabriel C; Shinawi, Marwan
2017-01-01
Neuroligins are post-synaptic, cellular adhesion molecules implicated in synaptic formation and function. NLGN2 is strongly linked to inhibitory, GABAergic signaling and is crucial for maintaining the excitation-inhibition balance in the brain. Disruption of the excitation-inhibition balance is associated with neuropsychiatric disease. In animal models, altered NLGN2 expression causes anxiety, developmental delay, motor discoordination, social impairment, aggression, and sensory processing defects. In humans, mutations in NLGN3 and NLGN4 are linked to autism and schizophrenia; NLGN2 missense variants are implicated in schizophrenia. Copy number variants encompassing NLGN2 on 17p13.1 are associated with autism, intellectual disability, metabolic syndrome, diabetes, and dysmorphic features, but an isolated NLGN2 nonsense variant has not yet been described in humans. Here, we describe a 15-year-old male with severe anxiety, obsessive-compulsive behaviors, developmental delay, autism, obesity, macrocephaly, and some dysmorphic features. Exome sequencing identified a heterozygous, de novo, c.441C>A p.(Tyr147Ter) variant in NLGN2 that is predicted to cause loss of normal protein function. This is the first report of an NLGN2 nonsense variant in humans, adding to the accumulating evidence that links synaptic proteins with a spectrum of neurodevelopmental phenotypes. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Acute suppression of spontaneous neurotransmission drives synaptic potentiation.
Nosyreva, Elena; Szabla, Kristen; Autry, Anita E; Ryazanov, Alexey G; Monteggia, Lisa M; Kavalali, Ege T
2013-04-17
The impact of spontaneous neurotransmission on neuronal plasticity remains poorly understood. Here, we show that acute suppression of spontaneous NMDA receptor-mediated (NMDAR-mediated) neurotransmission potentiates synaptic responses in the CA1 regions of rat and mouse hippocampus. This potentiation requires protein synthesis, brain-derived neurotrophic factor expression, eukaryotic elongation factor-2 kinase function, and increased surface expression of AMPA receptors. Our behavioral studies link this same synaptic signaling pathway to the fast-acting antidepressant responses elicited by ketamine. We also show that selective neurotransmitter depletion from spontaneously recycling vesicles triggers synaptic potentiation via the same pathway as NMDAR blockade, demonstrating that presynaptic impairment of spontaneous release, without manipulation of evoked neurotransmission, is sufficient to elicit postsynaptic plasticity. These findings uncover an unexpectedly dynamic impact of spontaneous glutamate release on synaptic efficacy and provide new insight into a key synaptic substrate for rapid antidepressant action.
ELKS active zone proteins as multitasking scaffolds for secretion
Held, Richard G.
2018-01-01
Synaptic vesicle exocytosis relies on the tethering of release ready vesicles close to voltage-gated Ca2+ channels and specific lipids at the future site of fusion. This enables rapid and efficient neurotransmitter secretion during presynaptic depolarization by an action potential. Extensive research has revealed that this tethering is mediated by an active zone, a protein dense structure that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Although roles of individual active zone proteins in exocytosis are in part understood, the molecular mechanisms that hold the protein scaffold at the active zone together and link it to the presynaptic plasma membrane have remained unknown. This is largely due to redundancy within and across scaffolding protein families at the active zone. Recent studies, however, have uncovered that ELKS proteins, also called ERC, Rab6IP2 or CAST, act as active zone scaffolds redundant with RIMs. This redundancy has led to diverse synaptic phenotypes in studies of ELKS knockout mice, perhaps because different synapses rely to a variable extent on scaffolding redundancy. In this review, we first evaluate the need for presynaptic scaffolding, and we then discuss how the diverse synaptic and non-synaptic functional roles of ELKS support the hypothesis that ELKS provides molecular scaffolding for organizing vesicle traffic at the presynaptic active zone and in other cellular compartments. PMID:29491150
Rao, Jagadeesh Sridhara; Kim, Hyung-Wook; Harry, Gaylia Jean; Rapoport, Stanley Isaac; Reese, Edmund Arthur
2013-01-01
Schizophrenia (SZ) is a progressive, neuropsychiatric disorder associated with cognitive impairment. A number of brain alterations have been linked to cognitive impairment, including neuroinflammation, excitotoxicity, increased arachidonic acid (AA) signaling and reduced synaptic protein. On this basis, we tested the hypothesis that SZ pathology is associated with these pathological brain changes. To do this, we examined postmortem frontal cortex from 10 SZ patients and 10 controls and measured protein and mRNA levels of cytokines, and astroglial, microglial, neuroinflammatory excitotoxic, AA cascade, apoptotic and synaptic markers. Mean protein and mRNA levels of interleukin-1β, tumor necrosis factor-α, glial acidic fibrillary protein (GFAP), a microglial marker CD11b, and nuclear factor kappa B subunits were significantly increased in SZ compared with control brain. Protein and mRNA levels of cytosolic and secretory phospholipase A2 and cyclooxygenase were significantly elevated in postmortem brains from SZ patients. N-methyl-D-aspartate receptor subunits 1 and 2B, inducible nitric oxide synthase and c-FOS were not significantly different. In addition, reduced protein and mRNA levels of brain-derived neurotrophic factor, synaptophysin and drebrin were found in SZ compared with control frontal cortex. Increased neuroinflammation and AA cascade enzyme markers with synaptic protein loss could promote disease progression and cognitive defects in SZ patients. Drugs that downregulate these changes might be considered for new therapies in SZ. PMID:23566496
mTOR signaling: at the crossroads of plasticity, memory and disease.
Hoeffer, Charles A; Klann, Eric
2010-02-01
Mammalian target of rapamycin (mTOR) is a protein kinase involved in translation control and long-lasting synaptic plasticity. mTOR functions as the central component of two multi-protein signaling complexes, mTORC1 and mTORC2, which can be distinguished from each other based on their unique compositions and substrates. Although the majority of evidence linking mTOR function to synaptic plasticity comes from studies utilizing rapamycin, studies in genetically modified mice also suggest that mTOR couples receptors to the translation machinery for establishing long-lasting synaptic changes that are the basis for higher order brain function, including long-term memory. Finally, perturbation of the mTOR signaling cascade appears to be a common pathophysiological feature of human neurological disorders, including mental retardation syndromes and autism spectrum disorders. (c) 2009 Elsevier Ltd. All rights reserved.
mTOR Signaling: At the Crossroads of Plasticity, Memory, and Disease
Hoeffer, Charles A.; Klann, Eric
2009-01-01
Mammalian target of rapamycin (mTOR) is a protein kinase involved in translation control and long-lasting synaptic plasticity. mTOR functions as the central component of two multi-protein signaling complexes, mTORC1 and mTORC2, which can be distinguished from each other based on their unique compositions and substrates. Although majority of evidence linking mTOR function to synaptic plasticity comes from studies utilizing rapamycin, studies in genetically-modified mice also suggest that mTOR couples receptors to the translation machinery for establishing long-lasting synaptic changes that are the basis for higher order brain function, including long-term memory. Finally, perturbation of the mTOR signaling cascade appears to be a common pathophysiological feature of human neurological disorders, including mental retardation syndromes and autism spectrum disorders. PMID:19963289
Beccano-Kelly, Dayne A; Kuhlmann, Naila; Tatarnikov, Igor; Volta, Mattia; Munsie, Lise N; Chou, Patrick; Cao, Li-Ping; Han, Heather; Tapia, Lucia; Farrer, Matthew J; Milnerwood, Austen J
2014-01-01
Mutations in Leucine-Rich Repeat Kinase-2 (LRRK2) result in familial Parkinson's disease and the G2019S mutation alone accounts for up to 30% in some ethnicities. Despite this, the function of LRRK2 is largely undetermined although evidence suggests roles in phosphorylation, protein interactions, autophagy and endocytosis. Emerging reports link loss of LRRK2 to altered synaptic transmission, but the effects of the G2019S mutation upon synaptic release in mammalian neurons are unknown. To assess wild type and mutant LRRK2 in established neuronal networks, we conducted immunocytochemical, electrophysiological and biochemical characterization of >3 week old cortical cultures of LRRK2 knock-out, wild-type overexpressing and G2019S knock-in mice. Synaptic release and synapse numbers were grossly normal in LRRK2 knock-out cells, but discretely reduced glutamatergic activity and reduced synaptic protein levels were observed. Conversely, synapse density was modestly but significantly increased in wild-type LRRK2 overexpressing cultures although event frequency was not. In knock-in cultures, glutamate release was markedly elevated, in the absence of any change to synapse density, indicating that physiological levels of G2019S LRRK2 elevate probability of release. Several pre-synaptic regulatory proteins shown by others to interact with LRRK2 were expressed at normal levels in knock-in cultures; however, synapsin 1 phosphorylation was significantly reduced. Thus, perturbations to the pre-synaptic release machinery and elevated synaptic transmission are early neuronal effects of LRRK2 G2019S. Furthermore, the comparison of knock-in and overexpressing cultures suggests that one copy of the G2019S mutation has a more pronounced effect than an ~3-fold increase in LRRK2 protein. Mutant-induced increases in transmission may convey additional stressors to neuronal physiology that may eventually contribute to the pathogenesis of Parkinson's disease.
Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function.
Bassell, Gary J; Warren, Stephen T
2008-10-23
Fragile X syndrome is the most common inherited form of cognitive deficiency in humans and perhaps the best-understood single cause of autism. A trinucleotide repeat expansion, inactivating the X-linked FMR1 gene, leads to the absence of the fragile X mental retardation protein. FMRP is a selective RNA-binding protein that regulates the local translation of a subset of mRNAs at synapses in response to activation of Gp1 metabotropic glutamate receptors (mGluRs) and possibly other receptors. In the absence of FMRP, excess and dysregulated mRNA translation leads to altered synaptic function and loss of protein synthesis-dependent plasticity. Recent evidence indicates the role of FMRP in regulated mRNA transport in dendrites. New studies also suggest a possible local function of FMRP in axons that may be important for guidance, synaptic development, and formation of neural circuits. The understanding of FMRP function at synapses has led to rationale therapeutic approaches.
Neural Protein Synthesis during Aging: Effects on Plasticity and Memory
Schimanski, Lesley A.; Barnes, Carol A.
2010-01-01
During aging, many experience a decline in cognitive function that includes memory loss. The encoding of long-term memories depends on new protein synthesis, and this is also reduced during aging. Thus, it is possible that changes in the regulation of protein synthesis contribute to the memory impairments observed in older animals. Several lines of evidence support this hypothesis. For instance, protein synthesis is required for a longer period following learning to establish long-term memory in aged rodents. Also, under some conditions, synaptic activity or pharmacological activation can induce de novo protein synthesis and lasting changes in synaptic transmission in aged, but not young, rodents; the opposite results can be observed in other conditions. These changes in plasticity likely play a role in manifesting the altered place field properties observed in awake and behaving aged rats. The collective evidence suggests a link between memory loss and the regulation of protein synthesis in senescence. In fact, pharmaceuticals that target the signaling pathways required for induction of protein synthesis have improved memory, synaptic plasticity, and place cell properties in aged animals. We suggest that a better understanding of the mechanisms that lead to different protein expression patterns in the neural circuits that change as a function of age will enable the development of more effective therapeutic treatments for memory loss. PMID:20802800
Ogundele, Olalekan M; Ebenezer, Philip J; Lee, Charles C; Francis, Joseph
2017-06-14
Traumatic stress patients showed significant improvement in behavior after a prolonged exposure to an unrelated stimulus. This treatment method attempts to promote extinction of the fear memory associated with the initial traumatic experience. However, the subsequent prolonged exposure to such stimulus creates an additional layer of neural stress. Although the mechanism remains unclear, prolonged exposure therapy (PET) likely involves changes in synaptic plasticity, neurotransmitter function and inflammation; especially in parts of the brain concerned with the formation and retrieval of fear memory (Hippocampus and Prefrontal Cortex: PFC). Since certain synaptic proteins are also involved in danger-associated molecular pattern signaling (DAMP), we identified the significance of IGF-1/IGF-1R/CaMKIIα expression as a potential link between the concurrent progression of synaptic and inflammatory changes in stress. Thus, a comparison between IGF-1/IGF-1R/CaMKIIα, synaptic and DAMP proteins in stress and PET may highlight the significance of PET on synaptic morphology and neuronal inflammatory response. In behaviorally characterized Sprague-Dawley rats, there was a significant decline in neural IGF-1 (p<0.001), hippocampal (p<0.001) and cortical (p<0.05) IGF-1R expression. These animals showed a significant loss of presynaptic markers (synaptophysin; p<0.001), and changes in neurotransmitters (VGLUT2, Tyrosine hydroxylase, GABA, ChAT). Furthermore, naïve stressed rats recorded a significant decrease in post-synaptic marker (PSD-95; p<0.01) and synaptic regulator (CaMKIIα; p<0.001). As part of the synaptic response to a decrease in brain CaMKIIα, small ion conductance channel (KCa2.2) was upregulated in the brain of naïve stressed rats (p<0.01). After a PET, an increase in IGF-1 (p<0.05) and IGF-1R was recorded in the Stress-PET group (p<0.001). As such, hippocampal (p<0.001), but not cortical (ns) synaptophysin expression increased in Stress-PET. Although PSD-95 was relatively unchanged in the hippocampus and PFC, CaMKIIα (p<0.001) and KCa2.2 (p<0.01) were upregulated in Stress-PET, and may be involved in extinction of fear memory-related synaptic potentials. These changes were also associated with a normalized neurotransmitter function, and a significant reduction in open space avoidance; when the animals were assessed in elevated plus maze (EPM). In addition to a decrease in IGF-1/IGF-1R, an increase in activated hippocampal and cortical microglia was seen in stress (p<0.05) and after a PET (Stress-PET; p<0.001). Furthermore, this was linked with a significant increase in HMGB1 (Hippocampus: p<0.001, PFC: p<0.05) and TLR4 expression (Hippocampus: p<0.01; PFC: ns) in the neurons. Taken together, this study showed that traumatic stress and subsequent PET involves an event-dependent alteration of IGF1/IGF-1R/CaMKIIα. Firstly, we showed a direct relationship between IGF-1/IGF-1R expression, presynaptic function (synaptophysin) and neurotransmitter activity in stress and PET. Secondly, we identified the possible role of CaMKIIα in post-synaptic function and regulation of small ion conductance channels. Lastly, we highlighted some of the possible links between IGF1/IGF-1R/CaMKIIα, the expression of DAMP proteins, Microglia activation, and its implication on synaptic plasticity during stress and PET. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
The Role of Co-chaperones in Synaptic Proteostasis and Neurodegenerative Disease
Gorenberg, Erica L.; Chandra, Sreeganga S.
2017-01-01
Synapses must be preserved throughout an organism's lifespan to allow for normal brain function and behavior. Synapse maintenance is challenging given the long distances between the termini and the cell body, reliance on axonal transport for delivery of newly synthesized presynaptic proteins, and high rates of synaptic vesicle exo- and endocytosis. Hence, synapses rely on efficient proteostasis mechanisms to preserve their structure and function. To this end, the synaptic compartment has specific chaperones to support its functions. Without proper synaptic chaperone activity, local proteostasis imbalances lead to neurotransmission deficits, dismantling of synapses, and neurodegeneration. In this review, we address the roles of four synaptic chaperones in the maintenance of the nerve terminal, as well as their genetic links to neurodegenerative disease. Three of these are Hsp40 co-chaperones (DNAJs): Cysteine String Protein alpha (CSPα; DNAJC5), auxilin (DNAJC6), and Receptor-Mediated Endocytosis 8 (RME-8; DNAJC13). These co-chaperones contain a conserved J domain through which they form a complex with heat shock cognate 70 (Hsc70), enhancing the chaperone's ATPase activity. CSPα is a synaptic vesicle protein known to chaperone the t-SNARE SNAP-25 and the endocytic GTPase dynamin-1, thereby regulating synaptic vesicle exocytosis and endocytosis. Auxilin binds assembled clathrin cages, and through its interactions with Hsc70 leads to the uncoating of clathrin-coated vesicles, a process necessary for the regeneration of synaptic vesicles. RME-8 is a co-chaperone on endosomes and may have a role in clathrin-coated vesicle endocytosis on this organelle. These three co-chaperones maintain client function by preserving folding and assembly to prevent client aggregation, but they do not break down aggregates that have already formed. The fourth synaptic chaperone we will discuss is Heat shock protein 110 (Hsp110), which interacts with Hsc70, DNAJAs, and DNAJBs to constitute a disaggregase. Hsp110-related disaggregase activity is present at the synapse and is known to protect against aggregation of proteins such as α-synuclein. Congruent with their importance in the nervous system, mutations of these co-chaperones lead to familial neurodegenerative disease. CSPα mutations cause adult neuronal ceroid lipofuscinosis, while auxilin mutations result in early-onset Parkinson's disease, demonstrating their significance in preservation of the nervous system. PMID:28579939
Puzzling Out Synaptic Vesicle 2 Family Members Functions.
Bartholome, Odile; Van den Ackerveken, Priscilla; Sánchez Gil, Judit; de la Brassinne Bonardeaux, Orianne; Leprince, Pierre; Franzen, Rachelle; Rogister, Bernard
2017-01-01
Synaptic vesicle proteins 2 (SV2) were discovered in the early 80s, but the clear demonstration that SV2A is the target of efficacious anti-epileptic drugs from the racetam family stimulated efforts to improve understanding of its role in the brain. Many functions have been suggested for SV2 proteins including ions or neurotransmitters transport or priming of SVs. Moreover, several recent studies highlighted the link between SV2 and different neuronal disorders such as epilepsy, Schizophrenia (SCZ), Alzheimer's or Parkinson's disease. In this review article, we will summarize our present knowledge on SV2A function(s) and its potential role(s) in the pathophysiology of various brain disorders.
Puzzling Out Synaptic Vesicle 2 Family Members Functions
Bartholome, Odile; Van den Ackerveken, Priscilla; Sánchez Gil, Judit; de la Brassinne Bonardeaux, Orianne; Leprince, Pierre; Franzen, Rachelle; Rogister, Bernard
2017-01-01
Synaptic vesicle proteins 2 (SV2) were discovered in the early 80s, but the clear demonstration that SV2A is the target of efficacious anti-epileptic drugs from the racetam family stimulated efforts to improve understanding of its role in the brain. Many functions have been suggested for SV2 proteins including ions or neurotransmitters transport or priming of SVs. Moreover, several recent studies highlighted the link between SV2 and different neuronal disorders such as epilepsy, Schizophrenia (SCZ), Alzheimer’s or Parkinson’s disease. In this review article, we will summarize our present knowledge on SV2A function(s) and its potential role(s) in the pathophysiology of various brain disorders. PMID:28588450
Gauthier, Julie; Champagne, Nathalie; Lafrenière, Ronald G.; Xiong, Lan; Spiegelman, Dan; Brustein, Edna; Lapointe, Mathieu; Peng, Huashan; Côté, Mélanie; Noreau, Anne; Hamdan, Fadi F.; Addington, Anjené M.; Rapoport, Judith L.; DeLisi, Lynn E.; Krebs, Marie-Odile; Joober, Ridha; Fathalli, Ferid; Mouaffak, Fayçal; Haghighi, Ali P.; Néri, Christian; Dubé, Marie-Pierre; Samuels, Mark E.; Marineau, Claude; Stone, Eric A.; Awadalla, Philip; Barker, Philip A.; Carbonetto, Salvatore; Drapeau, Pierre; Rouleau, Guy A.
2010-01-01
Schizophrenia likely results from poorly understood genetic and environmental factors. We studied the gene encoding the synaptic protein SHANK3 in 285 controls and 185 schizophrenia patients with unaffected parents. Two de novo mutations (R1117X and R536W) were identified in two families, one being found in three affected brothers, suggesting germline mosaicism. Zebrafish and rat hippocampal neuron assays revealed behavior and differentiation defects resulting from the R1117X mutant. As mutations in SHANK3 were previously reported in autism, the occurrence of SHANK3 mutations in subjects with a schizophrenia phenotype suggests a molecular genetic link between these two neurodevelopmental disorders. PMID:20385823
Synaptic control of local translation: the plot thickens with new characters.
Thomas, María Gabriela; Pascual, Malena Lucía; Maschi, Darío; Luchelli, Luciana; Boccaccio, Graciela Lidia
2014-06-01
The production of proteins from mRNAs localized at the synapse ultimately controls the strength of synaptic transmission, thereby affecting behavior and cognitive functions. The regulated transcription, processing, and transport of mRNAs provide dynamic control of the dendritic transcriptome, which includes thousands of messengers encoding multiple cellular functions. Translation is locally modulated by synaptic activity through a complex network of RNA-binding proteins (RBPs) and various types of non-coding RNAs (ncRNAs) including BC-RNAs, microRNAs, piwi-interacting RNAs, and small interference RNAs. The RBPs FMRP and CPEB play a well-established role in synaptic translation, and additional regulatory factors are emerging. The mRNA repressors Smaug, Nanos, and Pumilio define a novel pathway for local translational control that affects dendritic branching and spines in both flies and mammals. Recent findings support a role for processing bodies and related synaptic mRNA-silencing foci (SyAS-foci) in the modulation of synaptic plasticity and memory formation. The SyAS-foci respond to different stimuli with changes in their integrity thus enabling regulated mRNA release followed by translation. CPEB, Pumilio, TDP-43, and FUS/TLS form multimers through low-complexity regions related to prion domains or polyQ expansions. The oligomerization of these repressor RBPs is mechanistically linked to the aggregation of abnormal proteins commonly associated with neurodegeneration. Here, we summarize the current knowledge on how specificity in mRNA translation is achieved through the concerted action of multiple pathways that involve regulatory ncRNAs and RBPs, the modification of translation factors, and mRNA-silencing foci dynamics.
Ataei, Negar; Sabzghabaee, Ali Mohammad; Movahedian, Ahmad
2015-01-01
Background: Long-term memory is based on synaptic plasticity, a series of biochemical mechanisms include changes in structure and proteins of brain's neurons. In this article, we systematically reviewed the studies that indicate calcium/calmodulin kinase II (CaMKII) is a ubiquitous molecule among different enzymes involved in human long-term memory and the main downstream signaling pathway of long-term memory. Methods: All of the observational, case–control and review studies were considered and evaluated by the search engines PubMed, Cochrane Central Register of Controlled Trials and ScienceDirect Scopus between 1990 and February 2015. We did not carry out meta-analysis. Results: At the first search, it was fined 1015 articles which included “synaptic plasticity” OR “neuronal plasticity” OR “synaptic density” AND memory AND “molecular mechanism” AND “calcium/calmodulin-dependent protein kinase II” OR CaMKII as the keywords. A total of 335 articles were duplicates in the databases and eliminated. A total of 680 title articles were evaluated. Finally, 40 articles were selected as reference. Conclusions: The studies have shown the most important intracellular signal of long-term memory is calcium-dependent signals. Calcium linked calmodulin can activate CaMKII. After receiving information for learning and memory, CaMKII is activated by Glutamate, the most important neurotransmitter for memory-related plasticity. Glutamate activates CaMKII and it plays some important roles in synaptic plasticity modification and long-term memory. PMID:26445635
Lau, Chi-Fai; Ho, Yuen-Shan; Hung, Clara Hiu-Ling; Poon, Chun-Hei; Chiu, Kin; Yang, Xifei
2014-01-01
Increasing lines of evidence support that testosterone may have neuroprotective effects. While observational studies reported an association between higher bioavailable testosterone or brain testosterone levels and reduced risk of Alzheimer's disease (AD), there is limited understanding of the underlying neuroprotective mechanisms. Previous studies demonstrated that testosterone could alleviate neurotoxicity induced by β-amyloid (Aβ), but these findings mainly focused on neuronal apoptosis. Since synaptic dysfunction and degeneration are early events during the pathogenesis of AD, we aim to investigate the effects of testosterone on oligomeric Aβ-induced synaptic changes. Our data suggested that exposure of primary cultured hippocampal neurons to oligomeric Aβ could reduce the length of neurites and decrease the expression of presynaptic proteins including synaptophysin, synaptotagmin, and synapsin-1. Aβ also disrupted synaptic vesicle recycling and protein folding machinery. Testosterone preserved the integrity of neurites and the expression of presynaptic proteins. It also attenuated Aβ-induced impairment of synaptic exocytosis. By using letrozole as an aromatase antagonist, we further demonstrated that the effects of testosterone on exocytosis were unlikely to be mediated through the estrogen receptor pathway. Furthermore, we showed that testosterone could attenuate Aβ-induced reduction of HSP70, which suggests a novel mechanism that links testosterone and its protective function on Aβ-induced synaptic damage. Taken together, our data provide further evidence on the beneficial effects of testosterone, which may be useful for future drug development for AD. PMID:25045655
Cohen, Laurie D.; Zuchman, Rina; Sorokina, Oksana; Müller, Anke; Dieterich, Daniela C.; Armstrong, J. Douglas; Ziv, Tamar; Ziv, Noam E.
2013-01-01
Chemical synapses contain multitudes of proteins, which in common with all proteins, have finite lifetimes and therefore need to be continuously replaced. Given the huge numbers of synaptic connections typical neurons form, the demand to maintain the protein contents of these connections might be expected to place considerable metabolic demands on each neuron. Moreover, synaptic proteostasis might differ according to distance from global protein synthesis sites, the availability of distributed protein synthesis facilities, trafficking rates and synaptic protein dynamics. To date, the turnover kinetics of synaptic proteins have not been studied or analyzed systematically, and thus metabolic demands or the aforementioned relationships remain largely unknown. In the current study we used dynamic Stable Isotope Labeling with Amino acids in Cell culture (SILAC), mass spectrometry (MS), Fluorescent Non–Canonical Amino acid Tagging (FUNCAT), quantitative immunohistochemistry and bioinformatics to systematically measure the metabolic half-lives of hundreds of synaptic proteins, examine how these depend on their pre/postsynaptic affiliation or their association with particular molecular complexes, and assess the metabolic load of synaptic proteostasis. We found that nearly all synaptic proteins identified here exhibited half-lifetimes in the range of 2–5 days. Unexpectedly, metabolic turnover rates were not significantly different for presynaptic and postsynaptic proteins, or for proteins for which mRNAs are consistently found in dendrites. Some functionally or structurally related proteins exhibited very similar turnover rates, indicating that their biogenesis and degradation might be coupled, a possibility further supported by bioinformatics-based analyses. The relatively low turnover rates measured here (∼0.7% of synaptic protein content per hour) are in good agreement with imaging-based studies of synaptic protein trafficking, yet indicate that the metabolic load synaptic protein turnover places on individual neurons is very substantial. PMID:23658807
Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia
Piton, A; Gauthier, J; Hamdan, FF; Lafrenière, RG; Yang, Y; Henrion, E; Laurent, S; Noreau, A; Thibodeau, P; Karemera, L; Spiegelman, D; Kuku, F; Duguay, J; Destroismaisons, L; Jolivet, P; Côté, M; Lachapelle, K; Diallo, O; Raymond, A; Marineau, C; Champagne, N; Xiong, L; Gaspar, C; Rivière, J-B; Tarabeux, J; Cossette, P; Krebs, M-O; Rapoport, JL; Addington, A; DeLisi, LE; Mottron, L; Joober, R; Fombonne, E; Drapeau, P; Rouleau, GA
2012-01-01
Autism spectrum disorder (ASD) and schizophrenia (SCZ) are two common neurodevelopmental syndromes that result from the combined effects of environmental and genetic factors. We set out to test the hypothesis that rare variants in many different genes, including de novo variants, could predispose to these conditions in a fraction of cases. In addition, for both disorders, males are either more significantly or more severely affected than females, which may be explained in part by X-linked genetic factors. Therefore, we directly sequenced 111 X-linked synaptic genes in individuals with ASD (n = 142; 122 males and 20 females) or SCZ (n = 143; 95 males and 48 females). We identified > 200 non-synonymous variants, with an excess of rare damaging variants, which suggest the presence of disease-causing mutations. Truncating mutations in genes encoding the calcium-related protein IL1RAPL1 (already described in Piton et al. Hum Mol Genet 2008) and the monoamine degradation enzyme monoamine oxidase B were found in ASD and SCZ, respectively. Moreover, several promising non-synonymous rare variants were identified in genes encoding proteins involved in regulation of neurite outgrowth and other various synaptic functions (MECP2, TM4SF2/TSPAN7, PPP1R3F, PSMD10, MCF2, SLITRK2, GPRASP2, and OPHN1). PMID:20479760
Piton, A; Gauthier, J; Hamdan, F F; Lafrenière, R G; Yang, Y; Henrion, E; Laurent, S; Noreau, A; Thibodeau, P; Karemera, L; Spiegelman, D; Kuku, F; Duguay, J; Destroismaisons, L; Jolivet, P; Côté, M; Lachapelle, K; Diallo, O; Raymond, A; Marineau, C; Champagne, N; Xiong, L; Gaspar, C; Rivière, J-B; Tarabeux, J; Cossette, P; Krebs, M-O; Rapoport, J L; Addington, A; Delisi, L E; Mottron, L; Joober, R; Fombonne, E; Drapeau, P; Rouleau, G A
2011-08-01
Autism spectrum disorder (ASD) and schizophrenia (SCZ) are two common neurodevelopmental syndromes that result from the combined effects of environmental and genetic factors. We set out to test the hypothesis that rare variants in many different genes, including de novo variants, could predispose to these conditions in a fraction of cases. In addition, for both disorders, males are either more significantly or more severely affected than females, which may be explained in part by X-linked genetic factors. Therefore, we directly sequenced 111 X-linked synaptic genes in individuals with ASD (n = 142; 122 males and 20 females) or SCZ (n = 143; 95 males and 48 females). We identified >200 non-synonymous variants, with an excess of rare damaging variants, which suggest the presence of disease-causing mutations. Truncating mutations in genes encoding the calcium-related protein IL1RAPL1 (already described in Piton et al. Hum Mol Genet 2008) and the monoamine degradation enzyme monoamine oxidase B were found in ASD and SCZ, respectively. Moreover, several promising non-synonymous rare variants were identified in genes encoding proteins involved in regulation of neurite outgrowth and other various synaptic functions (MECP2, TM4SF2/TSPAN7, PPP1R3F, PSMD10, MCF2, SLITRK2, GPRASP2, and OPHN1).
Nanou, Evanthia; Lee, Amy; Catterall, William A
2018-05-02
Activity-dependent regulation controls the balance of synaptic excitation to inhibition in neural circuits, and disruption of this regulation impairs learning and memory and causes many neurological disorders. The molecular mechanisms underlying short-term synaptic plasticity are incompletely understood, and their role in inhibitory synapses remains uncertain. Here we show that regulation of voltage-gated calcium (Ca 2+ ) channel type 2.1 (Ca V 2.1) by neuronal Ca 2+ sensor (CaS) proteins controls synaptic plasticity and excitation/inhibition balance in a hippocampal circuit. Prevention of CaS protein regulation by introducing the IM-AA mutation in Ca V 2.1 channels in male and female mice impairs short-term synaptic facilitation at excitatory synapses of CA3 pyramidal neurons onto parvalbumin (PV)-expressing basket cells. In sharp contrast, the IM-AA mutation abolishes rapid synaptic depression in the inhibitory synapses of PV basket cells onto CA1 pyramidal neurons. These results show that CaS protein regulation of facilitation and inactivation of Ca V 2.1 channels controls the direction of short-term plasticity at these two synapses. Deletion of the CaS protein CaBP1/caldendrin also blocks rapid depression at PV-CA1 synapses, implicating its upregulation of inactivation of Ca V 2.1 channels in control of short-term synaptic plasticity at this inhibitory synapse. Studies of local-circuit function revealed reduced inhibition of CA1 pyramidal neurons by the disynaptic pathway from CA3 pyramidal cells via PV basket cells and greatly increased excitation/inhibition ratio of the direct excitatory input versus indirect inhibitory input from CA3 pyramidal neurons to CA1 pyramidal neurons. This striking defect in local-circuit function may contribute to the dramatic impairment of spatial learning and memory in IM-AA mice. SIGNIFICANCE STATEMENT Many forms of short-term synaptic plasticity in neuronal circuits rely on regulation of presynaptic voltage-gated Ca 2+ (Ca V ) channels. Regulation of Ca V 2.1 channels by neuronal calcium sensor (CaS) proteins controls short-term synaptic plasticity. Here we demonstrate a direct link between regulation of Ca V 2.1 channels and short-term synaptic plasticity in native hippocampal excitatory and inhibitory synapses. We also identify CaBP1/caldendrin as the calcium sensor interacting with Ca V 2.1 channels to mediate rapid synaptic depression in the inhibitory hippocampal synapses of parvalbumin-expressing basket cells to CA1 pyramidal cells. Disruption of this regulation causes altered short-term plasticity and impaired balance of hippocampal excitatory to inhibitory circuits. Copyright © 2018 the authors 0270-6474/18/384430-11$15.00/0.
Nithianantharajah, J; Hannan, A J
2013-10-22
Huntington's disease (HD) is an autosomal dominant tandem repeat expansion disorder involving cognitive, psychiatric and motor symptoms. The expanded trinucleotide (CAG) repeat leads to an extended polyglutamine tract in the huntingtin protein and a subsequent cascade of molecular and cellular pathogenesis. One of the key features of neuropathology, which has been shown to precede the eventual loss of neurons in the cerebral cortex, striatum and other areas, are changes to synapses, including the dendritic protrusions known as spines. In this review we will focus on synapse and spine pathology in HD, including molecular and experience-dependent aspects of pathogenesis. Dendritic spine pathology has been found in both the human HD brain at post mortem as well as various transgenic and knock-in animal models. These changes may help explain the symptoms in HD, and synaptopathy within the cerebral cortex may be particularly important in mediating the psychiatric and cognitive manifestations of this disease. The earliest stages of synaptic dysfunction in HD, as assayed in various mouse models, appears to involve changes in synaptic proteins and associated physiological abnormalities such as synaptic plasticity deficits. In mouse models, synaptic and cortical plasticity deficits have been directly correlated with the onset of cognitive deficits, implying a causal link. Furthermore, following the discovery that environmental enrichment can delay onset of affective, cognitive and motor deficits in HD transgenic mice, specific synaptic molecules shown to be dysregulated by the polyglutamine-induced toxicity were also found to be beneficially modulated by environmental stimulation. This identifies potential molecular targets for future therapeutic developments to treat this devastating disease. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Bermejo, Marie Kristel; Milenkovic, Marija; Salahpour, Ali; Ramsey, Amy J
2014-09-03
Neuronal subcellular fractionation techniques allow the quantification of proteins that are trafficked to and from the synapse. As originally described in the late 1960's, proteins associated with the synaptic plasma membrane can be isolated by ultracentrifugation on a sucrose density gradient. Once synaptic membranes are isolated, the macromolecular complex known as the post-synaptic density can be subsequently isolated due to its detergent insolubility. The techniques used to isolate synaptic plasma membranes and post-synaptic density proteins remain essentially the same after 40 years, and are widely used in current neuroscience research. This article details the fractionation of proteins associated with the synaptic plasma membrane and post-synaptic density using a discontinuous sucrose gradient. Resulting protein preparations are suitable for western blotting or 2D DIGE analysis.
AP-1/σ1B-adaptin mediates endosomal synaptic vesicle recycling, learning and memory
Glyvuk, Nataliya; Tsytsyura, Yaroslav; Geumann, Constanze; D'Hooge, Rudi; Hüve, Jana; Kratzke, Manuel; Baltes, Jennifer; Böning, Daniel; Klingauf, Jürgen; Schu, Peter
2010-01-01
Synaptic vesicle recycling involves AP-2/clathrin-mediated endocytosis, but it is not known whether the endosomal pathway is also required. Mice deficient in the tissue-specific AP-1–σ1B complex have impaired synaptic vesicle recycling in hippocampal synapses. The ubiquitously expressed AP-1–σ1A complex mediates protein sorting between the trans-Golgi network and early endosomes. Vertebrates express three σ1 subunit isoforms: A, B and C. The expressions of σ1A and σ1B are highest in the brain. Synaptic vesicle reformation in cultured neurons from σ1B-deficient mice is reduced upon stimulation, and large endosomal intermediates accumulate. The σ1B-deficient mice have reduced motor coordination and severely impaired long-term spatial memory. These data reveal a molecular mechanism for a severe human X-chromosome-linked mental retardation. PMID:20203623
Role of DHA in aging-related changes in mouse brain synaptic plasma membrane proteome.
Sidhu, Vishaldeep K; Huang, Bill X; Desai, Abhishek; Kevala, Karl; Kim, Hee-Yong
2016-05-01
Aging has been related to diminished cognitive function, which could be a result of ineffective synaptic function. We have previously shown that synaptic plasma membrane proteins supporting synaptic integrity and neurotransmission were downregulated in docosahexaenoic acid (DHA)-deprived brains, suggesting an important role of DHA in synaptic function. In this study, we demonstrate aging-induced synaptic proteome changes and DHA-dependent mitigation of such changes using mass spectrometry-based protein quantitation combined with western blot or messenger RNA analysis. We found significant reduction of 15 synaptic plasma membrane proteins in aging brains including fodrin-α, synaptopodin, postsynaptic density protein 95, synaptic vesicle glycoprotein 2B, synaptosomal-associated protein 25, synaptosomal-associated protein-α, N-methyl-D-aspartate receptor subunit epsilon-2 precursor, AMPA2, AP2, VGluT1, munc18-1, dynamin-1, vesicle-associated membrane protein 2, rab3A, and EAAT1, most of which are involved in synaptic transmission. Notably, the first 9 proteins were further reduced when brain DHA was depleted by diet, indicating that DHA plays an important role in sustaining these synaptic proteins downregulated during aging. Reduction of 2 of these proteins was reversed by raising the brain DHA level by supplementing aged animals with an omega-3 fatty acid sufficient diet for 2 months. The recognition memory compromised in DHA-depleted animals was also improved. Our results suggest a potential role of DHA in alleviating aging-associated cognitive decline by offsetting the loss of neurotransmission-regulating synaptic proteins involved in synaptic function. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Sheng; Yang, Feng; Petyuk, Vladislav A.
Protein modification by O-linked beta-N-acetylglucosamine (O-GlcNAc) is emerging as an important factor in the pathogenesis of sporadic Alzheimer’s disease. Herein we report the most comprehensive, quantitative proteomics analysis for protein O-GlcNAcylation in post-mortem human brains with and without Alzheimer’s using isobaric tandem mass tags labeling, chemoenzymatic photocleavage enrichment and liquid chromatography coupled to mass spectrometry. A total of 1,850 O-GlcNAc peptides covering 1,094 O-GlcNAcylation sites were identified from 530 proteins in the human brain. 128 O-GlcNAc peptides covering 78 proteins were altered significantly in Alzheimer’s brain as compared to controls (q<0.05). Moreover, alteration of the O-GlcNAc peptide abundance could bemore » attributed more to O-GlcNAcylation level than to protein level changes. The altered O-GlcNAcylated proteins belong to several structural and functional categories, including synaptic proteins, cytoskeleton proteins, and memory-associated proteins. These findings suggest that dysregulation of O-GlcNAcylation of multiple brain proteins may be involved in the development of sporadic Alzheimer’s disease.« less
Usher protein functions in hair cells and photoreceptors
Cosgrove, Dominic; Zallocchi, Marisa
2014-01-01
The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber, the tip link, and the linkages that anchor the taller stereocilia's actin cytoskeleton core to the shorter adjacent stereocilia and the elusive mechanotransduction channels, explaining the deafness phenotype when these molecular interactions are perturbed. The conundrum is that photoreceptors lack a synonymous mechanotransduction apparatus, and so a common theory for Usher protein function in the two neurosensory cell types affected in Usher syndrome is lacking. Recent evidence linking photoreceptor cell dysfunction in the shaker 1 mouse model for Usher syndrome to light-induced protein translocation defects, combined with localization of an Usher protein interactome at the periciliary region of the photoreceptors suggests Usher proteins might regulate protein trafficking between the inner and outer segments of photoreceptors. A distinct Usher protein complex is trafficked to the ribbon synapses of hair cells, and synaptic defects have been reported in Usher mutants in both hair cells and photoreceptors. This review aims to clarify what is known about Usher protein function at the synaptic and apical poles of hair cells and photoreceptors and the prospects for identifying a unifying pathobiological mechanism to explain deaf/blindness in Usher syndrome. PMID:24239741
Usher protein functions in hair cells and photoreceptors.
Cosgrove, Dominic; Zallocchi, Marisa
2014-01-01
The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber, the tip link, and the linkages that anchor the taller stereocilia's actin cytoskeleton core to the shorter adjacent stereocilia and the elusive mechanotransduction channels, explaining the deafness phenotype when these molecular interactions are perturbed. The conundrum is that photoreceptors lack a synonymous mechanotransduction apparatus, and so a common theory for Usher protein function in the two neurosensory cell types affected in Usher syndrome is lacking. Recent evidence linking photoreceptor cell dysfunction in the shaker 1 mouse model for Usher syndrome to light-induced protein translocation defects, combined with localization of an Usher protein interactome at the periciliary region of the photoreceptors suggests Usher proteins might regulate protein trafficking between the inner and outer segments of photoreceptors. A distinct Usher protein complex is trafficked to the ribbon synapses of hair cells, and synaptic defects have been reported in Usher mutants in both hair cells and photoreceptors. This review aims to clarify what is known about Usher protein function at the synaptic and apical poles of hair cells and photoreceptors and the prospects for identifying a unifying pathobiological mechanism to explain deaf/blindness in Usher syndrome. Copyright © 2013 Elsevier Ltd. All rights reserved.
Roh, Junyeop D; Choi, Su-Yeon; Cho, Yi Sul; Choi, Tae-Yong; Park, Jong-Sil; Cutforth, Tyler; Chung, Woosuk; Park, Hanwool; Lee, Dongsoo; Kim, Myeong-Heui; Lee, Yeunkum; Mo, Seojung; Rhee, Jeong-Seop; Kim, Hyun; Ko, Jaewon; Choi, Se-Young; Bae, Yong Chul; Shen, Kang; Kim, Eunjoon; Han, Kihoon
2017-01-01
Copy number variants and point mutations of NEPH2 (also called KIRREL3 ) gene encoding an immunoglobulin (Ig) superfamily adhesion molecule have been linked to autism spectrum disorders, intellectual disability and neurocognitive delay associated with Jacobsen syndrome, but the physiological roles of Neph2 in the mammalian brain remain largely unknown. Neph2 is highly expressed in the dentate granule (DG) neurons of the hippocampus and is localized in both dendrites and axons. It was recently shown that Neph2 is required for the formation of mossy fiber filopodia, the axon terminal structure of DG neurons forming synapses with GABAergic neurons of CA3. In contrast, however, it is unknown whether Neph2 also has any roles in the postsynaptic compartments of DG neurons. We here report that, through its C-terminal PDZ domain-binding motif, Neph2 directly interacts with postsynaptic density (PSD)-95, an abundant excitatory postsynaptic scaffolding protein. Moreover, Neph2 protein is detected in the brain PSD fraction and interacts with PSD-95 in synaptosomal lysates. Functionally, loss of Neph2 in mice leads to age-specific defects in the synaptic connectivity of DG neurons. Specifically, Neph2 -/- mice show significantly increased spontaneous excitatory synaptic events in DG neurons at postnatal week 2 when the endogenous Neph2 protein expression peaks, but show normal excitatory synaptic transmission at postnatal week 3. The evoked excitatory synaptic transmission and synaptic plasticity of medial perforant pathway (MPP)-DG synapses are also normal in Neph2 -/- mice at postnatal week 3, further confirming the age-specific synaptic defects. Together, our results provide some evidence for the postsynaptic function of Neph2 in DG neurons during the early postnatal period, which might be implicated in neurodevelopmental and cognitive disorders caused by NEPH2 mutations.
Reis, Renata; Hennessy, Edel; Murray, Caoimhe; Griffin, Éadaoin W.
2015-01-01
Aims The processes by which neurons degenerate in chronic neurodegenerative diseases remain unclear. Synaptic loss and axonal pathology frequently precede neuronal loss and protein aggregation demonstrably spreads along neuroanatomical pathways in many neurodegenerative diseases. The spread of neuronal pathology is less studied. Methods We previously demonstrated severe neurodegeneration in the posterior thalamus of multiple prion disease strains. Here we used the ME7 model of prion disease to examine the nature of this degeneration in the posterior thalamus and the major brainstem projections into this region. Results We objectively quantified neurological decline between 16 and 18 weeks post‐inoculation and observed thalamic subregion‐selective neuronal, synaptic and axonal pathology while demonstrating relatively uniform protease‐resistant prion protein (PrP) aggregation and microgliosis across the posterior thalamus. Novel amyloid precursor protein (APP) pathology was particularly prominent in the thalamic posterior (PO) and ventroposterior lateral (VPL) nuclei. The brainstem nuclei forming the major projections to these thalamic nuclei were examined. Massive neuronal loss in the PO was not matched by significant neuronal loss in the interpolaris (Sp5I), while massive synaptic loss in the ventral posteromedial nucleus (VPM) did correspond with significant neuronal loss in the principal trigeminal nucleus. Likewise, significant VPL synaptic loss was matched by significant neuronal loss in the gracile and cuneate nuclei. Conclusion These findings demonstrate significant spread of neuronal pathology from the thalamus to the brainstem in prion disease. The divergent neuropathological features in adjacent neuronal populations demonstrates that there are discrete pathways to neurodegeneration in different neuronal populations. PMID:25727649
Fragile X Mental Retardation Protein (FMRP) controls diacylglycerol kinase activity in neurons.
Tabet, Ricardos; Moutin, Enora; Becker, Jérôme A J; Heintz, Dimitri; Fouillen, Laetitia; Flatter, Eric; Krężel, Wojciech; Alunni, Violaine; Koebel, Pascale; Dembélé, Doulaye; Tassone, Flora; Bardoni, Barbara; Mandel, Jean-Louis; Vitale, Nicolas; Muller, Dominique; Le Merrer, Julie; Moine, Hervé
2016-06-28
Fragile X syndrome (FXS) is caused by the absence of the Fragile X Mental Retardation Protein (FMRP) in neurons. In the mouse, the lack of FMRP is associated with an excessive translation of hundreds of neuronal proteins, notably including postsynaptic proteins. This local protein synthesis deregulation is proposed to underlie the observed defects of glutamatergic synapse maturation and function and to affect preferentially the hundreds of mRNA species that were reported to bind to FMRP. How FMRP impacts synaptic protein translation and which mRNAs are most important for the pathology remain unclear. Here we show by cross-linking immunoprecipitation in cortical neurons that FMRP is mostly associated with one unique mRNA: diacylglycerol kinase kappa (Dgkκ), a master regulator that controls the switch between diacylglycerol and phosphatidic acid signaling pathways. The absence of FMRP in neurons abolishes group 1 metabotropic glutamate receptor-dependent DGK activity combined with a loss of Dgkκ expression. The reduction of Dgkκ in neurons is sufficient to cause dendritic spine abnormalities, synaptic plasticity alterations, and behavior disorders similar to those observed in the FXS mouse model. Overexpression of Dgkκ in neurons is able to rescue the dendritic spine defects of the Fragile X Mental Retardation 1 gene KO neurons. Together, these data suggest that Dgkκ deregulation contributes to FXS pathology and support a model where FMRP, by controlling the translation of Dgkκ, indirectly controls synaptic proteins translation and membrane properties by impacting lipid signaling in dendritic spine.
Fernandes, Ana Clara; Uytterhoeven, Valerie; Kuenen, Sabine; Wang, Yu-Chun; Slabbaert, Jan R; Swerts, Jef; Kasprowicz, Jaroslaw; Aerts, Stein; Verstreken, Patrik
2014-11-24
Synaptic demise and accumulation of dysfunctional proteins are thought of as common features in neurodegeneration. However, the mechanisms by which synaptic proteins turn over remain elusive. In this paper, we study Drosophila melanogaster lacking active TBC1D24/Skywalker (Sky), a protein that in humans causes severe neurodegeneration, epilepsy, and DOOR (deafness, onychdystrophy, osteodystrophy, and mental retardation) syndrome, and identify endosome-to-lysosome trafficking as a mechanism for degradation of synaptic vesicle-associated proteins. In fly sky mutants, synaptic vesicles traveled excessively to endosomes. Using chimeric fluorescent timers, we show that synaptic vesicle-associated proteins were younger on average, suggesting that older proteins are more efficiently degraded. Using a genetic screen, we find that reducing endosomal-to-lysosomal trafficking, controlled by the homotypic fusion and vacuole protein sorting (HOPS) complex, rescued the neurotransmission and neurodegeneration defects in sky mutants. Consistently, synaptic vesicle proteins were older in HOPS complex mutants, and these mutants also showed reduced neurotransmission. Our findings define a mechanism in which synaptic transmission is facilitated by efficient protein turnover at lysosomes and identify a potential strategy to suppress defects arising from TBC1D24 mutations in humans. © 2014 Fernandes et al.
Neuroligin-1 links neuronal activity to sleep-wake regulation.
El Helou, Janine; Bélanger-Nelson, Erika; Freyburger, Marlène; Dorsaz, Stéphane; Curie, Thomas; La Spada, Francesco; Gaudreault, Pierre-Olivier; Beaumont, Éric; Pouliot, Philippe; Lesage, Frédéric; Frank, Marcos G; Franken, Paul; Mongrain, Valérie
2013-06-11
Maintaining wakefulness is associated with a progressive increase in the need for sleep. This phenomenon has been linked to changes in synaptic function. The synaptic adhesion molecule Neuroligin-1 (NLG1) controls the activity and synaptic localization of N-methyl-d-aspartate receptors, which activity is impaired by prolonged wakefulness. We here highlight that this pathway may underlie both the adverse effects of sleep loss on cognition and the subsequent changes in cortical synchrony. We found that the expression of specific Nlg1 transcript variants is changed by sleep deprivation in three mouse strains. These observations were associated with strain-specific changes in synaptic NLG1 protein content. Importantly, we showed that Nlg1 knockout mice are not able to sustain wakefulness and spend more time in nonrapid eye movement sleep than wild-type mice. These changes occurred with modifications in waking quality as exemplified by low theta/alpha activity during wakefulness and poor preference for social novelty, as well as altered delta synchrony during sleep. Finally, we identified a transcriptional pathway that could underlie the sleep/wake-dependent changes in Nlg1 expression and that involves clock transcription factors. We thus suggest that NLG1 is an element that contributes to the coupling of neuronal activity to sleep/wake regulation.
Neuroligin-1 links neuronal activity to sleep-wake regulation
El Helou, Janine; Bélanger-Nelson, Erika; Freyburger, Marlène; Dorsaz, Stéphane; Curie, Thomas; La Spada, Francesco; Gaudreault, Pierre-Olivier; Beaumont, Éric; Pouliot, Philippe; Lesage, Frédéric; Frank, Marcos G.; Franken, Paul; Mongrain, Valérie
2013-01-01
Maintaining wakefulness is associated with a progressive increase in the need for sleep. This phenomenon has been linked to changes in synaptic function. The synaptic adhesion molecule Neuroligin-1 (NLG1) controls the activity and synaptic localization of N-methyl-d-aspartate receptors, which activity is impaired by prolonged wakefulness. We here highlight that this pathway may underlie both the adverse effects of sleep loss on cognition and the subsequent changes in cortical synchrony. We found that the expression of specific Nlg1 transcript variants is changed by sleep deprivation in three mouse strains. These observations were associated with strain-specific changes in synaptic NLG1 protein content. Importantly, we showed that Nlg1 knockout mice are not able to sustain wakefulness and spend more time in nonrapid eye movement sleep than wild-type mice. These changes occurred with modifications in waking quality as exemplified by low theta/alpha activity during wakefulness and poor preference for social novelty, as well as altered delta synchrony during sleep. Finally, we identified a transcriptional pathway that could underlie the sleep/wake-dependent changes in Nlg1 expression and that involves clock transcription factors. We thus suggest that NLG1 is an element that contributes to the coupling of neuronal activity to sleep/wake regulation. PMID:23716671
Comparing development of synaptic proteins in rat visual, somatosensory, and frontal cortex.
Pinto, Joshua G A; Jones, David G; Murphy, Kathryn M
2013-01-01
Two theories have influenced our understanding of cortical development: the integrated network theory, where synaptic development is coordinated across areas; and the cascade theory, where the cortex develops in a wave-like manner from sensory to non-sensory areas. These different views on cortical development raise challenges for current studies aimed at comparing detailed maturation of the connectome among cortical areas. We have taken a different approach to compare synaptic development in rat visual, somatosensory, and frontal cortex by measuring expression of pre-synaptic (synapsin and synaptophysin) proteins that regulate vesicle cycling, and post-synaptic density (PSD-95 and Gephyrin) proteins that anchor excitatory or inhibitory (E-I) receptors. We also compared development of the balances between the pairs of pre- or post-synaptic proteins, and the overall pre- to post-synaptic balance, to address functional maturation and emergence of the E-I balance. We found that development of the individual proteins and the post-synaptic index overlapped among the three cortical areas, but the pre-synaptic index matured later in frontal cortex. Finally, we applied a neuroinformatics approach using principal component analysis and found that three components captured development of the synaptic proteins. The first component accounted for 64% of the variance in protein expression and reflected total protein expression, which overlapped among the three cortical areas. The second component was gephyrin and the E-I balance, it emerged as sequential waves starting in somatosensory, then frontal, and finally visual cortex. The third component was the balance between pre- and post-synaptic proteins, and this followed a different developmental trajectory in somatosensory cortex. Together, these results give the most support to an integrated network of synaptic development, but also highlight more complex patterns of development that vary in timing and end point among the cortical areas.
Wang, Zemin; Jackson, Rosemary J; Hong, Wei; Taylor, Walter M; Corbett, Grant T; Moreno, Arturo; Liu, Wen; Li, Shaomin; Frosch, Matthew P; Slutsky, Inna; Young-Pearse, Tracy L; Spires-Jones, Tara L; Walsh, Dominic M
2017-12-06
Compelling genetic evidence links the amyloid precursor protein (APP) to Alzheimer's disease (AD) and several theories have been advanced to explain the relationship. A leading hypothesis proposes that a small amphipathic fragment of APP, the amyloid β-protein (Aβ), self-associates to form soluble aggregates that impair synaptic and network activity. Here, we used the most disease-relevant form of Aβ, protein isolated from AD brain. Using this material, we show that the synaptotoxic effects of Aβ depend on expression of APP and that the Aβ-mediated impairment of synaptic plasticity is accompanied by presynaptic effects that disrupt the excitatory/inhibitory (E/I) balance. The net increase in the E/I ratio and inhibition of plasticity are associated with Aβ localizing to synapses and binding of soluble Aβ aggregates to synapses requires the expression of APP. Our findings indicate a role for APP in AD pathogenesis beyond the generation of Aβ and suggest modulation of APP expression as a therapy for AD. SIGNIFICANCE STATEMENT Here, we report on the plasticity-disrupting effects of amyloid β-protein (Aβ) isolated from Alzheimer's disease (AD) brain and the requirement of amyloid precursor protein (APP) for these effects. We show that Aβ-containing AD brain extracts block hippocampal LTP, augment glutamate release probability, and disrupt the excitatory/inhibitory balance. These effects are associated with Aβ localizing to synapses and genetic ablation of APP prevents both Aβ binding and Aβ-mediated synaptic dysfunctions. Our results emphasize the importance of APP in AD and should stimulate new studies to elucidate APP-related targets suitable for pharmacological manipulation. Copyright © 2017 the authors 0270-6474/17/3711947-20$15.00/0.
Lou, Xuelin
2018-01-01
The intact synaptic structure is critical for information processing in neural circuits. During synaptic transmission, rapid vesicle exocytosis increases the size of never terminals and endocytosis counteracts the increase. Accumulating evidence suggests that SV exocytosis and endocytosis are tightly connected in time and space during SV recycling, and this process is essential for synaptic function and structural stability. Research in the past has illustrated the molecular details of synaptic vesicle (SV) exocytosis and endocytosis; however, the mechanisms that timely connect these two fundamental events are poorly understood at central synapses. Here we discuss recent progress in SV recycling and summarize several emerging mechanisms by which synapses can “sense” the occurrence of exocytosis and timely initiate compensatory endocytosis. They include Ca2+ sensing, SV proteins sensing, and local membrane stress sensing. In addition, the spatial organization of endocytic zones adjacent to active zones provides a structural basis for efficient coupling between SV exocytosis and endocytosis. Through linking different endocytosis pathways with SV fusion, these mechanisms ensure necessary plasticity and robustness of nerve terminals to meet diverse physiological needs. PMID:29593500
Neuroligins Provide Molecular Links Between Syndromic and Non-Syndromic Autism
Singh, Sandeep K.; Eroglu, Cagla
2014-01-01
Autism is a common and heritable neuropsychiatric disorder that can be categorized into two types: syndromic and non-syndromic, the former of which are associated with other neurological disorders or syndromes. Molecular and functional links between syndromic and non-syndromic autism genes were lacking until studies aimed at understanding role of trans-synaptic adhesion molecule neuroligin, which is associated with non-syndromic autism, provided important connections. Here, we integrate data from these studies into a model of how neuroligin functions to control synaptic connectivity in the central nervous system and how neuroligin dysfunction may participate in the pathophysiology of autism. Understanding the complex functional interactions between neuroligins and other autism-associated proteins at the synapse is crucial to understand the pathology of autism. This understanding might bring us closer to development of therapeutic approaches for autism. PMID:23838185
Mover Is a Homomeric Phospho-Protein Present on Synaptic Vesicles
Kremer, Thomas; Hoeber, Jan; Kiran Akula, Asha; Urlaub, Henning; Islinger, Markus; Kirsch, Joachim; Dean, Camin; Dresbach, Thomas
2013-01-01
With remarkably few exceptions, the molecules mediating synaptic vesicle exocytosis at active zones are structurally and functionally conserved between vertebrates and invertebrates. Mover was found in a yeast-2-hybrid assay using the vertebrate-specific active zone scaffolding protein bassoon as a bait. Peptides of Mover have been reported in proteomics screens for self-interacting proteins, phosphorylated proteins, and synaptic vesicle proteins, respectively. Here, we tested the predictions arising from these screens. Using flotation assays, carbonate stripping of peripheral membrane proteins, mass spectrometry, immunogold labelling of purified synaptic vesicles, and immuno-organelle isolation, we found that Mover is indeed a peripheral synaptic vesicle membrane protein. In addition, by generating an antibody against phosphorylated Mover and Western blot analysis of fractionated rat brain, we found that Mover is a bona fide phospho-protein. The localization of Mover to synaptic vesicles is phosphorylation dependent; treatment with a phosphatase caused Mover to dissociate from synaptic vesicles. A yeast-2-hybrid screen, co-immunoprecipitation and cell-based optical assays of homomerization revealed that Mover undergoes homophilic interaction, and regions within both the N- and C- terminus of the protein are required for this interaction. Deleting a region required for homomeric interaction abolished presynaptic targeting of recombinant Mover in cultured neurons. Together, these data prove that Mover is associated with synaptic vesicles, and implicate phosphorylation and multimerization in targeting of Mover to synaptic vesicles and presynaptic sites. PMID:23723986
Alfonso, Stephanie I.; Callender, Julia A.; Hooli, Basavaraj; Antal, Corina E.; Mullin, Kristina; Sherman, Mathew A.; Lesné, Sylvain E.; Leitges, Michael; Newton, Alexandra C.; Tanzi, Rudolph E.; Malinow, Roberto
2016-01-01
Alzheimer’s disease (AD) is a progressive dementia disorder characterized by synaptic degeneration and amyloid-β (Aβ) accumulation in the brain. Through whole-genome sequencing of 1345 individuals from 410 families with late-onset AD (LOAD), we identified three highly penetrant variants in PRKCA, the gene that encodes protein kinase Cα (PKCα), in five of the families. All three variants linked with LOAD displayed increased catalytic activity relative to wild-type PKCα as assessed in live-cell imaging experiments using a genetically encoded PKC activity reporter. Deleting PRKCA in mice or adding PKC antagonists to mouse hippocampal slices infected with a virus expressing the Aβ precursor CT100 revealed that PKCα was required for the reduced synaptic activity caused by Aβ. In PRKCA−/− neurons expressing CT100, introduction of PKCα, but not PKCα lacking a PDZ interaction moiety, rescued synaptic depression, suggesting that a scaffolding interaction bringing PKCα to the synapse is required for its mediation of the effects of Aβ. Thus, enhanced PKCα activity may contribute to AD, possibly by mediating the actions of Aβ on synapses. In contrast, reduced PKCα activity is implicated in cancer. Hence, these findings reinforce the importance of maintaining a careful balance in the activity of this enzyme. PMID:27165780
Tamayev, Robert; Matsuda, Shuji; Arancio, Ottavio; D'Adamio, Luciano
2012-03-01
A mutation in the BRI2/ITM2b gene causes loss of BRI2 protein leading to familial Danish dementia (FDD). BRI2 deficiency of FDD provokes an increase in amyloid-β precursor protein (APP) processing since BRI2 is an inhibitor of APP proteolysis, and APP mediates the synaptic/memory deficits in FDD. APP processing is linked to Alzheimer disease (AD) pathogenesis, which is consistent with a common mechanism involving toxic APP metabolites in both dementias. We show that inhibition of APP cleavage by β-secretase rescues synaptic/memory deficits in a mouse model of FDD. β-cleavage of APP yields amino-terminal-soluble APPβ (sAPPβ) and β-carboxyl-terminal fragments (β-CTF). Processing of β-CTF by γ-secretase releases amyloid-β (Aβ), which is assumed to cause AD. However, inhibition of γ-secretase did not ameliorate synaptic/memory deficits of FDD mice. These results suggest that sAPPβ and/or β-CTF, rather than Aβ, are the toxic species causing dementia, and indicate that reducing β-cleavage of APP is an appropriate therapeutic approach to treating human dementias. Our data and the failures of anti-Aβ therapies in humans advise against targeting γ-secretase cleavage of APP and/or Aβ. Copyright © 2012 EMBO Molecular Medicine.
Tamayev, Robert; Matsuda, Shuji; Arancio, Ottavio; D'Adamio, Luciano
2012-01-01
A mutation in the BRI2/ITM2b gene causes loss of BRI2 protein leading to familial Danish dementia (FDD). BRI2 deficiency of FDD provokes an increase in amyloid-β precursor protein (APP) processing since BRI2 is an inhibitor of APP proteolysis, and APP mediates the synaptic/memory deficits in FDD. APP processing is linked to Alzheimer disease (AD) pathogenesis, which is consistent with a common mechanism involving toxic APP metabolites in both dementias. We show that inhibition of APP cleavage by β-secretase rescues synaptic/memory deficits in a mouse model of FDD. β-cleavage of APP yields amino-terminal-soluble APPβ (sAPPβ) and β-carboxyl-terminal fragments (β-CTF). Processing of β-CTF by γ-secretase releases amyloid-β (Aβ), which is assumed to cause AD. However, inhibition of γ-secretase did not ameliorate synaptic/memory deficits of FDD mice. These results suggest that sAPPβ and/or β-CTF, rather than Aβ, are the toxic species causing dementia, and indicate that reducing β-cleavage of APP is an appropriate therapeutic approach to treating human dementias. Our data and the failures of anti-Aβ therapies in humans advise against targeting γ-secretase cleavage of APP and/or Aβ. PMID:22170863
Cicvaric, Ana; Yang, Jiaye; Krieger, Sigurd; Khan, Deeba; Kim, Eun-Jung; Dominguez-Rodriguez, Manuel; Cabatic, Maureen; Molz, Barbara; Acevedo Aguilar, Juan Pablo; Milicevic, Radoslav; Smani, Tarik; Breuss, Johannes M; Kerjaschki, Dontscho; Pollak, Daniela D; Uhrin, Pavel; Monje, Francisco J
2016-12-01
Podoplanin is a cell-surface glycoprotein constitutively expressed in the brain and implicated in human brain tumorigenesis. The intrinsic function of podoplanin in brain neurons remains however uncharacterized. Using an established podoplanin-knockout mouse model and electrophysiological, biochemical, and behavioral approaches, we investigated the brain neuronal role of podoplanin. Ex-vivo electrophysiology showed that podoplanin deletion impairs dentate gyrus synaptic strengthening. In vivo, podoplanin deletion selectively impaired hippocampus-dependent spatial learning and memory without affecting amygdala-dependent cued fear conditioning. In vitro, neuronal overexpression of podoplanin promoted synaptic activity and neuritic outgrowth whereas podoplanin-deficient neurons exhibited stunted outgrowth and lower levels of p-Ezrin, TrkA, and CREB in response to nerve growth factor (NGF). Surface Plasmon Resonance data further indicated a physical interaction between podoplanin and NGF. This work proposes podoplanin as a novel component of the neuronal machinery underlying neuritogenesis, synaptic plasticity, and hippocampus-dependent memory functions. The existence of a relevant cross-talk between podoplanin and the NGF/TrkA signaling pathway is also for the first time proposed here, thus providing a novel molecular complex as a target for future multidisciplinary studies of the brain function in the physiology and the pathology. Key messages Podoplanin, a protein linked to the promotion of human brain tumors, is required in vivo for proper hippocampus-dependent learning and memory functions. Deletion of podoplanin selectively impairs activity-dependent synaptic strengthening at the neurogenic dentate-gyrus and hampers neuritogenesis and phospho Ezrin, TrkA and CREB protein levels upon NGF stimulation. Surface plasmon resonance data indicates a physical interaction between podoplanin and NGF. On these grounds, a relevant cross-talk between podoplanin and NGF as well as a role for podoplanin in plasticity-related brain neuronal functions is here proposed.
Oligomerisation of Synaptobrevin-2 Studied by Native Mass Spectrometry and Chemical Cross-Linking
NASA Astrophysics Data System (ADS)
Wittig, Sabine; Haupt, Caroline; Hoffmann, Waldemar; Kostmann, Susann; Pagel, Kevin; Schmidt, Carla
2018-06-01
Synaptobrevin-2 is a key player in signal transmission in neurons. It forms, together with SNAP25 and Syntaxin-1A, the neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex and mediates exocytosis of synaptic vesicles with the pre-synaptic membrane. While Synaptobrevin-2 is part of a four-helix bundle in this SNARE complex, it is natively unstructured in the absence of lipids or other SNARE proteins. Partially folded segments, presumably SNARE complex formation intermediates, as well as formation of Synaptobrevin-2 dimers and oligomers, were identified in previous studies. Here, we employ three Synaptobrevin-2 variants—the full-length protein Syb(1-116), the soluble, cytosolic variant Syb(1-96) as well as a shorter version Syb(49-96) containing structured segments but omitting a trigger site for SNARE complex formation—to study oligomerisation in the absence of interaction partners or when incorporated into the lipid bilayer of liposomes. Combining native mass spectrometry with chemical cross-linking, we find that the truncated versions show increased oligomerisation. Our findings from both techniques agree well and confirm the presence of oligomers in solution while membrane-bound Synaptobrevin-2 is mostly monomeric. Using ion mobility mass spectrometry, we could further show that lower charge states of Syb(49-96) oligomers, which most likely represent solution structures, follow an isotropic growth curve suggesting that they are intrinsically disordered. From a technical point of view, we show that the combination of native ion mobility mass spectrometry with chemical cross-linking is well-suited for the analysis of protein homo-oligomers. [Figure not available: see fulltext.
Ankyrins: Roles in synaptic biology and pathology.
Smith, Katharine R; Penzes, Peter
2018-05-03
Ankyrins are broadly expressed adaptors that organize diverse membrane proteins into specialized domains and link them to the sub-membranous cytoskeleton. In neurons, ankyrins are known to have essential roles in organizing the axon initial segment and nodes of Ranvier. However, recent studies have revealed novel functions for ankyrins at synapses, where they organize and stabilize neurotransmitter receptors, modulate dendritic spine morphology and control adhesion to the presynaptic site. Ankyrin genes have also been highly associated with a range of neurodevelopmental and psychiatric diseases, including bipolar disorder, schizophrenia and autism, which all demonstrate overlap in their genetics, mechanisms and phenotypes. This review discusses the novel synaptic functions of ankyrin proteins in neurons, and places these exciting findings in the context of ANK genes as key neuropsychiatric disorder risk-factors. Copyright © 2018 Elsevier Inc. All rights reserved.
Alkallas, Rached; Fish, Lisa; Goodarzi, Hani; Najafabadi, Hamed S
2017-10-13
The abundance of mRNA is mainly determined by the rates of RNA transcription and decay. Here, we present a method for unbiased estimation of differential mRNA decay rate from RNA-sequencing data by modeling the kinetics of mRNA metabolism. We show that in all primary human tissues tested, and particularly in the central nervous system, many pathways are regulated at the mRNA stability level. We present a parsimonious regulatory model consisting of two RNA-binding proteins and four microRNAs that modulate the mRNA stability landscape of the brain, which suggests a new link between RBFOX proteins and Alzheimer's disease. We show that downregulation of RBFOX1 leads to destabilization of mRNAs encoding for synaptic transmission proteins, which may contribute to the loss of synaptic function in Alzheimer's disease. RBFOX1 downregulation is more likely to occur in older and female individuals, consistent with the association of Alzheimer's disease with age and gender."mRNA abundance is determined by the rates of transcription and decay. Here, the authors propose a method for estimating the rate of differential mRNA decay from RNA-seq data and model mRNA stability in the brain, suggesting a link between mRNA stability and Alzheimer's disease."
Usher syndrome: molecular links of pathogenesis, proteins and pathways.
Kremer, Hannie; van Wijk, Erwin; Märker, Tina; Wolfrum, Uwe; Roepman, Ronald
2006-10-15
Usher syndrome is the most common form of deaf-blindness. The syndrome is both clinically and genetically heterogeneous, and to date, eight causative genes have been identified. The proteins encoded by these genes are part of a dynamic protein complex that is present in hair cells of the inner ear and in photoreceptor cells of the retina. The localization of the Usher proteins and the phenotype in animal models indicate that the Usher protein complex is essential in the morphogenesis of the stereocilia bundle in hair cells and in the calycal processes of photoreceptor cells. In addition, the Usher proteins are important in the synaptic processes of both cell types. The association of other proteins with the complex indicates functional links to a number of basic cell-biological processes. Prominently present is the connection to the dynamics of the actin cytoskeleton, involved in cellular morphology, cell polarity and cell-cell interactions. The Usher protein complex can also be linked to the cadherins/catenins in the adherens junction-associated protein complexes, suggesting a role in cell polarity and tissue organization. A third link can be established to the integrin transmembrane signaling network. The Usher interactome, as outlined in this review, participates in pathways common in inner ear and retina that are disrupted in the Usher syndrome.
da Silva, Vanessa Kappel; de Freitas, Betânia Souza; da Silva Dornelles, Arethuza; Nery, Laura Roesler; Falavigna, Lucio; Ferreira, Rafael Dal Ponte; Bogo, Maurício Reis; Hallak, Jaime Eduardo Cecílio; Zuardi, Antônio Waldo; Crippa, José Alexandre S; Schröder, Nadja
2014-02-01
We have recently shown that chronic treatment with cannabidiol (CBD) was able to recover memory deficits induced by brain iron loading in a dose-dependent manner in rats. Brain iron accumulation is implicated in the pathogenesis of neurodegenerative diseases, including Parkinson's and Alzheimer's, and has been related to cognitive deficits in animals and human subjects. Deficits in synaptic energy supply have been linked to neurodegenerative diseases, evidencing the key role played by mitochondria in maintaining viable neural cells and functional circuits. It has also been shown that brains of patients suffering from neurodegenerative diseases have increased expression of apoptosisrelated proteins and specific DNA fragmentation. Here, we have analyzed the expression level of brain proteins involved with mitochondrial fusion and fission mechanisms (DNM1L and OPA1), the main integral transmembrane protein of synaptic vesicles (synaptophysin), and caspase 3, an apoptosis-related protein, to gain a better understanding of the potential of CBD in restoring the damage caused by iron loading in rats. We found that CBD rescued iron-induced effects, bringing hippocampal DNM1L, caspase 3, and synaptophysin levels back to values comparable to the control group. Our results suggest that iron affects mitochondrial dynamics, possibly trigging synaptic loss and apoptotic cell death and indicate that CBD should be considered as a potential molecule with memory-rescuing and neuroprotective properties to be used in the treatment of cognitive deficits observed in neurodegenerative disorders.
Porath, Hagit T.; Barak, Michal; Pinto, Yishay; Wachtel, Chaim; Zilberberg, Alona; Lerer-Goldshtein, Tali; Efroni, Sol; Levanon, Erez Y.; Appelbaum, Lior
2015-01-01
Fragile X syndrome (FXS) is the most frequent inherited form of mental retardation. The cause for this X-linked disorder is the silencing of the fragile X mental retardation 1 (fmr1) gene and the absence of the fragile X mental retardation protein (Fmrp). The RNA-binding protein Fmrp represses protein translation, particularly in synapses. In Drosophila, Fmrp interacts with the adenosine deaminase acting on RNA (Adar) enzymes. Adar enzymes convert adenosine to inosine (A-to-I) and modify the sequence of RNA transcripts. Utilizing the fmr1 zebrafish mutant (fmr1-/-), we studied Fmrp-dependent neuronal circuit formation, behavior, and Adar-mediated RNA editing. By combining behavior analyses and live imaging of single axons and synapses, we showed hyperlocomotor activity, as well as increased axonal branching and synaptic density, in fmr1-/- larvae. We identified thousands of clustered RNA editing sites in the zebrafish transcriptome and showed that Fmrp biochemically interacts with the Adar2a protein. The expression levels of the adar genes and Adar2 protein increased in fmr1-/- zebrafish. Microfluidic-based multiplex PCR coupled with deep sequencing showed a mild increase in A-to-I RNA editing levels in evolutionarily conserved neuronal and synaptic Adar-targets in fmr1-/- larvae. These findings suggest that loss of Fmrp results in increased Adar-mediated RNA editing activity on target-specific RNAs, which, in turn, might alter neuronal circuit formation and behavior in FXS. PMID:26637167
Foote, Molly; Qiao, Haifa; Graham, Kourtney; Wu, Yuying; Zhou, Yi
2015-09-15
The 14-3-3 family of proteins is implicated in the regulation of several key neuronal processes. Previous human and animal studies suggested an association between 14-3-3 dysregulation and schizophrenia. We characterized behavioral and functional changes in transgenic mice that express an isoform-independent 14-3-3 inhibitor peptide in the brain. We recently showed that 14-3-3 functional knockout mice (FKO) exhibit impairments in associative learning and memory. We report here that these 14-3-3 FKO mice display other behavioral deficits that correspond to the core symptoms of schizophrenia. These behavioral deficits may be attributed to alterations in multiple neurotransmission systems in the 14-3-3 FKO mice. In particular, inhibition of 14-3-3 proteins results in a reduction of dendritic complexity and spine density in forebrain excitatory neurons, which may underlie the altered synaptic connectivity in the prefrontal cortical synapse of the 14-3-3 FKO mice. At the molecular level, this dendritic spine defect may stem from dysregulated actin dynamics secondary to a disruption of the 14-3-3-dependent regulation of phosphorylated cofilin. Collectively, our data provide a link between 14-3-3 dysfunction, synaptic alterations, and schizophrenia-associated behavioral deficits. Published by Elsevier Inc.
Ménard, Caroline; Quirion, Rémi
2012-01-01
Normal aging is generally characterized by a slow decline of cognitive abilities albeit with marked individual differences. Several animal models have been studied to explore the molecular and cellular mechanisms underlying this phenomenon. The excitatory neurotransmitter glutamate and its receptors have been closely linked to spatial learning and hippocampus-dependent memory processes. For decades, ionotropic glutamate receptors have been known to play a critical role in synaptic plasticity, a form of adaptation regulating memory formation. Over the past 10 years, several groups have shown the importance of group 1 metabotropic glutamate receptor (mGluR) in successful cognitive aging. These G-protein-coupled receptors are enriched in the hippocampal formation and interact physically with other proteins in the membrane including glutamate ionotropic receptors. Synaptic plasticity is crucial to maintain cognitive abilities and long-term depression (LTD) induced by group 1 mGluR activation, which has been linked to memory in the aging brain. The translation and synthesis of proteins by mGluR-LTD modulate ionotropic receptor trafficking and expression of immediate early genes related to cognition. Fragile X syndrome, a genetic form of autism characterized by memory deficits, has been associated to mGluR receptor malfunction and aberrant activation of its downstream signaling pathways. Dysfunction of mGluR could also be involved in neurodegenerative disorders like Alzheimer’s disease (AD). Indeed, beta-amyloid, the main component of insoluble senile plaques and one of the hallmarks of AD, occludes mGluR-dependent LTD leading to diminished functional synapses. This review highlights recent findings regarding mGluR signaling, related synaptic plasticity, and their potential involvement in normal aging and neurological disorders. PMID:23091460
Ménard, Caroline; Quirion, Rémi
2012-01-01
Normal aging is generally characterized by a slow decline of cognitive abilities albeit with marked individual differences. Several animal models have been studied to explore the molecular and cellular mechanisms underlying this phenomenon. The excitatory neurotransmitter glutamate and its receptors have been closely linked to spatial learning and hippocampus-dependent memory processes. For decades, ionotropic glutamate receptors have been known to play a critical role in synaptic plasticity, a form of adaptation regulating memory formation. Over the past 10 years, several groups have shown the importance of group 1 metabotropic glutamate receptor (mGluR) in successful cognitive aging. These G-protein-coupled receptors are enriched in the hippocampal formation and interact physically with other proteins in the membrane including glutamate ionotropic receptors. Synaptic plasticity is crucial to maintain cognitive abilities and long-term depression (LTD) induced by group 1 mGluR activation, which has been linked to memory in the aging brain. The translation and synthesis of proteins by mGluR-LTD modulate ionotropic receptor trafficking and expression of immediate early genes related to cognition. Fragile X syndrome, a genetic form of autism characterized by memory deficits, has been associated to mGluR receptor malfunction and aberrant activation of its downstream signaling pathways. Dysfunction of mGluR could also be involved in neurodegenerative disorders like Alzheimer's disease (AD). Indeed, beta-amyloid, the main component of insoluble senile plaques and one of the hallmarks of AD, occludes mGluR-dependent LTD leading to diminished functional synapses. This review highlights recent findings regarding mGluR signaling, related synaptic plasticity, and their potential involvement in normal aging and neurological disorders.
Wei, Jing; Graziane, Nicholas M; Gu, Zhenglin; Yan, Zhen
2015-11-13
Association studies have suggested that Disrupted-in-Schizophrenia 1 (DISC1) confers a genetic risk at the level of endophenotypes that underlies many major mental disorders. Despite the progress in understanding the significance of DISC1 at neural development, the mechanisms underlying DISC1 regulation of synaptic functions remain elusive. Because alterations in the cortical GABA system have been strongly linked to the pathophysiology of schizophrenia, one potential target of DISC1 that is critically involved in the regulation of cognition and emotion is the GABAA receptor (GABAAR). We found that cellular knockdown of DISC1 significantly reduced GABAAR-mediated synaptic and whole-cell current, whereas overexpression of wild-type DISC1, but not the C-terminal-truncated DISC1 (a schizophrenia-related mutant), significantly increased GABAAR currents in pyramidal neurons of the prefrontal cortex. These effects were accompanied by DISC1-induced changes in surface GABAAR expression. Moreover, the regulation of GABAARs by DISC1 knockdown or overexpression depends on the microtubule motor protein kinesin 1 (KIF5). Our results suggest that DISC1 exerts an important effect on GABAergic inhibitory transmission by regulating KIF5/microtubule-based GABAAR trafficking in the cortex. The knowledge gained from this study would shed light on how DISC1 and the GABA system are linked mechanistically and how their interactions are critical for maintaining a normal mental state. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Synaptic Plasticity and Translation Initiation
ERIC Educational Resources Information Center
Klann, Eric; Antion, Marcia D.; Banko, Jessica L.; Hou, Lingfei
2004-01-01
It is widely accepted that protein synthesis, including local protein synthesis at synapses, is required for several forms of synaptic plasticity. Local protein synthesis enables synapses to control synaptic strength independent of the cell body via rapid protein production from pre-existing mRNA. Therefore, regulation of translation initiation is…
Proteasome-independent polyubiquitin linkage regulates synapse scaffolding, efficacy, and plasticity
Ma, Qi; Ruan, Hongyu; Peng, Lisheng; Zhang, Mingjie; Gack, Michaela U.
2017-01-01
Ubiquitination-directed proteasomal degradation of synaptic proteins, presumably mediated by lysine 48 (K48) of ubiquitin, is a key mechanism in synapse and neural circuit remodeling. However, more than half of polyubiquitin (polyUb) species in the mammalian brain are estimated to be non-K48; among them, the most abundant is Lys 63 (K63)-linked polyUb chains that do not tag substrates for degradation but rather modify their properties and activity. Virtually nothing is known about the role of these nonproteolytic polyUb chains at the synapse. Here we report that K63-polyUb chains play a significant role in postsynaptic protein scaffolding and synaptic strength and plasticity. We found that the postsynaptic scaffold PSD-95 (postsynaptic density protein 95) undergoes K63 polyubiquitination, which markedly modifies PSD-95’s scaffolding potentials, enables its synaptic targeting, and promotes synapse maturation and efficacy. TNF receptor-associated factor 6 (TRAF6) is identified as a direct E3 ligase for PSD-95, which, together with the E2 complex Ubc13/Uev1a, assembles K63-chains on PSD-95. In contrast, CYLD (cylindromatosis tumor-suppressor protein), a K63-specific deubiquitinase enriched in postsynaptic densities, cleaves K63-chains from PSD-95. We found that neuronal activity exerts potent control of global and synaptic K63-polyUb levels and, through NMDA receptors, drives rapid, CYLD-mediated PSD-95 deubiquitination, mobilizing and depleting PSD-95 from synapses. Silencing CYLD in hippocampal neurons abolishes NMDA-induced chemical long-term depression. Our results unveil a previously unsuspected role for nonproteolytic polyUb chains in the synapse and illustrate a mechanism by which a PSD-associated K63-linkage–specific ubiquitin machinery acts on a major postsynaptic scaffold to regulate synapse organization, function, and plasticity. PMID:28973854
Del Prete, Dolores; Lombino, Franco; Liu, Xinran; D'Adamio, Luciano
2014-01-01
Amyloid Precursor Protein (APP) is a type I membrane protein that undergoes extensive processing by secretases, including BACE1. Although mutations in APP and genes that regulate processing of APP, such as PSENs and BRI2/ITM2B, cause dementias, the normal function of APP in synaptic transmission, synaptic plasticity and memory formation is poorly understood. To grasp the biochemical mechanisms underlying the function of APP in the central nervous system, it is important to first define the sub-cellular localization of APP in synapses and the synaptic interactome of APP. Using biochemical and electron microscopy approaches, we have found that APP is localized in pre-synaptic vesicles, where it is processed by Bace1. By means of a proteomic approach, we have characterized the synaptic interactome of the APP intracellular domain. We focused on this region of APP because in vivo data underline the central functional and pathological role of the intracellular domain of APP. Consistent with the expression of APP in pre-synaptic vesicles, the synaptic APP intracellular domain interactome is predominantly constituted by pre-synaptic, rather than post-synaptic, proteins. This pre-synaptic interactome of the APP intracellular domain includes proteins expressed on pre-synaptic vesicles such as the vesicular SNARE Vamp2/Vamp1 and the Ca2+ sensors Synaptotagmin-1/Synaptotagmin-2, and non-vesicular pre-synaptic proteins that regulate exocytosis, endocytosis and recycling of pre-synaptic vesicles, such as target-membrane-SNAREs (Syntaxin-1b, Syntaxin-1a, Snap25 and Snap47), Munc-18, Nsf, α/β/γ-Snaps and complexin. These data are consistent with a functional role for APP, via its carboxyl-terminal domain, in exocytosis, endocytosis and/or recycling of pre-synaptic vesicles.
Metal chaperones prevent zinc-mediated cognitive decline.
Adlard, Paul A; Parncutt, Jacqui; Lal, Varsha; James, Simon; Hare, Dominic; Doble, Philip; Finkelstein, David I; Bush, Ashley I
2015-09-01
Zinc transporter-3 (ZnT3) protein is responsible for loading zinc into presynaptic vesicles and consequently controls the availability of zinc at the glutamatergic synapse. ZnT3 has been shown to decline with age and in Alzheimer's disease (AD) and is crucially involved in learning and memory. In this study, we utilised whole animal behavioural analyses in the ZnT3 KO mouse line, together with electrophysiological analysis of long-term potentiation in brain slices from ZnT3 KO mice, to show that metal chaperones (clioquinol, 30 mg/kg/day for 6weeks) can prevent the age-dependent cognitive phenotype that characterises these animals. This likely occurs as a result of a homeostatic restoration of synaptic protein expression, as clioquinol significantly restored levels of various pre- and postsynaptic proteins that are critical for normal cognition, including PSD-95; AMPAR and NMDAR2b. We hypothesised that this clioquinol-mediated restoration of synaptic health resulted from a selective increase in synaptic zinc content within the hippocampus. While we demonstrated a small regional increase in hippocampal zinc content using synchrotron x-ray fluorescence microscopy, further sub-region analyses are required to determine whether this effect is seen in other regions of the hippocampal formation that are more closely linked to the synaptic plasticity effects observed in this study. These data support our recent report on the use of a different metal chaperone (PBT2) to prevent normal age-related cognitive decline and demonstrate that metal chaperones are efficacious in preventing the zinc-mediated cognitive decline that characterises ageing and disease. Copyright © 2014 Elsevier Inc. All rights reserved.
Borrie, Sarah C; Brems, Hilde; Legius, Eric; Bagni, Claudia
2017-08-31
The Ras-MAPK and PI3K-AKT-mTOR signaling cascades were originally identified as cancer regulatory pathways but have now been demonstrated to be critical for synaptic plasticity and behavior. Neurodevelopmental disorders arising from mutations in these pathways exhibit related neurological phenotypes, including cognitive dysfunction, autism, and intellectual disability. The downstream targets of these pathways include regulation of transcription and protein synthesis. Other disorders that affect protein translation include fragile X syndrome (an important cause of syndromal autism), and other translational regulators are now also linked to autism. Here, we review how mechanisms of synaptic plasticity have been revealed by studies of mouse models for Ras-MAPK, PI3K-AKT-mTOR, and translation regulatory pathway disorders. We discuss the face validity of these mouse models and review current progress in clinical trials directed at ameliorating cognitive and behavioral symptoms.
The ALS gene FUS regulates synaptic transmission at the Drosophila neuromuscular junction
Machamer, James B.; Collins, Sarah E.; Lloyd, Thomas E.
2014-01-01
Mutations in the RNA binding protein Fused in sarcoma (FUS) are estimated to account for 5–10% of all inherited cases of amyotrophic lateral sclerosis (ALS), but the function of FUS in motor neurons is poorly understood. Here, we investigate the early functional consequences of overexpressing wild-type or ALS-associated mutant FUS proteins in Drosophila motor neurons, and compare them to phenotypes arising from loss of the Drosophila homolog of FUS, Cabeza (Caz). We find that lethality and locomotor phenotypes correlate with levels of FUS transgene expression, indicating that toxicity in developing motor neurons is largely independent of ALS-linked mutations. At the neuromuscular junction (NMJ), overexpression of either wild-type or mutant FUS results in decreased number of presynaptic active zones and altered postsynaptic glutamate receptor subunit composition, coinciding with a reduction in synaptic transmission as a result of both reduced quantal size and quantal content. Interestingly, expression of human FUS downregulates endogenous Caz levels, demonstrating that FUS autoregulation occurs in motor neurons in vivo. However, loss of Caz from motor neurons increases synaptic transmission as a result of increased quantal size, suggesting that the loss of Caz in animals expressing FUS does not contribute to motor deficits. These data demonstrate that FUS/Caz regulates NMJ development and plays an evolutionarily conserved role in modulating the strength of synaptic transmission in motor neurons. PMID:24569165
Cirnaru, Maria D.; Marte, Antonella; Belluzzi, Elisa; Russo, Isabella; Gabrielli, Martina; Longo, Francesco; Arcuri, Ludovico; Murru, Luca; Bubacco, Luigi; Matteoli, Michela; Fedele, Ernesto; Sala, Carlo; Passafaro, Maria; Morari, Michele; Greggio, Elisa; Onofri, Franco; Piccoli, Giovanni
2014-01-01
Mutations in Leucine-rich repeat kinase 2 gene (LRRK2) are associated with familial and sporadic Parkinson's disease (PD). LRRK2 is a complex protein that consists of multiple domains executing several functions, including GTP hydrolysis, kinase activity, and protein binding. Robust evidence suggests that LRRK2 acts at the synaptic site as a molecular hub connecting synaptic vesicles to cytoskeletal elements via a complex panel of protein-protein interactions. Here we investigated the impact of pharmacological inhibition of LRRK2 kinase activity on synaptic function. Acute treatment with LRRK2 inhibitors reduced the frequency of spontaneous currents, the rate of synaptic vesicle trafficking and the release of neurotransmitter from isolated synaptosomes. The investigation of complementary models lacking LRRK2 expression allowed us to exclude potential off-side effects of kinase inhibitors on synaptic functions. Next we studied whether kinase inhibition affects LRRK2 heterologous interactions. We found that the binding among LRRK2, presynaptic proteins and synaptic vesicles is affected by kinase inhibition. Our results suggest that LRRK2 kinase activity influences synaptic vesicle release via modulation of LRRK2 macro-molecular complex. PMID:24904275
Stauch, Kelly L; Purnell, Phillip R; Fox, Howard S
2014-05-02
Synaptic mitochondria are essential for maintaining calcium homeostasis and producing ATP, processes vital for neuronal integrity and synaptic transmission. Synaptic mitochondria exhibit increased oxidative damage during aging and are more vulnerable to calcium insult than nonsynaptic mitochondria. Why synaptic mitochondria are specifically more susceptible to cumulative damage remains to be determined. In this study, the generation of a super-SILAC mix that served as an appropriate internal standard for mouse brain mitochondria mass spectrometry based analysis allowed for the quantification of the proteomic differences between synaptic and nonsynaptic mitochondria isolated from 10-month-old mice. We identified a total of 2260 common proteins between synaptic and nonsynaptic mitochondria of which 1629 were annotated as mitochondrial. Quantitative proteomic analysis of the proteins common between synaptic and nonsynaptic mitochondria revealed significant differential expression of 522 proteins involved in several pathways including oxidative phosphorylation, mitochondrial fission/fusion, calcium transport, and mitochondrial DNA replication and maintenance. In comparison to nonsynaptic mitochondria, synaptic mitochondria exhibited increased age-associated mitochondrial DNA deletions and decreased bioenergetic function. These findings provide insights into synaptic mitochondrial susceptibility to damage.
2015-01-01
Synaptic mitochondria are essential for maintaining calcium homeostasis and producing ATP, processes vital for neuronal integrity and synaptic transmission. Synaptic mitochondria exhibit increased oxidative damage during aging and are more vulnerable to calcium insult than nonsynaptic mitochondria. Why synaptic mitochondria are specifically more susceptible to cumulative damage remains to be determined. In this study, the generation of a super-SILAC mix that served as an appropriate internal standard for mouse brain mitochondria mass spectrometry based analysis allowed for the quantification of the proteomic differences between synaptic and nonsynaptic mitochondria isolated from 10-month-old mice. We identified a total of 2260 common proteins between synaptic and nonsynaptic mitochondria of which 1629 were annotated as mitochondrial. Quantitative proteomic analysis of the proteins common between synaptic and nonsynaptic mitochondria revealed significant differential expression of 522 proteins involved in several pathways including oxidative phosphorylation, mitochondrial fission/fusion, calcium transport, and mitochondrial DNA replication and maintenance. In comparison to nonsynaptic mitochondria, synaptic mitochondria exhibited increased age-associated mitochondrial DNA deletions and decreased bioenergetic function. These findings provide insights into synaptic mitochondrial susceptibility to damage. PMID:24708184
Gurd, J W; Bissoon, N
1997-08-01
The NMDA receptor has recently been found to be phosphorylated on tyrosine. To assess the possible connection between tyrosine phosphorylation of the NMDA receptor and signaling pathways in the postsynaptic cell, we have investigated the relationship between tyrosine phosphorylation and the binding of NMDA receptor subunits to the SH2 domains of phospholipase C-gamma (PLC-gamma). A glutathione S-transferase (GST) fusion protein containing both the N- and the C-proximal SH2 domains of PLC-gamma was bound to glutathione-agarose and reacted with synaptic junctional proteins and glycoproteins. Tyrosine-phosphorylated PSD-GP180, which has been identified as the NR2B subunit of the NMDA receptor, bound to the SH2-agarose beads in a phosphorylation-dependent fashion. Immunoblot analysis with antibodies specific for individual NMDA receptor subunits showed that both NR2A and NR2B subunits bound to the SH2-agarose. No binding occurred to GST-agarose lacking an associated SH2 domain, indicating that binding was specific for the SH2 domains. The binding of receptor subunits increased after the incubation of synaptic junctions with ATP and decreased after treatment of synaptic junctions with exogenous protein tyrosine phosphatase. Immunoprecipitation experiments confirmed that NR2A and NR2B were phosphorylated on tyrosine and further that tyrosine phosphorylation of each of the subunits was increased after incubation with ATP. The results demonstrate that NMDA receptor subunits NR2A and NR2B will bind to the SH2 domains of PLC-gamma and that isolated synaptic junctions contain endogenous protein tyrosine kinase(s) that can phosphorylate both NR2A and NR2B receptor subunits, and suggest that interaction of the tyrosine-phosphorylated NMDA receptor with proteins that contain SH2 domains may serve to link it to signaling pathways in the postsynaptic cell.
Preethi, Jayakumar; Singh, Hemant K.; Rajan, Koilmani E.
2016-01-01
Bacopa monniera extract (CDRI-08; BME) has been known to improve learning and memory, and understanding the molecular mechanisms may help to know its specificity. We investigated whether the BME treatment alters the methylation status of reelin and brain-derived neurotropic factor (BDNF) to enhance the memory through the interaction of N-methyl-D-aspartate receptor (NMDAR) with synaptic proteins. Rat pups were subjected to novel object recognition test following daily oral administration of BME (80 mg/kg) in 0.5% gum acacia (per-orally, p.o.; PND 15–29)/three doses of 5-azacytidine (5-azaC; 3.2 mg/kg) in 0.9% saline (intraperitoneally, i.p.) on PND-30. After the behavioral test, methylation status of reelin, BDNF and activation of NMDAR, and its interactions with synaptic proteins were tested. Rat pups treated with BME/5-azaC showed higher discrimination towards novel objects than with old objects during testing. Further, we observed an elevated level of unmethylated DNA in reelin and BDNF promoter region. Up-regulated reelin along with the splice variant of apolipoprotein E receptor 2 (ApoER 2, ex 19) form a cluster and activate NMDAR through disabled adopter protein-1 (DAB1) to enhance BDNF. Observed results suggest that BME regulate reelin epigenetically, which might enhance NMDAR interactions with synaptic proteins and induction of BDNF. These changes may be linked with improved novel object recognition memory. PMID:27445807
Synaptic vesicle recycling: steps and principles.
Rizzoli, Silvio O
2014-04-16
Synaptic vesicle recycling is one of the best-studied cellular pathways. Many of the proteins involved are known, and their interactions are becoming increasingly clear. However, as for many other pathways, it is still difficult to understand synaptic vesicle recycling as a whole. While it is generally possible to point out how synaptic reactions take place, it is not always easy to understand what triggers or controls them. Also, it is often difficult to understand how the availability of the reaction partners is controlled: how the reaction partners manage to find each other in the right place, at the right time. I present here an overview of synaptic vesicle recycling, discussing the mechanisms that trigger different reactions, and those that ensure the availability of reaction partners. A central argument is that synaptic vesicles bind soluble cofactor proteins, with low affinity, and thus control their availability in the synapse, forming a buffer for cofactor proteins. The availability of cofactor proteins, in turn, regulates the different synaptic reactions. Similar mechanisms, in which one of the reaction partners buffers another, may apply to many other processes, from the biogenesis to the degradation of the synaptic vesicle.
Asghari Adib, Elham; Stanchev, Doychin T; Xiong, Xin; Klinedinst, Susan; Soppina, Pushpanjali; Jahn, Thomas Robert; Hume, Richard I
2017-01-01
The kinesin-3 family member Unc-104/KIF1A is required for axonal transport of many presynaptic components to synapses, and mutation of this gene results in synaptic dysfunction in mice, flies and worms. Our studies at the Drosophila neuromuscular junction indicate that many synaptic defects in unc-104-null mutants are mediated independently of Unc-104’s transport function, via the Wallenda (Wnd)/DLK MAP kinase axonal damage signaling pathway. Wnd signaling becomes activated when Unc-104’s function is disrupted, and leads to impairment of synaptic structure and function by restraining the expression level of active zone (AZ) and synaptic vesicle (SV) components. This action concomitantly suppresses the buildup of synaptic proteins in neuronal cell bodies, hence may play an adaptive role to stresses that impair axonal transport. Wnd signaling also becomes activated when pre-synaptic proteins are over-expressed, suggesting the existence of a feedback circuit to match synaptic protein levels to the transport capacity of the axon. PMID:28925357
Mitchell, Robert M; Tajuddin, Nuzhath; Campbell, Edward M; Neafsey, Edward J; Collins, Michael A
2016-07-01
Epidemiological studies indicate that light-moderate alcohol (ethanol) consumers tend to have reduced risks of cognitive impairment and progression to dementia during aging. Exploring possible mechanisms, we previously found that moderate ethanol preconditioning (MEP, 20-30mM) of rat brain cultures for several days instigated neuroprotection against β-amyloid peptides. Our biochemical evidence implicated the NMDA receptor (NMDAR) as a potential neuroprotective "sensor", specifically via synaptic NMDAR signaling. It remains unclear how ethanol modulates the receptor and its downstream targets to engender neuroprotection. Here we confirm with deconvolution microscopy that MEP of rat mixed cerebellar cultures robustly increases synaptic NMDAR localization. Phospho-activation of the non-receptor tyrosine kinases Src and Pyk2, known to be linked to synaptic NMDAR, is also demonstrated. Additionally, the preconditioning enhances levels of an antioxidant protein, peroxiredoxin 2 (Prx2), reported to be downstream of synaptic NMDAR signaling, and NMDAR antagonism with memantine (earlier found to abrogate MEP neuroprotection) blocks the Prx2 elevations. To further link Prx2 with antioxidant-based neuroprotection, we circumvented the ethanol preconditioning-NMDAR pathway by pharmacologically increasing Prx2 with the naturally-occurring cruciferous compound, 3H-1,2-dithiole-3-thione (D3T). Thus, D3T pretreatment elevated Prx2 expression to a similar extent as MEP, while concomitantly preventing β-amyloid neurotoxicity; D3T also protected the cultures from hydrogen peroxide toxicity. The findings support a mechanism that couples synaptic NMDAR signaling, Prx2 expression and augmented antioxidant defenses in ethanol preconditioning-induced neuroprotection. That this mechanism can be emulated by a cruciferous vegetable constituent suggests that such naturally-occurring "neutraceuticals" may be useful in therapy for oxidative stress-related dementias. Copyright © 2016 Elsevier B.V. All rights reserved.
Ye, Xuan; Chang, Qing; Jeong, Yu Young; Cai, Huaibin; Kusnecov, Alexander
2017-01-01
Amyloid-β (Aβ) peptides play a key role in synaptic damage and memory deficits in the early pathogenesis of Alzheimer's disease (AD). Abnormal accumulation of Aβ at nerve terminals leads to synaptic pathology and ultimately to neurodegeneration. β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is the major neuronal β-secretase for Aβ generation. However, the mechanisms regulating BACE1 distribution in axons and β cleavage of APP at synapses remain largely unknown. Here, we reveal that dynein–Snapin-mediated retrograde transport regulates BACE1 trafficking in axons and APP processing at presynaptic terminals. BACE1 is predominantly accumulated within late endosomes at the synapses of AD-related mutant human APP (hAPP) transgenic (Tg) mice and patient brains. Defective retrograde transport by genetic ablation of snapin in mice recapitulates late endocytic retention of BACE1 and increased APP processing at presynaptic sites. Conversely, overexpressing Snapin facilitates BACE1 trafficking and reduces synaptic BACE1 accumulation by enhancing the removal of BACE1 from distal AD axons and presynaptic terminals. Moreover, elevated Snapin expression via stereotactic hippocampal injections of adeno-associated virus particles in mutant hAPP Tg mouse brains decreases synaptic Aβ levels and ameliorates synapse loss, thus rescuing cognitive impairments associated with hAPP mice. Altogether, our study provides new mechanistic insights into the complex regulation of BACE1 trafficking and presynaptic localization through Snapin-mediated dynein-driven retrograde axonal transport, thereby suggesting a potential approach of modulating Aβ levels and attenuating synaptic deficits in AD. SIGNIFICANCE STATEMENT β-Site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) trafficking and synaptic localization significantly influence its β secretase activity and amyloid-β (Aβ) production. In AD brains, BACE1 is accumulated within dystrophic neurites, which is thought to augment Aβ-induced synaptotoxicity by Aβ overproduction. However, it remains largely unknown whether axonal transport regulates synaptic APP processing. Here, we demonstrate that Snapin-mediated retrograde transport plays a critical role in removing BACE1 from presynaptic terminals toward the soma, thus reducing synaptic Aβ production. Adeno-associated virus–mediated Snapin overexpression in the hippocampus of mutant hAPP mice significantly decreases synaptic Aβ levels, attenuates synapse loss, and thus rescues cognitive deficits. Our study uncovers a new pathway that controls synaptic APP processing by enhancing axonal BACE1 trafficking, thereby advancing our fundamental knowledge critical for ameliorating Aβ-linked synaptic pathology. PMID:28159908
Cicvaric, Ana; Yang, Jiaye; Krieger, Sigurd; Khan, Deeba; Kim, Eun-Jung; Dominguez-Rodriguez, Manuel; Cabatic, Maureen; Molz, Barbara; Acevedo Aguilar, Juan Pablo; Milicevic, Radoslav; Smani, Tarik; Breuss, Johannes M.; Kerjaschki, Dontscho; Pollak, Daniela D.; Uhrin, Pavel; Monje, Francisco J.
2016-01-01
Abstract Introduction: Podoplanin is a cell-surface glycoprotein constitutively expressed in the brain and implicated in human brain tumorigenesis. The intrinsic function of podoplanin in brain neurons remains however uncharacterized. Materials and methods: Using an established podoplanin-knockout mouse model and electrophysiological, biochemical, and behavioral approaches, we investigated the brain neuronal role of podoplanin. Results: Ex-vivo electrophysiology showed that podoplanin deletion impairs dentate gyrus synaptic strengthening. In vivo, podoplanin deletion selectively impaired hippocampus-dependent spatial learning and memory without affecting amygdala-dependent cued fear conditioning. In vitro, neuronal overexpression of podoplanin promoted synaptic activity and neuritic outgrowth whereas podoplanin-deficient neurons exhibited stunted outgrowth and lower levels of p-Ezrin, TrkA, and CREB in response to nerve growth factor (NGF). Surface Plasmon Resonance data further indicated a physical interaction between podoplanin and NGF. Discussion: This work proposes podoplanin as a novel component of the neuronal machinery underlying neuritogenesis, synaptic plasticity, and hippocampus-dependent memory functions. The existence of a relevant cross-talk between podoplanin and the NGF/TrkA signaling pathway is also for the first time proposed here, thus providing a novel molecular complex as a target for future multidisciplinary studies of the brain function in the physiology and the pathology.Key messagesPodoplanin, a protein linked to the promotion of human brain tumors, is required in vivo for proper hippocampus-dependent learning and memory functions.Deletion of podoplanin selectively impairs activity-dependent synaptic strengthening at the neurogenic dentate-gyrus and hampers neuritogenesis and phospho Ezrin, TrkA and CREB protein levels upon NGF stimulation.Surface plasmon resonance data indicates a physical interaction between podoplanin and NGF. On these grounds, a relevant cross-talk between podoplanin and NGF as well as a role for podoplanin in plasticity-related brain neuronal functions is here proposed. PMID:27558977
Ammendrup-Johnsen, Ina; Naito, Yusuke; Craig, Ann Marie; Takahashi, Hideto
2015-09-09
Neurotrophin-3 (NT-3) and its high-affinity receptor TrkC play crucial trophic roles in neuronal differentiation, axon outgrowth, and synapse development and plasticity in the nervous system. We demonstrated previously that postsynaptic TrkC functions as a glutamatergic synapse-inducing (synaptogenic) cell adhesion molecule trans-interacting with presynaptic protein tyrosine phosphatase σ (PTPσ). Given that NT-3 and PTPσ bind distinct domains of the TrkC extracellular region, here we tested the hypothesis that NT-3 modulates TrkC/PTPσ binding and synaptogenic activity. NT-3 enhanced PTPσ binding to cell surface-expressed TrkC and facilitated the presynapse-inducing activity of TrkC in rat hippocampal neurons. Imaging of recycling presynaptic vesicles combined with TrkC knockdown and rescue approaches demonstrated that NT-3 rapidly potentiates presynaptic function via binding endogenous postsynaptic TrkC in a tyrosine kinase-independent manner. Thus, NT-3 positively modulates the TrkC-PTPσ complex for glutamatergic presynaptic assembly and function independently from TrkC kinase activation. Our findings provide new insight into synaptic roles of neurotrophin signaling and mechanisms controlling synaptic organizing complexes. Significance statement: Although many synaptogenic adhesion complexes have been identified in recent years, little is known about modulatory mechanisms. Here, we demonstrate a novel role of neurotrophin-3 in synaptic assembly and function as a positive modulator of the TrkC-protein tyrosine phosphatase σ complex. This study provides new insight into the involvement of neurotrophin signaling in synapse development and plasticity, presenting a molecular mechanism that may underlie previous observations of short- and long-term enhancement of presynaptic function by neurotrophin. Given the links of synaptogenic adhesion molecules to autism and schizophrenia, this study might also contribute to a better understanding of the pathogenesis of these disorders and provide a new direction for ameliorating imbalances in synaptic signaling networks. Copyright © 2015 the authors 0270-6474/15/3512425-07$15.00/0.
Dendritic protein synthesis in the normal and diseased brain
Swanger, Sharon A.; Bassell, Gary J.
2015-01-01
Synaptic activity is a spatially-limited process that requires a precise, yet dynamic, complement of proteins within the synaptic micro-domain. The maintenance and regulation of these synaptic proteins is regulated, in part, by local mRNA translation in dendrites. Protein synthesis within the postsynaptic compartment allows neurons tight spatial and temporal control of synaptic protein expression, which is critical for proper functioning of synapses and neural circuits. In this review, we discuss the identity of proteins synthesized within dendrites, the receptor-mediated mechanisms regulating their synthesis, and the possible roles for these locally synthesized proteins. We also explore how our current understanding of dendritic protein synthesis in the hippocampus can be applied to new brain regions and to understanding the pathological mechanisms underlying varied neurological diseases. PMID:23262237
Posttranslational Modifications Regulate the Postsynaptic Localization of PSD-95.
Vallejo, Daniela; Codocedo, Juan F; Inestrosa, Nibaldo C
2017-04-01
The postsynaptic density (PSD) consists of a lattice-like array of interacting proteins that organizes and stabilizes synaptic receptors, ion channels, structural proteins, and signaling molecules required for normal synaptic transmission and synaptic function. The scaffolding and hub protein postsynaptic density protein-95 (PSD-95) is a major element of central chemical synapses and interacts with glutamate receptors, cell adhesion molecules, and cytoskeletal elements. In fact, PSD-95 can regulate basal synaptic stability as well as the activity-dependent structural plasticity of the PSD and, therefore, of the excitatory chemical synapse. Several studies have shown that PSD-95 is highly enriched at excitatory synapses and have identified multiple protein structural domains and protein-protein interactions that mediate PSD-95 function and trafficking to the postsynaptic region. PSD-95 is also a target of several signaling pathways that induce posttranslational modifications, including palmitoylation, phosphorylation, ubiquitination, nitrosylation, and neddylation; these modifications determine the synaptic stability and function of PSD-95 and thus regulate the fates of individual dendritic spines in the nervous system. In the present work, we review the posttranslational modifications that regulate the synaptic localization of PSD-95 and describe their functional consequences. We also explore the signaling pathways that induce such changes.
Martinez, L A; Tejada-Simon, Maria Victoria
2018-06-01
Behavioral intervention therapy has proven beneficial in the treatment of autism and intellectual disabilities (ID), raising the possibility of certain changes in molecular mechanisms activated by these interventions that may promote learning. Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by autistic features and intellectual disability and can serve as a model to examine mechanisms that promote learning. FXS results from mutations in the fragile X mental retardation 1 gene (Fmr1) that prevents expression of the Fmr1 protein (FMRP), a messenger RNA (mRNA) translation regulator at synapses. Among many other functions, FMRP organizes a complex with the actin cytoskeleton-regulating small Rho GTPase Rac1. As in humans, Fmr1 KO mice lacking FMRP display autistic-like behaviors and deformities of actin-rich synaptic structures in addition to impaired hippocampal learning and synaptic plasticity. These features have been previously linked to proper function of actin remodeling proteins that includes Rac1. An important step in Rac1 activation and function is its translocation to the membrane, where it can influence synaptic actin cytoskeleton remodeling during hippocampus-dependent learning. Herein, we report that Fmr1 KO mouse hippocampus exhibits increased levels of membrane-bound Rac1, which may prevent proper learning-induced synaptic changes. We also determine that increasing training intensity during fear conditioning (FC) training restores contextual memory in Fmr1 KO mice and reduces membrane-bound Rac1 in Fmr1 KO hippocampus. Increased training intensity also results in normalized long-term potentiation in hippocampal slices taken from Fmr1 KO mice. These results point to interventional treatments providing new therapeutic options for FXS-related cognitive dysfunction.
Pinto, Joshua G. A.; Jones, David G.; Williams, C. Kate; Murphy, Kathryn M.
2015-01-01
Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin) and found that synaptic development in human primary visual cortex (V1) continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the four proteins and include a stage during early development (<1 year) when only Gephyrin has high inter-individual variability. We also found that pre- and post-synaptic protein balances develop quickly, suggesting that maturation of certain synaptic functions happens within the 1 year or 2 of life. A multidimensional analysis (principle component analysis) showed that most of the variance was captured by the sum of the four synaptic proteins. We used that sum to compare development of human and rat visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic. PMID:25729353
Measuring Synaptic Vesicle Endocytosis in Cultured Hippocampal Neurons.
Villarreal, Seth; Lee, Sung Hoon; Wu, Ling-Gang
2017-09-04
During endocytosis, fused synaptic vesicles are retrieved at nerve terminals, allowing for vesicle recycling and thus the maintenance of synaptic transmission during repetitive nerve firing. Impaired endocytosis in pathological conditions leads to decreases in synaptic strength and brain functions. Here, we describe methods used to measure synaptic vesicle endocytosis at the mammalian hippocampal synapse in neuronal culture. We monitored synaptic vesicle protein endocytosis by fusing a synaptic vesicular membrane protein, including synaptophysin and VAMP2/synaptobrevin, at the vesicular lumenal side, with pHluorin, a pH-sensitive green fluorescent protein that increases its fluorescence intensity as the pH increases. During exocytosis, vesicular lumen pH increases, whereas during endocytosis vesicular lumen pH is re-acidified. Thus, an increase of pHluorin fluorescence intensity indicates fusion, whereas a decrease indicates endocytosis of the labelled synaptic vesicle protein. In addition to using the pHluorin imaging method to record endocytosis, we monitored vesicular membrane endocytosis by electron microscopy (EM) measurements of Horseradish peroxidase (HRP) uptake by vesicles. Finally, we monitored the formation of nerve terminal membrane pits at various times after high potassium-induced depolarization. The time course of HRP uptake and membrane pit formation indicates the time course of endocytosis.
Synaptic vesicle recycling: steps and principles
Rizzoli, Silvio O
2014-01-01
Synaptic vesicle recycling is one of the best-studied cellular pathways. Many of the proteins involved are known, and their interactions are becoming increasingly clear. However, as for many other pathways, it is still difficult to understand synaptic vesicle recycling as a whole. While it is generally possible to point out how synaptic reactions take place, it is not always easy to understand what triggers or controls them. Also, it is often difficult to understand how the availability of the reaction partners is controlled: how the reaction partners manage to find each other in the right place, at the right time. I present here an overview of synaptic vesicle recycling, discussing the mechanisms that trigger different reactions, and those that ensure the availability of reaction partners. A central argument is that synaptic vesicles bind soluble cofactor proteins, with low affinity, and thus control their availability in the synapse, forming a buffer for cofactor proteins. The availability of cofactor proteins, in turn, regulates the different synaptic reactions. Similar mechanisms, in which one of the reaction partners buffers another, may apply to many other processes, from the biogenesis to the degradation of the synaptic vesicle. PMID:24596248
Willemsen, Marjolein H; Ba, Wei; Wissink-Lindhout, Willemijn M; de Brouwer, Arjan P M; Haas, Stefan A; Bienek, Melanie; Hu, Hao; Vissers, Lisenka E L M; van Bokhoven, Hans; Kalscheuer, Vera; Nadif Kasri, Nael; Kleefstra, Tjitske
2014-07-01
Kinesin superfamily (KIF) genes encode motor proteins that have fundamental roles in brain functioning, development, survival and plasticity by regulating the transport of cargo along microtubules within axons, dendrites and synapses. Mouse knockout studies support these important functions in the nervous system. The role of KIF genes in intellectual disability (ID) has so far received limited attention, although previous studies have suggested that many ID genes impinge on synaptic function. By applying next-generation sequencing (NGS) in ID patients, we identified likely pathogenic mutations in KIF4A and KIF5C. To further confirm the pathogenicity of these mutations, we performed functional studies at the level of synaptic function in primary rat hippocampal neurons. Four males from a single family with a disruptive mutation in the X-linked KIF4A (c.1489-8_1490delins10; p.?- exon skipping) showed mild to moderate ID and epilepsy. A female patient with a de novo missense mutation in KIF5C (c.11465A>C; p.(Glu237Lys)) presented with severe ID, epilepsy, microcephaly and cortical malformation. Knock-down of Kif4a in rat primary hippocampal neurons altered the balance between excitatory and inhibitory synaptic transmission, whereas the mutation in Kif5c affected its protein function at excitatory synapses. Our results suggest that mutations in KIF4A and KIF5C cause ID by tipping the balance between excitatory and inhibitory synaptic excitability. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Structure of the GH1 domain of guanylate kinase-associated protein from Rattus norvegicus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Junsen; Yang, Huiseon; Eom, Soo Hyun
2014-09-12
Graphical abstract: - Highlights: • The crystal structure of GKAP homology domain 1 (GH1) was determined. • GKAP GH1 is a three-helix bundle connected by short flexible loops. • The predicted helix α4 associates weakly with the helix α3, suggesting dynamic nature of the GH1 domain. - Abstract: Guanylate-kinase-associated protein (GKAP) is a scaffolding protein that links NMDA receptor-PSD-95 to Shank–Homer complexes by protein–protein interactions at the synaptic junction. GKAP family proteins are characterized by the presence of a C-terminal conserved GKAP homology domain 1 (GH1) of unknown structure and function. In this study, crystal structure of the GH1 domainmore » of GKAP from Rattus norvegicus was determined in fusion with an N-terminal maltose-binding protein at 2.0 Å resolution. The structure of GKAP GH1 displays a three-helix bundle connected by short flexible loops. The predicted helix α4 which was not visible in the crystal structure associates weakly with the helix α3 suggesting dynamic nature of the GH1 domain. The strict conservation of GH1 domain across GKAP family members and the lack of a catalytic active site required for enzyme activity imply that the GH1 domain might serve as a protein–protein interaction module for the synaptic protein clustering.« less
TARPs differentially decorate AMPA receptors to specify neuropharmacology.
Kato, Akihiko S; Gill, Martin B; Yu, Hong; Nisenbaum, Eric S; Bredt, David S
2010-05-01
Transmembrane AMPA receptor regulatory proteins (TARPs) are the first identified auxiliary subunits for a neurotransmitter-gated ion channel. Although initial studies found that stargazin, the prototypical TARP, principally chaperones AMPA receptors, subsequent research demonstrated that it also regulates AMPA receptor kinetics and synaptic waveforms. Recent studies have identified a diverse collection of TARP isoforms--types Ia, Ib II--that distinctly regulate AMPA receptor trafficking, gating and neuropharmacology. These TARP isoforms are heterogeneously expressed in specific neuronal populations and can differentially sculpt synaptic transmission and plasticity. Whole-genome analyses also link multiple TARP loci to childhood epilepsy, schizophrenia and bipolar disorder. TARPs emerge as vital components of excitatory synapses that participate both in signal transduction and in neuropsychiatric disorders. Copyright 2010 Elsevier Ltd. All rights reserved.
Autism-related deficits via dysregulated eIF4E-dependent translational control.
Gkogkas, Christos G; Khoutorsky, Arkady; Ran, Israeli; Rampakakis, Emmanouil; Nevarko, Tatiana; Weatherill, Daniel B; Vasuta, Cristina; Yee, Stephanie; Truitt, Morgan; Dallaire, Paul; Major, François; Lasko, Paul; Ruggero, Davide; Nader, Karim; Lacaille, Jean-Claude; Sonenberg, Nahum
2013-01-17
Hyperconnectivity of neuronal circuits due to increased synaptic protein synthesis is thought to cause autism spectrum disorders (ASDs). The mammalian target of rapamycin (mTOR) is strongly implicated in ASDs by means of upstream signalling; however, downstream regulatory mechanisms are ill-defined. Here we show that knockout of the eukaryotic translation initiation factor 4E-binding protein 2 (4E-BP2)-an eIF4E repressor downstream of mTOR-or eIF4E overexpression leads to increased translation of neuroligins, which are postsynaptic proteins that are causally linked to ASDs. Mice that have the gene encoding 4E-BP2 (Eif4ebp2) knocked out exhibit an increased ratio of excitatory to inhibitory synaptic inputs and autistic-like behaviours (that is, social interaction deficits, altered communication and repetitive/stereotyped behaviours). Pharmacological inhibition of eIF4E activity or normalization of neuroligin 1, but not neuroligin 2, protein levels restores the normal excitation/inhibition ratio and rectifies the social behaviour deficits. Thus, translational control by eIF4E regulates the synthesis of neuroligins, maintaining the excitation-to-inhibition balance, and its dysregulation engenders ASD-like phenotypes.
Baker, Michael W; Macagno, Eduardo R
2014-04-17
Recent evidence indicates that gap junction (GJ) proteins can play a critical role in controlling neuronal connectivity as well as cell morphology in the developing nervous system. GJ proteins may function analogously to cell adhesion molecules, mediating cellular recognition and selective neurite adhesion. Moreover, during synaptogenesis electrical synapses often herald the later establishment of chemical synapses, and thus may help facilitate activity-dependent sculpting of synaptic terminals. Recent findings suggest that the morphology and connectivity of embryonic leech neurons are fundamentally organized by the type and perhaps location of the GJ proteins they express. For example, ectopic expression in embryonic leech neurons of certain innexins that define small GJ-linked networks of cells leads to the novel coupling of the expressing cell into that network. Moreover, gap junctions appear to mediate interactions among homologous neurons that modulate process outgrowth and stability. We propose that the selective formation of GJs between developing neurons and perhaps glial cells in the CNS helps orchestrate not only cellular synaptic connectivity but also can have a pronounced effect on the arborization and morphology of those cells involved. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Wang, Sheng; Yang, Feng; Petyuk, Vladislav A; Shukla, Anil K; Monroe, Matthew E; Gritsenko, Marina A; Rodland, Karin D; Smith, Richard D; Qian, Wei-Jun; Gong, Cheng-Xin; Liu, Tao
2017-09-01
Protein modification by O-linked β-N-acetylglucosamine (O-GlcNAc) is emerging as an important factor in the pathogenesis of sporadic Alzheimer's disease (AD); however, detailed molecular characterization of this important protein post-translational modification at the proteome level has been highly challenging, owing to its low stoichiometry and labile nature. Herein, we report the most comprehensive, quantitative proteomics analysis for protein O-GlcNAcylation in postmortem human brain tissues with and without AD by the use of isobaric tandem mass tag labelling, chemoenzymatic photocleavage enrichment, and liquid chromatography coupled to mass spectrometry. A total of 1850 O-GlcNAc peptides covering 1094 O-GlcNAcylation sites were identified from 530 proteins in the human brain. One hundred and thirty-one O-GlcNAc peptides covering 81 proteins were altered in AD brains as compared with controls (q < 0.05). Moreover, alteration of O-GlcNAc peptide abundance could be attributed more to O-GlcNAcylation level than to protein level changes. The altered O-GlcNAcylated proteins belong to several structural and functional categories, including synaptic proteins, cytoskeleton proteins, and memory-associated proteins. These findings suggest that dysregulation of O-GlcNAcylation of multiple brain proteins may be involved in the development of sporadic AD. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Levetiracetam Reverses Synaptic Deficits Produced by Overexpression of SV2A
Yao, Jia; Bleckert, Adam; Hill, Jessica; Bajjalieh, Sandra M.
2011-01-01
Levetiracetam is an FDA-approved drug used to treat epilepsy and other disorders of the nervous system. Although it is known that levetiracetam binds the synaptic vesicle protein SV2A, how drug binding affects synaptic functioning remains unknown. Here we report that levetiracetam reverses the effects of excess SV2A in autaptic hippocampal neurons. Expression of an SV2A-EGFP fusion protein produced a ∼1.5-fold increase in synaptic levels of SV2, and resulted in reduced synaptic release probability. The overexpression phenotype parallels that seen in neurons from SV2 knockout mice, which experience severe seizures. Overexpression of SV2A also increased synaptic levels of the calcium-sensor protein synaptotagmin, an SV2-binding protein whose stability and trafficking are regulated by SV2. Treatment with levetiracetam rescued normal neurotransmission and restored normal levels of SV2 and synaptotagmin at the synapse. These results indicate that changes in SV2 expression in either direction impact neurotransmission, and suggest that levetiracetam may modulate SV2 protein interactions. PMID:22220214
PSD-95 promotes the stabilization of young synaptic contacts.
Taft, Christine E; Turrigiano, Gina G
2014-01-05
Maintaining a population of stable synaptic connections is probably of critical importance for the preservation of memories and functional circuitry, but the molecular dynamics that underlie synapse stabilization is poorly understood. Here, we use simultaneous time-lapse imaging of post synaptic density-95 (PSD-95) and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) to investigate the dynamics of protein composition at axodendritic (AD) contacts. Our data reveal that this composition is highly dynamic, with both proteins moving into and out of the same synapse independently, so that synapses cycle rapidly between states in which they are enriched for none, one or both proteins. We assessed how PSD-95 and CaMKII interact at stable and transient AD sites and found that both phospho-CaMKII and PSD-95 are present more often at stable than labile contacts. Finally, we found that synaptic contacts are more stable in older neurons, and this process can be mimicked in younger neurons by overexpression of PSD-95. Taken together, these data show that synaptic protein composition is highly variable over a time-scale of hours, and that PSD-95 is probably a key synaptic protein that promotes synapse stability.
Cadherin-10 Maintains Excitatory/Inhibitory Ratio through Interactions with Synaptic Proteins
Jones, Kelly A.; Kopeikina, Katherine J.; Burette, Alain C.; Copits, Bryan A.; Forrest, Marc P.; Fawcett-Patel, Jessica M.
2017-01-01
Appropriate excitatory/inhibitory (E/I) balance is essential for normal cortical function and is altered in some psychiatric disorders, including autism spectrum disorders (ASDs). Cell-autonomous molecular mechanisms that control the balance of excitatory and inhibitory synapse function remain poorly understood; no proteins that regulate excitatory and inhibitory synapse strength in a coordinated reciprocal manner have been identified. Using super-resolution imaging, electrophysiology, and molecular manipulations, we show that cadherin-10, encoded by CDH10 within the ASD risk locus 5p14.1, maintains both excitatory and inhibitory synaptic scaffold structure in cultured cortical neurons from rats of both sexes. Cadherin-10 localizes to both excitatory and inhibitory synapses in neocortex, where it is organized into nanoscale puncta that influence the size of their associated PSDs. Knockdown of cadherin-10 reduces excitatory but increases inhibitory synapse size and strength, altering the E/I ratio in cortical neurons. Furthermore, cadherin-10 exhibits differential participation in complexes with PSD-95 and gephyrin, which may underlie its role in maintaining the E/I ratio. Our data provide a new mechanism whereby a protein encoded by a common ASD risk factor controls E/I ratios by regulating excitatory and inhibitory synapses in opposing directions. SIGNIFICANCE STATEMENT The correct balance between excitatory/inhibitory (E/I) is crucial for normal brain function and is altered in psychiatric disorders such as autism. However, the molecular mechanisms that underlie this balance remain elusive. To address this, we studied cadherin-10, an adhesion protein that is genetically linked to autism and understudied at the cellular level. Using a combination of advanced microscopy techniques and electrophysiology, we show that cadherin-10 forms nanoscale puncta at excitatory and inhibitory synapses, maintains excitatory and inhibitory synaptic structure, and is essential for maintaining the correct balance between excitation and inhibition in neuronal dendrites. These findings reveal a new mechanism by which E/I balance is controlled in neurons and may bear relevance to synaptic dysfunction in autism. PMID:29030434
Lee, Eun-Jae; Lee, Hyejin; Huang, Tzyy-Nan; Chung, Changuk; Shin, Wangyong; Kim, Kyungdeok; Koh, Jae-Young; Hsueh, Yi-Ping; Kim, Eunjoon
2015-05-18
Genetic aspects of autism spectrum disorders (ASDs) have recently been extensively explored, but environmental influences that affect ASDs have received considerably less attention. Zinc (Zn) is a nutritional factor implicated in ASDs, but evidence for a strong association and linking mechanism is largely lacking. Here we report that trans-synaptic Zn mobilization rapidly rescues social interaction in two independent mouse models of ASD. In mice lacking Shank2, an excitatory postsynaptic scaffolding protein, postsynaptic Zn elevation induced by clioquinol (a Zn chelator and ionophore) improves social interaction. Postsynaptic Zn is mainly derived from presynaptic pools and activates NMDA receptors (NMDARs) through postsynaptic activation of the tyrosine kinase Src. Clioquinol also improves social interaction in mice haploinsufficient for the transcription factor Tbr1, which accompanies NMDAR activation in the amygdala. These results suggest that trans-synaptic Zn mobilization induced by clioquinol rescues social deficits in mouse models of ASD through postsynaptic Src and NMDAR activation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanley, M.R.
1978-11-01
The crude venom of the Formosan banded krait, Bungarus multicinctus, was separated into eleven lethal protein fractions. Nine fractions were purified to final homogeneous toxins, designated ..cap alpha..-bungarotoxin, ..beta..-bungarotoxin, and toxins 7, 8, 9A, 11, 12, 13, and 14. Three of the toxins, ..cap alpha..-bungarotoxin, 7, and 8, were identified as post-synaptic curarimimetic neurotoxins. The remaining toxins were identified as pre-synaptic neurotoxins. ..cap alpha..-Bungarotoxin, toxin 7, and toxin 8 are all highly stable basic polypeptides of approx. 8000 daltons molecular weight. The pre-synaptic toxins fell into two structural groups: toxin 9A and 14 which were single basic chains of approx.more » 14,000 daltons, and ..beta..-bungarotoxin, and toxins 11 thru 13 which were composed of two chains of approx. 8000 and approx. 13,000 daltons covalently linked by disulfides. All the pre-synaptic neurotoxins were shown to have intrinsic calcium-dependent phospholipase A activities. Under certain conditions, intact synaptic membranes were hydrolyzed more rapidly than protein-free extracted synaptic-lipid liposomes which, in turn, were hydrolyzed more rapidly than any other tested liposomes. It was speculated that cell-surface arrays of phosphatidyl serine/glycolipids created high affinity target sites for ..beta..-bungarotoxin. Single-chain toxins were found to be qualitatively different from the two-chain toxins in their ability to block the functioning of acetylcholine receptors, and were quantitatively different in their enzymatic and membrane disruptive activities. ..beta..-Bungarotoxin was shown to be an extremely potent neuronal lesioning agent. There was no apparent selectivity for cholinergic over non-cholinergic neurons, nor for nerve terminals over cell bodies. It was suggested that ..beta..-bungarotoxin can be considered a useful new histological tool, which may exhibit some regional selectivity.« less
Masters or slaves? Vesicle release machinery and the regulation of presynaptic calcium channels.
Jarvis, Scott E; Zamponi, Gerald W
2005-05-01
Calcium entry through presynaptic voltage-gated calcium channels is essential for neurotransmitter release. The two major types of presynaptic calcium channels contain a synaptic protein interaction site that physically interacts with synaptic vesicle release proteins. This is thought to tighten the coupling between the sources of calcium entry and the neurotransmitter release machinery. Conversely, the binding of synaptic proteins to presynaptic calcium channels regulates calcium channel activity. Hence, presynaptic calcium channels act not only as the masters of the synaptic release process, but also as key targets for feedback inhibition.
Ugras, Scott; Daniels, Malcolm J; Fazelinia, Hossein; Gould, Neal S; Yocum, Anastasia K; Luk, Kelvin C; Luna, Esteban; Ding, Hua; McKennan, Chris; Seeholzer, Steven; Martinez, Dan; Evans, Perry; Brown, Daniel; Duda, John E; Ischiropoulos, Harry
2018-05-01
Accumulation of aggregated α-synuclein into Lewy bodies is thought to contribute to the onset and progression of dopaminergic neuron degeneration in Parkinson's disease (PD) and related disorders. Although protein aggregation is associated with perturbation of proteostasis, how α-synuclein aggregation affects the brain proteome and signaling remains uncertain. In a mouse model of α-synuclein aggregation, 6% of 6215 proteins and 1.6% of 8183 phosphopeptides changed in abundance, indicating conservation of proteostasis and phosphorylation signaling. The proteomic analysis confirmed changes in abundance of proteins that regulate dopamine synthesis and transport, synaptic activity and integrity, and unearthed changes in mRNA binding, processing and protein translation. Phosphorylation signaling changes centered on axonal and synaptic cytoskeletal organization and structural integrity. Proteostatic responses included a significant increase in the levels of Lmp7, a component of the immunoproteasome. Increased Lmp7 levels and activity were also quantified in postmortem human brains with PD and dementia with Lewy bodies. Functionally, the immunoproteasome degrades α-synuclein aggregates and generates potentially antigenic peptides. Expression and activity of the immunoproteasome may represent testable targets to induce adaptive responses that maintain proteome integrity and modulate immune responses in protein aggregation disorders. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Zhou, Keming; Cherra, Salvatore J; Goncharov, Alexandr; Jin, Yishi
2017-05-09
Excitation-inhibition imbalance in neural networks is widely linked to neurological and neuropsychiatric disorders. However, how genetic factors alter neuronal activity, leading to excitation-inhibition imbalance, remains unclear. Here, using the C. elegans locomotor circuit, we examine how altering neuronal activity for varying time periods affects synaptic release pattern and animal behavior. We show that while short-duration activation of excitatory cholinergic neurons elicits a reversible enhancement of presynaptic strength, persistent activation results to asynchronous and reduced cholinergic drive, inducing imbalance between endogenous excitation and inhibition. We find that the neuronal calcium sensor protein NCS-2 is required for asynchronous cholinergic release in an activity-dependent manner and dampens excitability of inhibitory neurons non-cell autonomously. The function of NCS-2 requires its Ca 2+ binding and membrane association domains. These results reveal a synaptic mechanism implicating asynchronous release in regulation of excitation-inhibition balance. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Evolution of insect proteomes: insights into synapse organization and synaptic vesicle life cycle
Yanay, Chava; Morpurgo, Noa; Linial, Michal
2008-01-01
Background The molecular components in synapses that are essential to the life cycle of synaptic vesicles are well characterized. Nonetheless, many aspects of synaptic processes, in particular how they relate to complex behaviour, remain elusive. The genomes of flies, mosquitoes, the honeybee and the beetle are now fully sequenced and span an evolutionary breadth of about 350 million years; this provides a unique opportunity to conduct a comparative genomics study of the synapse. Results We compiled a list of 120 gene prototypes that comprise the core of presynaptic structures in insects. Insects lack several scaffolding proteins in the active zone, such as bassoon and piccollo, and the most abundant protein in the mammalian synaptic vesicle, namely synaptophysin. The pattern of evolution of synaptic protein complexes is analyzed. According to this analysis, the components of presynaptic complexes as well as proteins that take part in organelle biogenesis are tightly coordinated. Most synaptic proteins are involved in rich protein interaction networks. Overall, the number of interacting proteins and the degrees of sequence conservation between human and insects are closely correlated. Such a correlation holds for exocytotic but not for endocytotic proteins. Conclusion This comparative study of human with insects sheds light on the composition and assembly of protein complexes in the synapse. Specifically, the nature of the protein interaction graphs differentiate exocytotic from endocytotic proteins and suggest unique evolutionary constraints for each set. General principles in the design of proteins of the presynaptic site can be inferred from a comparative study of human and insect genomes. PMID:18257909
Synaptic vesicle dynamic changes in a model of fragile X.
Broek, Jantine A C; Lin, Zhanmin; de Gruiter, H Martijn; van 't Spijker, Heleen; Haasdijk, Elize D; Cox, David; Ozcan, Sureyya; van Cappellen, Gert W A; Houtsmuller, Adriaan B; Willemsen, Rob; de Zeeuw, Chris I; Bahn, Sabine
2016-01-01
Fragile X syndrome (FXS) is a single-gene disorder that is the most common heritable cause of intellectual disability and the most frequent monogenic cause of autism spectrum disorders (ASD). FXS is caused by an expansion of trinucleotide repeats in the promoter region of the fragile X mental retardation gene (Fmr1). This leads to a lack of fragile X mental retardation protein (FMRP), which regulates translation of a wide range of messenger RNAs (mRNAs). The extent of expression level alterations of synaptic proteins affected by FMRP loss and their consequences on synaptic dynamics in FXS has not been fully investigated. Here, we used an Fmr1 knockout (KO) mouse model to investigate the molecular mechanisms underlying FXS by monitoring protein expression changes using shotgun label-free liquid-chromatography mass spectrometry (LC-MS(E)) in brain tissue and synaptosome fractions. FXS-associated candidate proteins were validated using selected reaction monitoring (SRM) in synaptosome fractions for targeted protein quantification. Furthermore, functional alterations in synaptic release and dynamics were evaluated using live-cell imaging, and interpretation of synaptic dynamics differences was investigated using electron microscopy. Key findings relate to altered levels of proteins involved in GABA-signalling, especially in the cerebellum. Further exploration using microscopy studies found reduced synaptic vesicle unloading of hippocampal neurons and increased vesicle unloading in cerebellar neurons, which suggests a general decrease of synaptic transmission. Our findings suggest that FMRP is a regulator of synaptic vesicle dynamics, which supports the role of FMRP in presynaptic functions. Taken together, these studies provide novel insights into the molecular changes associated with FXS.
Villa, R F; Gorini, A; Hoyer, S
2006-11-01
The effect of ageing on the activity of enzymes linked to Krebs' cycle, electron transfer chain and glutamate metabolism was studied in three different types of mitochondria of cerebral cortex of 1-year old and 2-year old male Wistar rats. We assessed the maximum rate (V(max)) of the mitochondrial enzyme activities in non-synaptic perikaryal mitochondria, and in two populations of intra-synaptic mitochondria. The results indicated that: (i) in normal, steady-state cerebral cortex the values of the catalytic activities of the enzymes markedly differed in the various populations of mitochondria; (ii) in intra-synaptic mitochondria, ageing affected the catalytic properties of the enzymes linked to Krebs' cycle, electron transfer chain and glutamate metabolism; (iii) these changes were more evident in intra-synaptic "heavy" than "light" mitochondria. These results indicate a different age-related vulnerability of subpopulations of mitochondria in vivo located into synapses than non-synaptic ones.
A network of autism linked genes stabilizes two pools of synaptic GABAA receptors
Tong, Xia-Jing; Hu, Zhitao; Liu, Yu; Anderson, Dorian; Kaplan, Joshua M
2015-01-01
Changing receptor abundance at synapses is an important mechanism for regulating synaptic strength. Synapses contain two pools of receptors, immobilized and diffusing receptors, both of which are confined to post-synaptic elements. Here we show that immobile and diffusing GABAA receptors are stabilized by distinct synaptic scaffolds at C. elegans neuromuscular junctions. Immobilized GABAA receptors are stabilized by binding to FRM-3/EPB4.1 and LIN-2A/CASK. Diffusing GABAA receptors are stabilized by the synaptic adhesion molecules Neurexin and Neuroligin. Inhibitory post-synaptic currents are eliminated in double mutants lacking both scaffolds. Neurexin, Neuroligin, and CASK mutations are all linked to Autism Spectrum Disorders (ASD). Our results suggest that these mutations may directly alter inhibitory transmission, which could contribute to the developmental and cognitive deficits observed in ASD. DOI: http://dx.doi.org/10.7554/eLife.09648.001 PMID:26575289
Weng, Weiguang; Chen, Ying; Wang, Man; Zhuang, Yinghan; Behnisch, Thomas
2016-01-01
The elongation factor 2 kinase (eEF2K), likewise known as CaMKIII, has been demonstrated to be involved in antidepressant responses of NMDA receptor antagonists. Even so, it remains open whether direct inhibition of eEF2K without altering up-stream or other signaling pathways affects hippocampal synaptic transmission and neuronal network synchrony. Inhibition of eEF2K by the selective and potent eEF2K inhibitor A-484954 induced a fast pre-synaptically mediated enhancement of synaptic transmission and synchronization of neural network activity. The eEF2K-inhibition mediated potentiation of synaptic transmission of hippocampal CA1 neurons is most notably independent of protein synthesis and does not rely on protein kinase C, protein kinase A or mitogen-activated protein kinase (MAPK)/extracellular signal-regulated protein kinase 1/2. Moreover, the strengthening of synaptic transmission in the response to the inhibition of eEF2K was strongly attenuated by the inhibition of p38 MAPK. In addition, we show the involvement of barium-sensitive and more specific the TWIK-related potassium-1 (TREK-1) channels in the eEF2K-inhibition mediated potentiation of synaptic transmission. These findings reveal a novel pathway of eEF2K mediated regulation of hippocampal synaptic transmission. Further research is required to study whether such compounds could be beneficial for the development of mood disorder treatments with a fast-acting antidepressant response.
García-Cáceres, Cristina; Fuente-Martín, Esther; Burgos-Ramos, Emma; Granado, Miriam; Frago, Laura M.; Barrios, Vicente; Horvath, Tamas
2011-01-01
Astrocytes participate in neuroendocrine functions partially through modulation of synaptic input density in the hypothalamus. Indeed, glial ensheathing of neurons is modified by specific hormones, thus determining the availability of neuronal membrane space for synaptic inputs, with the loss of this plasticity possibly being involved in pathological processes. Leptin modulates synaptic inputs in the hypothalamus, but whether astrocytes participate in this action is unknown. Here we report that astrocyte structural proteins, such as glial fibrillary acidic protein (GFAP) and vimentin, are induced and astrocyte morphology modified by chronic leptin administration (intracerebroventricular, 2 wk), with these changes being inversely related to modifications in synaptic protein densities. Similar changes in glial structural proteins were observed in adult male rats that had increased body weight and circulating leptin levels due to neonatal overnutrition (overnutrition: four pups/litter vs. control: 12 pups/litter). However, acute leptin treatment reduced hypothalamic GFAP levels and induced synaptic protein levels 1 h after administration, with no effect on vimentin. In primary hypothalamic astrocyte cultures leptin also reduced GFAP levels at 1 h, with an induction at 24 h, indicating a possible direct effect of leptin. Hence, one mechanism by which leptin may affect metabolism is by modifying hypothalamic astrocyte morphology, which in turn could alter synaptic inputs to hypothalamic neurons. Furthermore, the responses to acute and chronic leptin exposure are inverse, raising the possibility that increased glial activation in response to chronic leptin exposure could be involved in central leptin resistance. PMID:21343257
(S)Pot on Mitochondria: Cannabinoids Disrupt Cellular Respiration to Limit Neuronal Activity.
Harkany, Tibor; Horvath, Tamas L
2017-01-10
Classical views posit G protein-coupled cannabinoid receptor 1s (CB1Rs) at the cell surface with cytosolic Giα-mediated signal transduction. Hebert-Chatelain et al. (2016) instead place CB 1 Rs at mitochondria limiting neuronal respiration by soluble adenylyl cyclase-dependent modulation of complex I activity. Thus, neuronal bioenergetics link to synaptic plasticity and, globally, learning and memory. Copyright © 2017 Elsevier Inc. All rights reserved.
Villa, Roberto Federico; Gorini, Antonella; Hoyer, Siegfried
2009-12-01
The effect of ageing and the relationships between the catalytic properties of enzymes linked to Krebs' cycle, electron transfer chain, glutamate and aminoacid metabolism of cerebral cortex, a functional area very sensitive to both age and ischemia, were studied on mitochondria of adult and aged rats, after complete ischemia of 15 minutes duration. The maximum rate (Vmax) of the following enzyme activities: citrate synthase, malate dehydrogenase, succinate dehydrogenase for Krebs' cycle; NADH-cytochrome c reductase as total (integrated activity of Complex I-III), rotenone sensitive (Complex I) and cytochrome oxidase (Complex IV) for electron transfer chain; glutamate dehydrogenase, glutamate-oxaloacetate-and glutamate-pyruvate transaminases for glutamate metabolism were assayed in non-synaptic, perikaryal mitochondria and in two populations of intra-synaptic mitochondria, i.e., the light and heavy mitochondrial fraction. The results indicate that in normal, steady-state cerebral cortex, the value of the same enzyme activity markedly differs according (a) to the different populations of mitochondria, i.e., non-synaptic or intra-synaptic light and heavy, (b) and respect to ageing. After 15 min of complete ischemia, the enzyme activities of mitochondria located near the nucleus (perikaryal mitochondria) and in synaptic structures (intra-synaptic mitochondria) of the cerebral tissue were substantially modified by ischemia. Non-synaptic mitochondria seem to be more affected by ischemia in adult and particularly in aged animals than the intra-synaptic light and heavy mitochondria. The observed modifications in enzyme activities reflect the metabolic state of the tissue at each specific experimental condition, as shown by comparative evaluation with respect to the content of energy-linked metabolites and substrates. The derangements in enzyme activities due to ischemia is greater in aged than in adult animals and especially the non-synaptic and the intra-synaptic light mitochondria seems to be more affected in aged animals. These data allow the hypothesis that the observed modifications of catalytic activities in non-synaptic and intra-synaptic mitochondrial enzyme systems linked to energy metabolism, amino acids and glutamate metabolism are primary responsible for the physiopathological responses of cerebral tissue to complete cerebral ischemia for 15 min duration during ageing.
Synaptic Tagging, Evaluation of Memories, and the Distal Reward Problem
ERIC Educational Resources Information Center
Papper, Marc; Kempter, Richard; Leibold, Christian
2011-01-01
Long-term synaptic plasticity exhibits distinct phases. The synaptic tagging hypothesis suggests an early phase in which synapses are prepared, or "tagged," for protein capture, and a late phase in which those proteins are integrated into the synapses to achieve memory consolidation. The synapse specificity of the tags is consistent with…
Torres, Mauricio; Matamala, José Manuel; Duran-Aniotz, Claudia; Cornejo, Victor Hugo; Foley, Andrew; Hetz, Claudio
2015-09-02
Alzheimer's and Prion diseases are two neurodegenerative conditions sharing different pathophysiological characteristics. Disease symptoms are associated with the abnormal accumulation of protein aggregates, which are generated by the misfolding and oligomerization of specific proteins. Recent functional studies uncovered a key role of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in the occurrence of synaptic dysfunction and neurodegeneration in Prion-related disorders and Alzheimer's disease. Here we review common pathological features of both diseases, emphasizing the link between amyloid formation, its pathogenesis and alterations in ER proteostasis. The potential benefits of targeting the UPR as a therapeutic strategy is also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function.
Reimann, Michael W; Nolte, Max; Scolamiero, Martina; Turner, Katharine; Perin, Rodrigo; Chindemi, Giuseppe; Dłotko, Paweł; Levi, Ran; Hess, Kathryn; Markram, Henry
2017-01-01
The lack of a formal link between neural network structure and its emergent function has hampered our understanding of how the brain processes information. We have now come closer to describing such a link by taking the direction of synaptic transmission into account, constructing graphs of a network that reflect the direction of information flow, and analyzing these directed graphs using algebraic topology. Applying this approach to a local network of neurons in the neocortex revealed a remarkably intricate and previously unseen topology of synaptic connectivity. The synaptic network contains an abundance of cliques of neurons bound into cavities that guide the emergence of correlated activity. In response to stimuli, correlated activity binds synaptically connected neurons into functional cliques and cavities that evolve in a stereotypical sequence toward peak complexity. We propose that the brain processes stimuli by forming increasingly complex functional cliques and cavities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dosemeci, Ayse, E-mail: dosemeca@mail.nih.gov; Thein, Soe; Yang, Yijung
Highlights: Black-Right-Pointing-Pointer CYLD is a deubiquitinase specific for lysine63-linked polyubiquitins. Black-Right-Pointing-Pointer Presence of CYLD in PSDs is established by biochemistry and immunoEM. Black-Right-Pointing-Pointer CYLD accumulates on PSDs upon depolarization of neurons. Black-Right-Pointing-Pointer Accumulation of CYLD at PSDs may regulate trafficking/degradation of synaptic proteins. -- Abstract: Polyubiquitin chains on proteins flag them for distinct fates depending on the type of polyubiquitin linkage. While lysine48-linked polyubiquitination directs proteins to proteasomal degradation, lysine63-linked polyubiquitination promotes different protein trafficking and is involved in autophagy. Here we show that postsynaptic density (PSD) fractions from adult rat brain contain deubiquitinase activity that targets both lysine48 andmore » lysine63-linked polyubiquitins. Comparison of PSD fractions with parent subcellular fractions by Western immunoblotting reveals that CYLD, a deubiquitinase specific for lysine63-linked polyubiquitins, is highly enriched in the PSD fraction. Electron microscopic examination of hippocampal neurons in culture under basal conditions shows immunogold label for CYLD at the PSD complex in approximately one in four synapses. Following depolarization by exposure to high K+, the proportion of CYLD-labeled PSDs as well as the labeling intensity of CYLD at the PSD increased by more than eighty percent, indicating that neuronal activity promotes accumulation of CYLD at the PSD. An increase in postsynaptic CYLD following activity would promote removal of lysine63-polyubiquitins from PSD proteins and thus could regulate their trafficking and prevent their autophagic degradation.« less
He, Xiao-fei; Liu, Dong-xu; Zhang, Qun; Liang, Feng-ying; Dai, Guang-yan; Zeng, Jin-sheng; Pei, Zhong; Xu, Guang-qing; Lan, Yue
2017-01-01
Age is characterized by chronic inflammation, leading to synaptic dysfunction and dementia because the clearance of protein waste is reduced. The clearance of proteins depends partly on the permeation of the blood–brain barrier (BBB) or on the exchange of water and soluble contents between the cerebrospinal fluid (CSF) and the interstitial fluid (ISF). A wealth of evidence indicates that physical exercise improves memory and cognition in neurodegenerative diseases during aging, such as Alzheimer’s disease (AD), but the influence of physical training on glymphatic clearance, BBB permeability and neuroinflammation remains unclear. In this study, glymphatic clearance and BBB permeability were evaluated in aged mice using in vivo two-photon imaging. The mice performed voluntary wheel running exercise and their water-maze cognition was assessed; the expression of the astrocytic water channel aquaporin 4 (AQP4), astrocyte and microglial activation, and the accumulation of amyloid beta (Aβ) were evaluated with immunofluorescence or an enzyme-linked immunosorbent assay (ELISA); synaptic function was investigated with Thy1–green fluorescent protein (GFP) transgenic mice and immunofluorescent staining. Voluntary wheel running significantly improved water-maze cognition in the aged mice, accelerated the efficiency of glymphatic clearance, but which did not affect BBB permeability. The numbers of activated astrocytes and microglia decreased, AQP4 expression increased, and the distribution of astrocytic AQP4 was rearranged. Aβ accumulation decreased, whereas dendrites, dendritic spines and postsynaptic density protein (PSD95) increased. Our study suggests that voluntary wheel running accelerated glymphatic clearance but not BBB permeation, improved astrocytic AQP4 expression and polarization, attenuated the accumulation of amyloid plaques and neuroinflammation, and ultimately protected mice against synaptic dysfunction and a decline in spatial cognition. These data suggest possible mechanisms for exercise-induced neuroprotection in the aging brain. PMID:28579942
Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudenko, Gabby
Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, formingtrans-complexes spanning the synaptic cleft orcis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affectmore » their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics.« less
Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity
2017-01-01
Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, forming trans-complexes spanning the synaptic cleft or cis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics. PMID:28255461
Activity and circadian rhythm influence synaptic Shank3 protein levels in mice.
Sarowar, Tasnuva; Chhabra, Resham; Vilella, Antonietta; Boeckers, Tobias M; Zoli, Michele; Grabrucker, Andreas M
2016-09-01
Various recent studies revealed that the proteins of the Shank family act as major scaffold organizing elements in the post-synaptic density of excitatory synapses and that their expression level is able to influence synapse formation, maturation and ultimately brain plasticity. An imbalance in Shank3 protein levels has been associated with a variety of neuropsychological and neurodegenerative disorders including autism spectrum disorders and Phelan-McDermid syndrome. Given that sleep disorders and low melatonin levels are frequently observed in autism spectrum disorders, and that circadian rhythms may be able to modulate Shank3 signaling and thereby synaptic function, here, we performed in vivo studies on CBA mice using protein biochemistry to investigate the synaptic expression levels of Shank3α during the day in different brain regions. Our results show that synaptic Shank3 protein concentrations exhibit minor oscillations during the day in hippocampal and striatal brain regions that correlate with changes in serum melatonin levels. Furthermore, as circadian rhythms are tightly connected to activity levels in mice, we increased physical activity using running wheels. The expression of Shank3α increases rapidly by induced activity in thalamus and cortex, but decreases in striatum, superimposing the circadian rhythms of different brain regions. We conclude that synaptic Shank3 proteins build highly dynamic platforms that are modulated by the light:dark cycles but even more so driven by activity. Using wild-type CBA mice, we show that Shank3 is a highly dynamic and activity-regulated protein at synapses. In the hippocampus, changes in synaptic Shank3 levels are influenced by circadian rhythm/melatonin concentration, while running activity increases and decreases levels of Shank3 in the cortex and striatum respectively. © 2016 International Society for Neurochemistry.
Synaptic UNC13A protein variant causes increased neurotransmission and dyskinetic movement disorder.
Lipstein, Noa; Verhoeven-Duif, Nanda M; Michelassi, Francesco E; Calloway, Nathaniel; van Hasselt, Peter M; Pienkowska, Katarzyna; van Haaften, Gijs; van Haelst, Mieke M; van Empelen, Ron; Cuppen, Inge; van Teeseling, Heleen C; Evelein, Annemieke M V; Vorstman, Jacob A; Thoms, Sven; Jahn, Olaf; Duran, Karen J; Monroe, Glen R; Ryan, Timothy A; Taschenberger, Holger; Dittman, Jeremy S; Rhee, Jeong-Seop; Visser, Gepke; Jans, Judith J; Brose, Nils
2017-03-01
Munc13 proteins are essential regulators of neurotransmitter release at nerve cell synapses. They mediate the priming step that renders synaptic vesicles fusion-competent, and their genetic elimination causes a complete block of synaptic transmission. Here we have described a patient displaying a disorder characterized by a dyskinetic movement disorder, developmental delay, and autism. Using whole-exome sequencing, we have shown that this condition is associated with a rare, de novo Pro814Leu variant in the major human Munc13 paralog UNC13A (also known as Munc13-1). Electrophysiological studies in murine neuronal cultures and functional analyses in Caenorhabditis elegans revealed that the UNC13A variant causes a distinct dominant gain of function that is characterized by increased fusion propensity of synaptic vesicles, which leads to increased initial synaptic vesicle release probability and abnormal short-term synaptic plasticity. Our study underscores the critical importance of fine-tuned presynaptic control in normal brain function. Further, it adds the neuronal Munc13 proteins and the synaptic vesicle priming process that they control to the known etiological mechanisms of psychiatric and neurological synaptopathies.
Synaptic UNC13A protein variant causes increased neurotransmission and dyskinetic movement disorder
Lipstein, Noa; Verhoeven-Duif, Nanda M.; Calloway, Nathaniel; van Hasselt, Peter M.; Pienkowska, Katarzyna; van Haelst, Mieke M.; van Empelen, Ron; Cuppen, Inge; van Teeseling, Heleen C.; Evelein, Annemieke M.V.; Vorstman, Jacob A.; Jahn, Olaf; Duran, Karen J.; Monroe, Glen R.; Ryan, Timothy A.; Taschenberger, Holger; Rhee, Jeong-Seop; Visser, Gepke; Jans, Judith J.
2017-01-01
Munc13 proteins are essential regulators of neurotransmitter release at nerve cell synapses. They mediate the priming step that renders synaptic vesicles fusion-competent, and their genetic elimination causes a complete block of synaptic transmission. Here we have described a patient displaying a disorder characterized by a dyskinetic movement disorder, developmental delay, and autism. Using whole-exome sequencing, we have shown that this condition is associated with a rare, de novo Pro814Leu variant in the major human Munc13 paralog UNC13A (also known as Munc13-1). Electrophysiological studies in murine neuronal cultures and functional analyses in Caenorhabditis elegans revealed that the UNC13A variant causes a distinct dominant gain of function that is characterized by increased fusion propensity of synaptic vesicles, which leads to increased initial synaptic vesicle release probability and abnormal short-term synaptic plasticity. Our study underscores the critical importance of fine-tuned presynaptic control in normal brain function. Further, it adds the neuronal Munc13 proteins and the synaptic vesicle priming process that they control to the known etiological mechanisms of psychiatric and neurological synaptopathies. PMID:28192369
Tarpey, Patrick S; Stevens, Claire; Teague, Jon; Edkins, Sarah; O'Meara, Sarah; Avis, Tim; Barthorpe, Syd; Buck, Gemma; Butler, Adam; Cole, Jennifer; Dicks, Ed; Gray, Kristian; Halliday, Kelly; Harrison, Rachel; Hills, Katy; Hinton, Jonathon; Jones, David; Menzies, Andrew; Mironenko, Tatiana; Perry, Janet; Raine, Keiran; Richardson, David; Shepherd, Rebecca; Small, Alexandra; Tofts, Calli; Varian, Jennifer; West, Sofie; Widaa, Sara; Yates, Andy; Catford, Rachael; Butler, Julia; Mallya, Uma; Moon, Jenny; Luo, Ying; Dorkins, Huw; Thompson, Deborah; Easton, Douglas F; Wooster, Richard; Bobrow, Martin; Carpenter, Nancy; Simensen, Richard J; Schwartz, Charles E; Stevenson, Roger E; Turner, Gillian; Partington, Michael; Gecz, Jozef; Stratton, Michael R; Futreal, P Andrew; Raymond, F Lucy
2006-12-01
In a systematic sequencing screen of the coding exons of the X chromosome in 250 families with X-linked mental retardation (XLMR), we identified two nonsense mutations and one consensus splice-site mutation in the AP1S2 gene on Xp22 in three families. Affected individuals in these families showed mild-to-profound mental retardation. Other features included hypotonia early in life and delay in walking. AP1S2 encodes an adaptin protein that constitutes part of the adaptor protein complex found at the cytoplasmic face of coated vesicles located at the Golgi complex. The complex mediates the recruitment of clathrin to the vesicle membrane. Aberrant endocytic processing through disruption of adaptor protein complexes is likely to result from the AP1S2 mutations identified in the three XLMR-affected families, and such defects may plausibly cause abnormal synaptic development and function. AP1S2 is the first reported XLMR gene that encodes a protein directly involved in the assembly of endocytic vesicles.
Atypical PKCs in Memory Maintenance: The Roles of Feedback and Redundancy
ERIC Educational Resources Information Center
Jalil, Sajiya J.; Sacktor, Todd Charlton; Shouval, Harel Z.
2015-01-01
Memories that last a lifetime are thought to be stored, at least in part, as persistent enhancement of the strength of particular synapses. The synaptic mechanism of these persistent changes, late long-term potentiation (L-LTP), depends on the state and number of specific synaptic proteins. Synaptic proteins, however, have limited dwell times due…
Ladépêche, Laurent; Planagumà, Jesús; Thakur, Shreyasi; Suárez, Irina; Hara, Makoto; Borbely, Joseph Steven; Sandoval, Angel; Laparra-Cuervo, Lara; Dalmau, Josep; Lakadamyali, Melike
2018-06-26
Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a severe neuropsychiatric disorder mediated by autoantibodies against the GluN1 subunit of the NMDAR. Patients' antibodies cause cross-linking and internalization of NMDAR, but the synaptic events leading to depletion of NMDAR are poorly understood. Using super-resolution microscopy, we studied the effects of the autoantibodies on the nanoscale distribution of NMDAR in cultured neurons. Our findings show that, under control conditions, NMDARs form nanosized objects and patients' antibodies increase the clustering of synaptic and extrasynaptic receptors inside the nano-objects. This clustering is subunit specific and predominantly affects GluN2B-NMDARs. Following internalization, the remaining surface NMDARs return to control clustering levels but are preferentially retained at the synapse. Monte Carlo simulations using a model in which antibodies induce NMDAR cross-linking and disruption of interactions with other proteins recapitulated these results. Finally, activation of EphB2 receptor partially antagonized the antibody-mediated disorganization of the nanoscale surface distribution of NMDARs. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Dysregulation of mTOR signaling in fragile X syndrome.
Sharma, Ali; Hoeffer, Charles A; Takayasu, Yukihiro; Miyawaki, Takahiro; McBride, Sean M; Klann, Eric; Zukin, R Suzanne
2010-01-13
Fragile X syndrome, the most common form of inherited mental retardation and leading genetic cause of autism, is caused by transcriptional silencing of the Fmr1 gene. The fragile X mental retardation protein (FMRP), the gene product of Fmr1, is an RNA binding protein that negatively regulates translation in neurons. The Fmr1 knock-out mouse, a model of fragile X syndrome, exhibits cognitive deficits and exaggerated metabotropic glutamate receptor (mGluR)-dependent long-term depression at CA1 synapses. However, the molecular mechanisms that link loss of function of FMRP to aberrant synaptic plasticity remain unclear. The mammalian target of rapamycin (mTOR) signaling cascade controls initiation of cap-dependent translation and is under control of mGluRs. Here we show that mTOR phosphorylation and activity are elevated in hippocampus of juvenile Fmr1 knock-out mice by four functional readouts: (1) association of mTOR with regulatory associated protein of mTOR; (2) mTOR kinase activity; (3) phosphorylation of mTOR downstream targets S6 kinase and 4E-binding protein; and (4) formation of eukaryotic initiation factor complex 4F, a critical first step in cap-dependent translation. Consistent with this, mGluR long-term depression at CA1 synapses of FMRP-deficient mice is exaggerated and rapamycin insensitive. We further show that the p110 subunit of the upstream kinase phosphatidylinositol 3-kinase (PI3K) and its upstream activator PI3K enhancer PIKE, predicted targets of FMRP, are upregulated in knock-out mice. Elevated mTOR signaling may provide a functional link between overactivation of group I mGluRs and aberrant synaptic plasticity in the fragile X mouse, mechanisms relevant to impaired cognition in fragile X syndrome.
PSD-95 and PSD-93 Play Critical but Distinct Roles in Synaptic Scaling Up and Down
Sun, Qian; Turrigiano, Gina G.
2011-01-01
Synaptic scaling stabilizes neuronal firing through the homeostatic regulation of postsynaptic strength, but the mechanisms by which chronic changes in activity lead to bidirectional adjustments in synaptic AMPAR abundance are incompletely understood. Further, it remains unclear to what extent scaling up and scaling down utilize distinct molecular machinery. PSD-95 is a scaffold protein proposed to serve as a binding “slot” that determines synaptic AMPAR content, and synaptic PSD-95 abundance is regulated by activity, raising the possibility that activity-dependent changes in the synaptic abundance of PSD-95 or other MAGUKs drives the bidirectional changes in AMPAR accumulation during synaptic scaling. We found that synaptic PSD-95 and SAP102 (but not PSD-93) abundance were bidirectionally regulated by activity, but these changes were not sufficient to drive homeostatic changes in synaptic strength. Although not sufficient, the PSD-95-MAGUKs were necessary for synaptic scaling, but scaling up and down were differentially dependent on PSD-95 and PSD-93. Scaling down was completely blocked by reduced or enhanced PSD-95, through a mechanism that depended on the PDZ1/2 domains. In contrast scaling up could be supported by either PSD-95 or PSD-93 in a manner that depended on neuronal age, and was unaffected by a superabundance of PSD-95. Taken together, our data suggest that scaling up and down of quantal amplitude is not driven by changes in synaptic abundance of PSD-95-MAGUKs, but rather that the PSD-95 MAGUKs serve as critical synaptic organizers that utilize distinct protein-protein interactions to mediate homeostatic accumulation and loss of synaptic AMPAR. PMID:21543610
The roles of protein expression in synaptic plasticity and memory consolidation
Rosenberg, Tali; Gal-Ben-Ari, Shunit; Dieterich, Daniela C.; Kreutz, Michael R.; Ziv, Noam E.; Gundelfinger, Eckart D.; Rosenblum, Kobi
2014-01-01
The amount and availability of proteins are regulated by their synthesis, degradation, and transport. These processes can specifically, locally, and temporally regulate a protein or a population of proteins, thus affecting numerous biological processes in health and disease states. Accordingly, malfunction in the processes of protein turnover and localization underlies different neuronal diseases. However, as early as a century ago, it was recognized that there is a specific need for normal macromolecular synthesis in a specific fragment of the learning process, memory consolidation, which takes place minutes to hours following acquisition. Memory consolidation is the process by which fragile short-term memory is converted into stable long-term memory. It is accepted today that synaptic plasticity is a cellular mechanism of learning and memory processes. Interestingly, similar molecular mechanisms subserve both memory and synaptic plasticity consolidation. In this review, we survey the current view on the connection between memory consolidation processes and proteostasis, i.e., maintaining the protein contents at the neuron and the synapse. In addition, we describe the technical obstacles and possible new methods to determine neuronal proteostasis of synaptic function and better explain the process of memory and synaptic plasticity consolidation. PMID:25429258
Kang, Min Jung; Hansen, Timothy J.; Mickiewicz, Monique; Kaczynski, Tadeusz J.; Fye, Samantha; Gunawardena, Shermali
2014-01-01
Formation of new synapses or maintenance of existing synapses requires the delivery of synaptic components from the soma to the nerve termini via axonal transport. One pathway that is important in synapse formation, maintenance and function of the Drosophila neuromuscular junction (NMJ) is the bone morphogenetic protein (BMP)-signaling pathway. Here we show that perturbations in axonal transport directly disrupt BMP signaling, as measured by its downstream signal, phospho Mad (p-Mad). We found that components of the BMP pathway genetically interact with both kinesin-1 and dynein motor proteins. Thick vein (TKV) vesicle motility was also perturbed by reductions in kinesin-1 or dynein motors. Interestingly, dynein mutations severely disrupted p-Mad signaling while kinesin-1 mutants showed a mild reduction in p-Mad signal intensity. Similar to mutants in components of the BMP pathway, both kinesin-1 and dynein motor protein mutants also showed synaptic morphological defects. Strikingly TKV motility and p-Mad signaling were disrupted in larvae expressing two human disease proteins; expansions of glutamine repeats (polyQ77) and human amyloid precursor protein (APP) with a familial Alzheimer's disease (AD) mutation (APPswe). Consistent with axonal transport defects, larvae expressing these disease proteins showed accumulations of synaptic proteins along axons and synaptic abnormalities. Taken together our results suggest that similar to the NGF-TrkA signaling endosome, a BMP signaling endosome that directly interacts with molecular motors likely exist. Thus problems in axonal transport occurs early, perturbs BMP signaling, and likely contributes to the synaptic abnormalities observed in these two diseases. PMID:25127478
Reactivation of stalled polyribosomes in synaptic plasticity
Graber, Tyson E.; Hébert-Seropian, Sarah; Khoutorsky, Arkady; David, Alexandre; Yewdell, Jonathan W.; Lacaille, Jean-Claude; Sossin, Wayne S.
2013-01-01
Some forms of synaptic plasticity require rapid, local activation of protein synthesis. Although this is thought to reflect recruitment of mRNAs to free ribosomes, this would limit the speed and magnitude of translational activation. Here we provide compelling in situ evidence supporting an alternative model in which synaptic mRNAs are transported as stably paused polyribosomes. Remarkably, we show that metabotropic glutamate receptor activation allows the synthesis of proteins that lead to a functional long-term depression phenotype even when translation initiation has been greatly reduced. Thus, neurons evolved a unique mechanism to swiftly translate synaptic mRNAs into functional protein upon synaptic signaling using stalled polyribosomes to bypass the rate-limiting step of translation initiation. Because dysregulated plasticity is implicated in neurodevelopmental and psychiatric disorders such as fragile X syndrome, this work uncovers a unique translational target for therapies. PMID:24043809
Zamri, Azra Elia; Stroeder, Jasper; Rao-Ruiz, Priyanka; Lodder, Johannes C; van der Loo, Rolinka J
2017-01-01
Glutamatergic synapses rely on AMPA receptors (AMPARs) for fast synaptic transmission and plasticity. AMPAR auxiliary proteins regulate receptor trafficking, and modulate receptor mobility and its biophysical properties. The AMPAR auxiliary protein Shisa7 (CKAMP59) has been shown to interact with AMPARs in artificial expression systems, but it is unknown whether Shisa7 has a functional role in glutamatergic synapses. We show that Shisa7 physically interacts with synaptic AMPARs in mouse hippocampus. Shisa7 gene deletion resulted in faster AMPAR currents in CA1 synapses, without affecting its synaptic expression. Shisa7 KO mice showed reduced initiation and maintenance of long-term potentiation of glutamatergic synapses. In line with this, Shisa7 KO mice showed a specific deficit in contextual fear memory, both short-term and long-term after conditioning, whereas auditory fear memory and anxiety-related behavior were normal. Thus, Shisa7 is a bona-fide AMPAR modulatory protein affecting channel kinetics of AMPARs, necessary for synaptic hippocampal plasticity, and memory recall. PMID:29199957
Kishi, Masashi; Kummer, Terrance T; Eglen, Stephen J; Sanes, Joshua R
2005-04-25
In both neurons and muscle fibers, specific mRNAs are concentrated beneath and locally translated at synaptic sites. At the skeletal neuromuscular junction, all synaptic RNAs identified to date encode synaptic components. Using microarrays, we compared RNAs in synapse-rich and -free regions of muscles, thereby identifying transcripts that are enriched near synapses and that encode soluble membrane and nuclear proteins. One gene product, LL5beta, binds to both phosphoinositides and a cytoskeletal protein, filamin, one form of which is concentrated at synaptic sites. LL5beta is itself associated with the cytoplasmic face of the postsynaptic membrane; its highest levels border regions of highest acetylcholine receptor (AChR) density, which suggests a role in "corraling" AChRs. Consistent with this idea, perturbing LL5beta expression in myotubes inhibits AChR aggregation. Thus, a strategy designed to identify novel synaptic components led to identification of a protein required for assembly of the postsynaptic apparatus.
Cdk5 Is Required for Memory Function and Hippocampal Plasticity via the cAMP Signaling Pathway
Gao, Jun; Joseph, Nadine; Xie, Zhigang; Zhou, Ying; Durak, Omer; Zhang, Lei; Zhu, J. Julius; Clauser, Karl R.; Carr, Steven A.; Tsai, Li-Huei
2011-01-01
Memory formation is modulated by pre- and post-synaptic signaling events in neurons. The neuronal protein kinase Cyclin-Dependent Kinase 5 (Cdk5) phosphorylates a variety of synaptic substrates and is implicated in memory formation. It has also been shown to play a role in homeostatic regulation of synaptic plasticity in cultured neurons. Surprisingly, we found that Cdk5 loss of function in hippocampal circuits results in severe impairments in memory formation and retrieval. Moreover, Cdk5 loss of function in the hippocampus disrupts cAMP signaling due to an aberrant increase in phosphodiesterase (PDE) proteins. Dysregulation of cAMP is associated with defective CREB phosphorylation and disrupted composition of synaptic proteins in Cdk5-deficient mice. Rolipram, a PDE4 inhibitor that prevents cAMP depletion, restores synaptic plasticity and memory formation in Cdk5-deficient mice. Collectively, our results demonstrate a critical role for Cdk5 in the regulation of cAMP-mediated hippocampal functions essential for synaptic plasticity and memory formation. PMID:21984943
Post-Translational Modification Biology of Glutamate Receptors and Drug Addiction
Mao, Li-Min; Guo, Ming-Lei; Jin, Dao-Zhong; Fibuch, Eugene E.; Choe, Eun Sang; Wang, John Q.
2011-01-01
Post-translational covalent modifications of glutamate receptors remain a hot topic. Early studies have established that this family of receptors, including almost all ionotropic and metabotropic glutamate receptor subtypes, undergoes active phosphorylation at serine, threonine, or tyrosine residues in their intracellular domains. Recent evidence identifies several glutamate receptor subtypes to be direct substrates for palmitoylation at cysteine residues. Other modifications such as ubiquitination and sumoylation at lysine residues also occur to certain glutamate receptors. These modifications are dynamic and reversible in nature and are regulatable by changing synaptic inputs. The regulated modifications significantly impact the receptor in many ways, including interrelated changes in biochemistry (synthesis, subunit assembling, and protein–protein interactions), subcellular redistribution (trafficking, endocytosis, synaptic delivery, and clustering), and physiology, usually associated with changes in synaptic plasticity. Glutamate receptors are enriched in the striatum and cooperate closely with dopamine to regulate striatal signaling. Emerging evidence shows that modification processes of striatal glutamate receptors are sensitive to addictive drugs, such as psychostimulants (cocaine and amphetamine). Altered modifications are believed to be directly linked to enduring receptor/synaptic plasticity and drug-seeking. This review summarizes several major types of modifications of glutamate receptors and analyzes the role of these modifications in striatal signaling and in the pathogenesis of psychostimulant addiction. PMID:21441996
Leypoldt, Frank; Armangue, Thaís; Dalmau, Josep
2014-01-01
Over the last 10 years the continual discovery of novel forms of encephalitis associated with antibodies to cell-surface or synaptic proteins has changed the paradigms for diagnosing and treating disorders that were previously unknown or mischaracterized. We review here the process of discovery, the symptoms, and the target antigens of twelve autoimmune encephatilic disorders, grouped by syndromes and approached from a clinical perspective. Anti-NMDAR encephalitis, several subtypes of limbic encephalitis, stiff-person spectrum disorders, and other autoimmune encephalitides that result in psychosis, seizures, or abnormal movements are described in detail. We include a novel encephalopathy with prominent sleep dysfunction that provides an intriguing link between chronic neurodegeneration and cell-surface autoimmunity (IgLON5). Some of the caveats of limited serum testing are outlined. In addition, we review the underlying cellular and synaptic mechanisms that for some disorders confirm the antibody pathogenicity. The multidisciplinary impact of autoimmune encephalitis has been expanded recently by the discovery that herpes simplex encephalitis is a robust trigger of synaptic autoimmunity, and that some patients may develop overlapping syndromes, including anti-NMDAR encephalitis and neuromyelitis optica or other demyelinating diseases. PMID:25315420
Satb2 determines miRNA expression and long-term memory in the adult central nervous system.
Jaitner, Clemens; Reddy, Chethan; Abentung, Andreas; Whittle, Nigel; Rieder, Dietmar; Delekate, Andrea; Korte, Martin; Jain, Gaurav; Fischer, Andre; Sananbenesi, Farahnaz; Cera, Isabella; Singewald, Nicolas; Dechant, Georg; Apostolova, Galina
2016-11-29
SATB2 is a risk locus for schizophrenia and encodes a DNA-binding protein that regulates higher-order chromatin configuration. In the adult brain Satb2 is almost exclusively expressed in pyramidal neurons of two brain regions important for memory formation, the cerebral cortex and the CA1-hippocampal field. Here we show that Satb2 is required for key hippocampal functions since deletion of Satb2 from the adult mouse forebrain prevents the stabilization of synaptic long-term potentiation and markedly impairs long-term fear and object discrimination memory. At the molecular level, we find that synaptic activity and BDNF up-regulate Satb2, which itself binds to the promoters of coding and non-coding genes. Satb2 controls the hippocampal levels of a large cohort of miRNAs, many of which are implicated in synaptic plasticity and memory formation. Together, our findings demonstrate that Satb2 is critically involved in long-term plasticity processes in the adult forebrain that underlie the consolidation and stabilization of context-linked memory.
Synaptic Vesicle-Recycling Machinery Components as Potential Therapeutic Targets
Li, Ying C.
2017-01-01
Presynaptic nerve terminals are highly specialized vesicle-trafficking machines. Neurotransmitter release from these terminals is sustained by constant local recycling of synaptic vesicles independent from the neuronal cell body. This independence places significant constraints on maintenance of synaptic protein complexes and scaffolds. Key events during the synaptic vesicle cycle—such as exocytosis and endocytosis—require formation and disassembly of protein complexes. This extremely dynamic environment poses unique challenges for proteostasis at synaptic terminals. Therefore, it is not surprising that subtle alterations in synaptic vesicle cycle-associated proteins directly or indirectly contribute to pathophysiology seen in several neurologic and psychiatric diseases. In contrast to the increasing number of examples in which presynaptic dysfunction causes neurologic symptoms or cognitive deficits associated with multiple brain disorders, synaptic vesicle-recycling machinery remains an underexplored drug target. In addition, irrespective of the involvement of presynaptic function in the disease process, presynaptic machinery may also prove to be a viable therapeutic target because subtle alterations in the neurotransmitter release may counter disease mechanisms, correct, or compensate for synaptic communication deficits without the need to interfere with postsynaptic receptor signaling. In this article, we will overview critical properties of presynaptic release machinery to help elucidate novel presynaptic avenues for the development of therapeutic strategies against neurologic and neuropsychiatric disorders. PMID:28265000
Hájková, Alena; Techlovská, Šárka; Dvořáková, Michaela; Chambers, Jayne Nicole; Kumpošt, Jiří; Hubálková, Pavla; Prezeau, Laurent; Blahos, Jaroslav
2016-08-01
Many diseases of the nervous system are accompanied by alterations in synaptic functions. Synaptic plasticity mediated by the endogenous cannabinoid system involves the activation of the cannabinoid receptor 1 (CB1R). The principles of CB1R signaling must be understood in detail for its therapeutic exploration. We detected the Src homology 3-domain growth factor receptor-bound 2-like (endophilin) interacting protein 1 (SGIP1) as a novel CB1R partner. SGIP1 is functionally linked to clathrin-mediated endocytosis and its overexpression in animals leads to an energy regulation imbalance resulting in obesity. We report that SGIP1 prevents the endocytosis of activated CB1R and that it alters signaling via the CB1R in a biased manner. CB1R mediated G-protein activation is selectively influenced by SGIP1, β-arrestin associated signaling is changed profoundly, most likely as a consequence of the prevention of the receptor's internalization elicited by SGIP1. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Zhu, Yong-Chuan; Li, Dan; Wang, Lu; Lu, Bin; Zheng, Jing; Zhao, Shi-Lin; Zeng, Rong; Xiong, Zhi-Qi
2013-05-28
The X-linked gene cyclin-dependent kinase-like 5 (CDKL5) is mutated in severe neurodevelopmental disorders, including some forms of atypical Rett syndrome, but the function and regulation of CDKL5 protein in neurons remain to be elucidated. Here, we show that CDKL5 binds to the scaffolding protein postsynaptic density (PSD)-95, and that this binding promotes the targeting of CDKL5 to excitatory synapses. Interestingly, this binding is not constitutive, but governed by palmitate cycling on PSD-95. Furthermore, pathogenic mutations that truncate the C-terminal tail of CDKL5 diminish its binding to PSD-95 and synaptic accumulation. Importantly, down-regulation of CDKL5 by RNA interference (RNAi) or interference with the CDKL5-PSD-95 interaction inhibits dendritic spine formation and growth. These results demonstrate a critical role of the palmitoylation-dependent CDKL5-PSD-95 interaction in localizing CDKL5 to synapses for normal spine development and suggest that disruption of this interaction by pathogenic mutations may be implicated in the pathogenesis of CDKL5-related disorders.
Zhu, Yong-Chuan; Li, Dan; Wang, Lu; Lu, Bin; Zheng, Jing; Zhao, Shi-Lin; Zeng, Rong; Xiong, Zhi-Qi
2013-01-01
The X-linked gene cyclin-dependent kinase-like 5 (CDKL5) is mutated in severe neurodevelopmental disorders, including some forms of atypical Rett syndrome, but the function and regulation of CDKL5 protein in neurons remain to be elucidated. Here, we show that CDKL5 binds to the scaffolding protein postsynaptic density (PSD)-95, and that this binding promotes the targeting of CDKL5 to excitatory synapses. Interestingly, this binding is not constitutive, but governed by palmitate cycling on PSD-95. Furthermore, pathogenic mutations that truncate the C-terminal tail of CDKL5 diminish its binding to PSD-95 and synaptic accumulation. Importantly, down-regulation of CDKL5 by RNA interference (RNAi) or interference with the CDKL5–PSD-95 interaction inhibits dendritic spine formation and growth. These results demonstrate a critical role of the palmitoylation-dependent CDKL5–PSD-95 interaction in localizing CDKL5 to synapses for normal spine development and suggest that disruption of this interaction by pathogenic mutations may be implicated in the pathogenesis of CDKL5-related disorders. PMID:23671101
Law, Rosalind; Dixon-Salazar, Tracy; Jerber, Julie; Cai, Na; Abbasi, Ansar A; Zaki, Maha S; Mittal, Kirti; Gabriel, Stacey B; Rafiq, Muhammad Arshad; Khan, Valeed; Nguyen, Maria; Ali, Ghazanfar; Copeland, Brett; Scott, Eric; Vasli, Nasim; Mikhailov, Anna; Khan, Muhammad Nasim; Andrade, Danielle M; Ayaz, Muhammad; Ansar, Muhammad; Ayub, Muhammad; Vincent, John B; Gleeson, Joseph G
2014-12-04
Dendritic spines represent the major site of neuronal activity in the brain; they serve as the receiving point for neurotransmitters and undergo rapid activity-dependent morphological changes that correlate with learning and memory. Using a combination of homozygosity mapping and next-generation sequencing in two consanguineous families affected by nonsyndromic autosomal-recessive intellectual disability, we identified truncating mutations in formin 2 (FMN2), encoding a protein that belongs to the formin family of actin cytoskeleton nucleation factors and is highly expressed in the maturing brain. We found that FMN2 localizes to punctae along dendrites and that germline inactivation of mouse Fmn2 resulted in animals with decreased spine density; such mice were previously demonstrated to have a conditioned fear-learning defect. Furthermore, patient neural cells derived from induced pluripotent stem cells showed correlated decreased synaptic density. Thus, FMN2 mutations link intellectual disability either directly or indirectly to the regulation of actin-mediated synaptic spine density. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Post-synaptic BDNF-TrkB Signaling in Synapse Maturation, Plasticity and Disease
Yoshii, Akira; Constantine-Paton, Martha
2010-01-01
Brain-derived neurotrophic factor (BDNF) is a prototypic neurotrophin that regulates diverse developmental events from the selection of neural progenitors to the terminal dendritic differentiation and connectivity of neurons. We focus here on activity-dependent synaptic regulation by BDNF and its receptor, full length TrkB. BDNF-TrkB signaling is involved in transcription, translation, and trafficking of proteins during various phases of synaptic development and has been implicated in several forms of synaptic plasticity. These functions are carried out by a combination of the three signaling cascades triggered when BDNF binds TrkB: the mitogen-activated protein kinase (MAPK), the phospholipase Cγ (PLC PLCγ), and the phosphatidylinositol 3-kinase (PI3K) pathways. MAPK and PI3K play crucial roles in both translation and/or trafficking of proteins induced by synaptic activity while PLCγ regulates intracellular Ca2+ that can drive transcription via cyclic AMP and a Protein Kinase C. Conversely, the abnormal regulation of BDNF is implicated in various developmental and neurodegenerative diseases that perturb neural development and function. We will discuss the current state of understanding BDNF signaling in the context of synaptic development and plasticity with a focus on the post-synaptic cell and close with the evidence that basic mechanisms of BDNF function still need to be understood in order to effectively treat genetic disruptions of these pathways that cause devastating neurodevelopmental diseases. PMID:20186705
The interplay between neuronal activity and actin dynamics mimic the setting of an LTD synaptic tag
Szabó, Eszter C.; Manguinhas, Rita; Fonseca, Rosalina
2016-01-01
Persistent forms of plasticity, such as long-term depression (LTD), are dependent on the interplay between activity-dependent synaptic tags and the capture of plasticity-related proteins. We propose that the synaptic tag represents a structural alteration that turns synapses permissive to change. We found that modulation of actin dynamics has different roles in the induction and maintenance of LTD. Inhibition of either actin depolymerisation or polymerization blocks LTD induction whereas only the inhibition of actin depolymerisation blocks LTD maintenance. Interestingly, we found that actin depolymerisation and CaMKII activation are involved in LTD synaptic-tagging and capture. Moreover, inhibition of actin polymerisation mimics the setting of a synaptic tag, in an activity-dependent manner, allowing the expression of LTD in non-stimulated synapses. Suspending synaptic activation also restricts the time window of synaptic capture, which can be restored by inhibiting actin polymerization. Our results support our hypothesis that modulation of the actin cytoskeleton provides an input-specific signal for synaptic protein capture. PMID:27650071
Synaptic tagging, evaluation of memories, and the distal reward problem.
Päpper, Marc; Kempter, Richard; Leibold, Christian
2011-01-01
Long-term synaptic plasticity exhibits distinct phases. The synaptic tagging hypothesis suggests an early phase in which synapses are prepared, or "tagged," for protein capture, and a late phase in which those proteins are integrated into the synapses to achieve memory consolidation. The synapse specificity of the tags is consistent with conventional neural network models of associative memory. Memory consolidation through protein synthesis, however, is neuron specific, and its functional role in those models has not been assessed. Here, using a theoretical network model, we test the tagging hypothesis on its potential to prolong memory lifetimes in an online-learning paradigm. We find that protein synthesis, though not synapse specific, prolongs memory lifetimes if it is used to evaluate memory items on a cellular level. In our model we assume that only "important" memory items evoke protein synthesis such that these become more stable than "unimportant" items, which do not evoke protein synthesis. The network model comprises an equilibrium distribution of synaptic states that is very susceptible to the storage of new items: Most synapses are in a state in which they are plastic and can be changed easily, whereas only those synapses that are essential for the retrieval of the important memory items are in the stable late phase. The model can solve the distal reward problem, where the initial exposure of a memory item and its evaluation are temporally separated. Synaptic tagging hence provides a viable mechanism to consolidate and evaluate memories on a synaptic basis.
Erdozain, Amaia M; De Gois, Stéphanie; Bernard, Véronique; Gorgievski, Victor; Pietrancosta, Nicolas; Dumas, Sylvie; Macedo, Carlos E; Vanhoutte, Peter; Ortega, Jorge E; Meana, J Javier; Tzavara, Eleni T; Vialou, Vincent; Giros, Bruno
2018-04-01
The importance of dopamine (DA) neurotransmission is emphasized by its direct implication in several neurological and psychiatric disorders. The DA transporter (DAT), target of psychostimulant drugs, is the key protein that regulates spatial and temporal activity of DA in the synaptic cleft via the rapid reuptake of DA into the presynaptic terminal. There is strong evidence suggesting that DAT-interacting proteins may have a role in its function and regulation. Performing a two-hybrid screening, we identified snapin, a SNARE-associated protein implicated in synaptic transmission, as a new binding partner of the carboxyl terminal of DAT. Our data show that snapin is a direct partner and regulator of DAT. First, we determined the domains required for this interaction in both proteins and characterized the DAT-snapin interface by generating a 3D model. Using different approaches, we demonstrated that (i) snapin is expressed in vivo in dopaminergic neurons along with DAT; (ii) both proteins colocalize in cultured cells and brain and, (iii) DAT and snapin are present in the same protein complex. Moreover, by functional studies we showed that snapin produces a significant decrease in DAT uptake activity. Finally, snapin downregulation in mice produces an increase in DAT levels and transport activity, hence increasing DA concentration and locomotor response to amphetamine. In conclusion, snapin/DAT interaction represents a direct link between exocytotic and reuptake mechanisms and is a potential target for DA transmission modulation.
Kaempf, Natalie; Maritzen, Tanja
2017-01-01
Communication between neurons relies on neurotransmitters which are released from synaptic vesicles (SVs) upon Ca2+ stimuli. To efficiently load neurotransmitters, sense the rise in intracellular Ca2+ and fuse with the presynaptic membrane, SVs need to be equipped with a stringently controlled set of transmembrane proteins. In fact, changes in SV protein composition quickly compromise neurotransmission and most prominently give rise to epileptic seizures. During exocytosis SVs fully collapse into the presynaptic membrane and consequently have to be replenished to sustain neurotransmission. Therefore, surface-stranded SV proteins have to be efficiently retrieved post-fusion to be used for the generation of a new set of fully functional SVs, a process in which dedicated endocytic sorting adaptors play a crucial role. The question of how the precise reformation of SVs is achieved is intimately linked to how SV membranes are retrieved. For a long time both processes were believed to be two sides of the same coin since Clathrin-mediated endocytosis (CME), the proposed predominant SV recycling mode, will jointly retrieve SV membranes and proteins. However, with the recent proposal of Clathrin-independent SV recycling pathways SV membrane retrieval and SV reformation turn into separable events. This review highlights the progress made in unraveling the molecular mechanisms mediating the high-fidelity retrieval of SV proteins and discusses how the gathered knowledge about SV protein recycling fits in with the new notions of SV membrane endocytosis. PMID:29085282
Yuan, Qiang; Yang, Feng; Xiao, Yixin; Tan, Shawn; Husain, Nilofer; Ren, Ming; Hu, Zhonghua; Martinowich, Keri; Ng, Julia S; Kim, Paul J; Han, Weiping; Nagata, Koh-Ichi; Weinberger, Daniel R; Je, H Shawn
2016-08-15
Genetic variations in dystrobrevin binding protein 1 (DTNBP1 or dysbindin-1) have been implicated as risk factors in the pathogenesis of schizophrenia. The encoded protein dysbindin-1 functions in the regulation of synaptic activity and synapse development. Intriguingly, a loss of function mutation in Dtnbp1 in mice disrupted both glutamatergic and gamma-aminobutyric acidergic transmission in the cerebral cortex; pyramidal neurons displayed enhanced excitability due to reductions in inhibitory synaptic inputs. However, the mechanism by which reduced dysbindin-1 activity causes inhibitory synaptic deficits remains unknown. We investigated the role of dysbindin-1 in the exocytosis of brain-derived neurotrophic factor (BDNF) from cortical excitatory neurons, organotypic brain slices, and acute slices from dysbindin-1 mutant mice and determined how this change in BDNF exocytosis transsynaptically affected the number of inhibitory synapses formed on excitatory neurons via whole-cell recordings, immunohistochemistry, and live-cell imaging using total internal reflection fluorescence microscopy. A decrease in dysbindin-1 reduces the exocytosis of BDNF from cortical excitatory neurons, and this reduction in BDNF exocytosis transsynaptically resulted in reduced inhibitory synapse numbers formed on excitatory neurons. Furthermore, application of exogenous BDNF rescued the inhibitory synaptic deficits caused by the reduced dysbindin-1 level in both cultured cortical neurons and slice cultures. Taken together, our results demonstrate that these two genes linked to risk for schizophrenia (BDNF and dysbindin-1) function together to regulate interneuron development and cortical network activity. This evidence supports the investigation of the association between dysbindin-1 and BDNF in humans with schizophrenia. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Ding, Juan; Xi, Yuan-Di; Zhang, Dan-Di; Zhao, Xia; Liu, Jin-Meng; Li, Chao-Qun; Han, Jing; Xiao, Rong
2013-12-01
This research aims to investigate whether soybean isoflavone (SIF) could alleviate the learning and memory deficit induced by β-amyloid peptides 1-42 (Aβ 1-42) by protecting the synapses of rats. Adult male Wistar rats were randomly allocated to the following groups: (1) control group; (2) Aβ 1-42 group; (3) SIF group; (4) SIF + Aβ 1-42 group (SIF pretreatment group) according to body weight. The 80 mg/kg/day of SIF was administered orally by gavage to the rats in SIF and SIF+Aβ 1-42 groups. Aβ 1-42 was injected into the lateral cerebral ventricle of rats in Aβ 1-42 and SIF+Aβ 1-42 groups. The ability of learning and memory, ultramicrostructure of hippocampal synapses, and expression of synaptic related proteins were investigated. The Morris water maze results showed the escape latency and total distance were decreased in the rats of SIF pretreatment group compared to the rats in Aβ1-42 group. Furthermore, SIF pretreatment could alleviate the synaptic structural damage and antagonize the down-regulation expressions of below proteins induced by Aβ1-42: (1) mRNA and protein of the synaptophysin and postsynaptic density protein 95 (PSD-95); (2) protein of calmodulin (CaM), Ca(2+) /calmodulin-dependent protein kinase II (CaMK II), and cAMP response element binding protein (CREB); (3) phosphorylation levels of CaMK II and CREB (pCAMK II, pCREB). These results suggested that SIF pretreatment could ameliorate the impairment of learning and memory ability in rats induced by Aβ 1-42, and its mechanism might be associated with the protection of synaptic plasticity by improving the synaptic structure and regulating the synaptic related proteins. Copyright © 2013 Wiley Periodicals, Inc.
Ahmad, Faraz; Singh, Kunal; Das, Debajyoti; Gowaikar, Ruturaj; Shaw, Eisha; Ramachandran, Arathy; Rupanagudi, Khader Valli; Kommaddi, Reddy Peera; Bennett, David A; Ravindranath, Vijayalakshmi
2017-12-01
Synaptic deficits are known to underlie the cognitive dysfunction seen in Alzheimer's disease (AD). Generation of reactive oxygen species (ROS) by β-amyloid has also been implicated in AD pathogenesis. However, it is unclear whether ROS contributes to synaptic dysfunction seen in AD pathogenesis and, therefore, we examined whether altered redox signaling could contribute to synaptic deficits in AD. Activity dependent but not basal translation was impaired in synaptoneurosomes from 1-month old presymptomatic APP Swe /PS1ΔE9 (APP/PS1) mice, and this deficit was sustained till middle age (MA, 9-10 months). ROS generation leads to oxidative modification of Akt1 in the synapse and consequent reduction in Akt1-mechanistic target of rapamycin (mTOR) signaling, leading to deficiency in activity-dependent protein translation. Moreover, we found a similar loss of activity-dependent protein translation in synaptoneurosomes from postmortem AD brains. Loss of activity-dependent protein translation occurs presymptomatically early in the pathogenesis of AD. This is caused by ROS-mediated loss of pAkt1, leading to reduced synaptic Akt1-mTOR signaling and is rescued by overexpression of Akt1. ROS-mediated damage is restricted to the synaptosomes, indicating selectivity. We demonstrate that ROS-mediated oxidative modification of Akt1 contributes to synaptic dysfunction in AD, seen as loss of activity-dependent protein translation that is essential for synaptic plasticity and maintenance. Therapeutic strategies promoting Akt1-mTOR signaling at synapses may provide novel target(s) for disease-modifying therapy in AD. Antioxid. Redox Signal. 27, 1269-1280.
Analysis of dendritic spine morphology in cultured CNS neurons.
Srivastava, Deepak P; Woolfrey, Kevin M; Penzes, Peter
2011-07-13
Dendritic spines are the sites of the majority of excitatory connections within the brain, and form the post-synaptic compartment of synapses. These structures are rich in actin and have been shown to be highly dynamic. In response to classical Hebbian plasticity as well as neuromodulatory signals, dendritic spines can change shape and number, which is thought to be critical for the refinement of neural circuits and the processing and storage of information within the brain. Within dendritic spines, a complex network of proteins link extracellular signals with the actin cyctoskeleton allowing for control of dendritic spine morphology and number. Neuropathological studies have demonstrated that a number of disease states, ranging from schizophrenia to autism spectrum disorders, display abnormal dendritic spine morphology or numbers. Moreover, recent genetic studies have identified mutations in numerous genes that encode synaptic proteins, leading to suggestions that these proteins may contribute to aberrant spine plasticity that, in part, underlie the pathophysiology of these disorders. In order to study the potential role of these proteins in controlling dendritic spine morphologies/number, the use of cultured cortical neurons offers several advantages. Firstly, this system allows for high-resolution imaging of dendritic spines in fixed cells as well as time-lapse imaging of live cells. Secondly, this in vitro system allows for easy manipulation of protein function by expression of mutant proteins, knockdown by shRNA constructs, or pharmacological treatments. These techniques allow researchers to begin to dissect the role of disease-associated proteins and to predict how mutations of these proteins may function in vivo.
Santini, Emanuela; Huynh, Thu N.; Klann, Eric
2018-01-01
The complexity of memory formation and its persistence is a phenomenon that has been studied intensely for centuries. Memory exists in many forms and is stored in various brain regions. Generally speaking, memories are reorganized into broadly distributed cortical networks over time through systems level consolidation. At the cellular level, storage of information is believed to initially occur via altered synaptic strength by processes such as long-term potentiation (LTP). New protein synthesis is required for long-lasting synaptic plasticity as well as for the formation of long-term memory. The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of cap-dependent protein synthesis and is required for numerous forms of long-lasting synaptic plasticity and long-term memory. As such, the study of mTORC1 and protein factors that control translation initiation and elongation have enhanced our understanding of how the process of protein synthesis is regulated during memory formation. Herein we will discuss the molecular mechanisms that regulate protein synthesis as well as pharmacological and genetic manipulations that demonstrate the requirement for proper translational control in long-lasting synaptic plasticity and long-term memory formation. PMID:24484700
Geis, Christian; Graus, Francesc
2017-01-01
Investigations in the last 10 years have revealed a new category of neurological diseases mediated by antibodies against cell surface and synaptic proteins. There are currently 16 such diseases all characterized by autoantibodies against neuronal proteins involved in synaptic signaling and plasticity. In clinical practice these findings have changed the diagnostic and treatment approach to potentially lethal, but now treatable, neurological and psychiatric syndromes previously considered idiopathic or not even suspected to be immune-mediated. Studies show that patients' antibodies can impair the surface dynamics of the target receptors eliminating them from synapses (e.g., NMDA receptor), block the function of the antigens without changing their synaptic density (e.g., GABAb receptor), interfere with synaptic protein-protein interactions (LGI1, Caspr2), alter synapse formation (e.g., neurexin-3α), or by unclear mechanisms associate to a new form of tauopathy (IgLON5). Here we first trace the process of discovery of these diseases, describing the triggers and symptoms related to each autoantigen, and then review in detail the structural and functional alterations caused by the autoantibodies with special emphasis in those (NMDA receptor, amphiphysin) that have been modeled in animals. PMID:28298428
Neal, April P.; Stansfield, Kirstie H.; Guilarte, Tomás R.
2012-01-01
We have previously reported that lead (Pb2+) exposure results in both presynaptic and postsynaptic changes in developing neurons as a result of inhibition of the N-methyl-D-aspartate receptor (NMDAR). NMDAR inhibition by Pb2+ during synaptogenesis disrupts downstream trans-synaptic signaling of brain-derived neurotrophic factor (BDNF) and exogenous addition of BDNF can recover the effects of Pb2+ on both presynaptic protein expression and presynaptic vesicular release. NMDAR activity can modulate other trans-synaptic signaling pathways, such as nitric oxide (NO) signaling. Thus, it is possible that other trans-synaptic pathways in addition to BDNF signaling may be disrupted by Pb2+ exposure. The current study investigated whether exogenous addition of NO could recover the presynaptic vesicular proteins lost as a result of Pb2+ exposure during synaptogenesis, namely Synaptophysin (Syn) and Synaptobrevin (Syb). We observed that exogenous addition of NO during Pb2+ exposure results in complete recovery of whole-cell Syn levels and partial recovery of Syn and Syb synaptic targeting in Pb2+-exposed neurons. PMID:22265330
High-throughput sequencing methods to study neuronal RNA-protein interactions.
Ule, Jernej
2009-12-01
UV-cross-linking and RNase protection, combined with high-throughput sequencing, have provided global maps of RNA sites bound by individual proteins or ribosomes. Using a stringent purification protocol, UV-CLIP (UV-cross-linking and immunoprecipitation) was able to identify intronic and exonic sites bound by splicing regulators in mouse brain tissue. Ribosome profiling has been used to quantify ribosome density on budding yeast mRNAs under different environmental conditions. Post-transcriptional regulation in neurons requires high spatial and temporal precision, as is evident from the role of localized translational control in synaptic plasticity. It remains to be seen if the high-throughput methods can be applied quantitatively to study the dynamics of RNP (ribonucleoprotein) remodelling in specific neuronal populations during the neurodegenerative process. It is certain, however, that applications of new biochemical techniques followed by high-throughput sequencing will continue to provide important insights into the mechanisms of neuronal post-transcriptional regulation.
Li, Long; Tian, Xiaolin; Zhu, Mingwei; Bulgari, Dinara; Böhme, Mathias A.; Goettfert, Fabian; Wichmann, Carolin; Sigrist, Stephan J.; Levitan, Edwin S.
2014-01-01
During synaptic development, presynaptic differentiation occurs as an intrinsic property of axons to form specialized areas of plasma membrane [active zones (AZs)] that regulate exocytosis and endocytosis of synaptic vesicles. Genetic and biochemical studies in vertebrate and invertebrate model systems have identified a number of proteins involved in AZ assembly. However, elucidating the molecular events of AZ assembly in a spatiotemporal manner remains a challenge. Syd-1 (synapse defective-1) and Liprin-α have been identified as two master organizers of AZ assembly. Genetic and imaging analyses in invertebrates show that Syd-1 works upstream of Liprin-α in synaptic assembly through undefined mechanisms. To understand molecular pathways downstream of Liprin-α, we performed a proteomic screen of Liprin-α-interacting proteins in Drosophila brains. We identify Drosophila protein phosphatase 2A (PP2A) regulatory subunit B′ [Wrd (Well Rounded)] as a Liprin-α-interacting protein, and we demonstrate that it mediates the interaction of Liprin-α with PP2A holoenzyme and the Liprin-α-dependent synaptic localization of PP2A. Interestingly, loss of function in syd-1, liprin-α, or wrd shares a common defect in which a portion of synaptic vesicles, dense-core vesicles, and presynaptic cytomatrix proteins ectopically accumulate at the distal, but not proximal, region of motoneuron axons. Strong genetic data show that a linear syd-1/liprin-α/wrd pathway in the motoneuron antagonizes glycogen synthase kinase-3β kinase activity to prevent the ectopic accumulation of synaptic materials. Furthermore, we provide data suggesting that the syd-1/liprin-α/wrd pathway stabilizes AZ specification at the nerve terminal and that such a novel function is independent of the roles of syd-1/liprin-α in regulating the morphology of the T-bar structural protein BRP (Bruchpilot). PMID:24948803
Li, Long; Tian, Xiaolin; Zhu, Mingwei; Bulgari, Dinara; Böhme, Mathias A; Goettfert, Fabian; Wichmann, Carolin; Sigrist, Stephan J; Levitan, Edwin S; Wu, Chunlai
2014-06-18
During synaptic development, presynaptic differentiation occurs as an intrinsic property of axons to form specialized areas of plasma membrane [active zones (AZs)] that regulate exocytosis and endocytosis of synaptic vesicles. Genetic and biochemical studies in vertebrate and invertebrate model systems have identified a number of proteins involved in AZ assembly. However, elucidating the molecular events of AZ assembly in a spatiotemporal manner remains a challenge. Syd-1 (synapse defective-1) and Liprin-α have been identified as two master organizers of AZ assembly. Genetic and imaging analyses in invertebrates show that Syd-1 works upstream of Liprin-α in synaptic assembly through undefined mechanisms. To understand molecular pathways downstream of Liprin-α, we performed a proteomic screen of Liprin-α-interacting proteins in Drosophila brains. We identify Drosophila protein phosphatase 2A (PP2A) regulatory subunit B' [Wrd (Well Rounded)] as a Liprin-α-interacting protein, and we demonstrate that it mediates the interaction of Liprin-α with PP2A holoenzyme and the Liprin-α-dependent synaptic localization of PP2A. Interestingly, loss of function in syd-1, liprin-α, or wrd shares a common defect in which a portion of synaptic vesicles, dense-core vesicles, and presynaptic cytomatrix proteins ectopically accumulate at the distal, but not proximal, region of motoneuron axons. Strong genetic data show that a linear syd-1/liprin-α/wrd pathway in the motoneuron antagonizes glycogen synthase kinase-3β kinase activity to prevent the ectopic accumulation of synaptic materials. Furthermore, we provide data suggesting that the syd-1/liprin-α/wrd pathway stabilizes AZ specification at the nerve terminal and that such a novel function is independent of the roles of syd-1/liprin-α in regulating the morphology of the T-bar structural protein BRP (Bruchpilot). Copyright © 2014 the authors 0270-6474/14/348474-14$15.00/0.
Mutant Huntingtin Causes a Selective Decrease in the Expression of Synaptic Vesicle Protein 2C.
Peng, Chaohua; Zhu, Gaochun; Liu, Xiangqian; Li, He
2018-04-30
Huntington's disease (HD) is a neurodegenerative disease caused by a polyglutamine expansion in the huntingtin (Htt) protein. Mutant Htt causes synaptic transmission dysfunctions by interfering in the expression of synaptic proteins, leading to early HD symptoms. Synaptic vesicle proteins 2 (SV2s), a family of synaptic vesicle proteins including 3 members, SV2A, SV2B, and SV2C, plays important roles in synaptic physiology. Here, we investigated whether the expression of SV2s is affected by mutant Htt in the brains of HD transgenic (TG) mice and Neuro2a mouse neuroblastoma cells (N2a cells) expressing mutant Htt. Western blot analysis showed that the protein levels of SV2A and SV2B were not significantly changed in the brains of HD TG mice expressing mutant Htt with 82 glutamine repeats. However, in the TG mouse brain there was a dramatic decrease in the protein level of SV2C, which has a restricted distribution pattern in regions particularly vulnerable in HD. Immunostaining revealed that the immunoreactivity of SV2C was progressively weakened in the basal ganglia and hippocampus of TG mice. RT-PCR demonstrated that the mRNA level of SV2C progressively declined in the TG mouse brain without detectable changes in the mRNA levels of SV2A and SV2B, indicating that mutant Htt selectively inhibits the transcriptional expression of SV2C. Furthermore, we found that only SV2C expression was progressively inhibited in N2a cells expressing a mutant Htt containing 120 glutamine repeats. These findings suggest that the synaptic dysfunction in HD results from the mutant Htt-mediated inhibition of SV2C transcriptional expression. These data also imply that the restricted distribution and decreased expression of SV2C contribute to the brain region-selective pathology of HD.
Wahl, Silke; Magupalli, Venkat Giri; Dembla, Mayur; Katiyar, Rashmi; Schwarz, Karin; Köblitz, Louise; Alpadi, Kannan; Krause, Elmar; Rettig, Jens; Sung, Ching-Hwa; Goldberg, Andrew F. X.
2016-01-01
Mutations in the Tulp1 gene cause severe, early-onset retinitis pigmentosa (RP14) in humans. In the retina, Tulp1 is mainly expressed in photoreceptors that use ribbon synapses to communicate with the inner retina. In the present study, we demonstrate that Tulp1 is highly enriched in the periactive zone of photoreceptor presynaptic terminals where Tulp1 colocalizes with major endocytic proteins close to the synaptic ribbon. Analyses of Tulp1 knock-out mice demonstrate that Tulp1 is essential to keep endocytic proteins enriched at the periactive zone and to maintain high levels of endocytic activity close to the synaptic ribbon. Moreover, we have discovered a novel interaction between Tulp1 and the synaptic ribbon protein RIBEYE, which is important to maintain synaptic ribbon integrity. The current findings suggest a new model for Tulp1-mediated localization of the endocytic machinery at the periactive zone of ribbon synapses and offer a new rationale and mechanism for vision loss associated with genetic defects in Tulp1. SIGNIFICANCE STATEMENT Mutations in the Tulp1 gene cause severe, early-onset retinitis pigmentosa (RP14) and Leber congenital amaurosis (LCA15) in human patients. In this study, we discovered that the phosphoinositol-4,5-bisphosphate-binding protein Tulp1 is essential for the structural and functional organization of the periactive zone in photoreceptor synapses. Using Tulp1 knock-out mice, we found that Tulp1 is required to enrich major endocytic proteins at the periactive zone next to the synaptic ribbon. We demonstrate that Tulp1 is needed to promote endocytic vesicle retrieval at the periactive zone. Moreover, we discovered a novel interaction between Tulp1 and the synaptic ribbon protein RIBEYE. This newly discovered disease-sensitive interaction provides a molecular model for the control of endocytosis close to the synaptic ribbon. PMID:26911694
Mutations causing syndromic autism define an axis of synaptic pathophysiology.
Auerbach, Benjamin D; Osterweil, Emily K; Bear, Mark F
2011-11-23
Tuberous sclerosis complex and fragile X syndrome are genetic diseases characterized by intellectual disability and autism. Because both syndromes are caused by mutations in genes that regulate protein synthesis in neurons, it has been hypothesized that excessive protein synthesis is one core pathophysiological mechanism of intellectual disability and autism. Using electrophysiological and biochemical assays of neuronal protein synthesis in the hippocampus of Tsc2(+/-) and Fmr1(-/y) mice, here we show that synaptic dysfunction caused by these mutations actually falls at opposite ends of a physiological spectrum. Synaptic, biochemical and cognitive defects in these mutants are corrected by treatments that modulate metabotropic glutamate receptor 5 in opposite directions, and deficits in the mutants disappear when the mice are bred to carry both mutations. Thus, normal synaptic plasticity and cognition occur within an optimal range of metabotropic glutamate-receptor-mediated protein synthesis, and deviations in either direction can lead to shared behavioural impairments.
Fusion competent synaptic vesicles persist upon active zone disruption and loss of vesicle docking
Wang, Shan Shan H.; Held, Richard G.; Wong, Man Yan; Liu, Changliang; Karakhanyan, Aziz; Kaeser, Pascal S.
2016-01-01
In a nerve terminal, synaptic vesicle docking and release are restricted to an active zone. The active zone is a protein scaffold that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Here, we generated conditional knockout mice removing the active zone proteins RIM and ELKS, which additionally led to loss of Munc13, Bassoon, Piccolo, and RIM-BP, indicating disassembly of the active zone. We observed a near complete lack of synaptic vesicle docking and a strong reduction in vesicular release probability and the speed of exocytosis, but total vesicle numbers, SNARE protein levels, and postsynaptic densities remained unaffected. Despite loss of the priming proteins Munc13 and RIM and of docked vesicles, a pool of releasable vesicles remained. Thus, the active zone is necessary for synaptic vesicle docking and to enhance release probability, but releasable vesicles can be localized distant from the presynaptic plasma membrane. PMID:27537483
The LGI1–ADAM22 protein complex directs synapse maturation through regulation of PSD-95 function
Lovero, Kathryn L.; Fukata, Yuko; Granger, Adam J.; Fukata, Masaki; Nicoll, Roger A.
2015-01-01
Synapse development is coordinated by a number of transmembrane and secreted proteins that come together to form synaptic organizing complexes. Whereas a variety of synaptogenic proteins have been characterized, much less is understood about the molecular networks that support the maintenance and functional maturation of nascent synapses. Here, we demonstrate that leucine-rich, glioma-inactivated protein 1 (LGI1), a secreted protein previously shown to modulate synaptic AMPA receptors, is a paracrine signal released from pre- and postsynaptic neurons that acts specifically through a disintegrin and metalloproteinase protein 22 (ADAM22) to set postsynaptic strength. We go on to describe a novel role for ADAM22 in maintaining excitatory synapses through PSD-95/Dlg1/zo-1 (PDZ) domain interactions. Finally, we show that in the absence of LGI1, the mature synapse scaffolding protein PSD-95, but not the immature synapse scaffolding protein SAP102, is unable to modulate synaptic transmission. These results indicate that LGI1 and ADAM22 form an essential synaptic organizing complex that coordinates the maturation of excitatory synapses by regulating the functional incorporation of PSD-95. PMID:26178195
Navakkode, Sheeja; Chew, Katherine C M; Tay, Sabrina Jia Ning; Lin, Qingshu; Behnisch, Thomas; Soong, Tuck Wah
2017-11-14
Long-term potentiation (LTP) is the persistent increase in the strength of the synapses. However, the neural networks would become saturated if there is only synaptic strenghthening. Synaptic weakening could be facilitated by active processes like long-term depression (LTD). Molecular mechanisms that facilitate the weakening of synapses and thereby stabilize the synapses are also important in learning and memory. Here we show that blockade of dopaminergic D4 receptors (D4R) promoted the formation of late-LTP and transformed early-LTP into late-LTP. This effect was dependent on protein synthesis, activation of NMDA-receptors and CaMKII. We also show that GABA A -receptor mediated mechanisms are involved in the enhancement of late-LTP. We could show that short-term plasticity and baseline synaptic transmission were unaffected by D4R inhibition. On the other hand, antagonizing D4R prevented both early and late forms of LTD, showing that activation of D4Rs triggered a dual function. Synaptic tagging experiments on LTD showed that D4Rs act as plasticity related proteins rather than the setting of synaptic tags. D4R activation by PD 168077 induced a slow-onset depression that was protein synthesis, NMDAR and CaMKII dependent. The D4 receptors, thus exert a bidirectional modulation of CA1 pyramidal neurons by restricting synaptic strengthening and facilitating synaptic weakening.
Zurawski, Zack
2017-01-01
G-protein βγ subunits (Gβγ) interact with presynaptic proteins and regulate neurotransmitter release downstream of Ca2+ influx. To accomplish their roles in sensory signaling, photoreceptor synapses use specialized presynaptic proteins that support neurotransmission at active zone structures known as ribbons. While several G-protein coupled receptors (GPCRs) influence synaptic transmission at ribbon synapses of cones and other retinal neurons, it is unknown whether Gβγ contributes to these effects. We tested whether activation of one particular GPCR, a metabotropic glutamate receptor (mGluR), can reduce cone synaptic transmission via Gβγ in tiger salamander retinas. In recordings from horizontal cells, we found that an mGluR agonist (L-AP4) reduced cone-driven light responses and mEPSC frequency. In paired recordings of cones and horizontal cells, L-AP4 slightly reduced cone ICa (∼10%) and caused a larger reduction in cone-driven EPSCs (∼30%). Proximity ligation assay revealed direct interactions between SNAP-25 and Gβγ subunits in retinal synaptic layers. Pretreatment with the SNAP-25 cleaving protease BoNT/A inhibited L-AP4 effects on synaptic transmission, as did introduction of a peptide derived from the SNAP-25 C terminus. Introducing Gβγ subunits directly into cones reduced EPSC amplitude. This effect was inhibited by BoNT/A, supporting a role for Gβγ/SNAP-25 interactions. However, the mGluR-dependent reduction in ICa was not mimicked by Gβγ, indicating that this effect was independent of Gβγ. The finding that synaptic transmission at cone ribbon synapses is regulated by Gβγ/SNAP-25 interactions indicates that these mechanisms are shared by conventional and ribbon-type synapses. Gβγ liberated from other photoreceptor GPCRs is also likely to regulate synaptic transmission. SIGNIFICANCE STATEMENT Dynamic regulation of synaptic transmission by presynaptic G-protein coupled receptors shapes information flow through neural circuits. At the first synapse in the visual system, presynaptic metabotropic glutamate receptors (mGluRs) regulate cone photoreceptor synaptic transmission, although the mechanisms and functional impact of this are unclear. We show that mGluRs regulate light response encoding across the cone synapse, accomplished in part by triggering G-protein βγ subunits (Gβγ) interactions with SNAP-25, a core component of the synaptic vesicle fusion machinery. In addition to revealing a role in visual processing, this provides the first demonstration that Gβγ/SNAP-25 interactions regulate synaptic function at a ribbon-type synapse, contributing to an emerging picture of the ubiquity of Gβγ/SNARE interactions in regulating synaptic transmission throughout the nervous system. PMID:28363980
Van Hook, Matthew J; Babai, Norbert; Zurawski, Zack; Yim, Yun Young; Hamm, Heidi E; Thoreson, Wallace B
2017-04-26
G-protein βγ subunits (Gβγ) interact with presynaptic proteins and regulate neurotransmitter release downstream of Ca 2+ influx. To accomplish their roles in sensory signaling, photoreceptor synapses use specialized presynaptic proteins that support neurotransmission at active zone structures known as ribbons. While several G-protein coupled receptors (GPCRs) influence synaptic transmission at ribbon synapses of cones and other retinal neurons, it is unknown whether Gβγ contributes to these effects. We tested whether activation of one particular GPCR, a metabotropic glutamate receptor (mGluR), can reduce cone synaptic transmission via Gβγ in tiger salamander retinas. In recordings from horizontal cells, we found that an mGluR agonist (L-AP4) reduced cone-driven light responses and mEPSC frequency. In paired recordings of cones and horizontal cells, L-AP4 slightly reduced cone I Ca (∼10%) and caused a larger reduction in cone-driven EPSCs (∼30%). Proximity ligation assay revealed direct interactions between SNAP-25 and Gβγ subunits in retinal synaptic layers. Pretreatment with the SNAP-25 cleaving protease BoNT/A inhibited L-AP4 effects on synaptic transmission, as did introduction of a peptide derived from the SNAP-25 C terminus. Introducing Gβγ subunits directly into cones reduced EPSC amplitude. This effect was inhibited by BoNT/A, supporting a role for Gβγ/SNAP-25 interactions. However, the mGluR-dependent reduction in I Ca was not mimicked by Gβγ, indicating that this effect was independent of Gβγ. The finding that synaptic transmission at cone ribbon synapses is regulated by Gβγ/SNAP-25 interactions indicates that these mechanisms are shared by conventional and ribbon-type synapses. Gβγ liberated from other photoreceptor GPCRs is also likely to regulate synaptic transmission. SIGNIFICANCE STATEMENT Dynamic regulation of synaptic transmission by presynaptic G-protein coupled receptors shapes information flow through neural circuits. At the first synapse in the visual system, presynaptic metabotropic glutamate receptors (mGluRs) regulate cone photoreceptor synaptic transmission, although the mechanisms and functional impact of this are unclear. We show that mGluRs regulate light response encoding across the cone synapse, accomplished in part by triggering G-protein βγ subunits (Gβγ) interactions with SNAP-25, a core component of the synaptic vesicle fusion machinery. In addition to revealing a role in visual processing, this provides the first demonstration that Gβγ/SNAP-25 interactions regulate synaptic function at a ribbon-type synapse, contributing to an emerging picture of the ubiquity of Gβγ/SNARE interactions in regulating synaptic transmission throughout the nervous system. Copyright © 2017 the authors 0270-6474/17/374619-17$15.00/0.
In Situ Protein Binding Assay Using Fc-Fusion Proteins.
Padmanabhan, Nirmala; Siddiqui, Tabrez J
2017-01-01
This protocol describes an in situ protein-protein interaction assay between tagged recombinant proteins and cell-surface expressed synaptic proteins. The assay is arguably more sensitive than other traditional protein binding assays such as co-immunoprecipitation and pull-downs and provides a visual readout for binding. This assay has been widely used to determine the dissociation constant of binding of trans-synaptic adhesion proteins. The step-wise description in the protocol should facilitate the adoption of this method in other laboratories.
Synaptic proteins and receptors defects in autism spectrum disorders
Chen, Jianling; Yu, Shunying; Fu, Yingmei; Li, Xiaohong
2014-01-01
Recent studies have found that hundreds of genetic variants, including common and rare variants, rare and de novo mutations, and common polymorphisms contribute to the occurrence of autism spectrum disorders (ASDs). The mutations in a number of genes such as neurexin, neuroligin, postsynaptic density protein 95, SH3, and multiple ankyrin repeat domains 3 (SHANK3), synapsin, gephyrin, cadherin, and protocadherin, thousand-and-one-amino acid 2 kinase, and contactin, have been shown to play important roles in the development and function of synapses. In addition, synaptic receptors, such as gamma-aminobutyric acid receptors and glutamate receptors, have also been associated with ASDs. This review will primarily focus on the defects of synaptic proteins and receptors associated with ASDs and their roles in the pathogenesis of ASDs via synaptic pathways. PMID:25309321
Nordman, Jacob C.; Philips, Wiktor S.; Kodama, Nathan; Clark, Sarah G.; Negro, Christopher Del; Kabbani, Nadine
2015-01-01
Cholinergic signaling plays an important role in regulating the growth and regeneration of axons in the nervous system. The α7 nicotinic receptor (α7) can drive synaptic development and plasticity in the hippocampus. Here we show that activation of α7 significantly reduces axon growth in hippocampal neurons by coupling to G protein regulated inducer of neurite outgrowth 1 (Gprin1), which targets it to the growth cone (GC). Knockdown of Gprin1 expression using RNAi is found sufficient to abolish the localization and calcium signaling of α7 at the GC. In particular, α7/Gprin1 interaction appears intimately linked to a Gαo, GAP-43, and CDC42 cytoskeletal regulatory pathway within the developing axon. These findings demonstrate that α7 regulates axon growth in hippocampal neurons, thereby likely contributing to synaptic formation in the developing brain. PMID:24350810
Wishart, Thomas M; Rooney, Timothy M; Lamont, Douglas J; Wright, Ann K; Morton, A Jennifer; Jackson, Mandy; Freeman, Marc R; Gillingwater, Thomas H
2012-01-01
Degeneration of synaptic and axonal compartments of neurons is an early event contributing to the pathogenesis of many neurodegenerative diseases, but the underlying molecular mechanisms remain unclear. Here, we demonstrate the effectiveness of a novel "top-down" approach for identifying proteins and functional pathways regulating neurodegeneration in distal compartments of neurons. A series of comparative quantitative proteomic screens on synapse-enriched fractions isolated from the mouse brain following injury identified dynamic perturbations occurring within the proteome during both initiation and onset phases of degeneration. In silico analyses highlighted significant clustering of proteins contributing to functional pathways regulating synaptic transmission and neurite development. Molecular markers of degeneration were conserved in injury and disease, with comparable responses observed in synapse-enriched fractions isolated from mouse models of Huntington's disease (HD) and spinocerebellar ataxia type 5. An initial screen targeting thirteen degeneration-associated proteins using mutant Drosophila lines revealed six potential regulators of synaptic and axonal degeneration in vivo. Mutations in CALB2, ROCK2, DNAJC5/CSP, and HIBCH partially delayed injury-induced neurodegeneration. Conversely, mutations in DNAJC6 and ALDHA1 led to spontaneous degeneration of distal axons and synapses. A more detailed genetic analysis of DNAJC5/CSP mutants confirmed that loss of DNAJC5/CSP was neuroprotective, robustly delaying degeneration in axonal and synaptic compartments. Our study has identified conserved molecular responses occurring within synapse-enriched fractions of the mouse brain during the early stages of neurodegeneration, focused on functional networks modulating synaptic transmission and incorporating molecular chaperones, cytoskeletal modifiers, and calcium-binding proteins. We propose that the proteins and functional pathways identified in the current study represent attractive targets for developing therapeutics aimed at modulating synaptic and axonal stability and neurodegeneration in vivo.
Ahmad, Faraz; Singh, Kunal; Das, Debajyoti; Gowaikar, Ruturaj; Shaw, Eisha; Ramachandran, Arathy; Rupanagudi, Khader Valli; Kommaddi, Reddy Peera; Bennett, David A.
2017-01-01
Abstract Aims: Synaptic deficits are known to underlie the cognitive dysfunction seen in Alzheimer's disease (AD). Generation of reactive oxygen species (ROS) by β-amyloid has also been implicated in AD pathogenesis. However, it is unclear whether ROS contributes to synaptic dysfunction seen in AD pathogenesis and, therefore, we examined whether altered redox signaling could contribute to synaptic deficits in AD. Results: Activity dependent but not basal translation was impaired in synaptoneurosomes from 1-month old presymptomatic APPSwe/PS1ΔE9 (APP/PS1) mice, and this deficit was sustained till middle age (MA, 9–10 months). ROS generation leads to oxidative modification of Akt1 in the synapse and consequent reduction in Akt1-mechanistic target of rapamycin (mTOR) signaling, leading to deficiency in activity-dependent protein translation. Moreover, we found a similar loss of activity-dependent protein translation in synaptoneurosomes from postmortem AD brains. Innovation: Loss of activity-dependent protein translation occurs presymptomatically early in the pathogenesis of AD. This is caused by ROS-mediated loss of pAkt1, leading to reduced synaptic Akt1-mTOR signaling and is rescued by overexpression of Akt1. ROS-mediated damage is restricted to the synaptosomes, indicating selectivity. Conclusions: We demonstrate that ROS-mediated oxidative modification of Akt1 contributes to synaptic dysfunction in AD, seen as loss of activity-dependent protein translation that is essential for synaptic plasticity and maintenance. Therapeutic strategies promoting Akt1-mTOR signaling at synapses may provide novel target(s) for disease-modifying therapy in AD. Antioxid. Redox Signal. 27, 1269–1280. PMID:28264587
Ventimiglia, Donovan; Bargmann, Cornelia I
2017-11-21
Synaptic vesicle release properties vary between neuronal cell types, but in most cases the molecular basis of this heterogeneity is unknown. Here, we compare in vivo synaptic properties of two neuronal classes in the C. elegans central nervous system, using VGLUT-pHluorin to monitor synaptic vesicle exocytosis and retrieval in intact animals. We show that the glutamatergic sensory neurons AWC ON and ASH have distinct synaptic dynamics associated with tonic and phasic synaptic properties, respectively. Exocytosis in ASH and AWC ON is differentially affected by SNARE-complex regulators that are present in both neurons: phasic ASH release is strongly dependent on UNC-13, whereas tonic AWC ON release relies upon UNC-18 and on the protein kinase C homolog PKC-1. Strong stimuli that elicit high calcium levels increase exocytosis and retrieval rates in AWC ON , generating distinct tonic and evoked synaptic modes. These results highlight the differential deployment of shared presynaptic proteins in neuronal cell type-specific functions.
Ventimiglia, Donovan
2017-01-01
Synaptic vesicle release properties vary between neuronal cell types, but in most cases the molecular basis of this heterogeneity is unknown. Here, we compare in vivo synaptic properties of two neuronal classes in the C. elegans central nervous system, using VGLUT-pHluorin to monitor synaptic vesicle exocytosis and retrieval in intact animals. We show that the glutamatergic sensory neurons AWCON and ASH have distinct synaptic dynamics associated with tonic and phasic synaptic properties, respectively. Exocytosis in ASH and AWCON is differentially affected by SNARE-complex regulators that are present in both neurons: phasic ASH release is strongly dependent on UNC-13, whereas tonic AWCON release relies upon UNC-18 and on the protein kinase C homolog PKC-1. Strong stimuli that elicit high calcium levels increase exocytosis and retrieval rates in AWCON, generating distinct tonic and evoked synaptic modes. These results highlight the differential deployment of shared presynaptic proteins in neuronal cell type-specific functions. PMID:29160768
Autophagy Enhances Memory Erasure through Synaptic Destabilization.
Shehata, Mohammad; Abdou, Kareem; Choko, Kiriko; Matsuo, Mina; Nishizono, Hirofumi; Inokuchi, Kaoru
2018-04-11
There is substantial interest in memory reconsolidation as a target for the treatment of anxiety disorders, such as post-traumatic stress disorder. However, its applicability is restricted by reconsolidation-resistant boundary conditions that constrain the initial memory destabilization. In this study, we investigated whether the induction of synaptic protein degradation through autophagy modulation, a major protein degradation pathway, can enhance memory destabilization upon retrieval and whether it can be used to overcome these conditions. Here, using male mice in an auditory fear reconsolidation model, we showed that autophagy contributes to memory destabilization and its induction can be used to enhance erasure of a reconsolidation-resistant auditory fear memory that depended on AMPAR endocytosis. Using male mice in a contextual fear reconsolidation model, autophagy induction in the amygdala or in the hippocampus enhanced fear or contextual memory destabilization, respectively. The latter correlated with AMPAR degradation in the spines of the contextual memory-ensemble cells. Using male rats in an in vivo LTP reconsolidation model, autophagy induction enhanced synaptic destabilization in an NMDAR-dependent manner. These data indicate that induction of synaptic protein degradation can enhance both synaptic and memory destabilization upon reactivation and that autophagy inducers have the potential to be used as a therapeutic tool in the treatment of anxiety disorders. SIGNIFICANCE STATEMENT It has been reported that inhibiting synaptic protein degradation prevents memory destabilization. However, whether the reverse relation is true and whether it can be used to enhance memory destabilization are still unknown. Here we addressed this question on the behavioral, molecular, and synaptic levels, and showed that induction of autophagy, a major protein degradation pathway, can enhance memory and synaptic destabilization upon reactivation. We also show that autophagy induction can be used to overcome a reconsolidation-resistant memory, suggesting autophagy inducers as a potential therapeutic tool in the treatment of anxiety disorders. Copyright © 2018 the authors 0270-6474/18/383809-14$15.00/0.
Structural Basis of Arc Binding to Synaptic Proteins: Implications for Cognitive Disease
Zhang, Wenchi; Wu, Jing; Ward, Matthew D.; ...
2015-04-09
Arc is a cellular immediate-early gene (IEG) that functions at excitatory synapses and is required for learning and memory. Here we report crystal structures of Arc subdomains that form a bi-lobar architecture remarkably similar to the capsid domain of human immunodeficiency virus (HIV) gag protein. Analysis indicates Arc originated from the Ty3/Gypsy retrotransposon family and was “domesticated” in higher vertebrates for synaptic functions. The Arc N-terminal lobe evolved a unique hydrophobic pocket that mediates intermolecular binding with synaptic proteins as resolved in complexes with TARPγ2 (Stargazin) and CaMKII peptides and is essential for Arc’s synaptic function. A consensus sequence formore » Arc binding identifies several additional partners that include genes implicated in schizophrenia. Arc N-lobe binding is inhibited by small chemicals suggesting Arc’s synaptic action may be druggable. Finally, these studies reveal the remarkable evolutionary origin of Arc and provide a structural basis for understanding Arc’s contribution to neural plasticity and disease.« less
Structural Basis of Arc Binding to Synaptic Proteins: Implications for Cognitive Disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wenchi; Wu, Jing; Ward, Matthew D.
Arc is a cellular immediate-early gene (IEG) that functions at excitatory synapses and is required for learning and memory. Here we report crystal structures of Arc subdomains that form a bi-lobar architecture remarkably similar to the capsid domain of human immunodeficiency virus (HIV) gag protein. Analysis indicates Arc originated from the Ty3/Gypsy retrotransposon family and was “domesticated” in higher vertebrates for synaptic functions. The Arc N-terminal lobe evolved a unique hydrophobic pocket that mediates intermolecular binding with synaptic proteins as resolved in complexes with TARPγ2 (Stargazin) and CaMKII peptides and is essential for Arc’s synaptic function. A consensus sequence formore » Arc binding identifies several additional partners that include genes implicated in schizophrenia. Arc N-lobe binding is inhibited by small chemicals suggesting Arc’s synaptic action may be druggable. Finally, these studies reveal the remarkable evolutionary origin of Arc and provide a structural basis for understanding Arc’s contribution to neural plasticity and disease.« less
Clarinet (CLA-1), a novel active zone protein required for synaptic vesicle clustering and release
Nelson, Jessica; Richmond, Janet E; Colón-Ramos, Daniel A; Shen, Kang
2017-01-01
Active zone proteins cluster synaptic vesicles at presynaptic terminals and coordinate their release. In forward genetic screens, we isolated a novel Caenorhabditis elegans active zone gene, clarinet (cla-1). cla-1 mutants exhibit defects in synaptic vesicle clustering, active zone structure and synapse number. As a result, they have reduced spontaneous vesicle release and increased synaptic depression. cla-1 mutants show defects in vesicle distribution near the presynaptic dense projection, with fewer undocked vesicles contacting the dense projection and more docked vesicles at the plasma membrane. cla-1 encodes three isoforms containing common C-terminal PDZ and C2 domains with homology to vertebrate active zone proteins Piccolo and RIM. The C-termini of all isoforms localize to the active zone. Specific loss of the ~9000 amino acid long isoform results in vesicle clustering defects and increased synaptic depression. Our data indicate that specific isoforms of clarinet serve distinct functions, regulating synapse development, vesicle clustering and release. PMID:29160205
Structural Basis of Arc Binding to Synaptic Proteins: Implications for Cognitive Disease
Zhang, Wenchi; Wu, Jing; Ward, Matthew D.; Yang, Sunggu; Chuang, Yang-An; Xiao, Meifang; Li, Ruojing; Leahy, Daniel J.; Worley, Paul F.
2015-01-01
SUMMARY Arc is a cellular immediate early gene (IEG) that functions at excitatory synapses and is required for learning and memory. We report crystal structures of Arc subdomains that form a bi-lobar architecture remarkably similar to the capsid domain of human immunodeficiency virus (HIV) gag protein. Analysis indicates Arc originated from the Ty3/Gypsy retrotransposon family and was “domesticated” in higher vertebrates for synaptic functions. The Arc N-terminal lobe evolved a unique hydrophobic pocket that mediates intermolecular binding with synaptic proteins as resolved in complexes with TARPγ2 (Stargazin) and CaMKII peptides, and is essential for Arc’s synaptic function. A consensus sequence for Arc binding identifies several additional partners that include genes implicated in schizophrenia. Arc N-lobe binding is inhibited by small chemicals suggesting Arc’s synaptic action may be druggable. These studies reveal the remarkable evolutionary origin of Arc and provide a structural basis for understanding Arc’s contribution to neural plasticity and disease. PMID:25864631
Role for a Novel Usher Protein Complex in Hair Cell Synaptic Maturation
Zallocchi, Marisa; Meehan, Daniel T.; Delimont, Duane; Rutledge, Joseph; Gratton, Michael Anne; Flannery, John; Cosgrove, Dominic
2012-01-01
The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23), protocadherin-15 (PCDH15) and the very large G-protein coupled receptor 1 (VLGR1) have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1−/− mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzerav3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well. PMID:22363448
Towards reconstitution of membrane fusion mediated by SNAREs and other synaptic proteins
Brunger, Axel T.; Cipriano, Daniel J.; Diao, Jiajie
2015-01-01
Abstract Proteoliposomes have been widely used for in vitro studies of membrane fusion mediated by synaptic proteins. Initially, such studies were made with large unsynchronized ensembles of vesicles. Such ensemble assays limited the insights into the SNARE-mediated fusion mechanism that could be obtained from them. Single particle microscopy experiments can alleviate many of these limitations but they pose significant technical challenges. Here we summarize various approaches that have enabled studies of fusion mediated by SNAREs and other synaptic proteins at a single-particle level. Currently available methods are described and their advantages and limitations are discussed. PMID:25788028
Guo, Ming-Lei; Xue, Bing; Jin, Dao-Zhong; Mao, Li-Min; Wang, John Q
2012-07-17
Postsynaptic density 93 (PSD-93) is a protein enriched at postsynaptic sites. As a key scaffolding protein, PSD-93 forms complexes with the clustering of various synaptic proteins to construct postsynaptic signaling networks and control synaptic transmission. Extracellular signal-regulated kinase (ERK) is a prototypic member of a serine/threonine protein kinase family known as mitogen-activated protein kinase (MAPK). This kinase, especially ERK2 isoform, noticeably resides in peripheral structures of neurons, such as dendritic spines and postsynaptic density areas, in addition to its distribution in the cytoplasm and nucleus, although little is known about specific substrates of ERK at synaptic sites. In this study, we found that synaptic PSD-93 is a direct target of ERK. This was demonstrated by direct protein-protein interactions between purified ERK2 and PSD-93 in vitro. The accurate ERK2-binding region seems to locate at an N-terminal region of PSD-93. In adult rat striatal neurons in vivo, native ERK from synaptosomal fractions also associated with PSD-93. In phosphorylation assays, active ERK2 phosphorylated PSD-93. An accurate phosphorylation site was identified at a serine site (S323). In striatal neurons, immunoprecipitated PSD-93 showed basal phosphorylation at an ERK-sensitive site. Our data provide evidence supporting PSD-93 as a new substrate of the synaptic species of ERK. ERK2 possesses the ability to interact with PSD-93 and phosphorylate PSD-93 at a specific site. Published by Elsevier B.V.
Park, Sang Mee; Park, Hae Ryoun; Lee, Ji Hye
2017-02-01
Proper synaptic function in neural circuits requires precise pairings between correct pre- and post-synaptic partners. Errors in this process may underlie development of neuropsychiatric disorders, such as autism spectrum disorder (ASD). Development of ASD can be influenced by genetic factors, including copy number variations (CNVs). In this study, we focused on a CNV occurring at the 16p11.2 locus in the human genome and investigated potential defects in synaptic connectivity caused by reduced activities of genes located in this region at Drosophila larval neuromuscular junctions, a well-established model synapse with stereotypic synaptic structures. A mutation of rolled , a Drosophila homolog of human mitogen-activated protein kinase 3 ( MAPK3 ) at the 16p11.2 locus, caused ectopic innervation of axonal branches and their abnormal defasciculation. The specificity of these phenotypes was confirmed by expression of wild-type rolled in the mutant background. Albeit to a lesser extent, we also observed ectopic innervation patterns in mutants defective in Cdk2, Gα q , and Gp93, all of which were expected to interact with Rolled MAPK3. A further genetic analysis in double heterozygous combinations revealed a synergistic interaction between rolled and Gp93 . In addition, results from RT-qPCR analyses indicated consistently reduced rolled mRNA levels in Cdk2 , Gα q , and Gp93 mutants. Taken together, these data suggest a central role of MAPK3 in regulating the precise targeting of presynaptic axons to proper postsynaptic targets, a critical step that may be altered significantly in ASD.
Identification of PSD-95 Depalmitoylating Enzymes.
Yokoi, Norihiko; Fukata, Yuko; Sekiya, Atsushi; Murakami, Tatsuro; Kobayashi, Kenta; Fukata, Masaki
2016-06-15
Postsynaptic density (PSD)-95, the most abundant postsynaptic scaffolding protein, plays a pivotal role in synapse development and function. Continuous palmitoylation cycles on PSD-95 are essential for its synaptic clustering and regulation of AMPA receptor function. However, molecular mechanisms for palmitate cycling on PSD-95 remain incompletely understood, as PSD-95 depalmitoylating enzymes remain unknown. Here, we isolated 38 mouse or rat serine hydrolases and found that a subset specifically depalmitoylated PSD-95 in heterologous cells. These enzymes showed distinct substrate specificity. α/β-Hydrolase domain-containing protein 17 members (ABHD17A, 17B, and 17C), showing the strongest depalmitoylating activity to PSD-95, showed different localization from other candidates in rat hippocampal neurons, and were distributed to recycling endosomes, the dendritic plasma membrane, and the synaptic fraction. Expression of ABHD17 in neurons selectively reduced PSD-95 palmitoylation and synaptic clustering of PSD-95 and AMPA receptors. Furthermore, taking advantage of the acyl-PEGyl exchange gel shift (APEGS) method, we quantitatively monitored the palmitoylation stoichiometry and the depalmitoylation kinetics of representative synaptic proteins, PSD-95, GluA1, GluN2A, mGluR5, Gαq, and HRas. Unexpectedly, palmitate on all of them did not turn over in neurons. Uniquely, most of the PSD-95 population underwent rapid palmitoylation cycles, and palmitate cycling on PSD-95 decelerated accompanied by its increased stoichiometry as synapses developed, probably contributing to postsynaptic receptor consolidation. Finally, inhibition of ABHD17 expression dramatically delayed the kinetics of PSD-95 depalmitoylation. This study suggests that local palmitoylation machinery composed of synaptic DHHC palmitoylating enzymes and ABHD17 finely controls the amount of synaptic PSD-95 and synaptic function. Protein palmitoylation, the most common lipid modification, dynamically regulates neuronal protein localization and function. Its unique reversibility is conferred by DHHC-type palmitoyl acyl transferases (palmitoylating enzymes) and still controversial palmitoyl-protein thioesterases (depalmitoylating enzymes). Here, we identified the membrane-anchored serine hydrolases, ABHD17A, 17B, and 17C, as the physiological PSD-95 depalmitoylating enzymes that regulate PSD-95 palmitoylation cycles in neurons. This study describes the first direct evidence for the neuronal depalmitoylating enzyme and provides a new aspect of the dynamic regulatory mechanisms of synaptic development and synaptic plasticity. In addition, our established APEGS assay, which provides unbiased and quantitative information about the palmitoylation state and dynamics, revealed the distinct regulatory mechanisms for synaptic palmitoylation. Copyright © 2016 Yokoi, Fukata et al.
Identification of PSD-95 Depalmitoylating Enzymes
Yokoi, Norihiko; Sekiya, Atsushi; Murakami, Tatsuro; Kobayashi, Kenta
2016-01-01
Postsynaptic density (PSD)-95, the most abundant postsynaptic scaffolding protein, plays a pivotal role in synapse development and function. Continuous palmitoylation cycles on PSD-95 are essential for its synaptic clustering and regulation of AMPA receptor function. However, molecular mechanisms for palmitate cycling on PSD-95 remain incompletely understood, as PSD-95 depalmitoylating enzymes remain unknown. Here, we isolated 38 mouse or rat serine hydrolases and found that a subset specifically depalmitoylated PSD-95 in heterologous cells. These enzymes showed distinct substrate specificity. α/β-Hydrolase domain-containing protein 17 members (ABHD17A, 17B, and 17C), showing the strongest depalmitoylating activity to PSD-95, showed different localization from other candidates in rat hippocampal neurons, and were distributed to recycling endosomes, the dendritic plasma membrane, and the synaptic fraction. Expression of ABHD17 in neurons selectively reduced PSD-95 palmitoylation and synaptic clustering of PSD-95 and AMPA receptors. Furthermore, taking advantage of the acyl-PEGyl exchange gel shift (APEGS) method, we quantitatively monitored the palmitoylation stoichiometry and the depalmitoylation kinetics of representative synaptic proteins, PSD-95, GluA1, GluN2A, mGluR5, Gαq, and HRas. Unexpectedly, palmitate on all of them did not turn over in neurons. Uniquely, most of the PSD-95 population underwent rapid palmitoylation cycles, and palmitate cycling on PSD-95 decelerated accompanied by its increased stoichiometry as synapses developed, probably contributing to postsynaptic receptor consolidation. Finally, inhibition of ABHD17 expression dramatically delayed the kinetics of PSD-95 depalmitoylation. This study suggests that local palmitoylation machinery composed of synaptic DHHC palmitoylating enzymes and ABHD17 finely controls the amount of synaptic PSD-95 and synaptic function. SIGNIFICANCE STATEMENT Protein palmitoylation, the most common lipid modification, dynamically regulates neuronal protein localization and function. Its unique reversibility is conferred by DHHC-type palmitoyl acyl transferases (palmitoylating enzymes) and still controversial palmitoyl-protein thioesterases (depalmitoylating enzymes). Here, we identified the membrane-anchored serine hydrolases, ABHD17A, 17B, and 17C, as the physiological PSD-95 depalmitoylating enzymes that regulate PSD-95 palmitoylation cycles in neurons. This study describes the first direct evidence for the neuronal depalmitoylating enzyme and provides a new aspect of the dynamic regulatory mechanisms of synaptic development and synaptic plasticity. In addition, our established APEGS assay, which provides unbiased and quantitative information about the palmitoylation state and dynamics, revealed the distinct regulatory mechanisms for synaptic palmitoylation. PMID:27307232
Loss of Tsc1 in vivo impairs hippocampal mGluR-LTD and increases excitatory synaptic function.
Bateup, Helen S; Takasaki, Kevin T; Saulnier, Jessica L; Denefrio, Cassandra L; Sabatini, Bernardo L
2011-06-15
The autism spectrum disorder tuberous sclerosis complex (TSC) is caused by mutations in the Tsc1 or Tsc2 genes, whose protein products form a heterodimeric complex that negatively regulates mammalian target of rapamycin-dependent protein translation. Although several forms of synaptic plasticity, including metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD), depend on protein translation at the time of induction, it is unknown whether these forms of plasticity require signaling through the Tsc1/2 complex. To examine this possibility, we postnatally deleted Tsc1 in vivo in a subset of hippocampal CA1 neurons using viral delivery of Cre recombinase in mice. We found that hippocampal mGluR-LTD was abolished by loss of Tsc1, whereas a protein synthesis-independent form of NMDA receptor-dependent LTD was preserved. Additionally, AMPA and NMDA receptor-mediated EPSCs and miniature spontaneous EPSC frequency were enhanced in Tsc1 KO neurons. These changes in synaptic function occurred in the absence of alterations in spine density, morphology, or presynaptic release probability. Our findings indicate that signaling through Tsc1/2 is required for the expression of specific forms of hippocampal synaptic plasticity as well as the maintenance of normal excitatory synaptic strength. Furthermore, these data suggest that perturbations of synaptic signaling may contribute to the pathogenesis of TSC.
Neal, April P; Stansfield, Kirstie H; Guilarte, Tomás R
2012-02-23
We have previously reported that lead (Pb(2+)) exposure results in both presynaptic and postsynaptic changes in developing neurons as a result of inhibition of the N-methyl-d-aspartate receptor (NMDAR). NMDAR inhibition by Pb(2+) during synaptogenesis disrupts downstream trans-synaptic signaling of brain-derived neurotrophic factor (BDNF) and exogenous addition of BDNF can recover the effects of Pb(2+) on both presynaptic protein expression and presynaptic vesicular release. NMDAR activity can modulate other trans-synaptic signaling pathways, such as nitric oxide (NO) signaling. Thus, it is possible that other trans-synaptic pathways in addition to BDNF signaling may be disrupted by Pb(2+) exposure. The current study investigated whether exogenous addition of NO could recover the presynaptic vesicular proteins lost as a result of Pb(2+) exposure during synaptogenesis, namely Synaptophysin (Syn) and Synaptobrevin (Syb). We observed that exogenous addition of NO during Pb(2+) exposure results in complete recovery of whole-cell Syn levels and partial recovery of Syn and Syb synaptic targeting in Pb(2+)-exposed neurons. Copyright © 2011 Elsevier B.V. All rights reserved.
Djakovic, Stevan N.; Schwarz, Lindsay A.; Barylko, Barbara; DeMartino, George N.; Patrick, Gentry N.
2009-01-01
Protein degradation via the ubiquitin proteasome system has been shown to regulate changes in synaptic strength that underlie multiple forms of synaptic plasticity. It is plausible, therefore, that the ubiquitin proteasome system is itself regulated by synaptic activity. By utilizing live-cell imaging strategies we report the rapid and dynamic regulation of the proteasome in hippocampal neurons by synaptic activity. We find that the blockade of action potentials (APs) with tetrodotoxin inhibited the activity of the proteasome, whereas the up-regulation of APs with bicuculline dramatically increased the activity of the proteasome. In addition, the regulation of the proteasome is dependent upon external calcium entry in part through N-methyl-d-aspartate receptors and L-type voltage-gated calcium channels and requires the activity of calcium/calmodulin-dependent protein kinase II (CaMKII). Using in vitro and in vivo assays we find that CaMKII stimulates proteasome activity and directly phosphorylates Rpt6, a subunit of the 19 S (PA700) subcomplex of the 26 S proteasome. Our data provide a novel mechanism whereby CaMKII may regulate the proteasome in neurons to facilitate remodeling of synaptic connections through protein degradation. PMID:19638347
Djakovic, Stevan N; Schwarz, Lindsay A; Barylko, Barbara; DeMartino, George N; Patrick, Gentry N
2009-09-25
Protein degradation via the ubiquitin proteasome system has been shown to regulate changes in synaptic strength that underlie multiple forms of synaptic plasticity. It is plausible, therefore, that the ubiquitin proteasome system is itself regulated by synaptic activity. By utilizing live-cell imaging strategies we report the rapid and dynamic regulation of the proteasome in hippocampal neurons by synaptic activity. We find that the blockade of action potentials (APs) with tetrodotoxin inhibited the activity of the proteasome, whereas the up-regulation of APs with bicuculline dramatically increased the activity of the proteasome. In addition, the regulation of the proteasome is dependent upon external calcium entry in part through N-methyl-D-aspartate receptors and L-type voltage-gated calcium channels and requires the activity of calcium/calmodulin-dependent protein kinase II (CaMKII). Using in vitro and in vivo assays we find that CaMKII stimulates proteasome activity and directly phosphorylates Rpt6, a subunit of the 19 S (PA700) subcomplex of the 26 S proteasome. Our data provide a novel mechanism whereby CaMKII may regulate the proteasome in neurons to facilitate remodeling of synaptic connections through protein degradation.
Glial Cells in the Genesis and Regulation of Circadian Rhythms
Chi-Castañeda, Donají; Ortega, Arturo
2018-01-01
Circadian rhythms are biological oscillations with a period of ~24 h. These rhythms are orchestrated by a circadian timekeeper in the suprachiasmatic nucleus of the hypothalamus, the circadian “master clock,” which exactly adjusts clock outputs to solar time via photic synchronization. At the molecular level, circadian rhythms are generated by the interaction of positive and negative feedback loops of transcriptional and translational processes of the so-called “clock genes.” A large number of clock genes encode numerous proteins that regulate their own transcription and that of other genes, collectively known as “clock-controlled genes.” In addition to the sleep/wake cycle, many cellular processes are regulated by circadian rhythms, including synaptic plasticity in which an exquisite interplay between neurons and glial cells takes place. In particular, there is compelling evidence suggesting that glial cells participate in and regulate synaptic plasticity in a circadian fashion, possibly representing the missing cellular and physiological link between circadian rhythms with learning and cognition processes. Here we review recent studies in support of this hypothesis, focusing on the interplay between glial cells, synaptic plasticity, and circadian rhythmogenesis. PMID:29483880
Diversity of neuropsin (KLK8)-dependent synaptic associativity in the hippocampal pyramidal neuron
Ishikawa, Yasuyuki; Tamura, Hideki; Shiosaka, Sadao
2011-01-01
Abstract Hippocampal early (E-) long-term potentiation (LTP) and long-term depression (LTD) elicited by a weak stimulus normally fades within 90 min. Late (L-) LTP and LTD elicited by strong stimuli continue for >180 min and require new protein synthesis to persist. If a strong tetanus is applied once to synaptic inputs, even a weak tetanus applied to another synaptic input can evoke persistent LTP. A synaptic tag is hypothesized to enable the capture of newly synthesized synaptic molecules. This process, referred to as synaptic tagging, is found between not only the same processes (i.e. E- and L-LTP; E- and L-LTD) but also between different processes (i.e. E-LTP and L-LTD; E-LTD and L-LTP) induced at two independent synaptic inputs (cross-tagging). However, the mechanisms of synaptic tag setting remain unclear. In our previous study, we found that synaptic associativity in the hippocampal Schaffer collateral pathway depended on neuropsin (kallikrein-related peptidase 8 or KLK8), a plasticity-related extracellular protease. In the present study, we investigated how neuropsin participates in synaptic tagging and cross-tagging. We report that neuropsin is involved in synaptic tagging during LTP at basal and apical dendritic inputs. Moreover, neuropsin is involved in synaptic tagging and cross-tagging during LTP at apical dendritic inputs via integrin β1 and calcium/calmodulin-dependent protein kinase II signalling. Thus, neuropsin is a candidate molecule for the LTP-specific tag setting and regulates the transformation of E- to L-LTP during both synaptic tagging and cross-tagging. PMID:21646406
Learning induces the translin/trax RNase complex to express activin receptors for persistent memory.
Park, Alan Jung; Havekes, Robbert; Fu, Xiuping; Hansen, Rolf; Tudor, Jennifer C; Peixoto, Lucia; Li, Zhi; Wu, Yen-Ching; Poplawski, Shane G; Baraban, Jay M; Abel, Ted
2017-09-20
Long-lasting forms of synaptic plasticity and memory require de novo protein synthesis. Yet, how learning triggers this process to form memory is unclear. Translin/trax is a candidate to drive this learning-induced memory mechanism by suppressing microRNA-mediated translational silencing at activated synapses. We find that mice lacking translin/trax display defects in synaptic tagging, which requires protein synthesis at activated synapses, and long-term memory. Hippocampal samples harvested from these mice following learning show increases in several disease-related microRNAs targeting the activin A receptor type 1C (ACVR1C), a component of the transforming growth factor-β receptor superfamily. Furthermore, the absence of translin/trax abolishes synaptic upregulation of ACVR1C protein after learning. Finally, synaptic tagging and long-term memory deficits in mice lacking translin/trax are mimicked by ACVR1C inhibition. Thus, we define a new memory mechanism by which learning reverses microRNA-mediated silencing of the novel plasticity protein ACVR1C via translin/trax.
Bian, Chen; Huang, Yan; Zhu, Haitao; Zhao, Yangang; Zhao, Jikai; Zhang, Jiqiang
2018-05-01
Steroids have been demonstrated to play profound roles in the regulation of hippocampal function by acting on their receptors, which need coactivators for their transcriptional activities. Previous studies have shown that steroid receptor coactivator-1 (SRC-1) is the predominant coactivator in the hippocampus, but its exact role and the underlying mechanisms remain unclear. In this study, we constructed SRC-1 RNA interference (RNAi) lentiviruses, injected them into the hippocampus of male mice, and then examined the changes in the expression of selected synaptic proteins, CA1 synapse density, postsynaptic density (PSD) thickness, and in vivo long-term potentiation (LTP). Spatial learning and memory behavior changes were investigated using the Morris water maze. We then transfected the lentiviruses into cultured hippocampal cells and examined the changes in synaptic protein and phospho-cyclic AMP response element-binding protein (pCREB) expression. The in vivo results showed that SRC-1 knockdown significantly decreased the expression of synaptic proteins and CA1 synapse density as well as PSD thickness; SRC-1 knockdown also significantly impaired in vivo LTP and disrupted spatial learning and memory. The in vitro results showed that while the expression of synaptic proteins was significantly decreased by SRC-1 knockdown, pCREB expression was also significantly decreased. The above results suggest a pivotal role of SRC-1 in the regulation of hippocampal synaptic plasticity and spatial learning and memory, strongly indicating SRC-1 may serve as a novel therapeutic target for hippocampus-dependent memory disorders. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Hurtado, Erica; Cilleros, Víctor; Nadal, Laura; Simó, Anna; Obis, Teresa; Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Halievski, Katherine; Jordan, Cynthia L; Lanuza, Maria A; Tomàs, Josep
2017-01-01
The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression in vivo at the neuromuscular junction (NMJ). Here, we investigated whether nerve and muscle cell activities regulate presynaptic conventional PKC (cPKCα and βI) via BDNF/TrkB signaling to modulate synaptic strength at the NMJ. To differentiate the effects of presynaptic activity from that of muscle contraction, we stimulated the phrenic nerve of rat diaphragms (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Then, we performed ELISA, Western blotting, qRT-PCR, immunofluorescence and electrophysiological techniques. We found that nerve-induced muscle contraction: (1) increases the levels of mature BDNF protein without affecting pro-BDNF protein or BDNF mRNA levels; (2) downregulates TrkB.T1 without affecting TrkB.FL or p75 neurotrophin receptor (p75) levels; (3) increases presynaptic cPKCα and cPKCβI protein level through TrkB signaling; and (4) enhances phosphorylation of cPKCα and cPKCβI. Furthermore, we demonstrate that cPKCβI, which is exclusively located in the motor nerve terminals, increases activity-induced acetylcholine release. Together, these results show that nerve-induced muscle contraction is a key regulator of BDNF/TrkB signaling pathway, retrogradely activating presynaptic cPKC isoforms (in particular cPKCβI) to modulate synaptic function. These results indicate that a decrease in neuromuscular activity, as occurs in several neuromuscular disorders, could affect the BDNF/TrkB/PKC pathway that links pre- and postsynaptic activity to maintain neuromuscular function.
Hurtado, Erica; Cilleros, Víctor; Nadal, Laura; Simó, Anna; Obis, Teresa; Garcia, Neus; Santafé, Manel M.; Tomàs, Marta; Halievski, Katherine; Jordan, Cynthia L.; Lanuza, Maria A.; Tomàs, Josep
2017-01-01
The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression in vivo at the neuromuscular junction (NMJ). Here, we investigated whether nerve and muscle cell activities regulate presynaptic conventional PKC (cPKCα and βI) via BDNF/TrkB signaling to modulate synaptic strength at the NMJ. To differentiate the effects of presynaptic activity from that of muscle contraction, we stimulated the phrenic nerve of rat diaphragms (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Then, we performed ELISA, Western blotting, qRT-PCR, immunofluorescence and electrophysiological techniques. We found that nerve-induced muscle contraction: (1) increases the levels of mature BDNF protein without affecting pro-BDNF protein or BDNF mRNA levels; (2) downregulates TrkB.T1 without affecting TrkB.FL or p75 neurotrophin receptor (p75) levels; (3) increases presynaptic cPKCα and cPKCβI protein level through TrkB signaling; and (4) enhances phosphorylation of cPKCα and cPKCβI. Furthermore, we demonstrate that cPKCβI, which is exclusively located in the motor nerve terminals, increases activity-induced acetylcholine release. Together, these results show that nerve-induced muscle contraction is a key regulator of BDNF/TrkB signaling pathway, retrogradely activating presynaptic cPKC isoforms (in particular cPKCβI) to modulate synaptic function. These results indicate that a decrease in neuromuscular activity, as occurs in several neuromuscular disorders, could affect the BDNF/TrkB/PKC pathway that links pre- and postsynaptic activity to maintain neuromuscular function. PMID:28572757
Brinkmalm, Ann; Brinkmalm, Gunnar; Honer, William G; Frölich, Lutz; Hausner, Lucrezia; Minthon, Lennart; Hansson, Oskar; Wallin, Anders; Zetterberg, Henrik; Blennow, Kaj; Öhrfelt, Annika
2014-11-23
Synaptic degeneration is an early pathogenic event in Alzheimer's disease, associated with cognitive impairment and disease progression. Cerebrospinal fluid biomarkers reflecting synaptic integrity would be highly valuable tools to monitor synaptic degeneration directly in patients. We previously showed that synaptic proteins such as synaptotagmin and synaptosomal-associated protein 25 (SNAP-25) could be detected in pooled samples of cerebrospinal fluid, however these assays were not sensitive enough for individual samples. We report a new strategy to study synaptic pathology by using affinity purification and mass spectrometry to measure the levels of the presynaptic protein SNAP-25 in cerebrospinal fluid. By applying this novel affinity mass spectrometry strategy on three separate cohorts of patients, the value of SNAP-25 as a cerebrospinal fluid biomarker for synaptic integrity in Alzheimer's disease was assessed for the first time. We found significantly higher levels of cerebrospinal fluid SNAP-25 fragments in Alzheimer's disease, even in the very early stages, in three separate cohorts. Cerebrospinal fluid SNAP-25 differentiated Alzheimer's disease from controls with area under the curve of 0.901 (P < 0.0001). We developed a sensitive method to analyze SNAP-25 levels in individual CSF samples that to our knowledge was not possible previously. Our results support the notion that synaptic biomarkers may be important tools for early diagnosis, assessment of disease progression, and to monitor drug effects in treatment trials.
Wang, Jun; Varghese, Merina; Ono, Kenjiro; Yamada, Masahito; Levine, Samara; Tzavaras, Nikos; Gong, Bing; Hurst, William J; Blitzer, Robert D; Pasinetti, Giulio Maria
2014-01-01
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder, characterized by pathological aggregates of amyloid peptide-β (Aβ) and tau protein. Currently available therapies mediate AD symptoms without modifying disease progression. Polyphenol-rich diets are reported to reduce the risk for AD. In the present study, we investigated the AD disease-modifying effects of cocoa, a rich source of flavanols, which are a class of polyphenols. We hypothesized that cocoa extracts interfere with amyloid-β oligomerization to prevent synaptic deficits. We tested the effects of three different cocoa extracts, viz. Natural, Dutched, and Lavado extracts, on Aβ42 and Aβ40 oligomerization, using photo-induced cross-linking of unmodified proteins technique. To assess the effects of cocoa extracts on synaptic function, we measured long term potentiation in mouse brain hippocampal slices exposed to oligomeric Aβ. Our results indicate that cocoa extracts are effective in preventing the oligomerization of Aβ, with Lavado extract being most effective. Lavado extract, but not Dutched extract, was effective in restoring the long term potentiation response reduced by oligomeric Aβ. Our findings indicate that cocoa extracts have multiple disease-modifying properties in AD and present a promising route of therapeutic and/or preventative initiatives.
Samhan-Arias, Alejandro K; Fortalezas, Sofia; Cordas, Cristina M; Moura, Isabel; Moura, José J G; Gutierrez-Merino, Carlos
2018-05-01
In this work, we measured the effect of cytochrome c on the NADH-dependent superoxide anion production by synaptic plasma membrane vesicles from rat brain. In these membranes, the cytochrome c stimulated NADH-dependent superoxide anion production was inhibited by antibodies against cytochrome b 5 reductase linking the production to this enzyme. Measurement of the superoxide anion radical generated by purified recombinant soluble and membrane cytochrome b 5 reductase corroborates the production of the radical by different enzyme isoforms. In the presence of cytochrome c, a burst of superoxide anion as well as the reduction of cytochrome c by cytochrome b 5 reductase was measured. Complex formation between both proteins suggests that cytochrome b 5 reductase is one of the major partners of cytochrome c upon its release from mitochondria to the cytosol during apoptosis. Superoxide anion production and cytochrome c reduction are the consequences of the stimulated NADH consumption by cytochrome b 5 reductase upon complex formation with cytochrome c and suggest a major role of this enzyme as an anti-apoptotic protein during cell death. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Learning and Memory, Part II: Molecular Mechanisms of Synaptic Plasticity
ERIC Educational Resources Information Center
Lombroso, Paul; Ogren, Marilee
2009-01-01
The molecular events that are responsible for strengthening synaptic connections and how these are linked to memory and learning are discussed. The laboratory preparations that allow the investigation of these events are also described.
Butts, Daniel A; Kanold, Patrick O; Shatz, Carla J
2007-01-01
Patterned spontaneous activity in the developing retina is necessary to drive synaptic refinement in the lateral geniculate nucleus (LGN). Using perforated patch recordings from neurons in LGN slices during the period of eye segregation, we examine how such burst-based activity can instruct this refinement. Retinogeniculate synapses have a novel learning rule that depends on the latencies between pre- and postsynaptic bursts on the order of one second: coincident bursts produce long-lasting synaptic enhancement, whereas non-overlapping bursts produce mild synaptic weakening. It is consistent with “Hebbian” development thought to exist at this synapse, and we demonstrate computationally that such a rule can robustly use retinal waves to drive eye segregation and retinotopic refinement. Thus, by measuring plasticity induced by natural activity patterns, synaptic learning rules can be linked directly to their larger role in instructing the patterning of neural connectivity. PMID:17341130
Nanou, Evanthia; Sullivan, Jane M; Scheuer, Todd; Catterall, William A
2016-01-26
Short-term synaptic plasticity is induced by calcium (Ca(2+)) accumulating in presynaptic nerve terminals during repetitive action potentials. Regulation of voltage-gated CaV2.1 Ca(2+) channels by Ca(2+) sensor proteins induces facilitation of Ca(2+) currents and synaptic facilitation in cultured neurons expressing exogenous CaV2.1 channels. However, it is unknown whether this mechanism contributes to facilitation in native synapses. We introduced the IM-AA mutation into the IQ-like motif (IM) of the Ca(2+) sensor binding site. This mutation does not alter voltage dependence or kinetics of CaV2.1 currents, or frequency or amplitude of spontaneous miniature excitatory postsynaptic currents (mEPSCs); however, synaptic facilitation is completely blocked in excitatory glutamatergic synapses in hippocampal autaptic cultures. In acutely prepared hippocampal slices, frequency and amplitude of mEPSCs and amplitudes of evoked EPSCs are unaltered. In contrast, short-term synaptic facilitation in response to paired stimuli is reduced by ∼ 50%. In the presence of EGTA-AM to prevent global increases in free Ca(2+), the IM-AA mutation completely blocks short-term synaptic facilitation, indicating that synaptic facilitation by brief, local increases in Ca(2+) is dependent upon regulation of CaV2.1 channels by Ca(2+) sensor proteins. In response to trains of action potentials, synaptic facilitation is reduced in IM-AA synapses in initial stimuli, consistent with results of paired-pulse experiments; however, synaptic depression is also delayed, resulting in sustained increases in amplitudes of later EPSCs during trains of 10 stimuli at 10-20 Hz. Evidently, regulation of CaV2.1 channels by CaS proteins is required for normal short-term plasticity and normal encoding of information in native hippocampal synapses.
Unc-51 controls active zone density and protein composition by downregulating ERK signaling.
Wairkar, Yogesh P; Toda, Hirofumi; Mochizuki, Hiroaki; Furukubo-Tokunaga, Katsuo; Tomoda, Toshifumi; Diantonio, Aaron
2009-01-14
Efficient synaptic transmission requires the apposition of neurotransmitter release sites opposite clusters of postsynaptic neurotransmitter receptors. Transmitter is released at active zones, which are composed of a large complex of proteins necessary for synaptic development and function. Many active zone proteins have been identified, but little is known of the mechanisms that ensure that each active zone receives the proper complement of proteins. Here we use a genetic analysis in Drosophila to demonstrate that the serine threonine kinase Unc-51 acts in the presynaptic motoneuron to regulate the localization of the active zone protein Bruchpilot opposite to glutamate receptors at each synapse. In the absence of Unc-51, many glutamate receptor clusters are unapposed to Bruchpilot, and ultrastructural analysis demonstrates that fewer active zones contain dense body T-bars. In addition to the presence of these aberrant synapses, there is also a decrease in the density of all synapses. This decrease in synaptic density and abnormal active zone composition is associated with impaired evoked transmitter release. Mechanistically, Unc-51 inhibits the activity of the MAP kinase ERK to promote synaptic development. In the unc-51 mutant, increased ERK activity leads to the decrease in synaptic density and the absence of Bruchpilot from many synapses. Hence, activated ERK negatively regulates synapse formation, resulting in either the absence of active zones or the formation of active zones without their proper complement of proteins. The Unc-51-dependent inhibition of ERK activity provides a potential mechanism for synapse-specific control of active zone protein composition and release probability.
Won, Seoung Youn; Kim, Cha Yeon; Kim, Doyoun; Ko, Jaewon; Um, Ji Won; Lee, Sung Bae; Buck, Matthias; Kim, Eunjoon; Heo, Won Do; Lee, Jie-Oh; Kim, Ho Min
2017-01-01
The leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs) are cellular receptors of heparan sulfate (HS) and chondroitin sulfate (CS) proteoglycans that direct axonal growth and neuronal regeneration. LAR-RPTPs are also synaptic adhesion molecules that form trans-synaptic adhesion complexes by binding to various postsynaptic adhesion ligands, such as Slit- and Trk-like family of proteins (Slitrks), IL-1 receptor accessory protein-like 1 (IL1RAPL1), interleukin-1 receptor accessory protein (IL-1RAcP) and neurotrophin receptor tyrosine kinase C (TrkC), to regulate synaptogenesis. Here, we determined the crystal structure of the human LAR-RPTP/IL1RAPL1 complex and found that lateral interactions between neighboring LAR-RPTP/IL1RAPL1 complexes in crystal lattices are critical for the higher-order assembly and synaptogenic activity of these complexes. Moreover, we found that LAR-RPTP binding to the postsynaptic adhesion ligands, Slitrk3, IL1RAPL1 and IL-1RAcP, but not TrkC, induces reciprocal higher-order clustering of trans-synaptic adhesion complexes. Although LAR-RPTP clustering was induced by either HS or postsynaptic adhesion ligands, the dominant binding of HS to the LAR-RPTP was capable of dismantling pre-established LAR-RPTP-mediated trans-synaptic adhesion complexes. These findings collectively suggest that LAR-RPTP clustering for synaptogenesis is modulated by a complex synapse-organizing protein network. PMID:29081732
Park, Daehun; Lee, Unghwi; Cho, Eunji; Zhao, Haiyan; Kim, Jung Ah; Lee, Byoung Ju; Regan, Philip; Ho, Won-Kyung; Cho, Kwangwook; Chang, Sunghoe
2018-03-20
Despite being a highly enriched synaptic vesicle (SV) protein and a candidate gene for autism, the physiological function of SCAMP5 remains mostly enigmatic. Here, using optical imaging and electrophysiological experiments, we demonstrate that SCAMP5 plays a critical role in release site clearance at the active zone. Truncation analysis revealed that the 2/3 loop domain of SCAMP5 directly interacts with adaptor protein 2, and this interaction is critical for its role in release site clearance. Knockdown (KD) of SCAMP5 exhibited pronounced synaptic depression accompanied by a slower recovery of the SV pool. Moreover, it induced a strong frequency-dependent short-term depression of synaptic release, even under the condition of sufficient release-ready SVs. Super-resolution microscopy further proved the defects in SV protein clearance induced by KD. Thus, reduced expression of SCAMP5 may impair the efficiency of SV clearance at the active zone, and this might relate to the synaptic dysfunction observed in autism. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Super Resolution Imaging of Genetically Labeled Synapses in Drosophila Brain Tissue
Spühler, Isabelle A.; Conley, Gaurasundar M.; Scheffold, Frank; Sprecher, Simon G.
2016-01-01
Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labeled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation. PMID:27303270
Super Resolution Imaging of Genetically Labeled Synapses in Drosophila Brain Tissue.
Spühler, Isabelle A; Conley, Gaurasundar M; Scheffold, Frank; Sprecher, Simon G
2016-01-01
Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labeled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation.
Rabphilin 3A: A novel target for the treatment of levodopa-induced dyskinesias.
Stanic, Jennifer; Mellone, Manuela; Napolitano, Francesco; Racca, Claudia; Zianni, Elisa; Minocci, Daiana; Ghiglieri, Veronica; Thiolat, Marie-Laure; Li, Qin; Longhi, Annalisa; De Rosa, Arianna; Picconi, Barbara; Bezard, Erwan; Calabresi, Paolo; Di Luca, Monica; Usiello, Alessandro; Gardoni, Fabrizio
2017-12-01
N-methyl-d-aspartate receptor (NMDAR) subunit composition strictly commands receptor function and pharmacological responses. Changes in NMDAR subunit composition have been documented in brain disorders such as Parkinson's disease (PD) and levodopa (L-DOPA)-induced dyskinesias (LIDs), where an increase of NMDAR GluN2A/GluN2B subunit ratio at striatal synapses has been observed. A therapeutic approach aimed at rebalancing NMDAR synaptic composition represents a valuable strategy for PD and LIDs. To this, the comprehension of the molecular mechanisms regulating the synaptic localization of different NMDAR subtypes is required. We have recently demonstrated that Rabphilin 3A (Rph3A) is a new binding partner of NMDARs containing the GluN2A subunit and that it plays a crucial function in the synaptic stabilization of these receptors. Considering that protein-protein interactions govern the synaptic retention of NMDARs, the purpose of this work was to analyse the role of Rph3A and Rph3A/NMDAR complex in PD and LIDs, and to modulate Rph3A/GluN2A interaction to counteract the aberrant motor behaviour associated to chronic L-DOPA administration. Thus, an array of biochemical, immunohistochemical and pharmacological tools together with electron microscopy were applied in this study. Here we found that Rph3A is localized at the striatal postsynaptic density where it interacts with GluN2A. Notably, Rph3A expression at the synapse and its interaction with GluN2A-containing NMDARs were increased in parkinsonian rats displaying a dyskinetic profile. Acute treatment of dyskinetic animals with a cell-permeable peptide able to interfere with Rph3A/GluN2A binding significantly reduced their abnormal motor behaviour. Altogether, our findings indicate that Rph3A activity is linked to the aberrant synaptic localization of GluN2A-expressing NMDARs characterizing LIDs. Thus, we suggest that Rph3A/GluN2A complex could represent an innovative therapeutic target for those pathological conditions where NMDAR composition is significantly altered. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Benito, Itziar; Casañas, Juan José; Montesinos, María Luz
2018-06-19
Several proteomic analyses have been performed on synaptic fractions isolated from cortex or even total brain, resulting in preparations with a high synaptic heterogeneity and complexity. Synaptoneurosomes (SNs) are subcellular membranous elements that contain sealed pre- and post-synaptic components. They are obtained by subcellular fractionation of brain homogenates and serve as a suitable model to study many aspects of the synapse physiology. Here we report the proteomic content of SNs isolated from hippocampus of adult mice, a brain region involved in memory that presents lower synaptic heterogeneity than cortex. Interestingly, in addition to pre- and post-synaptic proteins, we found that proteins involved in RNA binding and translation were overrepresented in our preparation. These results validate the protocol we previously reported for SNs isolation, and, as reported by other authors, highlight the relevance of local synaptic translation for hippocampal physiology. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Regulation of Synaptic Structure by the Ubiquitin C-terminal Hydrolase UCH-L1
Cartier, Anna E.; Djakovic, Stevan N.; Salehi, Afshin; Wilson, Scott M.; Masliah, Eliezer; Patrick, Gentry N.
2009-01-01
UCH-L1 is a de-ubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We have found that UCH-L1 activity is rapidly up-regulated by NMDA receptor activation which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of pre and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1 inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner. PMID:19535597
Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1.
Cartier, Anna E; Djakovic, Stevan N; Salehi, Afshin; Wilson, Scott M; Masliah, Eliezer; Patrick, Gentry N
2009-06-17
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We found that UCH-L1 activity is rapidly upregulated by NMDA receptor activation, which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of presynaptic and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1-inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling, most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner.
[Effects of postnatal lambda-cyhalothrin exposure on synaptic proteins in ICR mouse brain].
Bao, Xun-Di; Wang, Qu-Nan; Li, Fang-Fang; Chai, Xiao-Yu; Gao, Ye
2011-04-01
To evaluate the influence on the synaptic protein expression in different brain regions of ICR mice after lambda-cyhalothrin (LCT) exposure during postnatal period. Two male and 4 female healthy ICR mice were put in one cage. It was set as pregnancy if vaginal plug was founded. Offspring were divided into 5 groups randomly, and exposed to LCT (0.01% DMSO solution) at the doses of 0.1, 1.0 and 10.0 mg/kg by intragastric rout every other day from postnatal days (PND) 5 to PND13, control animals were treated with normal saline or DMSO by the same route. The brains were removed from pups on PND 14, the synaptic protein expression levels in cortex, hippocampus and striatum were measured by western blot. GFAP levels of cortex and hippocampus in the LCT exposure group increased with doses, as compared with control group (P < 0.05), while Tuj protein expression did not change significantly in the various brain regions of ICR mice. GAP-43 protein expression levels in the LCT exposed mouse hippocampus and in female ICR mouse cortex increased with doses, as compared with control group (P < 0.05). Presynaptic protein (Synapsin I) expression levels did not change obviously in various brain regions. However, postsynaptic density protein 95 (PSD95) expression levels of the hippocampus and striatum in male offspring of 10.0 mg/kg LCT group, of cortex of female LCT groups, and of female offspring in all exposure groups, of striatum, in 1.0 or 10.0 mg/kg LCT exposure groups significantly decreased (P < 0.05). Early postnatal exposure to LCT affects synaptic protein expression. These effects may ultimately affect the construction of synaptic connections.
Trillaud-Doppia, Emilie; Paradis-Isler, Nicolas; Boehm, Jannic
2016-07-01
Alzheimer disease (AD) is initially characterized as a disease of the synapse that affects synaptic transmission and synaptic plasticity. While amyloid-beta and tau have been traditionally implicated in causing AD, recent studies suggest that other factors, such as the intracellular domain of the amyloid-precursor protein (APP-ICD), can also play a role in the development of AD. Here, we show that the expression of APP-ICD induces synaptic depression, while the intracellular domain of its homolog amyloid-like precursor protein 2 (APLP2-ICD) does not. We are able to show that this effect by APP-ICD is due to a single alanine vs. proline difference between APP-ICD and APLP2-ICD. The alanine in APP-ICD and the proline in APLP2-ICD lie directly behind a conserved caspase cleavage site. Inhibition of caspase cleavage of APP-ICD prevents the induction of synaptic depression. Finally, we show that the expression of APP-ICD increases and facilitates long-term depression and blocks induction of long-term potentiation. The block in long-term potentiation can be overcome by mutating the aforementioned alanine in APP-ICD to the proline of APLP2. Based on our results, we propose the emergence of a new APP critical domain for the regulation of synaptic plasticity and in consequence for the development of AD. Copyright © 2016 Elsevier Inc. All rights reserved.
Zinc transporter-1 concentrates at the postsynaptic density of hippocampal synapses.
Sindreu, Carlos; Bayés, Álex; Altafaj, Xavier; Pérez-Clausell, Jeús
2014-03-07
Zinc concentrates at excitatory synapses, both at the postsynaptic density and in a subset of glutamatergic boutons. Zinc can modulate synaptic plasticity, memory formation and nociception by regulating transmitter receptors and signal transduction pathways. Also, intracellular zinc accumulation is a hallmark of degenerating neurons in several neurological disorders. To date, no single zinc extrusion mechanism has been directly localized to synapses. Based on the presence of a canonical PDZ I motif in the Zinc Transporter-1 protein (ZnT1), we hypothesized that ZnT1 may be targeted to synaptic compartments for local control of cytosolic zinc. Using our previously developed protocol for the co-localization of reactive zinc and synaptic proteins, we further asked if ZnT1 expression correlates with presynaptic zinc content in individual synapses. Here we demonstrate that ZnT1 is a plasma membrane protein that is enriched in dendritic spines and in biochemically isolated synaptic membranes. Hippocampal CA1 synapses labelled by postembedding immunogold showed over a 5-fold increase in ZnT1 concentration at synaptic junctions compared with extrasynaptic membranes. Subsynaptic analysis revealed a peak ZnT1 density on the postsynaptic side of the synapse, < 10 nm away from the postsynaptic membrane. ZnT1 was found in the vast majority of excitatory synapses regardless of the presence of vesicular zinc in presynaptic boutons. Our study has identified ZnT1 as a novel postsynaptic density protein, and it may help elucidate the role of zinc homeostasis in synaptic function and disease.
Lee, Joo Yeun; Geng, Junhua; Lee, Juhyun; Wang, Andrew R; Chang, Karen T
2017-03-22
Activity-induced synaptic structural modification is crucial for neural development and synaptic plasticity, but the molecular players involved in this process are not well defined. Here, we report that a protein named Shriveled (Shv) regulates synaptic growth and activity-dependent synaptic remodeling at the Drosophila neuromuscular junction. Depletion of Shv causes synaptic overgrowth and an accumulation of immature boutons. We find that Shv physically and genetically interacts with βPS integrin. Furthermore, Shv is secreted during intense, but not mild, neuronal activity to acutely activate integrin signaling, induce synaptic bouton enlargement, and increase postsynaptic glutamate receptor abundance. Consequently, loss of Shv prevents activity-induced synapse maturation and abolishes post-tetanic potentiation, a form of synaptic plasticity. Our data identify Shv as a novel trans-synaptic signal secreted upon intense neuronal activity to promote synapse remodeling through integrin receptor signaling. SIGNIFICANCE STATEMENT The ability of neurons to rapidly modify synaptic structure in response to neuronal activity, a process called activity-induced structural remodeling, is crucial for neuronal development and complex brain functions. The molecular players that are important for this fundamental biological process are not well understood. Here we show that the Shriveled (Shv) protein is required during development to maintain normal synaptic growth. We further demonstrate that Shv is selectively released during intense neuronal activity, but not mild neuronal activity, to acutely activate integrin signaling and trigger structural modifications at the Drosophila neuromuscular junction. This work identifies Shv as a key modulator of activity-induced structural remodeling and suggests that neurons use distinct molecular cues to differentially modulate synaptic growth and remodeling to meet synaptic demand. Copyright © 2017 the authors 0270-6474/17/373246-18$15.00/0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, So-Hee; Moon, Jeonghee; Lee, Myungkyu
2013-09-13
Highlights: •PTPRT is a brain-specific, expressed, protein tyrosine phosphatase. •PTPRT regulated the interaction of Syntaxin-binding protein 1 with Syntaxin 1. •PTPRT dephosphorylated the specific tyrosine residue of Syntaxin-binding protein 1. •Dephosphorylation of Syntaxin-binding protein 1 enhanced the interaction with Syntaxin 1. •PTPRT appears to regulate the fusion of synaptic vesicle through dephosphorylation. -- Abstract: PTPRT (protein tyrosine phosphatase receptor T), a brain-specific tyrosine phosphatase, has been found to regulate synaptic formation and development of hippocampal neurons, but its regulation mechanism is not yet fully understood. Here, Syntaxin-binding protein 1, a key component of synaptic vesicle fusion machinery, was identified asmore » a possible interaction partner and an endogenous substrate of PTPRT. PTPRT interacted with Syntaxin-binding protein 1 in rat synaptosome, and co-localized with Syntaxin-binding protein 1 in cultured hippocampal neurons. PTPRT dephosphorylated tyrosine 145 located around the linker between domain 1 and 2 of Syntaxin-binding protein 1. Syntaxin-binding protein 1 directly binds to Syntaxin 1, a t-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein, and plays a role as catalysts of SNARE complex formation. Syntaxin-binding protein 1 mutant mimicking non-phosphorylation (Y145F) enhanced the interaction with Syntaxin 1 compared to wild type, and therefore, dephosphorylation of Syntaxin-binding protein 1 appeared to be important for SNARE-complex formation. In conclusion, PTPRT could regulate the interaction of Syntaxin-binding protein 1 with Syntaxin 1, and as a result, the synaptic vesicle fusion appeared to be controlled through dephosphorylation of Syntaxin-binding protein 1.« less
Nanou, Evanthia; Yan, Jin; Whitehead, Nicholas P.; Kim, Min Jeong; Froehner, Stanley C.; Scheuer, Todd; Catterall, William A.
2016-01-01
Facilitation and inactivation of P/Q-type calcium (Ca2+) currents through the regulation of voltage-gated Ca2+ (CaV) 2.1 channels by Ca2+ sensor (CaS) proteins contributes to the facilitation and rapid depression of synaptic transmission in cultured neurons that transiently express CaV2.1 channels. To examine the modulation of endogenous CaV2.1 channels by CaS proteins in native synapses, we introduced a mutation (IM-AA) into the CaS protein-binding site in the C-terminal domain of CaV2.1 channels in mice, and tested synaptic facilitation and depression in neuromuscular junction synapses that use exclusively CaV2.1 channels for Ca2+ entry that triggers synaptic transmission. Even though basal synaptic transmission was unaltered in the neuromuscular synapses in IM-AA mice, we found reduced short-term facilitation in response to paired stimuli at short interstimulus intervals in IM-AA synapses. In response to trains of action potentials, we found increased facilitation at lower frequencies (10–30 Hz) in IM-AA synapses accompanied by slowed synaptic depression, whereas synaptic facilitation was reduced at high stimulus frequencies (50–100 Hz) that would induce strong muscle contraction. As a consequence of altered regulation of CaV2.1 channels, the hindlimb tibialis anterior muscle in IM-AA mice exhibited reduced peak force in response to 50 Hz stimulation and increased muscle fatigue. The IM-AA mice also had impaired motor control, exercise capacity, and grip strength. Taken together, our results indicate that regulation of CaV2.1 channels by CaS proteins is essential for normal synaptic plasticity at the neuromuscular junction and for muscle strength, endurance, and motor coordination in mice in vivo. PMID:26755585
Cell-specific gain modulation by synaptically released zinc in cortical circuits of audition.
Anderson, Charles T; Kumar, Manoj; Xiong, Shanshan; Tzounopoulos, Thanos
2017-09-09
In many excitatory synapses, mobile zinc is found within glutamatergic vesicles and is coreleased with glutamate. Ex vivo studies established that synaptically released (synaptic) zinc inhibits excitatory neurotransmission at lower frequencies of synaptic activity but enhances steady state synaptic responses during higher frequencies of activity. However, it remains unknown how synaptic zinc affects neuronal processing in vivo. Here, we imaged the sound-evoked neuronal activity of the primary auditory cortex in awake mice. We discovered that synaptic zinc enhanced the gain of sound-evoked responses in CaMKII-expressing principal neurons, but it reduced the gain of parvalbumin- and somatostatin-expressing interneurons. This modulation was sound intensity-dependent and, in part, NMDA receptor-independent. By establishing a previously unknown link between synaptic zinc and gain control of auditory cortical processing, our findings advance understanding about cortical synaptic mechanisms and create a new framework for approaching and interpreting the role of the auditory cortex in sound processing.
Müller, Heidi Kaastrup; Kragballe, Marie; Fjorback, Anja Winther; Wiborg, Ove
2014-01-01
The serotonin transporter (SERT) is a key regulator of serotonergic signalling as it mediates the re-uptake of synaptic serotonin into nerve terminals, thereby terminating or modulating its signal. It is well-known that SERT regulation is a dynamic process orchestrated by a wide array of proteins and mechanisms. However, molecular details on possible coordinated regulation of SERT activity and 5-HT release are incomplete. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, interacts with SERT. This was documented in vitro, through GST pull-down assays, by co-immunoprecipitation experiments on heterologous cells and rat hippocampal synaptosomes, and with FRET analysis in live transfected HEK-293 MSR cells. The related isoforms VAMP1 and VAMP3 also physically interact with SERT. However, comparison of the three VAMP isoforms shows that only VAMP2 possesses a functionally distinct role in relation to SERT. VAMP2 influences 5-HT uptake, cell surface expression and the delivery rate of SERT to the plasma membrane differentially in HEK-293 MSR and PC12 cells. Moreover, siRNA-mediated knock-down of endogenous VAMP2 reduces 5-HT uptake in CAD cells stably expressing low levels of heterologous SERT. Deletion and mutant analysis suggest a role for the isoform specific C-terminal domain of VAMP2 in regulating SERT function. Our data identify a novel interaction between SERT and a synaptic vesicle protein and support a link between 5-HT release and re-uptake. PMID:24878716
Sekiguchi, Mari; Katayama, Syouichi; Hatano, Naoya; Shigeri, Yasushi; Sueyoshi, Noriyuki; Kameshita, Isamu
2013-07-15
Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase predominantly expressed in brain and mutations of its gene are known to be associated with neurodevelopmental disorders such as X-linked West syndrome and Rett syndrome. However, the physiological substrates of CDKL5 that are directly linked to these neurodevelopmental disorders are currently unknown. In this study, we explored endogenous substrates for CDKL5 in mouse brain extracts fractionated by a liquid-phase isoelectric focusing. In conjunction with CDKL5 phosphorylation assay, this approach detected a protein band with an apparent molecular mass of 120kDa that is remarkably phosphorylated by CDKL5. This 120-kDa protein was identified as amphiphysin 1 (Amph1) by LC-MS/MS analysis, and the site of phosphorylation by CDKL5 was determined to be Ser-293. The phosphorylation mimic mutants, Amph1(S293E) and Amph1(S293D), showed significantly reduced affinity for endophilin, a protein involved in synaptic vesicle endocytosis. Introduction of point mutations in the catalytic domain of CDKL5, which are disease-causing missense mutations found in Rett patients, resulted in the impairment of kinase activity toward Amph1. These results suggest that Amph1 is the cytoplasmic substrate for CDKL5 and that its phosphorylation may play crucial roles in the neuronal development. Copyright © 2013 Elsevier Inc. All rights reserved.
Andrés-Benito, Pol; Moreno, Jesús; Aso, Ester; Povedano, Mónica; Ferrer, Isidro
2017-01-01
Transcriptome arrays identifies 747 genes differentially expressed in the anterior horn of the spinal cord and 2,300 genes differentially expressed in frontal cortex area 8 in a single group of typical sALS cases without frontotemporal dementia compared with age-matched controls. Main up-regulated clusters in the anterior horn are related to inflammation and apoptosis; down-regulated clusters are linked to axoneme structures and protein synthesis. In contrast, up-regulated gene clusters in frontal cortex area 8 involve neurotransmission, synaptic proteins and vesicle trafficking, whereas main down-regulated genes cluster into oligodendrocyte function and myelin-related proteins. RT-qPCR validates the expression of 58 of 66 assessed genes from different clusters. The present results: a. reveal regional differences in de-regulated gene expression between the anterior horn of the spinal cord and frontal cortex area 8 in the same individuals suffering from sALS; b. validate and extend our knowledge about the complexity of the inflammatory response in the anterior horn of the spinal cord; and c. identify for the first time extensive gene up-regulation of neurotransmission and synaptic-related genes, together with significant down-regulation of oligodendrocyte- and myelin-related genes, as important contributors to the pathogenesis of frontal cortex alterations in the sALS/frontotemporal lobar degeneration spectrum complex at stages with no apparent cognitive impairment. PMID:28283675
Dawson-Scully, Ken; Armstrong, Gary A.B.; Kent, Clement; Robertson, R. Meldrum; Sokolowski, Marla B.
2007-01-01
Although it is acknowledged that genetic variation contributes to individual differences in thermotolerance, the specific genes and pathways involved and how they are modulated by the environment remain poorly understood. We link natural variation in the thermotolerance of neural function and behavior in Drosophila melanogaster to the foraging gene (for, which encodes a cGMP-dependent protein kinase (PKG)) as well as to its downstream target, protein phosphatase 2A (PP2A). Genetic and pharmacological manipulations revealed that reduced PKG (or PP2A) activity caused increased thermotolerance of synaptic transmission at the larval neuromuscular junction. Like synaptic transmission, feeding movements were preserved at higher temperatures in larvae with lower PKG levels. In a comparative assay, pharmacological manipulations altering thermotolerance in a central circuit of Locusta migratoria demonstrated conservation of this neuroprotective pathway. In this circuit, either the inhibition of PKG or PP2A induced robust thermotolerance of neural function. We suggest that PKG and therefore the polymorphism associated with the allelic variation in for may provide populations with natural variation in heat stress tolerance. for's function in behavior is conserved across most organisms, including ants, bees, nematodes, and mammals. PKG's role in thermotolerance may also apply to these and other species. Natural variation in thermotolerance arising from genes involved in the PKG pathway could impact the evolution of thermotolerance in natural populations. PMID:17712421
Shi, S; Hayashi, Y; Esteban, J A; Malinow, R
2001-05-04
AMPA-type glutamate receptors (AMPA-Rs) mediate a majority of excitatory synaptic transmission in the brain. In hippocampus, most AMPA-Rs are hetero-oligomers composed of GluR1/GluR2 or GluR2/GluR3 subunits. Here we show that these AMPA-R forms display different synaptic delivery mechanisms. GluR1/GluR2 receptors are added to synapses during plasticity; this requires interactions between GluR1 and group I PDZ domain proteins. In contrast, GluR2/GluR3 receptors replace existing synaptic receptors continuously; this occurs only at synapses that already have AMPA-Rs and requires interactions by GluR2 with NSF and group II PDZ domain proteins. The combination of regulated addition and continuous replacement of synaptic receptors can stabilize long-term changes in synaptic efficacy and may serve as a general model for how surface receptor number is established and maintained.
Differential splicing and glycosylation of Apoer2 alters synaptic plasticity and fear learning.
Wasser, Catherine R; Masiulis, Irene; Durakoglugil, Murat S; Lane-Donovan, Courtney; Xian, Xunde; Beffert, Uwe; Agarwala, Anandita; Hammer, Robert E; Herz, Joachim
2014-11-25
Apoer2 is an essential receptor in the central nervous system that binds to the apolipoprotein ApoE. Various splice variants of Apoer2 are produced. We showed that Apoer2 lacking exon 16, which encodes the O-linked sugar (OLS) domain, altered the proteolytic processing and abundance of Apoer2 in cells and synapse number and function in mice. In cultured cells expressing this splice variant, extracellular cleavage of OLS-deficient Apoer2 was reduced, consequently preventing γ-secretase-dependent release of the intracellular domain of Apoer2. Mice expressing Apoer2 lacking the OLS domain had increased Apoer2 abundance in the brain, hippocampal spine density, and glutamate receptor abundance, but decreased synaptic efficacy. Mice expressing a form of Apoer2 lacking the OLS domain and containing an alternatively spliced cytoplasmic tail region that promotes glutamate receptor signaling showed enhanced hippocampal long-term potentiation (LTP), a phenomenon associated with learning and memory. However, these mice did not display enhanced spatial learning in the Morris water maze, and cued fear conditioning was reduced. Reducing the expression of the mutant Apoer2 allele so that the abundance of the protein was similar to that of Apoer2 in wild-type mice normalized spine density, hippocampal LTP, and cued fear learning. These findings demonstrated a role for ApoE receptors as regulators of synaptic glutamate receptor activity and established differential receptor glycosylation as a potential regulator of synaptic function and memory. Copyright © 2014, American Association for the Advancement of Science.
Differential splicing and glycosylation of Apoer2 alters synaptic plasticity and fear learning
Wasser, Catherine R.; Masiulis, Irene; Durakoglugil, Murat S.; Lane-Donovan, Courtney; Xian, Xunde; Beffert, Uwe; Agarwala, Anandita; Hammer, Robert E.; Herz, Joachim
2015-01-01
Apoer2 is an essential receptor in the central nervous system that binds to the apolipoprotein ApoE. Various splice variants of Apoer2 are produced. We showed that Apoer2 lacking exon 16, which encodes the O-linked sugar (OLS) domain, altered the proteolytic processing and abundance of Apoer2 in cells and synapse number and function in mice. In cultured cells expressing this splice variant, extracellular cleavage of OLS-deficient Apoer2 was reduced, consequently preventing γ-secretase-dependent release of the intracellular domain of Apoer2. Mice expressing Apoer2 lacking the OLS domain had increased Apoer2 abundance in the brain, hippocampal spine density, and glutamate receptor abundance, but decreased synaptic efficacy. Mice expressing a form of Apoer2 lacking the OLS domain and containing an alternatively spliced cytoplasmic tail region that promotes glutamate receptor signaling showed enhanced hippocampal long-term potentiation (LTP), a phenomenon associated with learning and memory. However, these mice did not display enhanced spatial learning in the Morris water maze, and cued fear conditioning was reduced. Reducing the expression of the mutant Apoer2 allele so that the abundance of the protein was similar to that of Apoer2 in wild-type mice normalized spine density, hippocampal LTP, and cued fear learning. These findings demonstrated a role for ApoE receptors as regulators of synaptic glutamate receptor activity and established differential receptor glycosylation as a potential regulator of synaptic function and memory. PMID:25429077
Role of BMP receptor traffic in synaptic growth defects in an ALS model.
Deshpande, Mugdha; Feiger, Zachary; Shilton, Amanda K; Luo, Christina C; Silverman, Ethan; Rodal, Avital A
2016-10-01
TAR DNA-binding protein 43 (TDP-43) is genetically and functionally linked to amyotrophic lateral sclerosis (ALS) and regulates transcription, splicing, and transport of thousands of RNA targets that function in diverse cellular pathways. In ALS, pathologically altered TDP-43 is believed to lead to disease by toxic gain-of-function effects on RNA metabolism, as well as by sequestering endogenous TDP-43 and causing its loss of function. However, it is unclear which of the numerous cellular processes disrupted downstream of TDP-43 dysfunction lead to neurodegeneration. Here we found that both loss and gain of function of TDP-43 in Drosophila cause a reduction of synaptic growth-promoting bone morphogenic protein (BMP) signaling at the neuromuscular junction (NMJ). Further, we observed a shift of BMP receptors from early to recycling endosomes and increased mobility of BMP receptor-containing compartments at the NMJ. Inhibition of the recycling endosome GTPase Rab11 partially rescued TDP-43-induced defects in BMP receptor dynamics and distribution and suppressed BMP signaling, synaptic growth, and larval crawling defects. Our results indicate that defects in receptor traffic lead to neuronal dysfunction downstream of TDP-43 misregulation and that rerouting receptor traffic may be a viable strategy for rescuing neurological impairment. © 2016 Deshpande, Feiger, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Molecular Machines Determining the Fate of Endocytosed Synaptic Vesicles in Nerve Terminals
Fassio, Anna; Fadda, Manuela; Benfenati, Fabio
2016-01-01
The cycle of a synaptic vesicle (SV) within the nerve terminal is a step-by-step journey with the final goal of ensuring the proper synaptic strength under changing environmental conditions. The SV cycle is a precisely regulated membrane traffic event in cells and, because of this, a plethora of membrane-bound and cytosolic proteins are devoted to assist SVs in each step of the journey. The cycling fate of endocytosed SVs determines both the availability for subsequent rounds of release and the lifetime of SVs in the terminal and is therefore crucial for synaptic function and plasticity. Molecular players that determine the destiny of SVs in nerve terminals after a round of exo-endocytosis are largely unknown. Here we review the functional role in SV fate of phosphorylation/dephosphorylation of SV proteins and of small GTPases acting on membrane trafficking at the synapse, as they are emerging as key molecules in determining the recycling route of SVs within the nerve terminal. In particular, we focus on: (i) the cyclin-dependent kinase-5 (cdk5) and calcineurin (CN) control of the recycling pool of SVs; (ii) the role of small GTPases of the Rab and ADP-ribosylation factor (Arf) families in defining the route followed by SV in their nerve terminal cycle. These regulatory proteins together with their synaptic regulators and effectors, are molecular nanomachines mediating homeostatic responses in synaptic plasticity and potential targets of drugs modulating the efficiency of synaptic transmission. PMID:27242505
Molecular Machines Determining the Fate of Endocytosed Synaptic Vesicles in Nerve Terminals.
Fassio, Anna; Fadda, Manuela; Benfenati, Fabio
2016-01-01
The cycle of a synaptic vesicle (SV) within the nerve terminal is a step-by-step journey with the final goal of ensuring the proper synaptic strength under changing environmental conditions. The SV cycle is a precisely regulated membrane traffic event in cells and, because of this, a plethora of membrane-bound and cytosolic proteins are devoted to assist SVs in each step of the journey. The cycling fate of endocytosed SVs determines both the availability for subsequent rounds of release and the lifetime of SVs in the terminal and is therefore crucial for synaptic function and plasticity. Molecular players that determine the destiny of SVs in nerve terminals after a round of exo-endocytosis are largely unknown. Here we review the functional role in SV fate of phosphorylation/dephosphorylation of SV proteins and of small GTPases acting on membrane trafficking at the synapse, as they are emerging as key molecules in determining the recycling route of SVs within the nerve terminal. In particular, we focus on: (i) the cyclin-dependent kinase-5 (cdk5) and calcineurin (CN) control of the recycling pool of SVs; (ii) the role of small GTPases of the Rab and ADP-ribosylation factor (Arf) families in defining the route followed by SV in their nerve terminal cycle. These regulatory proteins together with their synaptic regulators and effectors, are molecular nanomachines mediating homeostatic responses in synaptic plasticity and potential targets of drugs modulating the efficiency of synaptic transmission.
Bachmann, André; Kobler, Oliver; Kittel, Robert J; Wichmann, Carolin; Sierralta, Jimena; Sigrist, Stephan J; Gundelfinger, Eckart D; Knust, Elisabeth; Thomas, Ulrich
2010-04-28
Structural plasticity of synaptic junctions is a prerequisite to achieve and modulate connectivity within nervous systems, e.g., during learning and memory formation. It demands adequate backup systems that allow remodeling while retaining sufficient stability to prevent unwanted synaptic disintegration. The strength of submembranous scaffold complexes, which are fundamental to the architecture of synaptic junctions, likely constitutes a crucial determinant of synaptic stability. Postsynaptic density protein-95 (PSD-95)/ Discs-large (Dlg)-like membrane-associated guanylate kinases (DLG-MAGUKs) are principal scaffold proteins at both vertebrate and invertebrate synapses. At Drosophila larval glutamatergic neuromuscular junctions (NMJs) DlgA and DlgS97 exert pleiotropic functions, probably reflecting a few known and a number of yet-unknown binding partners. In this study we have identified Metro, a novel p55/MPP-like Drosophila MAGUK as a major binding partner of perisynaptic DlgS97 at larval NMJs. Based on homotypic LIN-2,-7 (L27) domain interactions, Metro stabilizes junctional DlgS97 in a complex with the highly conserved adaptor protein DLin-7. In a remarkably interdependent manner, Metro and DLin-7 act downstream of DlgS97 to control NMJ expansion and proper establishment of synaptic boutons. Using quantitative 3D-imaging we further demonstrate that the complex controls the size of postsynaptic glutamate receptor fields. Our findings accentuate the importance of perisynaptic scaffold complexes for synaptic stabilization and organization.
The Ubiquitin-Proteasome Pathway and Synaptic Plasticity
ERIC Educational Resources Information Center
Hegde, Ashok N.
2010-01-01
Proteolysis by the ubiquitin-proteasome pathway (UPP) has emerged as a new molecular mechanism that controls wide-ranging functions in the nervous system, including fine-tuning of synaptic connections during development and synaptic plasticity in the adult organism. In the UPP, attachment of a small protein, ubiquitin, tags the substrates for…
Alzheimer's Disease Is a Synaptic Failure
NASA Astrophysics Data System (ADS)
Selkoe, Dennis J.
2002-10-01
In its earliest clinical phase, Alzheimer's disease characteristically produces a remarkably pure impairment of memory. Mounting evidence suggests that this syndrome begins with subtle alterations of hippocampal synaptic efficacy prior to frank neuronal degeneration, and that the synaptic dysfunction is caused by diffusible oligomeric assemblies of the amyloid β protein.
Voelzmann, Andre; Okenve-Ramos, Pilar; Qu, Yue; Chojnowska-Monga, Monika; del Caño-Espinel, Manuela; Prokop, Andreas; Sanchez-Soriano, Natalia
2016-01-01
The mechanisms regulating synapse numbers during development and ageing are essential for normal brain function and closely linked to brain disorders including dementias. Using Drosophila, we demonstrate roles of the microtubule-associated protein Tau in regulating synapse numbers, thus unravelling an important cellular requirement of normal Tau. In this context, we find that Tau displays a strong functional overlap with microtubule-binding spectraplakins, establishing new links between two different neurodegenerative factors. Tau and the spectraplakin Short Stop act upstream of a three-step regulatory cascade ensuring adequate delivery of synaptic proteins. This cascade involves microtubule stability as the initial trigger, JNK signalling as the central mediator, and kinesin-3 mediated axonal transport as the key effector. This cascade acts during development (synapse formation) and ageing (synapse maintenance) alike. Therefore, our findings suggest novel explanations for intellectual disability in Tau deficient individuals, as well as early synapse loss in dementias including Alzheimer’s disease. DOI: http://dx.doi.org/10.7554/eLife.14694.001 PMID:27501441
Myopic (HD-PTP, PTPN23) selectively regulates synaptic neuropeptide release.
Bulgari, Dinara; Jha, Anupma; Deitcher, David L; Levitan, Edwin S
2018-02-13
Neurotransmission is mediated by synaptic exocytosis of neuropeptide-containing dense-core vesicles (DCVs) and small-molecule transmitter-containing small synaptic vesicles (SSVs). Exocytosis of both vesicle types depends on Ca 2+ and shared secretory proteins. Here, we show that increasing or decreasing expression of Myopic (mop, HD-PTP, PTPN23), a Bro1 domain-containing pseudophosphatase implicated in neuronal development and neuropeptide gene expression, increases synaptic neuropeptide stores at the Drosophila neuromuscular junction (NMJ). This occurs without altering DCV content or transport, but synaptic DCV number and age are increased. The effect on synaptic neuropeptide stores is accounted for by inhibition of activity-induced Ca 2+ -dependent neuropeptide release. cAMP-evoked Ca 2+ -independent synaptic neuropeptide release also requires optimal Myopic expression, showing that Myopic affects the DCV secretory machinery shared by cAMP and Ca 2+ pathways. Presynaptic Myopic is abundant at early endosomes, but interaction with the endosomal sorting complex required for transport III (ESCRT III) protein (CHMP4/Shrub) that mediates Myopic's effect on neuron pruning is not required for control of neuropeptide release. Remarkably, in contrast to the effect on DCVs, Myopic does not affect release from SSVs. Therefore, Myopic selectively regulates synaptic DCV exocytosis that mediates peptidergic transmission at the NMJ.
Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice.
Ardiles, Alvaro O; Flores-Muñoz, Carolina; Toro-Ayala, Gabriela; Cárdenas, Ana M; Palacios, Adrian G; Muñoz, Pablo; Fuenzalida, Marco; Sáez, Juan C; Martínez, Agustín D
2014-01-01
The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca(2+) concentration and NMDA receptor (NMDAR) composition of GluN2 subunits. Pannexin 1 (Panx1), a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP), it remains unknown whether these channels also modulate long-term depression (LTD) or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory.
Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice
Ardiles, Alvaro O.; Flores-Muñoz, Carolina; Toro-Ayala, Gabriela; Cárdenas, Ana M.; Palacios, Adrian G.; Muñoz, Pablo; Fuenzalida, Marco; Sáez, Juan C.; Martínez, Agustín D.
2014-01-01
The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca2+ concentration and NMDA receptor (NMDAR) composition of GluN2 subunits. Pannexin 1 (Panx1), a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP), it remains unknown whether these channels also modulate long-term depression (LTD) or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory. PMID:25360084
Removal of S6K1 and S6K2 Leads to Divergent Alterations in Learning, Memory, and Synaptic Plasticity
ERIC Educational Resources Information Center
Antion, Marcia D.; Merhav, Maayan; Hoeffer, Charles A.; Reis, Gerald; Kozma, Sara C.; Thomas, George; Schuman Erin M.; Rosenblum, Kobi; Klann, Eric
2008-01-01
Protein synthesis is required for the expression of enduring memories and long-lasting synaptic plasticity. During cellular proliferation and growth, S6 kinases (S6Ks) are activated and coordinate the synthesis of de novo proteins. We hypothesized that protein synthesis mediated by S6Ks is critical for the manifestation of learning, memory, and…
Ökvist, Anna; Fagergren, Pernilla; Whittard, John; Garcia-Osta, Ana; Drakenberg, Katarina; Horvath, Monika Cs.; Schmidt, Carl J.; Keller, Eva; Bannon, Michael J.; Hurd, Yasmin L.
2010-01-01
Background Glutamatergic transmission in the amygdala is hypothesized as an important mediator of stimulus-reward associations contributing to drug-seeking behavior and relapse. Insight is, however, lacking regarding the amygdala glutamatergic system in human drug abusers. Methods We examined glutamate receptors and scaffolding proteins associated with the post-synaptic density (PSD) of excitatory synapses in the human post-mortem amygdala. mRNA or protein levels were studied in a multi-drug (7 heroin, 8 cocaine, 7 heroin/cocaine and 7 control) or predominant heroin (29 heroin and 15 control) population of subjects. Results The amygdala of drug abusers was characterized by a striking positive correlation (r > 0.8) between AMPA GluA1 and post-synaptic protein-95 (PSD-95) mRNA levels, which was not evident in controls. Structural equation multi-group analysis of protein correlations also identified the relationship between GluA1 and PSD-95 protein levels as the distinguishing feature of abusers. In line with the GluA1—PSD-95 implications of enhanced synaptic plasticity, Homer 1b/c protein expression was significantly increased in both heroin and cocaine users as was its binding partner dynamin-3, localized to the endocytic zone. Furthermore, there was a positive relationship between Homer 1b/c and dynamin-3 in drug abusers that reflected an increase in the direct physical coupling between the proteins. A noted age-related decline of Homer 1b/c—dynamin-3 interactions, as well as GluA1 levels, was blunted in abusers. Conclusions Impairment of key components of the amygdala PSD and coupling to the endocytic zone, critical for the regulation of glutamate receptor cycling, may underlie heightened synaptic plasticity in human drug abusers. PMID:21126734
MacDonald, Matthew L.; Ciccimaro, Eugene; Prakash, Amol; Banerjee, Anamika; Seeholzer, Steven H.; Blair, Ian A.; Hahn, Chang-Gyu
2012-01-01
Synaptic architecture and its adaptive changes require numerous molecular events that are both highly ordered and complex. A majority of neuropsychiatric illnesses are complex trait disorders, in which multiple etiologic factors converge at the synapse via many signaling pathways. Investigating the protein composition of synaptic microdomains from human patient brain tissues will yield valuable insights into the interactions of risk genes in many disorders. These types of studies in postmortem tissues have been limited by the lack of proper study paradigms. Thus, it is necessary not only to develop strategies to quantify protein and post-translational modifications at the synapse, but also to rigorously validate them for use in postmortem human brain tissues. In this study we describe the development of a liquid chromatography-selected reaction monitoring method, using a stable isotope-labeled neuronal proteome standard prepared from the brain tissue of a stable isotope-labeled mouse, for the multiplexed quantification of target synaptic proteins in mammalian samples. Additionally, we report the use of this method to validate a biochemical approach for the preparation of synaptic microdomain enrichments from human postmortem prefrontal cortex. Our data demonstrate that a targeted mass spectrometry approach with a true neuronal proteome standard facilitates accurate and precise quantification of over 100 synaptic proteins in mammalian samples, with the potential to quantify over 1000 proteins. Using this method, we found that protein enrichments in subcellular fractions prepared from human postmortem brain tissue were strikingly similar to those prepared from fresh mouse brain tissue. These findings demonstrate that biochemical fractionation methods paired with targeted proteomic strategies can be used in human brain tissues, with important implications for the study of neuropsychiatric disease. PMID:22942359
Ma, Quan; Ying, Ming; Sui, Xiaojing; Zhang, Huimin; Huang, Haiyan; Yang, Linqing; Huang, Xinfeng; Zhuang, Zhixiong; Liu, Jianjun; Yang, Xifei
2015-01-01
Copper is an essential element for human growth and development; however, excessive intake of copper could contribute to neurotoxicity. Here we show that chronic exposure to copper in drinking water impaired spatial memory with simultaneous selective loss of hippocampal pre-synaptic protein synapsin 1, and post-synaptic density protein (PSD)-93/95 in mice. Copper exposure was shown to elevate the levels of nitrotyrosine and 8-hydroxydeoxyguanosine (8-OHdG) in hippocampus, two markers of oxidative stress. Concurrently, we also found that copper exposure activated double stranded RNA-dependent protein kinase (PKR) as evidenced by increased ratio of phosphorylated PKR at Thr451 and total PKR and increased the phosphorylation of its downstream signaling molecule eukaryotic initiation factor 2α (eIF2α) at Ser51 in hippocampus. Consistent with activation of PKR/eIF2α signaling pathway which was shown to mediate synaptic deficit and cognitive impairment, the levels of activating transcription factor 4 (ATF-4), a downstream signaling molecule of eIF2α and a repressor of CREB-mediated gene expression, were significantly increased, while the activity of cAMP response elements binding protein (CREB) was inactivated as suggested by decreased phosphorylation of CREB at Ser133 by copper exposure. In addition, the expression of the pro-apoptotic target molecule C/EBP homology protein (CHOP) of ATF-4 was upregulated and hippocampal neuronal apoptosis was induced by copper exposure. Taken together, we propose that chronic copper exposure might cause spatial memory impairment, selective loss of synaptic proteins, and neuronal apoptosis through the mechanisms involving activation of PKR/eIF2α signaling pathway.
Fogel, Adam I; Stagi, Massimiliano; Perez de Arce, Karen; Biederer, Thomas
2011-09-16
Synapses are specialized adhesion sites between neurons that are connected by protein complexes spanning the synaptic cleft. These trans-synaptic interactions can organize synapse formation, but their macromolecular properties and effects on synaptic morphology remain incompletely understood. Here, we demonstrate that the synaptic cell adhesion molecule SynCAM 1 self-assembles laterally via its extracellular, membrane-proximal immunoglobulin (Ig) domains 2 and 3. This cis oligomerization generates SynCAM oligomers with increased adhesive capacity and instructs the interactions of this molecule across the nascent and mature synaptic cleft. In immature neurons, cis assembly promotes the adhesive clustering of SynCAM 1 at new axo-dendritic contacts. Interfering with the lateral self-assembly of SynCAM 1 in differentiating neurons strongly impairs its synaptogenic activity. At later stages, the lateral oligomerization of SynCAM 1 restricts synaptic size, indicating that this adhesion molecule contributes to the structural organization of synapses. These results support that lateral interactions assemble SynCAM complexes within the synaptic cleft to promote synapse induction and modulate their structure. These findings provide novel insights into synapse development and the adhesive mechanisms of Ig superfamily members.
Kaushik, Gaurav; Xia, Yu; Pfau, Jean C; Thomas, Michael A
2017-11-20
Autism Spectrum Disorders (ASD) are complex neurological disorders for which the prevalence in the U.S. is currently estimated to be 1 in 50 children. A majority of cases of idiopathic autism in children likely result from unknown environmental triggers in genetically susceptible individuals. These triggers may include maternal exposure of a developing embryo to environmentally relevant minute concentrations of psychoactive pharmaceuticals through ineffectively purified drinking water. Previous studies in our lab examined the extent to which gene sets associated with neuronal development were up- and down-regulated (enriched) in the brains of fathead minnows treated with psychoactive pharmaceuticals at environmental concentrations. The aim of this study was to determine whether similar treatments would alter in vitro expression of ASD-associated synaptic proteins on differentiated human neuronal cells. Human SK-N-SH neuroblastoma cells were differentiated for two weeks with 10μM retinoic acid (RA) and treated with environmentally relevant concentrations of fluoxetine, carbamazepine or venlafaxine, and flow cytometry technique was used to analyze expression of ASD-associated synaptic proteins. Data showed that carbamazepine individually, venlafaxine individually and mixture treatment at environmental concentrations significantly altered the expression of key synaptic proteins (NMDAR1, PSD95, SV2A, HTR1B, HTR2C and OXTR). Data indicated that psychoactive pharmaceuticals at extremely low concentrations altered the in vitro expression of key synaptic proteins that may potentially contribute to neurological disorders like ASD by disrupting neuronal development. Copyright © 2017 Elsevier B.V. All rights reserved.
Heiser, Jeanine H; Schuwald, Anita M; Sillani, Giacomo; Ye, Lian; Müller, Walter E; Leuner, Kristina
2013-11-01
The non-selective cationic transient receptor canonical 6 (TRPC6) channels are involved in synaptic plasticity changes ranging from dendritic growth, spine morphology changes and increase in excitatory synapses. We previously showed that the TRPC6 activator hyperforin, the active antidepressant component of St. John's wort, induces neuritic outgrowth and spine morphology changes in PC12 cells and hippocampal CA1 neurons. However, the signaling cascade that transmits the hyperforin-induced transient rise in intracellular calcium into neuritic outgrowth is not yet fully understood. Several signaling pathways are involved in calcium transient-mediated changes in synaptic plasticity, ranging from calmodulin-mediated Ras-induced signaling cascades comprising the mitogen-activated protein kinase, PI3K signal transduction pathways as well as Ca(2+) /calmodulin-dependent protein kinase II (CAMKII) and CAMKIV. We show that several mechanisms are involved in TRPC6-mediated synaptic plasticity changes in PC12 cells and primary hippocampal neurons. Influx of calcium via TRPC6 channels activates different pathways including Ras/mitogen-activated protein kinase/extracellular signal-regulated kinases, phosphatidylinositide 3-kinase/protein kinase B, and CAMKIV in both cell types, leading to cAMP-response element binding protein phosphorylation. These findings are interesting not only in terms of the downstream targets of TRPC6 channels but also because of their potential to facilitate further understanding of St. John's wort extract-mediated antidepressant activity. Alterations in synaptic plasticity are considered to play an important role in the pathogenesis of depression. Beside several other proteins, TRPC6 channels regulate synaptic plasticity. This study demonstrates that different pathways including Ras/MEK/ERK, PI3K/Akt, and CAMKIV are involved in the improvement of synaptic plasticity by the TRPC6 activator hyperforin, the antidepressant active constituent of St. John's wort extract. © 2013 International Society for Neurochemistry.
Funahashi, Junichiro; Tanaka, Hiromitsu; Hirano, Tomoo
2018-01-01
Fast repetitive synaptic transmission depends on efficient exocytosis and retrieval of synaptic vesicles around a presynaptic active zone. However, the functional organization of an active zone and regulatory mechanisms of exocytosis, endocytosis and reconstruction of release-competent synaptic vesicles have not been fully elucidated. By developing a novel visualization method, we attempted to identify the location of exocytosis of a single synaptic vesicle within an active zone and examined movement of synaptic vesicle protein synaptophysin (Syp) after exocytosis. Using cultured hippocampal neurons, we induced formation of active-zone-like membranes (AZLMs) directly adjacent and parallel to a glass surface coated with neuroligin, and imaged Syp fused to super-ecliptic pHluorin (Syp-SEP) after its translocation to the plasma membrane from a synaptic vesicle using total internal reflection fluorescence microscopy (TIRFM). An AZLM showed characteristic molecular and functional properties of a presynaptic active zone. It contained active zone proteins, cytomatrix at the active zone-associated structural protein (CAST), Bassoon, Piccolo, Munc13 and RIM, and showed an increase in intracellular Ca 2+ concentration upon electrical stimulation. In addition, single-pulse stimulation sometimes induced a transient increase of Syp-SEP signal followed by lateral spread in an AZLM, which was considered to reflect an exocytosis event of a single synaptic vesicle. The diffusion coefficient of Syp-SEP on the presynaptic plasma membrane after the membrane fusion was estimated to be 0.17-0.19 μm 2 /s, suggesting that Syp-SEP diffused without significant obstruction. Synchronous exocytosis just after the electrical stimulation tended to occur at multiple restricted sites within an AZLM, whereas locations of asynchronous release occurring later after the stimulation tended to be more scattered.
Modulation of CaV2.1 channels by neuronal calcium sensor-1 induces short-term synaptic facilitation.
Yan, Jin; Leal, Karina; Magupalli, Venkat G; Nanou, Evanthia; Martinez, Gilbert Q; Scheuer, Todd; Catterall, William A
2014-11-01
Facilitation and inactivation of P/Q-type Ca2+ currents mediated by Ca2+/calmodulin binding to Ca(V)2.1 channels contribute to facilitation and rapid depression of synaptic transmission, respectively. Other calcium sensor proteins displace calmodulin from its binding site and differentially modulate P/Q-type Ca2 + currents, resulting in diverse patterns of short-term synaptic plasticity. Neuronal calcium sensor-1 (NCS-1, frequenin) has been shown to enhance synaptic facilitation, but the underlying mechanism is unclear. We report here that NCS-1 directly interacts with IQ-like motif and calmodulin-binding domain in the C-terminal domain of Ca(V)2.1 channel. NCS-1 reduces Ca2 +-dependent inactivation of P/Q-type Ca2+ current through interaction with the IQ-like motif and calmodulin-binding domain without affecting peak current or activation kinetics. Expression of NCS-1 in presynaptic superior cervical ganglion neurons has no effect on synaptic transmission, eliminating effects of this calcium sensor protein on endogenous N-type Ca2+ currents and the endogenous neurotransmitter release machinery. However, in superior cervical ganglion neurons expressing wild-type Ca(V)2.1 channels, co-expression of NCS-1 induces facilitation of synaptic transmission in response to paired pulses and trains of depolarizing stimuli, and this effect is lost in Ca(V)2.1 channels with mutations in the IQ-like motif and calmodulin-binding domain. These results reveal that NCS-1 directly modulates Ca(V)2.1 channels to induce short-term synaptic facilitation and further demonstrate that CaS proteins are crucial in fine-tuning short-term synaptic plasticity.
Ivannikov, Maxim V.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.
2012-01-01
Synaptic plasticity in many regions of the central nervous system leads to the continuous adjustment of synaptic strength, which is essential for learning and memory. In this study, we show by visualizing synaptic vesicle release in mouse hippocampal synaptosomes that presynaptic mitochondria and specifically, their capacities for ATP production are essential determinants of synaptic vesicle exocytosis and its magnitude. Total internal reflection microscopy of FM1-43 loaded hippocampal synaptosomes showed that inhibition of mitochondrial oxidative phosphorylation reduces evoked synaptic release. This reduction was accompanied by a substantial drop in synaptosomal ATP levels. However, cytosolic calcium influx was not affected. Structural characterization of stimulated hippocampal synaptosomes revealed that higher total presynaptic mitochondrial volumes were consistently associated with higher levels of exocytosis. Thus, synaptic vesicle release is linked to the presynaptic ability to regenerate ATP, which itself is a utility of mitochondrial density and activity. PMID:22772899
Beske, Phillip H.; Bradford, Aaron B.; Grynovicki, Justin O.; Glotfelty, Elliot J.; Hoffman, Katie M.; Hubbard, Kyle S.; Tuznik, Kaylie M.; McNutt, Patrick M.
2016-01-01
Clinical manifestations of tetanus and botulism result from an intricate series of interactions between clostridial neurotoxins (CNTs) and nerve terminal proteins that ultimately cause proteolytic cleavage of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins and functional blockade of neurotransmitter release. Although detection of cleaved SNARE proteins is routinely used as a molecular readout of CNT intoxication in cultured cells, impaired synaptic function is the pathophysiological basis of clinical disease. Work in our laboratory has suggested that the blockade of synaptic neurotransmission in networked neuron cultures offers a phenotypic readout of CNT intoxication that more closely replicates the functional endpoint of clinical disease. Here, we explore the value of measuring spontaneous neurotransmission frequencies as novel and functionally relevant readouts of CNT intoxication. The generalizability of this approach was confirmed in primary neuron cultures as well as human and mouse stem cell-derived neurons exposed to botulinum neurotoxin serotypes A–G and tetanus neurotoxin. The sensitivity and specificity of synaptic activity as a reporter of intoxication was evaluated in assays representing the principal clinical and research purposes of in vivo studies. Our findings confirm that synaptic activity offers a novel and functionally relevant readout for the in vitro characterizations of CNTs. They further suggest that the analysis of synaptic activity in neuronal cell cultures can serve as a surrogate for neuromuscular paralysis in the mouse lethal assay, and therefore is expected to significantly reduce the need for terminal animal use in toxin studies and facilitate identification of candidate therapeutics in cell-based screening assays. PMID:26615023
Zinc transporter-1 concentrates at the postsynaptic density of hippocampal synapses
2014-01-01
Background Zinc concentrates at excitatory synapses, both at the postsynaptic density and in a subset of glutamatergic boutons. Zinc can modulate synaptic plasticity, memory formation and nociception by regulating transmitter receptors and signal transduction pathways. Also, intracellular zinc accumulation is a hallmark of degenerating neurons in several neurological disorders. To date, no single zinc extrusion mechanism has been directly localized to synapses. Based on the presence of a canonical PDZ I motif in the Zinc Transporter-1 protein (ZnT1), we hypothesized that ZnT1 may be targeted to synaptic compartments for local control of cytosolic zinc. Using our previously developed protocol for the co-localization of reactive zinc and synaptic proteins, we further asked if ZnT1 expression correlates with presynaptic zinc content in individual synapses. Findings Here we demonstrate that ZnT1 is a plasma membrane protein that is enriched in dendritic spines and in biochemically isolated synaptic membranes. Hippocampal CA1 synapses labelled by postembedding immunogold showed over a 5-fold increase in ZnT1 concentration at synaptic junctions compared with extrasynaptic membranes. Subsynaptic analysis revealed a peak ZnT1 density on the postsynaptic side of the synapse, < 10 nm away from the postsynaptic membrane. ZnT1 was found in the vast majority of excitatory synapses regardless of the presence of vesicular zinc in presynaptic boutons. Conclusions Our study has identified ZnT1 as a novel postsynaptic density protein, and it may help elucidate the role of zinc homeostasis in synaptic function and disease. PMID:24602382
The Contribution of α-Synuclein Spreading to Parkinson's Disease Synaptopathy
Faustini, Gaia; Missale, Cristina; Pizzi, Marina; Spano, PierFranco
2017-01-01
Synaptopathies are diseases with synapse defects as shared pathogenic features, encompassing neurodegenerative disorders such as Parkinson's disease (PD). In sporadic PD, the most common age-related neurodegenerative movement disorder, nigrostriatal dopaminergic deficits are responsible for the onset of motor symptoms that have been related to α-synuclein deposition at synaptic sites. Indeed, α-synuclein accumulation can impair synaptic dopamine release and induces the death of nigrostriatal neurons. While in physiological conditions the protein can interact with and modulate synaptic vesicle proteins and membranes, numerous experimental evidences have confirmed that its pathological aggregation can compromise correct neuronal functioning. In addition, recent findings indicate that α-synuclein pathology spreads into the brain and can affect the peripheral autonomic and somatic nervous system. Indeed, monomeric, oligomeric, and fibrillary α-synuclein can move from cell to cell and can trigger the aggregation of the endogenous protein in recipient neurons. This novel “prion-like” behavior could further contribute to synaptic failure in PD and other synucleinopathies. This review describes the major findings supporting the occurrence of α-synuclein pathology propagation in PD and discusses how this phenomenon could induce or contribute to synaptic injury and degeneration. PMID:28133550
Recombinant probes for visualizing endogenous synaptic proteins in living neurons
Gross, Garrett G.; Junge, Jason A.; Mora, Rudy J.; Kwon, Hyung-Bae; Olson, C. Anders; Takahashi, Terry T.; Liman, Emily R.; Ellis-Davies, Graham C.R.; McGee, Aaron W.; Sabatini, Bernardo L.; Roberts, Richard W.; Arnold, Don B.
2013-01-01
Summary The ability to visualize endogenous proteins in living neurons provides a powerful means to interrogate neuronal structure and function. Here we generate recombinant antibody-like proteins, termed FingRs (Fibronectin intrabodies generated with mRNA display), that bind endogenous neuronal proteins PSD-95 and Gephyrin with high affinity and which, when fused to GFP, allow excitatory and inhibitory synapses to be visualized in living neurons. Design of the FingR incorporates a novel transcriptional regulation system that ties FingR expression to the level of the target and reduces background fluorescence. In dissociated neurons and brain slices FingRs generated against PSD-95 and Gephyrin did not affect the expression patterns of their endogenous target proteins or the number or strength of synapses. Together, our data indicate that PSD-95 and Gephyrin FingRs can report the localization and amount of endogenous synaptic proteins in living neurons and thus may be used to study changes in synaptic strength in vivo. PMID:23791193
Siebert, Matthias; Böhme, Mathias A; Driller, Jan H; Babikir, Husam; Mampell, Malou M; Rey, Ulises; Ramesh, Niraja; Matkovic, Tanja; Holton, Nicole; Reddy-Alla, Suneel; Göttfert, Fabian; Kamin, Dirk; Quentin, Christine; Klinedinst, Susan; Andlauer, Till Fm; Hell, Stefan W; Collins, Catherine A; Wahl, Markus C; Loll, Bernhard; Sigrist, Stephan J
2015-08-14
Synaptic vesicles (SVs) fuse at active zones (AZs) covered by a protein scaffold, at Drosophila synapses comprised of ELKS family member Bruchpilot (BRP) and RIM-binding protein (RBP). We here demonstrate axonal co-transport of BRP and RBP using intravital live imaging, with both proteins co-accumulating in axonal aggregates of several transport mutants. RBP, via its C-terminal Src-homology 3 (SH3) domains, binds Aplip1/JIP1, a transport adaptor involved in kinesin-dependent SV transport. We show in atomic detail that RBP C-terminal SH3 domains bind a proline-rich (PxxP) motif of Aplip1/JIP1 with submicromolar affinity. Pointmutating this PxxP motif provoked formation of ectopic AZ-like structures at axonal membranes. Direct interactions between AZ proteins and transport adaptors seem to provide complex avidity and shield synaptic interaction surfaces of pre-assembled scaffold protein transport complexes, thus, favouring physiological synaptic AZ assembly over premature assembly at axonal membranes.
NASA Astrophysics Data System (ADS)
Labrecque, S.; Sylvestre, J.-P.; Marcet, S.; Mangiarini, F.; Verhaegen, M.; De Koninck, P.; Blais-Ouellette, S.
2015-03-01
In the past decade, the efficacy of existing therapies and the discovery of innovative treatments for Central Nervous System (CNS) diseases have been limited by the lack of appropriate methods to investigate complex molecular processes at the synaptic level. In order to better understand the fundamental mechanisms that regulate diseases of the CNS, a fast fluorescence hyperspectral imaging platform was designed to track simultaneously various neurotransmitter receptors trafficking in and out of synapses. With this hyperspectral imaging platform, it was possible to image simultaneously five different synaptic proteins, including subtypes of glutamate receptors (mGluR, NMDAR, AMPAR), postsynaptic density proteins, and signaling proteins. This new imaging platform allows fast simultaneous acquisitions of at least five fluorescent markers in living neurons with a high spatial resolution. This technique provides an effective method to observe several synaptic proteins at the same time, thus study how drugs for CNS impact the spatial dynamics of these proteins.
Cabral-Costa, J V; Andreotti, D Z; Mello, N P; Scavone, C; Camandola, S; Kawamoto, E M
2018-06-05
Phosphatase and tensin homolog (PTEN) is an important protein with key modulatory functions in cell growth and survival. PTEN is crucial during embryogenesis and plays a key role in the central nervous system (CNS), where it directly modulates neuronal development and synaptic plasticity. Loss of PTEN signaling function is associated with cognitive deficits and synaptic plasticity impairment. Accordingly, Pten mutations have a strong link with autism spectrum disorder. In this study, neuronal Pten haploinsufficient male mice were subjected to a long-term environmental intervention - intermittent fasting (IF) - and then evaluated for alterations in exploratory, anxiety and learning and memory behaviors. Although no significant effects on spatial memory were observed, mutant mice showed impaired contextual fear memory in the passive avoidance test - an outcome that was effectively rescued by IF. In this study, we demonstrated that IF modulation, in addition to its rescue of the memory deficit, was also required to uncover behavioral phenotypes otherwise hidden in this neuronal Pten haploinsufficiency model.
Kerr, Bredford; Silva, Pamela A.; Walz, Katherina; Young, Juan I.
2010-01-01
Background Rett syndrome (RTT) is an X-linked postnatal neurodevelopmental disorder caused by mutations in the gene encoding methyl-CpG binding protein 2 (MeCP2) and one of the leading causes of mental retardation in females. RTT is characterized by psychomotor retardation, purposeless hand movements, autistic-like behavior and abnormal gait. We studied the effects of environmental enrichment (EE) on the phenotypic manifestations of a RTT mouse model that lacks MeCP2 (Mecp2 −/y). Principal Findings We found that EE delayed and attenuated some neurological alterations presented by Mecp2 −/y mice and prevented the development of motor discoordination and anxiety-related abnormalities. To define the molecular correlate of this beneficial effect of EE, we analyzed the expression of several synaptic marker genes whose expression is increased by EE in several mouse models. Conclusions/Significance We found that EE induced downregulation of several synaptic markers, suggesting that the partial prevention of RTT-associated phenotypes is achieved through a non-conventional transcriptional program. PMID:20634955
Wang, Hui; Megill, Andrea; He, Kaiwen; Kirkwood, Alfredo; Lee, Hey-Kyoung
2012-01-01
Alzheimer's disease (AD) is a neurodegenerative disease, one of whose major pathological hallmarks is the accumulation of amyloid plaques comprised of aggregated β-amyloid (Aβ) peptides. It is now recognized that soluble Aβ oligomers may lead to synaptic dysfunctions early in AD pathology preceding plaque deposition. Aβ is produced by a sequential cleavage of amyloid precursor protein (APP) by the activity of β- and γ-secretases, which have been identified as major candidate therapeutic targets of AD. This paper focuses on how Aβ alters synaptic function and the functional consequences of inhibiting the activity of the two secretases responsible for Aβ generation. Abnormalities in synaptic function resulting from the absence or inhibition of the Aβ-producing enzymes suggest that Aβ itself may have normal physiological functions which are disrupted by abnormal accumulation of Aβ during AD pathology. This interpretation suggests that AD therapeutics targeting the β- and γ-secretases should be developed to restore normal levels of Aβ or combined with measures to circumvent the associated synaptic dysfunction(s) in order to have minimal impact on normal synaptic function.
Lombroso, Paul J.; Ogren, Marilee; Kurup, Pradeep; Nairn, Angus C.
2016-01-01
This commentary focuses on potential molecular mechanisms related to the dysfunctional synaptic plasticity that is associated with neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s disease. Specifically, we focus on the role of striatal-enriched protein tyrosine phosphatase (STEP) in modulating synaptic function in these illnesses. STEP affects neuronal communication by opposing synaptic strengthening and does so by dephosphorylating several key substrates known to control synaptic signaling and plasticity. STEP levels are elevated in brains from patients with Alzheimer’s and Parkinson’s disease. Studies in model systems have found that high levels of STEP result in internalization of glutamate receptors as well as inactivation of ERK1/2, Fyn, Pyk2, and other STEP substrates necessary for the development of synaptic strengthening. We discuss the search for inhibitors of STEP activity that may offer potential treatments for neurocognitive disorders that are characterized by increased STEP activity. Future studies are needed to examine the mechanisms of differential and region-specific changes in STEP expression pattern, as such knowledge could lead to targeted therapies for disorders involving disrupted STEP activity. PMID:29098072
Synaptic membrane rafts: traffic lights for local neurotrophin signaling?
Zonta, Barbara; Minichiello, Liliana
2013-10-18
Lipid rafts, cholesterol and lipid rich microdomains, are believed to play important roles as platforms for the partitioning of transmembrane and synaptic proteins involved in synaptic signaling, plasticity, and maintenance. There is increasing evidence of a physical interaction between post-synaptic densities and post-synaptic lipid rafts. Localization of proteins within lipid rafts is highly regulated, and therefore lipid rafts may function as traffic lights modulating and fine-tuning neuronal signaling. The tyrosine kinase neurotrophin receptors (Trk) and the low-affinity p75 neurotrophin receptor (p75(NTR)) are enriched in neuronal lipid rafts together with the intermediates of downstream signaling pathways, suggesting a possible role of rafts in neurotrophin signaling. Moreover, neurotrophins and their receptors are involved in the regulation of cholesterol metabolism. Cholesterol is an important component of lipid rafts and its depletion leads to gradual loss of synapses, underscoring the importance of lipid rafts for proper neuronal function. Here, we review and discuss the idea that translocation of neurotrophin receptors in synaptic rafts may account for the selectivity of their transduced signals.
Patrizio, Angela; Specht, Christian G.
2016-01-01
Abstract. The ability to count molecules is essential to elucidating cellular mechanisms, as these often depend on the absolute numbers and concentrations of molecules within specific compartments. Such is the case at chemical synapses, where the transmission of information from presynaptic to postsynaptic terminals requires complex interactions between small sets of molecules. Be it the subunit stoichiometry specifying neurotransmitter receptor properties, the copy numbers of scaffold proteins setting the limit of receptor accumulation at synapses, or protein packing densities shaping the molecular organization and plasticity of the postsynaptic density, all of these depend on exact quantities of components. A variety of proteomic, electrophysiological, and quantitative imaging techniques have yielded insights into the molecular composition of synaptic complexes. In this review, we compare the different quantitative approaches and consider the potential of single molecule imaging techniques for the quantification of synaptic components. We also discuss specific neurobiological data to contextualize the obtained numbers and to explain how they aid our understanding of synaptic structure and function. PMID:27335891
Patrizio, Angela; Specht, Christian G
2016-10-01
The ability to count molecules is essential to elucidating cellular mechanisms, as these often depend on the absolute numbers and concentrations of molecules within specific compartments. Such is the case at chemical synapses, where the transmission of information from presynaptic to postsynaptic terminals requires complex interactions between small sets of molecules. Be it the subunit stoichiometry specifying neurotransmitter receptor properties, the copy numbers of scaffold proteins setting the limit of receptor accumulation at synapses, or protein packing densities shaping the molecular organization and plasticity of the postsynaptic density, all of these depend on exact quantities of components. A variety of proteomic, electrophysiological, and quantitative imaging techniques have yielded insights into the molecular composition of synaptic complexes. In this review, we compare the different quantitative approaches and consider the potential of single molecule imaging techniques for the quantification of synaptic components. We also discuss specific neurobiological data to contextualize the obtained numbers and to explain how they aid our understanding of synaptic structure and function.
Activity Induces Fmr1-Sensitive Synaptic Capture of Anterograde Circulating Neuropeptide Vesicles
Cavolo, Samantha L.; Bulgari, Dinara; Deitcher, David L.
2016-01-01
Synaptic neuropeptide and neurotrophin stores are maintained by constitutive bidirectional capture of dense-core vesicles (DCVs) as they circulate in and out of the nerve terminal. Activity increases DCV capture to rapidly replenish synaptic neuropeptide stores following release. However, it is not known whether this is due to enhanced bidirectional capture. Here experiments at the Drosophila neuromuscular junction, where DCVs contain neuropeptides and a bone morphogenic protein, show that activity-dependent replenishment of synaptic neuropeptides following release is evident after inhibiting the retrograde transport with the dynactin disruptor mycalolide B or photobleaching DCVs entering a synaptic bouton by retrograde transport. In contrast, photobleaching anterograde transport vesicles entering a bouton inhibits neuropeptide replenishment after activity. Furthermore, tracking of individual DCVs moving through boutons shows that activity selectively increases capture of DCVs undergoing anterograde transport. Finally, upregulating fragile X mental retardation 1 protein (Fmr1, also called FMRP) acts independently of futsch/MAP-1B to abolish activity-dependent, but not constitutive, capture. Fmr1 also reduces presynaptic neuropeptide stores without affecting activity-independent delivery and evoked release. Therefore, presynaptic motoneuron neuropeptide storage is increased by a vesicle capture mechanism that is distinguished from constitutive bidirectional capture by activity dependence, anterograde selectivity, and Fmr1 sensitivity. These results show that activity recruits a separate mechanism than used at rest to stimulate additional synaptic capture of DCVs for future release of neuropeptides and neurotrophins. SIGNIFICANCE STATEMENT Synaptic release of neuropeptides and neurotrophins depends on presynaptic accumulation of dense-core vesicles (DCVs). At rest, DCVs are captured bidirectionally as they circulate through Drosophila motoneuron terminals by anterograde and retrograde transport. Here we show that activity stimulates further synaptic capture that is distinguished from basal capture by its selectivity for anterograde DCVs and its inhibition by overexpression of the fragile X retardation protein Fmr1. Fmr1 dramatically lowers DCV numbers in synaptic boutons. Therefore, activity-dependent anterograde capture is a major determinant of presynaptic peptide stores. PMID:27852784
Lautz, Jonathan D; Brown, Emily A; VanSchoiack, Alison A Williams; Smith, Stephen E P
2018-05-27
Cells utilize dynamic, network level rearrangements in highly interconnected protein interaction networks to transmit and integrate information from distinct signaling inputs. Despite the importance of protein interaction network dynamics, the organizational logic underlying information flow through these networks is not well understood. Previously, we developed the quantitative multiplex co-immunoprecipitation platform, which allows for the simultaneous and quantitative measurement of the amount of co-association between large numbers of proteins in shared complexes. Here, we adapt quantitative multiplex co-immunoprecipitation to define the activity dependent dynamics of an 18-member protein interaction network in order to better understand the underlying principles governing glutamatergic signal transduction. We first establish that immunoprecipitation detected by flow cytometry can detect activity dependent changes in two known protein-protein interactions (Homer1-mGluR5 and PSD-95-SynGAP). We next demonstrate that neuronal stimulation elicits a coordinated change in our targeted protein interaction network, characterized by the initial dissociation of Homer1 and SynGAP-containing complexes followed by increased associations among glutamate receptors and PSD-95. Finally, we show that stimulation of distinct glutamate receptor types results in different modular sets of protein interaction network rearrangements, and that cells activate both modules in order to integrate complex inputs. This analysis demonstrates that cells respond to distinct types of glutamatergic input by modulating different combinations of protein co-associations among a targeted network of proteins. Our data support a model of synaptic plasticity in which synaptic stimulation elicits dissociation of preexisting multiprotein complexes, opening binding slots in scaffold proteins and allowing for the recruitment of additional glutamatergic receptors. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
The Synaptic Function of α-Synuclein
Burré, Jacqueline
2015-01-01
α-Synuclein is an abundant neuronal protein which localizes predominantly to presynaptic terminals, and is strongly linked genetically and pathologically to Parkinson’s disease and other neurodegenerative diseases. While the accumulation of α-synuclein in the form of misfolded oligomers and large aggregates defines multiple neurodegenerative diseases called “synucleinopathies”, its cellular function has remained largely unclear, and is the subject of intense investigation. In this review, I focus on the structural characteristics of α-synuclein, its cellular and subcellular localization, and discuss how this relates to its function in neurons, in particular at the neuronal synapse. PMID:26407041
Wu, Chunlai; Daniels, Richard W; DiAntonio, Aaron
2007-01-01
Background The growth of new synapses shapes the initial formation and subsequent rearrangement of neural circuitry. Genetic studies have demonstrated that the ubiquitin ligase Highwire restrains synaptic terminal growth by down-regulating the MAP kinase kinase kinase Wallenda/dual leucine zipper kinase (DLK). To investigate the mechanism of Highwire action, we have identified DFsn as a binding partner of Highwire and characterized the roles of DFsn in synapse development, synaptic transmission, and the regulation of Wallenda/DLK kinase abundance. Results We identified DFsn as an F-box protein that binds to the RING-domain ubiquitin ligase Highwire and that can localize to the Drosophila neuromuscular junction. Loss-of-function mutants for DFsn have a phenotype that is very similar to highwire mutants – there is a dramatic overgrowth of synaptic termini, with a large increase in the number of synaptic boutons and branches. In addition, synaptic transmission is impaired in DFsn mutants. Genetic interactions between DFsn and highwire mutants indicate that DFsn and Highwire collaborate to restrain synaptic terminal growth. Finally, DFsn regulates the levels of the Wallenda/DLK kinase, and wallenda is necessary for DFsn-dependent synaptic terminal overgrowth. Conclusion The F-box protein DFsn binds the ubiquitin ligase Highwire and is required to down-regulate the levels of the Wallenda/DLK kinase and restrain synaptic terminal growth. We propose that DFsn and Highwire participate in an evolutionarily conserved ubiquitin ligase complex whose substrates regulate the structure and function of synapses. PMID:17697379
Mouse VAP33 is associated with the endoplasmic reticulum and microtubules
Skehel, P. A.; Fabian-Fine, R.; Kandel, E. R.
2000-01-01
VAMP/synaptobrevin is a synaptic vesicle protein that is essential for neurotransmitter release. Intracellular injection of antisera against the Aplysia californica VAMP/synaptobrevin-binding protein ApVAP33 inhibited evoked excitatory postsynaptic potentials (EPSPs) in cultured cells, suggesting that this association may regulate the function of VAMP/synaptobrevin. We have identified and characterized a mouse homologue of ApVAP33, mVAP33. The overall domain structure of the proteins is conserved, and they have similar biochemical properties. mVAP33 mRNA is detectable in all mouse tissues examined, in contrast to the more restricted expression seen in A. californica. We analyzed the cellular distribution of mVAP33 protein in brain slices and cultured cortical cells by light and electron microscopy. Although present at higher levels in neurons, immunoreactivity was detected throughout both neurons and glia in a reticular pattern similar to that of endoplasmic reticulum-resident proteins. mVAP33 does not colocalize with VAMP/synaptobrevin at synaptic structures, but expression overlaps with lower levels of VAMP/synaptobrevin in the soma. Ultrastructural analysis revealed mVAP33 associated with microtubules and intracellular vesicles of heterogeneous size. In primary neuronal cultures, large aggregates of mVAP33 are also detected in short filamentous structures, which are occasionally associated with intracellular membranes. There is no evidence for accumulation of mVAP33 on synaptic vesicles or at the plasma membrane. These data suggest that mVAP33 is an endoplasmic-reticulum–resident protein that associates with components of the cytoskeleton. Any functional interaction between mVAP33 and VAMP/synaptobrevin, therefore, most likely involves the delivery of components to synaptic terminals rather than a direct participation in synaptic vesicle exocytosis. PMID:10655491
Bavley, Charlotte C; Rice, Richard C; Fischer, Delaney K; Fakira, Amanda K; Byrne, Maureen; Kosovsky, Maria; Rizzo, Bryant K; Del Prete, Dolores; Alaedini, Armin; Morón, Jose A; Higgins, Joseph J; D'Adamio, Luciano; Rajadhyaksha, Anjali M
2018-03-14
A homozygous nonsense mutation in the cereblon ( CRBN ) gene results in autosomal recessive, nonsyndromic intellectual disability that is devoid of other phenotypic features, suggesting a critical role of CRBN in mediating learning and memory. In this study, we demonstrate that adult male Crbn knock-out ( Crbn KO ) mice exhibit deficits in hippocampal-dependent learning and memory tasks that are recapitulated by focal knock-out of Crbn in the adult dorsal hippocampus, with no changes in social or repetitive behavior. Cellular studies identify deficits in long-term potentiation at Schaffer collateral CA1 synapses. We further show that Crbn is robustly expressed in the mouse hippocampus and Crbn KO mice exhibit hyperphosphorylated levels of AMPKα (Thr172). Examination of processes downstream of AMP-activated protein kinase (AMPK) finds that Crbn KO mice have a selective impairment in mediators of the mTORC1 translation initiation pathway in parallel with lower protein levels of postsynaptic density glutamatergic proteins and higher levels of excitatory presynaptic markers in the hippocampus with no change in markers of the unfolded protein response or autophagy pathways. Acute pharmacological inhibition of AMPK activity in adult Crbn KO mice rescues learning and memory deficits and normalizes hippocampal mTORC1 activity and postsynaptic glutamatergic proteins without altering excitatory presynaptic markers. Thus, this study identifies that loss of Crbn results in learning, memory, and synaptic defects as a consequence of exaggerated AMPK activity, inhibition of mTORC1 signaling, and decreased glutamatergic synaptic proteins. Thus, Crbn KO mice serve as an ideal model of intellectual disability to further explore molecular mechanisms of learning and memory. SIGNIFICANCE STATEMENT Intellectual disability (ID) is one of the most common neurodevelopmental disorders. The cereblon ( CRBN ) gene has been linked to autosomal recessive, nonsyndromic ID, characterized by an intelligence quotient between 50 and 70 but devoid of other phenotypic features, making cereblon an ideal protein for the study of the fundamental aspects of learning and memory. Here, using the cereblon knock-out mouse model, we show that cereblon deficiency disrupts learning, memory, and synaptic function via AMP-activated protein kinase hyperactivity, downregulation of mTORC1, and dysregulation of excitatory synapses, with no changes in social or repetitive behaviors, consistent with findings in the human population. This establishes the cereblon knock-out mouse as a model of pure ID without the confounding behavioral phenotypes associated with other current models of ID. Copyright © 2018 the authors 0270-6474/18/382781-16$15.00/0.
Histone Deacetylase Inhibition Facilitates Massed Pattern-Induced Synaptic Plasticity and Memory
ERIC Educational Resources Information Center
Pandey, Kiran; Sharma, Kaushik P.; Sharma, Shiv K.
2015-01-01
Massed training is less effective for long-term memory formation than the spaced training. The role of acetylation in synaptic plasticity and memory is now well established. However, the role of this important protein modification in synaptic plasticity induced by massed pattern of stimulation or memory induced by massed training is not well…
ERIC Educational Resources Information Center
Dong, Chenghai; Upadhya, Sudarshan C.; Ding, Lan; Smith, Thuy K.; Hegde, Ashok N.
2008-01-01
Protein degradation by the ubiquitin-proteasome pathway plays important roles in synaptic plasticity, but the molecular mechanisms by which proteolysis regulates synaptic strength are not well understood. We investigated the role of the proteasome in hippocampal late-phase long-term potentiation (L-LTP), a model for enduring synaptic plasticity.…
Lechuga-Sancho, Alfonso M; Arroba, Ana I; Frago, Laura M; García-Cáceres, Cristina; de Célix, Arancha Delgado-Rubín; Argente, Jesús; Chowen, Julie A
2006-11-01
Processes under hypothalamic control, such as thermogenesis, feeding behavior, and pituitary hormone secretion, are disrupted in poorly controlled diabetes, but the underlying mechanisms are poorly understood. Because glial cells regulate neurosecretory neurons through modulation of synaptic inputs and function, we investigated the changes in hypothalamic glia in rats with streptozotocin-induced diabetes mellitus. Hypothalamic glial fibrillary acidic protein (GFAP) levels decreased significantly 6 wk after diabetes onset. This was coincident with decreased GFAP immunoreactive surface area, astrocyte number, and the extension of GFAP immunoreactive processes/astrocyte in the arcuate nucleus. Cell death, analyzed by terminal deoxyuridine 5-triphosphate nick-end labeling and ELISA, increased significantly at 4 wk of diabetes. Proliferation, measured by Western blot for proliferating cell nuclear antigen and immunostaining for phosphorylated histone H-3, decreased in the hypothalamus of diabetic rats throughout the study, becoming significantly reduced by 8 wk. Both proliferation and death affected astroctyes because both phosphorylated histone H-3- and terminal deoxyuridine 5-triphosphate nick-end labeling-labeled cells were GFAP positive. Western blot analysis revealed that postsynaptic density protein 95 and the presynaptic proteins synapsin I and synaptotagmin increased significantly at 8 wk of diabetes, suggesting increased hypothalamic synaptic density. Thus, in poorly controlled diabetic rats, there is a decrease in the number of hypothalamic astrocytes that is correlated with modifications in synaptic proteins and possibly synaptic inputs. These morphological changes in the arcuate nucleus could be involved in neurosecretory and metabolic changes seen in diabetic animals.
Zhang, Zhan-Chi; Luan, Feng; Xie, Chun-Yan; Geng, Dan-Dan; Wang, Yan-Yong; Ma, Jun
2015-06-01
In the aging brain, cognitive function gradually declines and causes a progressive reduction in the structural and functional plasticity of the hippocampus. Transcranial magnetic stimulation is an emerging and novel neurological and psychiatric tool used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency transcranial magnetic stimulation (≤1 Hz) ameliorates synaptic plasticity and spatial cognitive deficits in learning-impaired mice. However, the mechanisms by which this treatment improves these deficits during normal aging are still unknown. Therefore, the current study investigated the effects of transcranial magnetic stimulation on the brain-derived neurotrophic factor signal pathway, synaptic protein markers, and spatial memory behavior in the hippocampus of normal aged mice. The study also investigated the downstream regulator, Fyn kinase, and the downstream effectors, synaptophysin and growth-associated protein 43 (both synaptic markers), to determine the possible mechanisms by which transcranial magnetic stimulation regulates cognitive capacity. Transcranial magnetic stimulation with low intensity (110% average resting motor threshold intensity, 1 Hz) increased mRNA and protein levels of brain-derived neurotrophic factor, tropomyosin receptor kinase B, and Fyn in the hippocampus of aged mice. The treatment also upregulated the mRNA and protein expression of synaptophysin and growth-associated protein 43 in the hippocampus of these mice. In conclusion, brain-derived neurotrophic factor signaling may play an important role in sustaining and regulating structural synaptic plasticity induced by transcranial magnetic stimulation in the hippocampus of aging mice, and Fyn may be critical during this regulation. These responses may change the structural plasticity of the aging hippocampus, thereby improving cognitive function.
Medina, Matías A; Andrade, Víctor M; Caracci, Mario O; Avila, Miguel E; Verdugo, Daniela A; Vargas, Macarena F; Ugarte, Giorgia D; Reyes, Ariel E; Opazo, Carlos; De Ferrari, Giancarlo V
2018-03-05
Synaptic abnormalities have been described in individuals with autism spectrum disorders (ASD). The cell-adhesion molecule Neuroligin-3 (Nlgn3) has an essential role in the function and maturation of synapses and NLGN3 ASD-associated mutations disrupt hippocampal and cortical function. Here we show that Wnt/β-catenin signaling increases Nlgn3 mRNA and protein levels in HT22 mouse hippocampal cells and primary cultures of rat hippocampal neurons. We characterized the activity of mouse and rat Nlgn3 promoter constructs containing conserved putative T-cell factor/lymphoid enhancing factor (TCF/LEF)-binding elements (TBE) and found that their activity is significantly augmented in Wnt/β-catenin cell reporter assays. Chromatin immunoprecipitation (ChIP) assays and site-directed mutagenesis experiments revealed that endogenous β-catenin binds to novel TBE consensus sequences in the Nlgn3 promoter. Moreover, activation of the signaling cascade increased Nlgn3 clustering and co- localization with the scaffold PSD-95 protein in dendritic processes of primary neurons. Our results directly link Wnt/β-catenin signaling to the transcription of the Nlgn3 gene and support a functional role for the signaling pathway in the dysregulation of excitatory/inhibitory neuronal activity, as is observed in animal models of ASD.
Pan, Luyuan; Broadie, Kendal S
2007-11-07
A current hypothesis proposes that fragile X mental retardation protein (FMRP), an RNA-binding translational regulator, acts downstream of glutamatergic transmission, via metabotropic glutamate receptor (mGluR) G(q)-dependent signaling, to modulate protein synthesis critical for trafficking ionotropic glutamate receptors (iGluRs) at synapses. However, direct evidence linking FMRP and mGluR function with iGluR synaptic expression is limited. In this study, we use the Drosophila fragile X model to test this hypothesis at the well characterized glutamatergic neuromuscular junction (NMJ). Two iGluR classes reside at this synapse, each containing common GluRIIC (III), IID and IIE subunits, and variable GluRIIA (A-class) or GluRIIB (B-class) subunits. In Drosophila fragile X mental retardation 1 (dfmr1) null mutants, A-class GluRs accumulate and B-class GluRs are lost, whereas total GluR levels do not change, resulting in a striking change in GluR subclass ratio at individual synapses. The sole Drosophila mGluR, DmGluRA, is also expressed at the NMJ. In dmGluRA null mutants, both iGluR classes increase, resulting in an increase in total synaptic GluR content at individual synapses. Targeted postsynaptic dmGluRA overexpression causes the exact opposite GluR phenotype to the dfmr1 null, confirming postsynaptic GluR subtype-specific regulation. In dfmr1; dmGluRA double null mutants, there is an additive increase in A-class GluRs, and a similar additive impact on B-class GluRs, toward normal levels in the double mutants. These results show that both dFMRP and DmGluRA differentially regulate the abundance of different GluR subclasses in a convergent mechanism within individual postsynaptic domains.
Zhang, Kun; Li, Yu-Jiao; Guo, Yanyan; Zheng, Kai-Yin; Yang, Qi; Yang, Le; Wang, Xin-Shang; Song, Qian; Chen, Tao; Zhuo, Min; Zhao, Ming-Gao
2017-12-01
Fragile X syndrome is an inheritable form of intellectual disability caused by loss of fragile X mental retardation protein (FMRP, encoded by the FMR1 gene). Absence of FMRP caused overexpression of progranulin (PGRN, encoded by GRN), a putative tumour necrosis factor receptor ligand. In the present study, we found that progranulin mRNA and protein were upregulated in the medial prefrontal cortex of Fmr1 knock-out mice. In Fmr1 knock-out mice, elevated progranulin caused insufficient dendritic spine pruning and late-phase long-term potentiation in the medial prefrontal cortex of Fmr1 knock-out mice. Partial progranulin knock-down restored spine morphology and reversed behavioural deficits, including impaired fear memory, hyperactivity, and motor inflexibility in Fmr1 knock-out mice. Progranulin increased levels of phosphorylated glutamate ionotropic receptor GluA1 and nuclear factor kappa B in cultured wild-type neurons. Tumour necrosis factor receptor 2 antibody perfusion blocked the effects of progranulin on GluA1 phosphorylation; this result indicates that tumour necrosis factor receptor 2 is required for progranulin-mediated GluA1 phosphorylation and late-phase long-term potentiation expression. However, high basal level of progranulin in Fmr1 knock-out mice prevented further facilitation of synaptic plasticity by exogenous progranulin. Partial downregulation of progranulin or tumour necrosis factor receptor 2/nuclear factor kappa B signalling restored synaptic plasticity and memory deficits in Fmr1 knock-out mice. These findings suggest that elevated PGRN is linked to cognitive deficits of fragile X syndrome, and the progranulin/tumour necrosis factor receptor 2 signalling pathway may be a putative therapeutic target for improving cognitive deficits in fragile X syndrome. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ross, John R.; Porter, Brenda E.; Buckley, Peter T.; Eberwine, James H.; Robinson, Michael B.
2011-01-01
The neuronal Na+-dependent glutamate transporter, excitatory amino acid carrier 1 (EAAC1, also called EAAT3), has been implicated in the control of synaptic spillover of glutamate, synaptic plasticity, and the import of cysteine for neuronal synthesis of glutathione. EAAC1 protein is observed in both perisynaptic regions of the synapse and in neuronal cell bodies. Although amino acid residues in the carboxyl terminal tail have been implicated in the dendritic targeting of EAAC1 protein, it is not known if mRNA for EAAC1 may also be targeted to dendrites. Sorting of mRNA to specific cellular domains provides a mechanism by which signals can rapidly increase translation in a local environment; this form of regulated translation has been linked to diverse biological phenomena ranging from establishment of polarity during embryogenesis to synapse development and synaptic plasticity. In the present study, EAAC1 mRNA sequences were amplified from dendritic samples that were mechanically harvested from low-density hippocampal neuronal cultures. In parallel analyses, mRNA for histone deacetylase 2 (HDAC-2) and glial fibrillary acidic protein (GFAP) was not detected, suggesting that these samples are not contaminated with cell body or glial mRNAs. EAAC1 mRNA also co-localized with Map2a (a marker of dendrites) but not Tau1 (a marker of axons) in hippocampal neuronal cultures by in situ hybridization. In control rats, EAAC1 mRNA was observed in soma and proximal dendrites of hippocampal pyramidal neurons. Following pilocarpine- or kainate-induced seizures, EAAC1 mRNA was present in CA1 pyramidal cell dendrites up to 200 μm from the soma. These studies provide the first evidence that EAAC1 mRNA localizes to dendrites and suggest that dendritic targeting of EAAC1 mRNA is increased by seizure activity and may be regulated by neuronal activity/depolarization. PMID:21185901
Doyle, Sukhjeevan; Pyndiah, Slovénie; De Gois, Stéphanie; Erickson, Jeffrey D
2010-05-07
Homeostatic scaling of glutamatergic and GABAergic transmission is triggered by prolonged alterations in synaptic neuronal activity. We have previously described a presynaptic mechanism for synaptic homeostasis and plasticity that involves scaling the level of vesicular glutamate (VGLUT1) and gamma-aminobutyric acid (GABA) (VGAT) transporter biosynthesis. These molecular determinants of vesicle filling and quantal size are regulated by neuronal activity in an opposite manner and bi-directionally. Here, we report that a striking induction of VGLUT2 mRNA and synaptic protein is triggered by a prolonged increase in glutamatergic synaptic activity in mature neocortical neuronal networks in vitro together with two determinants of inhibitory synaptic strength, the neuronal activity-regulated pentraxin (Narp), and glutamate decarboxylase (GAD65). Activity-dependent induction of VGLUT2 and Narp exhibits a similar intermediate-early gene response that is blocked by actinomycin D and tetrodotoxin, by inhibitors of ionotropic glutamate receptors and L-type voltage-gated calcium channels, and is dependent on downstream signaling via calmodulin, calcium/calmodulin-dependent protein kinase (CaMK) and extracellular signal-regulated kinase 1/2 (ERK1/2). The co-induction of VGLUT2 and Narp triggered by prolonged gamma-aminobutyric acid type A receptor blockade is independent of brain-derived nerve growth factor and TrkB receptor signaling. VGLUT2 protein induction occurs on a subset of cortically derived synaptic vesicles in excitatory synapses on somata and dendritic processes of multipolar GABAergic interneurons, recognized sites for the clustering of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate glutamate receptors by Narp. We propose that VGLUT2 and Narp induction by excitation-transcription coupling leads to increased glutamatergic transmission at synapses on GABAergic inhibitory feedback neurons as part of a coordinated program of Ca(2+)-signal transcription involved in mechanisms of homeostatic plasticity after prolonged hyperactivity.
Ito, Mikako; Ohno, Kinji
2018-02-20
Endplate acetylcholinesterase (AChE) deficiency is a form of congenital myasthenic syndrome (CMS) caused by mutations in COLQ, which encodes collagen Q (ColQ). ColQ is an extracellular matrix (ECM) protein that anchors AChE to the synaptic basal lamina. Biglycan, encoded by BGN, is another ECM protein that binds to the dystrophin-associated protein complex (DAPC) on skeletal muscle, which links the actin cytoskeleton and ECM proteins to stabilize the sarcolemma during repeated muscle contractions. Upregulation of biglycan stabilizes the DPAC. Gene therapy can potentially ameliorate any disease that can be recapitulated in cultured cells. However, the difficulty of tissue-specific and developmental stage-specific regulated expression of transgenes, as well as the difficulty of introducing a transgene into all cells in a specific tissue, prevents us from successfully applying gene therapy to many human diseases. In contrast to intracellular proteins, an ECM protein is anchored to the target tissue via its specific binding affinity for protein(s) expressed on the cell surface within the target tissue. Exploiting this unique feature of ECM proteins, we developed protein-anchoring therapy in which a transgene product expressed even in remote tissues can be delivered and anchored to a target tissue using specific binding signals. We demonstrate the application of protein-anchoring therapy to two disease models. First, intravenous administration of adeno-associated virus (AAV) serotype 8-COLQ to Colq-deficient mice, resulting in specific anchoring of ectopically expressed ColQ-AChE at the NMJ, markedly improved motor functions, synaptic transmission, and the ultrastructure of the neuromuscular junction (NMJ). In the second example, Mdx mice, a model for Duchenne muscular dystrophy, were intravenously injected with AAV8-BGN. The treatment ameliorated motor deficits, mitigated muscle histopathologies, decreased plasma creatine kinase activities, and upregulated expression of utrophin and DAPC component proteins. We propose that protein-anchoring therapy could be applied to hereditary/acquired defects in ECM and secreted proteins, as well as therapeutic overexpression of such factors. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.
Andrade-Talavera, Yuniesky; Duque-Feria, Paloma; Sihra, Talvinder S; Rodríguez-Moreno, Antonio
2013-09-01
We have investigated the mechanisms underlying the facilitatory modulation mediated by kainate receptor (KAR) activation in the cortex, using isolated nerve terminals (synaptosomes) and slice preparations. In cortical nerve terminals, kainate (KA, 100 μM) produced an increase in 4-aminopyridine (4-AP)-evoked glutamate release. In thalamocortical slices, KA (1 μM) produced an increase in the amplitude of evoked excitatory post-synaptic currents (eEPSCs) at synapses established between thalamic axon terminals from the ventrobasal nucleus onto stellate neurons of L4 of the somatosensory cortex. In both, synaptosomes and slices, the effect of KA was antagonized by 6-cyano-7-nitroquinoxaline-2,3-dione, and persisted after pre-treatment with a cocktail of antagonists of other receptors whose activation could potentially have produced facilitation of release indirectly. Mechanistically, the observed effects of KA appear to be congruent in synaptosomal and slice preparations. Thus, the facilitation by KA of synaptosomal glutamate release and thalamocortical synaptic transmission were suppressed by the inhibition of protein kinase A and occluded by the stimulation of adenylyl cyclase. Dissecting this G-protein-independent regulation further in thalamocortical slices, the KAR-mediated facilitation of synaptic transmission was found to be sensitive to the block of Ca(2+) permeant KARs by philanthotoxin. Intriguingly, the synaptic facilitation was abrogated by depletion of intracellular Ca(2+) stores by thapsigargin, or inhibition of Ca(2+) -induced Ca(2+) -release by ryanodine. Thus, the KA-mediated modulation was contingent on both Ca(2+) entry through Ca(2+) -permeable KARs and liberation of intracellular Ca(2+) stores. Finally, sensitivity to W-7 indicated that the increased cytosolic [Ca(2+) ] underpinning KAR-mediated regulation of synaptic transmission at thalamocortical synapses, requires downstream activation of calmodulin. We conclude that neocortical pre-synaptic KARs mediate the facilitation of glutamate release and synaptic transmission by a Ca(2+) -calmodulin dependent activation of an adenylyl cyclase/cAMP/protein kinase A signalling cascade, independent of G-protein involvement. © 2013 International Society for Neurochemistry.
Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states
NASA Astrophysics Data System (ADS)
Ehmann, Nadine; van de Linde, Sebastian; Alon, Amit; Ljaschenko, Dmitrij; Keung, Xi Zhen; Holm, Thorge; Rings, Annika; Diantonio, Aaron; Hallermann, Stefan; Ashery, Uri; Heckmann, Manfred; Sauer, Markus; Kittel, Robert J.
2014-08-01
The precise molecular architecture of synaptic active zones (AZs) gives rise to different structural and functional AZ states that fundamentally shape chemical neurotransmission. However, elucidating the nanoscopic protein arrangement at AZs is impeded by the diffraction-limited resolution of conventional light microscopy. Here we introduce new approaches to quantify endogenous protein organization at single-molecule resolution in situ with super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM). Focusing on the Drosophila neuromuscular junction (NMJ), we find that the AZ cytomatrix (CAZ) is composed of units containing ~137 Bruchpilot (Brp) proteins, three quarters of which are organized into about 15 heptameric clusters. We test for a quantitative relationship between CAZ ultrastructure and neurotransmitter release properties by engaging Drosophila mutants and electrophysiology. Our results indicate that the precise nanoscopic organization of Brp distinguishes different physiological AZ states and link functional diversification to a heretofore unrecognized neuronal gradient of the CAZ ultrastructure.
The Fate of Nascent APP in Hippocampal Neurons: A Live Cell Imaging Study.
DelBove, Claire E; Deng, Xian-Zhen; Zhang, Qi
2018-06-21
Amyloid precursor protein (APP) is closely associated with Alzheimer's disease (AD) because its proteolytic products form amyloid plaques and its mutations are linked to familial AD patients. As a membrane protein, APP is involved in neuronal development and plasticity. However, it remains unclear how nascent APP is distributed and transported to designated membrane compartments to execute its diverse functions. Here, we employed a dual-tagged APP fusion protein in combination with a synaptic vesicle marker to study the surface trafficking and cleavage of APP in hippocampal neurons immediately after its synthesis. Using long-term time-lapse imaging, we found that a considerable amount of nascent APP was directly transported to the somatodendritic surface, from which it propagates to distal neurites. Some APP in the plasma membrane was endocytosed and some was cleaved by α-secretase. Hence, we conclude that surface transportation of APP is a major step preceding its proteolytic processing and neuritic distribution.
Isoform Specificity of Protein Kinase Cs in Synaptic Plasticity
ERIC Educational Resources Information Center
Sossin, Wayne S.
2007-01-01
Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used "Aplysia" as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented…
Pavlopoulos, Elias; Trifilieff, Pierre; Chevaleyre, Vivien; Fioriti, Luana; Zairis, Sakellarios; Pagano, Andrew; Malleret, Gaël; Kandel, Eric R
2011-12-09
The cytoplasmic polyadenylation element-binding protein 3 (CPEB3), a regulator of local protein synthesis, is the mouse homolog of ApCPEB, a functional prion protein in Aplysia. Here, we provide evidence that CPEB3 is activated by Neuralized1, an E3 ubiquitin ligase. In hippocampal cultures, CPEB3 activated by Neuralized1-mediated ubiquitination leads both to the growth of new dendritic spines and to an increase of the GluA1 and GluA2 subunits of AMPA receptors, two CPEB3 targets essential for synaptic plasticity. Conditional overexpression of Neuralized1 similarly increases GluA1 and GluA2 and the number of spines and functional synapses in the hippocampus and is reflected in enhanced hippocampal-dependent memory and synaptic plasticity. By contrast, inhibition of Neuralized1 reduces GluA1 and GluA2 levels and impairs hippocampal-dependent memory and synaptic plasticity. These results suggest a model whereby Neuralized1-dependent ubiquitination facilitates hippocampal plasticity and hippocampal-dependent memory storage by modulating the activity of CPEB3 and CPEB3-dependent protein synthesis and synapse formation. Copyright © 2011 Elsevier Inc. All rights reserved.
Repicky, Sarah; Broadie, Kendal
2009-02-01
Loss of the mRNA-binding protein FMRP results in the most common inherited form of both mental retardation and autism spectrum disorders: fragile X syndrome (FXS). The leading FXS hypothesis proposes that metabotropic glutamate receptor (mGluR) signaling at the synapse controls FMRP function in the regulation of local protein translation to modulate synaptic transmission strength. In this study, we use the Drosophila FXS disease model to test the relationship between Drosophila FMRP (dFMRP) and the sole Drosophila mGluR (dmGluRA) in regulation of synaptic function, using two-electrode voltage-clamp recording at the glutamatergic neuromuscular junction (NMJ). Null dmGluRA mutants show minimal changes in basal synapse properties but pronounced defects during sustained high-frequency stimulation (HFS). The double null dfmr1;dmGluRA mutant shows repression of enhanced augmentation and delayed onset of premature long-term facilitation (LTF) and strongly reduces grossly elevated post-tetanic potentiation (PTP) phenotypes present in dmGluRA-null animals. Null dfmr1 mutants show features of synaptic hyperexcitability, including multiple transmission events in response to a single stimulus and cyclic modulation of transmission amplitude during prolonged HFS. The double null dfmr1;dmGluRA mutant shows amelioration of these defects but does not fully restore wildtype properties in dfmr1-null animals. These data suggest that dmGluRA functions in a negative feedback loop in which excess glutamate released during high-frequency transmission binds the glutamate receptor to dampen synaptic excitability, and dFMRP functions to suppress the translation of proteins regulating this synaptic excitability. Removal of the translational regulator partially compensates for loss of the receptor and, similarly, loss of the receptor weakly compensates for loss of the translational regulator.
Synaptic Plasticity, Dementia and Alzheimer Disease.
Skaper, Stephen D; Facci, Laura; Zusso, Morena; Giusti, Pietro
2017-01-01
Neuroplasticity is not only shaped by learning and memory but is also a mediator of responses to neuron attrition and injury (compensatory plasticity). As an ongoing process it reacts to neuronal cell activity and injury, death, and genesis, which encompasses the modulation of structural and functional processes of axons, dendrites, and synapses. The range of structural elements that comprise plasticity includes long-term potentiation (a cellular correlate of learning and memory), synaptic efficacy and remodelling, synaptogenesis, axonal sprouting and dendritic remodelling, and neurogenesis and recruitment. Degenerative diseases of the human brain continue to pose one of biomedicine's most intractable problems. Research on human neurodegeneration is now moving from descriptive to mechanistic analyses. At the same time, it is increasing apparently that morphological lesions traditionally used by neuropathologists to confirm post-mortem clinical diagnosis might furnish us with an experimentally tractable handle to understand causative pathways. Consider the aging-dependent neurodegenerative disorder Alzheimer's disease (AD) which is characterised at the neuropathological level by deposits of insoluble amyloid β-peptide (Aβ) in extracellular plaques and aggregated tau protein, which is found largely in the intracellular neurofibrillary tangles. We now appreciate that mild cognitive impairment in early AD may be due to synaptic dysfunction caused by accumulation of non-fibrillar, oligomeric Aβ, occurring well in advance of evident widespread synaptic loss and neurodegeneration. Soluble Aβ oligomers can adversely affect synaptic structure and plasticity at extremely low concentrations, although the molecular substrates by which synaptic memory mechanisms are disrupted remain to be fully elucidated. The dendritic spine constitutes a primary locus of excitatory synaptic transmission in the mammalian central nervous system. These structures protruding from dendritic shafts undergo dynamic changes in number, size and shape in response to variations in hormonal status, developmental stage, and changes in afferent input. It is perhaps not unexpected that loss of spine density may be linked to cognitive and memory impairment in AD, although the underlying mechanism(s) remain uncertain. This article aims to present a critical overview of current knowledge on the bases of synaptic dysfunction in neurodegenerative diseases, with a focus on AD, and will cover amyloid- and nonamyloid- driven mechanisms. We will consider also emerging data dealing with potential therapeutic approaches for ameliorating the cognitive and memory deficits associated with these disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
G-protein-mediated inhibition of the Trp channel TRPM1 requires the Gβγ dimer.
Shen, Yin; Rampino, Melissa Ann F; Carroll, Reed C; Nawy, Scott
2012-05-29
ON bipolar cells are critical for the function of the ON pathway in the visual system. They express a metabotropic glutamate receptor (mGluR6) that, when activated, couples to the G(o) class of G protein. The channel that is primarily responsible for the synaptic response has been recently identified as the transient receptor potential cation channel subfamily M member 1 (TRPM1); TRPM1 is negatively coupled to the mGluR6/Go cascade such that activation of the cascade results in closure of the channel. Light indirectly opens TRPM1 by reducing transmitter release from presynaptic photoreceptors, resulting in a decrease in mGluR6 activation. Conversely, in the dark, binding of synaptic glutamate to mGluR6 inhibits TRPM1 current. Closure of TRPM1 by G-protein activation in the dark is a critical step in the process of ON bipolar cell signal transduction, but the precise pathway linking these two events is not understood. To address this question, we measured TRPM1 activity in retinal bipolar cells, in human ependymal melanocytes (HEMs) that endogenously express TRPM1, and in HEK293 cells transfected with TRPM1. Dialysis of the Gβγ subunit dimer, but not Gα(o), closed TRPM1 channels in every cell type that we tested. In addition, activation of an endogenous G-protein-coupled receptor pathway in HEK293 cells that releases Gβγ without activating Go protein also closed TRPM1 channels. These results suggest a model in which the Gβγ dimer that is released as a result of the dissociation from Gα(o) upon activation of mGluR6 closes the TRPM1 channel, perhaps via a direct interaction.
Myasthenic syndromes due to defects in COL13A1 and in the N-linked glycosylation pathway.
Beeson, David; Cossins, Judith; Rodriguez-Cruz, Pedro; Maxwell, Susan; Liu, Wei-Wei; Palace, Jacqueline
2018-02-01
The congenital myasthenic syndromes (CMS) are hereditary disorders of neuromuscular transmission. The number of cases recognized, at around 1:100,000 in the United Kingdom, is increasing with improved diagnosis. The advent of next-generation sequencing has facilitated the discovery of many genes that harbor CMS-associated mutations. An emerging group of CMS, characterized by a limb-girdle pattern of muscle weakness, is caused by mutations in genes that encode proteins involved in the initial steps of the N-linked glycosylation pathway, which is surprising, since this pathway is found in all mammalian cells. However, mutations in these genes may also give rise to multisystem disorders (congenital disorders of glycosylation) or muscle disorders where the myasthenic symptoms constitute only one component within a wider phenotypic spectrum. We also report a CMS due to mutations in COL13A1, which encodes an extracellular matrix protein that is concentrated at the neuromuscular junction and highlights a role for these extracellular matrix proteins in maintaining synaptic stability that is independent of the AGRN/MuSK clustering pathway. Knowledge about the neuromuscular synapse and the different proteins involved in maintaining its structure as well as function enables us to tailor treatments to the underlying pathogenic mechanisms. © 2018 New York Academy of Sciences.
Odors regulate Arc expression in neuronal ensembles engaged in odor processing.
Guthrie, K; Rayhanabad, J; Kuhl, D; Gall, C
2000-06-26
Synaptic activity is critical to developmental and plastic processes that produce long-term changes in neuronal connectivity and function. Genes expressed by neurons in an activity-dependent fashion are of particular interest since the proteins they encode may mediate neuronal plasticity. One such gene encodes the activity-regulated cytoskeleton-associated protein, Arc. The present study evaluated the effects of odor stimulation on Arc expression in rat olfactory bulb. Arc mRNA was rapidly increased in functionally linked cohorts of neurons topographically activated by odor stimuli. These included neurons surrounding individual glomeruli, mitral cells and transynaptically activated granule cells. Dendritic Arc immunoreactivity was also increased in odor-activated glomeruli. Our results suggest that odor regulation of Arc expression may contribute to activity-dependent structural changes associated with olfactory experience.
α-Synuclein in Parkinson's Disease
Stefanis, Leonidas
2012-01-01
α-Synuclein is a presynaptic neuronal protein that is linked genetically and neuropathologically to Parkinson's disease (PD). α-Synuclein may contribute to PD pathogenesis in a number of ways, but it is generally thought that its aberrant soluble oligomeric conformations, termed protofibrils, are the toxic species that mediate disruption of cellular homeostasis and neuronal death, through effects on various intracellular targets, including synaptic function. Furthermore, secreted α-synuclein may exert deleterious effects on neighboring cells, including seeding of aggregation, thus possibly contributing to disease propagation. Although the extent to which α-synuclein is involved in all cases of PD is not clear, targeting the toxic functions conferred by this protein when it is dysregulated may lead to novel therapeutic strategies not only in PD, but also in other neurodegenerative conditions, termed synucleinopathies. PMID:22355802
Regulation of AMPA receptors by phosphorylation.
Carvalho, A L; Duarte, C B; Carvalho, A P
2000-10-01
The AMPA receptors for glutamate are oligomeric structures that mediate fast excitatory responses in the central nervous system. Phosphorylation of AMPA receptors is an important mechanism for short-term modulation of their function, and is thought to play an important role in synaptic plasticity in different brain regions. Recent studies have shown that phosphorylation of AMPA receptors by cAMP-dependent protein kinase (PKA) and Ca2+- and calmodulin-dependent protein kinase II (CaMKII) potentiates their activity, but phosphorylation of the receptor subunits may also affect their interaction with intracellular proteins, and their expression at the plasma membrane. Phosphorylation of AMPA receptor subunits has also been investigated in relation to processes of synaptic plasticity. This review focuses on recent advances in understanding the molecular mechanisms of regulation of AMPA receptors, and their implications in synaptic plasticity.
Lacor, Pascale N; Buniel, Maria C; Furlow, Paul W; Clemente, Antonio Sanz; Velasco, Pauline T; Wood, Margaret; Viola, Kirsten L; Klein, William L
2007-01-24
The basis for memory loss in early Alzheimer's disease (AD) seems likely to involve synaptic damage caused by soluble Abeta-derived oligomers (ADDLs). ADDLs have been shown to build up in the brain and CSF of AD patients and are known to interfere with mechanisms of synaptic plasticity, acting as gain-of-function ligands that attach to synapses. Because of the correlation between AD dementia and synaptic degeneration, we investigated here the ability of ADDLs to affect synapse composition, structure, and abundance. Using highly differentiated cultures of hippocampal neurons, a preferred model for studies of synapse cell biology, we found that ADDLs bound to neurons with specificity, attaching to presumed excitatory pyramidal neurons but not GABAergic neurons. Fractionation of ADDLs bound to forebrain synaptosomes showed association with postsynaptic density complexes containing NMDA receptors, consistent with observed attachment of ADDLs to dendritic spines. During binding to hippocampal neurons, ADDLs promoted a rapid decrease in membrane expression of memory-related receptors (NMDA and EphB2). Continued exposure resulted in abnormal spine morphology, with induction of long thin spines reminiscent of the morphology found in mental retardation, deafferentation, and prionoses. Ultimately, ADDLs caused a significant decrease in spine density. Synaptic deterioration, which was accompanied by decreased levels of the spine cytoskeletal protein drebrin, was blocked by the Alzheimer's therapeutic drug Namenda. The observed disruption of dendritic spines links ADDLs to a major facet of AD pathology, providing strong evidence that ADDLs in AD brain cause neuropil damage believed to underlie dementia.
Wu, Jing; Zhang, Mingqiang; Li, Huihui; Sun, Xiaoru; Hao, Shuangying; Ji, Muhuo; Yang, Jianjun; Li, Kuanyu
2016-05-15
Mitochondrial dysfunction has been linked to the earliest pathogenesis of isoflurane-induced cognitive impairments in developing or aging mammalian brain. However, its molecular mechanism is poorly understood and a pharmacologic treatment to rapidly reverse mitochondrial dysfunction is lacking. Fifteen-month-old male C57BL/6 mice were exposed to isoflurane for two hours following intraperitoneal administration of mitochondrion-targeted peptide SS-31 or vehicle with 30min interval. The hippocampus was immediately removed for biochemical assays and mitochondria isolation after inhalation. Behavioral tests were evaluated by the open field test and fear conditioning test 24h after the experiment. We showed that cognitive deficits induced by exposure of the aging mice to isoflurane were accompanied by mitochondrial dysfunction in hippocampus due to loss of the enzymatic activity of complex I. This loss resulted in the increase of reactive oxygen species production, decrease of ATP production and mitochondrial membrane potential, and opening of mitochondrial permeability transition pore. Further, we provided evidence that the BDNF signaling pathway was involved in this process to regulate synaptic plasticity-related proteins, for instance, downregulation of synapsin 1, PSD-95 and p-CREB, and upregulation of NR2A, NR2B, CaMKIIα and CaMKIIβ. Of note, the isoflurane-induced cognitive deficits were rescued by SS-31 through reversal of mitochondrial dysfunction, which facilitated the regulation of BDNF signaling including the expression reversal of aforementioned important synaptic-signaling proteins in aging mice. Our data demonstrate that reversing mitochondrial dysfunction by SS-31 enhances BDNF signaling pathway and synaptic plasticity, and provides protective effects on cognitive function, thereby support the notion that SS-31 may have therapeutic benefits for elderly humans undertaking anesthesia. Copyright © 2016 Elsevier B.V. All rights reserved.
Genetic manipulation of STEP reverses behavioral abnormalities in a fragile X syndrome mouse model.
Goebel-Goody, S M; Wilson-Wallis, E D; Royston, S; Tagliatela, S M; Naegele, J R; Lombroso, P J
2012-07-01
Fragile X syndrome (FXS), the most common inherited form of intellectual disability and prevailing known genetic basis of autism, is caused by an expansion in the Fmr1 gene that prevents transcription and translation of fragile X mental retardation protein (FMRP). FMRP binds to and controls translation of mRNAs downstream of metabotropic glutamate receptor (mGluR) activation. Recent work shows that FMRP interacts with the transcript encoding striatal-enriched protein tyrosine phosphatase (STEP; Ptpn5). STEP opposes synaptic strengthening and promotes synaptic weakening by dephosphorylating its substrates, including ERK1/2, p38, Fyn and Pyk2, and subunits of N-methyl-d-aspartate (NMDA) and AMPA receptors. Here, we show that basal levels of STEP are elevated and mGluR-dependent STEP synthesis is absent in Fmr1(KO) mice. We hypothesized that the weakened synaptic strength and behavioral abnormalities reported in FXS may be linked to excess levels of STEP. To test this hypothesis, we reduced or eliminated STEP genetically in Fmr1(KO) mice and assessed mice in a battery of behavioral tests. In addition to attenuating audiogenic seizures and seizure-induced c-Fos activation in the periaqueductal gray, genetically reducing STEP in Fmr1(KO) mice reversed characteristic social abnormalities, including approach, investigation and anxiety. Loss of STEP also corrected select nonsocial anxiety-related behaviors in Fmr1(KO) mice, such as light-side exploration in the light/dark box. Our findings indicate that genetically reducing STEP significantly diminishes seizures and restores select social and nonsocial anxiety-related behaviors in Fmr1(KO) mice, suggesting that strategies to inhibit STEP activity may be effective for treating patients with FXS. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.
Dysregulation of cellular calcium homeostasis in Alzheimer's disease: bad genes and bad habits.
Mattson, M P; Chan, S L
2001-10-01
Calcium is one of the most important intracellular messengers in the brain, being essential for neuronal development, synaptic transmission and plasticity, and the regulation of various metabolic pathways. The findings reviewed in the present article suggest that calcium also plays a prominent role in the pathogenesis of Alzheimer's disease (AD). Associations between the pathological hallmarks ofAD (neurofibrillary tangles [NFT] and amyloid plaques) and perturbed cellular calcium homeostasis have been established in studies of patients, and in animal and cell culture models of AD. Studies of the effects of mutations in the beta-amyloid precursor protein (APP) and presenilins on neuronal plasticity and survival have provided insight into the molecular cascades that result in synaptic dysfunction and neuronal degeneration in AD. Central to the neurodegenerative process is the inability of neurons to properly regulate intracellular calcium levels. Increased levels of amyloid beta-peptide (Abeta) induce oxidative stress, which impairs cellular ion homeostasis and energy metabolism and renders neurons vulnerable to apoptosis and excitotoxicity. Subtoxic levels of Abeta may induce synaptic dysfunction by impairing multiple signal transduction pathways. Presenilin mutations perturb calcium homeostasis in the endoplasmic reticulum in a way that sensitizes neurons to apoptosis and excitotoxicity; links between aberrant calcium regulation and altered APP processing are emerging. Environmental risk factors for AD are being identified and may include high calorie diets, folic acid insufficiency, and a low level of intellectual activity (bad habits); in each case, the environmental factor impacts on neuronal calcium homeostasis. Low calorie diets and intellectual activity may guard against AD by stimulating production of neurotrophic factors and chaperone proteins. The emerging picture of the cell and molecular biology of AD is revealing novel preventative and therapeutic strategies for eradicating this growing epidemic of the elderly.
Lopes, Sofia; Teplytska, Larysa; Vaz-Silva, Joao; Dioli, Chrysoula; Trindade, Rita; Morais, Monica; Webhofer, Christian; Maccarrone, Giuseppina; Almeida, Osborne F X; Turck, Christoph W; Sousa, Nuno; Sotiropoulos, Ioannis; Filiou, Michaela D
2017-04-01
Tau protein in dendrites and synapses has been recently implicated in synaptic degeneration and neuronal malfunction. Chronic stress, a well-known inducer of neuronal/synaptic atrophy, triggers hyperphosphorylation of Tau protein and cognitive deficits. However, the cause-effect relationship between these events remains to be established. To test the involvement of Tau in stress-induced impairments of cognition, we investigated the impact of stress on cognitive behavior, neuronal structure, and the synaptic proteome in the prefrontal cortex (PFC) of Tau knock-out (Tau-KO) and wild-type (WT) mice. Whereas exposure to chronic stress resulted in atrophy of apical dendrites and spine loss in PFC neurons as well as significant impairments in working memory in WT mice, such changes were absent in Tau-KO animals. Quantitative proteomic analysis of PFC synaptosomal fractions, combined with transmission electron microscopy analysis, suggested a prominent role for mitochondria in the regulation of the effects of stress. Specifically, chronically stressed animals exhibit Tau-dependent alterations in the levels of proteins involved in mitochondrial transport and oxidative phosphorylation as well as in the synaptic localization of mitochondria in PFC. These findings provide evidence for a causal role of Tau in mediating stress-elicited neuronal atrophy and cognitive impairment and indicate that Tau may exert its effects through synaptic mitochondria. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Gong, Bing; Vitolo, Ottavio V.; Trinchese, Fabrizio; Liu, Shumin; Shelanski, Michael; Arancio, Ottavio
2004-01-01
Evidence suggests that Alzheimer disease (AD) begins as a disorder of synaptic function, caused in part by increased levels of amyloid β-peptide 1–42 (Aβ42). Both synaptic and cognitive deficits are reproduced in mice double transgenic for amyloid precursor protein (AA substitution K670N,M671L) and presenilin-1 (AA substitution M146V). Here we demonstrate that brief treatment with the phosphodiesterase 4 inhibitor rolipram ameliorates deficits in both long-term potentiation (LTP) and contextual learning in the double-transgenic mice. Most importantly, this beneficial effect can be extended beyond the duration of the administration. One course of long-term systemic treatment with rolipram improves LTP and basal synaptic transmission as well as working, reference, and associative memory deficits for at least 2 months after the end of the treatment. This protective effect is possibly due to stabilization of synaptic circuitry via alterations in gene expression by activation of the cAMP-dependent protein kinase (PKA)/cAMP regulatory element–binding protein (CREB) signaling pathway that make the synapses more resistant to the insult inflicted by Aβ. Thus, agents that enhance the cAMP/PKA/CREB pathway have potential for the treatment of AD and other diseases associated with elevated Aβ42 levels. PMID:15578094
Bark, Christina; Bellinger, Frederick P; Kaushal, Ashutosh; Mathews, James R; Partridge, L Donald; Wilson, Michael C
2004-10-06
Although the basic molecular components that promote regulated neurotransmitter release are well established, the contribution of these proteins as regulators of the plasticity of neurotransmission and refinement of synaptic connectivity during development is elaborated less fully. For example, during the period of synaptic growth and maturation in brain, the expression of synaptosomal protein 25 kDa (SNAP-25), a neuronal t-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) essential for action potential-dependent neuroexocytosis, is altered through alternative splicing of pre-mRNA transcripts. We addressed the role of the two splice-variant isoforms of SNAP-25 with a targeted mouse mutation that impairs the shift from SNAP-25a to SNAP-25b. Most of these mutant mice die between 3 and 5 weeks of age, which coincides with the time when SNAP-25b expression normally reaches mature levels in brain and synapse formation is essentially completed. The altered expression of these SNAP-25 isoforms influences short-term synaptic function by affecting facilitation but not the initial probability of release. This suggests that mechanisms controlling alternative splicing between SNAP-25 isoforms contribute to a molecular switch important for survival that helps to guide the transition from immature to mature synaptic connections, as well as synapse regrowth and remodeling after neural injury.
Contributions of Bcl-xL to acute and long term changes in bioenergetics during neuronal plasticity.
Jonas, Elizabeth A
2014-08-01
Mitochondria manufacture and release metabolites and manage calcium during neuronal activity and synaptic transmission, but whether long term alterations in mitochondrial function contribute to the neuronal plasticity underlying changes in organism behavior patterns is still poorly understood. Although normal neuronal plasticity may determine learning, in contrast a persistent decline in synaptic strength or neuronal excitability may portend neurite retraction and eventual somatic death. Anti-death proteins such as Bcl-xL not only provide neuroprotection at the neuronal soma during cell death stimuli, but also appear to enhance neurotransmitter release and synaptic growth and development. It is proposed that Bcl-xL performs these functions through its ability to regulate mitochondrial release of bioenergetic metabolites and calcium, and through its ability to rapidly alter mitochondrial positioning and morphology. Bcl-xL also interacts with proteins that directly alter synaptic vesicle recycling. Bcl-xL translocates acutely to sub-cellular membranes during neuronal activity to achieve changes in synaptic efficacy. After stressful stimuli, pro-apoptotic cleaved delta N Bcl-xL (ΔN Bcl-xL) induces mitochondrial ion channel activity leading to synaptic depression and this is regulated by caspase activation. During physiological states of decreased synaptic stimulation, loss of mitochondrial Bcl-xL and low level caspase activation occur prior to the onset of long term decline in synaptic efficacy. The degree to which Bcl-xL changes mitochondrial membrane permeability may control the direction of change in synaptic strength. The small molecule Bcl-xL inhibitor ABT-737 has been useful in defining the role of Bcl-xL in synaptic processes. Bcl-xL is crucial to the normal health of neurons and synapses and its malfunction may contribute to neurodegenerative disease. Copyright © 2013. Published by Elsevier B.V.
Glycosylated SV2 and Gangliosides as Dual Receptors for Botulinum Neurotoxin Serotype F
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Zhuji; Chen, Chen; Barbieri, Joseph T.
2010-02-22
Botulinum neurotoxin causes rapid flaccid paralysis through the inhibition of acetylcholine release at the neuromuscular junction. The seven BoNT serotypes (A-G) have been proposed to bind motor neurons via ganglioside-protein dual receptors. To date, the structure-function properties of BoNT/F host receptor interactions have not been resolved. Here, we report the crystal structures of the receptor binding domains (HCR) of BoNT/A and BoNT/F and the characterization of the dual receptors for BoNT/F. The overall polypeptide fold of HCR/A is essentially identical to the receptor binding domain of the BoNT/A holotoxin, and the structure of HCR/F is very similar to that ofmore » HCR/A, except for two regions implicated in neuronal binding. Solid phase array analysis identified two HCR/F binding glycans: ganglioside GD1a and oligosaccharides containing an N-acetyllactosamine core. Using affinity chromatography, HCR/F bound native synaptic vesicle glycoproteins as part of a protein complex. Deglycosylation of glycoproteins using {alpha}(1-3,4)-fucosidase, endo-{beta}-galactosidase, and PNGase F disrupted the interaction with HCR/F, while the binding of HCR/B to its cognate receptor, synaptotagmin I, was unaffected. These data indicate that the HCR/F binds synaptic vesicle glycoproteins through the keratan sulfate moiety of SV2. The interaction of HCR/F with gangliosides was also investigated. HCR/F bound specifically to gangliosides that contain {alpha}2,3-linked sialic acid on the terminal galactose of a neutral saccharide core (binding order GT1b = GD1a GM3; no binding to GD1b and GM1a). Mutations within the putative ganglioside binding pocket of HCR/F decreased binding to gangliosides, synaptic vesicle protein complexes, and primary rat hippocampal neurons. Thus, BoNT/F neuronal discrimination involves the recognition of ganglioside and protein (glycosylated SV2) carbohydrate moieties, providing a structural basis for the high affinity and specificity of BoNT/F for neurons.« less
Acute Increases in Protein O-GlcNAcylation Dampen Epileptiform Activity in Hippocampus
Wang, Kai; Pati, Sandipan; Olsen, Michelle L.; Chatham, John C.
2017-01-01
O-GlcNAcylation is a ubiquitous and dynamic post-translational modification involving the O-linkage of β-N-acetylglucosamine to serine/threonine residues of membrane, cytosolic, and nuclear proteins. This modification is similar to phosphorylation and regarded as a key regulator of cell survival and homeostasis. Previous studies have shown that phosphorylation of serine residues on synaptic proteins is a major regulator of synaptic strength and long-term plasticity, suggesting that O-GlcNAcylation of synaptic proteins is likely as important as phosphorylation; however, few studies have investigated its role in synaptic efficacy. We recently demonstrated that acutely increasing O-GlcNAcylation induces a novel form of LTD at CA3-CA1 synapses, O-GlcNAc LTD. Here, using hippocampal slices from young adult male rats and mice, we report that epileptiform activity at CA3-CA1 synapses, generated by GABAAR inhibition, is significantly attenuated when protein O-GlcNAcylation is pharmacologically increased. This dampening effect is lost in slices from GluA2 KO mice, indicating a requirement of GluA2-containing AMPARs, similar to expression of O-GlcNAc LTD. Furthermore, we find that increasing O-GlcNAcylation decreases spontaneous CA3 pyramidal cell activity under basal and hyperexcitable conditions. This dampening effect was also observed on cortical hyperexcitability during in vivo EEG recordings in awake mice where the effects of the proconvulsant pentylenetetrazole are attenuated by acutely increasing O-GlcNAcylation. Collectively, these data demonstrate that the post-translational modification, O-GlcNAcylation, is a novel mechanism by which neuronal and synaptic excitability can be regulated, and suggest the possibility that increasing O-GlcNAcylation could be a novel therapeutic target to treat seizure disorders and epilepsy. SIGNIFICANCE STATEMENT We recently reported that an acute pharmacological increase in protein O-GlcNAcylation induces a novel form of long-term synaptic depression at hippocampal CA3-CA1 synapses (O-GlcNAc LTD). This synaptic dampening effect on glutamatergic networks suggests that increasing O-GlcNAcylation will depress pathological hyperexcitability. Using in vitro and in vivo models of epileptiform activity, we show that acutely increasing O-GlcNAc levels can significantly attenuate ongoing epileptiform activity and prophylactically dampen subsequent seizure activity. Together, our findings support the conclusion that protein O-GlcNAcylation is a regulator of neuronal excitability, and it represents a promising target for further research on seizure disorder therapeutics. PMID:28760863
Saheki, Yasunori; De Camilli, Pietro
2012-01-01
Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization. PMID:22763746
Choudhury, Saumitra Dey; Mushtaq, Zeeshan; Reddy-Alla, Suneel; Balakrishnan, Sruthi S; Thakur, Rajan S; Krishnan, Kozhalmannom S; Raghu, Padinjat; Ramaswami, Mani; Kumar, Vimlesh
2016-05-01
The functional requirement of adapter protein 2 (AP2) complex in synaptic membrane retrieval by clathrin-mediated endocytosis is not fully understood. Here we isolated and functionally characterized a mutation that dramatically altered synaptic development. Based on the aberrant neuromuscular junction (NMJ) synapse, we named this mutation angur (a Hindi word meaning "grapes"). Loss-of-function alleles of angur show more than twofold overgrowth in bouton numbers and a dramatic decrease in bouton size. We mapped the angur mutation to σ2-adaptin, the smallest subunit of the AP2 complex. Reducing the neuronal level of any of the subunits of the AP2 complex or disrupting AP2 complex assembly in neurons phenocopied the σ2-adaptin mutation. Genetic perturbation of σ2-adaptin in neurons leads to a reversible temperature-sensitive paralysis at 38°. Electrophysiological analysis of the mutants revealed reduced evoked junction potentials and quantal content. Interestingly, high-frequency nerve stimulation caused prolonged synaptic fatigue at the NMJs. The synaptic levels of subunits of the AP2 complex and clathrin, but not other endocytic proteins, were reduced in the mutants. Moreover, bone morphogenetic protein (BMP)/transforming growth factor β (TGFβ) signaling was altered in these mutants and was restored by normalizing σ2-adaptin in neurons. Thus, our data suggest that (1) while σ2-adaptin facilitates synaptic vesicle (SV) recycling for basal synaptic transmission, its activity is also required for regenerating SVs during high-frequency nerve stimulation, and (2) σ2-adaptin regulates NMJ morphology by attenuating TGFβ signaling. Copyright © 2016 by the Genetics Society of America.
Volknandt, W; Zimmermann, H
1986-11-01
Cholinergic synaptic vesicles were isolated from the electric organs of the electric eel (Electrophorus electricus) and the electric catfish (Malapterurus electricus) as well as from the diaphragm of the rat by density gradient centrifugation followed by column chromatography on Sephacryl-1000. This was verified by both biochemical and electron microscopic criteria. Differences in size between synaptic vesicles from the various tissue sources were reflected by their elution pattern from the Sephacryl column. Specific activities of acetylcholine (ACh; in nmol/mg of protein) of chromatography-purified vesicle fractions were 36 (electric eel), 2 (electric catfish), and 1 (rat diaphragm). Synaptic vesicles from all three sources contained ATP in addition to ACh (molar ratios of ACh/ATP, 9-12) as well as binding activity for an antibody raised against Torpedo cholinergic synaptic vesicle proteoglycan. Synaptic vesicles from rat diaphragm contained binding activity for the monoclonal antibody asv 48 raised against a rat brain 65-kilodalton synaptic vesicle protein. Antibody asv 48 binding was absent from electric eel and electric catfish synaptic vesicles. These antibody binding results, which were obtained by a dot blot assay on isolated vesicles, directly correspond to the immunocytochemical results demonstrating fluorescein isothiocyanate staining in the respective nerve terminals. Our results imply that ACh, ATP, and proteoglycan are common molecular constituents of motor nerve terminal-derived synaptic vesicles from Torpedo to rat. In addition to ACh, both ATP and proteoglycan may play a specific role in the process of cholinergic signal transmission.
From Split to Sibenik: The Tortuous Pathway in the Cholinesterase Field
Taylor, Palmer
2010-01-01
The interim between the first and tenth International Cholinesterase meetings has seen remarkable advances associated with the applications of structural biology and recombinant DNA methodology to our field. The cloning of the cholinesterase genes led to the identification of a new super family of proteins, termed the α,β–hydrolase fold; members of this family possess a four helix bundle capable of linking structural subunits to the functioning globular protein. Sequence comparisons and three dimensional structural studies revealed unexpected cousins possessing this fold that, in turn, revealed three distinct functions for the α,β-hydrolase proteins. These encompass: (1) a capacity for hydrolytic cleavage of a great variety of substrates, (2) a heterophilic adhesion function that results in trans-synaptic associations in linked neurons, (3) a chaperone function leading to stabilization of nascent protein and its trafficking to an extracellular or secretory storage location. The analysis and modification of structure may go beyond understanding mechanism, since it may be possible to convert the cholinesterases to efficient detoxifying agents of organophosphatases assisted by added oximes. Also, the study of the relationship between the α,β–hydrolase fold proteins and their biosynthesis may yield means by which aberrant trafficking may be corrected, enhancing expression of mutant proteins. Those engaged in cholinesterase research should take great pride in our accomplishments punctuated by the series of ten meetings. The momentum established and initial studies with related proteins all hold great promise for the future. PMID:20493179
Patrick, Gentry N
2006-02-01
The formation of synaptic connections during the development of the nervous system requires the precise targeting of presynaptic and postsynaptic compartments. Furthermore, synapses are continually modified in the brain by experience. Recently, the ubiquitin proteasome system has emerged as a key regulator of synaptic development and function. The modification of proteins by ubiquitin, and in many cases their subsequent proteasomal degradation, has proven to be an important mechanism to control protein stability, activity and localization at synapses. Recent work has highlighted key questions of the UPS during the development and remodeling of synaptic connections in the nervous system.
Neurexin and Neuroligin Mediate Retrograde Synaptic Inhibition in C. elegans
Hu, Zhitao; Hom, Sabrina; Kudze, Tambudzai; Tong, Xia-Jing; Choi, Seungwon; Aramuni, Gayane; Zhang, Weiqi; Kaplan, Joshua M.
2013-01-01
The synaptic adhesion molecules Neurexin and Neuroligin alter the development and function of synapses and are linked to autism in humans. We find that C. elegans Neurexin (NRX-1) and Neuroligin (NLG-1) mediate a retrograde synaptic signal that inhibits neurotransmitter release at neuromuscular junctions. Retrograde signaling was induced in mutants lacking a muscle microRNA (miR-1) and was blocked in mutants lacking NLG-1 or NRX-1. Release was rapid and abbreviated when the retrograde signal was on whereas release was slow and prolonged when retrograde signaling was blocked. The retrograde signal adjusted release kinetics by inhibiting exocytosis of synaptic vesicles (SVs) that are distal to the site of calcium entry. Inhibition of release was mediated by increased pre-synaptic levels of Tomosyn, an inhibitor of SV fusion. PMID:22859820
ERIC Educational Resources Information Center
Pirbhoy, Patricia Salgado; Farris, Shannon; Steward, Oswald
2016-01-01
Previous studies have shown that induction of long-term potentiation (LTP) induces phosphorylation of ribosomal protein S6 (rpS6) in postsynaptic neurons, but the functional significance of rpS6 phosphorylation is poorly understood. Here, we show that synaptic stimulation that induces perforant path LTP triggers phosphorylation of rpS6 (p-rpS6)…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujimura, Masatake, E-mail: fujimura@nimd.go.jp; Usuki, Fusako; Cheng, Jinping
Methylmercury (MeHg) is a highly neurotoxic environmental chemical that can cause developmental impairments. Human fetuses and neonates are particularly susceptible to MeHg toxicity; however, the mechanisms governing its effects in the developing brain are unclear. In the present study, we investigated the effects of prenatal and lactational MeHg exposure on the developing cerebellum in rats. We demonstrated that exposure to 5 ppm MeHg decreased postnatal expression of pre- and postsynaptic proteins, suggesting an impairment in synaptic development. MeHg exposure also reduced neurite outgrowth, as shown by a decrease in the expression of the neurite marker neurofilament H. These changes weremore » not observed in rats exposed to 1 ppm MeHg. In order to define the underlying mechanism, we investigated the effects of MeHg exposure on the tropomyosin receptor kinase (Trk) A pathway, which plays important roles in neuronal differentiation and synapse formation. We demonstrated suppression of the TrkA pathway on gestation day 20 in rats exposed to 5 ppm MeHg. In addition, down-regulation of eukaryotic elongation factor 1A1 (eEF1A1) was observed on postnatal day 1. eEF1A1 knockdown in differentiating PC12 cells impaired neurite outgrowth and synaptic protein expression, similar to the results of MeHg exposure in the cerebellum. These results suggest that suppression of the TrkA pathway and subsequent decreases in eEF1A1 expression induced by prenatal exposure to MeHg may lead to reduced neurite outgrowth and synaptic protein expression in the developing cerebellum. - Highlights: • Prenatal exposure to MeHg decreased postnatal expression of synaptic proteins. • MeHg exposure also reduced neurite outgrowth postnatally. • Suppression of the TrkA pathway and eEF1A1 expression was induced by MeHg exposure. • eEF1A1 knockdown impaired neurite outgrowth and synaptic protein expression.« less
Coba, M P; Ramaker, M J; Ho, E V; Thompson, S L; Komiyama, N H; Grant, S G N; Knowles, J A; Dulawa, S C
2018-02-02
The scaffold protein DLGAP1 is localized at the post-synaptic density (PSD) of glutamatergic neurons and is a component of supramolecular protein complexes organized by PSD95. Gain-of-function variants of DLGAP1 have been associated with obsessive-compulsive disorder (OCD), while haploinsufficient variants have been linked to autism spectrum disorder (ASD) and schizophrenia in human genetic studies. We tested male and female Dlgap1 wild type (WT), heterozygous (HT), and knockout (KO) mice in a battery of behavioral tests: open field, dig, splash, prepulse inhibition, forced swim, nest building, social approach, and sucrose preference. We also used biochemical approaches to examine the role of DLGAP1 in the organization of PSD protein complexes. Dlgap1 KO mice were most notable for disruption of protein interactions in the PSD, and deficits in sociability. Other behavioral measures were largely unaffected. Our data suggest that Dlgap1 knockout leads to PSD disruption and reduced sociability, consistent with reports of DLGAP1 haploinsufficient variants in schizophrenia and ASD.
Fourneau, Julie; Canu, Marie-Hélène; Cieniewski-Bernard, Caroline; Bastide, Bruno; Dupont, Erwan
2018-05-28
In human, a chronic sensorimotor perturbation (SMP) through prolonged body immobilization alters motor task performance through a combination of peripheral and central factors. Studies performed on a rat model of SMP have shown biomolecular changes and a reorganization of sensorimotor cortex through events such as morphological modifications of dendritic spines (number, length, functionality). However, underlying mechanisms are still unclear. It is well known that phosphorylation regulates a wide field of synaptic activity leading to neuroplasticity. Another post-translational modification that interplays with phosphorylation is O-GlcNAcylation. This atypical glycosylation, reversible and dynamic, is involved in essential cellular and physiological processes such as synaptic activity, neuronal morphogenesis, learning and memory. We examined potential roles of phosphorylation/O-GlcNAcylation interplay in synaptic plasticity within rat sensorimotor cortex after a SMP period. For this purpose, sensorimotor cortex synaptosomes were separated by sucrose gradient, in order to isolate a subcellular compartment enriched in proteins involved in synaptic functions. A period of SMP induced plastic changes at the pre- and postsynaptic levels, characterized by a reduction of phosphorylation (synapsin1, AMPAR GluA2) and expression (synaptophysin, PSD-95, AMPAR GluA2) of synaptic proteins, as well as a decrease in MAPK/ERK42 activation. Expression levels of OGT/OGA enzymes was unchanged but we observed a specific reduction of synapsin1 O-GlcNAcylation in sensorimotor cortex synaptosomes. The synergistic regulation of synapsin1 phosphorylation/O-GlcNAcylation could affect presynaptic neurotransmitter release. Associated with other pre- and postsynaptic changes, synaptic efficacy could be impaired in somatosensory cortex of SMP rat. Thus, synapsin1 O-GlcNAcylation/phosphorylation interplay also appears to be involved in this synaptic plasticity by finely regulating neural activity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Volknandt, W; Naito, S; Ueda, T; Zimmermann, H
1987-08-01
Using an affinity-purified monospecific polyclonal antibody against bovine brain synapsin I, the distribution of antigenically related proteins was investigated in the electric organs of the three strongly electric fish Torpedo marmorata, Electrophorus electricus, Malapterurus electricus and in the rat diaphragm. On application of indirect fluorescein isothiocyanate-immunofluorescence and using alpha-bungarotoxin for identification of synaptic sites, intense and very selective staining of nerve terminals was found in all of these tissues. Immunotransfer blots of tissue homogenates revealed specific bands whose molecular weights are similar to those of synapsin Ia and synapsin Ib. Moreover, synapsin I-like proteins are still attached to the synaptic vesicles that were isolated in isotonic glycine solution from Torpedo electric organ by density gradient centrifugation and chromatography on Sephacryl-1000. Our results suggest that synapsin I-like proteins are also associated with cholinergic synaptic vesicles of electric organs and that the electric organ may be an ideal source for studying further the functional and molecular properties of synapsin.
Synaptophysin regulates the kinetics of synaptic vesicle endocytosis in central neurons
Kwon, Sung E.; Chapman, Edwin R.
2011-01-01
Summary Despite being the most abundant synaptic vesicle membrane protein, the function of synaptophysin remains enigmatic. For example, synaptic transmission was reported to be completely normal in synaptophysin knockout mice; however, direct experiments to monitor the synaptic vesicle cycle have not been carried out. Here, using optical imaging and electrophysiological experiments, we demonstrate that synaptophysin is required for kinetically efficient endocytosis of synaptic vesicles in cultured hippocampal neurons. Truncation analysis revealed that distinct structural elements of synaptophysin differentially regulate vesicle retrieval during and after stimulation. Thus, synaptophysin regulates at least two phases of endocytosis to ensure vesicle availability during and after sustained neuronal activity. PMID:21658579
Arendt, Thomas; Bullmann, Torsten
2013-09-01
The present paper provides an overview of adaptive changes in brain structure and learning abilities during hibernation as a behavioral strategy used by several mammalian species to minimize energy expenditure under current or anticipated inhospitable environmental conditions. One cellular mechanism that contributes to the regulated suppression of metabolism and thermogenesis during hibernation is reversible phosphorylation of enzymes and proteins, which limits rates of flux through metabolic pathways. Reversible phosphorylation during hibernation also affects synaptic membrane proteins, a process known to be involved in synaptic plasticity. This mechanism of reversible protein phosphorylation also affects the microtubule-associated protein tau, thereby generating a condition that in the adult human brain is associated with aggregation of tau protein to paired helical filaments (PHFs), as observed in Alzheimer's disease. Here, we put forward the concept that phosphorylation of tau is a neuroprotective mechanism to escape NMDA-mediated hyperexcitability of neurons that would otherwise occur during slow gradual cooling of the brain. Phosphorylation of tau and its subsequent targeting to subsynaptic sites might, thus, work as a kind of "master switch," regulating NMDA receptor-mediated synaptic gain in a wide array of neuronal networks, thereby enabling entry into torpor. If this condition lasts too long, however, it may eventually turn into a pathological trigger, driving a cascade of events leading to neurodegeneration, as in Alzheimer's disease or other "tauopathies".
Proteomic Analysis of Rat Hippocampus under Simulated Microgravity
NASA Astrophysics Data System (ADS)
Wang, Yun; Li, Yujuan; Zhang, Yongqian; Liu, Yahui; Deng, Yulin
It has been found that microgravity may lead to impairments in cognitive functions performed by CNS. However, the exact mechanism of effects of microgravity on the learning and memory function in animal nervous system is not elucidated yet. Brain function is mainly mediated by membrane proteins and their dysfunction causes degeneration of the learning and memory. To induce simulated microgravity, the rat tail suspension model was established. Comparative O (18) labeling quantitative proteomic strategy was applied to detect the differentially expressed proteins in rat brain hippocampus. The proteins in membrane fraction from rat hippocampus were digested by trypsin and then the peptides were separated by off-gel for the first dimension with 24 wells device encompassing the pH range of 3 - 10. An off-gel fraction was subjected into LC-ESI-QTOF in triplicate. Preliminary results showed that nearly 77% of the peptides identified were specific to one fraction. 676 proteins were identified among which 108 proteins were found differentially expressed under simulated microgravity. Using the KOBAS server, many enriched pathways, such as metabolic pathway, synaptic vesicle cycle, endocytosis, calcium signaling pathway, and SNAREs pathway were identified. Furthermore, it has been found that neurotransmitter released by Ca (2+) -triggered synaptic vesicles fusion may play key role in neural function. Rab 3A might inhibit the membrane fusion and neurotransmitter release. The protein alteration of the synaptic vesicle cycle may further explain the effects of microgravity on learning and memory function in rats. Key words: Microgravity; proteomics; synaptic vesicle; O (18) ({}) -labeling
HIRANO, ARLENE A.; BRANDSTÄTTER, JOHANN H.; BRECHA, NICHOLAS C.
2010-01-01
The mechanism underlying transmitter release from retinal horizontal cells is poorly understood. We investigated the possibility of vesicular transmitter release from mammalian horizontal cells by examining the expression of synaptic proteins that participate in vesicular transmitter release at chemical synapses. Using immunocytochemistry, we evaluated the cellular and subcellular distribution of complexin I/II, syntaxin-1, and synapsin I in rabbit retina. Strong labeling for complexin I/II, proteins that regulate a late step in vesicular transmitter release, was found in both synaptic layers of the retina, and in somata of A- and B-type horizontal cells, of γ-aminobutyric acid (GABA)- and glycinergic amacrine cells, and of ganglion cells. Immunoelectron microscopy demonstrated the presence of complexin I/II in horizontal cell processes postsynaptic to rod and cone ribbon synapses. Syntaxin-1, a core protein of the soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) complex known to bind to complexin, and synapsin I, a synaptic vesicle-associated protein involved in the Ca2+-dependent recruitment of synaptic vesicles for transmitter release, were also present in the horizontal cells and their processes at photoreceptor synapses. Photoreceptors and bipolar cells did not express any of these proteins at their axon terminals. The presence of complexin I/II, syntaxin-1, and synapsin I in rabbit horizontal cell processes and tips suggests that a vesicular mechanism may underlie transmitter release from mammalian horizontal cells. PMID:15912504
Carrion, Maria Dolores Perez; Marsicano, Silvia; Daniele, Federica; Marte, Antonella; Pischedda, Francesca; Di Cairano, Eliana; Piovesana, Ester; von Zweydorf, Felix; Kremmer, Elisabeth; Gloeckner, Christian Johannes; Onofri, Franco; Perego, Carla; Piccoli, Giovanni
2017-07-14
Mutations in the Leucine-rich repeat kinase 2 gene (LRRK2) are associated with familial Parkinson's disease (PD). LRRK2 protein contains several functional domains, including protein-protein interaction domains at its N- and C-termini. In this study, we analyzed the functional features attributed to LRRK2 by its N- and C-terminal domains. We combined TIRF microscopy and synaptopHluorin assay to visualize synaptic vesicle trafficking. We found that N- and C-terminal domains have opposite impact on synaptic vesicle dynamics. Biochemical analysis demonstrated that different proteins are bound at the two extremities, namely β3-Cav2.1 at N-terminus part and β-Actin and Synapsin I at C-terminus domain. A sequence variant (G2385R) harboured within the C-terminal WD40 domain increases the risk for PD. Complementary biochemical and imaging approaches revealed that the G2385R variant alters strength and quality of LRRK2 interactions and increases fusion of synaptic vesicles. Our data suggest that the G2385R variant behaves like a loss-of-function mutation that mimics activity-driven events. Impaired scaffolding capabilities of mutant LRRK2 resulting in perturbed vesicular trafficking may arise as a common pathophysiological denominator through which different LRRK2 pathological mutations cause disease.
Gaspar, J M; Castilho, Á; Baptista, F I; Liberal, J; Ambrósio, A F
2010-12-29
A few studies have reported the existence of depletion of synaptic vesicles, and changes in neurotransmitter release and in the content of exocytotic proteins in the hippocampus of diabetic rats. Recently, we found that diabetes alters the levels of synaptic proteins in hippocampal nerve terminals. Hyperglycemia is considered the main trigger of diabetic complications, although other factors, such as low insulin levels, also contribute to diabetes-induced changes. Thus, the aim of this work was to evaluate whether long-term elevated glucose per se, which mimics prolonged hyperglycemia, induces significant changes in the content and localization of synaptic proteins involved in exocytosis in hippocampal neurons. Hippocampal cell cultures were cultured for 14 days and were exposed to high glucose (50 mM) or mannitol (osmotic control; 25 mM plus 25 mM glucose), for 7 days. Cell viability and nuclear morphology were evaluated by MTT and Hoechst assays, respectively. The protein levels of vesicle-associated membrane protein-2 (VAMP-2), synaptosomal-associated protein-25 (SNAP-25), syntaxin-1, synapsin-1, synaptophysin, synaptotagmin-1, rabphilin 3a, and also of vesicular glutamate and GABA transporters (VGluT-1 and VGAT), were evaluated by immunoblotting, and its localization was analyzed by immunocytochemistry. The majority of the proteins were not affected. However, elevated glucose decreased the content of SNAP-25 and increased the content of synaptotagmin-1 and VGluT-1. Moreover, there was an accumulation of syntaxin-1, synaptotagmin-1 and VGluT-1 in the cell body of some hippocampal neurons exposed to high glucose. No changes were detected in mannitol-treated cells. In conclusion, elevated glucose per se did not induce significant changes in the content of the majority of the synaptic proteins studied in hippocampal cultures, with the exception of SNAP-25, synaptotagmin-1 and VGluT-1. However, there was an accumulation of some proteins in cell bodies of hippocampal neurons exposed to elevated glucose, suggesting that the trafficking of these proteins to the synapse may be compromised. Moreover, these results also suggest that other factors, in addition to hyperglycemia, certainly contribute to alterations detected in synaptic proteins in diabetic animals. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Impact Mediated Loading Cytoplasmic Loading of Macromolecules into Adherent Cells
NASA Technical Reports Server (NTRS)
Clarke, Mark S. F.; Feeback, Daniel L.; Vanderburg, Charles R.
2003-01-01
The advent of modern molecular biology, including the development of gene array technologies, has resulted in an explosion of information concerning the specific genes activated during normal cellular development, as well as those associated with a variety of pathological conditions. These techniques have served as a highly efficient, broacI.-based screening approach for those specific genes involved. in regulating normal cellular physiology and identifying candidate genes directly associated with the etiology of specific disease states. However, this approach provides information at the transcriptional' level only and does not necessarily indicate . that the gene in question is in fact translated ito a protein, or whether or not post-translational modification of the protein occurs. The critical importance of post-translational modification (i.e. phosphorylation, glycosylation, sialyation, etc.) to protein function has been recognized with regard to a number of proteins involved in a variety of important disease states. For example, altered glycosylation of beta-amyloid precursor protein results in an increase in the amount of beta-amyloid peptide generated and hence secreted as insoluble extracellular amyloid deposits (Georgopoulou, McLaughlin et al. 2001; Walter, Fluhrer et al. 2001), a pathological hal1nark of Alzheimer's disease. Abnormal phosphorylaion of synapsin I has been linked to alterations in synaptic vesicle trafficking leading to defective neurotransmission in Huntington's disease (Lievens, Woodman et al. 2002). Altered phosphorylation of the TAU protein involved in microtubule function has been linked to a number of neurodegenative diseases such as Alzheimer's disease (Billingsley and Kincaid 1997; Sanchez, Alvarez-Tllada et a1. 2001). Aberrant siaIyation of cell/I surface antigens has been detected in a number of different tumor cell types and has been linked to the acquisition of a neoplastic phenotype (Sell 1990), while improper' sia1yation of sodium channels in cardiac tissue has been linked to heart failure (Ufret-Vincenty, Baro et al. 2001; Fozzard and Kyle 2002).
Activity Induces Fmr1-Sensitive Synaptic Capture of Anterograde Circulating Neuropeptide Vesicles.
Cavolo, Samantha L; Bulgari, Dinara; Deitcher, David L; Levitan, Edwin S
2016-11-16
Synaptic neuropeptide and neurotrophin stores are maintained by constitutive bidirectional capture of dense-core vesicles (DCVs) as they circulate in and out of the nerve terminal. Activity increases DCV capture to rapidly replenish synaptic neuropeptide stores following release. However, it is not known whether this is due to enhanced bidirectional capture. Here experiments at the Drosophila neuromuscular junction, where DCVs contain neuropeptides and a bone morphogenic protein, show that activity-dependent replenishment of synaptic neuropeptides following release is evident after inhibiting the retrograde transport with the dynactin disruptor mycalolide B or photobleaching DCVs entering a synaptic bouton by retrograde transport. In contrast, photobleaching anterograde transport vesicles entering a bouton inhibits neuropeptide replenishment after activity. Furthermore, tracking of individual DCVs moving through boutons shows that activity selectively increases capture of DCVs undergoing anterograde transport. Finally, upregulating fragile X mental retardation 1 protein (Fmr1, also called FMRP) acts independently of futsch/MAP-1B to abolish activity-dependent, but not constitutive, capture. Fmr1 also reduces presynaptic neuropeptide stores without affecting activity-independent delivery and evoked release. Therefore, presynaptic motoneuron neuropeptide storage is increased by a vesicle capture mechanism that is distinguished from constitutive bidirectional capture by activity dependence, anterograde selectivity, and Fmr1 sensitivity. These results show that activity recruits a separate mechanism than used at rest to stimulate additional synaptic capture of DCVs for future release of neuropeptides and neurotrophins. Synaptic release of neuropeptides and neurotrophins depends on presynaptic accumulation of dense-core vesicles (DCVs). At rest, DCVs are captured bidirectionally as they circulate through Drosophila motoneuron terminals by anterograde and retrograde transport. Here we show that activity stimulates further synaptic capture that is distinguished from basal capture by its selectivity for anterograde DCVs and its inhibition by overexpression of the fragile X retardation protein Fmr1. Fmr1 dramatically lowers DCV numbers in synaptic boutons. Therefore, activity-dependent anterograde capture is a major determinant of presynaptic peptide stores. Copyright © 2016 the authors 0270-6474/16/3611781-07$15.00/0.
Schwarz, Karin; Schmitz, Frank
2017-03-20
Synaptic ribbons are needed for fast and continuous exocytosis in ribbon synapses. RIBEYE is a main protein component of synaptic ribbons and is necessary to build the synaptic ribbon. RIBEYE consists of a unique A-domain and a carboxyterminal B-domain, which binds NAD(H). Within the presynaptic terminal, the synaptic ribbons are in physical contact with large numbers of synaptic vesicle (SV)s. How this physical contact between ribbons and synaptic vesicles is established at a molecular level is not well understood. In the present study, we demonstrate that the RIBEYE(B)-domain can directly interact with lipid components of SVs using two different sedimentation assays with liposomes of defined chemical composition. Similar binding results were obtained with a SV-containing membrane fraction. The binding of liposomes to RIBEYE(B) depends upon the presence of a small amount of lysophospholipids present in the liposomes. Interestingly, binding of liposomes to RIBEYE(B) depends on NAD(H) in a redox-sensitive manner. The binding is enhanced by NADH, the reduced form, and is inhibited by NAD + , the oxidized form. Lipid-mediated attachment of vesicles is probably part of a multi-step process that also involves additional, protein-dependent processes. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Parker, J Alex; Metzler, Martina; Georgiou, John; Mage, Marilyne; Roder, John C; Rose, Ann M; Hayden, Michael R; Néri, Christian
2007-10-10
Huntingtin-interacting protein 1 (HIP1) was identified through its interaction with htt (huntingtin), the Huntington's disease (HD) protein. HIP1 is an endocytic protein that influences transport and function of AMPA and NMDA receptors in the brain. However, little is known about its contribution to neuronal dysfunction in HD. We report that the Caenorhabditis elegans HIP1 homolog hipr-1 modulates presynaptic activity and the abundance of synaptobrevin, a protein involved in synaptic vesicle fusion. Presynaptic function was also altered in hippocampal brain slices of HIP1-/- mice demonstrating delayed recovery from synaptic depression and a reduction in paired-pulse facilitation, a form of presynaptic plasticity. Interestingly, neuronal dysfunction in transgenic nematodes expressing mutant N-terminal huntingtin was specifically enhanced by hipr-1 loss of function. A similar effect was observed with several other mutant proteins that are expressed at the synapse and involved in endocytosis, such as unc-11/AP180, unc-26/synaptojanin, and unc-57/endophilin. Thus, HIP1 is involved in presynaptic nerve terminal activity and modulation of mutant polyglutamine-induced neuronal dysfunction. Moreover, synaptic proteins involved in endocytosis may protect neurons against amino acid homopolymer expansion.
Navakkode, Sheeja; Korte, Martin
2014-04-01
Cognitive impairment is one of the most important side effects associated with cannabis drug abuse, as well as the serious issue concerning the therapeutic use of cannabinoids. Cognitive impairments and neuropsychiatric symptoms are caused by early synaptic dysfunctions, such as loss of synaptic connections in different brain structures including the hippocampus, a region that is believed to play an important role in certain forms of learning and memory. We report here that metaplastic priming of synapses with a cannabinoid type 1 receptor (CB1 receptor) agonist, WIN55,212-2 (WIN55), significantly impaired long-term potentiation in the apical dendrites of CA1 pyramidal neurons. Interestingly, the CB1 receptor exerts its effect by altering the balance of protein synthesis machinery towards higher protein production. Therefore the activation of CB1 receptor, prior to strong tetanization, increased the propensity to produce new proteins. In addition, WIN55 priming resulted in the expression of late-LTP in a synaptic input that would have normally expressed early-LTP, thus confirming that WIN55 priming of LTP induces new synthesis of plasticity-related proteins. Furthermore, in addition to the effects on protein translation, WIN55 also induced synaptic deficits due to the ability of CB1 receptors to inhibit the release of acetylcholine, mediated by both muscarinic and nicotinic acetylcholine receptors. Taken together this supports the notion that the modulation of cholinergic activity by CB1 receptor activation is one mechanism that regulates the synthesis of plasticity-related proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.
Age-dependent decline of nogo-a protein in the mouse cerebrum.
Kumari, Anita; Thakur, M K
2014-11-01
Nogo-A, a myelin-associated neurite growth inhibitory protein, is implicated in synaptic plasticity. It binds to its receptor namely the Nogo-66 receptor1 (NgR1) and regulates filamentous (F) actin dynamics via small GTPases of the Rho family, RhoA kinase (ROCK), LimK and cofilin. These proteins are associated with the structural plasticity, one of the components of synaptic plasticity, which is known to decline with normal aging. So, the level of Nogo-A and its receptor NgR1 are likely to vary during normal brain aging. However, it is not clearly understood how the levels of Nogo-A and its receptor NgR1 change in the cerebrum during aging. Several studies show an age- and gender-dependent decline in synaptic plasticity. Therefore, the present study was planned to analyze the relative changes in the mRNA and protein levels of Nogo-A and NgR1 in both male and female mice cerebrum during normal aging. Western blot analysis has shown decrease in Nogo-A protein level during aging in both male and female mice cerebrum. This was further confirmed by immunofluorescence analysis. RT-PCR analysis of Nogo-A mRNA showed no significant difference in the above-mentioned groups. This was also supported by in situ hybridization. NgR1 protein and its mRNA expression levels showed no significant alteration with aging in the cerebrum of both male and female mice. Taken together, we speculate that the downregulation of Nogo-A protein might have a role in the altered synaptic plasticity during aging.
Critical period plasticity is disrupted in the barrel cortex of Fmr1 knockout mice
Harlow, Emily G.; Till, Sally M.; Russell, Theron A.; Wijetunge, Lasani S.; Kind, Peter; Contractor, Anis
2010-01-01
Summary Alterations in sensory processing constitute prominent symptoms of Fragile X syndrome; however, little is known about how disrupted synaptic and circuit development in sensory cortex contributes to these deficits. To investigate how the loss of fragile X mental retardation protein (FMRP) impacts the development of cortical synapses, we examined excitatory thalamocortical synapses in somatosensory cortex during the perinatal critical period in Fmr1 knockout mice. FMRP ablation resulted in dysregulation of glutamatergic signaling maturation. The fraction of silent synapses persisting to later developmental times was increased, there was a temporal delay in the window for synaptic plasticity, while other forms of developmental plasticity were not altered in Fmr1 knockout mice. Our results indicate that FMRP is required for the normal developmental progression of synaptic maturation, and loss of this important RNA binding protein impacts the timing of the critical period for layer IV synaptic plasticity. PMID:20159451
Shank3 Is Part of a Zinc-Sensitive Signaling System That Regulates Excitatory Synaptic Strength.
Arons, Magali H; Lee, Kevin; Thynne, Charlotte J; Kim, Sally A; Schob, Claudia; Kindler, Stefan; Montgomery, Johanna M; Garner, Craig C
2016-08-31
Shank3 is a multidomain scaffold protein localized to the postsynaptic density of excitatory synapses. Functional studies in vivo and in vitro support the concept that Shank3 is critical for synaptic plasticity and the trans-synaptic coupling between the reliability of presynaptic neurotransmitter release and postsynaptic responsiveness. However, how Shank3 regulates synaptic strength remains unclear. The C terminus of Shank3 contains a sterile alpha motif (SAM) domain that is essential for its postsynaptic localization and also binds zinc, thus raising the possibility that changing zinc levels modulate Shank3 function in dendritic spines. In support of this hypothesis, we find that zinc is a potent regulator of Shank3 activation and dynamics in rat hippocampal neurons. Moreover, we show that zinc modulation of synaptic transmission is Shank3 dependent. Interestingly, an autism spectrum disorder (ASD)-associated variant of Shank3 (Shank3(R87C)) retains its zinc sensitivity and supports zinc-dependent activation of AMPAR-mediated synaptic transmission. However, elevated zinc was unable to rescue defects in trans-synaptic signaling caused by the R87C mutation, implying that trans-synaptic increases in neurotransmitter release are not necessary for the postsynaptic effects of zinc. Together, these data suggest that Shank3 is a key component of a zinc-sensitive signaling system, regulating synaptic strength that may be impaired in ASD. Shank3 is a postsynaptic protein associated with neurodevelopmental disorders such as autism and schizophrenia. In this study, we show that Shank3 is a key component of a zinc-sensitive signaling system that regulates excitatory synaptic transmission. Intriguingly, an autism-associated mutation in Shank3 partially impairs this signaling system. Therefore, perturbation of zinc homeostasis may impair, not only synaptic functionality and plasticity, but also may lead to cognitive and behavioral abnormalities seen in patients with psychiatric disorders. Copyright © 2016 the authors 0270-6474/16/369124-11$15.00/0.
Shank3 Is Part of a Zinc-Sensitive Signaling System That Regulates Excitatory Synaptic Strength
Arons, Magali H.; Lee, Kevin; Thynne, Charlotte J.; Kim, Sally A.; Schob, Claudia; Kindler, Stefan
2016-01-01
Shank3 is a multidomain scaffold protein localized to the postsynaptic density of excitatory synapses. Functional studies in vivo and in vitro support the concept that Shank3 is critical for synaptic plasticity and the trans-synaptic coupling between the reliability of presynaptic neurotransmitter release and postsynaptic responsiveness. However, how Shank3 regulates synaptic strength remains unclear. The C terminus of Shank3 contains a sterile alpha motif (SAM) domain that is essential for its postsynaptic localization and also binds zinc, thus raising the possibility that changing zinc levels modulate Shank3 function in dendritic spines. In support of this hypothesis, we find that zinc is a potent regulator of Shank3 activation and dynamics in rat hippocampal neurons. Moreover, we show that zinc modulation of synaptic transmission is Shank3 dependent. Interestingly, an autism spectrum disorder (ASD)-associated variant of Shank3 (Shank3R87C) retains its zinc sensitivity and supports zinc-dependent activation of AMPAR-mediated synaptic transmission. However, elevated zinc was unable to rescue defects in trans-synaptic signaling caused by the R87C mutation, implying that trans-synaptic increases in neurotransmitter release are not necessary for the postsynaptic effects of zinc. Together, these data suggest that Shank3 is a key component of a zinc-sensitive signaling system, regulating synaptic strength that may be impaired in ASD. SIGNIFICANCE STATEMENT Shank3 is a postsynaptic protein associated with neurodevelopmental disorders such as autism and schizophrenia. In this study, we show that Shank3 is a key component of a zinc-sensitive signaling system that regulates excitatory synaptic transmission. Intriguingly, an autism-associated mutation in Shank3 partially impairs this signaling system. Therefore, perturbation of zinc homeostasis may impair, not only synaptic functionality and plasticity, but also may lead to cognitive and behavioral abnormalities seen in patients with psychiatric disorders. PMID:27581454
Ortiz-Matamoros, Abril; Salcedo-Tello, Pamela; Avila-Muñoz, Evangelina; Zepeda, Angélica; Arias, Clorinda
2013-01-01
It is well recognized the role of the Wnt pathway in many developmental processes such as neuronal maturation, migration, neuronal connectivity and synaptic formation. Growing evidence is also demonstrating its function in the mature brain where is associated with modulation of axonal remodeling, dendrite outgrowth, synaptic activity, neurogenesis and behavioral plasticity. Proteins involved in Wnt signaling have been found expressed in the adult hippocampus suggesting that Wnt pathway plays a role in the hippocampal function through life. Indeed, Wnt ligands act locally to regulate neurogenesis, neuronal cell shape and pre- and postsynaptic assembly, events that are thought to underlie changes in synaptic function associated with long-term potentiation and with cognitive tasks such as learning and memory. Recent data have demonstrated the increased expression of the Wnt antagonist Dickkopf-1 (DKK1) in brains of Alzheimer´s disease (AD) patients suggesting that dysfunction of Wnt signaling could also contribute to AD pathology. We review here evidence of Wnt-associated molecules expression linked to physiological and pathological hippocampal functioning in the adult brain. The basic aspects of Wnt related mechanisms underlying hippocampal plasticity as well as evidence of how hippocampal dysfunction may rely on Wnt dysregulation is analyzed. This information would provide some clues about the possible therapeutic targets for developing treatments for neurodegenerative diseases associated with aberrant brain plasticity. PMID:24403870
Ortiz-Matamoros, Abril; Salcedo-Tello, Pamela; Avila-Muñoz, Evangelina; Zepeda, Angélica; Arias, Clorinda
2013-09-01
It is well recognized the role of the Wnt pathway in many developmental processes such as neuronal maturation, migration, neuronal connectivity and synaptic formation. Growing evidence is also demonstrating its function in the mature brain where is associated with modulation of axonal remodeling, dendrite outgrowth, synaptic activity, neurogenesis and behavioral plasticity. Proteins involved in Wnt signaling have been found expressed in the adult hippocampus suggesting that Wnt pathway plays a role in the hippocampal function through life. Indeed, Wnt ligands act locally to regulate neurogenesis, neuronal cell shape and pre- and postsynaptic assembly, events that are thought to underlie changes in synaptic function associated with long-term potentiation and with cognitive tasks such as learning and memory. Recent data have demonstrated the increased expression of the Wnt antagonist Dickkopf-1 (DKK1) in brains of Alzheimer´s disease (AD) patients suggesting that dysfunction of Wnt signaling could also contribute to AD pathology. We review here evidence of Wnt-associated molecules expression linked to physiological and pathological hippocampal functioning in the adult brain. The basic aspects of Wnt related mechanisms underlying hippocampal plasticity as well as evidence of how hippocampal dysfunction may rely on Wnt dysregulation is analyzed. This information would provide some clues about the possible therapeutic targets for developing treatments for neurodegenerative diseases associated with aberrant brain plasticity.
Shi, Song-Hai; Cheng, Tong; Jan, Lily Yeh; Jan, Yuh-Nung
2004-01-01
In the developing mammalian brain, a large fraction of excitatory synapses initially contain only N-methyl-d-aspartate receptor and thus are “silent” at the resting membrane potential. As development progresses, synapses acquire α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA-Rs). Although this maturation of excitatory synapses has been well characterized, the molecular basis for this developmental change is not known. Here, we report that dendrite arborization and synapse maturation 1 (Dasm1), an Ig superfamily member, controls excitatory synapse maturation. Dasm1 is localized at the excitatory synapses. Suppression of Dasm1 expression by using RNA interference or expression of dominant negative deletion mutants of Dasm1 in hippocampal neurons at late developmental stage specifically impairs AMPA-R-mediated, but not N-methyl-d-aspartate receptor-mediated, synaptic transmission. The ability of Dasm1 to regulate synaptic AMPA-Rs requires its intracellular C-terminal PDZ domain-binding motif, which interacts with two synaptic PDZ domain-containing proteins involved in spine/synapse maturation, Shank and S-SCAM. Moreover, expression of dominant negative deletion mutants of Dasm1 leads to more immature silent synapses. These results suggest that Dasm1, as a transmembrane molecule, likely provides a link to bridge extracellular signals and intracellular signaling complexes in controlling excitatory synapse maturation. PMID:15340156
A dynamic deep sleep stage in Drosophila.
van Alphen, Bart; Yap, Melvyn H W; Kirszenblat, Leonie; Kottler, Benjamin; van Swinderen, Bruno
2013-04-17
How might one determine whether simple animals such as flies sleep in stages? Sleep in mammals is a dynamic process involving different stages of sleep intensity, and these are typically associated with measurable changes in brain activity (Blake and Gerard, 1937; Rechtschaffen and Kales, 1968; Webb and Agnew, 1971). Evidence for different sleep stages in invertebrates remains elusive, even though it has been well established that many invertebrate species require sleep (Campbell and Tobler, 1984; Hendricks et al., 2000; Shaw et al., 2000; Sauer et al., 2003). Here we used electrophysiology and arousal-testing paradigms to show that the fruit fly, Drosophila melanogaster, transitions between deeper and lighter sleep within extended bouts of inactivity, with deeper sleep intensities after ∼15 and ∼30 min of inactivity. As in mammals, the timing and intensity of these dynamic sleep processes in flies is homeostatically regulated and modulated by behavioral experience. Two molecules linked to synaptic plasticity regulate the intensity of the first deep sleep stage. Optogenetic upregulation of cyclic adenosine monophosphate during the day increases sleep intensity at night, whereas loss of function of a molecule involved in synaptic pruning, the fragile-X mental retardation protein, increases sleep intensity during the day. Our results show that sleep is not homogenous in insects, and suggest that waking behavior and the associated synaptic plasticity mechanisms determine the timing and intensity of deep sleep stages in Drosophila.
NASA Astrophysics Data System (ADS)
Ferron, Laurent; Nieto-Rostro, Manuela; Cassidy, John S.; Dolphin, Annette C.
2014-04-01
Fragile X syndrome (FXS), the most common heritable form of mental retardation, is characterized by synaptic dysfunction. Synaptic transmission depends critically on presynaptic calcium entry via voltage-gated calcium (CaV) channels. Here we show that the functional expression of neuronal N-type CaV channels (CaV2.2) is regulated by fragile X mental retardation protein (FMRP). We find that FMRP knockdown in dorsal root ganglion neurons increases CaV channel density in somata and in presynaptic terminals. We then show that FMRP controls CaV2.2 surface expression by targeting the channels to the proteasome for degradation. The interaction between FMRP and CaV2.2 occurs between the carboxy-terminal domain of FMRP and domains of CaV2.2 known to interact with the neurotransmitter release machinery. Finally, we show that FMRP controls synaptic exocytosis via CaV2.2 channels. Our data indicate that FMRP is a potent regulator of presynaptic activity, and its loss is likely to contribute to synaptic dysfunction in FXS.
Loss of synaptic Zn2+ transporter function increases risk of febrile seizures
Hildebrand, Michael S.; Phillips, A. Marie; Mullen, Saul A.; Adlard, Paul A.; Hardies, Katia; Damiano, John A.; Wimmer, Verena; Bellows, Susannah T.; McMahon, Jacinta M.; Burgess, Rosemary; Hendrickx, Rik; Weckhuysen, Sarah; Suls, Arvid; De Jonghe, Peter; Scheffer, Ingrid E.; Petrou, Steven; Berkovic, Samuel F.; Reid, Christopher A.
2015-01-01
Febrile seizures (FS) are the most common seizure syndrome and are potentially a prelude to more severe epilepsy. Although zinc (Zn2+) metabolism has previously been implicated in FS, whether or not variation in proteins essential for Zn2+ homeostasis contributes to susceptibility is unknown. Synaptic Zn2+ is co-released with glutamate and modulates neuronal excitability. SLC30A3 encodes the zinc transporter 3 (ZNT3), which is primarily responsible for moving Zn2+ into synaptic vesicles. Here we sequenced SLC30A3 and discovered a rare variant (c.892C > T; p.R298C) enriched in FS populations but absent in population-matched controls. Functional analysis revealed a significant loss-of-function of the mutated protein resulting from a trafficking deficit. Furthermore, mice null for ZnT3 were more sensitive than wild-type to hyperthermia-induced seizures that model FS. Together our data suggest that reduced synaptic Zn2+ increases the risk of FS and more broadly support the idea that impaired synaptic Zn2+ homeostasis can contribute to neuronal hyperexcitability. PMID:26647834
Loss of synaptic Zn2+ transporter function increases risk of febrile seizures.
Hildebrand, Michael S; Phillips, A Marie; Mullen, Saul A; Adlard, Paul A; Hardies, Katia; Damiano, John A; Wimmer, Verena; Bellows, Susannah T; McMahon, Jacinta M; Burgess, Rosemary; Hendrickx, Rik; Weckhuysen, Sarah; Suls, Arvid; De Jonghe, Peter; Scheffer, Ingrid E; Petrou, Steven; Berkovic, Samuel F; Reid, Christopher A
2015-12-09
Febrile seizures (FS) are the most common seizure syndrome and are potentially a prelude to more severe epilepsy. Although zinc (Zn(2+)) metabolism has previously been implicated in FS, whether or not variation in proteins essential for Zn(2+) homeostasis contributes to susceptibility is unknown. Synaptic Zn(2+) is co-released with glutamate and modulates neuronal excitability. SLC30A3 encodes the zinc transporter 3 (ZNT3), which is primarily responsible for moving Zn(2+) into synaptic vesicles. Here we sequenced SLC30A3 and discovered a rare variant (c.892C > T; p.R298C) enriched in FS populations but absent in population-matched controls. Functional analysis revealed a significant loss-of-function of the mutated protein resulting from a trafficking deficit. Furthermore, mice null for ZnT3 were more sensitive than wild-type to hyperthermia-induced seizures that model FS. Together our data suggest that reduced synaptic Zn(2+) increases the risk of FS and more broadly support the idea that impaired synaptic Zn(2+) homeostasis can contribute to neuronal hyperexcitability.
Nosheny, RL; Belichenko, PV; Busse, BL; Weissmiller, AM; Dang, V; Das, D; Fahimi, A; Salehi, A; Smith, SJ; Mobley, WC
2015-01-01
Down Syndrome (DS), trisomy 21, is characterized by synaptic abnormalities and cognitive deficits throughout the lifespan and with development of Alzheimer’s disease (AD) neuropathology and progressive cognitive decline in adults. Synaptic abnormalities are also present in the Ts65Dn mouse model of DS, but which synapses are affected and the mechanisms underlying synaptic dysfunction are unknown. Here we show marked increases in the levels and activation status of TrkB and associated signaling proteins in cortical synapses in Ts65Dn mice. Proteomic analysis at the single synapse level of resolution using array tomography (AT) uncovered increased colocalization of activated TrkB with signaling endosome related proteins, and demonstrated increased TrkB signaling. The extent of increases in TrkB signaling differed in each of the cortical layers examined and with respect to the type of synapse, with the most marked increases seen in inhibitory synapses. These findings are evidence of markedly abnormal TrkB-mediated signaling in synapses. They raise the possibility that dysregulated TrkB signaling contributes to synaptic dysfunction and cognitive deficits in DS. PMID:25753471
Role of mTOR Complexes in Neurogenesis.
LiCausi, Francesca; Hartman, Nathaniel W
2018-05-22
Dysregulation of neural stem cells (NSCs) is associated with several neurodevelopmental disorders, including epilepsy and autism spectrum disorder. The mammalian target of rapamycin (mTOR) integrates the intracellular signals to control cell growth, nutrient metabolism, and protein translation. mTOR regulates many functions in the development of the brain, such as proliferation, differentiation, migration, and dendrite formation. In addition, mTOR is important in synaptic formation and plasticity. Abnormalities in mTOR activity is linked with severe deficits in nervous system development, including tumors, autism, and seizures. Dissecting the wide-ranging roles of mTOR activity during critical periods in development will greatly expand our understanding of neurogenesis.
Bahr, Ben A; Wisniewski, Meagan L; Butler, David
2012-04-01
Lysosomes are involved in degrading and recycling cellular ingredients, and their disruption with age may contribute to amyloidogenesis, paired helical filaments (PHFs), and α-synuclein and mutant huntingtin aggregation. Lysosomal cathepsins are upregulated by accumulating proteins and more so by the modulator Z-Phe-Ala-diazomethylketone (PADK). Such positive modulators of the lysosomal system have been studied in the well-characterized hippocampal slice model of protein accumulation that exhibits the pathogenic cascade of tau aggregation, tubulin breakdown, microtubule destabilization, transport failure, and synaptic decline. Active cathepsins were upregulated by PADK; Rab proteins were modified as well, indicating enhanced trafficking, whereas lysosome-associated membrane protein and proteasome markers were unchanged. Lysosomal modulation reduced the pre-existing PHF deposits, restored tubulin structure and transport, and recovered synaptic components. Further proof-of-principle studies used Alzheimer disease mouse models. It was recently reported that systemic PADK administration caused dramatic increases in cathepsin B protein and activity levels, whereas neprilysin, insulin-degrading enzyme, α-secretase, and β-secretase were unaffected by PADK. In the transgenic models, PADK treatment resulted in clearance of intracellular amyloid beta (Aβ) peptide and concomitant reduction of extracellular deposits. Production of the less pathogenic Aβ(1-38) peptide corresponded with decreased levels of Aβ(1-42), supporting the lysosome's antiamyloidogenic role through intracellular truncation. Amelioration of synaptic and behavioral deficits also indicates a neuroprotective function of the lysosomal system, identifying lysosomal modulation as an avenue for disease-modifying therapies. From the in vitro and in vivo findings, unique lysosomal modulators represent a minimally invasive, pharmacologically controlled strategy against protein accumulation disorders to enhance protein clearance, promote synaptic integrity, and slow the progression of dementia.
Wang, Rui; Mellem, Jerry E.; Jensen, Michael; Brockie, Penelope J.; Walker, Craig S.; Hoerndli, Frédéric J.; Madsen, David M.; Maricq, Andres V.
2012-01-01
Summary The neurotransmitter glutamate mediates excitatory synaptic transmission by gating ionotropic glutamate receptors (iGluRs). AMPA receptors (AMPARs), a subtype of iGluR, are strongly implicated in synaptic plasticity, learning and memory. We previously discovered two classes of AMPAR auxiliary proteins in C. elegans that modify receptor kinetics and thus change synaptic transmission. Here, we have identified another auxiliary protein, SOL-2, a CUB-domain protein that associates with both the related auxiliary subunit SOL-1 and with the GLR-1 AMPAR. In sol-2 mutants, behaviors dependent on glutamatergic transmission are disrupted, GLR-1-mediated currents are diminished, and GLR-1 desensitization and pharmacology are modified. Remarkably, a secreted variant of SOL-1 delivered in trans can rescue sol-1 mutants and this rescue depends on in cis expression of SOL-2. Finally, we demonstrate that SOL-1 and SOL-2 have an ongoing role in the adult nervous system to control AMPAR-mediated currents. PMID:22958824
Wang, Rui; Mellem, Jerry E; Jensen, Michael; Brockie, Penelope J; Walker, Craig S; Hoerndli, Frédéric J; Hauth, Linda; Madsen, David M; Maricq, Andres V
2012-09-06
The neurotransmitter glutamate mediates excitatory synaptic transmission by gating ionotropic glutamate receptors (iGluRs). AMPA receptors (AMPARs), a subtype of iGluR, are strongly implicated in synaptic plasticity, learning, and memory. We previously discovered two classes of AMPAR auxiliary proteins in C. elegans that modify receptor kinetics and thus change synaptic transmission. Here, we have identified another auxiliary protein, SOL-2, a CUB-domain protein that associates with both the related auxiliary subunit SOL-1 and with the GLR-1 AMPAR. In sol-2 mutants, behaviors dependent on glutamatergic transmission are disrupted, GLR-1-mediated currents are diminished, and GLR-1 desensitization and pharmacology are modified. Remarkably, a secreted variant of SOL-1 delivered in trans can rescue sol-1 mutants, and this rescue depends on in cis expression of SOL-2. Finally, we demonstrate that SOL-1 and SOL-2 have an ongoing role in the adult nervous system to control AMPAR-mediated currents. Copyright © 2012 Elsevier Inc. All rights reserved.
Factors regulating the abundance and localization of synaptobrevin in the plasma membrane
Dittman, Jeremy S.; Kaplan, Joshua M.
2006-01-01
After synaptic vesicle fusion, vesicle proteins must be segregated from plasma membrane proteins and recycled to maintain a functional vesicle pool. We monitored the distribution of synaptobrevin, a vesicle protein required for exocytosis, in Caenorhabditis elegans motor neurons by using a pH-sensitive synaptobrevin GFP fusion protein, synaptopHluorin. We estimated that 30% of synaptobrevin was present in the plasma membrane. By using a panel of endocytosis and exocytosis mutants, we found that the majority of surface synaptobrevin derives from fusion of synaptic vesicles and that, in steady state, synaptobrevin equilibrates throughout the axon. The surface synaptobrevin was enriched near active zones, and its spatial extent was regulated by the clathrin adaptin AP180. These results suggest that there is a plasma membrane reservoir of synaptobrevin that is supplied by the synaptic vesicle cycle and available for retrieval throughout the axon. The size of the reservoir is set by the relative rates of exo- and endocytosis. PMID:16844789
Ramírez-Franco, Jorge; Bartolomé-Martín, David; Alonso, Beatris; Torres, Magdalena; Sánchez-Prieto, José
2014-01-01
Cannabinoid receptors are the most abundant G protein-coupled receptors in the brain and they mediate retrograde short-term inhibition of neurotransmitter release, as well as long-term depression of synaptic transmission at many excitatory synapses. The induction of presynaptically silent synapses is a means of modulating synaptic strength, which is important for synaptic plasticity. Persistent activation of cannabinoid type 1 receptors (CB1Rs) mutes GABAergic terminals, although it is unclear if CB1Rs can also induce silencing at glutamatergic synapses. Cerebellar granule cells were transfected with VGLUT1-pHluorin to visualise the exo-endocytotic cycle. We found that prolonged stimulation (10 min) of cannabinoid receptors with the agonist HU-210 induces the silencing of previously active synapses. However, the presynaptic silencing induced by HU-210 is transient as it reverses after 20 min. cAMP with forskolin prevented CB1R-induced synaptic silencing, via activation of the Exchange Protein directly Activated by cAMP (Epac). Furthermore, Epac activation accelerated awakening of already silent boutons. Electron microscopy revealed that silencing was associated with synaptic vesicle (SV) redistribution within the nerve terminal, which diminished the number of vesicles close to the active zone of the plasma membrane. Finally, by combining functional and immunocytochemical approaches, we observed a strong correlation between the release capacity of the nerve terminals and RIM1α protein content, but not that of Munc13-1 protein. These results suggest that prolonged stimulation of cannabinoid receptors can transiently silence glutamatergic nerve terminals. PMID:24533119
Sears, James C.; Broadie, Kendal
2018-01-01
Fragile X syndrome (FXS) is the leading monogenic cause of autism and intellectual disability. The disease arises through loss of fragile X mental retardation protein (FMRP), which normally exhibits peak expression levels in early-use critical periods, and is required for activity-dependent synaptic remodeling during this transient developmental window. FMRP canonically binds mRNA to repress protein translation, with targets that regulate cytoskeleton dynamics, membrane trafficking, and trans-synaptic signaling. We focus here on recent advances emerging in these three areas from the Drosophila disease model. In the well-characterized central brain mushroom body (MB) olfactory learning/memory circuit, FMRP is required for activity-dependent synaptic remodeling of projection neurons innervating the MB calyx, with function tightly restricted to an early-use critical period. FMRP loss is phenocopied by conditional removal of FMRP only during this critical period, and rescued by FMRP conditional expression only during this critical period. Consistent with FXS hyperexcitation, FMRP loss defects are phenocopied by heightened sensory experience and targeted optogenetic hyperexcitation during this critical period. FMRP binds mRNA encoding Drosophila ESCRTIII core component Shrub (human CHMP4 homolog) to restrict Shrub translation in an activity-dependent mechanism only during this same critical period. Shrub mediates endosomal membrane trafficking, and perturbing Shrub expression is known to interfere with neuronal process pruning. Consistently, FMRP loss and Shrub overexpression targeted to projection neurons similarly causes endosomal membrane trafficking defects within synaptic boutons, and genetic reduction of Shrub strikingly rescues Drosophila FXS model defects. In parallel work on the well-characterized giant fiber (GF) circuit, FMRP limits iontophoretic dye loading into central interneurons, demonstrating an FMRP role controlling core neuronal properties through the activity-dependent repression of translation. In the well-characterized Drosophila neuromuscular junction (NMJ) model, developmental synaptogenesis and activity-dependent synaptic remodeling both require extracellular matrix metalloproteinase (MMP) enzymes interacting with the heparan sulfate proteoglycan (HSPG) glypican dally-like protein (Dlp) to restrict trans-synaptic Wnt signaling, with FXS synaptogenic defects alleviated by both MMP and HSPG reduction. This new mechanistic axis spanning from activity to FMRP to HSPG-dependent MMP regulation modulates activity-dependent synaptogenesis. We discuss future directions for these mechanisms, and intersecting research priorities for FMRP in glial and signaling interactions. PMID:29375303
Synaptic transmission block by presynaptic injection of oligomeric amyloid beta
Moreno, Herman; Yu, Eunah; Pigino, Gustavo; Hernandez, Alejandro I.; Kim, Natalia; Moreira, Jorge E.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.
2009-01-01
Early Alzheimer's disease (AD) pathophysiology is characterized by synaptic changes induced by degradation products of amyloid precursor protein (APP). The exact mechanisms of such modulation are unknown. Here, we report that nanomolar concentrations of intraaxonal oligomeric (o)Aβ42, but not oAβ40 or extracellular oAβ42, acutely inhibited synaptic transmission at the squid giant synapse. Further characterization of this phenotype demonstrated that presynaptic calcium currents were unaffected. However, electron microscopy experiments revealed diminished docked synaptic vesicles in oAβ42-microinjected terminals, without affecting clathrin-coated vesicles. The molecular events of this modulation involved casein kinase 2 and the synaptic vesicle rapid endocytosis pathway. These findings open the possibility of a new therapeutic target aimed at ameliorating synaptic dysfunction in AD. PMID:19304802
Santini, Emanuela; Turner, Kathryn L; Ramaraj, Akila B; Murphy, Michael P; Klann, Eric; Kaphzan, Hanoch
2015-12-09
Angelman syndrome (AS) is a neurodevelopmental disorder associated with developmental delay, lack of speech, motor dysfunction, and epilepsy. In the majority of the patients, AS is caused by the deletion of small portions of maternal chromosome 15 harboring the UBE3A gene. This results in a lack of expression of the UBE3A gene because the paternal allele is genetically imprinted. The UBE3A gene encodes an enzyme termed ubiquitin ligase E3A (E6-AP) that targets proteins for degradation by the 26S proteasome. Because neurodegenerative disease and other neurodevelopmental disorders have been linked to oxidative stress, we asked whether mitochondrial reactive oxygen species (ROS) played a role in impaired synaptic plasticity and memory deficits exhibited by AS model mice. We discovered that AS mice have increased levels of superoxide in area CA1 of the hippocampus that is reduced by MitoQ 10-methanesuflonate (MitoQ), a mitochondria-specific antioxidant. In addition, we found that MitoQ rescued impairments in hippocampal synaptic plasticity and deficits in contextual fear memory exhibited by AS model mice. Our findings suggest that mitochondria-derived oxidative stress contributes to hippocampal pathophysiology in AS model mice and that targeting mitochondrial ROS pharmacologically could benefit individuals with AS. Oxidative stress has been hypothesized to contribute to the pathophysiology of neurodevelopmental disorders, including autism spectrum disorders and Angelman syndrome (AS). Herein, we report that AS model mice exhibit elevated levels of mitochondria-derived reactive oxygen species in pyramidal neurons in hippocampal area CA1. Moreover, we demonstrate that the administration of MitoQ (MitoQ 10-methanesuflonate), a mitochondria-specific antioxidant, to AS model mice normalizes synaptic plasticity and restores memory. Finally, our findings suggest that antioxidants that target the mitochondria could be used therapeutically to ameliorate synaptic and cognitive deficits in individuals with AS. Copyright © 2015 the authors 0270-6474/15/3516213-08$15.00/0.
Akama, Keith T.; Thompson, Louisa I.; Milner, Teresa A.; McEwen, Bruce S.
2013-01-01
The estrogen 17β-estradiol (E2) modulates dendritic spine plasticity in the cornu ammonis 1 (CA1) region of the hippocampus, and GPR30 (G-protein coupled estrogen receptor 1 (GPER1)) is an estrogen-sensitive G-protein-coupled receptor (GPCR) that is expressed in the mammalian brain and in specific subregions that are responsive to E2, including the hippocampus. The subcellular localization of hippocampal GPR30, however, remains unclear. Here, we demonstrate that GPR30 immunoreactivity is detected in dendritic spines of rat CA1 hippocampal neurons in vivo and that GPR30 protein can be found in rat brain synaptosomes. GPR30 immunoreactivity is identified at the post-synaptic density (PSD) and in the adjacent peri-synaptic zone, and GPR30 can associate with the spine scaffolding protein PSD-95 both in vitro and in vivo. This PSD-95 binding capacity of GPR30 is specific and determined by the receptor C-terminal tail that is both necessary and sufficient for PSD-95 interaction. The interaction with PSD-95 functions to increase GPR30 protein levels residing at the plasma membrane surface. GPR30 associates with the N-terminal tandem pair of PDZ domains in PSD-95, suggesting that PSD-95 may be involved in clustering GPR30 with other receptors in the hippocampus. We demonstrate that GPR30 has the potential to associate with additional post-synaptic GPCRs, including the membrane progestin receptor, the corticotropin releasing hormone receptor, and the 5HT1a serotonin receptor. These data demonstrate that GPR30 is well positioned in the dendritic spine compartment to integrate E2 sensitivity directly onto multiple inputs on synaptic activity and might begin to provide a molecular explanation as to how E2 modulates dendritic spine plasticity. PMID:23300088
Akama, Keith T; Thompson, Louisa I; Milner, Teresa A; McEwen, Bruce S
2013-03-01
The estrogen 17β-estradiol (E2) modulates dendritic spine plasticity in the cornu ammonis 1 (CA1) region of the hippocampus, and GPR30 (G-protein coupled estrogen receptor 1 (GPER1)) is an estrogen-sensitive G-protein-coupled receptor (GPCR) that is expressed in the mammalian brain and in specific subregions that are responsive to E2, including the hippocampus. The subcellular localization of hippocampal GPR30, however, remains unclear. Here, we demonstrate that GPR30 immunoreactivity is detected in dendritic spines of rat CA1 hippocampal neurons in vivo and that GPR30 protein can be found in rat brain synaptosomes. GPR30 immunoreactivity is identified at the post-synaptic density (PSD) and in the adjacent peri-synaptic zone, and GPR30 can associate with the spine scaffolding protein PSD-95 both in vitro and in vivo. This PSD-95 binding capacity of GPR30 is specific and determined by the receptor C-terminal tail that is both necessary and sufficient for PSD-95 interaction. The interaction with PSD-95 functions to increase GPR30 protein levels residing at the plasma membrane surface. GPR30 associates with the N-terminal tandem pair of PDZ domains in PSD-95, suggesting that PSD-95 may be involved in clustering GPR30 with other receptors in the hippocampus. We demonstrate that GPR30 has the potential to associate with additional post-synaptic GPCRs, including the membrane progestin receptor, the corticotropin releasing hormone receptor, and the 5HT1a serotonin receptor. These data demonstrate that GPR30 is well positioned in the dendritic spine compartment to integrate E2 sensitivity directly onto multiple inputs on synaptic activity and might begin to provide a molecular explanation as to how E2 modulates dendritic spine plasticity.
Deletion of PTEN produces autism-like behavioral deficits and alterations in synaptic proteins.
Lugo, Joaquin N; Smith, Gregory D; Arbuckle, Erin P; White, Jessika; Holley, Andrew J; Floruta, Crina M; Ahmed, Nowrin; Gomez, Maribel C; Okonkwo, Obi
2014-01-01
Many genes have been implicated in the underlying cause of autism but each gene accounts for only a small fraction of those diagnosed with autism. There is increasing evidence that activity-dependent changes in neuronal signaling could act as a convergent mechanism for many of the changes in synaptic proteins. One candidate signaling pathway that may have a critical role in autism is the PI3K/AKT/mTOR pathway. A major regulator of this pathway is the negative repressor phosphatase and tensin homolog (PTEN). In the current study we examined the behavioral and molecular consequences in mice with neuron subset-specific deletion of PTEN. The knockout (KO) mice showed deficits in social chamber and social partition test. KO mice demonstrated alterations in repetitive behavior, as measured in the marble burying test and hole-board test. They showed no changes in ultrasonic vocalizations emitted on postnatal day 10 or 12 compared to wildtype (WT) mice. They exhibited less anxiety in the elevated-plus maze test and were more active in the open field test compared to WT mice. In addition to the behavioral alterations, KO mice had elevation of phosphorylated AKT, phosphorylated S6, and an increase in S6K. KO mice had a decrease in mGluR but an increase in total and phosphorylated fragile X mental retardation protein. The disruptions in intracellular signaling may be why the KO mice had a decrease in the dendritic potassium channel Kv4.2 and a decrease in the synaptic scaffolding proteins PSD-95 and SAP102. These findings demonstrate that deletion of PTEN results in long-term alterations in social behavior, repetitive behavior, activity, and anxiety. In addition, deletion of PTEN significantly alters mGluR signaling and many synaptic proteins in the hippocampus. Our data demonstrates that deletion of PTEN can result in many of the behavioral features of autism and may provide insights into the regulation of intracellular signaling on synaptic proteins.
Peripheral inflammation increased the synaptic expression of NMDA receptors in spinal dorsal horn.
Yang, Xian; Yang, Hong-Bin; Xie, Qin-Jian; Liu, Xiao-Hua; Hu, Xiao-Dong
2009-07-01
Considerable evidence has indicated that the aberrant, sustained enhancement of spinal NMDA receptors (NMDARs) function is closely associated with behavioral sensitization during inflammatory pain. However, the molecular mechanisms underlying inflammation-induced NMDARs hyperfunction remain poorly understood. The present study performed immunoblotting analysis to evaluate the possible changes in the protein expression of spinal NMDARs after injection of complete Freund's adjuvant (CFA) in mice. We found that CFA did not affect the total protein level of NMDARs subunit NR1 in spinal dorsal horn. However, NR1 immunoreactivity at synapses significantly increased after CFA injection, which was correlated in the time course with the development of mechanical allodynia. Inhibition of spinal NMDARs with D-APV completely eliminated the CFA-induced increase in NR1 immunoreactive density at synapses, and direct application of NMDA onto the spinal cord of naïve mice mimicked the effects of CFA, suggesting the importance of NMDARs activity in regulating the synaptic content of NR1 during inflammatory pain. Moreover, cAMP-dependent protein kinase (PKA) downstream to NMDARs was also required for NR1 synaptic expression because inhibition of PKA activity abolished the enhancement of synaptic NR1 immunoreactivity evoked by either CFA or NMDA. Thus, our data suggested that NMDARs- and PKA-dependent increase in NR1 synaptic expression represented an important mechanism for the hyperfunction of spinal NMDARs following peripheral inflammation.
Vilinsky, Ilya; Stewart, Bryan A; Drummond, James; Robinson, Iain; Deitcher, David L
2002-01-01
The synaptic protein SNAP-25 is an important component of the neurotransmitter release machinery, although its precise function is still unknown. Genetic analysis of other synaptic proteins has yielded valuable information on their role in synaptic transmission. In this study, we performed a mutagenesis screen to identify new SNAP-25 alleles that fail to complement our previously isolated recessive temperature-sensitive allele of SNAP-25, SNAP-25(ts). In a screen of 100,000 flies, 26 F(1) progeny failed to complement SNAP-25(ts) and 21 of these were found to be null alleles of SNAP-25. These null alleles die at the pharate adult stage and electroretinogram recordings of these animals reveal that synaptic transmission is blocked. At the third instar larval stage, SNAP-25 nulls exhibit nearly normal neurotransmitter release at the neuromuscular junction. This is surprising since SNAP-25(ts) larvae exhibit a much stronger synaptic phenotype. Our evidence indicates that a related protein, SNAP-24, can substitute for SNAP-25 at the larval stage in SNAP-25 nulls. However, if a wild-type or mutant form of SNAP-25 is present, then SNAP-24 does not appear to take part in neurotransmitter release at the larval NMJ. These results suggest that the apparent redundancy between SNAP-25 and SNAP-24 is due to inappropriate genetic substitution. PMID:12242238
Ubiquitin–Synaptobrevin Fusion Protein Causes Degeneration of Presynaptic Motor Terminals in Mice
Liu, Yun; Li, Hongqiao; Sugiura, Yoshie; Han, Weiping; Gallardo, Gilbert; Khvotchev, Mikhail; Zhang, Yinan; Kavalali, Ege T.; Südhof, Thomas C.
2015-01-01
Protein aggregates containing ubiquitin (Ub) are commonly observed in neurodegenerative disorders, implicating the involvement of the ubiquitin proteasome system (UPS) in their pathogenesis. Here, we aimed to generate a mouse model for monitoring UPS function using a green fluorescent protein (GFP)-based substrate that carries a “noncleavable” N-terminal ubiquitin moiety (UbG76V). We engineered transgenic mice expressing a fusion protein, consisting of the following: (1) UbG76V, GFP, and a synaptic vesicle protein synaptobrevin-2 (UbG76V-GFP-Syb2); (2) GFP-Syb2; or (3) UbG76V-GFP-Syntaxin1, all under the control of a neuron-specific Thy-1 promoter. As expected, UbG76V-GFP-Syb2, GFP-Syb2, and UbG76V-GFP-Sytaxin1 were highly expressed in neurons, such as motoneurons and motor nerve terminals of the neuromuscular junction (NMJ). Surprisingly, UbG76V-GFP-Syb2 mice developed progressive adult-onset degeneration of motor nerve terminals, whereas GFP-Syb2 and UbG76V-GFP-Syntaxin1 mice were normal. The degeneration of nerve terminals in UbG76V-GFP-Syb2 mice was preceded by a progressive impairment of synaptic transmission at the NMJs. Biochemical analyses demonstrated that UbG76V-GFP-Syb2 interacted with SNAP-25 and Syntaxin1, the SNARE partners of synaptobrevin. Ultrastructural analyses revealed a marked reduction in synaptic vesicle density, accompanying an accumulation of tubulovesicular structures at presynaptic nerve terminals. These morphological defects were largely restricted to motor nerve terminals, as the ultrastructure of motoneuron somata appeared to be normal at the stages when synaptic nerve terminals degenerated. Furthermore, synaptic vesicle endocytosis and membrane trafficking were impaired in UbG76V-GFP-Syb2 mice. These findings indicate that UbG76V-GFP-Syb2 may compete with endogenous synaptobrevin, acting as a gain-of-function mutation that impedes SNARE function, resulting in the depletion of synaptic vesicles and degeneration of the nerve terminals. SIGNIFICANCE STATEMENT Degeneration of motor nerve terminals occurs in amyotrophic lateral sclerosis (ALS) patients as well as in mouse models of ALS, leading to progressive paralysis. What causes a motor nerve terminal to degenerate remains unknown. Here we report on transgenic mice expressing a ubiquitinated synaptic vesicle protein (UbG76V-GFP-Syb2) that develop progressive degeneration of motor nerve terminals. These mice may serve as a model for further elucidating the underlying cellular and molecular mechanisms of presynaptic nerve terminal degeneration. PMID:26290230
On the Teneurin track: a new synaptic organization molecule emerges
Mosca, Timothy J.
2015-01-01
To achieve proper synaptic development and function, coordinated signals must pass between the pre- and postsynaptic membranes. Such transsynaptic signals can be comprised of receptors and secreted ligands, membrane associated receptors, and also pairs of synaptic cell adhesion molecules. A critical open question bridging neuroscience, developmental biology, and cell biology involves identifying those signals and elucidating how they function. Recent work in Drosophila and vertebrate systems has implicated a family of proteins, the Teneurins, as a new transsynaptic signal in both the peripheral and central nervous systems. The Teneurins have established roles in neuronal wiring, but studies now show their involvement in regulating synaptic connections between neurons and bridging the synaptic membrane and the cytoskeleton. This review will examine the Teneurins as synaptic cell adhesion molecules, explore how they regulate synaptic organization, and consider how some consequences of human Teneurin mutations may have synaptopathic origins. PMID:26074772
ERIC Educational Resources Information Center
Joels, Marian; Krugers, Harm; Wiegert, Olof
2006-01-01
Stress facilitates memory formation, but only when the stressor is closely linked to the learning context. These effects are, at least in part, mediated by corticosteroid hormones. Here we demonstrate that corticosterone rapidly facilitates synaptic potentiation in the mouse hippocampal CA1 area when high levels of the hormone and high-frequency…
Linares-Clemente, Pedro; Rozas, José L; Mircheski, Josif; García-Junco-Clemente, Pablo; Martínez-López, José A; Nieto-González, José L; Vázquez, M Eugenio; Pintado, C Oscar; Fernández-Chacón, Rafael
2015-01-01
Key points Neurotransmitter release requires a tight coupling between synaptic vesicle exocytosis and endocytosis with dynamin being a key protein in that process. We used imaging techniques to examine the time course of endocytosis at mouse motor nerve terminals expressing synaptopHluorin, a genetically encoded reporter of the synaptic vesicle cycle. We separated two sequential phases of endocytosis taking place during the stimulation train: early and late endocytosis. Freshly released synaptic vesicle proteins are preferentially retrieved during the early phase, which is very sensitive to dynasore, an inhibitor of dynamin GTPase activity. Synaptic vesicle proteins pre-existing at the plasma membrane before the stimulation are preferentially retrieved during the late phase, which is very sensitive to myristyl trimethyl ammonium bromide (MitMAB), an inhibitor of the dynamin–phospholipid interaction. Abstract Synaptic endocytosis is essential at nerve terminals to maintain neurotransmitter release by exocytosis. Here, at the neuromuscular junction of synaptopHluorin (spH) transgenic mice, we have used imaging to study exo- and endocytosis occurring simultaneously during nerve stimulation. We observed two endocytosis components, which occur sequentially during stimulation. The early component of endocytosis apparently internalizes spH molecules freshly exocytosed. This component was sensitive to dynasore, a blocker of dynamin 1 GTPase activity. In contrast, this early component was resistant to myristyl trimethyl ammonium bromide (MiTMAB), a competitive agent that blocks dynamin binding to phospholipid membranes. The late component of endocytosis is likely to internalize spH molecules that pre-exist at the plasma membrane before stimulation starts. This component was blocked by MiTMAB, perhaps by impairing the binding of dynamin or other key endocytic proteins to phospholipid membranes. Our study suggests the co-existence of two sequential synaptic endocytosis steps taking place during stimulation that are susceptible to pharmacological dissection: an initial step, preferentially sensitive to dynasore, that internalizes vesicular components immediately after they are released, and a MiTMAB-sensitive step that internalizes vesicular components pre-existing at the plasma membrane surface. In addition, we report that post-stimulus endocytosis also has several components with different sensitivities to dynasore and MiTMAB. PMID:25981717
Linares-Clemente, Pedro; Rozas, José L; Mircheski, Josif; García-Junco-Clemente, Pablo; Martínez-López, José A; Nieto-González, José L; Vázquez, M Eugenio; Pintado, C Oscar; Fernández-Chacón, Rafael
2015-07-01
Neurotransmitter release requires a tight coupling between synaptic vesicle exocytosis and endocytosis with dynamin being a key protein in that process. We used imaging techniques to examine the time course of endocytosis at mouse motor nerve terminals expressing synaptopHluorin, a genetically encoded reporter of the synaptic vesicle cycle. We separated two sequential phases of endocytosis taking place during the stimulation train: early and late endocytosis. Freshly released synaptic vesicle proteins are preferentially retrieved during the early phase, which is very sensitive to dynasore, an inhibitor of dynamin GTPase activity. Synaptic vesicle proteins pre-existing at the plasma membrane before the stimulation are preferentially retrieved during the late phase, which is very sensitive to myristyl trimethyl ammonium bromide (MitMAB), an inhibitor of the dynamin-phospholipid interaction. Synaptic endocytosis is essential at nerve terminals to maintain neurotransmitter release by exocytosis. Here, at the neuromuscular junction of synaptopHluorin (spH) transgenic mice, we have used imaging to study exo- and endocytosis occurring simultaneously during nerve stimulation. We observed two endocytosis components, which occur sequentially during stimulation. The early component of endocytosis apparently internalizes spH molecules freshly exocytosed. This component was sensitive to dynasore, a blocker of dynamin 1 GTPase activity. In contrast, this early component was resistant to myristyl trimethyl ammonium bromide (MiTMAB), a competitive agent that blocks dynamin binding to phospholipid membranes. The late component of endocytosis is likely to internalize spH molecules that pre-exist at the plasma membrane before stimulation starts. This component was blocked by MiTMAB, perhaps by impairing the binding of dynamin or other key endocytic proteins to phospholipid membranes. Our study suggests the co-existence of two sequential synaptic endocytosis steps taking place during stimulation that are susceptible to pharmacological dissection: an initial step, preferentially sensitive to dynasore, that internalizes vesicular components immediately after they are released, and a MiTMAB-sensitive step that internalizes vesicular components pre-existing at the plasma membrane surface. In addition, we report that post-stimulus endocytosis also has several components with different sensitivities to dynasore and MiTMAB. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Zheng, Qun; Schaefer, Anneliese M.; Nonet, Michael L.
2011-01-01
Little is known about transcriptional control of neurite branching or presynaptic differentiation, events that occur relatively late in neuronal development. Using the Caenorhabditis elegans mechanosensory circuit as an in vivo model, we show that SAM-10, an ortholog of mammalian single-stranded DNA-binding protein (SSDP), functions cell-autonomously in the nucleus to regulate synaptic differentiation, as well as positioning of, a single neurite branch. PLM mechanosensory neurons in sam-10 mutants exhibit abnormal placement of the neurite branch point, and defective synaptogenesis, characterized by an overextended synaptic varicosity, underdeveloped synaptic morphology and disrupted colocalization of active zone and synaptic vesicles. SAM-10 functions coordinately with Lim domain-binding protein 1 (LDB-1), demonstrated by our observations that: (1) mutations in either gene show similar defects in PLM neurons; and (2) LDB-1 is required for SAM-10 nuclear localization. SAM-10 regulates PLM synaptic differentiation by suppressing transcription of prk-2, which encodes an ortholog of the mammalian Pim kinase family. PRK-2-mediated activities of SAM-10 are specifically involved in PLM synaptic differentiation, but not other sam-10 phenotypes such as neurite branching. Thus, these data reveal a novel transcriptional signaling pathway that regulates neuronal specification of neurite branching and presynaptic differentiation. PMID:21115607
Zheng, Qun; Schaefer, Anneliese M; Nonet, Michael L
2011-01-01
Little is known about transcriptional control of neurite branching or presynaptic differentiation, events that occur relatively late in neuronal development. Using the Caenorhabditis elegans mechanosensory circuit as an in vivo model, we show that SAM-10, an ortholog of mammalian single-stranded DNA-binding protein (SSDP), functions cell-autonomously in the nucleus to regulate synaptic differentiation, as well as positioning of, a single neurite branch. PLM mechanosensory neurons in sam-10 mutants exhibit abnormal placement of the neurite branch point, and defective synaptogenesis, characterized by an overextended synaptic varicosity, underdeveloped synaptic morphology and disrupted colocalization of active zone and synaptic vesicles. SAM-10 functions coordinately with Lim domain-binding protein 1 (LDB-1), demonstrated by our observations that: (1) mutations in either gene show similar defects in PLM neurons; and (2) LDB-1 is required for SAM-10 nuclear localization. SAM-10 regulates PLM synaptic differentiation by suppressing transcription of prk-2, which encodes an ortholog of the mammalian Pim kinase family. PRK-2-mediated activities of SAM-10 are specifically involved in PLM synaptic differentiation, but not other sam-10 phenotypes such as neurite branching. Thus, these data reveal a novel transcriptional signaling pathway that regulates neuronal specification of neurite branching and presynaptic differentiation.
NASA Astrophysics Data System (ADS)
Yamagata, Atsushi; Yoshida, Tomoyuki; Sato, Yusuke; Goto-Ito, Sakurako; Uemura, Takeshi; Maeda, Asami; Shiroshima, Tomoko; Iwasawa-Okamoto, Shiho; Mori, Hisashi; Mishina, Masayoshi; Fukai, Shuya
2015-04-01
Synapse formation is triggered through trans-synaptic interaction between pairs of pre- and postsynaptic adhesion molecules, the specificity of which depends on splice inserts known as `splice-insert signaling codes'. Receptor protein tyrosine phosphatase δ (PTPδ) can bidirectionally induce pre- and postsynaptic differentiation of neurons by trans-synaptically binding to interleukin-1 receptor accessory protein (IL-1RAcP) and IL-1RAcP-like-1 (IL1RAPL1) in a splicing-dependent manner. Here, we report crystal structures of PTPδ in complex with IL1RAPL1 and IL-1RAcP. The first immunoglobulin-like (Ig) domain of IL1RAPL1 directly recognizes the first splice insert, which is critical for binding to IL1RAPL1. The second splice insert functions as an adjustable linker that positions the Ig2 and Ig3 domains of PTPδ for simultaneously interacting with the Ig1 domain of IL1RAPL1 or IL-1RAcP. We further identified the IL1RAPL1-specific interaction, which appears coupled to the first-splice-insert-mediated interaction. Our results thus reveal the decoding mechanism of splice-insert signaling codes for synaptic differentiation induced by trans-synaptic adhesion between PTPδ and IL1RAPL1/IL-1RAcP.
Chronic minocycline treatment improves social recognition memory in adult male Fmr1 knockout mice.
Yau, Suk Yu; Chiu, Christine; Vetrici, Mariana; Christie, Brian R
2016-10-01
Fragile X syndrome (FXS) is caused by a mutation in the Fmr1 gene that leads to silencing of the gene and a loss of its gene product, Fragile X mental retardation protein (FMRP). Some of the key behavioral phenotypes for FXS include abnormal social anxiety and sociability. Here we show that Fmr1 knock-out (KO) mice exhibit impaired social recognition when presented with a novel mouse, and they display normal social interactions in other sociability tests. Administering minocycline to Fmr1 KO mice throughout critical stages of neural development improved social recognition memory in the novel mouse recognition task. To determine if synaptic changes in the prefrontal cortex (PFC) could have played a role in this improvement, we examined PSD-95, a member of the membrane-associated guanylate kinase family, and signaling molecules (ERK1/2, and Akt) linked to synaptic plasticity in the PFC. Our analyses indicated that while minocycline treatment can enhance behavioral performance, it does not enhance expression of PSD-95, ERK1/2 or Akt in the PFC. Copyright © 2016 Elsevier B.V. All rights reserved.
Regulation of neuronal communication by G protein-coupled receptors.
Huang, Yunhong; Thathiah, Amantha
2015-06-22
Neuronal communication plays an essential role in the propagation of information in the brain and requires a precisely orchestrated connectivity between neurons. Synaptic transmission is the mechanism through which neurons communicate with each other. It is a strictly regulated process which involves membrane depolarization, the cellular exocytosis machinery, neurotransmitter release from synaptic vesicles into the synaptic cleft, and the interaction between ion channels, G protein-coupled receptors (GPCRs), and downstream effector molecules. The focus of this review is to explore the role of GPCRs and G protein-signaling in neurotransmission, to highlight the function of GPCRs, which are localized in both presynaptic and postsynaptic membrane terminals, in regulation of intrasynaptic and intersynaptic communication, and to discuss the involvement of astrocytic GPCRs in the regulation of neuronal communication. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Modeling Autism by SHANK Gene Mutations in Mice
Jiang, Yong-hui; Ehlers, Michael D.
2013-01-01
Summary Shank family proteins (Shank1, Shank2, and Shank3) are synaptic scaffolding proteins that organize an extensive protein complex at the postsynaptic density (PSD) of excitatory glutamatergic synapses. Recent human genetic studies indicate that SHANK family genes (SHANK1, SHANK2, and SHANK3) are causative genes for idiopathic autism spectrum disorders (ASD). Neurobiological studies of Shank mutations in mice support a general hypothesis of synaptic dysfunction in the pathophysiology of ASD. However, the molecular diversity of SHANK family gene products, as well as the heterogeneity in human and mouse phenotypes, pose challenges to modeling human SHANK mutations. Here, we review the molecular genetics of SHANK mutations in human ASD and discuss recent findings where such mutations have been modeled in mice. Conserved features of synaptic dysfunction and corresponding behaviors in Shank mouse mutants may help dissect the pathophysiology of ASD, but also highlight divergent phenotypes that arise from different mutations in the same gene. PMID:23583105
2010-01-01
Background It is often desirable to separate effects of different regulators on gene expression, or to identify effects of the same regulator across several systems. Here, we focus on the rat brain following stroke or seizures, and demonstrate how the two tasks can be approached simultaneously. Results We applied SVD to time-series gene expression datasets from the rat experimental models of stroke and seizures. We demonstrate conservation of two eigensystems, reflecting inflammation and/or apoptosis (eigensystem 2) and neuronal synaptic activity (eigensystem 3), between the stroke and seizures. We analyzed cis-regulation of gene expression in the subspaces of the conserved eigensystems. Bayesian networks analysis was performed separately for either experimental model, with cross-system validation of the highest-ranking features. In this way, we correctly re-discovered the role of AP1 in the regulation of apoptosis, and the involvement of Creb and Egr in the regulation of synaptic activity-related genes. We identified a novel antagonistic effect of the motif recognized by the nuclear matrix attachment region-binding protein Satb1 on AP1-driven transcriptional activation, suggesting a link between chromatin loop structure and gene activation by AP1. The effects of motifs binding Satb1 and Creb on gene expression in brain conform to the assumption of the linear response model of gene regulation. Our data also suggest that numerous enhancers of neuronal-specific genes are important for their responsiveness to the synaptic activity. Conclusion Eigensystems conserved between stroke and seizures separate effects of inflammation/apoptosis and neuronal synaptic activity, exerted by different transcription factors, on gene expression in rat brain. PMID:20565733
Vogel Ciernia, Annie; Kramár, Enikö A; Matheos, Dina P; Havekes, Robbert; Hemstedt, Thekla J; Magnan, Christophe N; Sakata, Keith; Tran, Ashley; Azzawi, Soraya; Lopez, Alberto; Dang, Richard; Wang, Weisheng; Trieu, Brian; Tong, Joyce; Barrett, Ruth M; Post, Rebecca J; Baldi, Pierre; Abel, Ted; Lynch, Gary; Wood, Marcelo A
2017-05-01
Recent human exome-sequencing studies have implicated polymorphic Brg1-associated factor (BAF) complexes (mammalian SWI/SNF chromatin remodeling complexes) in several intellectual disabilities and cognitive disorders, including autism. However, it remains unclear how mutations in BAF complexes result in impaired cognitive function. Post-mitotic neurons express a neuron-specific assembly, nBAF, characterized by the neuron-specific subunit BAF53b. Subdomain 2 of BAF53b is essential for the differentiation of neuronal precursor cells into neurons. We generated transgenic mice lacking subdomain 2 of Baf53b (BAF53bΔSB2). Long-term synaptic potentiation (LTP) and long-term memory, both of which are associated with phosphorylation of the actin severing protein cofilin, were assessed in these animals. A phosphorylation mimic of cofilin was stereotaxically delivered into the hippocampus of BAF53bΔSB2 mice in an effort to rescue LTP and memory. BAF53bΔSB2 mutant mice show impairments in phosphorylation of synaptic cofilin, LTP, and memory. Both the synaptic plasticity and memory deficits are rescued by overexpression of a phosphorylation mimetic of cofilin. Baseline physiology and behavior were not affected by the mutation or the experimental treatment. This study suggests a potential link between nBAF function, actin cytoskeletal remodeling at the dendritic spine, and memory formation. This work shows that a targeted manipulation of synaptic function can rescue adult plasticity and memory deficits caused by manipulations of nBAF, and thereby provides potential novel avenues for therapeutic development for multiple intellectual disability disorders. © 2017 Vogel Ciernia et al.; Published by Cold Spring Harbor Laboratory Press.
Forced neuronal interactions cause poor communication.
Krzisch, Marine; Toni, Nicolas
2017-01-01
Post-natal hippocampal neurogenesis plays a role in hippocampal function, and neurons born post-natally participate to spatial memory and mood control. However, a great proportion of granule neurons generated in the post-natal hippocampus are eliminated during the first 3 weeks of their maturation, a mechanism that depends on their synaptic integration. In a recent study, we examined the possibility of enhancing the synaptic integration of neurons born post-natally, by specifically overexpressing synaptic cell adhesion molecules in these cells. Synaptic cell adhesion molecules are transmembrane proteins mediating the physical connection between pre- and post-synaptic neurons at the synapse, and their overexpression enhances synapse formation. Accordingly, we found that overexpressing synaptic adhesion molecules increased the synaptic integration and survival of newborn neurons. Surprisingly, the synaptic adhesion molecule with the strongest effect on new neurons' survival, Neuroligin-2A, decreased memory performances in a water maze task. We present here hypotheses explaining these surprising results, in the light of the current knowledge of the mechanisms of synaptic integration of new neurons in the post-natal hippocampus.
Genetic evidence for role of integration of fast and slow neurotransmission in schizophrenia.
Devor, A; Andreassen, O A; Wang, Y; Mäki-Marttunen, T; Smeland, O B; Fan, C-C; Schork, A J; Holland, D; Thompson, W K; Witoelar, A; Chen, C-H; Desikan, R S; McEvoy, L K; Djurovic, S; Greengard, P; Svenningsson, P; Einevoll, G T; Dale, A M
2017-06-01
The most recent genome-wide association studies (GWAS) of schizophrenia (SCZ) identified hundreds of risk variants potentially implicated in the disease. Further, novel statistical methodology designed for polygenic architecture revealed more potential risk variants. This can provide a link between individual genetic factors and the mechanistic underpinnings of SCZ. Intriguingly, a large number of genes coding for ionotropic and metabotropic receptors for various neurotransmitters-glutamate, γ-aminobutyric acid (GABA), dopamine, serotonin, acetylcholine and opioids-and numerous ion channels were associated with SCZ. Here, we review these findings from the standpoint of classical neurobiological knowledge of neuronal synaptic transmission and regulation of electrical excitability. We show that a substantial proportion of the identified genes are involved in intracellular cascades known to integrate 'slow' (G-protein-coupled receptors) and 'fast' (ionotropic receptors) neurotransmission converging on the protein DARPP-32. Inspection of the Human Brain Transcriptome Project database confirms that that these genes are indeed expressed in the brain, with the expression profile following specific developmental trajectories, underscoring their relevance to brain organization and function. These findings extend the existing pathophysiology hypothesis by suggesting a unifying role of dysregulation in neuronal excitability and synaptic integration in SCZ. This emergent model supports the concept of SCZ as an 'associative' disorder-a breakdown in the communication across different slow and fast neurotransmitter systems through intracellular signaling pathways-and may unify a number of currently competing hypotheses of SCZ pathophysiology.
Isolation of Synaptosomes, Synaptic Plasma Membranes, and Synaptic Junctional Complexes.
Michaelis, Mary L; Jiang, Lei; Michaelis, Elias K
2017-01-01
Isolation of synaptic nerve terminals or synaptosomes provides an opportunity to study the process of neurotransmission at many levels and with a variety of approaches. For example, structural features of the synaptic terminals and the organelles within them, such as synaptic vesicles and mitochondria, have been elucidated with electron microscopy. The postsynaptic membranes are joined to the presynaptic "active zone" of transmitter release through cell adhesion molecules and remain attached throughout the isolation of synaptosomes. These "post synaptic densities" or "PSDs" contain the receptors for the transmitters released from the nerve terminals and can easily be seen with electron microscopy. Biochemical and cell biological studies with synaptosomes have revealed which proteins and lipids are most actively involved in synaptic release of neurotransmitters. The functional properties of the nerve terminals, such as responses to depolarization and the uptake or release of signaling molecules, have also been characterized through the use of fluorescent dyes, tagged transmitters, and transporter substrates. In addition, isolated synaptosomes can serve as the starting material for the isolation of relatively pure synaptic plasma membranes (SPMs) that are devoid of organelles from the internal environment of the nerve terminal, such as mitochondria and synaptic vesicles. The isolated SPMs can reseal and form vesicular structures in which transport of ions such as sodium and calcium, as well as solutes such as neurotransmitters can be studied. The PSDs also remain associated with the presynaptic membranes during isolation of SPM fractions, making it possible to isolate the synaptic junctional complexes (SJCs) devoid of the rest of the plasma membranes of the nerve terminals and postsynaptic membrane components. Isolated SJCs can be used to identify the proteins that constitute this highly specialized region of neurons. In this chapter, we describe the steps involved in isolating synaptosomes, SPMs, and SJCs from brain so that these preparations can be used with new technological advances to address many as yet unanswered questions about the synapse and its remarkable activities in neuronal cell communication.
Rothman, S. M.; Mattson, M. P.
2013-01-01
During development of the nervous system, the formation of connections (synapses) between neurons is dependent upon electrical activity in those neurons, and neurotrophic factors produced by target cells play a pivotal role in such activity-dependent sculpting of the neural networks. A similar interplay between neurotransmitter and neurotrophic factor signaling pathways mediates adaptive responses of neural networks to environmental demands in adult mammals, with the excitatory neurotransmitter glutamate and brain-derived neurotrophic factor (BDNF) being particularly prominent regulators of synaptic plasticity throughout the central nervous system. Optimal brain health throughout the lifespan is promoted by intermittent challenges such as exercise, cognitive stimulation and dietary energy restriction, that subject neurons to activity-related metabolic stress. At the molecular level, such challenges to neurons result in the production of proteins involved in neurogenesis, learning and memory and neuronal survival; examples include proteins that regulate mitochondrial biogenesis, protein quality control, and resistance of cells to oxidative, metabolic and proteotoxic stress. BDNF signaling mediates up-regulation of several such proteins including the protein chaperone GRP-78, antioxidant enzymes, the cell survival protein Bcl-2, and the DNA repair enzyme APE1. Insufficient exposure to such challenges, genetic factors may conspire to impair BDNF production and/or signaling resulting in the vulnerability of the brain to injury and neurodegenerative disorders including Alzheimer’s, Parkinson’s and Huntington’s diseases. Further, BDNF signaling is negatively regulated by glucocorticoids. Glucocorticoids impair synaptic plasticity in the brain by negatively regulating spine density, neurogenesis and long-term potentiation, effects that are potentially linked to glucocorticoid regulation of BDNF. Findings suggest that BDNF signaling in specific brain regions mediates some of the beneficial effects of exercise and energy restriction on peripheral energy metabolism and the cardiovascular system. Collectively, the findings described in this article suggest the possibility of developing prescriptions for optimal brain health based on activity-dependent BDNF signaling. PMID:23079624
Xu, Qiuling; Liu, Tao; Chen, Shuping; Gao, Yonghui; Wang, Junying; Qiao, Lina; Liu, Junling
2012-01-01
In the present study, we examined the analgesic effect of repeated electroacupuncture at bilateral Zusanli (ST36) and Yanglingquan (GB34) once a day for 14 consecutive days in a rat model of chronic sciatic nerve constriction injury-induced neuropathic pain. In addition, concomitant changes in calcium/calmodulin-dependent protein kinase II expression and synaptic ultrastructure of neurons in the hippocampal CA3 region were examined. The thermal pain threshold (paw withdrawal latency) was increased significantly in both groups at 2 weeks after electroacupuncture intervention compared with 2 days of electroacupuncture. In ovariectomized rats with chronic constriction injury, the analgesic effect was significantly reduced. Electroacupuncture for 2 weeks significantly diminished the injury-induced increase in synaptic cleft width and thinning of the postsynaptic density, and it significantly suppressed the down-regulation of intracellular calcium/calmodulin-dependent protein kinase II expression in the hippocampal CA3 region. Repeated electroacupuncture intervention had a cumulative analgesic effect on injury-induced neuropathic pain reactions, and it led to synaptic remodeling of hippocampal neurons and upregulated calcium/calmodulin-dependent protein kinase II expression in the hippocampal CA3 region. PMID:25657670
Havekes, Robbert; Canton, David A.; Park, Alan J.; Huang, Ted; Nie, Ting; Day, Jonathan P.; Guercio, Leonardo A.; Grimes, Quinn; Luczak, Vincent; Gelman, Irwin H.; Baillie, George S.; Scott, John D.; Abel, Ted
2012-01-01
A kinase-anchoring proteins (AKAPs) organize compartmentalized pools of Protein Kinase A (PKA) to enable localized signaling events within neurons. However, it is unclear which of the many expressed AKAPs in neurons target PKA to signaling complexes important for long-lasting forms of synaptic plasticity and memory storage. In the forebrain, the anchoring protein gravin recruits a signaling complex containing PKA, PKC, calmodulin, and PDE4D to the β2-adrenergic receptor. Here, we show that mice lacking the α-isoform of gravin have deficits in PKA-dependent long-lasting forms of hippocampal synaptic plasticity including β2-adrenergic receptor-mediated plasticity, and selective impairments of long-term memory storage. Further, both hippocampal β2-adrenergic receptor phosphorylation by PKA, and learning-induced activation of ERK, are attenuated in the CA1 region of the hippocampus in mice lacking gravin-α. We conclude that gravin compartmentalizes a significant pool of PKA that regulates learning-induced β2-adrenergic receptor signaling and ERK activation in the hippocampus in vivo, organizing molecular interactions between glutamatergic and noradrenergic signaling pathways for long-lasting synaptic plasticity, and memory storage. PMID:23238728
Sen, Abhik; Alkon, Daniel L.; Nelson, Thomas J.
2012-01-01
Synaptic loss is the earliest pathological change in Alzheimer disease (AD) and is the pathological change most directly correlated with the degree of dementia. ApoE4 is the major genetic risk factor for the age-dependent form of AD, which accounts for 95% of cases. Here we show that in synaptic networks formed from primary hippocampal neurons in culture, apoE3, but not apoE4, prevents the loss of synaptic networks produced by amyloid β oligomers (amylospheroids). Specific activators of PKCϵ, such as 8-(2-(2-pentyl-cyclopropylmethyl)-cyclopropyl)-octanoic acid methyl ester and bryostatin 1, protected against synaptic loss by amylospheroids, whereas PKCϵ inhibitors blocked this synaptic protection and also blocked the protection by apoE3. Blocking LRP1, an apoE receptor on the neuronal membrane, also blocked the protection by apoE. ApoE3, but not apoE4, induced the synthesis of PKCϵ mRNA and expression of the PKCϵ protein. Amyloid β specifically blocked the expression of PKCϵ but had no effect on other isoforms. These results suggest that protection against synaptic loss by apoE is mediated by a novel intracellular PKCϵ pathway. This apoE pathway may account for much of the protective effect of apoE and reduced risk for the age-dependent form of AD. This finding supports the potential efficacy of newly developed therapeutics for AD. PMID:22427674
Characterization of Bovine Brain ATPase
1988-07-01
Experiment D . Only very small amounts of (3H)-ligand (0.8 fmole/mg protein) were observed to bind to the toxin as indicated by Experiments E and F. Since...B. Synaptic Membranes + 3H-Ligand + 7.6 Unlabelled Ltgand C. Toxin + Synaptic Membranes + 3H-Ligand 7.5 D . Toxin + Synaptic Membranes + 3H-Ligand...Europaeus Agglutinin L-Fucose SBA= Soy Bean Agglutinin D -Galactose LPA= Limulus Polyphemus Agglutinin N-Acetylgalactosamine Con-A= Concanavalin-A, D -Glucose
Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation
NASA Technical Reports Server (NTRS)
Krichevsky, A. M.; Kosik, K. S.
2001-01-01
RNA granules are a macromolecular structure observed in neurons, where they serve as motile units that translocate mRNAs. Isolated RNA granules are highly enriched in Staufen protein and ultrastructurally contain densely packed clusters of ribosomes. With depolarization, many mRNAs, including those involved in plasticity, rapidly shift from the RNA granule fraction to polysomes. Depolarization reorganizes granules and induces a less compact organization of their ribosomes. RNA granules are not translationally competent, as indicated by the failure to incorporate radioactive amino acids and the absence of eIF4E, 4G, and tRNAs. We concluded that RNA granules are a local storage compartment for mRNAs under translational arrest but are poised for release to actively translated pools. Local release of mRNAs and ribosomes from granules may serve as a macromolecular mechanism linking RNA localization to translation and synaptic plasticity.
Synaptic Scaling Enables Dynamically Distinct Short- and Long-Term Memory Formation
Tetzlaff, Christian; Kolodziejski, Christoph; Timme, Marc; Tsodyks, Misha; Wörgötter, Florentin
2013-01-01
Memory storage in the brain relies on mechanisms acting on time scales from minutes, for long-term synaptic potentiation, to days, for memory consolidation. During such processes, neural circuits distinguish synapses relevant for forming a long-term storage, which are consolidated, from synapses of short-term storage, which fade. How time scale integration and synaptic differentiation is simultaneously achieved remains unclear. Here we show that synaptic scaling – a slow process usually associated with the maintenance of activity homeostasis – combined with synaptic plasticity may simultaneously achieve both, thereby providing a natural separation of short- from long-term storage. The interaction between plasticity and scaling provides also an explanation for an established paradox where memory consolidation critically depends on the exact order of learning and recall. These results indicate that scaling may be fundamental for stabilizing memories, providing a dynamic link between early and late memory formation processes. PMID:24204240
Synaptic scaling enables dynamically distinct short- and long-term memory formation.
Tetzlaff, Christian; Kolodziejski, Christoph; Timme, Marc; Tsodyks, Misha; Wörgötter, Florentin
2013-10-01
Memory storage in the brain relies on mechanisms acting on time scales from minutes, for long-term synaptic potentiation, to days, for memory consolidation. During such processes, neural circuits distinguish synapses relevant for forming a long-term storage, which are consolidated, from synapses of short-term storage, which fade. How time scale integration and synaptic differentiation is simultaneously achieved remains unclear. Here we show that synaptic scaling - a slow process usually associated with the maintenance of activity homeostasis - combined with synaptic plasticity may simultaneously achieve both, thereby providing a natural separation of short- from long-term storage. The interaction between plasticity and scaling provides also an explanation for an established paradox where memory consolidation critically depends on the exact order of learning and recall. These results indicate that scaling may be fundamental for stabilizing memories, providing a dynamic link between early and late memory formation processes.
Mitra, Shiladitya; Sameer Kumar, Ghantasala S.; Jyothi Lakshmi, B.; Thakur, Suman; Kumar, Satish
2018-01-01
We earlier reported that the male mice lacking the Wdr13 gene (Wdr13-/0) showed mild anxiety, better memory retention, and up-regulation of synaptic proteins in the hippocampus. With increasing evidences from parallel studies in our laboratory about the possible role of Wdr13 in stress response, we investigated its role in brain. We observed that Wdr13 transcript gets up-regulated in the hippocampus of the wild-type mice exposed to stress. To further dissect its function, we analyzed the behavioral and molecular phenotypes of Wdr13-/0 mice when subjected to mild chronic psychological stress, namely; mild (attenuated) social isolation. We employed iTRAQ based quantitative proteomics, real time PCR and western blotting to investigate molecular changes. Three weeks of social isolation predisposed Wdr13-/0 mice to anhedonia, heightened anxiety-measured by Open field test (OFT), increased behavior despair- measured by Forced swim test (FST) and reduced dendritic branching along with decreased spine density of hippocampal CA1 neurons as compared to wild-type counterparts. This depression-like-phenotype was however ameliorated when treated with anti-depressant imipramine. Molecular analysis revealed that out of 1002 quantified proteins [1% False discovery rate (FDR), at-least two unique peptides], strikingly, a significant proportion of synaptic proteins including, SYN1, CAMK2A, and RAB3A were down-regulated in the socially isolated Wdr13-/0 mice as compared to its wild-type counterparts. This was in contrast to the elevated levels of these proteins in non-stressed mutants as compared to the controls. We hypothesized that a de-regulated transcription factor upstream of the synaptic genes might be responsible for the observed phenotype. Indeed, in the socially isolated Wdr13-/0 mice, there was an up-regulation of GATA1 – a transcription factor that negatively regulates synaptic genes and has been associated with Major Depression (MD) in humans. The present study demonstrates significant genotype × enviornment interaction for Wdr13 gene as shown by the reversal in the expression levels of several synaptic proteins in the mutant vis-à-vis wild-type mouse when exposed to social isolation stress. PMID:29743870
Synaptic Modifications in the Medial Prefrontal Cortex in Susceptibility and Resilience to Stress
Wang, Minghui; Perova, Zinaida; Arenkiel, Benjamin R.
2014-01-01
When facing stress, most individuals are resilient whereas others are prone to developing mood disorders. The brain mechanisms underlying such divergent behavioral responses remain unclear. Here we used the learned helplessness procedure in mice to examine the role of the medial prefrontal cortex (mPFC), a brain region highly implicated in both clinical and animal models of depression, in adaptive and maladaptive behavioral responses to stress. We found that uncontrollable and inescapable stress induced behavioral state-dependent changes in the excitatory synapses onto a subset of mPFC neurons: those that were activated during behavioral responses as indicated by their expression of the activity reporter c-Fos. Whereas synaptic potentiation was linked to learned helplessness, a depression-like behavior, synaptic weakening, was associated with resilience to stress. Notably, enhancing the activity of mPFC neurons using a chemical–genetic method was sufficient to convert the resilient behavior into helplessness. Our results provide direct evidence that mPFC dysfunction is linked to maladaptive behavioral responses to stress, and suggest that enhanced excitatory synaptic drive onto mPFC neurons may underlie the previously reported hyperactivity of this brain region in depression. PMID:24872553
Arc in synaptic plasticity: from gene to behavior
Korb, Erica; Finkbeiner, Steven
2011-01-01
The activity-regulated cytoskeletal (Arc) gene encodes a protein that is critical for memory consolidation. Arc is one of the most tightly regulated molecules known: neuronal activity controls Arc mRNA induction, trafficking, and accumulation, and Arc protein production, localization and stability. Arc regulates synaptic strength through multiple mechanisms and is involved in essentially every known form of synaptic plasticity. It also mediates memory formation and is implicated in multiple neurological diseases. In this review, we will discuss how Arc is regulated and used as a tool to study neuronal activity. We will also attempt to clarify how its molecular functions correspond to its requirement for various forms of plasticity, discuss Arc’s role in behavior and disease, and highlight critical unresolved questions. PMID:21963089
Subbanna, Shivakumar; Shivakumar, Madhu; Psychoyos, Delphine; Xie, Shan; Basavarajappa, Balapal S.
2013-01-01
The transient exposure of immature rodents to ethanol during postnatal day 7 (P7), which is comparable to the third trimester human pregnancy, induces synaptic dysfunctions. However, the molecular mechanisms underlying these dysfunctions are still poorly understood. Although the endocannabinoid system has been shown to be an important modulator of ethanol sensitivity in adult mice, its potential role in synaptic dysfunctions in mice exposed to ethanol during early brain development is not examined. In this study, we investigated the potential role of endocannabinoids and the cannabinoid receptor type 1 (CB1R) in neonatal neurodegeneration and adult synaptic dysfunctions in mice exposed to ethanol at P7. Ethanol treatment at P7, which induces neurodegeneration, increased anandamide (AEA) but not 2-arachidonylglycerol biosynthesis and CB1R protein expression in the hippocampus and cortex, two brain areas that are important for memory formation and storage, respectively. N-arachidonoyl phosphatidylethanolamine-phospholipase D (NAPE-PLD), glycerophosphodiesterase (GDE1) and CB1Rs protein expression were enhanced by transcriptional activation of the genes encoding NAPE-PLD, GDE1 and CB1R proteins respectively. In addition, ethanol inhibited ERK1/2 and AKT phosphorylation. The blockade of CB1Rs prior to ethanol treatment at P7 relieved ERK1/2 but not AKT phosphorylation and prevented neurodegeneration. CB1R knockout mice exhibited no ethanol-induced neurodegeneration and inhibition of ERK1/2-phosphorylation. The protective effects of CB1R blockade through pharmacological or genetic deletion resulted in normal adult synaptic plasticity and novel object recognition memory in mice exposed to ethanol at P7. The AEA/CB1R/pERK1/2 signaling pathway may be directly responsible for the synaptic and memory deficits associated with fetal alcohol spectrum disorders. PMID:23575834
Sasaki-Hamada, Sachie; Hojo, Yuki; Koyama, Hajime; Otsuka, Hayuma; Oka, Jun-Ichiro
2015-05-01
Glucose is the sole neural fuel for the brain and is essential for cognitive function. Abnormalities in glucose tolerance may be associated with impairments in cognitive function. Experimental obese model mice can be generated by an intraperitoneal injection of monosodium glutamate (MSG; 2 mg/g) once a day for 5 days from 1 day after birth. MSG-treated mice have been shown to develop glucose intolerance and exhibit chronic neuroendocrine dysfunction associated with marked cognitive malfunctions at 28-29 weeks old. Although hippocampal synaptic plasticity is impaired in MSG-treated mice, changes in synaptic transmission remain unknown. Here, we investigated whether glucose intolerance influenced cognitive function, synaptic properties and protein expression in the hippocampus. We demonstrated that MSG-treated mice developed glucose intolerance due to an impairment in the effectiveness of insulin actions, and showed cognitive impairments in the Y-maze test. Moreover, long-term potentiation (LTP) at Schaffer collateral-CA1 pyramidal synapses in hippocampal slices was impaired, and the relationship between the slope of extracellular field excitatory postsynaptic potential and stimulus intensity of synaptic transmission was weaker in MSG-treated mice. The protein levels of vesicular glutamate transporter 1 and GluA1 glutamate receptor subunits decreased in the CA1 region of MSG-treated mice. These results suggest that deficits in glutamatergic presynapses as well as postsynapses lead to impaired synaptic plasticity in MSG-treated mice during the development of glucose intolerance, though it remains unknown whether impaired LTP is due to altered inhibitory transmission. It may be important to examine changes in glucose tolerance in order to prevent cognitive malfunctions associated with diabetes. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Waters, Elizabeth M; Thompson, Louisa I; Patel, Parth; Gonzales, Andreina D; Ye, Hector Zhiyu; Filardo, Edward J; Clegg, Deborah J; Gorecka, Jolanta; Akama, Keith T; McEwen, Bruce S; Milner, Teresa A
2015-02-11
Both estrous cycle and sex affect the numbers and types of neuronal and glial profiles containing the classical estrogen receptors α and β, and synaptic levels in the rodent dorsal hippocampus. Here, we examined whether the membrane estrogen receptor, G-protein-coupled estrogen receptor 1 (GPER1), is anatomically positioned in the dorsal hippocampus of mice to regulate synaptic plasticity. By light microscopy, GPER1-immunoreactivity (IR) was most noticeable in the pyramidal cell layer and interspersed interneurons, especially those in the hilus of the dentate gyrus. Diffuse GPER1-IR was found in all lamina but was most dense in stratum lucidum of CA3. Ultrastructural analysis revealed discrete extranuclear GPER1-IR affiliated with the plasma membrane and endoplasmic reticulum of neuronal perikarya and dendritic shafts, synaptic specializations in dendritic spines, and clusters of vesicles in axon terminals. Moreover, GPER1-IR was found in unmyelinated axons and glial profiles. Overall, the types and amounts of GPER1-labeled profiles were similar between males and females; however, in females elevated estrogen levels generally increased axonal labeling. Some estradiol-induced changes observed in previous studies were replicated by the GPER agonist G1: G1 increased PSD95-IR in strata oriens, lucidum, and radiatum of CA3 in ovariectomized mice 6 h after administration. In contrast, estradiol but not G1 increased Akt phosphorylation levels. Instead, GPER1 actions in the synapse may be due to interactions with synaptic scaffolding proteins, such as SAP97. These results suggest that although estrogen's actions via GPER1 may converge on the same synaptic elements, different pathways are used to achieve these actions. Copyright © 2015 the authors 0270-6474/15/352384-14$15.00/0.
ERIC Educational Resources Information Center
Pirbhoy, Patricia Salgado; Farris, Shannon; Steward, Oswald
2017-01-01
High-frequency stimulation of the medial perforant path triggers robust phosphorylation of ribosomal protein S6 (rpS6) in activated dendritic domains and granule cell bodies. Here we dissect the signaling pathways responsible for synaptically driven rpS6 phosphorylation in the dentate gyrus using pharmacological agents to inhibit PI3-kinase/mTOR…
Pilo Boyl, Pietro; Di Nardo, Alessia; Mulle, Christophe; Sassoè-Pognetto, Marco; Panzanelli, Patrizia; Mele, Andrea; Kneussel, Matthias; Costantini, Vivian; Perlas, Emerald; Massimi, Marzia; Vara, Hugo; Giustetto, Maurizio; Witke, Walter
2007-01-01
Profilins are actin binding proteins essential for regulating cytoskeletal dynamics, however, their function in the mammalian nervous system is unknown. Here, we provide evidence that in mouse brain profilin1 and profilin2 have distinct roles in regulating synaptic actin polymerization with profilin2 preferring a WAVE-complex-mediated pathway. Mice lacking profilin2 show a block in synaptic actin polymerization in response to depolarization, which is accompanied by increased synaptic excitability of glutamatergic neurons due to higher vesicle exocytosis. These alterations in neurotransmitter release correlate with a hyperactivation of the striatum and enhanced novelty-seeking behavior in profilin2 mutant mice. Our results highlight a novel, profilin2-dependent pathway, regulating synaptic physiology, neuronal excitability, and complex behavior. PMID:17541406
The multifunctional Staufen proteins: conserved roles from neurogenesis to synaptic plasticity
Heraud-Farlow, Jacki E.; Kiebler, Michael A.
2014-01-01
Staufen (Stau) proteins belong to a family of RNA-binding proteins (RBPs) that are important for RNA localisation in many organisms. In this review we discuss recent findings on the conserved role played by Stau during both the early differentiation of neurons and in the synaptic plasticity of mature neurons. Recent molecular data suggest mechanisms for how Stau2 regulates mRNA localisation, mRNA stability, translation, and ribonucleoprotein (RNP) assembly. We offer a perspective on how this multifunctional RBP has been adopted to regulate mRNA localisation under several different cellular and developmental conditions. PMID:25012293
Cansev, M; Wurtman, R J
2007-08-24
Synthesis of phosphatidylcholine, the most abundant brain membrane phosphatide, requires three circulating precursors: choline; a pyrimidine (e.g. uridine); and a polyunsaturated fatty acid. Supplementing a choline-containing diet with the uridine source uridine-5'-monophosphate (UMP) or, especially, with UMP plus the omega-3 fatty acid docosahexaenoic acid (given by gavage), produces substantial increases in membrane phosphatide and synaptic protein levels within gerbil brain. We now compare the effects of various polyunsaturated fatty acids, given alone or with UMP, on these synaptic membrane constituents. Gerbils received, daily for 4 weeks, a diet containing choline chloride with or without UMP and/or, by gavage, an omega-3 (docosahexaenoic or eicosapentaenoic acid) or omega-6 (arachidonic acid) fatty acid. Both of the omega-3 fatty acids elevated major brain phosphatide levels (by 18-28%, and 21-27%) and giving UMP along with them enhanced their effects significantly. Arachidonic acid, given alone or with UMP, was without effect. After UMP plus docosahexaenoic acid treatment, total brain phospholipid levels and those of each individual phosphatide increased significantly in all brain regions examined (cortex, striatum, hippocampus, brain stem, and cerebellum). The increases in brain phosphatides in gerbils receiving an omega-3 (but not omega-6) fatty acid, with or without UMP, were accompanied by parallel elevations in levels of pre- and post-synaptic proteins (syntaxin-3, PSD-95 and synapsin-1) but not in those of a ubiquitous structural protein, beta-tubulin. Hence administering omega-3 polyunsaturated fatty acids can enhance synaptic membrane levels in gerbils, and may do so in patients with neurodegenerative diseases, especially when given with a uridine source, while the omega-6 polyunsaturated fatty acid arachidonic acid is ineffective.
Cansev, M.; Wurtman, R. J.
2007-01-01
Synthesis of phosphatidylcholine, the most abundant brain membrane phosphatide, requires three circulating precursors: choline; a pyrimidine (e.g., uridine); and a polyunsaturated fatty acid. Supplementing a choline-containing diet with the uridine source uridine-5′-monophosphate (UMP) or, especially, with UMP plus the omega-3 fatty acid docosahexaenoic acid (given by gavage), produces substantial increases in membrane phosphatide and synaptic protein levels within gerbil brain. We now compare the effects of various polyunsaturated fatty acids, given alone or with UMP, on these synaptic membrane constituents. Gerbils received, daily for 4 weeks, a diet containing choline chloride with or without UMP and/or, by gavage, an omega-3 (docosahexaenoic or eicosapentaenoic acid) or omega-6 (arachidonic acid) fatty acid. Both of the omega-3 fatty acids elevated major brain phosphatide levels (by 18-28%, and 21-27%) and giving UMP along with them enhanced their effects significantly. Arachidonic acid, given alone or with UMP, was without effect. After UMP plus docosahexaenoic acid treatment, total brain phospholipids levels and those of each individual phosphatide increased significantly in all brain regions examined (cortex, striatum, hippocampus, brain stem, and cerebellum). The increases in brain phosphatides in gerbils receiving an omega-3 (but not omega-6) fatty acid, with or without UMP, were accompanied by parallel elevations in levels of pre- and post-synaptic proteins (syntaxin-3, PSD-95 and Synapsin-1) but not in those of a ubiquitous structural protein, β-tubulin. Hence administering omega-3 polyunsaturated fatty acids can enhance synaptic membrane levels in gerbils, and may do so in patients with neurodegenerative diseases, especially when given with a uridine source, while the omega-6 polyunsaturated fatty acid arachidonic acid is ineffective. PMID:17683870
Rescue of Synaptic Phenotypes and Spatial Memory in Young Fragile X Mice.
Sun, Miao-Kun; Hongpaisan, Jarin; Alkon, Daniel L
2016-05-01
Fragile X syndrome (FXS) is characterized by synaptic immaturity, cognitive impairment, and behavioral changes. The disorder is caused by transcriptional shutdown in neurons of thefragile X mental retardation 1gene product, fragile X mental retardation protein. Fragile X mental retardation protein is a repressor of dendritic mRNA translation and its silencing leads to dysregulation of synaptically driven protein synthesis and impairments of intellect, cognition, and behavior, and FXS is a disorder that currently has no effective therapeutics. Here, young fragile X mice were treated with chronic bryostatin-1, a relatively selective protein kinase Cεactivator, which induces synaptogenesis and synaptic maturation/repair. Chronic treatment with bryostatin-1 rescues young fragile X mice from the disorder phenotypes, including normalization of most FXS abnormalities in 1) hippocampal brain-derived neurotrophic factor expression, 2) postsynaptic density-95 levels, 3) transformation of immature dendritic spines to mature synapses, 4) densities of the presynaptic and postsynaptic membranes, and 5) spatial learning and memory. The therapeutic effects were achieved without downregulation of metabotropic glutamate receptor (mGluR) 5 in the hippocampus and are more dramatic than those of a late-onset treatment in adult fragile X mice. mGluR5 expression was in fact lower in fragile X mice and its expression was restored with the bryostatin-1 treatment. Our results show that synaptic and cognitive function of young FXS mice can be normalized through pharmacological treatment without downregulation of mGluR5 and that bryostatin-1-like agents may represent a novel class of drugs to treat fragile X mental retardation at a young age and in adults. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Presynaptic Active Zone Density during Development and Synaptic Plasticity.
Clarke, Gwenaëlle L; Chen, Jie; Nishimune, Hiroshi
2012-01-01
Neural circuits transmit information through synapses, and the efficiency of synaptic transmission is closely related to the density of presynaptic active zones, where synaptic vesicles are released. The goal of this review is to highlight recent insights into the molecular mechanisms that control the number of active zones per presynaptic terminal (active zone density) during developmental and stimulus-dependent changes in synaptic efficacy. At the neuromuscular junctions (NMJs), the active zone density is preserved across species, remains constant during development, and is the same between synapses with different activities. However, the NMJ active zones are not always stable, as exemplified by the change in active zone density during acute experimental manipulation or as a result of aging. Therefore, a mechanism must exist to maintain its density. In the central nervous system (CNS), active zones have restricted maximal size, exist in multiple numbers in larger presynaptic terminals, and maintain a constant density during development. These findings suggest that active zone density in the CNS is also controlled. However, in contrast to the NMJ, active zone density in the CNS can also be increased, as observed in hippocampal synapses in response to synaptic plasticity. Although the numbers of known active zone proteins and protein interactions have increased, less is known about the mechanism that controls the number or spacing of active zones. The following molecules are known to control active zone density and will be discussed herein: extracellular matrix laminins and voltage-dependent calcium channels, amyloid precursor proteins, the small GTPase Rab3, an endocytosis mechanism including synaptojanin, cytoskeleton protein spectrins and β-adducin, and a presynaptic web including spectrins. The molecular mechanisms that organize the active zone density are just beginning to be elucidated.
Presynaptic Active Zone Density during Development and Synaptic Plasticity
Clarke, Gwenaëlle L.; Chen, Jie; Nishimune, Hiroshi
2012-01-01
Neural circuits transmit information through synapses, and the efficiency of synaptic transmission is closely related to the density of presynaptic active zones, where synaptic vesicles are released. The goal of this review is to highlight recent insights into the molecular mechanisms that control the number of active zones per presynaptic terminal (active zone density) during developmental and stimulus-dependent changes in synaptic efficacy. At the neuromuscular junctions (NMJs), the active zone density is preserved across species, remains constant during development, and is the same between synapses with different activities. However, the NMJ active zones are not always stable, as exemplified by the change in active zone density during acute experimental manipulation or as a result of aging. Therefore, a mechanism must exist to maintain its density. In the central nervous system (CNS), active zones have restricted maximal size, exist in multiple numbers in larger presynaptic terminals, and maintain a constant density during development. These findings suggest that active zone density in the CNS is also controlled. However, in contrast to the NMJ, active zone density in the CNS can also be increased, as observed in hippocampal synapses in response to synaptic plasticity. Although the numbers of known active zone proteins and protein interactions have increased, less is known about the mechanism that controls the number or spacing of active zones. The following molecules are known to control active zone density and will be discussed herein: extracellular matrix laminins and voltage-dependent calcium channels, amyloid precursor proteins, the small GTPase Rab3, an endocytosis mechanism including synaptojanin, cytoskeleton protein spectrins and β-adducin, and a presynaptic web including spectrins. The molecular mechanisms that organize the active zone density are just beginning to be elucidated. PMID:22438837
Reddy, P Hemachandra; Manczak, Maria; Yin, XiangLing
2017-01-01
The purpose our study was to determine the protective effects of mitochondria division inhibitor 1 (Mdivi1) in Alzheimer's disease (AD). Mdivi1 is hypothesized to reduce excessive fragmentation of mitochondria and mitochondrial dysfunction in AD neurons. Very little is known about whether Mdivi1 can confer protective effects in AD. In the present study, we sought to determine the protective effects of Mdivi1 against amyloid-β (Aβ)- and mitochondrial fission protein, dynamin-related protein 1 (Drp1)-induced excessive fragmentation of mitochondria in AD progression. We also studied preventive (Mdivi1+Aβ42) and intervention (Aβ42+Mdivi1) effects against Aβ42 in N2a cells. Using real-time RT-PCR and immunoblotting analysis, we measured mRNA and protein levels of mitochondrial dynamics, mitochondrial biogenesis, and synaptic genes. We also assessed mitochondrial function by measuring H2O2, lipid peroxidation, cytochrome oxidase activity, and mitochondrial ATP. MTT assays were used to assess the cell viability. Aβ42 was found to impair mitochondrial dynamics, lower mitochondrial biogenesis, lower synaptic activity, and lower mitochondrial function. On the contrary, Mdivi1 enhanced mitochondrial fusion activity, lowered fission machinery, and increased biogenesis and synaptic proteins. Mitochondrial function and cell viability were elevated in Mdivi1-treated cells. Interestingly, Mdivi1 pre- and post-treated cells treated with Aβ showed reduced mitochondrial dysfunction, and maintained cell viability, mitochondrial dynamics, mitochondrial biogenesis, and synaptic activity. The protective effects of Mdivi1 were stronger in N2a+Aβ42 pre-treated with Mdivi1, than in N2a+Aβ42 cells than Mdivi1 post-treated cells, indicating that Mdivi1 works better in prevention than treatment in AD like neurons.
The Structure of Neurexin 1[alpha] Reveals Features Promoting a Role as Synaptic Organizer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Fang; Venugopal, Vandavasi; Murray, Beverly
{alpha}-Neurexins are essential synaptic adhesion molecules implicated in autism spectrum disorder and schizophrenia. The {alpha}-neurexin extracellular domain consists of six LNS domains interspersed by three EGF-like repeats and interacts with many different proteins in the synaptic cleft. To understand how {alpha}-neurexins might function as synaptic organizers, we solved the structure of the neurexin 1{alpha} extracellular domain (n1{alpha}) to 2.65 {angstrom}. The L-shaped molecule can be divided into a flexible repeat I (LNS1-EGF-A-LNS2), a rigid horseshoe-shaped repeat II (LNS3-EGF-B-LNS4) with structural similarity to so-called reelin repeats, and an extended repeat III (LNS5-EGF-B-LNS6) with controlled flexibility. A 2.95 {angstrom} structure of n1{alpha}more » carrying splice insert SS3 in LNS4 reveals that SS3 protrudes as a loop and does not alter the rigid arrangement of repeat II. The global architecture imposed by conserved structural features enables {alpha}-neurexins to recruit and organize proteins in distinct and variable ways, influenced by splicing, thereby promoting synaptic function.« less
The possible interplay of synaptic and clock genes in autism spectrum disorders.
Bourgeron, T
2007-01-01
Autism spectrum disorders (ASD) are complex neurodevelopmental conditions characterized by deficits in social communication, absence or delay in language, and stereotyped and repetitive behaviors. Results from genetic studies reveal one pathway associated with susceptibility to ASD, which includes the synaptic cell adhesion molecules NLGN3, NLGN4, and NRXN1 and a postsynaptic scaffolding protein SHANK3. This protein complex is crucial for the maintenance of functional synapses as well as the adequate balance between neuronal excitation and inhibition. Among the factors that could modulate this pathway are the genes controlling circadian rhythms. Indeed, sleep disorders and low melatonin levels are frequently observed in ASD. In this context, an alteration of both this synaptic pathway and the setting of the clock would greatly increase the risk of ASD. In this chapter, I report genetic and neurobiological findings that highlight the major role of synaptic and clock genes in the susceptibility to ASD. On the basis of these lines of evidence, I propose that future studies of ASD should investigate the circadian modulation of synaptic function as a focus for functional analyses and the development of new therapeutic strategies.
Molecular bases of caloric restriction regulation of neuronal synaptic plasticity.
Fontán-Lozano, Angela; López-Lluch, Guillermo; Delgado-García, José María; Navas, Placido; Carrión, Angel Manuel
2008-10-01
Aging is associated with the decline of cognitive properties. This situation is magnified when neurodegenerative processes associated with aging appear in human patients. Neuronal synaptic plasticity events underlie cognitive properties in the central nervous system. Caloric restriction (CR; either a decrease in food intake or an intermittent fasting diet) can extend life span and increase disease resistance. Recent studies have shown that CR can have profound effects on brain function and vulnerability to injury and disease. Moreover, CR can stimulate the production of new neurons from stem cells (neurogenesis) and can enhance synaptic plasticity, which modulate pain sensation, enhance cognitive function, and may increase the ability of the brain to resist aging. The beneficial effects of CR appear to be the result of a cellular stress response stimulating the production of proteins that enhance neuronal plasticity and resistance to oxidative and metabolic insults; they include neurotrophic factors, neurotransmitter receptors, protein chaperones, and mitochondrial biosynthesis regulators. In this review, we will present and discuss the effect of CR in synaptic processes underlying analgesia and cognitive improvement in healthy, sick, and aging animals. We will also discuss the possible role of mitochondrial biogenesis induced by CR in regulation of neuronal synaptic plasticity.
ALTERED PHOSPHORYLATION OF MAP KINASE AFTER ACUTE EXPOSURE TO PCB153.
Long-term potentiation (LTP) is a model of synaptic plasticity believed to encompass the physiological substrate of memory. The mitogen-activated protein kinase (ERK1/2) signalling cascade contributes to synaptic plasticity and to long-term memory formation. Learning and LTP st...
Changed Synaptic Plasticity in Neural Circuits of Depressive-Like and Escitalopram-Treated Rats
Li, Xiao-Li; Yuan, Yong-Gui; Xu, Hua; Wu, Di; Gong, Wei-Gang; Geng, Lei-Yu; Wu, Fang-Fang; Tang, Hao; Xu, Lin
2015-01-01
Background: Although progress has been made in the detection and characterization of neural plasticity in depression, it has not been fully understood in individual synaptic changes in the neural circuits under chronic stress and antidepressant treatment. Methods: Using electron microscopy and Western-blot analyses, the present study quantitatively examined the changes in the Gray’s Type I synaptic ultrastructures and the expression of synapse-associated proteins in the key brain regions of rats’ depressive-related neural circuit after chronic unpredicted mild stress and/or escitalopram administration. Meanwhile, their depressive behaviors were also determined by several tests. Results: The Type I synapses underwent considerable remodeling after chronic unpredicted mild stress, which resulted in the changed width of the synaptic cleft, length of the active zone, postsynaptic density thickness, and/or synaptic curvature in the subregions of medial prefrontal cortex and hippocampus, as well as the basolateral amygdaloid nucleus of the amygdala, accompanied by changed expression of several synapse-associated proteins. Chronic escitalopram administration significantly changed the above alternations in the chronic unpredicted mild stress rats but had little effect on normal controls. Also, there was a positive correlation between the locomotor activity and the maximal synaptic postsynaptic density thickness in the stratum radiatum of the Cornu Ammonis 1 region and a negative correlation between the sucrose preference and the length of the active zone in the basolateral amygdaloid nucleus region in chronic unpredicted mild stress rats. Conclusion: These findings strongly indicate that chronic stress and escitalopram can alter synaptic plasticity in the neural circuits, and the remodeled synaptic ultrastructure was correlated with the rats’ depressive behaviors, suggesting a therapeutic target for further exploration. PMID:25899067
Kim, Hyung-Wook; Rapoport, Stanley I; Rao, Jagadeesh S
2009-01-01
Bipolar disorder (BD) is a progressive psychiatric disorder characterized by recurrent changes of mood, and is associated with cognitive decline. There is evidence of excitotoxicity, neuroinflammation, upregulated arachidonic acid (AA) cascade signaling and brain atrophy in BD patients. These observations suggest that BD pathology may be associated with apoptosis as well as with disturbed synaptic function. To test this hypothesis, we measured mRNA and protein levels of the pro-apoptotic (Bax, BAD, Caspase-9 and Caspase-3) and anti-apoptotic factors (BDNF and Bcl-2), and of pre- and post-synaptic markers (synaptophysin and drebrin), in postmortem brain from 10 BD patients and 10 age-matched controls. Consistent with the hypothesis, BD brains showed significant increases in protein and mRNA levels of the pro-apoptotic factors and significant decreases of levels of the anti-apoptotic factors and the synaptic markers, synaptophysin and drebrin. These differences may contribute to brain atrophy and progressive cognitive changes in BD. PMID:19945534
Afuwape, Olusoji A. T.; Wasser, Catherine R.; Schikorski, Thomas
2016-01-01
Key points Synaptic transmission is mediated by the release of neurotransmitters from synaptic vesicles in response to stimulation or through the spontaneous fusion of a synaptic vesicle with the presynaptic plasma membrane.There is growing evidence that synaptic vesicles undergoing spontaneous fusion versus those fusing in response to stimuli are functionally distinct.In this study, we acutely probe the effects of intravesicular free radical generation on synaptic vesicles that fuse spontaneously or in response to stimuli.By targeting vesicles that preferentially release spontaneously, we can dissociate the effects of intravesicular free radical generation on spontaneous neurotransmission from evoked neurotransmission and vice versa.Taken together, these results further advance our knowledge of the synapse and the nature of the different synaptic vesicle pools mediating neurotransmission. Abstract Earlier studies suggest that spontaneous and evoked neurotransmitter release processes are maintained by synaptic vesicles which are segregated into functionally distinct pools. However, direct interrogation of the link between this putative synaptic vesicle pool heterogeneity and neurotransmission has been difficult. To examine this link, we tagged vesicles with horseradish peroxidase (HRP) – a haem‐containing plant enzyme – or antibodies against synaptotagmin‐1 (syt1). Filling recycling vesicles in hippocampal neurons with HRP and subsequent treatment with hydrogen peroxide (H2O2) modified the properties of neurotransmitter release depending on the route of HRP uptake. While strong depolarization‐induced uptake of HRP suppressed evoked release and augmented spontaneous release, HRP uptake during mild activity selectively impaired evoked release, whereas HRP uptake at rest solely potentiated spontaneous release. Expression of a luminal HRP‐tagged syt1 construct and subsequent H2O2 application resulted in a similar increase in spontaneous release and suppression as well as desynchronization of evoked release, recapitulating the canonical syt1 loss‐of‐function phenotype. An antibody targeting the luminal domain of syt1, on the other hand, showed that augmentation of spontaneous release and suppression of evoked release phenotypes are dissociable depending on whether the antibody uptake occurred at rest or during depolarization. Taken together, these findings indicate that vesicles that maintain spontaneous and evoked neurotransmitter release preserve their identity during recycling and syt1 function in suppression of spontaneous neurotransmission can be acutely dissociated from syt1 function to synchronize synaptic vesicle exocytosis upon stimulation. PMID:27723113
Altered gene regulation and synaptic morphology in Drosophila learning and memory mutants
Guan, Zhuo; Buhl, Lauren K.; Quinn, William G.; Littleton, J. Troy
2011-01-01
Genetic studies in Drosophila have revealed two separable long-term memory pathways defined as anesthesia-resistant memory (ARM) and long-lasting long-term memory (LLTM). ARM is disrupted in radish (rsh) mutants, whereas LLTM requires CREB-dependent protein synthesis. Although the downstream effectors of ARM and LLTM are distinct, pathways leading to these forms of memory may share the cAMP cascade critical for associative learning. Dunce, which encodes a cAMP-specific phosphodiesterase, and rutabaga, which encodes an adenylyl cyclase, both disrupt short-term memory. Amnesiac encodes a pituitary adenylyl cyclase-activating peptide homolog and is required for middle-term memory. Here, we demonstrate that the Radish protein localizes to the cytoplasm and nucleus and is a PKA phosphorylation target in vitro. To characterize how these plasticity pathways may manifest at the synaptic level, we assayed synaptic connectivity and performed an expression analysis to detect altered transcriptional networks in rutabaga, dunce, amnesiac, and radish mutants. All four mutants disrupt specific aspects of synaptic connectivity at larval neuromuscular junctions (NMJs). Genome-wide DNA microarray analysis revealed ∼375 transcripts that are altered in these mutants, suggesting defects in multiple neuronal signaling pathways. In particular, the transcriptional target Lapsyn, which encodes a leucine-rich repeat cell adhesion protein, localizes to synapses and regulates synaptic growth. This analysis provides insights into the Radish-dependent ARM pathway and novel transcriptional targets that may contribute to memory processing in Drosophila. PMID:21422168
Emerging roles of the neurotrophin receptor TrkC in synapse organization.
Naito, Yusuke; Lee, Alfred Kihoon; Takahashi, Hideto
2017-03-01
Tropomyosin-receptor-kinase (Trk) receptors have been extensively studied for their roles in kinase-dependent signaling cascades in nervous system development. Synapse organization is coordinated by trans-synaptic interactions of various cell adhesion proteins, a representative example of which is the neurexin-neuroligin complex. Recently, a novel role for TrkC as a synapse organizing protein has been established. Post-synaptic TrkC binds to pre-synaptic type-IIa receptor-type protein tyrosine phosphatase sigma (PTPσ). TrkC-PTPσ specifically induces excitatory synapses in a kinase domain-independent manner. TrkC has distinct extracellular domains for PTPσ- and NT-3-binding and thus may bind both ligands simultaneously. Indeed, NT-3 enhances the TrkC-PTPσ interaction, thus facilitating synapse induction at the pre-synaptic side and increasing pre-synaptic vesicle recycling in a kinase-independent fashion. A crystal structure study has revealed the detailed structure of the TrkC-PTPσ complex as well as competitive modulation of TrkC-mediated synaptogenesis by heparan sulfate proteoglycans (HSPGs), which bind the same domain of TrkC as PTPσ. Thus, there is strong evidence supporting a role for the TrkC-PTPσ complex in mechanisms underlying the fine turning of neural connectivity. Furthermore, disruption of the TrkC-PTPσ complex may be the underlying cause of certain psychiatric disorders caused by mutations in the gene encoding TrkC (NTRK3), supporting its role in cognitive functions. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.
Omelchenko, N; Sesack, S R
2007-05-25
Dopamine and GABA neurons in the ventral tegmental area project to the nucleus accumbens and prefrontal cortex and modulate locomotor and reward behaviors as well as cognitive and affective processes. Both midbrain cell types receive synapses from glutamate afferents that provide an essential control of behaviorally-linked activity patterns, although the sources of glutamate inputs have not yet been completely characterized. We used antibodies against the vesicular glutamate transporter subtypes 1 and 2 (VGlut1 and VGlut2) to investigate the morphology and synaptic organization of axons containing these proteins as putative markers of glutamate afferents from cortical versus subcortical sites, respectively, in rats. We also characterized the ventral tegmental area cell populations receiving VGlut1+ or VGlut2+ synapses according to their transmitter phenotype (dopamine or GABA) and major projection target (nucleus accumbens or prefrontal cortex). By light and electron microscopic examination, VGlut2+ as opposed to VGlut1+ axon terminals were more numerous, had a larger average size, synapsed more proximally, and were more likely to form convergent synapses onto the same target. Both axon types formed predominantly asymmetric synapses, although VGlut2+ terminals more often formed synapses with symmetric morphology. No absolute selectivity was observed for VGlut1+ or VGlut2+ axons to target any particular cell population. However, the synapses onto mesoaccumbens neurons more often involved VGlut2+ terminals, whereas mesoprefrontal neurons received relatively equal synaptic inputs from VGlut1+ and VGlut2+ profiles. The distinct morphological features of VGlut1 and VGlut2 positive axons suggest that glutamate inputs from presumed cortical and subcortical sources, respectively, differ in the nature and intensity of their physiological actions on midbrain neurons. More specifically, our findings imply that subcortical glutamate inputs to the ventral tegmental area expressing VGlut2 predominate over cortical sources of excitation expressing VGlut1 and are more likely to drive the behaviorally-linked bursts in dopamine cells that signal future expectancy or attentional shifting.
The pre-synaptic Munc13-1 binds alcohol and modulates alcohol self-administration in Drosophila.
Das, Joydip; Xu, Shiyu; Pany, Satyabrata; Guillory, Ashley; Shah, Vrutant; Roman, Gregg W
2013-09-01
Munc13-1 is a pre-synaptic active-zone protein essential for neurotransmitter release and involved in pre-synaptic plasticity in brain. Ethanol, butanol, and octanol quenched the intrinsic fluorescence of the C1 domain of Munc13-1 with EC₅₀ s of 52 mM, 26 mM, and 0.7 mM, respectively. Photoactive azialcohols photolabeled Munc13-1 C1 exclusively at Glu-582, which was identified by mass spectrometry. Mutation of Glu-582 to alanine, leucine, and histidine reduced the alcohol binding two- to five-fold. Circular dichroism studies suggested that binding of alcohol increased the stability of the wild-type Munc13-1 compared with the mutants. If Munc13-1 plays some role in the neural effects of alcohol in vivo, changes in the activity of this protein should produce differences in the behavioral responses to ethanol. We tested this prediction with a loss-of-function mutation in the conserved Dunc-13 in Drosophila melanogaster. The Dunc-13(P84200) /+ heterozygotes have 50% wild-type levels of Dunc-13 mRNA and display a very robust increase in ethanol self-administration. This phenotype is reversed by the expression of the rat Munc13-1 protein within the Drosophila nervous system. The present studies indicate that Munc13-1 C1 has binding site(s) for alcohols and Munc13-1 activity is sufficient to restore normal self-administration to Drosophila mutants deficient in Dunc-13 activity. The pre-synaptic Mun13-1 protein is a critical regulator of synaptic vesicle fusion and may be involved in processes that lead to ethanol abuse and addiction. We studied its interaction with alcohol and identified Glu-582 as a critical residue for ethanol binding. Munc13-1 can functionally complement the Dunc13 haploinsufficient ethanol self-administration phenotype in Drosophila melanogaster, indicating that this protein participates in alcohol-induced behavioral plasticity. © 2013 International Society for Neurochemistry.
Alcohol induces synaptotagmin 1 expression in neurons via activation of heat shock factor 1.
Varodayan, F P; Pignataro, L; Harrison, N L
2011-10-13
Many synapses within the central nervous system are sensitive to ethanol. Although alcohol is known to affect the probability of neurotransmitter release in specific brain regions, the effects of alcohol on the underlying synaptic vesicle fusion machinery have been little studied. To identify a potential pathway by which ethanol can regulate neurotransmitter release, we investigated the effects of acute alcohol exposure (1-24 h) on the expression of the gene encoding synaptotagmin 1 (Syt1), a synaptic protein that binds calcium to directly trigger vesicle fusion. Syt1 was identified in a microarray screen as a gene that may be sensitive to alcohol and heat shock. We found that Syt1 mRNA and protein expression are rapidly and robustly up-regulated by ethanol in mouse cortical neurons, and that the distribution of Syt1 protein along neuronal processes is also altered. Syt1 mRNA up-regulation is dependent on the activation of the transcription factor heat shock factor 1 (HSF1). The transfection of a constitutively active Hsf1 construct into neurons stimulates Syt1 transcription, while transfection of Hsf1 small interfering RNA (siRNA) or a constitutively inactive Hsf1 construct into neurons attenuates the induction of Syt1 by ethanol. This suggests that the activation of HSF1 can induce Syt1 expression and that this may be a mechanism by which alcohol regulates neurotransmitter release during brief exposures. Further analysis revealed that a subset of the genes encoding the core synaptic vesicle fusion (soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor; SNARE) proteins share this property of induction by ethanol, suggesting that alcohol may trigger a specific coordinated adaptation in synaptic function. This molecular mechanism could explain some of the changes in synaptic function that occur following alcohol administration and may be an important step in the process of neuronal adaptation to alcohol. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation.
Calafate, Sara; Buist, Arjan; Miskiewicz, Katarzyna; Vijayan, Vinoy; Daneels, Guy; de Strooper, Bart; de Wit, Joris; Verstreken, Patrik; Moechars, Diederik
2015-05-26
Accumulation of insoluble Tau protein aggregates and stereotypical propagation of Tau pathology through the brain are common hallmarks of tauopathies, including Alzheimer's disease (AD). Propagation of Tau pathology appears to occur along connected neurons, but whether synaptic contacts between neurons are facilitating propagation has not been demonstrated. Using quantitative in vitro models, we demonstrate that, in parallel to non-synaptic mechanisms, synapses, but not merely the close distance between the cells, enhance the propagation of Tau pathology between acceptor hippocampal neurons and Tau donor cells. Similarly, in an artificial neuronal network using microfluidic devices, synapses and synaptic activity are promoting neuronal Tau pathology propagation in parallel to the non-synaptic mechanisms. Our work indicates that the physical presence of synaptic contacts between neurons facilitate Tau pathology propagation. These findings can have implications for synaptic repair therapies, which may turn out to have adverse effects by promoting propagation of Tau pathology. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Ahn, Hyo-Min; Koh, Young Ho
2016-01-01
We investigated unknown in vivo functions of Torsin by using Drosophila as a model. Downregulation of Drosophila Torsin (DTor) by DTor-specific inhibitory double-stranded RNA (RNAi) induced abnormal locomotor behavior and increased susceptibility to H2O2. In addition, altered expression of DTor significantly increased the numbers of synaptic boutons. One important biochemical consequence of DTor-RNAi expression in fly brains was upregulation of alcohol dehydrogenase (ADH). Altered expression of ADH has also been reported in Drosophila Fragile-X mental retardation protein (DFMRP) mutant flies. Interestingly, expression of DFMRP was altered in DTor mutant flies, and DTor and DFMRP were present in the same protein complexes. In addition, DTor and DFMRP immunoreactivities were partially colocalized in several cellular organelles in larval muscles. Furthermore, there were no significant differences between synaptic morphologies of dfmrp null mutants and dfmrp mutants expressing DTor-RNAi. Taken together, our evidences suggested that DTor and DFMRP might be present in the same signaling pathway regulating synaptic plasticity. In addition, we also found that human Torsin1A and human FMRP were present in the same protein complexes, suggesting that this phenomenon is evolutionarily conserved. PMID:27313903
Reddy, P. Hemachandra; Tripathy, Raghav; Troung, Quang; Thirumala, Karuna; Reddy, Tejaswini P.; Anekonda, Vishwanath; Shirendeb, Ulziibat P.; Calkins, Marcus J.; Reddy, Arubala P.; Mao, Peizhong; Manczak, Maria
2011-01-01
Synaptic pathology and mitochondrial oxidative damage are early events in Alzheimer’s disease (AD) progression. Loss of synapses and synaptic damage are the best correlate of cognitive deficits found in AD patients. Recent research on amyloid bet (Aβ) and mitochondria in AD revealed that Aβ accumulates in synapses and synaptic mitochondria, leading to abnormal mitochondrial dynamics and synaptic degeneration in AD neurons. Further, recent studies using live-cell imaging and primary neurons from amyloid beta precursor protein (AβPP) transgenic mice revealed that reduced mitochondrial mass, defective axonal transport of mitochondria and synaptic degeneration, indicating that Aβ is responsible for mitochondrial and synaptic deficiencies. Tremendous progress has been made in studying antioxidant approaches in mouse models of AD and clinical trials of AD patients. This article highlights the recent developments made in Aβ-induced abnormal mitochondrial dynamics, defective mitochondrial biogenesis, impaired axonal transport and synaptic deficiencies in AD. This article also focuses on mitochondrial approaches in treating AD, and also discusses latest research on mitochondria-targeted antioxidants in AD. PMID:22037588
2012-01-01
Background A mutation in the BRI2/ITM2b gene causes familial Danish dementia (FDD). BRI2 is an inhibitor of amyloid-β precursor protein (APP) processing, which is genetically linked to Alzheimer’s disease (AD) pathogenesis. The FDD mutation leads to a loss of BRI2 protein and to increased APP processing. APP haplodeficiency and inhibition of APP cleavage by β-secretase rescue synaptic/memory deficits of a genetically congruous mouse model of FDD (FDDKI). β-cleavage of APP yields the β-carboxyl-terminal (β-CTF) and the amino-terminal-soluble APPβ (sAPPβ) fragments. γ-secretase processing of β-CTF generates Aβ, which is considered the main cause of AD. However, inhibiting Aβ production did not rescue the deficits of FDDKI mice, suggesting that sAPPβ/β-CTF, and not Aβ, are the toxic species causing memory loss. Results Here, we have further analyzed the effect of γ-secretase inhibition. We show that treatment with a γ-secretase inhibitor (GSI) results in a worsening of the memory deficits of FDDKI mice. This deleterious effect on memory correlates with increased levels of the β/α-CTFs APP fragments in synaptic fractions isolated from hippocampi of FDDKI mice, which is consistent with inhibition of γ-secretase activity. Conclusion This harmful effect of the GSI is in sharp contrast with a pathogenic role for Aβ, and suggests that the worsening of memory deficits may be due to accumulation of synaptic-toxic β/α-CTFs caused by GSI treatment. However, γ-secretase cleaves more than 40 proteins; thus, the noxious effect of GSI on memory may be dependent on inhibition of cleavage of one or more of these other γ-secretase substrates. These two possibilities do not need to be mutually exclusive. Our results are consistent with the outcome of a clinical trial with the GSI Semagacestat, which caused a worsening of cognition, and advise against targeting γ-secretase in the therapy of AD. Overall, the data also indicate that FDDKI is a valuable mouse model to study AD pathogenesis and predict the clinical outcome of therapeutic agents for AD. PMID:22537414
Tamayev, Robert; D'Adamio, Luciano
2012-04-26
A mutation in the BRI2/ITM2b gene causes familial Danish dementia (FDD). BRI2 is an inhibitor of amyloid-β precursor protein (APP) processing, which is genetically linked to Alzheimer's disease (AD) pathogenesis. The FDD mutation leads to a loss of BRI2 protein and to increased APP processing. APP haplodeficiency and inhibition of APP cleavage by β-secretase rescue synaptic/memory deficits of a genetically congruous mouse model of FDD (FDDKI). β-cleavage of APP yields the β-carboxyl-terminal (β-CTF) and the amino-terminal-soluble APPβ (sAPPβ) fragments. γ-secretase processing of β-CTF generates Aβ, which is considered the main cause of AD. However, inhibiting Aβ production did not rescue the deficits of FDDKI mice, suggesting that sAPPβ/β-CTF, and not Aβ, are the toxic species causing memory loss. Here, we have further analyzed the effect of γ-secretase inhibition. We show that treatment with a γ-secretase inhibitor (GSI) results in a worsening of the memory deficits of FDDKI mice. This deleterious effect on memory correlates with increased levels of the β/α-CTFs APP fragments in synaptic fractions isolated from hippocampi of FDDKI mice, which is consistent with inhibition of γ-secretase activity. This harmful effect of the GSI is in sharp contrast with a pathogenic role for Aβ, and suggests that the worsening of memory deficits may be due to accumulation of synaptic-toxic β/α-CTFs caused by GSI treatment. However, γ-secretase cleaves more than 40 proteins; thus, the noxious effect of GSI on memory may be dependent on inhibition of cleavage of one or more of these other γ-secretase substrates. These two possibilities do not need to be mutually exclusive. Our results are consistent with the outcome of a clinical trial with the GSI Semagacestat, which caused a worsening of cognition, and advise against targeting γ-secretase in the therapy of AD. Overall, the data also indicate that FDDKI is a valuable mouse model to study AD pathogenesis and predict the clinical outcome of therapeutic agents for AD.
Ablation of SNX6 leads to defects in synaptic function of CA1 pyramidal neurons and spatial memory
Niu, Yang; Dai, Zhonghua; Liu, Wenxue; Zhang, Cheng; Yang, Yanrui; Guo, Zhenzhen; Li, Xiaoyu; Xu, Chenchang; Huang, Xiahe; Wang, Yingchun; Shi, Yun S; Liu, Jia-Jia
2017-01-01
SNX6 is a ubiquitously expressed PX-BAR protein that plays important roles in retromer-mediated retrograde vesicular transport from endosomes. Here we report that CNS-specific Snx6 knockout mice exhibit deficits in spatial learning and memory, accompanied with loss of spines from distal dendrites of hippocampal CA1 pyramidal cells. SNX6 interacts with Homer1b/c, a postsynaptic scaffold protein crucial for the synaptic distribution of other postsynaptic density (PSD) proteins and structural integrity of dendritic spines. We show that SNX6 functions independently of retromer to regulate distribution of Homer1b/c in the dendritic shaft. We also find that Homer1b/c translocates from shaft to spines by protein diffusion, which does not require SNX6. Ablation of SNX6 causes reduced distribution of Homer1b/c in distal dendrites, decrease in surface levels of AMPAR and impaired AMPAR-mediated synaptic transmission. These findings reveal a physiological role of SNX6 in CNS excitatory neurons. DOI: http://dx.doi.org/10.7554/eLife.20991.001 PMID:28134614
FXR1P Limits Long-Term Memory, Long-Lasting Synaptic Potentiation, and de novo GluA2 Translation
Jones, Emma V.; Altimimi, Haider F.; Farmer, W. Todd; Gandin, Valentina; Hanna, Edith; Zong, Ruiting; Barbon, Alessandro; Nelson, David L.; Topisirovic, Ivan; Rochford, Joseph; Stellwagen, David; Béïque, Jean-Claude; Murai, Keith K.
2014-01-01
SUMMARY Translational control of mRNAs allows for rapid and selective changes in synaptic protein expression, changes that are required for long-lasting plasticity and memory formation in the brain. Fragile X Related Protein 1 (FXR1P) is an RNA-binding protein that controls mRNA translation in non-neuronal cells and co-localizes with translational machinery in neurons. However, its neuronal mRNA targets and role in the brain are unknown. Here, we demonstrate that removal of FXR1P from the forebrain of postnatal mice selectively enhances long-term storage of spatial memories, hippocampal late-phase LTP (L-LTP) and de novo GluA2 synthesis. Furthermore, FXR1P binds specifically to the 5’UTR of GluA2 mRNA to repress translation and limit the amount of GluA2 incorporated at potentiated synapses. This study uncovers a new mechanism for regulating long-lasting synaptic plasticity and spatial memory formation and reveals an unexpected divergent role of FXR1P among Fragile X proteins in brain plasticity. PMID:25456134
Piccoli, Giovanni; Onofri, Franco; Cirnaru, Maria Daniela; Kaiser, Christoph J. O.; Jagtap, Pravinkumar; Kastenmüller, Andreas; Pischedda, Francesca; Marte, Antonella; von Zweydorf, Felix; Vogt, Andreas; Giesert, Florian; Pan, Lifeng; Antonucci, Flavia; Kiel, Christina; Zhang, Mingjie; Weinkauf, Sevil; Sattler, Michael; Sala, Carlo; Matteoli, Michela; Ueffing, Marius
2014-01-01
Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are associated with familial and sporadic Parkinson's disease (PD). LRRK2 is a complex protein that consists of multiple domains, including predicted C-terminal WD40 repeats. In this study, we analyzed functional and molecular features conferred by the WD40 domain. Electron microscopic analysis of the purified LRRK2 C-terminal domain revealed doughnut-shaped particles, providing experimental evidence for its WD40 fold. We demonstrate that LRRK2 WD40 binds and sequesters synaptic vesicles via interaction with vesicle-associated proteins. In fact, a domain-based pulldown approach combined with mass spectrometric analysis identified LRRK2 as being part of a highly specific protein network involved in synaptic vesicle trafficking. In addition, we found that a C-terminal sequence variant associated with an increased risk of developing PD, G2385R, correlates with a reduced binding affinity of LRRK2 WD40 to synaptic vesicles. Our data demonstrate a critical role of the WD40 domain within LRRK2 function. PMID:24687852
Hoover, Brian R.; Reed, Miranda N.; Su, Jianjun; Penrod, Rachel D.; Kotilinek, Linda A.; Grant, Marianne K.; Pitstick, Rose; Carlson, George A.; Lanier, Lorene M.; Yuan, Li-Lian; Ashe, Karen H.; Liao, Dezhi
2010-01-01
The microtubule-associated protein tau accumulates in Alzheimer’s and other fatal dementias, which manifest when forebrain neurons die. Recent advances in understanding these disorders indicate that brain dysfunction precedes neurodegeneration, but the role of tau is unclear. Here, we show that early tau-related deficits develop not from the loss of synapses or neurons, but rather as a result of synaptic abnormalities caused by the accumulation of hyperphosphorylated tau within intact dendritic spines, where it disrupts synaptic function by impairing glutamate receptor trafficking or synaptic anchoring. Mutagenesis of 14 disease-associated serine and threonine amino acid residues to create pseudohyperphosphorylated tau caused tau mislocalization while creation of phosphorylation-deficient tau blocked the mis-targeting of tau to dendritic spines. Thus, tau phosphorylation plays a critical role in mediating tau mislocalization and subsequent synaptic impairment. These data establish that the locus of early synaptic malfunction caused by tau resides in dendritic spines. PMID:21172610
Kuhl, D; Kennedy, T E; Barzilai, A; Kandel, E R
1992-12-01
Long-term memory for sensitization of the gill- and siphon-withdrawal reflexes in Aplysia californica requires RNA and protein synthesis. These long-term behavioral changes are accompanied by long-term facilitation of the synaptic connections between the gill and siphon sensory and motor neurons, which are similarly dependent on transcription and translation. In addition to showing an increase in over-all protein synthesis, long-term facilitation is associated with changes in the expression of specific early, intermediate, and late proteins, and with the growth of new synaptic connections between the sensory and motor neurons of the reflex. We previously focused on early proteins and have identified four proteins as members of the immunoglobulin family of cell adhesion molecules related to NCAM and fasciclin II. We have now cloned the cDNA corresponding to one of the late proteins, and identified it as the Aplysia homolog of BiP, an ER resident protein involved in the folding and assembly of secretory and membrane proteins. Behavioral training increases the steady-state level of BiP mRNA in the sensory neurons. The increase in the synthesis of BiP protein is first detected 3 h after the onset of facilitation, when the increase in overall protein synthesis reaches its peak and the formation of new synaptic terminals becomes apparent. These findings suggest that the chaperon function of BiP might serve to fold proteins and assemble protein complexes necessary for the structural changes characteristic of long-term memory.
Gąssowska, Magdalena; Baranowska-Bosiacka, Irena; Moczydłowska, Joanna; Frontczak-Baniewicz, Małgorzata; Gewartowska, Magdalena; Strużyńska, Lidia; Gutowska, Izabela; Chlubek, Dariusz; Adamczyk, Agata
2016-12-12
Lead (Pb), environmentally abundant heavy-metal pollutant, is a strong toxicant for the developing central nervous system. Pb intoxication in children, even at low doses, is found to affect learning and memorizing, with devastating effects on cognitive function and intellectual development. However, the precise mechanism by which Pb impairs synaptic plasticity is not fully elucidated. The purpose of this study was to investigate the effect of pre- and neonatal exposure to low dose of Pb (with Pb concentrations in whole blood below 10μg/dL) on the synaptic structure and the pre- and postsynaptic proteins expression in the developing rat brain. Furthermore, the level of brain-derived neurotrophic factor (BDNF) was analyzed. Pregnant female Wistar rats received 0.1% lead acetate (PbAc) in drinking water from the first day of gestation until weaning of the offspring, while the control animals received drinking water. During the feeding of pups, mothers from the Pb-group were continuously receiving PbAc. Pups of both groups were weaned at postnatal day 21 and then until postnatal day 28 received only drinking water. 28-day old pups were sacrificed and the ultrastructural changes as well as expression of presynaptic (VAMP1/2, synaptophysin, synaptotagmin-1, SNAP25, syntaxin-1) and postsynaptic (PSD-95) proteins were analyzed in: forebrain cortex, cerebellum and hippocampus. Our data revealed that pre- and neonatal exposure to low dose of Pb promotes pathological changes in synapses, including nerve endings swelling, blurred and thickened synaptic cleft structure as well as enhanced density of synaptic vesicles in the presynaptic area. Moreover, synaptic mitochondria were elongated, swollen or shrunken in Pb-treated animals. These structural abnormalities were accompanied by decrease in the level of key synaptic proteins: synaptotagmin-1 in cerebellum, SNAP25 in hippocampus and syntaxin-1 in cerebellum and hippocampus. In turn, increased level of synaptophysin was noticed in the cerebellum, while the expression of postsynaptic PSD-95 was significantly decreased in forebrain cortex and cerebellum, and raised in hippocampus. Additionally, we observed the lower level of BDNF in all brain structures in comparison to control animals. In conclusion, perinatal exposure to low doses of Pb caused pathological changes in nerve endings associated with the alterations in the level of key synaptic proteins. All these changes can lead to synaptic dysfunction, expressed by the impairment of the secretory mechanism and thereby to the abnormalities in neurotransmission as well as to the neuronal dysfunction. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ca2+ Dependence of Synaptic Vesicle Endocytosis.
Leitz, Jeremy; Kavalali, Ege T
2016-10-01
Ca(2+)-dependent synaptic vesicle recycling is essential for structural homeostasis of synapses and maintenance of neurotransmission. Although, the executive role of intrasynaptic Ca(2+) transients in synaptic vesicle exocytosis is well established, identifying the exact role of Ca(2+) in endocytosis has been difficult. In some studies, Ca(2+) has been suggested as an essential trigger required to initiate synaptic vesicle retrieval, whereas others manipulating synaptic Ca(2+) concentrations reported a modulatory role for Ca(2+) leading to inhibition or acceleration of endocytosis. Molecular studies of synaptic vesicle endocytosis, on the other hand, have consistently focused on the roles of Ca(2+)-calmodulin dependent phosphatase calcineurin and synaptic vesicle protein synaptotagmin as potential Ca(2+) sensors for endocytosis. Most studies probing the role of Ca(2+) in endocytosis have relied on measurements of synaptic vesicle retrieval after strong stimulation. Strong stimulation paradigms elicit fusion and retrieval of multiple synaptic vesicles and therefore can be affected by several factors besides the kinetics and duration of Ca(2+) signals that include the number of exocytosed vesicles and accumulation of released neurotransmitters thus altering fusion and retrieval processes indirectly via retrograde signaling. Studies monitoring single synaptic vesicle endocytosis may help resolve this conundrum as in these settings the impact of Ca(2+) on synaptic fusion probability can be uncoupled from its putative role on synaptic vesicle retrieval. Future experiments using these single vesicle approaches will help dissect the specific role(s) of Ca(2+) and its sensors in synaptic vesicle endocytosis. © The Author(s) 2015.
Glycogen synthase kinase-3 (GSK-3) inhibitors for the treatment of Alzheimer's disease.
Medina, Miguel; Avila, Jesús
2010-01-01
Originally discovered because of its role in the regulation of glucose metabolism, Glycogen Synthase Kinase-3 (GSK-3) it is now recognised as a crucial player in a diverse series of cellular processes involved in Alzheimer's disease (AD) pathology. Besides having been identified as the major tau protein kinase, GSK-3 mediates Aβ neurotoxicity, plays an essential role in synaptic plasticity and memory, might be involved in Aβ formation, and it has an important role in inflammation and neuronal survival, all key features of AD neuropathology. Moreover, AD was one of the earliest disorders linked to GSK-3 dysfunction. Thus, the discovery of small molecule GSK-3 inhibitors has attracted significant attention to the protein both as therapeutic target for the therapeutic intervention in neurodegenerative diseases as well as a means to understand the molecular basis of these disorders.
Genes, Circuits, and Precision Therapies for Autism and Related Neurodevelopmental Disorders
2016-01-01
Research in genetics of neurodevelopmental disorders such as autism suggests that several hundred genes are likely risk factors for these disorders. This heterogeneity presents a challenge and an opportunity at the same time. While the exact identity of many of the genes remains to be discovered, genes identified to date encode for proteins that play roles in certain conserved pathways: protein synthesis, transcriptional/epigenetic regulation and synaptic signaling. Next generation of research in neurodevelopmental disorders needs to address the neural circuitry underlying the behavioral symptoms and co-morbidities, the cell types playing critical roles in these circuits and common intercellular signaling pathways that link diverse genes. Results from clinical trials have been mixed so far. Only when we are able to leverage the heterogeneity of neurodevelopmental disorders into precision medicine, will the mechanism-based therapeutics for these disorders start to unlock success. PMID:26472761
Effect of Sirtuin-1 on Synaptic Plasticity in Nucleus Accumbens in a Rat Model of Heroin Addiction.
Xia, Baijuan; Li, Yixin; Li, Rongrong; Yin, Dan; Chen, Xingqiang; Li, Jie; Liang, Wenmei
2018-06-05
BACKGROUND Synaptic plasticity plays an important role in the process of addiction. This study investigated the relationship between synaptic plasticity and changes in addictive behavior and examined the expression of synaptic plasticity-associated proteins and genes in the nucleus accumbens (NAc) region in different rat models. MATERIAL AND METHODS Heroin addiction, SIRT1-overexpression, and SIRT1-silenced rat models were established. Polymerase chain reaction gene chip technology, immunohistochemistry, Western blotting, and transmission electron microscopy were used to detect changes in synaptic plasticity-related gene and protein expression, and changes in the ultrastructure of synapses, in the NAc. RESULTS Naloxone withdrawal symptoms appeared in the SIRT1-overexpression group. In the SIRT1-silenced group the symptoms were reduced. Immunohistochemistry and Western blotting results showed that FOXO1 expression decreased in the heroin addiction (HA) group but increased in the SIRT1-silenced group (p<0.05). The expression of Cdk5, Nf-κB, PSD95, and Syn was enhanced in the HA group (p<0.05) and further increased in the SIRT1-overexpression group but were reduced in the SIRT1-silenced group (p<0.05). The number of synapses increased in the HA group (p<0.05) along with mitochondrial swelling in the presynaptic membrane and obscuring of the synaptic cleft. CONCLUSIONS SIRT1 and other synaptic plasticity-related genes in NAc are involved in the regulation of heroin addiction. SIRT1 overexpression can increase behavioral sensitization in the NAc of rats, and SIRT1 silencing might ease withdrawal symptoms and reduce conditioned place preferences.
Yelamanchili, Sowmya V; Pendyala, Gurudutt; Brunk, Irene; Darna, Mahesh; Albrecht, Urs; Ahnert-Hilger, Gudrun
2006-06-09
Synaptic strength depends on the amount of neurotransmitter stored in synaptic vesicles. The vesicular transmitter content has recently been shown to be directly dependent on the expression levels of vesicular neurotransmitter transporters indicating that the transport capacity of synaptic vesicles is a critical determinant for synaptic efficacy. Using synaptic vesicles prepared from whole brain at different times of the day we now show that the amount of vesicular glutamate transporter (VGLUT) 1 undergoes strong diurnal cycling. VGLUT1 protein levels are high before the start of the light period, decline at noon, increase again before start of the dark period, and decline again at midnight. Mice kept in complete darkness showed within a 24-h period only a single peak of VGLUT1 expression in the middle of the rest phase. In contrast, mice lacking the period gene Period 2, a core component of the circadian clock, did not show any light-cycle-dependent changes of VGLUT1 levels. No other of several synaptic vesicle proteins examined underwent circadian cycling. Circadian cycling of VGLUT1 was not seen when analyzing homogenate or synaptosomes, the starting fraction for vesicle preparation. Circadian cycling of VGLUT1 was also not reflected at the mRNA level. We conclude that nerve terminals are endowed with mechanisms that regulate quantal size by changing the copy number of transporters in synaptic vesicles. A reduced amount of VGLUT1 per vesicle is probably achieved by means of selective sorting controlled by clock genes.
Zhao, LiYing; Sakagami, Hiroyuki; Suzuki, Tatsuo
2014-10-01
We systematically investigated the purification process of post-synaptic density (PSD) and post-synaptic membrane rafts (PSRs) from the rat forebrain synaptic plasma membranes by examining the components and the structures of the materials obtained after the treatment of synaptic plasma membranes with TX-100, n-octyl β-d-glucoside (OG) or 3-([3-cholamidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfonate (CHAPSO). These three detergents exhibited distinct separation profiles for the synaptic subdomains. Type I and type II PSD proteins displayed mutually exclusive distribution. After TX-100 treatment, type I PSD was recovered in two fractions: a pellet and an insoluble fraction 8, which contained partially broken PSD-PSR complexes. Conventional PSD was suggested to be a mixture of these two PSD pools and did not contain type II PSD. An association of type I PSD with PSRs was identified in the TX-100 treatment, and those with type II PSD in the OG and CHAPSO treatments. An association of GABA receptors with gephyrin was easily dissociated. OG at a high concentration solubilized the type I PSD proteins. CHAPSO treatment resulted in a variety of distinct fractions, which contained certain novel structures. Two different pools of GluA, either PSD or possibly raft-associated, were identified in the OG and CHAPSO treatments. These results are useful in advancing our understanding of the structural organization of synapses at the molecular level. We systematically investigated the purification process of post-synaptic density (PSD) and synaptic membrane rafts by examining the structures obtained after treatment of the SPMs with TX-100, n-octyl β-d-glucoside or CHAPSO. Differential distribution of type I and type II PSD, synaptic membrane rafts, and other novel subdomains in the SPM give clues to understand the structural organization of synapses at the molecular level. © 2014 International Society for Neurochemistry.
Henderson, Christina; Wijetunge, Lasani; Kinoshita, Mika Nakamoto; Shumway, Matthew; Hammond, Rebecca S; Postma, Friso R; Brynczka, Christopher; Rush, Roger; Thomas, Alexia; Paylor, Richard; Warren, Stephen T; Vanderklish, Peter W; Kind, Peter C; Carpenter, Randall L; Bear, Mark F; Healy, Aileen M
2012-09-19
Fragile X syndrome (FXS), the most common inherited cause of intellectual disability and autism, results from the transcriptional silencing of FMR1 and loss of the mRNA translational repressor protein fragile X mental retardation protein (FMRP). Patients with FXS exhibit changes in neuronal dendritic spine morphology, a pathology associated with altered synaptic function. Studies in the mouse model of fragile X have shown that loss of FMRP causes excessive synaptic protein synthesis, which results in synaptic dysfunction and altered spine morphology. We tested whether the pharmacologic activation of the γ-aminobutyric acid type B (GABA(B)) receptor could correct or reverse these phenotypes in Fmr1-knockout mice. Basal protein synthesis, which is elevated in the hippocampus of Fmr1-knockout mice, was corrected by the in vitro application of the selective GABA(B) receptor agonist STX209 (arbaclofen, R-baclofen). STX209 also reduced to wild-type values the elevated AMPA receptor internalization in Fmr1-knockout cultured neurons, a known functional consequence of increased protein synthesis. Acute administration of STX209 in vivo, at doses that modify behavior, decreased mRNA translation in the cortex of Fmr1-knockout mice. Finally, the chronic administration of STX209 in juvenile mice corrected the increased spine density in Fmr1-knockout mice without affecting spine density in wild-type mice. Thus, activation of the GABA(B) receptor with STX209 corrected synaptic abnormalities considered central to fragile X pathophysiology, a finding that suggests that STX209 may be a potentially effective therapy to treat the core symptoms of FXS.
Lanore, Frederic; Labrousse, Virginie F; Szabo, Zsolt; Normand, Elisabeth; Blanchet, Christophe; Mulle, Christophe
2012-12-05
The grik2 gene, coding for the kainate receptor subunit GluK2 (formerly GluR6), is associated with autism spectrum disorders and intellectual disability. Here, we tested the hypothesis that GluK2 could play a role in the appropriate maturation of synaptic circuits involved in learning and memory. We show that both the functional and morphological maturation of hippocampal mossy fiber to CA3 pyramidal cell (mf-CA3) synapses is delayed in mice deficient for the GluK2 subunit (GluK2⁻/⁻). In GluK2⁻/⁻ mice this deficit is manifested by a transient reduction in the amplitude of AMPA-EPSCs at a critical time point of postnatal development, whereas the NMDA component is spared. By combining multiple probability peak fluctuation analysis and immunohistochemistry, we have provided evidence that the decreased amplitude reflects a decrease in the quantal size per mf-CA3 synapse and in the number of active synaptic sites. Furthermore, we analyzed the time course of structural maturation of CA3 synapses by confocal imaging of YFP-expressing cells followed by tridimensional (3D) anatomical reconstruction of thorny excrescences and presynaptic boutons. We show that major changes in synaptic structures occur subsequently to the sharp increase in synaptic transmission, and more importantly that the course of structural maturation of synaptic elements is impaired in GluK2⁻/⁻ mice. This study highlights how a mutation in a gene linked to intellectual disability in the human may lead to a transient reduction of synaptic strength during postnatal development, impacting on the proper formation of neural circuits linked to memory.
Wang, Qunan; Xia, Xin; Deng, Xiaomei; Li, Nian; Wu, Daji; Zhang, Long; Yang, Chengwei; Tao, Fangbiao; Zhou, Jiangning
2016-03-01
Lambda-cyhalothrin (LCT), one of the type II pyrethroids, has been widely used throughout the world. The estrogenic effect of LCT to increase cell proliferation has been well established. However, whether the estrogenic effect of LCT will influence neurodevelopment has not been investigated. In addition, 17β-Estradiol (E2) plays a crucial role in neurodevelopment and induces an increase in synaptic proteins. The post-synaptic density 95 (PSD95) protein, which is involved in the development of the structure and function of new spines and localized with estrogen receptor α (ERα) at the post-synaptic density (PSD), was detected in our study by using hippocampal neuron cell line HT22. We found that LCT up-regulated PSD95 and ERα expression, estrogen receptor (ER) antagonist ICI182,780 and phosphatidylinositol-4; 5-bisphosphate 3-kinase (PI3K) inhibitor LY294,002 blocked this effect. In addition, LCT disrupted the promotion effect of E2 on PSD95. To investigate whether the observed changes are caused by ERα-dependent signaling activation, we next detected the effects of LCT on the ERα-mediated PI3K-Protein kinase B (PKB/Akt)-eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) pathway. There existed an activation of Akt and the downstream factor 4E-BP1 after LCT treatment. In addition, LCT could disrupt the activation effect of E2 on the Akt pathway. However, no changes in cAMP response element-binding protein (CREB) activation and PSD95 messenger ribonucleic acid (mRNA) were observed. Our findings demonstrated that LCT could increase the PSD95 protein level via the ERα-dependent Akt pathway, and LCT might disrupt the up-regulation effect of E2 on PSD95 protein expression via this signaling pathway. Copyright © 2015. Published by Elsevier B.V.
VGLUT2 Trafficking Is Differentially Regulated by Adaptor Proteins AP-1 and AP-3
Li, Haiyan; Santos, Magda S.; Park, Chihyung K.; Dobry, Yuriy; Voglmaier, Susan M.
2017-01-01
Release of the major excitatory neurotransmitter glutamate by synaptic vesicle exocytosis depends on glutamate loading into synaptic vesicles by vesicular glutamate transporters (VGLUTs). The two principal isoforms, VGLUT1 and 2, exhibit a complementary pattern of expression in adult brain that broadly distinguishes cortical (VGLUT1) and subcortical (VGLUT2) systems, and correlates with distinct physiological properties in synapses expressing these isoforms. Differential trafficking of VGLUT1 and 2 has been suggested to underlie their functional diversity. Increasing evidence suggests individual synaptic vesicle proteins use specific sorting signals to engage specialized biochemical mechanisms to regulate their recycling. We observed that VGLUT2 recycles differently in response to high frequency stimulation than VGLUT1. Here we further explore the trafficking of VGLUT2 using a pHluorin-based reporter, VGLUT2-pH. VGLUT2-pH exhibits slower rates of both exocytosis and endocytosis than VGLUT1-pH. VGLUT2-pH recycling is slower than VGLUT1-pH in both hippocampal neurons, which endogenously express mostly VGLUT1, and thalamic neurons, which endogenously express mostly VGLUT2, indicating that protein identity, not synaptic vesicle membrane or neuronal cell type, controls sorting. We characterize sorting signals in the C-terminal dileucine-like motif, which plays a crucial role in VGLUT2 trafficking. Disruption of this motif abolishes synaptic targeting of VGLUT2 and essentially eliminates endocytosis of the transporter. Mutational and biochemical analysis demonstrates that clathrin adaptor proteins (APs) interact with VGLUT2 at the dileucine-like motif. VGLUT2 interacts with AP-2, a well-studied adaptor protein for clathrin mediated endocytosis. In addition, VGLUT2 also interacts with the alternate adaptors, AP-1 and AP-3. VGLUT2 relies on distinct recycling mechanisms from VGLUT1. Abrogation of these differences by pharmacological and molecular inhibition reveals that these mechanisms are dependent on the adaptor proteins AP-1 and AP-3. Further, shRNA-mediated knockdown reveals differential roles for AP-1 and AP-3 in VGLUT2 recycling. PMID:29123471
VGLUT2 Trafficking Is Differentially Regulated by Adaptor Proteins AP-1 and AP-3.
Li, Haiyan; Santos, Magda S; Park, Chihyung K; Dobry, Yuriy; Voglmaier, Susan M
2017-01-01
Release of the major excitatory neurotransmitter glutamate by synaptic vesicle exocytosis depends on glutamate loading into synaptic vesicles by vesicular glutamate transporters (VGLUTs). The two principal isoforms, VGLUT1 and 2, exhibit a complementary pattern of expression in adult brain that broadly distinguishes cortical (VGLUT1) and subcortical (VGLUT2) systems, and correlates with distinct physiological properties in synapses expressing these isoforms. Differential trafficking of VGLUT1 and 2 has been suggested to underlie their functional diversity. Increasing evidence suggests individual synaptic vesicle proteins use specific sorting signals to engage specialized biochemical mechanisms to regulate their recycling. We observed that VGLUT2 recycles differently in response to high frequency stimulation than VGLUT1. Here we further explore the trafficking of VGLUT2 using a pHluorin-based reporter, VGLUT2-pH. VGLUT2-pH exhibits slower rates of both exocytosis and endocytosis than VGLUT1-pH. VGLUT2-pH recycling is slower than VGLUT1-pH in both hippocampal neurons, which endogenously express mostly VGLUT1, and thalamic neurons, which endogenously express mostly VGLUT2, indicating that protein identity, not synaptic vesicle membrane or neuronal cell type, controls sorting. We characterize sorting signals in the C-terminal dileucine-like motif, which plays a crucial role in VGLUT2 trafficking. Disruption of this motif abolishes synaptic targeting of VGLUT2 and essentially eliminates endocytosis of the transporter. Mutational and biochemical analysis demonstrates that clathrin adaptor proteins (APs) interact with VGLUT2 at the dileucine-like motif. VGLUT2 interacts with AP-2, a well-studied adaptor protein for clathrin mediated endocytosis. In addition, VGLUT2 also interacts with the alternate adaptors, AP-1 and AP-3. VGLUT2 relies on distinct recycling mechanisms from VGLUT1. Abrogation of these differences by pharmacological and molecular inhibition reveals that these mechanisms are dependent on the adaptor proteins AP-1 and AP-3. Further, shRNA-mediated knockdown reveals differential roles for AP-1 and AP-3 in VGLUT2 recycling.
ERIC Educational Resources Information Center
O'Dell, Thomas J.; Connor, Steven A.; Guglietta, Ryan; Nguyen, Peter V.
2015-01-01
Encoding new information in the brain requires changes in synaptic strength. Neuromodulatory transmitters can facilitate synaptic plasticity by modifying the actions and expression of specific signaling cascades, transmitter receptors and their associated signaling complexes, genes, and effector proteins. One critical neuromodulator in the…
Impaired Dendritic Development and Memory in Sorbs2 Knock-Out Mice
Zhang, Qiangge; Gao, Xian; Li, Chenchen; Feliciano, Catia; Wang, Dongqing; Zhou, Dingxi; Mei, Yuan; Monteiro, Patricia; Anand, Michelle; Itohara, Shigeyoshi; Dong, Xiaowei; Fu, Zhanyan
2016-01-01
Intellectual disability is a common neurodevelopmental disorder characterized by impaired intellectual and adaptive functioning. Both environmental insults and genetic defects contribute to the etiology of intellectual disability. Copy number variations of SORBS2 have been linked to intellectual disability. However, the neurobiological function of SORBS2 in the brain is unknown. The SORBS2 gene encodes ArgBP2 (Arg/c-Abl kinase binding protein 2) protein in non-neuronal tissues and is alternatively spliced in the brain to encode nArgBP2 protein. We found nArgBP2 colocalized with F-actin at dendritic spines and growth cones in cultured hippocampal neurons. In the mouse brain, nArgBP2 was highly expressed in the cortex, amygdala, and hippocampus, and enriched in the outer one-third of the molecular layer in dentate gyrus. Genetic deletion of Sorbs2 in mice led to reduced dendritic complexity and decreased frequency of AMPAR-miniature spontaneous EPSCs in dentate gyrus granule cells. Behavioral characterization revealed that Sorbs2 deletion led to a reduced acoustic startle response, and defective long-term object recognition memory and contextual fear memory. Together, our findings demonstrate, for the first time, an important role for nArgBP2 in neuronal dendritic development and excitatory synaptic transmission, which may thus inform exploration of neurobiological basis of SORBS2 deficiency in intellectual disability. SIGNIFICANCE STATEMENT Copy number variations of the SORBS2 gene are linked to intellectual disability, but the neurobiological mechanisms are unknown. We found that nArgBP2, the only neuronal isoform encoded by SORBS2, colocalizes with F-actin at neuronal dendritic growth cones and spines. nArgBP2 is highly expressed in the cortex, amygdala, and dentate gyrus in the mouse brain. Genetic deletion of Sorbs2 in mice leads to impaired dendritic complexity and reduced excitatory synaptic transmission in dentate gyrus granule cells, accompanied by behavioral deficits in acoustic startle response and long-term memory. This is the first study of Sorbs2 function in the brain, and our findings may facilitate the study of neurobiological mechanisms underlying SORBS2 deficiency in the development of intellectual disability. PMID:26888934
Han, Mira; Ban, Jae-Jun; Bae, Jung-Soo; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho
2017-11-14
The skin senses external environment, including ultraviolet light (UV). Hippocampus is a brain region that is responsible for memory and emotion. However, changes in hippocampus by UV irradiation to the skin have not been studied. In this study, after 2 weeks of UV irradiation to the mouse skin, we examined molecular changes related to cognitive functions in the hippocampus and activation of the hypothalamic-pituitary-adrenal (HPA) axis. UV exposure to the skin decreased doublecortin-positive immature neurons and synaptic proteins, including N-methyl-D-aspartate receptor 2 A and postsynaptic density protein-95, in the hippocampus. Moreover, we observed that UV irradiation to the skin down-regulated brain-derived neurotrophic factor expression and ERK signaling in the hippocampus, which are known to modulate neurogenesis and synaptic plasticity. The cutaneous and central HPA axes were activated by UV, which resulted in significant increases in serum levels of corticosterone. Subsequently, UV irradiation to the skin activated the glucocorticoid-signaling pathway in the hippocampal dentate gyrus. Interestingly, after 6 weeks of UV irradiation, mice showed depression-like behavior in the tail suspension test. Taken together, our data suggest that repeated UV exposure through the skin may negatively affect hippocampal neurogenesis and synaptic plasticity along with HPA axis activation.
SNARE interactions in membrane trafficking: a perspective from mammalian central synapses.
Kavalali, Ege T
2002-10-01
SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) are a large family of proteins that are present on all organelles involved in intracellular vesicle trafficking and secretion. The interaction of complementary SNAREs found on opposing membranes presents an attractive lock-and-key mechanism, which may underlie the specificity of vesicle trafficking. Moreover, formation of the tight complex between a vesicle membrane SNARE and corresponding target membrane SNAREs could drive membrane fusion. In synapses, this tight complex, also referred to as the synaptic core complex, is essential for neurotransmitter release. However, recent observations in knockout mice lacking major synaptic SNAREs challenge the prevailing notion on the executive role of these proteins in fusion and open up several questions about their exact role(s) in neurotransmitter release. Persistence of a form of regulated neurotransmitter release in these mutant mice also raises the possibility that other cognate or non-cognate SNAREs may partially compensate for the loss of a particular SNARE. Future analysis of SNARE function in central synapses will also have implications for the role of these molecules in other vesicle trafficking events such as endocytosis and vesicle replenishment. Such analysis can provide a molecular basis for synaptic processes including certain forms of short-term synaptic plasticity. Copyright 2002 Wiley Periodicals, Inc.
Biesemann, Christoph; Grønborg, Mads; Luquet, Elisa; Wichert, Sven P; Bernard, Véronique; Bungers, Simon R; Cooper, Ben; Varoqueaux, Frédérique; Li, Liyi; Byrne, Jennifer A; Urlaub, Henning; Jahn, Olaf; Brose, Nils; Herzog, Etienne
2014-01-01
For decades, neuroscientists have used enriched preparations of synaptic particles called synaptosomes to study synapse function. However, the interpretation of corresponding data is problematic as synaptosome preparations contain multiple types of synapses and non-synaptic neuronal and glial contaminants. We established a novel Fluorescence Activated Synaptosome Sorting (FASS) method that substantially improves conventional synaptosome enrichment protocols and enables high-resolution biochemical analyses of specific synapse subpopulations. Employing knock-in mice with fluorescent glutamatergic synapses, we show that FASS isolates intact ultrapure synaptosomes composed of a resealed presynaptic terminal and a postsynaptic density as assessed by light and electron microscopy. FASS synaptosomes contain bona fide glutamatergic synapse proteins but are almost devoid of other synapse types and extrasynaptic or glial contaminants. We identified 163 enriched proteins in FASS samples, of which FXYD6 and Tpd52 were validated as new synaptic proteins. FASS purification thus enables high-resolution biochemical analyses of specific synapse subpopulations in health and disease. PMID:24413018
The quantum physics of synaptic communication via the SNARE protein complex.
Georgiev, Danko D; Glazebrook, James F
2018-07-01
Twenty five years ago, Sir John Carew Eccles together with Friedrich Beck proposed a quantum mechanical model of neurotransmitter release at synapses in the human cerebral cortex. The model endorsed causal influence of human consciousness upon the functioning of synapses in the brain through quantum tunneling of unidentified quasiparticles that trigger the exocytosis of synaptic vesicles, thereby initiating the transmission of information from the presynaptic towards the postsynaptic neuron. Here, we provide a molecular upgrade of the Beck and Eccles model by identifying the quantum quasiparticles as Davydov solitons that twist the protein α-helices and trigger exocytosis of synaptic vesicles through helical zipping of the SNARE protein complex. We also calculate the observable probabilities for exocytosis based on the mass of this quasiparticle, along with the characteristics of the potential energy barrier through which tunneling is necessary. We further review the current experimental evidence in support of this novel bio-molecular model as presented. Copyright © 2018 Elsevier Ltd. All rights reserved.
Woltjer, Randall L; Cimino, P J; Boutté, Angela M; Schantz, Aimee M; Montine, Kathleen S; Larson, Eric B; Bird, Thomas; Quinn, Joseph F; Zhang, Jing; Montine, Thomas J
2005-11-01
Biochemical characterization of the major detergent-insoluble proteins that comprise hallmark histopathologic lesions initiated the molecular era of Alzheimer's disease (AD) research. Here, we reinvestigated detergent-insoluble proteins in AD using modern proteomic techniques. Using liquid chromatography (LC)-mass spectrometry (MS)-MS-based proteomics, we robustly identified 125 proteins in the detergent-insoluble fraction of late-onset AD (LOAD) temporal cortex that included several proteins critical to Abeta production, components of synaptic scaffolding, and products of genes linked to an increased risk of LOAD; we verified 15 of 15 of these proteins by Western blot. Following multiple analyses, we estimated that these represent ~80% of detergent-insoluble proteins in LOAD detectable by our method. Abeta, tau, and 7 of 8 other newly identified detergent-insoluble proteins were disproportionately increased in temporal cortex from patients with LOAD and AD derived from mutations in PSEN1 and PSEN2; all of these except tau were elevated in individuals with prodromal dementia, while none except Abeta were elevated in aged APPswe mice. These results are consistent with the amyloid hypothesis of AD and extend it to include widespread protein insolubility, not exclusively Abeta insolubility, early in AD pathogenesis even before the onset of clinical dementia.
Kanaan, Nicholas M.; Pigino, Gustavo F.; Brady, Scott T.; Lazarov, Orly; Binder, Lester I.; Morfini, Gerardo A.
2012-01-01
Alzheimer’s disease (AD) is characterized by progressive, age-dependent degeneration of neurons in the central nervous system. A large body of evidence indicates that neurons affected in AD follow a dying-back pattern of degeneration, where abnormalities in synaptic function and axonal connectivity long precede somatic cell death. Mechanisms underlying dying-back degeneration of neurons in AD remain elusive but several have been proposed, including deficits in fast axonal transport (FAT). Accordingly, genetic evidence linked alterations in FAT to dying-back degeneration of neurons, and FAT defects have been widely documented in various AD models. In light of these findings, we discuss experimental evidence linking several AD-related pathogenic polypeptides to aberrant activation of signaling pathways involved in the phosphoregulation of microtubule-based motor proteins. While each pathway appears to affect FAT in a unique manner, in the context of AD, many of these pathways might work synergistically to compromise the delivery of molecular components critical for the maintenance and function of synapses and axons. Therapeutic approaches aimed at preventing FAT deficits by normalizing the activity of specific protein kinases may help prevent degeneration of vulnerable neurons in AD. PMID:22721767
[Fragile X syndrome and white matter abnormalities: Case study of two brothers].
Wallach, E; Bieth, E; Sevely, A; Cances, C
2017-03-01
Fragile X syndrome is the most usual cause of hereditary intellectual deficiency. Typical symptoms combine intellectual deficiency, social anxiety, intense emotional vigilance, and a characteristic facial dysmorphy. This is subsequent to a complete mutation of the FMR1 gene, considering a semidominant transmission linked to the unstable X. The expansion of the CGG triplet greater than 200 units combined with a high methylation pattern lead to a transcriptional silence of the FMR1 gene, and the protein product, the FMRP, is not synthesized. This protein is involved in synaptic plasticity. Brain MRI can show an increased volume of the caudate nucleus and hippocampus, combined with hypoplasia of the cerebellar vermis. Fragile X Associated Tremor Ataxia Syndrome (FXTAS) syndrome is a neurodegenerative disorder occurring in carriers of the premutation in FMR1. Brain MRI shows an increased T2 signal in the middle cerebellar peduncles. This syndrome is linked to a premutation in the FMR1 gene. We report here the case of two brothers presenting a typical fragile X symptomatology. Brain MRI showed hyperintensities of the middle cerebellar peduncles. Such MRI findings support the assumption of a genetic mosaicism. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Miller-Fleming, Tyne W; Petersen, Sarah C; Manning, Laura; Matthewman, Cristina; Gornet, Megan; Beers, Allison; Hori, Sayaka; Mitani, Shohei; Bianchi, Laura; Richmond, Janet; Miller, David M
2016-01-01
Genetic programming and neural activity drive synaptic remodeling in developing neural circuits, but the molecular components that link these pathways are poorly understood. Here we show that the C. elegans Degenerin/Epithelial Sodium Channel (DEG/ENaC) protein, UNC-8, is transcriptionally controlled to function as a trigger in an activity-dependent mechanism that removes synapses in remodeling GABAergic neurons. UNC-8 cation channel activity promotes disassembly of presynaptic domains in DD type GABA neurons, but not in VD class GABA neurons where unc-8 expression is blocked by the COUP/TF transcription factor, UNC-55. We propose that the depolarizing effect of UNC-8-dependent sodium import elevates intracellular calcium in a positive feedback loop involving the voltage-gated calcium channel UNC-2 and the calcium-activated phosphatase TAX-6/calcineurin to initiate a caspase-dependent mechanism that disassembles the presynaptic apparatus. Thus, UNC-8 serves as a link between genetic and activity-dependent pathways that function together to promote the elimination of GABA synapses in remodeling neurons. DOI: http://dx.doi.org/10.7554/eLife.14599.001 PMID:27403890
The multifunctional Staufen proteins: conserved roles from neurogenesis to synaptic plasticity.
Heraud-Farlow, Jacki E; Kiebler, Michael A
2014-09-01
Staufen (Stau) proteins belong to a family of RNA-binding proteins (RBPs) that are important for RNA localisation in many organisms. In this review we discuss recent findings on the conserved role played by Stau during both the early differentiation of neurons and in the synaptic plasticity of mature neurons. Recent molecular data suggest mechanisms for how Stau2 regulates mRNA localisation, mRNA stability, translation, and ribonucleoprotein (RNP) assembly. We offer a perspective on how this multifunctional RBP has been adopted to regulate mRNA localisation under several different cellular and developmental conditions. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Neuronal Activity and the Expression of Clathrin Assembly Protein AP180
Wu, Fangbai; Mattson, Mark P.; Yao, Pamela J.
2010-01-01
The clathrin assembly protein AP180 is known to promote the assembly of clathrin-coated vesicles in the neuron. However, it is unknown whether the expression of AP180 is influenced by neuronal activity. In this study, we report that chronic depolarization results in a reduction of AP180 from hippocampal neurons, while acute depolarization causes a dispersed synaptic distribution of AP180. Activity-induced effects are observed only for AP180, but not for the structurally-related clathrin assembly proteins CALM, epsin1, or HIP1. These findings suggest that AP180 levels and synaptic distribution are highly sensitive to neuronal activity. PMID:20937255
Diffusional spread and confinement of newly exocytosed synaptic vesicle proteins
Gimber, Niclas; Tadeus, Georgi; Maritzen, Tanja; Schmoranzer, Jan; Haucke, Volker
2015-01-01
Neurotransmission relies on the calcium-triggered exocytic fusion of non-peptide neurotransmitter-containing small synaptic vesicles (SVs) with the presynaptic membrane at active zones (AZs) followed by compensatory endocytic retrieval of SV membranes. Here, we study the diffusional fate of newly exocytosed SV proteins in hippocampal neurons by high-resolution time-lapse imaging. Newly exocytosed SV proteins rapidly disperse within the first seconds post fusion until confined within the presynaptic bouton. Rapid diffusional spread and confinement is followed by slow reclustering of SV proteins at the periactive endocytic zone. Confinement within the presynaptic bouton is mediated in part by SV protein association with the clathrin-based endocytic machinery to limit diffusional spread of newly exocytosed SV proteins. These data suggest that diffusion, and axonal escape of newly exocytosed vesicle proteins, are counteracted by the clathrin-based endocytic machinery together with a presynaptic diffusion barrier. PMID:26399746
Diffusional spread and confinement of newly exocytosed synaptic vesicle proteins
NASA Astrophysics Data System (ADS)
Gimber, Niclas; Tadeus, Georgi; Maritzen, Tanja; Schmoranzer, Jan; Haucke, Volker
2015-09-01
Neurotransmission relies on the calcium-triggered exocytic fusion of non-peptide neurotransmitter-containing small synaptic vesicles (SVs) with the presynaptic membrane at active zones (AZs) followed by compensatory endocytic retrieval of SV membranes. Here, we study the diffusional fate of newly exocytosed SV proteins in hippocampal neurons by high-resolution time-lapse imaging. Newly exocytosed SV proteins rapidly disperse within the first seconds post fusion until confined within the presynaptic bouton. Rapid diffusional spread and confinement is followed by slow reclustering of SV proteins at the periactive endocytic zone. Confinement within the presynaptic bouton is mediated in part by SV protein association with the clathrin-based endocytic machinery to limit diffusional spread of newly exocytosed SV proteins. These data suggest that diffusion, and axonal escape of newly exocytosed vesicle proteins, are counteracted by the clathrin-based endocytic machinery together with a presynaptic diffusion barrier.
Geng, Junhua; Wang, Liping; Lee, Joo Yeun; Chen, Chun-Kan; Chang, Karen T
2016-08-24
The rapid replenishment of synaptic vesicles through endocytosis is crucial for sustaining synaptic transmission during intense neuronal activity. Synaptojanin (Synj), a phosphoinositide phosphatase, is known to play an important role in vesicle recycling by promoting the uncoating of clathrin following synaptic vesicle uptake. Synj has been shown to be a substrate of the minibrain (Mnb) kinase, a fly homolog of the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A); however, the functional impacts of Synj phosphorylation by Mnb are not well understood. Here we identify that Mnb phosphorylates Synj at S1029 in Drosophila We find that phosphorylation of Synj at S1029 enhances Synj phosphatase activity, alters interaction between Synj and endophilin, and promotes efficient endocytosis of the active cycling vesicle pool (also referred to as exo-endo cycling pool) at the expense of reserve pool vesicle endocytosis. Dephosphorylated Synj, on the other hand, is deficient in the endocytosis of the active recycling pool vesicles but maintains reserve pool vesicle endocytosis to restore total vesicle pool size and sustain synaptic transmission. Together, our findings reveal a novel role for Synj in modulating reserve pool vesicle endocytosis and further indicate that dynamic phosphorylation and dephosphorylation of Synj differentially maintain endocytosis of distinct functional synaptic vesicle pools. Synaptic vesicle endocytosis sustains communication between neurons during a wide range of neuronal activities by recycling used vesicle membrane and protein components. Here we identify that Synaptojanin, a protein with a known role in synaptic vesicle endocytosis, is phosphorylated at S1029 in vivo by the Minibrain kinase. We further demonstrate that the phosphorylation status of Synaptojanin at S1029 differentially regulates its participation in the recycling of distinct synaptic vesicle pools. Our results reveal a new role for Synaptojanin in maintaining synaptic vesicle pool size and in reserve vesicle endocytosis. As Synaptojanin and Minibrain perturbations are associated with various neurological disorders, such as Parkinson's, autism, and Down syndrome, understanding mechanisms modulating Synaptojanin function provides valuable insights into processes affecting neuronal communication. Copyright © 2016 the authors 0270-6474/16/368882-13$15.00/0.
Geng, Junhua; Wang, Liping; Lee, Joo Yeun; Chen, Chun-Kan
2016-01-01
The rapid replenishment of synaptic vesicles through endocytosis is crucial for sustaining synaptic transmission during intense neuronal activity. Synaptojanin (Synj), a phosphoinositide phosphatase, is known to play an important role in vesicle recycling by promoting the uncoating of clathrin following synaptic vesicle uptake. Synj has been shown to be a substrate of the minibrain (Mnb) kinase, a fly homolog of the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A); however, the functional impacts of Synj phosphorylation by Mnb are not well understood. Here we identify that Mnb phosphorylates Synj at S1029 in Drosophila. We find that phosphorylation of Synj at S1029 enhances Synj phosphatase activity, alters interaction between Synj and endophilin, and promotes efficient endocytosis of the active cycling vesicle pool (also referred to as exo-endo cycling pool) at the expense of reserve pool vesicle endocytosis. Dephosphorylated Synj, on the other hand, is deficient in the endocytosis of the active recycling pool vesicles but maintains reserve pool vesicle endocytosis to restore total vesicle pool size and sustain synaptic transmission. Together, our findings reveal a novel role for Synj in modulating reserve pool vesicle endocytosis and further indicate that dynamic phosphorylation and dephosphorylation of Synj differentially maintain endocytosis of distinct functional synaptic vesicle pools. SIGNIFICANCE STATEMENT Synaptic vesicle endocytosis sustains communication between neurons during a wide range of neuronal activities by recycling used vesicle membrane and protein components. Here we identify that Synaptojanin, a protein with a known role in synaptic vesicle endocytosis, is phosphorylated at S1029 in vivo by the Minibrain kinase. We further demonstrate that the phosphorylation status of Synaptojanin at S1029 differentially regulates its participation in the recycling of distinct synaptic vesicle pools. Our results reveal a new role for Synaptojanin in maintaining synaptic vesicle pool size and in reserve vesicle endocytosis. As Synaptojanin and Minibrain perturbations are associated with various neurological disorders, such as Parkinson's, autism, and Down syndrome, understanding mechanisms modulating Synaptojanin function provides valuable insights into processes affecting neuronal communication. PMID:27559170
[Neuronal and synaptic properties: fundamentals of network plasticity].
Le Masson, G
2000-02-01
Neurons, within the nervous system, are organized in different neural networks through synaptic connections. Two fundamental components are dynamically interacting in these functional units. The first one are the neurons themselves, and far from being simple action potential generators, they are capable of complex electrical integrative properties due to various types, number, distribution and modulation of voltage-gated ionic channels. The second elements are the synapses where a similar complexity and plasticity is found. Identifying both cellular and synaptic intrinsic properties is necessary to understand the links between neural networks behavior and physiological function, and is a useful step towards a better control of neurological diseases.
Jayakumar, A. R.; Tong, X. Y.; Curtis, K. M.; Ruiz-Cordero, R.; Shamaladevi, N.; Abuzamel, M.; Johnstone, J.; Gaidosh, G.; Rama Rao, K.V.; Norenberg, M. D.
2014-01-01
Chronic hepatic encephalopathy (CHE) is a major complication in patients with severe liver disease. Elevated blood and brain ammonia levels have been implicated in its pathogenesis, and astrocytes are the principal neural cells involved in this disorder. Since defective synthesis and release of astrocytic factors have been shown to impair synaptic integrity in other neurological conditions, we examined whether thrombospondin-1 (TSP-1), an astrocytic factor involved in the maintenance of synaptic integrity, is also altered in CHE. Cultured astrocytes were exposed to ammonia (NH4Cl, 0.5–2.5 mM) for 1–10 days, and TSP-1 content was measured in cell extracts and culture media. Astrocytes exposed to ammonia exhibited a reduction in intra- and extracellular TSP-1 levels. Exposure of cultured neurons to conditioned media (CM) from ammonia-treated astrocytes showed a decrease in synaptophysin, PSD95 and synaptotagmin levels. CM from TSP-1 overexpressing astrocytes that were treated with ammonia, when added to cultured neurons, reversed the decline in synaptic proteins. Recombinant TSP-1 similarly reversed the decrease in synaptic proteins. Metformin, an agent known to increase TSP-1 synthesis in other cell types also reversed the ammonia-induced TSP-1 reduction. Likewise, we found a significant decline in TSP-1 level in cortical astrocytes, as well as a reduction in synaptophysin content in vivo in a rat model of CHE. These findings suggest that TSP-1 may represent an important therapeutic target for CHE. PMID:25040426
Bordji, Karim; Becerril-Ortega, Javier; Nicole, Olivier; Buisson, Alain
2010-11-24
Calcium is a key mediator controlling essential neuronal functions depending on electrical activity. Altered neuronal calcium homeostasis affects metabolism of amyloid precursor protein (APP), leading to increased production of β-amyloid (Aβ), and contributing to the initiation of Alzheimer's disease (AD). A linkage between excessive glutamate receptor activation and neuronal Aβ release was established, and recent reports suggest that synaptic and extrasynaptic NMDA receptor (NMDAR) activation may have distinct consequences in plasticity, gene regulation, and neuronal death. Here, we report for the first time that prolonged activation of extrasynaptic NMDAR, but not synaptic NMDAR, dramatically increased the neuronal production of Aβ. This effect was preceded by a shift from APP695 to Kunitz protease inhibitory domain (KPI) containing APPs (KPI-APPs), isoforms exhibiting an important amyloidogenic potential. Conversely, after synaptic NMDAR activation, we failed to detect any KPI-APP expression and neuronal Aβ production was not modified. Calcium imaging data showed that intracellular calcium concentration after extrasynaptic NMDAR stimulation was lower than after synaptic activation. This suggests distinct signaling pathways for each pool of receptors. We found that modification of neuronal APP expression pattern triggered by extrasynaptic NMDAR activation was regulated at an alternative splicing level involving calcium-/calmodulin-dependent protein kinase IV, but overall APP expression remained identical. Finally, memantine dose-dependently inhibited extrasynaptic NMDAR-induced KPI-APPs expression as well as neuronal Aβ release. Altogether, these data suggest that a chronic activation of extrasynaptic NMDAR promotes amyloidogenic KPI-APP expression leading to neuronal Aβ release, representing a causal risk factor for developing AD.
Gogliotti, Rocco G.; Senter, Rebecca K.; Rook, Jerri M.; Ghoshal, Ayan; Zamorano, Rocio; Malosh, Chrysa; Stauffer, Shaun R.; Bridges, Thomas M.; Bartolome, Jose M.; Daniels, J. Scott; Jones, Carrie K.; Lindsley, Craig W.; Conn, P. Jeffrey; Niswender, Colleen M.
2016-01-01
Rett syndrome (RS) is a neurodevelopmental disorder that shares many symptomatic and pathological commonalities with idiopathic autism. Alterations in protein synthesis-dependent synaptic plasticity (PSDSP) are a hallmark of a number of syndromic forms of autism; in the present work, we explore the consequences of disruption and rescue of PSDSP in a mouse model of RS. We report that expression of a key regulator of synaptic protein synthesis, the metabotropic glutamate receptor 5 (mGlu5) protein, is significantly reduced in both the brains of RS model mice and in the motor cortex of human RS autopsy samples. Furthermore, we demonstrate that reduced mGlu5 expression correlates with attenuated DHPG-induced long-term depression in the hippocampus of RS model mice, and that administration of a novel mGlu5 positive allosteric modulator (PAM), termed VU0462807, can rescue synaptic plasticity defects. Additionally, treatment of Mecp2-deficient mice with VU0462807 improves motor performance (open-field behavior and gait dynamics), corrects repetitive clasping behavior, as well as normalizes cued fear-conditioning defects. Importantly, due to the rationale drug discovery approach used in its development, our novel mGlu5 PAM improves RS phenotypes and synaptic plasticity defects without evoking the overt adverse effects commonly associated with potentiation of mGlu5 signaling (i.e. seizures), or affecting cardiorespiratory defects in RS model mice. These findings provide strong support for the continued development of mGlu5 PAMs as potential therapeutic agents for use in RS, and, more broadly, for utility in idiopathic autism. PMID:26936821
Wang, Xinkun; Patel, Nilam D; Hui, Dongwei; Pal, Ranu; Hafez, Mohamed M; Sayed-Ahmed, Mohamed M; Al-Yahya, Abdulaziz A; Michaelis, Elias K
2014-03-04
Extraneuronal levels of the neurotransmitter glutamate in brain rise during aging. This is thought to lead to synaptic dysfunction and neuronal injury or death. To study the effects of glutamate hyperactivity in brain, we created transgenic (Tg) mice in which the gene for glutamate dehydrogenase (Glud1) is over-expressed in neurons and in which such overexpression leads to excess synaptic release of glutamate. In this study, we analyzed whole genome expression in the hippocampus, a region important for learning and memory, of 10 day to 20 month old Glud1 and wild type (wt) mice. During development, maturation and aging, both Tg and wt exhibited decreases in the expression of genes related to neurogenesis, neuronal migration, growth, and process elongation, and increases in genes related to neuro-inflammation, voltage-gated channel activity, and regulation of synaptic transmission. Categories of genes that were differentially expressed in Tg vs. wt during development were: synaptic function, cytoskeleton, protein ubiquitination, and mitochondria; and, those differentially expressed during aging were: synaptic function, vesicle transport, calcium signaling, protein kinase activity, cytoskeleton, neuron projection, mitochondria, and protein ubiquitination. Overall, the effects of Glud1 overexpression on the hippocampus transcriptome were greater in the mature and aged than the young. Glutamate hyperactivity caused gene expression changes in the hippocampus at all ages. Some of these changes may result in premature brain aging. The identification of these genomic expression differences is important in understanding the effects of glutamate dysregulation on neuronal function during aging or in neurodegenerative diseases.
Bidirectional control of postsynaptic density-95 (PSD-95) clustering by Huntingtin.
Parsons, Matthew P; Kang, Rujun; Buren, Caodu; Dau, Alejandro; Southwell, Amber L; Doty, Crystal N; Sanders, Shaun S; Hayden, Michael R; Raymond, Lynn A
2014-02-07
Huntington disease is associated with early alterations in corticostriatal synaptic function that precede cell death, and it is postulated that ameliorating such changes may delay clinical onset and/or prevent neurodegeneration. Although many of these synaptic alterations are thought to be attributable to a toxic gain of function of the mutant huntingtin protein, the role that nonpathogenic huntingtin (HTT) plays in synaptic function is relatively unexplored. Here, we compare the immunocytochemical localization of a major postsynaptic scaffolding protein, PSD-95, in striatal neurons from WT mice and mice overexpressing HTT with 18 glutamine repeats (YAC18, nonpathogenic). We found that HTT overexpression resulted in a palmitoylation- and BDNF-dependent increase in PSD-95 clustering at synaptic sites in striatal spiny projection neurons (SPNs) co-cultured with cortical neurons. Surprisingly, the latter effect was mediated presynaptically, as HTT overexpression in cortical neurons alone was sufficient to increase PSD-95 clustering in the postsynaptic SPNs. In contrast, antisense oligonucleotide knockdown of HTT in WT co-cultures resulted in a significant reduction of PSD-95 clustering in SPNs. Notably, despite these bidirectional changes in PSD-95 clustering, we did not observe an alteration in basal electrophysiological measures of AMPA and NMDA receptors. Thus, unlike in previous studies in the hippocampus, enhanced or decreased PSD-95 clustering alone was insufficient to drive AMPA or NMDA receptors into or out of SPN synapses. In all, our results demonstrate that nonpathogenic HTT can indeed influence synaptic protein localization and uncover a novel role of HTT in PSD-95 distribution.
Bidirectional Control of Postsynaptic Density-95 (PSD-95) Clustering by Huntingtin*
Parsons, Matthew P.; Kang, Rujun; Buren, Caodu; Dau, Alejandro; Southwell, Amber L.; Doty, Crystal N.; Sanders, Shaun S.; Hayden, Michael R.; Raymond, Lynn A.
2014-01-01
Huntington disease is associated with early alterations in corticostriatal synaptic function that precede cell death, and it is postulated that ameliorating such changes may delay clinical onset and/or prevent neurodegeneration. Although many of these synaptic alterations are thought to be attributable to a toxic gain of function of the mutant huntingtin protein, the role that nonpathogenic huntingtin (HTT) plays in synaptic function is relatively unexplored. Here, we compare the immunocytochemical localization of a major postsynaptic scaffolding protein, PSD-95, in striatal neurons from WT mice and mice overexpressing HTT with 18 glutamine repeats (YAC18, nonpathogenic). We found that HTT overexpression resulted in a palmitoylation- and BDNF-dependent increase in PSD-95 clustering at synaptic sites in striatal spiny projection neurons (SPNs) co-cultured with cortical neurons. Surprisingly, the latter effect was mediated presynaptically, as HTT overexpression in cortical neurons alone was sufficient to increase PSD-95 clustering in the postsynaptic SPNs. In contrast, antisense oligonucleotide knockdown of HTT in WT co-cultures resulted in a significant reduction of PSD-95 clustering in SPNs. Notably, despite these bidirectional changes in PSD-95 clustering, we did not observe an alteration in basal electrophysiological measures of AMPA and NMDA receptors. Thus, unlike in previous studies in the hippocampus, enhanced or decreased PSD-95 clustering alone was insufficient to drive AMPA or NMDA receptors into or out of SPN synapses. In all, our results demonstrate that nonpathogenic HTT can indeed influence synaptic protein localization and uncover a novel role of HTT in PSD-95 distribution. PMID:24347167
The NG2 Protein Is Not Required for Glutamatergic Neuron-NG2 Cell Synaptic Signaling.
Passlick, Stefan; Trotter, Jacqueline; Seifert, Gerald; Steinhäuser, Christian; Jabs, Ronald
2016-01-01
NG2 glial cells (as from now NG2 cells) are unique in receiving synaptic input from neurons. However, the components regulating formation and maintenance of these neuron-glia synapses remain elusive. The transmembrane protein NG2 has been considered a potential mediator of synapse formation and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) clustering, because it contains 2 extracellular Laminin G/Neurexin/Sex Hormone-Binding Globulin domains, which in neurons are crucial for formation of transsynaptic neuroligin-neurexin complexes. NG2 is connected via Glutamate Receptor-Interacting Protein with GluA2/3-containing AMPARs, thereby possibly mediating receptor clustering in glial postsynaptic density. To elucidate the role of NG2 in neuron-glia communication, we investigated glutamatergic synaptic transmission in juvenile and aged hippocampal NG2 cells of heterozygous and homozygous NG2 knockout mice. Neuron-NG2 cell synapses readily formed in the absence of NG2. Short-term plasticity, synaptic connectivity, postsynaptic AMPAR current kinetics, and density were not affected by NG2 deletion. During development, an NG2-independent acceleration of AMPAR current kinetics and decreased synaptic connectivity were observed. Our results indicate that the lack of NG2 does not interfere with genesis and basic properties of neuron-glia synapses. In addition, we demonstrate frequent expression of neuroligins 1-3 in juvenile and aged NG2 cells, suggesting a role of these molecules in synapse formation between NG2 glia and neurons. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Surface diffusion of astrocytic glutamate transporters shapes synaptic transmission.
Murphy-Royal, Ciaran; Dupuis, Julien P; Varela, Juan A; Panatier, Aude; Pinson, Benoît; Baufreton, Jérôme; Groc, Laurent; Oliet, Stéphane H R
2015-02-01
Control of the glutamate time course in the synapse is crucial for excitatory transmission. This process is mainly ensured by astrocytic transporters, high expression of which is essential to compensate for their slow transport cycle. Although molecular mechanisms regulating transporter intracellular trafficking have been identified, the relationship between surface transporter dynamics and synaptic function remains unexplored. We found that GLT-1 transporters were highly mobile on rat astrocytes. Surface diffusion of GLT-1 was sensitive to neuronal and glial activities and was strongly reduced in the vicinity of glutamatergic synapses, favoring transporter retention. Notably, glutamate uncaging at synaptic sites increased GLT-1 diffusion, displacing transporters away from this compartment. Functionally, impairing GLT-1 membrane diffusion through cross-linking in vitro and in vivo slowed the kinetics of excitatory postsynaptic currents, indicative of a prolonged time course of synaptic glutamate. These data provide, to the best of our knowledge, the first evidence for a physiological role of GLT-1 surface diffusion in shaping synaptic transmission.
Structure and Function of the Hair Cell Ribbon Synapse
Nouvian, R.; Beutner, D.; Parsons, T.D.
2006-01-01
Faithful information transfer at the hair cell afferent synapse requires synaptic transmission to be both reliable and temporally precise. The release of neurotransmitter must exhibit both rapid on and off kinetics to accurately follow acoustic stimuli with a periodicity of 1 ms or less. To ensure such remarkable temporal fidelity, the cochlear hair cell afferent synapse undoubtedly relies on unique cellular and molecular specializations. While the electron microscopy hallmark of the hair cell afferent synapse — the electron-dense synaptic ribbon or synaptic body — has been recognized for decades, dissection of the synapse’s molecular make-up has only just begun. Recent cell physiology studies have added important insights into the synaptic mechanisms underlying fidelity and reliability of sound coding. The presence of the synaptic ribbon links afferent synapses of cochlear and vestibular hair cells to photoreceptors and bipolar neurons of the retina. This review focuses on major advances in understanding the hair cell afferent synapse molecular anatomy and function that have been achieved during the past years. PMID:16773499
Zhou, Jing; Liu, Tao; Cui, Hanjin; Fan, Rong; Zhang, Chunhu; Peng, Weijun; Yang, Ali; Zhu, Lin; Wang, Yang; Tang, Tao
2017-01-01
An overarching consequence of traumatic brain injury (TBI) is the cognitive impairment. It may hinder individual performance of daily tasks and determine people's subjective well-being. The damage to synaptic plasticity, one of the key mechanisms of cognitive dysfunction, becomes the potential therapeutic strategy of TBI. In this study, we aimed to investigate whether Xuefu Zhuyu Decoction (XFZYD), a traditional Chinese medicine, provided a synaptic regulation to improve cognitive disorder following TBI. Morris water maze and modified neurological severity scores were performed to assess the neurological and cognitive abilities. The PubChem Compound IDs of the major compounds of XFZYD were submitted into BATMAN-TCM, an online bioinformatics analysis tool, to predict the druggable targets related to synaptic function. Furthermore, we validated the prediction through immunohistochemical, RT-PCR and western blot analyses. We found that XFZYD enhanced neuroprotection, simultaneously improved learning and memory performances in controlled cortical impact rats. Bioinformatics analysis revealed that the improvements of XFZYD implied the Long-term potentiation relative proteins including NMDAR1, CaMKII and GAP-43. The further confirmation of molecular biological studies confirmed that XFZYD upregulated the mRNA and protein levels of NMDAR1, CaMKII and GAP-43. Pharmacological synaptic regulation of XFZYD could provide a novel therapeutic strategy for cognitive impairment following TBI. PMID:29069769
Sousa, Aurea D.; Andrade, Leonardo R.; Salles, Felipe T.; Pillai, Anilkumar M.; Buttermore, Elizabeth; Bhat, Manzoor A.; Kachar, Bechara
2009-01-01
The afferent innervation contacting the type I hair cells of the vestibular sensory epithelia form distinct calyceal synapses. The apposed pre- and post-synaptic membranes at this large area of synaptic contact are kept at a remarkably regular distance. Here, we show by freeze-fracture electron microscopy that a patterned alignment of proteins at the calyceal membrane resembles a type of intercellular junction that is rare in vertebrates, the septate junction (SJ). We found that a core molecular component of SJs, Caspr, colocalizes with the K+ channel KCNQ4 at the post-synaptic membranes of these calyceal synapses. Immunolabeling and ultrastructural analyses of Caspr knockout mice reveal that, in the absence of Caspr, the separation between the membranes of the hair cells and the afferent neurons is conspicuously irregular and often increased by an order of magnitude. In these mutants, KCNQ4 fails to cluster at the post-synaptic membrane and appears diffused along the entire calyceal membrane. Our results indicate that a septate-like junction provides structural support to calyceal synaptic contact with the vestibular hair cell, and that Caspr is required for the recruitment or retention of KCNQ4 at these synapses. PMID:19279247
Cdk5-dependent phosphorylation of liprinα1 mediates neuronal activity-dependent synapse development
Huang, Huiqian; Lin, Xiaochen; Liang, Zhuoyi; Zhao, Teng; Du, Shengwang; Loy, Michael M. T.; Lai, Kwok-On; Fu, Amy K. Y.
2017-01-01
The experience-dependent modulation of brain circuitry depends on dynamic changes in synaptic connections that are guided by neuronal activity. In particular, postsynaptic maturation requires changes in dendritic spine morphology, the targeting of postsynaptic proteins, and the insertion of synaptic neurotransmitter receptors. Thus, it is critical to understand how neuronal activity controls postsynaptic maturation. Here we report that the scaffold protein liprinα1 and its phosphorylation by cyclin-dependent kinase 5 (Cdk5) are critical for the maturation of excitatory synapses through regulation of the synaptic localization of the major postsynaptic organizer postsynaptic density (PSD)-95. Whereas Cdk5 phosphorylates liprinα1 at Thr701, this phosphorylation decreases in neurons in response to neuronal activity. Blockade of liprinα1 phosphorylation enhances the structural and functional maturation of excitatory synapses. Nanoscale superresolution imaging reveals that inhibition of liprinα1 phosphorylation increases the colocalization of liprinα1 with PSD-95. Furthermore, disruption of liprinα1 phosphorylation by a small interfering peptide, siLIP, promotes the synaptic localization of PSD-95 and enhances synaptic strength in vivo. Our findings collectively demonstrate that the Cdk5-dependent phosphorylation of liprinα1 is important for the postsynaptic organization during activity-dependent synapse development. PMID:28760951
Revilla, Susana; Suñol, Cristina; García-Mesa, Yoelvis; Giménez-Llort, Lydia; Sanfeliu, Coral; Cristòfol, Rosa
2014-06-01
Physical exercise has become a potentially beneficial therapy for reducing neurodegeneration symptoms in Alzheimer's disease. Previous studies have shown that cognitive deterioration, anxiety and the startle response observed in 7-month-old 3xTg-AD mice were ameliorated after 6 months of free access to a running wheel. Also, alterations in synaptic response to paired-pulse stimulation were improved. The present study further investigated some molecular mechanisms underlying the beneficial effects of 6 months of voluntary exercise on synaptic plasticity in 7-month-old 3xTg-AD mice. Changes in binding parameters of [(3)H]-flunitrazepam to GABAA receptor and of [(3)H]-MK-801 to NMDA receptor in cerebral cortex of 3xTgAD mice were restored by voluntary exercise. In addition, reduced expression levels of NMDA receptor NR2B subunit were reestablished. The synaptic proteins synaptophysin and PSD-95 and the neuroprotective proteins GDNF and SIRT1 were downregulated in 3xTgAD mice and were recovered by exercise treatment. Overall, in this paper we highlight the fact that different interrelated mechanisms are involved in the beneficial effects of exercise on synaptic plasticity alterations in the 3xTg-AD mouse model. Copyright © 2014 Elsevier Ltd. All rights reserved.
Genetic analysis of neuronal ionotropic glutamate receptor subunits
Granger, Adam J; Gray, John A; Lu, Wei; Nicoll, Roger A
2011-01-01
Abstract In the brain, fast, excitatory synaptic transmission occurs primarily through AMPA- and NMDA-type ionotropic glutamate receptors. These receptors are composed of subunit proteins that determine their biophysical properties and trafficking behaviour. Therefore, determining the function of these subunits and receptor subunit composition is essential for understanding the physiological properties of synaptic transmission. Here, we discuss and evaluate various genetic approaches that have been used to study AMPA and NMDA receptor subunits. These approaches have demonstrated that the GluA1 AMPA receptor subunit is required for activity-dependent trafficking and contributes to basal synaptic transmission, while the GluA2 subunit regulates Ca2+ permeability, homeostasis and trafficking to the synapse under basal conditions. In contrast, the GluN2A and GluN2B NMDA receptor subunits regulate synaptic AMPA receptor content, both during synaptic development and plasticity. Ongoing research in this field is focusing on the molecular interactions and mechanisms that control these functions. To accomplish this, molecular replacement techniques are being used, where native subunits are replaced with receptors containing targeted mutations. In this review, we discuss a single-cell molecular replacement approach which should arguably advance our physiological understanding of ionotropic glutamate receptor subunits, but is generally applicable to study of any neuronal protein. PMID:21768264
Genetic analysis of neuronal ionotropic glutamate receptor subunits.
Granger, Adam J; Gray, John A; Lu, Wei; Nicoll, Roger A
2011-09-01
In the brain, fast, excitatory synaptic transmission occurs primarily through AMPA- and NMDA-type ionotropic glutamate receptors. These receptors are composed of subunit proteins that determine their biophysical properties and trafficking behaviour. Therefore, determining the function of these subunits and receptor subunit composition is essential for understanding the physiological properties of synaptic transmission. Here, we discuss and evaluate various genetic approaches that have been used to study AMPA and NMDA receptor subunits. These approaches have demonstrated that the GluA1 AMPA receptor subunit is required for activity-dependent trafficking and contributes to basal synaptic transmission, while the GluA2 subunit regulates Ca(2+) permeability, homeostasis and trafficking to the synapse under basal conditions. In contrast, the GluN2A and GluN2B NMDA receptor subunits regulate synaptic AMPA receptor content, both during synaptic development and plasticity. Ongoing research in this field is focusing on the molecular interactions and mechanisms that control these functions. To accomplish this, molecular replacement techniques are being used, where native subunits are replaced with receptors containing targeted mutations. In this review, we discuss a single-cell molecular replacement approach which should arguably advance our physiological understanding of ionotropic glutamate receptor subunits, but is generally applicable to study of any neuronal protein.
2010-01-01
The downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, binds specifically to DNA and several nucleoproteins regulating gene expression and with proteins outside the nucleus to regulate membrane excitability or calcium homeostasis. DREAM is highly expressed in the central nervous system including the hippocampus and cortex; however, the roles of DREAM in hippocampal synaptic transmission and plasticity have not been investigated. Taking advantage of transgenic mice overexpressing a Ca2+-insensitive DREAM mutant (TgDREAM), we used integrative methods including electrophysiology, biochemistry, immunostaining, and behavior tests to study the function of DREAM in synaptic transmission, long-term plasticity and fear memory in hippocampal CA1 region. We found that NMDA receptor but not AMPA receptor-mediated current was decreased in TgDREAM mice. Moreover, synaptic plasticity, such as long-term depression (LTD) but not long-term potentiation (LTP), was impaired in TgDREAM mice. Biochemical experiments found that DREAM interacts with PSD-95 and may inhibit NMDA receptor function through this interaction. Contextual fear memory was significantly impaired in TgDREAM mice. By contrast, sensory responses to noxious stimuli were not affected. Our results demonstrate that DREAM plays a novel role in postsynaptic modulation of the NMDA receptor, and contributes to synaptic plasticity and behavioral memory. PMID:20205763
Della Sala, Grazia; Putignano, Elena; Chelini, Gabriele; Melani, Riccardo; Calcagno, Eleonora; Michele Ratto, Gian; Amendola, Elena; Gross, Cornelius T; Giustetto, Maurizio; Pizzorusso, Tommaso
2016-08-15
CDKL5 (cyclin-dependent kinase-like 5) is mutated in many severe neurodevelopmental disorders, including atypical Rett syndrome. CDKL5 was shown to interact with synaptic proteins, but an in vivo analysis of the role of CDKL5 in dendritic spine dynamics and synaptic molecular organization is still lacking. In vivo two-photon microscopy of the somatosensory cortex of Cdkl5(-/y) mice was applied to monitor structural dynamics of dendritic spines. Synaptic function and plasticity were measured using electrophysiological recordings of excitatory postsynaptic currents and long-term potentiation in brain slices and assessing the expression of synaptic postsynaptic density protein 95 (PSD-95). Finally, we studied the impact of insulin-like growth factor 1 (IGF-1) treatment on CDKL5 null mice to restore the synaptic deficits. Adult mutant mice showed a significant reduction in spine density and PSD-95-positive synaptic puncta, a reduction of persistent spines, and impaired long-term potentiation. In juvenile mutants, short-term spine elimination, but not formation, was dramatically increased. Exogenous administration of IGF-1 rescued defective rpS6 phosphorylation, spine density, and PSD-95 expression. Endogenous cortical IGF-1 levels were unaffected by CDKL5 deletion. These data demonstrate that dendritic spine stabilization is strongly regulated by CDKL5. Moreover, our data suggest that IGF-1 treatment could be a promising candidate for clinical trials in CDKL5 patients. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Network, cellular, and molecular mechanisms underlying long-term memory formation.
Carasatorre, Mariana; Ramírez-Amaya, Víctor
2013-01-01
The neural network stores information through activity-dependent synaptic plasticity that occurs in populations of neurons. Persistent forms of synaptic plasticity may account for long-term memory storage, and the most salient forms are the changes in the structure of synapses. The theory proposes that encoding should use a sparse code and evidence suggests that this can be achieved through offline reactivation or by sparse initial recruitment of the network units. This idea implies that in some cases the neurons that underwent structural synaptic plasticity might be a subpopulation of those originally recruited; However, it is not yet clear whether all the neurons recruited during acquisition are the ones that underwent persistent forms of synaptic plasticity and responsible for memory retrieval. To determine which neural units underlie long-term memory storage, we need to characterize which are the persistent forms of synaptic plasticity occurring in these neural ensembles and the best hints so far are the molecular signals underlying structural modifications of the synapses. Structural synaptic plasticity can be achieved by the activity of various signal transduction pathways, including the NMDA-CaMKII and ACh-MAPK. These pathways converge with the Rho family of GTPases and the consequent ERK 1/2 activation, which regulates multiple cellular functions such as protein translation, protein trafficking, and gene transcription. The most detailed explanation may come from models that allow us to determine the contribution of each piece of this fascinating puzzle that is the neuron and the neural network.
Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J
2012-06-20
The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.
Villa, Roberto Federico; Ferrari, Federica; Gorini, Antonella
2012-12-01
The effect of aging and CDP-choline treatment (20 mg kg⁻¹ body weight i.p. for 28 days) on the maximal rates (V(max)) of representative mitochondrial enzyme activities related to Krebs' cycle (citrate synthase, α-ketoglutarate dehydrogenase, malate dehydrogenase), glutamate and related amino acid metabolism (glutamate dehydrogenase, glutamate-oxaloacetate- and glutamate-pyruvate transaminases) were evaluated in non-synaptic and intra-synaptic "light" and "heavy" mitochondria from frontal cerebral cortex of male Wistar rats aged 4, 12, 18 and 24 months. During aging, enzyme activities vary in a complex way respect to the type of mitochondria, i.e. non-synaptic and intra-synaptic. This micro-heterogeneity is an important factor, because energy-related mitochondrial enzyme catalytic properties cause metabolic modifications of physiopathological significance in cerebral tissue in vivo, also discriminating pre- and post-synaptic sites of action for drugs and affecting tissue responsiveness to noxious stimuli. Results show that CDP-choline in vivo treatment enhances cerebral energy metabolism selectively at 18 months, specifically modifying enzyme catalytic activities in non-synaptic and intra-synaptic "light" mitochondrial sub-populations. This confirms that the observed changes in enzyme catalytic activities during aging reflect the bioenergetic state at each single age and the corresponding energy requirements, further proving that in vivo drug treatment is able to interfere with the neuronal energy metabolism. Copyright © 2012. Published by Elsevier Ltd.
Astroglial Metabolic Networks Sustain Hippocampal Synaptic Transmission
NASA Astrophysics Data System (ADS)
Rouach, Nathalie; Koulakoff, Annette; Abudara, Veronica; Willecke, Klaus; Giaume, Christian
2008-12-01
Astrocytes provide metabolic substrates to neurons in an activity-dependent manner. However, the molecular mechanisms involved in this function, as well as its role in synaptic transmission, remain unclear. Here, we show that the gap-junction subunit proteins connexin 43 and 30 allow intercellular trafficking of glucose and its metabolites through astroglial networks. This trafficking is regulated by glutamatergic synaptic activity mediated by AMPA receptors. In the absence of extracellular glucose, the delivery of glucose or lactate to astrocytes sustains glutamatergic synaptic transmission and epileptiform activity only when they are connected by gap junctions. These results indicate that astroglial gap junctions provide an activity-dependent intercellular pathway for the delivery of energetic metabolites from blood vessels to distal neurons.
Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling.
Chazeau, Anaël; Giannone, Grégory
2016-08-01
In the central nervous system, most excitatory post-synapses are small subcellular structures called dendritic spines. Their structure and morphological remodeling are tightly coupled to changes in synaptic transmission. The F-actin cytoskeleton is the main driving force of dendritic spine remodeling and sustains synaptic plasticity. It is therefore essential to understand how changes in synaptic transmission can regulate the organization and dynamics of actin binding proteins (ABPs). In this review, we will provide a detailed description of the organization and dynamics of F-actin and ABPs in dendritic spines and will discuss the current models explaining how the actin cytoskeleton sustains both structural and functional synaptic plasticity.
Astroglial metabolic networks sustain hippocampal synaptic transmission.
Rouach, Nathalie; Koulakoff, Annette; Abudara, Veronica; Willecke, Klaus; Giaume, Christian
2008-12-05
Astrocytes provide metabolic substrates to neurons in an activity-dependent manner. However, the molecular mechanisms involved in this function, as well as its role in synaptic transmission, remain unclear. Here, we show that the gap-junction subunit proteins connexin 43 and 30 allow intercellular trafficking of glucose and its metabolites through astroglial networks. This trafficking is regulated by glutamatergic synaptic activity mediated by AMPA receptors. In the absence of extracellular glucose, the delivery of glucose or lactate to astrocytes sustains glutamatergic synaptic transmission and epileptiform activity only when they are connected by gap junctions. These results indicate that astroglial gap junctions provide an activity-dependent intercellular pathway for the delivery of energetic metabolites from blood vessels to distal neurons.
RhoGTPase Regulators Orchestrate Distinct Stages of Synaptic Development
Martin-Vilchez, Samuel; Whitmore, Leanna; Asmussen, Hannelore; Zareno, Jessica; Horwitz, Rick; Newell-Litwa, Karen
2017-01-01
Small RhoGTPases regulate changes in post-synaptic spine morphology and density that support learning and memory. They are also major targets of synaptic disorders, including Autism. Here we sought to determine whether upstream RhoGTPase regulators, including GEFs, GAPs, and GDIs, sculpt specific stages of synaptic development. The majority of examined molecules uniquely regulate either early spine precursor formation or later maturation. Specifically, an activator of actin polymerization, the Rac1 GEF β-PIX, drives spine precursor formation, whereas both FRABIN, a Cdc42 GEF, and OLIGOPHRENIN-1, a RhoA GAP, regulate spine precursor elongation. However, in later development, a novel Rac1 GAP, ARHGAP23, and RhoGDIs inactivate actomyosin dynamics to stabilize mature synapses. Our observations demonstrate that specific combinations of RhoGTPase regulatory proteins temporally balance RhoGTPase activity during post-synaptic spine development. PMID:28114311
Neurogranin restores amyloid β-mediated synaptic transmission and long-term potentiation deficits.
Kaleka, Kanwardeep Singh; Gerges, Nashaat Z
2016-03-01
Amyloid β (Aβ) is widely considered one of the early causes of cognitive deficits observed in Alzheimer's disease. Many of the deficits caused by Aβ are attributed to its disruption of synaptic function represented by its blockade of long-term potentiation (LTP) and its induction of synaptic depression. Identifying pathways that reverse these synaptic deficits may open the door to new therapeutic targets. In this study, we explored the possibility that Neurogranin (Ng)-a postsynaptic calmodulin (CaM) targeting protein that enhances synaptic function-may rescue Aβ-mediated deficits in synaptic function. Our results show that Ng is able to reverse synaptic depression and LTP deficits induced by Aβ. Furthermore, Ng's restoration of synaptic transmission is through the insertion of GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors (AMPARs). These restorative effects of Ng are dependent on the interaction of Ng and CaM and CaM-dependent activation of CaMKII. Overall, this study identifies a novel mechanism to rescue synaptic deficits induced by Aβ oligomers. It also suggests Ng and CaM signaling as potential therapeutic targets for Alzheimer's disease as well as important tools to further explore the pathophysiology underlying the disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Daniels, Richard W; Collins, Catherine A; Gelfand, Maria V; Dant, Jaime; Brooks, Elizabeth S; Krantz, David E; DiAntonio, Aaron
2004-11-17
Quantal size is a fundamental parameter controlling the strength of synaptic transmission. The transmitter content of synaptic vesicles is one mechanism that can affect the physiological response to the release of a single vesicle. At glutamatergic synapses, vesicular glutamate transporters (VGLUTs) are responsible for filling synaptic vesicles with glutamate. To investigate how VGLUT expression can regulate synaptic strength in vivo, we have identified the Drosophila vesicular glutamate transporter, which we name DVGLUT. DVGLUT mRNA is expressed in glutamatergic motoneurons and a large number of interneurons in the Drosophila CNS. DVGLUT protein resides on synaptic vesicles and localizes to the presynaptic terminals of all known glutamatergic neuromuscular junctions as well as to synapses throughout the CNS neuropil. Increasing the expression of DVGLUT in motoneurons leads to an increase in quantal size that is accompanied by an increase in synaptic vesicle volume. At synapses confronted with increased glutamate release from each vesicle, there is a compensatory decrease in the number of synaptic vesicles released that maintains normal levels of synaptic excitation. These results demonstrate that (1) expression of DVGLUT determines the size and glutamate content of synaptic vesicles and (2) homeostatic mechanisms exist to attenuate the excitatory effects of excess glutamate release.
CREB Selectively Controls Learning-Induced Structural Remodeling of Neurons
ERIC Educational Resources Information Center
Middei, Silvia; Spalloni, Alida; Longone, Patrizia; Pittenger, Christopher; O'Mara, Shane M.; Marie, Helene; Ammassari-Teule, Martine
2012-01-01
The modulation of synaptic strength associated with learning is post-synaptically regulated by changes in density and shape of dendritic spines. The transcription factor CREB (cAMP response element binding protein) is required for memory formation and in vitro dendritic spine rearrangements, but its role in learning-induced remodeling of neurons…
Synaptic P-Rex1 signaling regulates hippocampal long-term depression and autism-like social behavior
Li, Jun; Chai, Anping; Wang, Lifang; Ma, Yuanlin; Wu, Zhiliu; Yu, Hao; Mei, Liwei; Lu, Lin; Zhang, Chen; Yue, Weihua; Xu, Lin; Rao, Yi; Zhang, Dai
2015-01-01
Autism spectrum disorders (ASDs) are a group of highly inheritable mental disorders associated with synaptic dysfunction, but the underlying cellular and molecular mechanisms remain to be clarified. Here we report that autism in Chinese Han population is associated with genetic variations and copy number deletion of P-Rex1 (phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 1). Genetic deletion or knockdown of P-Rex1 in the CA1 region of the hippocampus in mice resulted in autism-like social behavior that was specifically linked to the defect of long-term depression (LTD) in the CA1 region through alteration of AMPA receptor endocytosis mediated by the postsynaptic PP1α (protein phosphase 1α)–P-Rex1–Rac1 (Ras-related C3 botulinum toxin substrate 1) signaling pathway. Rescue of the LTD in the CA1 region markedly alleviated autism-like social behavior. Together, our findings suggest a vital role of P-Rex1 signaling in CA1 LTD that is critical for social behavior and cognitive function and offer new insight into the etiology of ASDs. PMID:26621702
Alterations in CDH15 and KIRREL3 in Patients with Mild to Severe Intellectual Disability
Bhalla, Kavita; Luo, Yue; Buchan, Tim; Beachem, Michael A.; Guzauskas, Gregory F.; Ladd, Sydney; Bratcher, Shelly J.; Schroer, Richard J.; Balsamo, Janne; DuPont, Barbara R.; Lilien, Jack; Srivastava, Anand K.
2008-01-01
Cell-adhesion molecules play critical roles in brain development, as well as maintaining synaptic structure, function, and plasticity. Here we have found the disruption of two genes encoding putative cell-adhesion molecules, CDH15 (cadherin superfamily) and KIRREL3 (immunoglobulin superfamily), by a chromosomal translocation t(11;16) in a female patient with intellectual disability (ID). We screened coding regions of these two genes in a cohort of patients with ID and controls and identified four nonsynonymous CDH15 variants and three nonsynonymous KIRREL3 variants that appear rare and unique to ID. These variations altered highly conserved residues and were absent in more than 600 unrelated patients with ID and 800 control individuals. Furthermore, in vivo expression studies showed that three of the CDH15 variations adversely altered its ability to mediate cell-cell adhesion. We also show that in neuronal cells, human KIRREL3 colocalizes and interacts with the synaptic scaffolding protein, CASK, recently implicated in X-linked brain malformation and ID. Taken together, our data suggest that alterations in CDH15 and KIRREL3, either alone or in combination with other factors, could play a role in phenotypic expression of ID in some patients. PMID:19012874
Molecular mechanisms of memory in imprinting.
Solomonia, Revaz O; McCabe, Brian J
2015-03-01
Converging evidence implicates the intermediate and medial mesopallium (IMM) of the domestic chick forebrain in memory for a visual imprinting stimulus. During and after imprinting training, neuronal responsiveness in the IMM to the familiar stimulus exhibits a distinct temporal profile, suggesting several memory phases. We discuss the temporal progression of learning-related biochemical changes in the IMM, relative to the start of this electrophysiological profile. c-fos gene expression increases <15 min after training onset, followed by a learning-related increase in Fos expression, in neurons immunopositive for GABA, taurine and parvalbumin (not calbindin). Approximately simultaneously or shortly after, there are increases in phosphorylation level of glutamate (AMPA) receptor subunits and in releasable neurotransmitter pools of GABA and taurine. Later, the mean area of spine synapse post-synaptic densities, N-methyl-D-aspartate receptor number and phosphorylation level of further synaptic proteins are elevated. After ∼ 15 h, learning-related changes in amounts of several synaptic proteins are observed. The results indicate progression from transient/labile to trophic synaptic modification, culminating in stable recognition memory. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Molecular mechanisms of memory in imprinting
Solomonia, Revaz O.; McCabe, Brian J.
2015-01-01
Converging evidence implicates the intermediate and medial mesopallium (IMM) of the domestic chick forebrain in memory for a visual imprinting stimulus. During and after imprinting training, neuronal responsiveness in the IMM to the familiar stimulus exhibits a distinct temporal profile, suggesting several memory phases. We discuss the temporal progression of learning-related biochemical changes in the IMM, relative to the start of this electrophysiological profile. c-fos gene expression increases <15 min after training onset, followed by a learning-related increase in Fos expression, in neurons immunopositive for GABA, taurine and parvalbumin (not calbindin). Approximately simultaneously or shortly after, there are increases in phosphorylation level of glutamate (AMPA) receptor subunits and in releasable neurotransmitter pools of GABA and taurine. Later, the mean area of spine synapse post-synaptic densities, N-methyl-d-aspartate receptor number and phosphorylation level of further synaptic proteins are elevated. After ∼15 h, learning-related changes in amounts of several synaptic proteins are observed. The results indicate progression from transient/labile to trophic synaptic modification, culminating in stable recognition memory. PMID:25280906
Harris, Kathryn P; Zhang, Yao V; Piccioli, Zachary D; Perrimon, Norbert; Littleton, J Troy
2016-05-25
Postsynaptic cells can induce synaptic plasticity through the release of activity-dependent retrograde signals. We previously described a Ca(2+)-dependent retrograde signaling pathway mediated by postsynaptic Synaptotagmin 4 (Syt4). To identify proteins involved in postsynaptic exocytosis, we conducted a screen for candidates that disrupted trafficking of a pHluorin-tagged Syt4 at Drosophila neuromuscular junctions (NMJs). Here we characterize one candidate, the postsynaptic t-SNARE Syntaxin 4 (Syx4). Analysis of Syx4 mutants reveals that Syx4 mediates retrograde signaling, modulating the membrane levels of Syt4 and the transsynaptic adhesion protein Neuroligin 1 (Nlg1). Syx4-dependent trafficking regulates synaptic development, including controlling synaptic bouton number and the ability to bud new varicosities in response to acute neuronal stimulation. Genetic interaction experiments demonstrate Syx4, Syt4, and Nlg1 regulate synaptic growth and plasticity through both shared and parallel signaling pathways. Our findings suggest a conserved postsynaptic SNARE machinery controls multiple aspects of retrograde signaling and cargo trafficking within the postsynaptic compartment.
Inhibition of Histone Acetylation by ANP32A Induces Memory Deficits.
Chai, Gao-Shang; Feng, Qiong; Ma, Rong-Hong; Qian, Xiao-Hang; Luo, Dan-Ju; Wang, Zhi-Hao; Hu, Yu; Sun, Dong-Sheng; Zhang, Jun-Fei; Li, Xiao; Li, Xiao-Guang; Ke, Dan; Wang, Jian-Zhi; Yang, Xi-Fei; Liu, Gong-Ping
2018-01-01
There is accumulating evidence that decreased histone acetylation is involved in normal aging and neurodegenerative diseases. Recently, we found that ANP32A, a key component of INHAT (inhibitor of acetyltransferases) that suppresses histone acetylation, increased in aged and cognitively impaired C57 mice and expressing wild-type human full length tau (htau) transgenic mice. Downregulating ANP32A restored cognitive function and synaptic plasticity through upregulation of the expressions of synaptic-related proteins via increasing histone acetylation. However, there is no direct evidence that ANP32A can induce neurodegeneration and memory deficits. In the present study, we overexpressed ANP32A in the hippocampal CA3 region of C57 mice and found that ANP32A overexpression induced cognitive abilities and synaptic plasticity deficits, with decreased synaptic-related protein expression and histone acetylation. Combined with our recent studies, our findings reveal that upregulated ANP32A induced-suppressing histone acetylation may underlie the cognitive decline in neurodegenerative disease, and suppression of ANP32A may represent a promising therapeutic approach for neurodegenerative diseases including Alzheimer's disease.
Sabeva, Nadezhda; Cho, Richard W.; Vasin, Alexander; Gonzalez, Agustin; Littleton, J. Troy
2017-01-01
Synaptic vesicles fuse at morphological specializations in the presynaptic terminal termed active zones (AZs). Vesicle fusion can occur spontaneously or in response to an action potential. Following fusion, vesicles are retrieved and recycled within nerve terminals. It is still unclear whether vesicles that fuse spontaneously or following evoked release share similar recycling mechanisms. Genetic deletion of the SNARE-binding protein complexin dramatically increases spontaneous fusion, with the protein serving as the synaptic vesicle fusion clamp at Drosophila synapses. We examined synaptic vesicle recycling pathways at complexin null neuromuscular junctions, where spontaneous release is dramatically enhanced. We combined loading of the lipophilic dye FM1–43 with photoconversion, electron microscopy, and electrophysiology to monitor evoked and spontaneous recycling vesicle pools. We found that the total number of recycling vesicles was equal to those retrieved through spontaneous and evoked pools, suggesting that retrieval following fusion is partially segregated for spontaneous and evoked release. In addition, the kinetics of FM1–43 destaining and synaptic depression measured in the presence of the vesicle-refilling blocker bafilomycin indicated that spontaneous and evoked recycling pools partially intermix during the release process. Finally, FM1–43 photoconversion combined with electron microscopy analysis indicated that spontaneous recycling preferentially involves synaptic vesicles in the vicinity of AZs, whereas vesicles recycled following evoked release involve a larger intraterminal pool. Together, these results suggest that spontaneous and evoked vesicles use separable recycling pathways and then partially intermix during subsequent rounds of fusion. SIGNIFICANCE STATEMENT Neurotransmitter release involves fusion of synaptic vesicles with the plasma membrane in response to an action potential, or spontaneously in the absence of stimulation. Upon fusion, vesicles are retrieved and recycled, and it is unclear whether recycling pathways for evoked and spontaneous vesicles are segregated after fusion. We addressed this question by taking advantage of preparations lacking the synaptic protein complexin, which have elevated spontaneous release that enables reliable tracking of the spontaneous recycling pool. Our results suggest that spontaneous and evoked recycling pathways are segregated during the retrieval process but can partially intermix during stimulation. PMID:28077717
The structure and function of presynaptic endosomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jähne, Sebastian, E-mail: sebastian.jaehne1@stud.uni-goettingen.de; International Max Planck Research School for Neurosciences, 37077 Göttingen; Rizzoli, Silvio O.
The function of endosomes and of endosome-like structures in the presynaptic compartment is still controversial. This is in part due to the absence of a consensus on definitions and markers for these compartments. Synaptic endosomes are sometimes seen as stable organelles, permanently present in the synapse. Alternatively, they are seen as short-lived intermediates in synaptic vesicle recycling, arising from the endocytosis of large vesicles from the plasma membrane, or from homotypic fusion of small vesicles. In addition, the potential function of the endosome is largely unknown in the synapse. Some groups have proposed that the endosome is involved in themore » sorting of synaptic vesicle proteins, albeit others have produced data that deny this possibility. In this review, we present the existing evidence for synaptic endosomes, we discuss their potential functions, and we highlight frequent technical pitfalls in the analysis of this elusive compartment. We also sketch a roadmap to definitely determine the role of synaptic endosomes for the synaptic vesicle cycle. Finally, we propose a common definition of synaptic endosome-like structures.« less
Morin, Jean-Pascal; Cerón-Solano, Giovanni; Velázquez-Campos, Giovanna; Pacheco-López, Gustavo; Bermúdez-Rattoni, Federico; Díaz-Cintra, Sofía
2016-01-01
Dysfunction of synaptic communication in cortical and hippocampal networks has been suggested as one of the neuropathological hallmarks of the early stages of Alzheimer's disease (AD). Also, several lines of evidence have linked disrupted levels of activity-regulated cytoskeletal associated protein (Arc), an immediate early gene product that plays a central role in synaptic plasticity, with AD "synaptopathy". The mapping of Arc expression patterns in brain networks has been extensively used as a marker of memory-relevant neuronal activity history. Here we evaluated basal and behavior-induced Arc expression in hippocampal networks of the 3xTg-AD mouse model of AD. The basal percentage of Arc-expressing cells in 10-month-old 3xTg-AD mice was higher than wild type in CA3 (4.88% versus 1.77% , respectively) but similar in CA1 (1.75% versus 2.75% ). Noteworthy, this difference was not observed at 3 months of age. Furthermore, although a Morris water maze test probe induced a steep (∼4-fold) increment in the percentage of Arc+ cells in the CA3 region of the 10-month-old wild-type group, no such increment was observed in age-matched 3xTg-AD, whereas the amount of Arc+ cells in CA1 increased in both groups. Further, we detected that CA3 neurons with amyloid-β were much more likely to express Arc protein under basal conditions. We propose that in 3xTg-AD mice, intraneuronal amyloid-β expression in CA3 could increase unspecific neuronal activation and subsequent Arc protein expression, which might impair further memory-stabilizing processes.
Bartels, Markus F.; Winterhalter, Patrick R.; Yu, Jin; Liu, Yan; Lommel, Mark; Möhrlen, Frank; Hu, Huaiyu; Feizi, Ten; Westerlind, Ulrika; Ruppert, Thomas; Strahl, Sabine
2016-01-01
Protein O-mannosylation is a post-translational modification essential for correct development of mammals. In humans, deficient O-mannosylation results in severe congenital muscular dystrophies often associated with impaired brain and eye development. Although various O-mannosylated proteins have been identified in the recent years, the distribution of O-mannosyl glycans in the mammalian brain and target proteins are still not well defined. In the present study, rabbit monoclonal antibodies directed against the O-mannosylated peptide YAT(α1-Man)AV were generated. Detailed characterization of clone RKU-1-3-5 revealed that this monoclonal antibody recognizes O-linked mannose also in different peptide and protein contexts. Using this tool, we observed that mono-O-mannosyl glycans occur ubiquitously throughout the murine brain but are especially enriched at inhibitory GABAergic neurons and at the perineural nets. Using a mass spectrometry-based approach, we further identified glycoproteins from the murine brain that bear single O-mannose residues. Among the candidates identified are members of the cadherin and plexin superfamilies and the perineural net protein neurocan. In addition, we identified neurexin 3, a cell adhesion protein involved in synaptic plasticity, and inter-alpha-trypsin inhibitor 5, a protease inhibitor important in stabilizing the extracellular matrix, as new O-mannosylated glycoproteins. PMID:27812179
Kaster, Manuella P.; Machado, Nuno J.; Silva, Henrique B.; Nunes, Ana; Ardais, Ana Paula; Santana, Magda; Baqi, Younis; Müller, Christa E.; Rodrigues, Ana Lúcia S.; Porciúncula, Lisiane O.; Chen, Jiang Fan; Tomé, Ângelo R.; Agostinho, Paula; Canas, Paula M.; Cunha, Rodrigo A.
2015-01-01
The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function. PMID:26056314
Ma, Qiu-Lan; Zuo, Xiaohong; Yang, Fusheng; Ubeda, Oliver J.; Gant, Dana J.; Alaverdyan, Mher; Teng, Edmond; Hu, Shuxin; Chen, Ping-Ping; Maiti, Panchanan; Teter, Bruce; Cole, Greg M.; Frautschy, Sally A.
2013-01-01
The mechanisms underlying Tau-related synaptic and cognitive deficits and the interrelationships between Tau species, their clearance pathways, and synaptic impairments remain poorly understood. To gain insight into these mechanisms, we examined these interrelationships in aged non-mutant genomic human Tau mice, with established Tau pathology and neuron loss. We also examined how these interrelationships changed with an intervention by feeding mice either a control diet or one containing the brain permeable beta-amyloid and Tau aggregate binding molecule curcumin. Transgene-dependent elevations in soluble and insoluble phospho-Tau monomer and soluble Tau dimers accompanied deficits in behavior, hippocampal excitatory synaptic markers, and molecular chaperones (heat shock proteins (HSPs)) involved in Tau degradation and microtubule stability. In human Tau mice but not control mice, HSP70, HSP70/HSP72, and HSP90 were reduced in membrane-enriched fractions but not in cytosolic fractions. The synaptic proteins PSD95 and NR2B were reduced in dendritic fields and redistributed into perikarya, corresponding to changes observed by immunoblot. Curcumin selectively suppressed levels of soluble Tau dimers, but not of insoluble and monomeric phospho-Tau, while correcting behavioral, synaptic, and HSP deficits. Treatment increased PSD95 co-immunoprecipitating with NR2B and, independent of transgene, increased HSPs implicated in Tau clearance. It elevated HSP90 and HSC70 without increasing HSP mRNAs; that is, without induction of the heat shock response. Instead curcumin differentially impacted HSP90 client kinases, reducing Fyn without reducing Akt. In summary, curcumin reduced soluble Tau and elevated HSPs involved in Tau clearance, showing that even after tangles have formed, Tau-dependent behavioral and synaptic deficits can be corrected. PMID:23264626
Zampighi, G A; Fisher, R S
1997-08-01
In an effort to elucidate the interactions between synaptic vesicles and the membrane of the active zone, we have investigated the structure of interneuronal asymmetric synapses in the neocortex of adult rats using thin-sectioning, freeze-fracture, and negative staining electron microscopy. We identified three subtypes of spherical synaptic vesicles. Type I were agranular vesicles of 47.5 +/- 3.8 nm (mean SD, n = 24) in diameter usually seen aggregated in clusters in the presynaptic bouton. Type II synaptic vesicles were composed of a approximately 45-nm-diameter lipid bilayer sphere encased in a cage 77 +/- 4.6 nm (mean SD, n = 42) in diameter. The cage was composed of open-faced pentamers 20-22 nm/side arranged as a regular polyhedron. Type II caged vesicles were found in clusters at the boutons, adhered to the active zone, and were also present in axons. Type III synaptic vesicles appeared as electron-dense spheres 60-75 nm in diameter abutted to the membrane of the active zone. Clathrin-coated vesicles and pits of 116.6 +/- 9 nm (mean SD, n = 14) in diameter were also present in both the pre- and postsynaptic sides. Freeze-fracture showed that some intrinsic membrane proteins in the active zone were arranged as pentamers exhibiting the same dimension of those forming cages (approximately 22 nm/side). From these data, we concluded that: (a) the presynaptic bouton contains a heterogeneous population of "caged" and "plain" synaptic vesicles and (b) type II synaptic vesicles bind to receptors in the active zone. Therefore, current models of transmitter release should take into account the substantial heterogeneity of the vesicle population and the binding of vesicular cages to the membrane of the active zone.
Reddy, P Hemachandra; Manczak, Maria; Yin, Xiangling; Grady, Mary Catharine; Mitchell, Andrew; Kandimalla, Ramesh; Kuruva, Chandra Sekhar
2016-01-01
The purpose of our study was to investigate the protective effects of a natural product—‘curcumin’— in Alzheimer's disease (AD)-like neurons. Although much research has been done in AD, very little has been reported on the effects of curcumin on mitochondrial biogenesis, dynamics, function and synaptic activities. Therefore, the present study investigated the protective effects against amyloid β (Aβ) induced mitochondrial and synaptic toxicities. Using human neuroblastoma (SHSY5Y) cells, curcumin and Aβ, we studied the protective effects of curcumin against Aβ. Further, we also studied preventive (curcumin+Aβ) and intervention (Aβ+curcumin) effects of curcumin against Aβ in SHSY5Y cells. Using real time RT-PCR, immunoblotting and immunofluorescence analysis, we measured mRNA and protein levels of mitochondrial dynamics, mitochondrial biogenesis and synaptic genes. We also assessed mitochondrial function by measuring hydrogen peroxide, lipid peroxidation, cytochrome oxidase activity and mitochondrial ATP. Cell viability was studied using the MTT assay. Aβ was found to impair mitochondrial dynamics, reduce mitochondrial biogenesis and decrease synaptic activity and mitochondrial function. In contrast, curcumin enhanced mitochondrial fusion activity and reduced fission machinery, and increased biogenesis and synaptic proteins. Mitochondrial function and cell viability were elevated in curcumin treated cells. Interestingly, curcumin pre- and post-treated cells incubated with Aβ showed reduced mitochondrial dysfunction, and maintained cell viability and mitochondrial dynamics, mitochondrial biogenesis and synaptic activity. Further, the protective effects of curcumin were stronger in pretreated SHSY5Y cells than in post-treated cells, indicating that curcumin works better in prevention than treatment in AD-like neurons. Our findings suggest that curcumin is a promising drug molecule to treat AD patients. PMID:27521081
Hippocampal LTP and contextual learning require surface diffusion of AMPA receptors.
Penn, A C; Zhang, C L; Georges, F; Royer, L; Breillat, C; Hosy, E; Petersen, J D; Humeau, Y; Choquet, D
2017-09-21
Long-term potentiation (LTP) of excitatory synaptic transmission has long been considered a cellular correlate for learning and memory. Early LTP (less than 1 h) had initially been explained either by presynaptic increases in glutamate release or by direct modification of postsynaptic AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor function. Compelling models have more recently proposed that synaptic potentiation can occur by the recruitment of additional postsynaptic AMPA receptors (AMPARs), sourced either from an intracellular reserve pool by exocytosis or from nearby extra-synaptic receptors pre-existing on the neuronal surface. However, the exact mechanism through which synapses can rapidly recruit new AMPARs during early LTP remains unknown. In particular, direct evidence for a pivotal role of AMPAR surface diffusion as a trafficking mechanism in synaptic plasticity is still lacking. Here, using AMPAR immobilization approaches, we show that interfering with AMPAR surface diffusion markedly impairs synaptic potentiation of Schaffer collaterals and commissural inputs to the CA1 area of the mouse hippocampus in cultured slices, acute slices and in vivo. Our data also identify distinct contributions of various AMPAR trafficking routes to the temporal profile of synaptic potentiation. In addition, AMPAR immobilization in vivo in the dorsal hippocampus inhibited fear conditioning, indicating that AMPAR diffusion is important for the early phase of contextual learning. Therefore, our results provide a direct demonstration that the recruitment of new receptors to synapses by surface diffusion is a critical mechanism for the expression of LTP and hippocampal learning. Since AMPAR surface diffusion is dictated by weak Brownian forces that are readily perturbed by protein-protein interactions, we anticipate that this fundamental trafficking mechanism will be a key target for modulating synaptic potentiation and learning.
Obis, Teresa; Besalduch, Núria; Hurtado, Erica; Nadal, Laura; Santafe, Manel M; Garcia, Neus; Tomàs, Marta; Priego, Mercedes; Lanuza, Maria A; Tomàs, Josep
2015-02-10
Protein kinase C (PKC) regulates a variety of neural functions, including neurotransmitter release. Although various PKC isoforms can be expressed at the synaptic sites and specific cell distribution may contribute to their functional diversity, little is known about the isoform-specific functions of PKCs in neuromuscular synapse. The present study is designed to examine the location of the novel isoform nPKCε at the neuromuscular junction (NMJ), their synaptic activity-related expression changes, its regulation by muscle contraction, and their possible involvement in acetylcholine release. We use immunohistochemistry and confocal microscopy to demonstrate that the novel isoform nPKCε is exclusively located in the motor nerve terminals of the adult rat NMJ. We also report that electrical stimulation of synaptic inputs to the skeletal muscle significantly increased the amount of nPKCε isoform as well as its phosphorylated form in the synaptic membrane, and muscle contraction is necessary for these nPKCε expression changes. The results also demonstrate that synaptic activity-induced muscle contraction promotes changes in presynaptic nPKCε through the brain-derived neurotrophic factor (BDNF)-mediated tyrosine kinase receptor B (TrkB) signaling. Moreover, nPKCε activity results in phosphorylation of the substrate MARCKS involved in actin cytoskeleton remodeling and related with neurotransmission. Finally, blocking nPKCε with a nPKCε-specific translocation inhibitor peptide (εV1-2) strongly reduces phorbol ester-induced ACh release potentiation, which further indicates that nPKCε is involved in neurotransmission. Together, these results provide a mechanistic insight into how synaptic activity-induced muscle contraction could regulate the presynaptic action of the nPKCε isoform and suggest that muscle contraction is an important regulatory step in TrkB signaling at the NMJ.
Reddy, P Hemachandra; Manczak, Maria; Yin, Xiangling; Grady, Mary Catharine; Mitchell, Andrew; Kandimalla, Ramesh; Kuruva, Chandra Sekhar
2016-12-01
The purpose of our study was to investigate the protective effects of a natural product-'curcumin'- in Alzheimer's disease (AD)-like neurons. Although much research has been done in AD, very little has been reported on the effects of curcumin on mitochondrial biogenesis, dynamics, function and synaptic activities. Therefore, the present study investigated the protective effects against amyloid β (Aβ) induced mitochondrial and synaptic toxicities. Using human neuroblastoma (SHSY5Y) cells, curcumin and Aβ, we studied the protective effects of curcumin against Aβ. Further, we also studied preventive (curcumin+Aβ) and intervention (Aβ+curcumin) effects of curcumin against Aβ in SHSY5Y cells. Using real time RT-PCR, immunoblotting and immunofluorescence analysis, we measured mRNA and protein levels of mitochondrial dynamics, mitochondrial biogenesis and synaptic genes. We also assessed mitochondrial function by measuring hydrogen peroxide, lipid peroxidation, cytochrome oxidase activity and mitochondrial ATP. Cell viability was studied using the MTT assay. Aβ was found to impair mitochondrial dynamics, reduce mitochondrial biogenesis and decrease synaptic activity and mitochondrial function. In contrast, curcumin enhanced mitochondrial fusion activity and reduced fission machinery, and increased biogenesis and synaptic proteins. Mitochondrial function and cell viability were elevated in curcumin treated cells. Interestingly, curcumin pre- and post-treated cells incubated with Aβ showed reduced mitochondrial dysfunction, and maintained cell viability and mitochondrial dynamics, mitochondrial biogenesis and synaptic activity. Further, the protective effects of curcumin were stronger in pretreated SHSY5Y cells than in post-treated cells, indicating that curcumin works better in prevention than treatment in AD-like neurons. Our findings suggest that curcumin is a promising drug molecule to treat AD patients. Copyright © 2016 American Federation for Medical Research.
Kaster, Manuella P; Machado, Nuno J; Silva, Henrique B; Nunes, Ana; Ardais, Ana Paula; Santana, Magda; Baqi, Younis; Müller, Christa E; Rodrigues, Ana Lúcia S; Porciúncula, Lisiane O; Chen, Jiang Fan; Tomé, Ângelo R; Agostinho, Paula; Canas, Paula M; Cunha, Rodrigo A
2015-06-23
The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function.
Science Signaling Podcast for 10 May 2016: PKCα in Alzheimer's disease.
Newton, Alexandra C; Tanzi, Rudolph E; VanHook, Annalisa M
2016-05-10
This Podcast features an interview with Alexandra Newton and Rudolph Tanzi, authors of a Research Article that appears in the 10 May 2016 issue of Science Signaling, about activating mutations in protein kinase Cα that may promote the type of neural defects that characterize Alzheimer's disease. Alzheimer's disease is a progressive neurodegenerative disorder that causes cognitive loss and, eventually, death. Alzheimer's disease is characterized by the accumulation of amyloid-β (Aβ), synaptic depression, and synaptic degeneration. Alfonso et al found activating mutations in the gene encoding protein kinase Cα (PKCα) in some families with inherited Alzheimer's disease. Loss of PKCα function prevented Aβ-induced synaptic depression in brain tissue from mice, suggesting that activated forms of PKCα may contribute to Alzheimer's disease in some patients.Listen to Podcast. Copyright © 2016, American Association for the Advancement of Science.
Mutations in NONO lead to syndromic intellectual disability and inhibitory synaptic defects.
Mircsof, Dennis; Langouët, Maéva; Rio, Marlène; Moutton, Sébastien; Siquier-Pernet, Karine; Bole-Feysot, Christine; Cagnard, Nicolas; Nitschke, Patrick; Gaspar, Ludmila; Žnidarič, Matej; Alibeu, Olivier; Fritz, Ann-Kristina; Wolfer, David P; Schröter, Aileen; Bosshard, Giovanna; Rudin, Markus; Koester, Christina; Crestani, Florence; Seebeck, Petra; Boddaert, Nathalie; Prescott, Katrina; Hines, Rochelle; Moss, Steven J; Fritschy, Jean-Marc; Munnich, Arnold; Amiel, Jeanne; Brown, Steven A; Tyagarajan, Shiva K; Colleaux, Laurence
2015-12-01
The NONO protein has been characterized as an important transcriptional regulator in diverse cellular contexts. Here we show that loss of NONO function is a likely cause of human intellectual disability and that NONO-deficient mice have cognitive and affective deficits. Correspondingly, we find specific defects at inhibitory synapses, where NONO regulates synaptic transcription and gephyrin scaffold structure. Our data identify NONO as a possible neurodevelopmental disease gene and highlight the key role of the DBHS protein family in functional organization of GABAergic synapses.
The Role of Striatal-Enriched Protein Tyrosine Phosphatase (STEP) in Cognition
Fitzpatrick, Christopher James; Lombroso, Paul J.
2011-01-01
Striatal-enriched protein tyrosine phosphatase (STEP) has recently been implicated in several neuropsychiatric disorders with significant cognitive impairments, including Alzheimer’s disease, schizophrenia, and fragile X syndrome. A model has emerged by which STEP normally opposes the development of synaptic strengthening and that disruption in STEP activity leads to aberrant synaptic function. We review the mechanisms by which STEP contributes to the etiology of these and other neuropsychiatric disorders. These findings suggest that disruptions in STEP activity may be a common mechanism for cognitive impairments in diverse illnesses. PMID:21863137
Synaptic Ensemble Underlying the Selection and Consolidation of Neuronal Circuits during Learning.
Hoshiba, Yoshio; Wada, Takeyoshi; Hayashi-Takagi, Akiko
2017-01-01
Memories are crucial to the cognitive essence of who we are as human beings. Accumulating evidence has suggested that memories are stored as a subset of neurons that probably fire together in the same ensemble. Such formation of cell ensembles must meet contradictory requirements of being plastic and responsive during learning, but also stable in order to maintain the memory. Although synaptic potentiation is presumed to be the cellular substrate for this process, the link between the two remains correlational. With the application of the latest optogenetic tools, it has been possible to collect direct evidence of the contributions of synaptic potentiation in the formation and consolidation of cell ensemble in a learning task specific manner. In this review, we summarize the current view of the causative role of synaptic plasticity as the cellular mechanism underlying the encoding of memory and recalling of learned memories. In particular, we will be focusing on the latest optoprobe developed for the visualization of such "synaptic ensembles." We further discuss how a new synaptic ensemble could contribute to the formation of cell ensembles during learning and memory. With the development and application of novel research tools in the future, studies on synaptic ensembles will pioneer new discoveries, eventually leading to a comprehensive understanding of how the brain works.
Chen, Tao; Wu, Yu; Wang, Yuzi; Zhu, Jigao; Chu, Haiying; Kong, Li; Yin, Liangwei; Ma, Haiying
2017-11-01
Brain-derived neurotrophic factor (BDNF) plays an important role in promoting the growth, differentiation, survival and synaptic stability of neurons. Presently, the transplantation of neural stem cells (NSCs) is known to induce neural repair to some extent after injury or disease. In this study, to investigate whether NSCs genetically modified to encode the BDNF gene (BDNF/NSCs) would further enhance synaptogenesis, BDNF/NSCs or naive NSCs were directly engrafted into lesions in a rat model of traumatic brain injury (TBI). Immunohistochemistry, western blotting and RT-PCR were performed to detect synaptic proteins, BDNF-TrkB and its downstream signaling pathways, at 1, 2, 3 or 4 weeks after transplantation. Our results showed that BDNF significantly increased the expression levels of the TrkB receptor gene and the phosphorylation of the TrkB protein in the lesions. The expression levels of Ras, phosphorylated Erk1/2 and postsynaptic density protein-95 were elevated in the BDNF/NSCs-transplanted groups compared with those in the NSCs-transplanted groups throughout the experimental period. Moreover, the nuclear factor (erythroid-derived 2)-like 2/Thioredoxin (Nrf2/Trx) axis, which is a specific therapeutic target for the treatment of injury or cell death, was upregulated by BDNF overexpression. Therefore, we determined that the increased synaptic proteins level implicated in synaptogenesis might be associated with the activation of the MAPK/Erk1/2 signaling pathway and the upregulation of the antioxidant agent Trx modified by BDNF-TrkB following the BDNF/NSCs transplantation after TBI.
Novel IL1RAPL1 mutations associated with intellectual disability impair synaptogenesis.
Ramos-Brossier, Mariana; Montani, Caterina; Lebrun, Nicolas; Gritti, Laura; Martin, Christelle; Seminatore-Nole, Christine; Toussaint, Aurelie; Moreno, Sarah; Poirier, Karine; Dorseuil, Olivier; Chelly, Jamel; Hackett, Anna; Gecz, Jozef; Bieth, Eric; Faudet, Anne; Heron, Delphine; Frank Kooy, R; Loeys, Bart; Humeau, Yann; Sala, Carlo; Billuart, Pierre
2015-02-15
Mutations in interleukin-1 receptor accessory protein like 1 (IL1RAPL1) gene have been associated with non-syndromic intellectual disability (ID) and autism spectrum disorder. This protein interacts with synaptic partners like PSD-95 and PTPδ, regulating the formation and function of excitatory synapses. The aim of this work was to characterize the synaptic consequences of three IL1RAPL1 mutations, two novel causing the deletion of exon 6 (Δex6) and one point mutation (C31R), identified in patients with ID. Using immunofluorescence and electrophysiological recordings, we examined the effects of IL1RAPL1 mutant over-expression on synapse formation and function in cultured rodent hippocampal neurons. Δex6 but not C31R mutation leads to IL1RAPL1 protein instability and mislocalization within dendrites. Analysis of different markers of excitatory synapses and sEPSC recording revealed that both mutants fail to induce pre- and post-synaptic differentiation, contrary to WT IL1RAPL1 protein. Cell aggregation and immunoprecipitation assays in HEK293 cells showed a reduction of the interaction between IL1RAPL1 mutants and PTPδ that could explain the observed synaptogenic defect in neurons. However, these mutants do not affect all cellular signaling because their over-expression still activates JNK pathway. We conclude that both mutations described in this study lead to a partial loss of function of the IL1RAPL1 protein through different mechanisms. Our work highlights the important function of the trans-synaptic PTPδ/IL1RAPL1 interaction in synaptogenesis and as such in ID in the patients. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Yao, Gaoyi; Yun, Yang; Sang, Nan
2016-07-01
Sulfur dioxide (SO2 ) is a ubiquitous air pollutant. The previous studies have documented the adverse effects of SO2 on nervous system health, suggesting that acutely SO2 inhalation at high concentration may be associated with neurotoxicity and increase risk of hospitalization and mortality of many brain disorders. However, the remarkable features of air pollution exposure are lifelong duration and at low concentration; and it is rarely reported that whether there are different responses on synapse when rats inhaled same mass of SO2 at low concentration with a longer term. In this study, we evaluated the synaptic plasticity in rat hippocampus after exposure to same mass of SO2 at various concentrations and durations (3.5 and 7 mg/m(3) , 6 h/day, for 4 weeks; and 14 and 28 mg/m(3) , 6 h/day, for 1 week). The results showed that the mRNA level of synaptic plasticity marker Arc, glutamate receptors (GRIA1, GRIA2, GRIN1, GRIN2A, and GRIN2B) and the protein expression of memory related kinase p-CaMKпα were consistently inhibited by SO2 both in 1 week and 4 weeks exposure cases; the protein expression of presynaptic marker synaptophysin, postsynaptic density protein 95 (PSD-95), protein kinase A (PKA), and protein kinase C (PKC) were increased in 1 week exposure case, and decreased in 4 weeks exposure case. Our results indicated that SO2 inhalation caused differential synaptic injury in 1 week and 4 weeks exposure cases, and implied the differential effects might result from different PKA- and/or PKC-mediated signal pathway. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 820-829, 2016. © 2014 Wiley Periodicals, Inc.
Neuron membrane trafficking and protein kinases involved in autism and ADHD.
Kitagishi, Yasuko; Minami, Akari; Nakanishi, Atsuko; Ogura, Yasunori; Matsuda, Satoru
2015-01-30
A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1) are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT) and cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD) is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT). AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention.
Evidence that the ZNT3 protein controls the total amount of elemental zinc in synaptic vesicles
Linkous, D.H.; Flinn, J.M.; Koh, J.Y.; Lanzirotti, A.; Bertsch, P.M.; Jones, B.F.; Giblin, L.J.; Frederickson, C.J.
2008-01-01
The ZNT3 protein decorates the presynaptic vesicles of central neurons harboring vesicular zinc, and deletion of this protein removes staining for zinc. However, it has been unclear whether only histochemically reactive zinc is lacking or if, indeed, total elemental zinc is missing from neurons lacking the Slc30a3 gene, which encodes the ZNT3 protein. The limitations of conventional histochemical procedures have contributed to this enigma. However, a novel technique, microprobe synchrotron X-ray fluorescence, reveals that the normal 2- to 3-fold elevation of zinc concentration normally present in the hippocampal mossy fibers is absent in Slc30a3 knockout (ZNT3) mice. Thus, the ZNT3 protein evidently controls not only the "stainability" but also the actual mass of zinc in mossy-fiber synaptic vesicles. This work thus confirms the metal-transporting role of the ZNT3 protein in the brain. ?? The Histochemical Society, Inc.
Schratt, Gerhard M; Nigh, Elizabeth A; Chen, Wen G; Hu, Linda; Greenberg, Michael E
2004-08-18
Local regulation of mRNA translation plays an important role in axon guidance, synaptic development, and neuronal plasticity. Little is known, however, regarding the mechanisms that control translation in neurons, and only a few mRNAs have been identified that are locally translated within axon and dendrites. Using Affymetrix gene arrays to identify mRNAs that are newly associated with polysomes after exposure to BDNF, we identified subsets of mRNAs for which translation is enhanced in neurons at different developmental stages. In mature neurons, many of these mRNAs encode proteins that are known to function at synapses, including CamKIIalpha, NMDA receptor subunits, and the postsynaptic density (PSD) scaffolding protein Homer2. BDNF regulates the translation of Homer2 locally in the synaptodendritic compartment by activating translational initiation via a mammalian target of rapamycin-phosphatidylinositol 3-kinase-dependent pathway. These findings suggest that BDNF likely regulates synaptic function by inducing the local synthesis of numerous synaptic proteins. The local translation of the cytoskeleton-associated protein Homer2 in particular might have important implications for growth cone dynamics and dendritic spine development.
Cahill, Michael E.; Bagot, Rosemary C.; Gancarz, Amy M.; Walker, Deena M.; Sun, HaoSheng; Wang, Zi-Jun; Heller, Elizabeth A.; Feng, Jian; Kennedy, Pamela J.; Koo, Ja Wook; Cates, Hannah M.; Neve, Rachael L.; Shen, Li; Dietz, David M.
2016-01-01
Summary Dendritic spines are the sites of most excitatory synapses in the CNS, and opposing alterations in the synaptic structure of medium spiny neurons (MSNs) of the nucleus accumbens, a primary brain reward region, are seen at early vs. late time points after cocaine administration. Here we investigate the time-dependent molecular and biochemical processes that regulate this bidirectional synaptic structural plasticity of NAc MSNs and associated changes in cocaine reward in response to chronic cocaine exposure. Our findings reveal key roles for the bidirectional synaptic expression of the Rap1b small GTPase and an associated local-synaptic protein translation network in this process. The transcriptional mechanisms and pathway-specific inputs to NAc that regulate Rap1b expression are also characterized. Collectively, these findings provide a precise mechanism by which nuclear to synaptic interactions induce “metaplasticity” in NAc MSNs, and we reveal the specific effects of this plasticity on reward behavior in a brain circuit-specific manner. PMID:26844834
Synaptic organization of the Drosophila antennal lobe and its regulation by the Teneurins
Mosca, Timothy J; Luo, Liqun
2014-01-01
Understanding information flow through neuronal circuits requires knowledge of their synaptic organization. In this study, we utilized fluorescent pre- and postsynaptic markers to map synaptic organization in the Drosophila antennal lobe, the first olfactory processing center. Olfactory receptor neurons (ORNs) produce a constant synaptic density across different glomeruli. Each ORN within a class contributes nearly identical active zone number. Active zones from ORNs, projection neurons (PNs), and local interneurons have distinct subglomerular and subcellular distributions. The correct number of ORN active zones and PN acetylcholine receptor clusters requires the Teneurins, conserved transmembrane proteins involved in neuromuscular synapse organization and synaptic partner matching. Ten-a acts in ORNs to organize presynaptic active zones via the spectrin cytoskeleton. Ten-m acts in PNs autonomously to regulate acetylcholine receptor cluster number and transsynaptically to regulate ORN active zone number. These studies advanced our ability to assess synaptic architecture in complex CNS circuits and their underlying molecular mechanisms. DOI: http://dx.doi.org/10.7554/eLife.03726.001 PMID:25310239