Hawley, R Scott
2011-10-01
The structure of the meiosis-specific synaptonemal complex, which is perhaps the central visible characteristic of meiotic prophase, has been a matter of intense interest for decades. Although a general picture of the interactions between the transverse filament proteins that create this structure has emerged from studies in a variety of organisms, a recent analysis of synaptonemal complex structure in Caenorhabditis elegans by Schild-Prüfert et al. (2011) has provided the clearest picture of the structure of the architecture of a synaptonemal complex to date. Although the transverse filaments of the worm synaptonemal complex are assembled differently then those observed in yeast, mammalian, and Drosophila synaptonemal complexes, a comparison of the four assemblies shows that achieving the overall basic structure of the synaptonemal complex is far more crucial than conserving the structures of the individual transverse filaments.
Hernández-Hernández, Abrahan; Masich, Sergej; Fukuda, Tomoyuki; Kouznetsova, Anna; Sandin, Sara; Daneholt, Bertil; Höög, Christer
2016-06-01
The synaptonemal complex transiently stabilizes pairing interactions between homologous chromosomes during meiosis. Assembly of the synaptonemal complex is mediated through integration of opposing transverse filaments into a central element, a process that is poorly understood. We have, here, analyzed the localization of the transverse filament protein SYCP1 and the central element proteins SYCE1, SYCE2 and SYCE3 within the central region of the synaptonemal complex in mouse spermatocytes using immunoelectron microscopy. Distribution of immuno-gold particles in a lateral view of the synaptonemal complex, supported by protein interaction data, suggest that the N-terminal region of SYCP1 and SYCE3 form a joint bilayered central structure, and that SYCE1 and SYCE2 localize in between the two layers. We find that disruption of SYCE2 and TEX12 (a fourth central element protein) localization to the central element abolishes central alignment of the N-terminal region of SYCP1. Thus, our results show that all four central element proteins, in an interdependent manner, contribute to stabilization of opposing N-terminal regions of SYCP1, forming a bilayered transverse-filament-central-element junction structure that promotes synaptonemal complex formation and synapsis. © 2016. Published by The Company of Biologists Ltd.
Cyclophosphamide (CP) has been reported to cause structural and numerical chromosome aberrations in mouse spermatocyte metaphase chromosomes. Further, it was concluded to be one of the few chemicals for which there appears to be reliable data suggesting that it can induce germ ce...
Collins, Kimberly A.; Unruh, Jay R.; Slaughter, Brian D.; Yu, Zulin; Lake, Cathleen M.; Nielsen, Rachel J.; Box, Kimberly S.; Miller, Danny E.; Blumenstiel, Justin P.; Perera, Anoja G.; Malanowski, Kathryn E.; Hawley, R. Scott
2014-01-01
In most organisms the synaptonemal complex (SC) connects paired homologs along their entire length during much of meiotic prophase. To better understand the structure of the SC, we aim to identify its components and to determine how each of these components contributes to SC function. Here, we report the identification of a novel SC component in Drosophila melanogaster female oocytes, which we have named Corolla. Using structured illumination microscopy, we demonstrate that Corolla is a component of the central region of the SC. Consistent with its localization, we show by yeast two-hybrid analysis that Corolla strongly interacts with Cona, a central element protein, demonstrating the first direct interaction between two inner-synaptonemal complex proteins in Drosophila. These observations help provide a more complete model of SC structure and function in Drosophila females. PMID:24913682
Centromere pairing – tethering partner chromosomes in meiosis I
Kurdzo, Emily L; Dawson, Dean S
2015-01-01
In meiosis, homologous chromosomes face the obstacle of finding, holding onto and segregating away from their partner chromosome. There is increasing evidence, in a diverse range of organisms, that centromere–centromere interactions that occur in late prophase are an important mechanism in ensuring segregation fidelity. Centromere pairing appears to initiate when homologous chromosomes synapse in meiotic prophase. Structural proteins of the synaptonemal complex have been shown to help mediate centromere pairing, but how the structure that maintains centromere pairing differs from the structure of the synaptonemal complex along the chromosomal arms remains unknown. When the synaptonemal complex proteins disassemble from the chromosome arms in late prophase, some of these synaptonemal complex components persist at the centromeres. In yeast and Drosophila these centromere-pairing behaviors promote the proper segregation of chromosome partners that have failed to become linked by chiasmata. Recent studies of mouse spermatocytes have described centromere pairing behaviors that are similar in several respects to what has been described in the fly and yeast systems. In humans, chromosomes that fail to experience crossovers in meiosis are error-prone and are a major source of aneuploidy. The finding that centromere pairing is a conserved phenomenon raises the possibility that it may play a role in promoting the segregation fidelity of non-exchange chromosome pairs in humans. PMID:25817724
Kouznetsova, Anna; Scherthan, Harry; Höög, Christer; Dawson, Dean S.; Pezza, Roberto J.
2012-01-01
Recent studies in simple model organisms have shown that centromere pairing is important for ensuring high-fidelity meiotic chromosome segregation. However, this process and the mechanisms regulating it in higher eukaryotes are unknown. Here we present the first detailed study of meiotic centromere pairing in mouse spermatogenesis and link it with key events of the G2/metaphase I transition. In mouse we observed no evidence of the persistent coupling of centromeres that has been observed in several model organisms. We do however find that telomeres associate in non-homologous pairs or small groups in B type spermatogonia and pre-leptotene spermatocytes, and this association is disrupted by deletion of the synaptonemal complex component SYCP3. Intriguingly, we found that, in mid prophase, chromosome synapsis is not initiated at centromeres, and centromeric regions are the last to pair in the zygotene-pachytene transition. In late prophase, we first identified the proteins that reside at paired centromeres. We found that components of the central and lateral element and transverse filaments of the synaptonemal complex are retained at paired centromeres after disassembly of the synaptonemal complex along diplotene chromosome arms. The absence of SYCP1 prevents centromere pairing in knockout mouse spermatocytes. The localization dynamics of SYCP1 and SYCP3 suggest that they play different roles in promoting homologous centromere pairing. SYCP1 remains only at paired centromeres coincident with the time at which some kinetochore proteins begin loading at centromeres, consistent with a role in assembly of meiosis-specific kinetochores. After removal of SYCP1 from centromeres, SYCP3 then accumulates at paired centromeres where it may promote bi-orientation of homologous centromeres. We propose that, in addition to their roles as synaptonemal complex components, SYCP1 and SYCP3 act at the centromeres to promote the establishment and/or maintenance of centromere pairing and, by doing so, improve the segregation fidelity of mammalian meiotic chromosomes. PMID:22761579
[A preparative method for isolating the synaptonemal complexes from mammalian spermatocytes].
Dadashev, S Ia; Bogdanov, Iu F; Gorach, G G; Kolomiets, O L; Karpova, O I
1993-01-01
A method of isolation of synaptonemal complexes (SC) from mouse, rat and Syrian hamster spermatocytes is described. A fraction of pachytene spermatocyte nuclei was obtained by centrifugation of the testis homogenate in stepwise sucrose gradient and then lysed. The resulting chromatine was hydrolysed with DNAse II, and a fraction of isolated SCs was obtained by ultracentrifugation of the hydrolysate. The method can be applied for obtaining the SC fraction from spermatocytes sufficient for cytological, biochemical and molecular biology studies.
Couples, Pairs, and Clusters: Mechanisms and Implications of Centromere Associations in Meiosis
Obeso, David; Pezza, Roberto J; Dawson, Dean
2013-01-01
Observations from a wide range of organisms show the centromeres form associations of pairs or small groups at different stages of meiotic prophase. Little is known about the functions or mechanisms of these associations, but in many cases synaptonemal complex elements seem to play a fundamental role. Two main associations are observed: homology-independent associations very early in the meiotic program – sometimes referred to as centromere coupling, and a later association of homologous centromeres, referred to as centromere pairing or tethering. The later centromere pairing initiates during synaptonemal complex assembly, then persists after the dissolution of the synaptonemal complex. While the function of the homology-independent centromere coupling remains a mystery, centromere pairing appears to have a direct impact on the chromosome segregation fidelity of achiasmatic chromosomes. Recent work in yeast, Drosophila, and mice suggest centromere pairing is a previously unappreciated, general meiotic feature that may promote meiotic segregation fidelity of the exchange and non-exchange chromosomes. PMID:24126501
Couples, pairs, and clusters: mechanisms and implications of centromere associations in meiosis.
Obeso, David; Pezza, Roberto J; Dawson, Dean
2014-03-01
Observations of a wide range of organisms show that the centromeres form associations of pairs or small groups at different stages of meiotic prophase. Little is known about the functions or mechanisms of these associations, but in many cases, synaptonemal complex elements seem to play a fundamental role. Two main associations are observed: homology-independent associations very early in the meiotic program-sometimes referred to as centromere coupling-and a later association of homologous centromeres, referred to as centromere pairing or tethering. The later centromere pairing initiates during synaptonemal complex assembly, then persists after the dissolution of the synaptonemal complex. While the function of the homology-independent centromere coupling remains a mystery, centromere pairing appears to have a direct impact on the chromosome segregation fidelity of achiasmatic chromosomes. Recent work in yeast, Drosophila, and mice suggest that centromere pairing is a previously unappreciated, general meiotic feature that may promote meiotic segregation fidelity of the exchange and non-exchange chromosomes.
Zhang, Jing; Pawlowski, Wojciech P.; Han, Fangpu
2013-01-01
Pairing of homologous chromosomes in meiosis is critical for their segregation to daughter cells. In most eukaryotes, clustering of telomeres precedes and facilitates chromosome pairing. In several species, centromeres also form pairwise associations, known as coupling, before the onset of pairing. We found that, in maize (Zea mays), centromere association begins at the leptotene stage and occurs earlier than the formation of the telomere bouquet. We established that centromere pairing requires centromere activity and the sole presence of centromeric repeats is not sufficient for pairing. In several species, homologs of the ZIP1 protein, which forms the central element of the synaptonemal complex in budding yeast (Saccharomyces cerevisiae), play essential roles in centromere coupling. However, we found that the maize ZIP1 homolog ZYP1 installs in the centromeric regions of chromosomes after centromeres form associations. Instead, we found that maize STRUCTURAL MAINTENANCE OF CHROMOSOMES6 homolog forms a central element of the synaptonemal complex, which is required for centromere associations. These data shed light on the poorly understood mechanism of centromere interactions and suggest that this mechanism may vary somewhat in different species. PMID:24143803
Zhang, Jing; Pawlowski, Wojciech P; Han, Fangpu
2013-10-01
Pairing of homologous chromosomes in meiosis is critical for their segregation to daughter cells. In most eukaryotes, clustering of telomeres precedes and facilitates chromosome pairing. In several species, centromeres also form pairwise associations, known as coupling, before the onset of pairing. We found that, in maize (Zea mays), centromere association begins at the leptotene stage and occurs earlier than the formation of the telomere bouquet. We established that centromere pairing requires centromere activity and the sole presence of centromeric repeats is not sufficient for pairing. In several species, homologs of the ZIP1 protein, which forms the central element of the synaptonemal complex in budding yeast (Saccharomyces cerevisiae), play essential roles in centromere coupling. However, we found that the maize ZIP1 homolog ZYP1 installs in the centromeric regions of chromosomes after centromeres form associations. Instead, we found that maize structural maintenance of chromosomes6 homolog forms a central element of the synaptonemal complex, which is required for centromere associations. These data shed light on the poorly understood mechanism of centromere interactions and suggest that this mechanism may vary somewhat in different species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz, Rosario, E-mail: r_oh@ciencias.unam.mx; Kouznetsova, Anna, E-mail: Anna.Kouznetsova@ki.se; Echeverría-Martínez, Olga M., E-mail: omem@ciencias.unam.mx
The synaptonemal complex (SC) is a proteinaceous structure that holds the homologous chromosomes in close proximity while they exchange genetic material in a process known as meiotic recombination. This meiotic recombination leads to genetic variability in sexually reproducing organisms. The ultrastructure of the SC is studied by electron microscopy and it is observed as a tripartite structure. Two lateral elements (LE) separated by a central region (CR) confer its classical tripartite organization. The LEs are the anchoring platform for the replicated homologous chromosomes to properly exchange genetic material with one another. An accurate assembly of the LE is indispensable formore » the proper completion of meiosis. Ultrastructural studies suggested that the LE is organized as a multilayered unit. However, no validation of this model has been previously provided. In this ultrastructural study, by using mice with different genetic backgrounds that affect the LE width, we provide further evidence that support a multilayered organization of the LE. Additionally, we provide data suggesting additional roles of the different cohesin complex components in the structure of the LEs of the SC. - Highlights: • The lateral element of the synaptonemal complex is a multilayered structure. • The width of the lateral element in synaptonemal complex-null mice is different. • Two cohesin complex cores plus one axial element form a wild-type lateral element. • The layers of the lateral element can be analyzed in different null mice models.« less
Hanna, R E B; Moffett, D; Forster, F I; Trudgett, A G; Brennan, G P; Fairweather, I
2016-05-15
The ultrastructure of the ovary of Fasciola hepatica collected from field-infected sheep, was compared with that of flukes from laboratory-infected rats harbouring the Oberon or the Cullompton fluke isolate. At the periphery of the ovarian tubules, in all flukes, interstitial tissue was identified that appears to provide physical support and facilitate the metabolism of the germinal-line cells. Oogonia undergo mitotic division to maintain the cell population and to produce oocytes. Early oocytes feature conspicuous synaptonemal complexes in the nucleoplasm, and these become less evident as the oocytes grow in size, move towards the core of the ovarian tubule, and synthesise osmiophilic bodies. The latter may represent cortical granules, and serve to block polyspermy. The identity of the synaptonemal complexes was confirmed by immunocytochemical labelling of synaptonemal proteins. The occurrence of synaptonemal complexes in the oocytes of all fluke types examined indicates that pairing of bivalent chromosomes, with the potential for genetic recombination and chiasmata formation, is a feature of the triploid aspermic parthenogenetic Cullompton flukes, as well as of the wild-type out-breeding field-derived and Oberon isolate flukes. In oocytes within shelled eggs in the proximal uterus of all flukes, condensed chromosomes align at meiotic metaphase plates. Following the reduction division, two equal pronuclei appear in each oocyte in the distal uterus. On the basis of these observations, a mechanism of facultative parthenogenesis for F. hepatica is proposed that accommodates the survival and clonal expansion of triploid aspermic isolates. Copyright © 2016 Elsevier B.V. All rights reserved.
Dix, D J; Allen, J W; Collins, B W; Mori, C; Nakamura, N; Poorman-Allen, P; Goulding, E H; Eddy, E M
1996-01-01
In addition to the five 70-kDa heat shock proteins (HSP70) common to germ cells and somatic tissues of mammals, spermatogenic cells synthesize HSP70-2 during meiosis. To determine if this unique stress protein has a critical role in meiosis, we used gene-targeting techniques to disrupt Hsp70-2 in mice. Male mice homozygous for the mutant allele (Hsp70-2 -/-) did not synthesize HSP70-2, lacked postmeiotic spermatids and mature sperm, and were infertile. However, neither meiosis nor fertility was affected in female Hsp70-2 -/- mice. We previously found that HSP70-2 is associated with synaptonemal complexes in the nucleus of meiotic spermatocytes from mice and hamsters. While synaptonemal complexes assembled in Hsp70-2 -/- spermatocytes, structural abnormalities became apparent in these cells by late prophase, and development rarely progressed to the meiotic divisions. Furthermore, analysis of nuclei and genomic DNA indicated that the failure of meiosis in Hsp70-2 -/- mice was coincident with a dramatic increase in spermatocyte apoptosis. These results suggest that HSP70-2 participates in synaptonemal complex function during meiosis in male germ cells and is linked to mechanisms that inhibit apoptosis. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8622925
Zickler, D; Moreau, P J; Huynh, A D; Slezec, A M
1992-09-01
The decrease of meiotic exchanges (crossing over and conversion) in two mutants of Sordaria macrospora correlated strongly with a reduction of chiasmata and of both types of "recombination nodules." Serial section reconstruction electron microscopy was used to compare the synapsis pattern of meiotic prophase I in wild type and mutants. First, synapsis occurred but the number of synaptonemal complex initiation sites was reduced in both mutants. Second, this reduction was accompanied by, or resulted in, modifications of the pattern of synapsis. Genetic and synaptonemal complex maps were compared in three regions along one chromosome arm divided into well marked intervals. Reciprocal exchange frequencies and number of recombination nodules correlated in wild type in the three analyzed intervals, but disparity was found between the location of recombination nodules and exchanges in the mutants. Despite the twofold exchange decrease, sections of the genome such as the short arm of chromosome 2 and telomere regions were sheltered from nodule decrease and from pairing modifications. This indicated a certain amount of diversity in the control of these features and suggested that exchange frequency was dependent not only on the amount of effective pairing but also on the localization of the pairing sites, as revealed by the synaptonemal complex progression in the mutants.
Zickler, D.; Moreau, PJF.; Huynh, A. D.; Slezec, A. M.
1992-01-01
The decrease of meiotic exchanges (crossing over and conversion) in two mutants of Sordaria macrospora correlated strongly with a reduction of chiasmata and of both types of ``recombination nodules.'' Serial section reconstruction electron microscopy was used to compare the synapsis pattern of meiotic prophase I in wild type and mutants. First, synapsis occurred but the number of synaptonemal complex initiation sites was reduced in both mutants. Second, this reduction was accompanied by, or resulted in, modifications of the pattern of synapsis. Genetic and synaptonemal complex maps were compared in three regions along one chromosome arm divided into well marked intervals. Reciprocal exchange frequencies and number of recombination nodules correlated in wild type in the three analyzed intervals, but disparity was found between the location of recombination nodules and exchanges in the mutants. Despite the twofold exchange decrease, sections of the genome such as the short arm of chromosome 2 and telomere regions were sheltered from nodule decrease and from pairing modifications. This indicated a certain amount of diversity in the control of these features and suggested that exchange frequency was dependent not only on the amount of effective pairing but also on the localization of the pairing sites, as revealed by the synaptonemal complex progression in the mutants. PMID:1398050
Zickler, D; Leblon, G; Haedens, V; Collard, A; Thuriaux, P
1984-01-01
Reconstruction of serially sectioned zygotene and pachytene nuclei has allowed, by measuring the lengths of synaptonemal complexes, an assignment of the 7 linkage (LG) groups to the 7 chromosomes in the fungus Sordaria macrospora. The 7 LG have been established using 19 mutants showing low second division segregation frequencies. Eight chromosomal rearrangements mapped on the 7 LG were used to identify the chromosomes involved. The following one to one assignment of the 7 LG to specific chromosomes was obtained: LG a: chromosome (chr) 1, LG b: chr5, LG c: chr6, LG d: chr7, LG e: chr4, LG f: chr3 and LG g: chr2 (the chromosome carrying the nucleolus organizer region).
Flores-Rivera, E; Villegas-Castrejon, H; Vazquez-Nin, G H
1996-04-01
The synaptonemal complexes (SCs) are nuclear structures specific for meiosis. They have a central role in homolog chromosomes coupling; they are essential in crossing over events and chromosomic segregation during the first meiotic division. When its joining ends in pakiteno stage, each synaptonemal extends along the bivalent joining the ends to nuclear wrapping. The SCs are characterized by the presence of two lateral elements and a central region. The lateral elements are parallel and equidistant. The chromatine of homolog chromosomes fixes in a series of loops to these elements. The central region is between the lateral elements. It is formed by the latero-medial fibers and the medial element. The first ones are perpendicularly oriented to the longitudinal axis of CS and connect lateral elements with the medial element. The recombination modules have an active role in recombination processes and quiasma formation, they are associated, at intervals, with the central region among the homolog chromosomes. The localization and function of nucleic acids in formation and coupling of synaptonemal complex is little known, so methodologic alternatives are looked for to resolve this type of problems. In this work, ADN distribution in chicken ovocytes in cigotene, using techniques for electronic microscopy of immuno-oro, were studied. Besides, cytochemical techniques, were used as preferential contrast for ADN or preferential for ribonucleoproteins (RNPs). The combination of preferential tincture for RNPs and immunolocalization of ADN show that chromatin accumulates jointly with ribonucleoproteins in nor coupled lateral elements and the presence of numerous RNPs fibers distributed around lateral elements. Recombination nodules were found among lateral elements during the coupling, these nodules are PTA positives, which means ADN presence, and so, ADN presence among lateral elements. THe presence of a bridge of marked fibers with coloidal gold (ADN) uniting not coupled lateral elements, suggests ADN as a sort of macromollecule forming synapsis sites.
Dadashev, S Ia; Gorach, G G; Kolomiets, O L
1994-01-01
Male mice were immunized with the suspension of synaptonemal complexes (SC) isolated from mouse spermatocytes nuclei. The indirect immunofluorescent analysis showed the active binding of sera obtained from immunized mice to SC of mouse spermatocyte spreads. At early and mid-pachytene, SC can be clearly identified in 19 autosome bivalents and in sex chromosome bivalent. According to the electron microscopic analysis, all structural elements of SC bind antibodies. Metaphase chromosomes were not stained with the immune sera. Specificity of interaction between SC components and antibodies was confirmed in a series of control experiments. Analysis of sera obtained from mice after their syngeneic immunization with isolated SC fraction suggested that certain mouse SC components induce the formation of autoantibodies. This, in turn, suggests that these SC components are meiosis-specific.
Location of RAD51-like protein during meiotic prophase in Eimeria tenella.
Del Cacho, Emilio; Gallego, Margarita; Pagés, Marc; Barbero, José Luís; Monteagudo, Luís; Sánchez-Acedo, Caridad
2011-05-31
This study focuses on reporting events in Eimeria tenella oocysts from early to late prophase I in terms of RAD51 protein in association with the synaptonemal complex formed between homologous chromosomes. The aim of the study was the sequential localization of RAD51 protein, which is involved in the repair of double-strand breaks (DSBs) on the eimerian chromosomes as they synapse and desynapse. Structural Maintenance of Chromosome protein SMC3, which plays a role in synaptonemal complex formation, was labeled to identify initiation and progress of chromosome synapsis and desynapsis in parallel with the appearance and disappearance of RAD51 foci. Antibodies directed against RAD51 and cohesin subunit SMC3 proteins were labeled with either fluorescence or colloidal gold to visualize RAD51 protein foci and synaptonemal complexes. RAD51 protein localization during prophase I was studied on meiotic chromosomes spreads obtained from oocysts at different points in time after the start of sporulation. The present findings showed that foci detected with the antibody directed against RAD51 protein first appeared at the pre-leptotene stage before homologous chromosomes began pairing. Subsequently, the foci were detected in association with the lateral elements at the precise sites where synapsis were in progress. These findings lead us to suggest that in E. tenella, homologous chromosome pairing was a DSB-dependent mechanism and reinforced the participation of RAD51 protein in meiotic homology search, alignment and pairing of chromosomes. Copyright © 2010 Elsevier B.V. All rights reserved.
Xing, M; Jing, D Z; Hao, S
1991-01-01
The ultrastructural and cytochemical features of synaptonemal complexes (SC) in sections of spermatocytes of Mus musculus were studied under electron microscope. In specimens stained with uranyl acetate and lead citrate the SC was found consisting of three main elements. the lateral element (LE), the central element (CE) and the transverse filament (L-C filament). When stained with the Bernhard's technique, the SC was recognized as a contrasted, tripartite structure which was usually located in the bleached area occupied by the condensed chromatin and composed of highly electron-dense LEs and medium electron-dense CE and L-C filaments. The SC and the LE, stained either by uranyl acetate-lead citrate or by the Bernhard's technique, always showed diameters of about 210 nm and 60 nm, respectively. The results suggest that RNA may be an important component of the SC.
Fraune, Johanna; Alsheimer, Manfred; Volff, Jean-Nicolas; Busch, Karoline; Fraune, Sebastian; Bosch, Thomas C G; Benavente, Ricardo
2012-10-09
The synaptonemal complex (SC) is a key structure of meiosis, mediating the stable pairing (synapsis) of homologous chromosomes during prophase I. Its remarkable tripartite structure is evolutionarily well conserved and can be found in almost all sexually reproducing organisms. However, comparison of the different SC protein components in the common meiosis model organisms Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus revealed no sequence homology. This discrepancy challenged the hypothesis that the SC arose only once in evolution. To pursue this matter we focused on the evolution of SYCP1 and SYCP3, the two major structural SC proteins of mammals. Remarkably, our comparative bioinformatic and expression studies revealed that SYCP1 and SYCP3 are also components of the SC in the basal metazoan Hydra. In contrast to previous assumptions, we therefore conclude that SYCP1 and SYCP3 form monophyletic groups of orthologous proteins across metazoans.
Bohr, Tisha; Ashley, Guinevere; Eggleston, Evan; Firestone, Kyra; Bhalla, Needhi
2016-01-01
Synapsis involves the assembly of a proteinaceous structure, the synaptonemal complex (SC), between paired homologous chromosomes, and is essential for proper meiotic chromosome segregation. In Caenorhabditis elegans, the synapsis checkpoint selectively removes nuclei with unsynapsed chromosomes by inducing apoptosis. This checkpoint depends on pairing centers (PCs), cis-acting sites that promote pairing and synapsis. We have hypothesized that the stability of homolog pairing at PCs is monitored by this checkpoint. Here, we report that SC components SYP-3, HTP-3, HIM-3, and HTP-1 are required for a functional synapsis checkpoint. Mutation of these components does not abolish PC function, demonstrating they are bona fide checkpoint components. Further, we identify mutant backgrounds in which the instability of homolog pairing at PCs does not correlate with the synapsis checkpoint response. Altogether, these data suggest that, in addition to homolog pairing, SC assembly may be monitored by the synapsis checkpoint. PMID:27605049
Fraune, Johanna; Alsheimer, Manfred; Volff, Jean-Nicolas; Busch, Karoline; Fraune, Sebastian; Bosch, Thomas C. G.; Benavente, Ricardo
2012-01-01
The synaptonemal complex (SC) is a key structure of meiosis, mediating the stable pairing (synapsis) of homologous chromosomes during prophase I. Its remarkable tripartite structure is evolutionarily well conserved and can be found in almost all sexually reproducing organisms. However, comparison of the different SC protein components in the common meiosis model organisms Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus revealed no sequence homology. This discrepancy challenged the hypothesis that the SC arose only once in evolution. To pursue this matter we focused on the evolution of SYCP1 and SYCP3, the two major structural SC proteins of mammals. Remarkably, our comparative bioinformatic and expression studies revealed that SYCP1 and SYCP3 are also components of the SC in the basal metazoan Hydra. In contrast to previous assumptions, we therefore conclude that SYCP1 and SYCP3 form monophyletic groups of orthologous proteins across metazoans. PMID:23012415
Interference-mediated synaptonemal complex formation with embedded crossover designation
Zhang, Liangran; Espagne, Eric; de Muyt, Arnaud; Zickler, Denise; Kleckner, Nancy E.
2014-01-01
Biological systems exhibit complex patterns at length scales ranging from the molecular to the organismic. Along chromosomes, events often occur stochastically at different positions in different nuclei but nonetheless tend to be relatively evenly spaced. Examples include replication origin firings, formation of chromatin loops along chromosome axes and, during meiosis, localization of crossover recombination sites (“crossover interference”). We present evidence in the fungus Sordaria macrospora that crossover interference is part of a broader pattern that includes synaptonemal complex (SC) nucleation. This pattern comprises relatively evenly spaced SC nucleation sites, among which a subset are crossover sites that show a classical interference distribution. This pattern ensures that SC forms regularly along the entire length of the chromosome as required for the maintenance of homolog pairing while concomitantly having crossover interactions locally embedded within the SC structure as required for both DNA recombination and structural events of chiasma formation. This pattern can be explained by a threshold-based designation and spreading interference process. This model can be generalized to give diverse types of related and/or partially overlapping patterns, in two or more dimensions, for any type of object. PMID:25380597
Lovinskaya, A V; Kolumbayeva, S Zh; Abilev, S K; Kolomiets, O L
2016-01-01
There was performed an assessment of genotoxic effects of rocket fuel component--unsymmetrical dimethylhydrazine (UDMH, heptyl)--on forming germ cells of male mice. Immunocytochemically there was studied the structure of meiotic nuclei at different times after the intraperitoneal administration of UDMH to male mice. There were revealed following types of disturbances of the structure of synaptonemal complexes (SCs) of meiotic chromosomes: single and multiple fragments of SCs associations of autosomes with a sex bivalent, atypical structure of the SCs with a frequency higher than the reference level. In addition, there were found the premature desinapsis of sex bivalents, the disorder offormation of the genital corpuscle and ring SCs. Established disorders in SCs of spermatocytes, analyzed at 38th day after the 10-days intoxication of animal by the component of rocket fuel, attest to the risk of permanent persistence of chromosomal abnormalities occurring in the pool of stem cells.
Silva, Nicola; Ferrandiz, Nuria; Barroso, Consuelo; Tognetti, Silvia; Lightfoot, James; Telecan, Oana; Encheva, Vesela; Faull, Peter; Hanni, Simon; Furger, Andre; Snijders, Ambrosius P; Speck, Christian; Martinez-Perez, Enrique
2014-11-24
Proper chromosome segregation during meiosis requires the assembly of the synaptonemal complex (SC) between homologous chromosomes. However, the SC structure itself is indifferent to homology, and poorly understood mechanisms that depend on conserved HORMA-domain proteins prevent ectopic SC assembly. Although HORMA-domain proteins are thought to regulate SC assembly as intrinsic components of meiotic chromosomes, here we uncover a key role for nuclear soluble HORMA-domain protein HTP-1 in the quality control of SC assembly. We show that a mutant form of HTP-1 impaired in chromosome loading provides functionality of an HTP-1-dependent checkpoint that delays exit from homology search-competent stages until all homolog pairs are linked by the SC. Bypassing of this regulatory mechanism results in premature meiotic progression and licensing of homology-independent SC assembly. These findings identify nuclear soluble HTP-1 as a regulator of early meiotic progression, suggesting parallels with the mode of action of Mad2 in the spindle assembly checkpoint. Copyright © 2014 Elsevier Inc. All rights reserved.
Nadarajan, Saravanapriah; Mohideen, Firaz; Tzur, Yonatan B; Ferrandiz, Nuria; Crawley, Oliver; Montoya, Alex; Faull, Peter; Snijders, Ambrosius P; Cutillas, Pedro R; Jambhekar, Ashwini; Blower, Michael D; Martinez-Perez, Enrique; Harper, J Wade; Colaiacovo, Monica P
2016-01-01
Asymmetric disassembly of the synaptonemal complex (SC) is crucial for proper meiotic chromosome segregation. However, the signaling mechanisms that directly regulate this process are poorly understood. Here we show that the mammalian Rho GEF homolog, ECT-2, functions through the conserved RAS/ERK MAP kinase signaling pathway in the C. elegans germline to regulate the disassembly of SC proteins. We find that SYP-2, a SC central region component, is a potential target for MPK-1-mediated phosphorylation and that constitutively phosphorylated SYP-2 impairs the disassembly of SC proteins from chromosomal domains referred to as the long arms of the bivalents. Inactivation of MAP kinase at late pachytene is critical for timely disassembly of the SC proteins from the long arms, and is dependent on the crossover (CO) promoting factors ZHP-3/RNF212/Zip3 and COSA-1/CNTD1. We propose that the conserved MAP kinase pathway coordinates CO designation with the disassembly of SC proteins to ensure accurate chromosome segregation. DOI: http://dx.doi.org/10.7554/eLife.12039.001 PMID:26920220
Fraune, Johanna; Wiesner, Miriam; Benavente, Ricardo
2014-03-20
The synaptonemal complex (SC) is an evolutionarily well-conserved structure that mediates chromosome synapsis during prophase of the first meiotic division. Although its structure is conserved, the characterized protein components in the current metazoan meiosis model systems (Drosophila melanogaster, Caenorhabditis elegans, and Mus musculus) show no sequence homology, challenging the question of a single evolutionary origin of the SC. However, our recent studies revealed the monophyletic origin of the mammalian SC protein components. Many of them being ancient in Metazoa and already present in the cnidarian Hydra. Remarkably, a comparison between different model systems disclosed a great similarity between the SC components of Hydra and mammals while the proteins of the ecdysozoan systems (D. melanogaster and C. elegans) differ significantly. In this review, we introduce the basal-branching metazoan species Hydra as a potential novel invertebrate model system for meiosis research and particularly for the investigation of SC evolution, function and assembly. Also, available methods for SC research in Hydra are summarized. Copyright © 2014. Published by Elsevier Ltd.
Espagne, Eric; Vasnier, Christelle; Storlazzi, Aurora; Kleckner, Nancy E.; Silar, Philippe; Zickler, Denise; Malagnac, Fabienne
2011-01-01
We identify a large coiled-coil protein, Sme4/PaMe4, that is highly conserved among the large group of Sordariales and plays central roles in two temporally and functionally distinct aspects of the fungal sexual cycle: first as a component of the meiotic synaptonemal complex (SC) and then, after disappearing and reappearing, as a component of the spindle pole body (SPB). In both cases, the protein mediates spatial juxtaposition of two major structures: linkage of homolog axes through the SC and a change in the SPB from a planar to a bent conformation. Corresponding mutants exhibit defects, respectively, in SC and SPB morphogenesis, with downstream consequences for recombination and astral-microtubule nucleation plus postmeiotic nuclear migration. Sme4 is also required for reorganization of recombination complexes in which Rad51, Mer3, and Msh4 foci relocalize from an on-axis position to a between-axis (on-SC) position concomitant with SC installation. Because involved recombinosome foci represent total recombinational interactions, these dynamics are irrespective of their designation for maturation into cross-overs or noncross-overs. The defined dual roles for Sme4 in two different structures that function at distinct phases of the sexual cycle also provide more functional links and evolutionary dynamics among the nuclear envelope, SPB, and SC. PMID:21666097
Espagne, Eric; Vasnier, Christelle; Storlazzi, Aurora; Kleckner, Nancy E; Silar, Philippe; Zickler, Denise; Malagnac, Fabienne
2011-06-28
We identify a large coiled-coil protein, Sme4/PaMe4, that is highly conserved among the large group of Sordariales and plays central roles in two temporally and functionally distinct aspects of the fungal sexual cycle: first as a component of the meiotic synaptonemal complex (SC) and then, after disappearing and reappearing, as a component of the spindle pole body (SPB). In both cases, the protein mediates spatial juxtaposition of two major structures: linkage of homolog axes through the SC and a change in the SPB from a planar to a bent conformation. Corresponding mutants exhibit defects, respectively, in SC and SPB morphogenesis, with downstream consequences for recombination and astral-microtubule nucleation plus postmeiotic nuclear migration. Sme4 is also required for reorganization of recombination complexes in which Rad51, Mer3, and Msh4 foci relocalize from an on-axis position to a between-axis (on-SC) position concomitant with SC installation. Because involved recombinosome foci represent total recombinational interactions, these dynamics are irrespective of their designation for maturation into cross-overs or noncross-overs. The defined dual roles for Sme4 in two different structures that function at distinct phases of the sexual cycle also provide more functional links and evolutionary dynamics among the nuclear envelope, SPB, and SC.
del Cerro, A L; Cuñado, N; Santos, J L
1998-01-01
Characterization of sex chromosomes in males of Mantis religiosa L. (2n = 24 + X1X2Y) was carried out by C-banding, silver staining and fluorescence in situ hybridization. They are meta- or submetacentric, their arms being designated as X1L, X1R, X2R, X2L, YL and YR. Meiotic behaviour of the sex trivalent was examined through the analysis of synaptonemal complexes (SCs), prometaphase I (metaphase I) and metaphase II nuclei. On the basis of the SC analysis, chromosomal length measurements at mitosis and prometaphase I and data from several orthopteran species, it is proposed that the breakpoints of the reciprocal translocation that originated this complex sex-determining mechanism were close to the centromeres of the X and the largest autosome, and that the asynapsed X1L and X2R regions observed in the sex trivalent at pachytene represent the original X chromosome. The X centromere being probably that of the X2 element because it lacks a partner in the SC pachytene trivalent. The relationship among synaptic pattern, chiasma localization and balanced segregation of the sex trivalent is also discussed.
Chi, Jingyun; Mahé, Frédéric; Loidl, Josef; Logsdon, John; Dunthorn, Micah
2014-03-01
To establish which meiosis genes are present in ciliates, and to look for clues as to which recombination pathways may be treaded by them, four genomes were inventoried for 11 meiosis-specific and 40 meiosis-related genes. We found that the set of meiosis genes shared by Tetrahymena thermophila, Paramecium tetraurelia, Ichthyophthirius multifiliis, and Oxytricha trifallax is consistent with the prevalence of a Mus81-dependent class II crossover pathway that is considered secondary in most model eukaryotes. There is little evidence for a canonical class I crossover pathway that requires the formation of a synaptonemal complex (SC). This gene inventory suggests that meiotic processes in ciliates largely depend on mitotic repair proteins for executing meiotic recombination. We propose that class I crossovers and SCs were reduced sometime during the evolution of ciliates. Consistent with this reduction, we provide microscopic evidence for the presence only of degenerate SCs in Stylonychia mytilus. In addition, lower nonsynonymous to synonymous mutation rates of some of the meiosis genes suggest that, in contrast to most other nuclear genes analyzed so far, meiosis genes in ciliates are largely evolving at a slower rate than those genes in fungi and animals.
Forejt, J; Gregorová, S; Goetz, P
1981-01-01
Analysis of the chromosome behaviour at pachytene has been performed by means of the silver staining technique visualizing the synaptonemal complexes (SCs) in male mice heterozygous for the male-sterile translocations T(5;12)31Hm T(16;17)43H and T(7;19)145H, respectively. the T(9;17)138Ca male heterozygotes and T43H/T43H homozygous males were used as fertile controls. The sterile mice displayed a high frequency (about 60%) of pachytene spermatocytes with autosomal translocation configuration located in close vicinity of the XY pair. The dense round body (XAB), normally located near the X-chromosome axis in fertile males, exhibited abnormal affinity to translocation configuration in the sterile translocation heterozygotes. The incomplete synapsis of autosomes involved in translocation configuration was observed in more than 70% of the pachytene spermatocytes with the male-sterile translocations but less than 20% of the cells from T138Ca fertile male.s. A hypothesis relating the spermatogenic arrest of carriers of male-sterile rearrangements to the presumed interference with X chromosome inactivation in male meiosis is discussed.
Most Uv-Induced Reciprocal Translocations in SORDARIA MACROSPORA Occur in or near Centromere Regions
Leblon, G.; Zickler, D.; Lebilcot, S.
1986-01-01
In fungi, translocations can be identified and classified by the patterns of ascospore abortion in asci from crosses of rearrangement x normal sequence. Previous studies of UV-induced rearrangements in Sordaria macrospora revealed that a major class (called type III) appeared to be reciprocal translocations that were anomalous in producing an unexpected class of asci with four aborted ascospores in bbbbaaaa linear sequence (b = black; a = abortive). The present study shows that the anomalous type III rearrangements are, in fact, reciprocal translocations having both breakpoints within or adjacent to centromeres and that bbbbaaaa asci result from 3:1 disjunction from the translocation quadrivalent.—Electron microscopic observations of synaptonemal complexes enable centromeres to be visualized. Lengths of synaptonemal complexes lateral elements in translocation quadrivalents accurately reflect chromosome arm lengths, enabling breakpoints to be located reliably in centromere regions. All genetic data are consistent with the behavior expected of translocations with breakpoints at centromeres.—Two-thirds of the UV-induced reciprocal translocations are of this type. Certain centromere regions are involved preferentially. Among 73 type-III translocations, there were but 13 of the 21 possible chromosome combinations and 20 of the 42 possible combinations of chromosome arms. PMID:17246312
Leblon, G; Zickler, D; Lebilcot, S
1986-02-01
In fungi, translocations can be identified and classified by the patterns of ascospore abortion in asci from crosses of rearrangement x normal sequence. Previous studies of UV-induced rearrangements in Sordaria macrospora revealed that a major class (called type III) appeared to be reciprocal translocations that were anomalous in producing an unexpected class of asci with four aborted ascospores in bbbbaaaa linear sequence (b = black; a = abortive). The present study shows that the anomalous type III rearrangements are, in fact, reciprocal translocations having both breakpoints within or adjacent to centromeres and that bbbbaaaa asci result from 3:1 disjunction from the translocation quadrivalent.-Electron microscopic observations of synaptonemal complexes enable centromeres to be visualized. Lengths of synaptonemal complexes lateral elements in translocation quadrivalents accurately reflect chromosome arm lengths, enabling breakpoints to be located reliably in centromere regions. All genetic data are consistent with the behavior expected of translocations with breakpoints at centromeres.-Two-thirds of the UV-induced reciprocal translocations are of this type. Certain centromere regions are involved preferentially. Among 73 type-III translocations, there were but 13 of the 21 possible chromosome combinations and 20 of the 42 possible combinations of chromosome arms.
Miao, Chunbo; Tang, Ding; Zhang, Honggen; Wang, Mo; Li, Yafei; Tang, Shuzhu; Yu, Hengxiu; Gu, Minghong; Cheng, Zhukuan
2013-08-01
In meiosis, homologous recombination entails programmed DNA double-strand break (DSB) formation and synaptonemal complex (SC) assembly coupled with the DSB repair. Although SCs display extensive structural conservation among species, their components identified are poorly conserved at the sequence level. Here, we identified a novel SC component, designated central region component1 (CRC1), in rice (Oryza sativa). CRC1 colocalizes with ZEP1, the rice SC transverse filament protein, to the central region of SCs in a mutually dependent fashion. Consistent with this colocalization, CRC1 interacts with ZEP1 in yeast two-hybrid assays. CRC1 is orthologous to Saccharomyces cerevisiae pachytene checkpoint2 (Pch2) and Mus musculus THYROID receptor-interacting protein13 (TRIP13) and may be a conserved SC component. Additionally, we provide evidence that CRC1 is essential for meiotic DSB formation. CRC1 interacts with homologous pairing aberration in rice meiosis1 (PAIR1) in vitro, suggesting that these proteins act as a complex to promote DSB formation. PAIR2, the rice ortholog of budding yeast homolog pairing1, is required for homologous chromosome pairing. We found that CRC1 is also essential for the recruitment of PAIR2 onto meiotic chromosomes. The roles of CRC1 identified here have not been reported for Pch2 or TRIP13.
Zhang, Weibin; Miley, Natasha; Zastrow, Michael S.; MacQueen, Amy J.; Sato, Aya; Nabeshima, Kentaro; Martinez-Perez, Enrique; Mlynarczyk-Evans, Susanna; Carlton, Peter M.; Villeneuve, Anne M.
2012-01-01
During meiosis, chromosomes align with their homologous pairing partners and stabilize this alignment through assembly of the synaptonemal complex (SC). Since the SC assembles cooperatively yet is indifferent to homology, pairing and SC assembly must be tightly coordinated. We identify HAL-2 as a key mediator in this coordination, showing that HAL-2 promotes pairing largely by preventing detrimental effects of SC precursors (SYP proteins). hal-2 mutants fail to establish pairing and lack multiple markers of chromosome movement mediated by pairing centers (PCs), chromosome sites that link chromosomes to cytoplasmic microtubules through nuclear envelope-spanning complexes. Moreover, SYP proteins load inappropriately along individual unpaired chromosomes in hal-2 mutants, and markers of PC-dependent movement and function are restored in hal-2; syp double mutants. These and other data indicate that SYP proteins can impede pairing and that HAL-2 promotes pairing predominantly but not exclusively by counteracting this inhibition, thereby enabling activation and regulation of PC function. HAL-2 concentrates in the germ cell nucleoplasm and colocalizes with SYP proteins in nuclear aggregates when SC assembly is prevented. We propose that HAL-2 functions to shepherd SYP proteins prior to licensing of SC assembly, preventing untimely interactions between SC precursors and chromosomes and allowing sufficient accumulation of precursors for rapid cooperative assembly upon homology verification. PMID:22912597
Zhang, Weibin; Miley, Natasha; Zastrow, Michael S; MacQueen, Amy J; Sato, Aya; Nabeshima, Kentaro; Martinez-Perez, Enrique; Mlynarczyk-Evans, Susanna; Carlton, Peter M; Villeneuve, Anne M
2012-01-01
During meiosis, chromosomes align with their homologous pairing partners and stabilize this alignment through assembly of the synaptonemal complex (SC). Since the SC assembles cooperatively yet is indifferent to homology, pairing and SC assembly must be tightly coordinated. We identify HAL-2 as a key mediator in this coordination, showing that HAL-2 promotes pairing largely by preventing detrimental effects of SC precursors (SYP proteins). hal-2 mutants fail to establish pairing and lack multiple markers of chromosome movement mediated by pairing centers (PCs), chromosome sites that link chromosomes to cytoplasmic microtubules through nuclear envelope-spanning complexes. Moreover, SYP proteins load inappropriately along individual unpaired chromosomes in hal-2 mutants, and markers of PC-dependent movement and function are restored in hal-2; syp double mutants. These and other data indicate that SYP proteins can impede pairing and that HAL-2 promotes pairing predominantly but not exclusively by counteracting this inhibition, thereby enabling activation and regulation of PC function. HAL-2 concentrates in the germ cell nucleoplasm and colocalizes with SYP proteins in nuclear aggregates when SC assembly is prevented. We propose that HAL-2 functions to shepherd SYP proteins prior to licensing of SC assembly, preventing untimely interactions between SC precursors and chromosomes and allowing sufficient accumulation of precursors for rapid cooperative assembly upon homology verification.
Miao, Chunbo; Tang, Ding; Zhang, Honggen; Wang, Mo; Li, Yafei; Tang, Shuzhu; Yu, Hengxiu; Gu, Minghong; Cheng, Zhukuan
2013-01-01
In meiosis, homologous recombination entails programmed DNA double-strand break (DSB) formation and synaptonemal complex (SC) assembly coupled with the DSB repair. Although SCs display extensive structural conservation among species, their components identified are poorly conserved at the sequence level. Here, we identified a novel SC component, designated CENTRAL REGION COMPONENT1 (CRC1), in rice (Oryza sativa). CRC1 colocalizes with ZEP1, the rice SC transverse filament protein, to the central region of SCs in a mutually dependent fashion. Consistent with this colocalization, CRC1 interacts with ZEP1 in yeast two-hybrid assays. CRC1 is orthologous to Saccharomyces cerevisiae pachytene checkpoint2 (Pch2) and Mus musculus THYROID RECEPTOR-INTERACTING PROTEIN13 (TRIP13) and may be a conserved SC component. Additionally, we provide evidence that CRC1 is essential for meiotic DSB formation. CRC1 interacts with HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 (PAIR1) in vitro, suggesting that these proteins act as a complex to promote DSB formation. PAIR2, the rice ortholog of budding yeast homolog pairing1, is required for homologous chromosome pairing. We found that CRC1 is also essential for the recruitment of PAIR2 onto meiotic chromosomes. The roles of CRC1 identified here have not been reported for Pch2 or TRIP13. PMID:23943860
Bogdanov, Yuri F; Dadashev, Sergei Y; Grishaeva, Tatiana M
2003-01-01
Evolutionarily distant organisms have not only orthologs, but also nonhomologous proteins that build functionally similar subcellular structures. For instance, this is true with protein components of the synaptonemal complex (SC), a universal ultrastructure that ensures the successful pairing and recombination of homologous chromosomes during meiosis. We aimed at developing a method to search databases for genes that code for such nonhomologous but functionally analogous proteins. Advantage was taken of the ultrastructural parameters of SC and the conformation of SC proteins responsible for these. Proteins involved in SC central space are known to be similar in secondary structure. Using published data, we found a highly significant correlation between the width of the SC central space and the length of rod-shaped central domain of mammalian and yeast intermediate proteins forming transversal filaments in the SC central space. Basing on this, we suggested a method for searching genome databases of distant organisms for genes whose virtual proteins meet the above correlation requirement. Our recent finding of the Drosophila melanogaster CG17604 gene coding for synaptonemal complex transversal filament protein received experimental support from another lab. With the same strategy, we showed that the Arabidopsis thaliana and Caenorhabditis elegans genomes contain unique genes coding for such proteins.
Sex-specific differences in the synaptonemal complex in the genus Oreochromis (Cichlidae).
Campos-Ramos, Rafael; Harvey, Simon C; Penman, David J
2009-04-01
Total synaptonemal complex (SC) lengths were estimated from Oreochromis aureus Steindachner (which has a WZ/ZZ sex determination system), O. mossambicus Peters and O. niloticus L. (both of which have XX/XY sex determination systems). The total SC length in oocytes was greater than that in spermatocytes in all three species (194 +/- 30 microm and 134 +/- 13 microm, 187 +/- 22 microm and 127 +/- 17 microm, 193 +/- 37 microm and 144 +/- 19 microm, respectively). These sex-specific differences did not appear to be influenced by the type of sex determination system (the female/male total SC length ratio was 1.45 in O. aureus, 1.47 in O. mossambicus and 1.34 in O. niloticus) and do not correlate with the lack of any overall sex-specific length differences in the current Oreochromis linkage map. Although based on data from relatively few species, there appears to be no consistent relationship between sex-specific SC lengths and linkage map lengths in fish. Neomale (hormonally masculinized genetic female) O. aureus and O. mossambicus had total SC lengths of 138 +/- 13 microm and 146 +/- 13 microm respectively, more similar to normal males than to normal females. These findings agree with data from other vertebrate species that suggest that phenotypic sex, rather than genotype, determines traits such as total SC length, chiasmata position and recombination pattern, at least for the autosomes.
Herruzo, Esther; Ontoso, David; González-Arranz, Sara; Cavero, Santiago; Lechuga, Ana; San-Segundo, Pedro A.
2016-01-01
Meiotic cells possess surveillance mechanisms that monitor critical events such as recombination and chromosome synapsis. Meiotic defects resulting from the absence of the synaptonemal complex component Zip1 activate a meiosis-specific checkpoint network resulting in delayed or arrested meiotic progression. Pch2 is an evolutionarily conserved AAA+ ATPase required for the checkpoint-induced meiotic block in the zip1 mutant, where Pch2 is only detectable at the ribosomal DNA array (nucleolus). We describe here that high levels of the Hop1 protein, a checkpoint adaptor that localizes to chromosome axes, suppress the checkpoint defect of a zip1 pch2 mutant restoring Mek1 activity and meiotic cell cycle delay. We demonstrate that the critical role of Pch2 in this synapsis checkpoint is to sustain Mec1-dependent phosphorylation of Hop1 at threonine 318. We also show that the ATPase activity of Pch2 is essential for its checkpoint function and that ATP binding to Pch2 is required for its localization. Previous work has shown that Pch2 negatively regulates Hop1 chromosome abundance during unchallenged meiosis. Based on our results, we propose that, under checkpoint-inducing conditions, Pch2 also possesses a positive action on Hop1 promoting its phosphorylation and its proper distribution on unsynapsed chromosome axes. PMID:27257060
Herruzo, Esther; Ontoso, David; González-Arranz, Sara; Cavero, Santiago; Lechuga, Ana; San-Segundo, Pedro A
2016-09-19
Meiotic cells possess surveillance mechanisms that monitor critical events such as recombination and chromosome synapsis. Meiotic defects resulting from the absence of the synaptonemal complex component Zip1 activate a meiosis-specific checkpoint network resulting in delayed or arrested meiotic progression. Pch2 is an evolutionarily conserved AAA+ ATPase required for the checkpoint-induced meiotic block in the zip1 mutant, where Pch2 is only detectable at the ribosomal DNA array (nucleolus). We describe here that high levels of the Hop1 protein, a checkpoint adaptor that localizes to chromosome axes, suppress the checkpoint defect of a zip1 pch2 mutant restoring Mek1 activity and meiotic cell cycle delay. We demonstrate that the critical role of Pch2 in this synapsis checkpoint is to sustain Mec1-dependent phosphorylation of Hop1 at threonine 318. We also show that the ATPase activity of Pch2 is essential for its checkpoint function and that ATP binding to Pch2 is required for its localization. Previous work has shown that Pch2 negatively regulates Hop1 chromosome abundance during unchallenged meiosis. Based on our results, we propose that, under checkpoint-inducing conditions, Pch2 also possesses a positive action on Hop1 promoting its phosphorylation and its proper distribution on unsynapsed chromosome axes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Lin, Y J
1979-06-01
The synaptonemal complex (SC) in the diploid Rhoeo consists of 2 amorphous lateral elements, each about 46.0 nm thick, and one amorphous central element about 30.0 nm thick. The central region is about 115.0 nm wide. SC in the triploid have essentially the same dimensions as those of the diploid; both lateral (46.0 nm) and central (30.0 nm) elements are amorphous, and the central region is about 117.5 nm wide. The coil, observed in both diploid and triploid, is a modified short segment of SC with several twists at the end of a synapsed bivalent that is attached to the nuclear membrane. Serial sections in a diploid cell reveal that a coil extends inwards about 3.5 micron from the nuclear membrane and makes a complete turn at a distance of every 0.5 micron. There is a correlation between the modified ends of SC and terminal chiasmata in Rhoeo. The coils might have a positive role in the process of crossing over, or alternatively might be involved in ring formation by holding chromosome ends together while chiasmata are not involved. SC are present in chromocentres of both diploid and triploid. Chromocentres in diploid and triploid are indistinguishable, and appear to be formed from the aggregation of pericentromeric heterochromatin as a result of translocations which occured close to the centromeres. 3-dimensional hypothetical pachytene configuration of the diploid is presented.
Zickler, D; de Lares, L; Moreau, P J; Leblon, G
1985-01-01
The recessive meiotic mutant spo44 of Sordaria macrospora, with 90% ascospore abortion, exhibits striking effects on recombination (67% decrease), irregular segregation of the almost unpaired homologues, and a decrease in chiasma frequency in the few cases where bivalents are formed. Three-dimensional reconstructions of ten prophase nuclei indicate that pairing, as judged by the absence of fully formed synaptonemal complexes (SC), is not achieved although lateral elements (LE) assemble. The pairing failure is attributable to defects in the alignment of homologous chromosomes. The leptotene alignment seen in the wild type before SC formation was not observed in the spo44 nuclei. Dense material, considered to be precursor of SC central elements, was found scattered among the LE in two nuclei. The behaviour of spo44 substantiates the hypothesis that chromosome matching and SC formation are separable events. - The total length of the LE in the mutant is the same as in the wild type, but due to variable numbers and length of the individual LE, homologues cannot be lined up. Light microscopic observations indicate that the irregular length and number of LE is due to extensive chromosome breakage. The wild-type function corresponding to spo44 is required for both LE integrity and chromosome matching. Reconstructions of heterozygous nuclei reveal the presence of a supernumerary nucleolar organizer in one arm of chromosome 7. It is suggested that rDNA has been inserted into a gene whose function is involved in pairing or into a controlling sequence that interacts with the pairing process.
Brown, Simon David; Jarosinska, Olga Dorota; Lorenz, Alexander
2018-03-17
Hop1 is a component of the meiosis-specific chromosome axis and belongs to the evolutionarily conserved family of HORMA domain proteins. Hop1 and its orthologs in higher eukaryotes are a major factor in promoting double-strand DNA break formation and inter-homolog recombination. In budding yeast and mammals, they are also involved in a meiotic checkpoint kinase cascade monitoring the completion of double-strand DNA break repair. We used the fission yeast, Schizosaccharomyces pombe, which lacks a canonical synaptonemal complex to test whether Hop1 has a role beyond supporting the generation of double-strand DNA breaks and facilitating inter-homolog recombination events. We determined how mutants of homologous recombination factors genetically interact with hop1, studied the role(s) of the HORMA domain of Hop1, and characterized a bio-informatically predicted interactor of Hop1, Aho1 (SPAC688.03c). Our observations indicate that in fission yeast, Hop1 does require its HORMA domain to support wild-type levels of meiotic recombination and localization to meiotic chromatin. Furthermore, we show that hop1∆ only weakly interacts genetically with mutants of homologous recombination factors, and in fission yeast likely has no major role beyond break formation and promoting inter-homolog events. We speculate that after the evolutionary loss of the synaptonemal complex, Hop1 likely has become less important for modulating recombination outcome during meiosis in fission yeast, and that this led to a concurrent rewiring of genetic pathways controlling meiotic recombination.
DNA Strand Exchange and RecA Homologs in Meiosis
Brown, M. Scott; Bishop, Douglas K.
2015-01-01
Homology search and DNA strand–exchange reactions are central to homologous recombination in meiosis. During meiosis, these processes are regulated such that the probability of choosing a homolog chromatid as recombination partner is enhanced relative to that of choosing a sister chromatid. This regulatory process occurs as homologous chromosomes pair in preparation for assembly of the synaptonemal complex. Two strand–exchange proteins, Rad51 and Dmc1, cooperate in regulated homology search and strand exchange in most organisms. Here, we summarize studies on the properties of these two proteins and their accessory factors. In addition, we review current models for the assembly of meiotic strand–exchange complexes and the possible mechanisms through which the interhomolog bias of recombination partner choice is achieved. PMID:25475089
[Identification of C(2)M interacting proteins by yeast two-hybrid screening].
Yue, Shan-shan; Xia, Lai-xin
2015-11-01
The synaptonemal complex (SC) is a huge structure which assembles between the homologous chromosomes during meiotic prophase I. Drosophila germ cell-specific nucleoprotein C(2)M clustering at chromosomes can induce SC formation. To further study the molecular function and mechanism of C(2)M in meiosis, we constructed a bait vector for C(2)M and used the yeast two-hybrid system to identify C(2)M interacting proteins. Forty interacting proteins were obtained, including many DNA and histone binding proteins, ATP synthases and transcription factors. Gene silencing assays in Drosophila showed that two genes, wech and Psf1, may delay the disappearance of SC. These results indicate that Wech and Psf1 may form a complex with C(2)M to participate in the formation or stabilization of the SC complex.
Weis, MaryAnn; Rai, Jyoti; Hudson, David M.; Dimori, Milena; Zimmerman, Sarah M.; Hogue, William R.; Swain, Frances L.; Burdine, Marie S.; Mackintosh, Samuel G.; Tackett, Alan J.; Suva, Larry J.; Eyre, David R.
2016-01-01
Collagen is a major component of the extracellular matrix and its integrity is essential for connective tissue and organ function. The importance of proteins involved in intracellular collagen post-translational modification, folding and transport was recently highlighted from studies on recessive forms of osteogenesis imperfecta (OI). Here we describe the critical role of SC65 (Synaptonemal Complex 65, P3H4), a leprecan-family member, as part of an endoplasmic reticulum (ER) complex with prolyl 3-hydroxylase 3. This complex affects the activity of lysyl-hydroxylase 1 potentially through interactions with the enzyme and/or cyclophilin B. Loss of Sc65 in the mouse results in instability of this complex, altered collagen lysine hydroxylation and cross-linking leading to connective tissue defects that include low bone mass and skin fragility. This is the first indication of a prolyl-hydroxylase complex in the ER controlling lysyl-hydroxylase activity during collagen synthesis. PMID:27119146
2017-01-01
During meiotic prophase, a structure called the synaptonemal complex (SC) assembles at the interface between aligned pairs of homologous chromosomes, and crossover recombination events occur between their DNA molecules. Here we investigate the inter-relationships between these two hallmark features of the meiotic program in the nematode C. elegans, revealing dynamic properties of the SC that are modulated by recombination. We demonstrate that the SC incorporates new subunits and switches from a more highly dynamic/labile state to a more stable state as germ cells progress through the pachytene stage of meiotic prophase. We further show that the more dynamic state of the SC is prolonged in mutants where meiotic recombination is impaired. Moreover, in meiotic mutants where recombination intermediates are present in limiting numbers, SC central region subunits become preferentially stabilized on the subset of chromosome pairs that harbor a site where pro-crossover factors COSA-1 and MutSγ are concentrated. Polo-like kinase PLK-2 becomes preferentially localized to the SCs of chromosome pairs harboring recombination sites prior to the enrichment of SC central region proteins on such chromosomes, and PLK-2 is required for this enrichment to occur. Further, late pachytene nuclei in a plk-2 mutant exhibit the more highly dynamic SC state. Together our data demonstrate that crossover recombination events elicit chromosome-autonomous stabilizing effects on the SC and implicate PLK-2 in this process. We discuss how this recombination-triggered modulation of SC state might contribute to regulatory mechanisms that operate during meiosis to ensure the formation of crossovers while at the same time limiting their numbers. PMID:28339470
Sepsi, Adél; Higgins, James D; Heslop-Harrison, John S Pat; Schwarzacher, Trude
2017-01-01
During meiosis, centromeres in some species undergo a series of associations, but the processes and progression to homologous pairing is still a matter of debate. Here, we aimed to correlate meiotic centromere dynamics and early telomere behaviour to the progression of synaptonemal complex (SC) construction in hexaploid wheat (2n = 42) by triple immunolabelling of CENH3 protein marking functional centromeres, and SC proteins ASY1 (unpaired lateral elements) and ZYP1 (central elements in synapsed chromosomes). We show that single or multiple centromere associations formed in meiotic interphase undergo a progressive polarization (clustering) at the nuclear periphery in early leptotene, leading to formation of the telomere bouquet. Critically, immunolabelling shows the dynamics of these presynaptic centromere associations and a structural reorganization of the centromeric chromatin coinciding with key events of synapsis initiation from the subtelomeric regions. As short stretches of subtelomeric synapsis emerged at early zygotene, centromere clusters lost their strong polarization, gradually resolving as individual centromeres indicated by more than 21 CENH3 foci associated with unpaired lateral elements. Only following this centromere depolarization were homologous chromosome arms connected, as observed by the alignment and fusion of interstitial ZYP1 loci elongating at zygotene so synapsis at centromeres is a continuation of the interstitial synapsis. Our results thus reveal that centromere associations are a component of the timing and progression of chromosome synapsis, and the gradual release of the individual centromeres from the clusters correlates with the elongation of interstitial synapsis between the corresponding homologues. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Stronghill, P; Pathan, N; Ha, H; Supijono, E; Hasenkampf, C
2010-08-01
A cytological comparative analysis of male meiocytes was performed for Arabidopsis wild type and the ahp2 (hop2) mutant with emphasis on ahp2's largely uncharacterized prophase I. Leptotene progression appeared normal in ahp2 meiocytes; chromosomes exhibited regular axis formation and assumed a typical polarized nuclear organization. In contrast, 4',6'-diamidino-2-phenylindole-stained ahp2 pachytene chromosome spreads demonstrated a severe reduction in stabilized pairing. However, transmission electron microscopy (TEM) analysis of sections from meiocytes revealed that ahp2 chromosome axes underwent significant amounts of close alignment (44% of total axis). This apparent paradox strongly suggests that the Ahp2 protein is involved in the stabilization of homologous chromosome close alignment. Fluorescent in situ hybridization in combination with Zyp1 immunostaining revealed that ahp2 mutants undergo homologous synapsis of the nucleolus-organizer-region-bearing short arms of chromosomes 2 and 4, despite the otherwise "nucleus-wide" lack of stabilized pairing. The duration of ahp2 zygotene was significantly prolonged and is most likely due to difficulties in chromosome alignment stabilization and subsequent synaptonemal complex formation. Ahp2 and Mnd1 proteins have previously been shown, "in vitro," to form a heterodimer. Here we show, "in situ," that the Ahp2 and Mnd1 proteins are synchronous in their appearance and disappearance from meiotic chromosomes. Both the Ahp2 and Mnd1 proteins localize along the chromosomal axis. However, localization of the Ahp2 protein was entirely foci-based whereas Mnd1 protein exhibited an immunostaining pattern with some foci along the axis and a diffuse staining for the rest of the chromosome.
Carofiglio, Fabrizia; Sleddens-Linkels, Esther; Wassenaar, Evelyne; Inagaki, Akiko; van Cappellen, Wiggert A; Grootegoed, J Anton; Toth, Attila; Baarends, Willy M
2018-03-01
Repair of SPO11-dependent DNA double-strand breaks (DSBs) via homologous recombination (HR) is essential for stable homologous chromosome pairing and synapsis during meiotic prophase. Here, we induced radiation-induced DSBs to study meiotic recombination and homologous chromosome pairing in mouse meiocytes in the absence of SPO11 activity (Spo11 YF/YF model), and in the absence of both SPO11 and HORMAD1 (Spo11/Hormad1 dko). Within 30 min after 5 Gy irradiation of Spo11 YF/YF mice, 140-160 DSB repair foci were detected, which specifically localized to the synaptonemal complex axes. Repair of radiation-induced DSBs was incomplete in Spo11 YF/YF compared to Spo11 +/YF meiocytes. Still, repair of exogenous DSBs promoted partial recovery of chromosome pairing and synapsis in Spo11 YF/YF meiocytes. This indicates that at least part of the exogenous DSBs can be processed in an interhomolog recombination repair pathway. Interestingly, in a seperate experiment, using 3 Gy of irradiation, we observed that Spo11/Hormad1 dko spermatocytes contained fewer remaining DSB repair foci at 48 h after irradiation compared to irradiated Spo11 knockout spermatocytes. Together, these results show that recruitment of exogenous DSBs to the synaptonemal complex, in conjunction with repair of exogenous DSBs via the homologous chromosome, contributes to homology recognition. In addition, the data suggest a role for HORMAD1 in DNA repair pathway choice in mouse meiocytes. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Page, Scott L.; Khetani, Radhika S.; Lake, Cathleen M.; Nielsen, Rachel J.; Jeffress, Jennifer K.; Warren, William D.; Bickel, Sharon E.; Hawley, R. Scott
2008-01-01
The synaptonemal complex (SC) is an intricate structure that forms between homologous chromosomes early during the meiotic prophase, where it mediates homolog pairing interactions and promotes the formation of genetic exchanges. In Drosophila melanogaster, C(3)G protein forms the transverse filaments (TFs) of the SC. The N termini of C(3)G homodimers localize to the Central Element (CE) of the SC, while the C-termini of C(3)G connect the TFs to the chromosomes via associations with the axial elements/lateral elements (AEs/LEs) of the SC. Here, we show that the Drosophila protein Corona (CONA) co-localizes with C(3)G in a mutually dependent fashion and is required for the polymerization of C(3)G into mature thread-like structures, in the context both of paired homologous chromosomes and of C(3)G polycomplexes that lack AEs/LEs. Although AEs assemble in cona oocytes, they exhibit defects that are characteristic of c(3)G mutant oocytes, including failure of AE alignment and synapsis. These results demonstrate that CONA, which does not contain a coiled coil domain, is required for the stable ‘zippering’ of TFs to form the central region of the Drosophila SC. We speculate that CONA's role in SC formation may be similar to that of the mammalian CE proteins SYCE2 and TEX12. However, the observation that AE alignment and pairing occurs in Tex12 and Syce2 mutant meiocytes but not in cona oocytes suggests that the SC plays a more critical role in the stable association of homologs in Drosophila than it does in mammalian cells. PMID:18802461
Qiao, Huanyu; Chen, Jefferson K.; Reynolds, April; Höög, Christer; Paddy, Michael; Hunter, Neil
2012-01-01
The intimate synapsis of homologous chromosome pairs (homologs) by synaptonemal complexes (SCs) is an essential feature of meiosis. In many organisms, synapsis and homologous recombination are interdependent: recombination promotes SC formation and SCs are required for crossing-over. Moreover, several studies indicate that initiation of SC assembly occurs at sites where crossovers will subsequently form. However, recent analyses in budding yeast and fruit fly imply a special role for centromeres in the initiation of SC formation. In addition, in budding yeast, persistent SC–dependent centromere-association facilitates the disjunction of chromosomes that have failed to become connected by crossovers. Here, we examine the interplay between SCs, recombination, and centromeres in a mammal. In mouse spermatocytes, centromeres do not serve as SC initiation sites and are invariably the last regions to synapse. However, centromeres are refractory to de-synapsis during diplonema and remain associated by short SC fragments. Since SC–dependent centromere association is lost before diakinesis, a direct role in homolog segregation seems unlikely. However, post–SC disassembly, we find evidence of inter-centromeric connections that could play a more direct role in promoting homolog biorientation and disjunction. A second class of persistent SC fragments is shown to be crossover-dependent. Super-resolution structured-illumination microscopy (SIM) reveals that these structures initially connect separate homolog axes and progressively diminish as chiasmata form. Thus, DNA crossing-over (which occurs during pachynema) and axis remodeling appear to be temporally distinct aspects of chiasma formation. SIM analysis of the synapsis and crossover-defective mutant Sycp1−/− implies that SCs prevent unregulated fusion of homolog axes. We propose that SC fragments retained during diplonema stabilize nascent bivalents and help orchestrate local chromosome reorganization that promotes centromere and chiasma function. PMID:22761591
Predator odour and its impact on male fertility and reproduction in Phodopus campbelli hamsters
NASA Astrophysics Data System (ADS)
Vasilieva, N. Y.; Cherepanova, E. V.; von Holst, D.; Apfelbach, R.
This study investigated the influence of cat urine odour in suppressing development and fertility in Campbell's hamster males. Exposure to this odour from postnatal day 11 until day 45 (sexual maturation) resulted in reduced sex organ weights, reduced testosterone levels and in an increase in abnormalities of the synaptonemal complex in both sex chromosomes and autosomes. Subsequent breeding experiments revealed a significant decrease in litter size. All these data indicate a severe effect of predator odour on the breeding success of potential prey species. It is assumed that these effects are caused by the sulphurous compounds in the urine; however, the underlying mechanisms are not yet known.
Huynh, A D; Leblon, G; Zickler, D
1986-01-01
Six ultra violet (UV) mutageneses were performed on the spo76 UV-sensitive mutant of Sordaria macrospora. Spo76 shows an early centromere cleavage associated with an arrest at the first meiotic division and therefore does not form ascospores. Moreover, it exhibits altered pairing structure (synaptonemal complex), revealing a defect in the sister-chromatid cohesiveness. From 37 revertants which partially restored sporulation, 34 extragenic suppressors of spo76 were isolated. All suppressors are altered in chromosomal pairing but, unlike spo76, show a wild type centromere cleavage. The 34 suppressors were assigned to six different genes and mapped. Only one of the suppressor genes is involved in repair functions.
Direct visualization reveals kinetics of meiotic chromosome synapsis
Rog, Ofer; Dernburg, Abby F.
2015-03-17
The synaptonemal complex (SC) is a conserved protein complex that stabilizes interactions along homologous chromosomes (homologs) during meiosis. The SC regulates genetic exchanges between homologs, thereby enabling reductional division and the production of haploid gametes. Here, we directly observe SC assembly (synapsis) by optimizing methods for long-term fluorescence recording in C. elegans. We report that synapsis initiates independently on each chromosome pair at or near pairing centers—specialized regions required for homolog associations. Once initiated, the SC extends rapidly and mostly irreversibly to chromosome ends. Quantitation of SC initiation frequencies and extension rates reveals that initiation is a rate-limiting step inmore » homolog interactions. Eliminating the dynein-driven chromosome movements that accompany synapsis severely retards SC extension, revealing a new role for these conserved motions. This work provides the first opportunity to directly observe and quantify key aspects of meiotic chromosome interactions and will enable future in vivo analysis of germline processes.« less
Huang, Chu-Chun; Grubb, Jennifer; Thacker, Drew; Lee, Chih-Ying; Dresser, Michael E.; Hunter, Neil; Bishop, Douglas K.
2013-01-01
During meiosis, repair of programmed DNA double-strand breaks (DSBs) by recombination promotes pairing of homologous chromosomes and their connection by crossovers. Two DNA strand-exchange proteins, Rad51 and Dmc1, are required for meiotic recombination in many organisms. Studies in budding yeast imply that Rad51 acts to regulate Dmc1's strand exchange activity, while its own exchange activity is inhibited. However, in a dmc1 mutant, elimination of inhibitory factor, Hed1, activates Rad51's strand exchange activity and results in high levels of recombination without participation of Dmc1. Here we show that Rad51-mediated meiotic recombination is not subject to regulatory processes associated with high-fidelity chromosome segregation. These include homolog bias, a process that directs strand exchange between homologs rather than sister chromatids. Furthermore, activation of Rad51 does not effectively substitute for Dmc1's chromosome pairing activity, nor does it ensure formation of the obligate crossovers required for accurate homolog segregation. We further show that Dmc1's dominance in promoting strand exchange between homologs involves repression of Rad51's strand-exchange activity. This function of Dmc1 is independent of Hed1, but requires the meiotic kinase, Mek1. Hed1 makes a relatively minor contribution to homolog bias, but nonetheless this is important for normal morphogenesis of synaptonemal complexes and efficient crossing-over especially when DSB numbers are decreased. Super-resolution microscopy shows that Dmc1 also acts to organize discrete complexes of a Mek1 partner protein, Red1, into clusters along lateral elements of synaptonemal complexes; this activity may also contribute to homolog bias. Finally, we show that when interhomolog bias is defective, recombination is buffered by two feedback processes, one that increases the fraction of events that yields crossovers, and a second that we propose involves additional DSB formation in response to defective homolog interactions. Thus, robust crossover homeostasis is conferred by integrated regulation at initiation, strand-exchange and maturation steps of meiotic recombination. PMID:24367271
[Inverted meiosis and its place in the evolution of sexual reproduction pathways].
Bogdanov, Yu F
2016-05-01
Inverted meiosis is observed in plants (Cyperaceae and Juncaceae) and insects (Coccoidea, Aphididae) with holocentric chromosomes, the centromeres of which occupy from 70 to 90% of the metaphase chromosome length. In the first meiotic division (meiosis I), chiasmata are formed and rodlike bivalents orient equationally, and in anaphase I, sister chromatids segregate to the poles; the diploid chromosome number is maintained. Non-sister chromatids of homologous chromosomes remain in contact during interkinesis and prophase II and segregate in anaphase II, forming haploid chromosome sets. The segregation of sister chromatids in meiosis I was demonstrated by example of three plant species that were heterozygous for chromosomal rearrangements. In these species, sister chromatids, marked with rearrangement, segregated in anaphase I. Using fluorescent antibodies, it was demonstrated that meiotic recombination enzymes Spo11 and Rad5l, typical of canonical meiosis, functioned at the meiotic prophase I of pollen mother cells of Luzula elegance and Rhynchospora pubera. Moreover, antibodies to synaptonemal complexes proteins ASY1 and ZYP1 were visualized as filamentous structures, pointing to probable formation of synaptonemal complexes. In L. elegance, chiasmata are formed by means of chromatin threads containing satellite DNA. According to the hypothesis of the author of this review, equational division of sister chromatids at meiosis I in the organisms with inverted meiosis can be explained by the absence of specific meiotic proteins (shugoshins). These proteins are able to protect cohesins of holocentric centromeres from hydrolysis by separases at meiosis I, as occurs in the organisms with monocentric chromosomes and canonical meiosis. The basic type of inverted meiosis was described in Coccoidea and Aphididae males. In their females, the variants of parthenogenesis were also observed. Until now, the methods of molecular cytogenetics were not applied for the analysis of inverted meiosis in Coccoidea and Aphididae. Evolutionary, inverted meiosis is thought to have appeared secondarily as an adaptation of the molecular mechanisms of canonical meiosis to chromosome holocentrism.
Wrestling with Chromosomes: The Roles of SUMO During Meiosis.
Nottke, Amanda C; Kim, Hyun-Min; Colaiácovo, Monica P
2017-01-01
Meiosis is a specialized form of cell division required for the formation of haploid gametes and therefore is essential for successful sexual reproduction. Various steps are exquisitely coordinated to ensure accurate chromosome segregation during meiosis, thereby promoting the formation of haploid gametes from diploid cells. Recent studies are demonstrating that an important form of regulation during meiosis is exerted by the post-translational protein modification known as sumoylation. Here, we review and discuss the various critical steps of meiosis in which SUMO-mediated regulation has been implicated thus far. These include the maintenance of meiotic centromeric heterochromatin , meiotic DNA double-strand break repair and homologous recombination, centromeric coupling, and the assembly of a proteinaceous scaffold between homologous chromosomes known as the synaptonemal complex.
Conservation and Variability of Meiosis Across the Eukaryotes.
Loidl, Josef
2016-11-23
Comparisons among a variety of eukaryotes have revealed considerable variability in the structures and processes involved in their meiosis. Nevertheless, conventional forms of meiosis occur in all major groups of eukaryotes, including early-branching protists. This finding confirms that meiosis originated in the common ancestor of all eukaryotes and suggests that primordial meiosis may have had many characteristics in common with conventional extant meiosis. However, it is possible that the synaptonemal complex and the delicate crossover control related to its presence were later acquisitions. Later still, modifications to meiotic processes occurred within different groups of eukaryotes. Better knowledge on the spectrum of derived and uncommon forms of meiosis will improve our understanding of many still mysterious aspects of the meiotic process and help to explain the evolutionary basis of functional adaptations to the meiotic program.
Borodin, P M; Ladygina, T Iu; Gorlov, I P
1989-02-01
Electron microscope analysis of surface-spread synaptonemal complexes (SC) in oocytes and spermatocytes from double cis heterozygotes for Is(HSR; 1C5)1Icg and Is(HSR; 1E3)2Icg was carried out. Aberrant chromosomes were isolated from the feral population of Mus musculus musculus of Novosibirsk. They contain homogeneously stained regions of total length of about 30% of Chr 1 mitotic metaphase. Heteromorphic bivalents of Chr1 with different lengths of the lateral elements of SC and the loop in the intermedial position were revealed in 4.4% spermatocytes and 20% oocytes of heterozygous animals. The loop size depends on the stage of meiosis: it is maximal at late zygotene and decreases up to disappearance during pachytene.
The Impact of Entropy on the Spatial Organization of Synaptonemal Complexes within the Cell Nucleus
Fritsche, Miriam; Reinholdt, Laura G.; Lessard, Mark; Handel, Mary Ann; Bewersdorf, Jörg; Heermann, Dieter W.
2012-01-01
We employ 4Pi-microscopy to study SC organization in mouse spermatocyte nuclei allowing for the three-dimensional reconstruction of the SC's backbone arrangement. Additionally, we model the SCs in the cell nucleus by confined, self-avoiding polymers, whose chain ends are attached to the envelope of the confining cavity and diffuse along it. This work helps to elucidate the role of entropy in shaping pachytene SC organization. The framework provided by the complex interplay between SC polymer rigidity, tethering and confinement is able to qualitatively explain features of SC organization, such as mean squared end-to-end distances, mean squared center-of-mass distances, or SC density distributions. However, it fails in correctly assessing SC entanglement within the nucleus. In fact, our analysis of the 4Pi-microscopy images reveals a higher ordering of SCs within the nuclear volume than what is expected by our numerical model. This suggests that while effects of entropy impact SC organization, the dedicated action of proteins or actin cables is required to fine-tune the spatial ordering of SCs within the cell nucleus. PMID:22574147
Bugno-Poniewierska, Monika; Pawlina, Klaudia; Jakubczak, Andrzej; Jeżewska-Witkowska, Grażyna
2014-01-01
The aim of this study was to analyse meiotic cells of male interspecific hybrids of the red fox (Vulpes vulpes) and the arctic fox (Alopex lagopus). To this end we determined stages of meiotic cells as well as carried out FISH analyses with probes specific to heterosomes and a TUNEL assay on synaptonemal complex preparations. The meiotic cell analysis revealed only the presence of stages of the first meiotic division from leptotene to pachytene. Moreover, we observed an increased level of early dissociation of the X-Y bivalent as well as a high percentage of apoptotic cells. These results indicate the disruption of meiotic division in male hybrids manifested through meiotic arrest of the cells. Faulty pairing of the heterosomes can be considered as one of the causes leading to the initiation of the apoptotic process.
Smolikov, Sarit; Eizinger, Andreas; Hurlburt, Allison; Rogers, Eric; Villeneuve, Anne M; Colaiácovo, Mónica P
2007-08-01
SYP-3 is a new structural component of the synaptonemal complex (SC) required for the regulation of chromosome synapsis. Both chromosome morphogenesis and nuclear organization are altered throughout the germlines of syp-3 mutants. Here, our analysis of syp-3 mutants provides insights into the relationship between chromosome conformation and the repair of meiotic double-strand breaks (DSBs). Although crossover recombination is severely reduced in syp-3 mutants, the production of viable offspring accompanied by the disappearance of RAD-51 foci suggests that DSBs are being repaired in these synapsis-defective mutants. Our studies indicate that once interhomolog recombination is impaired, both intersister recombination and nonhomologous end-joining pathways may contribute to repair during germline meiosis. Moreover, our studies suggest that the conformation of chromosomes may influence the mode of DSB repair employed during meiosis.
Recombination, Pairing, and Synapsis of Homologs during Meiosis
Zickler, Denise; Kleckner, Nancy
2015-01-01
Recombination is a prominent feature of meiosis in which it plays an important role in increasing genetic diversity during inheritance. Additionally, in most organisms, recombination also plays mechanical roles in chromosomal processes, most notably to mediate pairing of homologous chromosomes during prophase and, ultimately, to ensure regular segregation of homologous chromosomes when they separate at the first meiotic division. Recombinational interactions are also subject to important spatial patterning at both early and late stages. Recombination-mediated processes occur in physical and functional linkage with meiotic axial chromosome structure, with interplay in both directions, before, during, and after formation and dissolution of the synaptonemal complex (SC), a highly conserved meiosis-specific structure that links homolog axes along their lengths. These diverse processes also are integrated with recombination-independent interactions between homologous chromosomes, nonhomology-based chromosome couplings/clusterings, and diverse types of chromosome movement. This review provides an overview of these diverse processes and their interrelationships. PMID:25986558
De Muyt, Arnaud; Zhang, Liangran; Piolot, Tristan; Kleckner, Nancy; Espagne, Eric; Zickler, Denise
2014-01-01
Human enhancer of invasion-10 (Hei10) mediates meiotic recombination and also plays roles in cell proliferation. Here we explore Hei10’s roles throughout the sexual cycle of the fungus Sordaria with respect to localization and effects of null, RING-binding, and putative cyclin-binding (RXL) domain mutations. Hei10 makes three successive types of foci. Early foci form along synaptonemal complex (SC) central regions. At some of these positions, depending on its RING and RXL domains, Hei10 mediates development and turnover of two sequential types of recombination complexes, each demarked by characteristic amplified Hei10 foci. Integration with ultrastructural data for recombination nodules further reveals that recombination complexes differentiate into three types, one of which corresponds to crossover recombination events during or prior to SC formation. Finally, Hei10 positively and negatively modulates SUMO localization along SCs by its RING and RXL domains, respectively. The presented findings suggest that Hei10 integrates signals from the SC, associated recombination complexes, and the cell cycle to mediate both the development and programmed turnover/evolution of recombination complexes via SUMOylation/ubiquitination. Analogous cell cycle-linked assembly/disassembly switching could underlie localization and roles for Hei10 in centrosome/spindle pole body dynamics and associated nuclear trafficking. We suggest that Hei10 is a unique type of structure-based signal transduction protein. PMID:24831702
Tripathi, Pankaj; Anuradha, S; Ghosal, Gargi; Muniyappa, K
2006-12-08
Saccharomyces cerevisiae HOP1, which encodes a component of synaptonemal complex (SC), plays an important role in both gene conversion and crossing over between homologs, as well as enforces meiotic recombination checkpoint control over the progression of recombination intermediates. In hop1Delta mutants, meiosis-specific double-strand breaks (DSBs) are reduced to 10% of the wild-type level, and at aberrantly late times, these DSBs are processed into inter-sister recombination intermediates. However, the underlying mechanism by which Hop1 protein regulates these nuclear events remains obscure. Here we show that Hop1 protein interacts selectively with the Holliday junction, changes its global conformation and blocks the dissolution of the junction by a RecQ helicase. The Holliday junction-Hop1 protein complexes are significantly more stable at higher ionic strengths and molar excess of unlabeled competitor DNA than complexes containing other recombination intermediates. Structural analysis of the Holliday junction using 2-aminopurine fluorescence emission, DNase I footprinting and KMnO4 probing provide compelling evidence that Hop1 protein binding induces significant distortion at the center of the Holliday junction. We propose that Hop1 protein might coordinate the physical monitoring of meiotic recombination intermediates with the process of branch migration of Holliday junction.
Sordaria, a model system to uncover links between meiotic pairing and recombination
Zickler, Denise; Espagne, Eric
2017-01-01
The mycelial fungus Sordaria macrospora was first used as experimental system for meiotic recombination. This review shows that it provides also a powerful cytological system for dissecting chromosome dynamics in wild-type and mutant meioses. Fundamental cytogenetic findings include: (1) The identification of presynaptic alignment as a key step in pairing of homologous chromosomes. (2) The discovery that biochemical complexes that mediate recombination at the DNA level concomitantly mediate pairing of homologs. (3) This pairing process involves not only resolution but also avoidance of chromosomal entanglements and the resolution system includes dissolution of constraining DNA recombination interactions, achieved by a unique role of Mlh1. (4) Discovery that the central components of the synaptonemal complex directly mediate the re-localization of the recombination proteins from on-axis to in-between homologue axis positions. (5) Identification of putative STUbL protein Hei10 as a structure-based signal transduction molecule that coordinates progression and differentiation of recombinational interactions at multiple stages. (6) Discovery that a single interference process mediates both nucleation of the SC and designation of crossover sites, thereby ensuring even spacing of both features. (7) Discovery of local modulation of sister-chromatid cohesion at sites of crossover recombination. PMID:26877138
Modulation of Prdm9-controlled meiotic chromosome asynapsis overrides hybrid sterility in mice.
Gregorova, Sona; Gergelits, Vaclav; Chvatalova, Irena; Bhattacharyya, Tanmoy; Valiskova, Barbora; Fotopulosova, Vladana; Jansa, Petr; Wiatrowska, Diana; Forejt, Jiri
2018-03-14
Hybrid sterility is one of the reproductive isolation mechanisms leading to speciation. Prdm9 , the only known vertebrate hybrid-sterility gene, causes failure of meiotic chromosome synapsis and infertility in male hybrids that are the offspring of two mouse subspecies. Within species, Prdm9 determines the sites of programmed DNA double-strand breaks (DSBs) and meiotic recombination hotspots. To investigate the relation between Prdm9 -controlled meiotic arrest and asynapsis, we inserted random stretches of consubspecific homology on several autosomal pairs in sterile hybrids, and analyzed their ability to form synaptonemal complexes and to rescue male fertility. Twenty-seven or more megabases of consubspecific (belonging to the same subspecies) homology fully restored synapsis in a given autosomal pair, and we predicted that two or more DSBs within symmetric hotspots per chromosome are necessary for successful meiosis. We hypothesize that impaired recombination between evolutionarily diverged chromosomes could function as one of the mechanisms of hybrid sterility occurring in various sexually reproducing species. © 2018, Gregorova et al.
Modulation of Prdm9-controlled meiotic chromosome asynapsis overrides hybrid sterility in mice
Chvatalova, Irena; Bhattacharyya, Tanmoy; Valiskova, Barbora; Fotopulosova, Vladana; Jansa, Petr; Wiatrowska, Diana
2018-01-01
Hybrid sterility is one of the reproductive isolation mechanisms leading to speciation. Prdm9, the only known vertebrate hybrid-sterility gene, causes failure of meiotic chromosome synapsis and infertility in male hybrids that are the offspring of two mouse subspecies. Within species, Prdm9 determines the sites of programmed DNA double-strand breaks (DSBs) and meiotic recombination hotspots. To investigate the relation between Prdm9-controlled meiotic arrest and asynapsis, we inserted random stretches of consubspecific homology on several autosomal pairs in sterile hybrids, and analyzed their ability to form synaptonemal complexes and to rescue male fertility. Twenty-seven or more megabases of consubspecific (belonging to the same subspecies) homology fully restored synapsis in a given autosomal pair, and we predicted that two or more DSBs within symmetric hotspots per chromosome are necessary for successful meiosis. We hypothesize that impaired recombination between evolutionarily diverged chromosomes could function as one of the mechanisms of hybrid sterility occurring in various sexually reproducing species. PMID:29537370
Chromosomal abnormalities, meiotic behavior and fertility in domestic animals.
Villagómez, D A F; Pinton, A
2008-01-01
Since the advent of the surface microspreading technique for synaptonemal complex analysis, increasing interest in describing the synapsis patterns of chromosome abnormalities associated with fertility of domestic animals has been noticed during the past three decades. In spite of the number of scientific reports describing the occurrence of structural chromosome abnormalities, their meiotic behavior and gametic products, little is known in domestic animal species about the functional effects of such chromosome aberrations in the germ cell line of carriers. However, some interesting facts gained from recent and previous studies on the meiotic behavior of chromosome abnormalities of domestic animals permit us to discuss, in the frame of recent knowledge emerging from mouse and human investigations, the possible mechanism implicated in the well known association between meiotic disruption and chromosome pairing failure. New cytogenetic techniques, based on molecular and immunofluorescent analyses, are allowing a better description of meiotic processes, including gamete production. The present communication reviews the knowledge of the meiotic consequences of chromosome abnormalities in domestic animals. Copyright 2008 S. Karger AG, Basel.
A compartmentalized signaling network mediates crossover control in meiosis
Zhang, Liangyu; Köhler, Simone; Rillo-Bohn, Regina
2018-01-01
During meiosis, each pair of homologous chromosomes typically undergoes at least one crossover (crossover assurance), but these exchanges are strictly limited in number and widely spaced along chromosomes (crossover interference). The molecular basis for this chromosome-wide regulation remains mysterious. A family of meiotic RING finger proteins has been implicated in crossover regulation across eukaryotes. Caenorhabditis elegans expresses four such proteins, of which one (ZHP-3) is known to be required for crossovers. Here we investigate the functions of ZHP-1, ZHP-2, and ZHP-4. We find that all four ZHP proteins, like their homologs in other species, localize to the synaptonemal complex, an unusual, liquid crystalline compartment that assembles between paired homologs. Together they promote accumulation of pro-crossover factors, including ZHP-3 and ZHP-4, at a single recombination intermediate, thereby patterning exchanges along paired chromosomes. These proteins also act at the top of a hierarchical, symmetry-breaking process that enables crossovers to direct accurate chromosome segregation. PMID:29521627
Protein Determinants of Meiotic DNA Break Hotspots
Fowler, Kyle R.; Gutiérrez-Velasco, Susana
2013-01-01
SUMMARY Meiotic recombination, crucial for proper chromosome segregation and genome evolution, is initiated by programmed DNA double-strand breaks (DSBs) in yeasts and likely all sexually reproducing species. In fission yeast, DSBs occur up to hundreds of times more frequently at special sites, called hotspots, than in other regions of the genome. What distinguishes hotspots from cold regions is an unsolved problem, although transcription factors determine some hotspots. We report the discovery that three coiled-coil proteins – Rec25, Rec27, and Mug20 – bind essentially all hotspots with unprecedented specificity even without DSB formation. These small proteins are components of linear elements, are related to synaptonemal complex proteins, and are essential for nearly all DSBs at most hotspots. Our results indicate these hotspot determinants activate or stabilize the DSB-forming protein Rec12 (Spo11 homolog) rather than promote its binding to hotspots. We propose a new paradigm for hotspot determination and crossover control by linear element proteins. PMID:23395004
Köhler, Simone; Wojcik, Michal; Dernburg, Abby F.
2017-01-01
When cells enter meiosis, their chromosomes reorganize as linear arrays of chromatin loops anchored to a central axis. Meiotic chromosome axes form a platform for the assembly of the synaptonemal complex (SC) and play central roles in other meiotic processes, including homologous pairing, recombination, and chromosome segregation. However, little is known about the 3D organization of components within the axes, which include cohesin complexes and additional meiosis-specific proteins. Here, we investigate the molecular organization of meiotic chromosome axes in Caenorhabditis elegans through STORM (stochastic optical reconstruction microscopy) and PALM (photo-activated localization microscopy) superresolution imaging of intact germ-line tissue. By tagging one axis protein (HIM-3) with a photoconvertible fluorescent protein, we established a spatial reference for other components, which were localized using antibodies against epitope tags inserted by CRISPR/Cas9 genome editing. Using 3D averaging, we determined the position of all known components within synapsed chromosome axes to high spatial precision in three dimensions. We find that meiosis-specific HORMA domain proteins span a gap between cohesin complexes and the central region of the SC, consistent with their essential roles in SC assembly. Our data further suggest that the two different meiotic cohesin complexes are distinctly arranged within the axes: Although cohesin complexes containing the kleisin REC-8 protrude above and below the plane defined by the SC, complexes containing COH-3 or -4 kleisins form a central core, which may physically separate sister chromatids. This organization may help to explain the role of the chromosome axes in promoting interhomolog repair of meiotic double-strand breaks by inhibiting intersister repair. PMID:28559338
Schmahl, G; Obiekezie, A
1991-01-01
The development of spermatozoa in the polyopisthocotylean fish-gill flukes Protomicrocotyle ivoriensis and Gastrocotyle sp. was investigated by light and transmission electron microscopy. In both species the spermatogonia were undifferentiated cells, the cytoplasm of which contained numerous free ribosomes, and successive mitoses gave rise to primary spermatocytes, which are clearly identified by the presence of synaptonemal complexes in their nuclei. As compared with that of the spermatogonia, the cytoplasm of the primary spermatocytes contained an increased number of ribosomes. Golgi complexes were frequently seen in the spermatocytes of P. ivoriensis but not in Gastrocotyle sp. In P. ivoriensis the secondary spermatocytes were separated by interspaces between the irregularly shaped cell surfaces. In both species a syncytial mass of spermatids developed, which gave rise to 64 spermatozoa. Cross sections of the mature spermatozoa of both species revealed the presence of numerous submembranous microtubules and two axonemes showing a pattern of 9 doublet peripheral microtubules plus a central one. In contrast to microtubules plus a central one. In contrast to P. ivoriensis, in Gastrocotyle sp. the axonemes originated from different places at the axis of the spermatozoon. With respect to the other results obtained, the spermiogenesis and the fine structure of spermatozoa of both species studied were similar to previous findings in other polyopisthocotyleans.
Sordaria, a model system to uncover links between meiotic pairing and recombination.
Zickler, Denise; Espagne, Eric
2016-06-01
The mycelial fungus Sordaria macrospora was first used as experimental system for meiotic recombination. This review shows that it provides also a powerful cytological system for dissecting chromosome dynamics in wild-type and mutant meioses. Fundamental cytogenetic findings include: (1) the identification of presynaptic alignment as a key step in pairing of homologous chromosomes. (2) The discovery that biochemical complexes that mediate recombination at the DNA level concomitantly mediate pairing of homologs. (3) This pairing process involves not only resolution but also avoidance of chromosomal entanglements and the resolution system includes dissolution of constraining DNA recombination interactions, achieved by a unique role of Mlh1. (4) Discovery that the central components of the synaptonemal complex directly mediate the re-localization of the recombination proteins from on-axis to in-between homologue axis positions. (5) Identification of putative STUbL protein Hei10 as a structure-based signal transduction molecule that coordinates progression and differentiation of recombinational interactions at multiple stages. (6) Discovery that a single interference process mediates both nucleation of the SC and designation of crossover sites, thereby ensuring even spacing of both features. (7) Discovery of local modulation of sister-chromatid cohesion at sites of crossover recombination. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tessé, Sophie; Bourbon, Henri-Marc; Debuchy, Robert; Budin, Karine; Dubois, Emeline; Liangran, Zhang; Antoine, Romain; Piolot, Tristan; Kleckner, Nancy; Zickler, Denise; Espagne, Eric
2017-01-01
Meiosis is the cellular program by which a diploid cell gives rise to haploid gametes for sexual reproduction. Meiotic progression depends on tight physical and functional coupling of recombination steps at the DNA level with specific organizational features of meiotic-prophase chromosomes. The present study reveals that every step of this coupling is mediated by a single molecule: Asy2/Mer2. We show that Mer2, identified so far only in budding and fission yeasts, is in fact evolutionarily conserved from fungi (Mer2/Rec15/Asy2/Bad42) to plants (PRD3/PAIR1) and mammals (IHO1). In yeasts, Mer2 mediates assembly of recombination–initiation complexes and double-strand breaks (DSBs). This role is conserved in the fungus Sordaria. However, functional analysis of 13 mer2 mutants and successive localization of Mer2 to axis, synaptonemal complex (SC), and chromatin revealed, in addition, three further important functions. First, after DSB formation, Mer2 is required for pairing by mediating homolog spatial juxtaposition, with implications for crossover (CO) patterning/interference. Second, Mer2 participates in the transfer/maintenance and release of recombination complexes to/from the SC central region. Third, after completion of recombination, potentially dependent on SUMOylation, Mer2 mediates global chromosome compaction and post-recombination chiasma development. Thus, beyond its role as a recombinosome–axis/SC linker molecule, Mer2 has important functions in relation to basic chromosome structure. PMID:29021238
Chromosome Synapsis Alleviates Mek1-Dependent Suppression of Meiotic DNA Repair
Subramanian, Vijayalakshmi V.; MacQueen, Amy J.; Vader, Gerben; Shinohara, Miki; Sanchez, Aurore; Borde, Valérie; Shinohara, Akira; Hochwagen, Andreas
2016-01-01
Faithful meiotic chromosome segregation and fertility require meiotic recombination between homologous chromosomes rather than the equally available sister chromatid, a bias that in Saccharomyces cerevisiae depends on the meiotic kinase, Mek1. Mek1 is thought to mediate repair template bias by specifically suppressing sister-directed repair. Instead, we found that when Mek1 persists on closely paired (synapsed) homologues, DNA repair is severely delayed, suggesting that Mek1 suppresses any proximal repair template. Accordingly, Mek1 is excluded from synapsed homologues in wild-type cells. Exclusion requires the AAA+-ATPase Pch2 and is directly coupled to synaptonemal complex assembly. Stage-specific depletion experiments further demonstrate that DNA repair in the context of synapsed homologues requires Rad54, a repair factor inhibited by Mek1. These data indicate that the sister template is distinguished from the homologue primarily by its closer proximity to inhibitory Mek1 activity. We propose that once pairing or synapsis juxtaposes homologues, exclusion of Mek1 is necessary to avoid suppression of all templates and accelerate repair progression. PMID:26870961
Mutations in Caenorhabditis elegans him-19 show meiotic defects that worsen with age.
Tang, Lois; Machacek, Thomas; Mamnun, Yasmine M; Penkner, Alexandra; Gloggnitzer, Jiradet; Wegrostek, Christina; Konrat, Robert; Jantsch, Michael F; Loidl, Josef; Jantsch, Verena
2010-03-15
From a screen for meiotic Caenorhabditis elegans mutants based on high incidence of males, we identified a novel gene, him-19, with multiple functions in prophase of meiosis I. Mutant him-19(jf6) animals show a reduction in pairing of homologous chromosomes and subsequent bivalent formation. Consistently, synaptonemal complex formation is spatially restricted and possibly involves nonhomologous chromosomes. Also, foci of the recombination protein RAD-51 occur delayed or cease altogether. Ultimately, mutation of him-19 leads to chromosome missegregation and reduced offspring viability. The observed defects suggest that HIM-19 is important for both homology recognition and formation of meiotic DNA double-strand breaks. It therefore seems to be engaged in an early meiotic event, resembling in this respect the regulator kinase CHK-2. Most astonishingly, him-19(jf6) hermaphrodites display worsening of phenotypes with increasing age, whereas defects are more severe in female than in male meiosis. This finding is consistent with depletion of a him-19-dependent factor during the production of oocytes. Further characterization of him-19 could contribute to our understanding of age-dependent meiotic defects in humans.
Pairing and recombination features during meiosis in Cebus paraguayanus (Primates: Platyrrhini)
Garcia-Cruz, Raquel; Robles, Pedro; Steinberg, Eliana R; Camats, Nuria; Brieño, Miguel A; Garcia-Caldés, Montserrat; Mudry, Marta D
2009-01-01
Background Among neotropical Primates, the Cai monkey Cebus paraguayanus (CPA) presents long, conserved chromosome syntenies with the human karyotype (HSA) as well as numerous C+ blocks in different chromosome pairs. In this study, immunofluorescence (IF) against two proteins of the Synaptonemal Complex (SC), namely REC8 and SYCP1, two recombination protein markers (RPA and MLH1), and one protein involved in the pachytene checkpoint machinery (BRCA1) was performed in CPA spermatocytes in order to analyze chromosome meiotic behavior in detail. Results Although in the vast majority of pachytene cells all autosomes were paired and synapsed, in a small number of nuclei the heterochromatic C-positive terminal region of bivalent 11 remained unpaired. The analysis of 75 CPA cells at pachytene revealed a mean of 43.22 MLH1 foci per nucleus and 1.07 MLH1 foci in each CPA bivalent 11, always positioned in the region homologous to HSA chromosome 21. Conclusion Our results suggest that C blocks undergo delayed pairing and synapsis, although they do not interfere with the general progress of pairing and synapsis. PMID:19500368
Davis, L; Barbera, M; McDonnell, A; McIntyre, K; Sternglanz, R; Jin , Q; Loidl, J; Engebrecht, J
2001-01-01
The Saccharomyces cerevisiae MUM2 gene is essential for meiotic, but not mitotic, DNA replication and thus sporulation. Genetic interactions between MUM2 and a component of the origin recognition complex and polymerase alpha-primase suggest that MUM2 influences the function of the DNA replication machinery. Early meiotic gene expression is induced to a much greater extent in mum2 cells than in meiotic cells treated with the DNA synthesis inhibitor hydroxyurea. This result indicates that the mum2 meiotic arrest is downstream of the arrest induced by hydroxyurea and suggests that DNA synthesis is initiated in the mutant. Genetic analyses indicate that the recombination that occurs in mum2 mutants is dependent on the normal recombination machinery and on synaptonemal complex components and therefore is not a consequence of lesions created by incompletely replicated DNA. Both meiotic ectopic and allelic recombination are similarly reduced in the mum2 mutant, and the levels are consistent with the levels of meiosis-specific DSBs that are generated. Cytological analyses of mum2 mutants show that chromosome pairing and synapsis occur, although at reduced levels compared to wild type. Given the near-wild-type levels of meiotic gene expression, pairing, and synapsis, we suggest that the reduction in DNA replication is directly responsible for the reduced level of DSBs and meiotic recombination. PMID:11238403
Exposure to Brefeldin A promotes initiation of meiosis in murine female germ cells.
Zhang, Lian-Jun; Chen, Bo; Feng, Xin-Lei; Ma, Hua-Gang; Sun, Li-Lan; Feng, Yan-Min; Liang, Gui-Jin; Cheng, Shun-Feng; Li, Lan; Shen, Wei
2015-01-01
In mammals, ontogenesis starts from a fusion of spermatozoon and oocyte, which are produced by reductive nuclear division of a diploid germ cell in a specialised but complex biological process known as meiosis. However, little is known about the mechanism of meiotic initiation in germ cells, although many factors may be responsible for meiosis both in male and female gonads. In this study, 11.5 days post coitum (dpc) female fetal mouse genital ridges were cultured in vitro with exposure to Brefeldin A (BFA) for 6h, and the changes in meiosis were detected. Synaptonemal-complex analysis implied that BFA played a positive role in meiosis initiation and this hypothesis was confirmed by quantitative PCR of meiosis-specific genes: stimulated by retinoic acid gene 8 (Stra8) and deleted in a zoospermia-like (DAZL). At the same time, mRNA expression of retinoic acid synthetase (Raldh2) and retinoic acid (RA) receptors increased in female gonads with in vitro exposure to BFA. Transplanting genital ridges treated with BFA into the kidney capsule of immunodeficient mice demonstrated that the development capacity of female germ cells was normal, while formation of primordial follicles was seen to be a result of accelerated meiosis after exposure to BFA. In conclusion, the study indicated that BFA stimulated meiosis initiation partly by RA signalling and then promoted the development of follicles.
The Chromatin Regulator Brpf1 Regulates Embryo Development and Cell Proliferation*
You, Linya; Yan, Kezhi; Zou, Jinfeng; Zhao, Hong; Bertos, Nicholas R.; Park, Morag; Wang, Edwin; Yang, Xiang-Jiao
2015-01-01
With hundreds of chromatin regulators identified in mammals, an emerging issue is how they modulate biological and pathological processes. BRPF1 (bromodomain- and PHD finger-containing protein 1) is a unique chromatin regulator possessing two PHD fingers, one bromodomain and a PWWP domain for recognizing multiple histone modifications. In addition, it binds to the acetyltransferases MOZ, MORF, and HBO1 (also known as KAT6A, KAT6B, and KAT7, respectively) to promote complex formation, restrict substrate specificity, and enhance enzymatic activity. We have recently showed that ablation of the mouse Brpf1 gene causes embryonic lethality at E9.5. Here we present systematic analyses of the mutant animals and demonstrate that the ablation leads to vascular defects in the placenta, yolk sac, and embryo proper, as well as abnormal neural tube closure. At the cellular level, Brpf1 loss inhibits proliferation of embryonic fibroblasts and hematopoietic progenitors. Molecularly, the loss reduces transcription of a ribosomal protein L10 (Rpl10)-like gene and the cell cycle inhibitor p27, and increases expression of the cell-cycle inhibitor p16 and a novel protein homologous to Scp3, a synaptonemal complex protein critical for chromosome association and embryo survival. These results uncover a crucial role of Brpf1 in controlling mouse embryo development and regulating cellular and gene expression programs. PMID:25773539
The distribution of early recombination nodules on zygotene bivalents from plants.
Anderson, L K; Hooker, K D; Stack, S M
2001-01-01
Early recombination nodules (ENs) are protein complexes approximately 100 nm in diameter that are associated with forming synaptonemal complexes (SCs) during leptotene and zygotene of meiosis. Although their functions are not yet clear, ENs may have roles in synapsis and recombination. Here we report on the frequency and distribution of ENs in zygotene SC spreads from six plant species that include one lower vascular plant, two dicots, and three monocots. For each species, the number of ENs per unit length is higher for SC segments than for (asynapsed) axial elements (AEs). In addition, EN number is strongly correlated with SC segment length. There are statistically significant differences in EN frequencies on SCs between species, but these differences are not related to genome size, number of chromosomes, or phylogenetic class. There is no difference in the frequency of ENs per unit length of SC from early to late zygotene. The distribution of distances between adjacent ENs on SC segments is random for all six species, but ENs are found at synaptic forks more often than expected for a random distribution of ENs on SCs. From these observations, we conclude that in plants: (1) some ENs bind to AEs prior to synapsis, (2) most ENs bind to forming SCs at synaptic forks, and (3) ENs do not bind to already formed SCs. PMID:11729167
Tessé, Sophie; Bourbon, Henri-Marc; Debuchy, Robert; Budin, Karine; Dubois, Emeline; Liangran, Zhang; Antoine, Romain; Piolot, Tristan; Kleckner, Nancy; Zickler, Denise; Espagne, Eric
2017-09-15
Meiosis is the cellular program by which a diploid cell gives rise to haploid gametes for sexual reproduction. Meiotic progression depends on tight physical and functional coupling of recombination steps at the DNA level with specific organizational features of meiotic-prophase chromosomes. The present study reveals that every step of this coupling is mediated by a single molecule: Asy2/Mer2. We show that Mer2, identified so far only in budding and fission yeasts, is in fact evolutionarily conserved from fungi (Mer2/Rec15/Asy2/Bad42) to plants (PRD3/PAIR1) and mammals (IHO1). In yeasts, Mer2 mediates assembly of recombination-initiation complexes and double-strand breaks (DSBs). This role is conserved in the fungus Sordaria However, functional analysis of 13 mer2 mutants and successive localization of Mer2 to axis, synaptonemal complex (SC), and chromatin revealed, in addition, three further important functions. First, after DSB formation, Mer2 is required for pairing by mediating homolog spatial juxtaposition, with implications for crossover (CO) patterning/interference. Second, Mer2 participates in the transfer/maintenance and release of recombination complexes to/from the SC central region. Third, after completion of recombination, potentially dependent on SUMOylation, Mer2 mediates global chromosome compaction and post-recombination chiasma development. Thus, beyond its role as a recombinosome-axis/SC linker molecule, Mer2 has important functions in relation to basic chromosome structure. © 2017 Tessé et al.; Published by Cold Spring Harbor Laboratory Press.
Mutations in Caenorhabditis elegans him-19 Show Meiotic Defects That Worsen with Age
Tang, Lois; Machacek, Thomas; Mamnun, Yasmine M.; Penkner, Alexandra; Gloggnitzer, Jiradet; Wegrostek, Christina; Konrat, Robert; Loidl, Josef; Jantsch, Verena
2010-01-01
From a screen for meiotic Caenorhabditis elegans mutants based on high incidence of males, we identified a novel gene, him-19, with multiple functions in prophase of meiosis I. Mutant him-19(jf6) animals show a reduction in pairing of homologous chromosomes and subsequent bivalent formation. Consistently, synaptonemal complex formation is spatially restricted and possibly involves nonhomologous chromosomes. Also, foci of the recombination protein RAD-51 occur delayed or cease altogether. Ultimately, mutation of him-19 leads to chromosome missegregation and reduced offspring viability. The observed defects suggest that HIM-19 is important for both homology recognition and formation of meiotic DNA double-strand breaks. It therefore seems to be engaged in an early meiotic event, resembling in this respect the regulator kinase CHK-2. Most astonishingly, him-19(jf6) hermaphrodites display worsening of phenotypes with increasing age, whereas defects are more severe in female than in male meiosis. This finding is consistent with depletion of a him-19-dependent factor during the production of oocytes. Further characterization of him-19 could contribute to our understanding of age-dependent meiotic defects in humans. PMID:20071466
Phadnis, Naina; Cipak, Lubos; Polakova, Silvia; Hyppa, Randy W; Cipakova, Ingrid; Anrather, Dorothea; Karvaiova, Lucia; Mechtler, Karl; Smith, Gerald R; Gregan, Juraj
2015-05-01
Proper meiotic chromosome segregation, essential for sexual reproduction, requires timely formation and removal of sister chromatid cohesion and crossing-over between homologs. Early in meiosis cohesins hold sisters together and also promote formation of DNA double-strand breaks, obligate precursors to crossovers. Later, cohesin cleavage allows chromosome segregation. We show that in fission yeast redundant casein kinase 1 homologs, Hhp1 and Hhp2, previously shown to regulate segregation via phosphorylation of the Rec8 cohesin subunit, are also required for high-level meiotic DNA breakage and recombination. Unexpectedly, these kinases also mediate phosphorylation of a different meiosis-specific cohesin subunit Rec11. This phosphorylation in turn leads to loading of linear element proteins Rec10 and Rec27, related to synaptonemal complex proteins of other species, and thereby promotes DNA breakage and recombination. Our results provide novel insights into the regulation of chromosomal features required for crossing-over and successful reproduction. The mammalian functional homolog of Rec11 (STAG3) is also phosphorylated during meiosis and appears to be required for fertility, indicating wide conservation of the meiotic events reported here.
Meiotic Recombination in the Giraffe (G. reticulata).
Vozdova, Miluse; Fröhlich, Jan; Kubickova, Svatava; Sebestova, Hana; Rubes, Jiri
2017-01-01
Recently, the reticulated giraffe (G. reticulata) was identified as a distinct species, which emphasized the need for intensive research in this interesting animal. To shed light on the meiotic process as a source of biodiversity, we analysed the frequency and distribution of meiotic recombination in 2 reticulated giraffe males. We used immunofluorescence detection of synaptonemal complex protein (SYCP3), meiotic double strand breaks (DSB, marked as RAD51 foci) in leptonema, and crossovers (COs, as MLH1 foci) in pachynema. The mean number of autosomal MLH1 foci per cell (27), which resulted from a single, distally located MLH1 focus observed on most chromosome arms, is one of the lowest among mammalian species analysed so far. The CO/DSB conversion ratio was 0.32. The pseudoautosomal region was localised in the Xq and Yp termini by FISH and showed an MLH1 focus in 83% of the pachytene cells. Chromatin structures corresponding to the nucleolus organiser regions were observed in the pachytene spermatocytes. The results are discussed in the context of known data on meiosis in Cetartiodactyla, depicting that the variation in CO frequency among species of this taxonomic group is mostly associated with their diploid chromosome number. © 2017 S. Karger AG, Basel.
Xin, Qiang; Shen, Yi; Li, Xi; Lu, Wei; Wang, Xiang; Han, Xue; Dong, Faming; Wan, Lili; Yang, Guangsheng; Cheng, Zhukuan
2016-01-01
During meiotic prophase I, chromatin undergoes dynamic changes to establish a structural basis for essential meiotic events. However, the mechanism that coordinates chromosome structure and meiotic progression remains poorly understood in plants. Here, we characterized a spontaneous sterile mutant MS5bMS5b in oilseed rape (Brassica napus) and found its meiotic chromosomes were arrested at leptotene. MS5 is preferentially expressed in reproductive organs and encodes a Brassica-specific protein carrying conserved coiled-coil and DUF626 domains with unknown function. MS5 is essential for pairing of homologs in meiosis, but not necessary for the initiation of DNA double-strand breaks. The distribution of the axis element-associated protein ASY1 occurs independently of MS5, but localization of the meiotic cohesion subunit SYN1 requires functional MS5. Furthermore, both the central element of the synaptonemal complex and the recombination element do not properly form in MS5bMS5b mutants. Our results demonstrate that MS5 participates in progression of meiosis during early prophase I and its allelic variants lead to differences in fertility, which may provide a promising strategy for pollination control for heterosis breeding. PMID:27194707
del Priore, Lucía; Pigozzi, María I
2015-01-01
In the zebra finch, 2 alternative morphs regarding centromere position were described for chromosome 6. This polymorphism was interpreted to be the result of a pericentric inversion, but other causes of the centromere repositioning were not ruled out. We used immunofluorescence localization to examine the distribution of MLH1 foci on synaptonemal complexes to test the prediction that pericentric inversions cause synaptic irregularities and/or crossover suppression in heterozygotes. We found complete suppression of crossing over in the region involved in the rearrangement in male and female heterozygotes. In contrast, the same region showed high levels of crossing over in homozygotes for the acrocentric form of this chromosome. No inversion loops or synaptic irregularities were detected along bivalent 6 in heterozygotes suggesting that heterologous pairing is achieved during zygotene or early pachytene. Altogether these findings strongly indicate that the polymorphic chromosome 6 originated by a pericentric inversion. Since inversions are common rearrangements in karyotypic evolution in birds, it seems likely that early heterologous pairing could help to fix these rearrangements, preventing crossing overs in heterozygotes and their deleterious effects on fertility. © 2015 S. Karger AG, Basel.
Blattner, Ariane C; Chaurasia, Soumya; McKee, Bruce D; Lehner, Christian F
2016-04-01
Spatially controlled release of sister chromatid cohesion during progression through the meiotic divisions is of paramount importance for error-free chromosome segregation during meiosis. Cohesion is mediated by the cohesin protein complex and cleavage of one of its subunits by the endoprotease separase removes cohesin first from chromosome arms during exit from meiosis I and later from the pericentromeric region during exit from meiosis II. At the onset of the meiotic divisions, cohesin has also been proposed to be present within the centromeric region for the unification of sister centromeres into a single functional entity, allowing bipolar orientation of paired homologs within the meiosis I spindle. Separase-mediated removal of centromeric cohesin during exit from meiosis I might explain sister centromere individualization which is essential for subsequent biorientation of sister centromeres during meiosis II. To characterize a potential involvement of separase in sister centromere individualization before meiosis II, we have studied meiosis in Drosophila melanogaster males where homologs are not paired in the canonical manner. Meiosis does not include meiotic recombination and synaptonemal complex formation in these males. Instead, an alternative homolog conjunction system keeps homologous chromosomes in pairs. Using independent strategies for spermatocyte-specific depletion of separase complex subunits in combination with time-lapse imaging, we demonstrate that separase is required for the inactivation of this alternative conjunction at anaphase I onset. Mutations that abolish alternative homolog conjunction therefore result in random segregation of univalents during meiosis I also after separase depletion. Interestingly, these univalents become bioriented during meiosis II, suggesting that sister centromere individualization before meiosis II does not require separase.
Blattner, Ariane C.; McKee, Bruce D.; Lehner, Christian F.
2016-01-01
Spatially controlled release of sister chromatid cohesion during progression through the meiotic divisions is of paramount importance for error-free chromosome segregation during meiosis. Cohesion is mediated by the cohesin protein complex and cleavage of one of its subunits by the endoprotease separase removes cohesin first from chromosome arms during exit from meiosis I and later from the pericentromeric region during exit from meiosis II. At the onset of the meiotic divisions, cohesin has also been proposed to be present within the centromeric region for the unification of sister centromeres into a single functional entity, allowing bipolar orientation of paired homologs within the meiosis I spindle. Separase-mediated removal of centromeric cohesin during exit from meiosis I might explain sister centromere individualization which is essential for subsequent biorientation of sister centromeres during meiosis II. To characterize a potential involvement of separase in sister centromere individualization before meiosis II, we have studied meiosis in Drosophila melanogaster males where homologs are not paired in the canonical manner. Meiosis does not include meiotic recombination and synaptonemal complex formation in these males. Instead, an alternative homolog conjunction system keeps homologous chromosomes in pairs. Using independent strategies for spermatocyte-specific depletion of separase complex subunits in combination with time-lapse imaging, we demonstrate that separase is required for the inactivation of this alternative conjunction at anaphase I onset. Mutations that abolish alternative homolog conjunction therefore result in random segregation of univalents during meiosis I also after separase depletion. Interestingly, these univalents become bioriented during meiosis II, suggesting that sister centromere individualization before meiosis II does not require separase. PMID:27120695
The dragon lizard Pogona vitticeps has ZZ/ZW micro-sex chromosomes.
Ezaz, Tariq; Quinn, Alexander E; Miura, Ikuo; Sarre, Stephen D; Georges, Arthur; Marshall Graves, Jennifer A
2005-01-01
The bearded dragon, Pogona vitticeps (Agamidae: Reptilia) is an agamid lizard endemic to Australia. Like crocodilians and many turtles, temperature-dependent sex determination (TSD) is common in agamid lizards, although many species have genotypic sex determination (GSD). P. vitticeps is reported to have GSD, but no detectable sex chromosomes. Here we used molecular cytogenetic and differential banding techniques to reveal sex chromosomes in this species. Comparative genomic hybridization (CGH), GTG- and C-banding identified a highly heterochromatic microchromosome specific to females, demonstrating female heterogamety (ZZ/ZW) in this species. We isolated the P. vitticeps W chromosome by microdissection, re-amplified the DNA and used it to paint the W. No unpaired bivalents were detected in male synaptonemal complexes at meiotic pachytene, confirming male homogamety. We conclude that P. vitticeps has differentiated previously unidentifable W and Z micro-sex chromosomes, the first to be demonstrated in an agamid lizard. Our finding implies that heterochromatinization of the heterogametic chromosome occurred during sex chromosome differentiation in this species, as is the case in some lizards and many snakes, as well as in birds and mammals. Many GSD reptiles with cryptic sex chromosomes may also prove to have micro-sex chromosomes. Reptile microchromosomes, long dismissed as non-functional minutiae and often omitted from karyotypes, therefore deserve closer scrutiny with new and more sensitive techniques.
Letcher, Peter M; Lee, Philip A; Lopez, Salvador; Burnett, Micheal; McBride, Robert C; Powell, Martha J
2016-03-01
Successful algal cultivation for biofuel production is one path in the transition to a renewable energy economy. The green alga Scenedesmus dimorphus is a candidate for biofuel production, but is subject to parasitism and subsequent population crash when cultivated in open ponds. From an open pond cultivating S. dimorphus for biofuel production in New Mexico, USA, an amoeboid parasite was isolated, designated as isolate FD61, and its rDNA operon sequenced. A BLAST search for nuc 18S rDNA (18S) sequence similarity identified the parasite as Paraphysoderma sedebokerense (Blastocladiomycota). Here, we examine the ultrastructure of P. sedebokerense and compare it with that of a sister taxon, Physoderma maydis. The parasite has thin-walled vegetative sporangia and thick-walled resting sporangia. Our observations indicate that amoeboid swarmers are produced in the vegetative phase, while either amoeboid swarmers or zoospores are the product of meiosis in resting sporangia. Meiosis is confirmed by the presence of synaptonemal complexes in resting sporangia nuclei. Notably, P. sedebokerense has a Golgi apparatus with stacked cisternae, a feature reported for P. maydis, but which is absent in all other examined taxa in Blastocladiomycota. This report furthers our knowledge of the life cycle of P. sedebokerense. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Borodin, P M; Gorlov, I P; Ladygina TYu
1990-01-01
An examination of the meiotic pattern of chromosome 1 isolated from a feral mouse population and containing a double insertion (Is) of homogeneously staining regions (HSRs) was carried out. The region delineated by the proximal breakpoint of Is(HSR;1C5) 1Icg and the distal breakpoint of Is(HSR;1E3)2Icg is desynapsed during the early pachytene stage and heterosynapsed at the midpachytene, as shown by electron microscopic analysis of synaptonemal complexes. The HSRs have no effect on the segregation of chromosome 1 in heterozygous mice. The lack of homosynapsis in the region under study causes chiasmata redistribution in heteromorphic bivalents. In normal males, single chiasmata are located in the medial part of the chromosome. In heterozygotes, this segment is heterosynapsed and unavailable for recombination. This leads to a significant decrease in the frequency of bivalents bearing single chiasmata. The total number of chiasmata per bivalent is much higher in heterozygous males than in normal ones. The recombination frequency between proximal markers fz and In also is higher in heterozygous animals. The increase in the total chiasma number in the heteromorphic bivalent is due to the addition of double chiasmata located mostly at precentromeric and pretelomeric regions of the chromosome.
Immunocytological analysis of meiotic recombination in two anole lizards (Squamata, Dactyloidae).
Lisachov, Artem P; Trifonov, Vladimir A; Giovannotti, Massimo; Ferguson-Smith, Malcolm A; Borodin, Pavel M
2017-01-01
Although the evolutionary importance of meiotic recombination is not disputed, the significance of interspecies differences in the recombination rates and recombination landscapes remains under-appreciated. Recombination rates and distribution of chiasmata have been examined cytologically in many mammalian species, whereas data on other vertebrates are scarce. Immunolocalization of the protein of the synaptonemal complex (SYCP3), centromere proteins and the mismatch-repair protein MLH1 was used, which is associated with the most common type of recombination nodules, to analyze the pattern of meiotic recombination in the male of two species of iguanian lizards, Anolis carolinensis Voigt, 1832 and Deiroptyx coelestinus (Cope, 1862). These species are separated by a relatively long evolutionary history although they retain the ancestral iguanian karyotype. In both species similar and extremely uneven distributions of MLH1 foci along the macrochromosome bivalents were detected: approximately 90% of crossovers were located at the distal 20% of the chromosome arm length. Almost total suppression of recombination in the intermediate and proximal regions of the chromosome arms contradicts the hypothesis that "homogenous recombination" is responsible for the low variation in GC content across the anole genome. It also leads to strong linkage disequilibrium between the genes located in these regions, which may benefit conservation of co-adaptive gene arrays responsible for the ecological adaptations of the anoles.
A Molecular Portrait of Arabidopsis Meiosis
Ma, Hong
2006-01-01
Meiosis is essential for eukaryotic sexual reproduction and important for genetic diversity among individuals. Efforts during the last decade in Arabidopsis have greatly expanded our understanding of the molecular basis of plant meiosis, which has traditionally provided much information about the cytological description of meiosis. Through both forward genetic analysis of mutants with reduced fertility and reverse genetic studies of homologs of known meiotic genes, we now have a basic knowledge about genes important for meiotic recombination and its relationship to pairing and synapsis, critical processes that ensure proper homolog segregation. In addition, several genes affecting meiotic progression, spindle assembly, chromosome separation, and meiotic cytokinesis have also been uncovered and characterized. It is worth noting that Arabidopsis molecular genetic studies are also revealing secrets of meiosis that have not yet been recognized elsewhere among eukaryotes, including gene functions that might be unique to plants and those that are potentially shared with animals and fungi. As we enter the post-genomics era of plant biology, there is no doubt that the next ten years will see an even greater number of discoveries in this important area of plant development and cell biology. Abbreviations: DAPI, 4′,6-diamidino-2-phenylindole; DSB, double strand break; DSBR, double strand break repair; SC, synaptonemal complex; TEM, transmission electron microscopy PMID:22303228
Torgasheva, Anna A; Rubtsov, Nikolai B; Borodin, Pavel M
2013-03-01
Homologous chromosome synapsis in inversion heterozygotes results in the formation of inversion loops. These loops might be transformed into straight, non-homologously paired bivalents via synaptic adjustment. Synaptic adjustment was discovered 30 years ago; however, its relationship with recombination has remained unclear. We analysed this relationship in female mouse embryos heterozygous for large paracentric inversion In(1)1Rk using immunolocalisation of the synaptonemal complex (SYCP3) and mature recombination nodules (MLH1) proteins. The frequency of cells containing bivalents with inversion loops decreased from 69 % to 28 % during pachytene. If an MLH1 focus was present in the non-homologously paired inverted region of the straight bivalent, it was always located in the middle of the inversion. Most of the small, incompletely adjusted loops contained MLH1 foci near the points at which pairing partners were switched. This observation indicates that the degree of synaptic adjustment depended on the crossover position. Complete synaptic adjustment was only possible if a crossover (CO) was located exactly in the middle of the inversion. If a CO was located at any other site, this interrupted synaptic adjustment and resulted in inversion loops of different sizes with an MLH1 focus at or near the edge of the remaining loop.
High-resolution crossover maps for each bivalent of Zea mays using recombination nodules.
Anderson, Lorinda K; Doyle, Gregory G; Brigham, Brian; Carter, Jenna; Hooker, Kristina D; Lai, Ann; Rice, Mindy; Stack, Stephen M
2003-01-01
Recombination nodules (RNs) are closely correlated with crossing over, and, because they are observed by electron microscopy of synaptonemal complexes (SCs) in extended pachytene chromosomes, RNs provide the highest-resolution cytological marker currently available for defining the frequency and distribution of crossovers along the length of chromosomes. Using the maize inbred line KYS, we prepared an SC karyotype in which each SC was identified by relative length and arm ratio and related to the proper linkage group using inversion heterozygotes. We mapped 4267 RNs on 2080 identified SCs to produce high-resolution maps of RN frequency and distribution on each bivalent. RN frequencies are closely correlated with both chiasma frequencies and SC length. The total length of the RN recombination map is about twofold shorter than that of most maize linkage maps, but there is good correspondence between the relative lengths of the different maps when individual bivalents are considered. Each bivalent has a unique distribution of crossing over, but all bivalents share a high frequency of distal RNs and a severe reduction of RNs at and near kinetochores. The frequency of RNs at knobs is either similar to or higher than the average frequency of RNs along the SCs. These RN maps represent an independent measure of crossing over along maize bivalents. PMID:14573493
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loidl, J.
Meiotic chromosome pairing in isogenic triploid and tetraploid strains of yeast and the consequences of polyploidy on meiotic chromosome segregation are studied. Synaptonemal complex formation at pachytene was found to be different in the triploid and in the tetraploid. In the triploid, triple-synapsis, that is, the connection of three homologues at a given site, is common. It can even extend all the way along the chromosomes. In the tetraploid, homologous chromosomes mostly come in pairs of synapsed bivalents. Multiple synapsis, that is, synapsis of more than two homologues in one and the same region, was virtually absent in the tetraploid.more » About five quadrivalents per cell occurred due to the switching of pairing partners. From the frequency of pairing partner switches it can be deduced that in most chromosomes synapsis is initiated primarily at one end, occasionally at both ends and rarely at an additional intercalary position. In contrast to a considerably reduced spore viability ({approximately}40%) in the triploid, spore viability is only mildly affected in the tetraploid. The good spore viability is presumably due to the low frequency of quadrivalents and to the highly regular 2:2 segregation of the few quadrivalents that do occur. Occasionally, however, quadrivalents appear to be subject to 3:1 nondisjunction that leads to spore death in the second generation. 29 refs., 6 figs., 4 tabs.« less
A core hSSB1–INTS complex participates in the DNA damage response
Zhang, Feng; Ma, Teng; Yu, Xiaochun
2013-01-01
Summary Human single-stranded DNA-binding protein 1 (hSSB1) plays an important role in the DNA damage response and the maintenance of genomic stability. It has been shown that the core hSSB1 complex contains hSSB1, INTS3 and C9orf80. Using protein affinity purification, we have identified integrator complex subunit 6 (INTS6) as a major subunit of the core hSSB1 complex. INTS6 forms a stable complex with INTS3 and hSSB1 both in vitro and in vivo. In this complex, INTS6 directly interacts with INTS3. In response to the DNA damage response, along with INTS3 and hSSB1, INTS6 relocates to the DNA damage sites. Moreover, the hSSB1–INTS complex regulates the accumulation of RAD51 and BRCA1 at DNA damage sites and the correlated homologous recombination. PMID:23986477
The segmentation of Thangka damaged regions based on the local distinction
NASA Astrophysics Data System (ADS)
Xuehui, Bi; Huaming, Liu; Xiuyou, Wang; Weilan, Wang; Yashuai, Yang
2017-01-01
Damaged regions must be segmented before digital repairing Thangka cultural relics. A new segmentation algorithm based on local distinction is proposed for segmenting damaged regions, taking into account some of the damaged area with a transition zone feature, as well as the difference between the damaged regions and their surrounding regions, combining local gray value, local complexity and local definition-complexity (LDC). Firstly, calculate the local complexity and normalized; secondly, calculate the local definition-complexity and normalized; thirdly, calculate the local distinction; finally, set the threshold to segment local distinction image, remove the over segmentation, and get the final segmentation result. The experimental results show that our algorithm is effective, and it can segment the damaged frescoes and natural image etc.
Neumann, Frank; Wagner, Claudia; Preuss, Klaus-Dieter; Kubuschok, Boris; Schormann, Claudia; Stevanovic, Stefan; Pfreundschuh, Michael
2005-11-01
Because of their frequent expression in a wide spectrum of malignant tumors but not in normal tissue except testis, cancer testis antigens are promising targets. However, except for HOM-TES-14/SCP1, their expression in malignant lymphomas is rare. SCP1 (synaptonemal complex protein 1) has been shown to elicit antibody responses in the autologous host, but no T-cell responses against HOM-TES-14/SCP1 have been reported. Using the SYFPEITHI algorithm, we selected peptides with a high binding affinity to major histocompatibility complex class 2 (MHC 2) molecules. The pentadecamer epitope p635-649 induced specific CD4+ T-cell responses that were shown to be restricted by HLA-DRB1*1401. The responses could be blocked by preincubation of T cells with anti-CD4 and antigen-presenting cells with anti-HLA-DR, respectively, proving the HLA-DR-restricted presentation of p635-649 and a CD4+ T-cell-mediated effector response. Responding CD4+ cells did not secrete interleukin-5 (IL-5), indicating that they belong to the T(H)1 subtype. The natural processing and presentation of p635-649 were demonstrated by pulsing autologous and allogeneic dendritic cells with a protein fragment covering p635-649. Thus, p635-649 is the first HOM-TES-14/SCP1-derived epitope to fulfill all prerequisites for use as a peptide vaccine in patients with HOM-TES-14/SCP1-expressing tumors, which is the case in two thirds of peripheral T-cell lymphomas.
Mutation screening of AURKB and SYCP3 in patients with reproductive problems.
López-Carrasco, A; Oltra, S; Monfort, S; Mayo, S; Roselló, M; Martínez, F; Orellana, C
2013-02-01
Mutations in the spindle checkpoint genes can cause improper chromosome segregations and aneuploidies, which in turn may lead to reproductive problems. Two of the proteins involved in this checkpoint are Aurora kinase B (AURKB), preventing the anaphase whenever microtubule-kinetochore attachments are not the proper ones during metaphase; and synaptonemal complex protein 3 (SYCP3), which is essential for the formation of the complex and for the recombination of the homologous chromosomes. This study has attempted to clarify the possible involvement of both proteins in the reproductive problems of patients with chromosomal instability. In order to do this, we have performed a screening for genetic variants in AURKB and SYCP3 among these patients using Sanger sequencing. Only one apparently non-pathogenic deletion was found in SYCP3. On the other hand, we found six sequence variations in AURKB. The consequences of these changes on the protein were studied in silico using different bioinformatic tools. In addition, the frequency of three of the variations was studied using a high-resolution melting approach. The absence of these three variants in control samples and their position in the AURKB gene suggests their possible involvement in the patients' chromosomal instability. Interestingly, two of the identified changes in AURKB were found in each member of a couple with antecedents of spontaneous pregnancy loss, a fetal anencephaly and a deaf daughter. One of these changes is described here for the first time. Although further studies are necessary, our results are encouraging enough to propose the analysis of AURKB in couples with reproductive problems.
Phosphorylation of human INO80 is involved in DNA damage tolerance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Dai; Waki, Mayumi; Umezawa, Masaki
Highlights: Black-Right-Pointing-Pointer Depletion of hINO80 significantly reduced PCNA ubiquitination. Black-Right-Pointing-Pointer Depletion of hINO80 significantly reduced nuclear dots intensity of RAD18 after UV irradiation. Black-Right-Pointing-Pointer Western blot analyses showed phosphorylated hINO80 C-terminus. Black-Right-Pointing-Pointer Overexpression of phosphorylation mutant hINO80 reduced PCNA ubiquitination. -- Abstract: Double strand breaks (DSBs) are the most serious type of DNA damage. DSBs can be generated directly by exposure to ionizing radiation or indirectly by replication fork collapse. The DNA damage tolerance pathway, which is conserved from bacteria to humans, prevents this collapse by overcoming replication blockages. The INO80 chromatin remodeling complex plays an important role in themore » DNA damage response. The yeast INO80 complex participates in the DNA damage tolerance pathway. The mechanisms regulating yINO80 complex are not fully understood, but yeast INO80 complex are necessary for efficient proliferating cell nuclear antigen (PCNA) ubiquitination and for recruitment of Rad18 to replication forks. In contrast, the function of the mammalian INO80 complex in DNA damage tolerance is less clear. Here, we show that human INO80 was necessary for PCNA ubiquitination and recruitment of Rad18 to DNA damage sites. Moreover, the C-terminal region of human INO80 was phosphorylated, and overexpression of a phosphorylation-deficient mutant of human INO80 resulted in decreased ubiquitination of PCNA during DNA replication. These results suggest that the human INO80 complex, like the yeast complex, was involved in the DNA damage tolerance pathway and that phosphorylation of human INO80 was involved in the DNA damage tolerance pathway. These findings provide new insights into the DNA damage tolerance pathway in mammalian cells.« less
DNA damage and repair after high LET radiation
NASA Astrophysics Data System (ADS)
O'Neill, Peter; Cucinotta, Francis; Anderson, Jennifer
Predictions from biophysical models of interactions of radiation tracks with cellular DNA indicate that clustered DNA damage sites, defined as two or more lesions formed within one or two helical turns of the DNA by passage of a single radiation track, are formed in mammalian cells. These complex DNA damage sites are regarded as a signature of ionizing radiation exposure particularly as the likelihood of clustered damage sites arising endogenously is low. For instance, it was predicted from biophysical modelling that 30-40% of low LET-induced double strand breaks (DSB), a form of clustered damage, are complex with the yield increasing to >90% for high LET radiation, consistent with the reduced reparability of DSB with increasing ionization density of the radiation. The question arises whether the increased biological effects such as mutagenesis, carcinogenesis and lethality is in part related to DNA damage complexity and/or spatial distribution of the damage sites, which may lead to small DNA fragments. With particle radiation it is also important to consider not only delta-rays which may cause clustered damaged sites and may be highly mutagenic but the non-random spatial distribution of DSB which may lead to deletions. In this overview I will concentrate on the molecular aspects of the variation of the complexity of DNA damage on radiation quality and the challenges this complexity presents the DNA damage repair pathways. I will draw on data from micro-irradiations which indicate that the repair of DSBs by non-homologous end joining is highly regulated with pathway choice and kinetics of repair dependent on the chemical complexity of the DSB. In summary the aim is to emphasis the link between the spatial distribution of energy deposition events related to the track, the molecular products formed and the consequence of damage complexity contributing to biological effects and to present some of the outstanding molecular challenges with particle radiation.
Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe
2018-05-01
This study presents the correlation between energy deposition and clustered DNA damage, based on a Monte Carlo simulation of the spectrum of direct DNA damage induced by low-energy electrons including the dissociative electron attachment. Clustered DNA damage is classified as simple and complex in terms of the combination of single-strand breaks (SSBs) or double-strand breaks (DSBs) and adjacent base damage (BD). The results show that the energy depositions associated with about 90% of total clustered DNA damage are below 150 eV. The simple clustered DNA damage, which is constituted of the combination of SSBs and adjacent BD, is dominant, accounting for 90% of all clustered DNA damage, and the spectra of the energy depositions correlating with them are similar for different primary energies. One type of simple clustered DNA damage is the combination of a SSB and 1-5 BD, which is denoted as SSB + BD. The average contribution of SSB + BD to total simple clustered DNA damage reaches up to about 84% for the considered primary energies. In all forms of SSB + BD, the SSB + BD including only one base damage is dominant (above 80%). In addition, for the considered primary energies, there is no obvious difference between the average energy depositions for a fixed complexity of SSB + BD determined by the number of base damage, but average energy depositions increase with the complexity of SSB + BD. In the complex clustered DNA damage constituted by the combination of DSBs and BD around them, a relatively simple type is a DSB combining adjacent BD, marked as DSB + BD, and it is of substantial contribution (on average up to about 82%). The spectrum of DSB + BD is given mainly by the DSB in combination with different numbers of base damage, from 1 to 5. For the considered primary energies, the DSB combined with only one base damage contributes about 83% of total DSB + BD, and the average energy deposition is about 106 eV. However, the energy deposition increases with the complexity of clustered DNA damage, and therefore, the clustered DNA damage with high complexity still needs to be considered in the study of radiation biological effects, in spite of their small contributions to all clustered DNA damage.
Reed, H; Leckey, Cara A C; Dick, A; Harvey, G; Dobson, J
2018-01-01
Ultrasonic damage detection and characterization is commonly used in nondestructive evaluation (NDE) of aerospace composite components. In recent years there has been an increased development of guided wave based methods. In real materials and structures, these dispersive waves result in complicated behavior in the presence of complex damage scenarios. Model-based characterization methods utilize accurate three dimensional finite element models (FEMs) of guided wave interaction with realistic damage scenarios to aid in defect identification and classification. This work describes an inverse solution for realistic composite damage characterization by comparing the wavenumber-frequency spectra of experimental and simulated ultrasonic inspections. The composite laminate material properties are first verified through a Bayesian solution (Markov chain Monte Carlo), enabling uncertainty quantification surrounding the characterization. A study is undertaken to assess the efficacy of the proposed damage model and comparative metrics between the experimental and simulated output. The FEM is then parameterized with a damage model capable of describing the typical complex damage created by impact events in composites. The damage is characterized through a transdimensional Markov chain Monte Carlo solution, enabling a flexible damage model capable of adapting to the complex damage geometry investigated here. The posterior probability distributions of the individual delamination petals as well as the overall envelope of the damage site are determined. Copyright © 2017 Elsevier B.V. All rights reserved.
Radiation damage to nucleoprotein complexes in macromolecular crystallography
Bury, Charles; Garman, Elspeth F.; Ginn, Helen Mary; ...
2015-01-30
Significant progress has been made in macromolecular crystallography over recent years in both the understanding and mitigation of X-ray induced radiation damage when collecting diffraction data from crystalline proteins. Despite the large field that is productively engaged in the study of radiation chemistry of nucleic acids, particularly of DNA, there are currently very few X-ray crystallographic studies on radiation damage mechanisms in nucleic acids. Quantitative comparison of damage to protein and DNA crystals separately is challenging, but many of the issues are circumvented by studying pre-formed biological nucleoprotein complexes where direct comparison of each component can be made under themore » same controlled conditions. A model protein–DNA complex C.Esp1396I is employed to investigate specific damage mechanisms for protein and DNA in a biologically relevant complex over a large dose range (2.07–44.63 MGy). In order to allow a quantitative analysis of radiation damage sites from a complex series of macromolecular diffraction data, a computational method has been developed that is generally applicable to the field. Typical specific damage was observed for both the protein on particular amino acids and for the DNA on, for example, the cleavage of base-sugar N 1—C and sugar-phosphate C—O bonds. Strikingly the DNA component was determined to be far more resistant to specific damage than the protein for the investigated dose range. We observed the protein at low doses and found that they were susceptible to radiation damage while the DNA was far more resistant, damage only being observed at significantly higher doses.« less
Nabeshima, Kentaro; Mlynarczyk-Evans, Susanna; Villeneuve, Anne M
2011-08-01
During early meiotic prophase, a nucleus-wide reorganization leads to sorting of chromosomes into homologous pairs and to establishing associations between homologous chromosomes along their entire lengths. Here, we investigate global features of chromosome organization during this process, using a chromosome painting method in whole-mount Caenorhabditis elegans gonads that enables visualization of whole chromosomes along their entire lengths in the context of preserved 3D nuclear architecture. First, we show that neither spatial proximity of premeiotic chromosome territories nor chromosome-specific timing is a major factor driving homolog pairing. Second, we show that synaptonemal complex-independent associations can support full lengthwise juxtaposition of homologous chromosomes. Third, we reveal a prominent elongation of chromosome territories during meiotic prophase that initiates prior to homolog association and alignment. Mutant analysis indicates that chromosome movement mediated by association of chromosome pairing centers (PCs) with mobile patches of the nuclear envelope (NE)-spanning SUN-1/ZYG-12 protein complexes is not the primary driver of territory elongation. Moreover, we identify new roles for the X chromosome PC (X-PC) and X-PC binding protein HIM-8 in promoting elongation of X chromosome territories, separable from their role(s) in mediating local stabilization of pairing and association of X chromosomes with mobile SUN-1/ZYG-12 patches. Further, we present evidence that HIM-8 functions both at and outside of PCs to mediate chromosome territory elongation. These and other data support a model in which synapsis-independent elongation of chromosome territories, driven by PC binding proteins, enables lengthwise juxtaposition of chromosomes, thereby facilitating assessment of their suitability as potential pairing partners.
Nabeshima, Kentaro; Mlynarczyk-Evans, Susanna; Villeneuve, Anne M.
2011-01-01
During early meiotic prophase, a nucleus-wide reorganization leads to sorting of chromosomes into homologous pairs and to establishing associations between homologous chromosomes along their entire lengths. Here, we investigate global features of chromosome organization during this process, using a chromosome painting method in whole-mount Caenorhabditis elegans gonads that enables visualization of whole chromosomes along their entire lengths in the context of preserved 3D nuclear architecture. First, we show that neither spatial proximity of premeiotic chromosome territories nor chromosome-specific timing is a major factor driving homolog pairing. Second, we show that synaptonemal complex-independent associations can support full lengthwise juxtaposition of homologous chromosomes. Third, we reveal a prominent elongation of chromosome territories during meiotic prophase that initiates prior to homolog association and alignment. Mutant analysis indicates that chromosome movement mediated by association of chromosome pairing centers (PCs) with mobile patches of the nuclear envelope (NE)–spanning SUN-1/ZYG-12 protein complexes is not the primary driver of territory elongation. Moreover, we identify new roles for the X chromosome PC (X-PC) and X-PC binding protein HIM-8 in promoting elongation of X chromosome territories, separable from their role(s) in mediating local stabilization of pairing and association of X chromosomes with mobile SUN-1/ZYG-12 patches. Further, we present evidence that HIM-8 functions both at and outside of PCs to mediate chromosome territory elongation. These and other data support a model in which synapsis-independent elongation of chromosome territories, driven by PC binding proteins, enables lengthwise juxtaposition of chromosomes, thereby facilitating assessment of their suitability as potential pairing partners. PMID:21876678
Detection of damaged DNA bases by DNA glycosylase enzymes.
Friedman, Joshua I; Stivers, James T
2010-06-22
A fundamental and shared process in all forms of life is the use of DNA glycosylase enzymes to excise rare damaged bases from genomic DNA. Without such enzymes, the highly ordered primary sequences of genes would rapidly deteriorate. Recent structural and biophysical studies are beginning to reveal a fascinating multistep mechanism for damaged base detection that begins with short-range sliding of the glycosylase along the DNA chain in a distinct conformation we call the search complex (SC). Sliding is frequently punctuated by the formation of a transient "interrogation" complex (IC) where the enzyme extrahelically inspects both normal and damaged bases in an exosite pocket that is distant from the active site. When normal bases are presented in the exosite, the IC rapidly collapses back to the SC, while a damaged base will efficiently partition forward into the active site to form the catalytically competent excision complex (EC). Here we review the unique problems associated with enzymatic detection of rare damaged DNA bases in the genome and emphasize how each complex must have specific dynamic properties that are tuned to optimize the rate and efficiency of damage site location.
Fournier, David; Redl, Stefan; Best, Gerrit; Borsos, Máté; Tiwari, Vijay K.; Tachibana-Konwalski, Kikuë; Ketting, René F.; Parekh, Sapun H.; Cremer, Christoph; Birk, Udo J.
2015-01-01
During meiosis, homologous chromosomes associate to form the synaptonemal complex (SC), a structure essential for fertility. Information about the epigenetic features of chromatin within this structure at the level of superresolution microscopy is largely lacking. We combined single-molecule localization microscopy (SMLM) with quantitative analytical methods to describe the epigenetic landscape of meiotic chromosomes at the pachytene stage in mouse oocytes. DNA is found to be nonrandomly distributed along the length of the SC in condensed clusters. Periodic clusters of repressive chromatin [trimethylation of histone H3 at lysine (Lys) 27 (H3K27me3)] are found at 500-nm intervals along the SC, whereas one of the ends of the SC displays a large and dense cluster of centromeric histone mark [trimethylation of histone H3 at Lys 9 (H3K9me3)]. Chromatin associated with active transcription [trimethylation of histone H3 at Lys 4 (H3K4me3)] is arranged in a radial hair-like loop pattern emerging laterally from the SC. These loops seem to be punctuated with small clusters of H3K4me3 with an average spread larger than their periodicity. Our findings indicate that the nanoscale structure of the pachytene chromosomes is constrained by periodic patterns of chromatin marks, whose function in recombination and higher order genome organization is yet to be elucidated. PMID:26561583
Phillips, Dylan; Nibau, Candida; Wnetrzak, Joanna; Jenkins, Glyn
2012-01-01
Reciprocal crossing over and independent assortment of chromosomes during meiosis generate most of the genetic variation in sexually reproducing organisms. In barley, crossovers are confined primarily to distal regions of the chromosomes, which means that a substantial proportion of the genes of this crop rarely, if ever, engage in recombination events. There is potentially much to be gained by redistributing crossovers to more proximal regions, but our ability to achieve this is dependent upon a far better understanding of meiosis in this species. This study explores the meiotic process by describing with unprecedented resolution the early behaviour of chromosomal domains, the progression of synapsis and the structure of the synaptonemal complex (SC). Using a combination of molecular cytogenetics and advanced fluorescence imaging, we show for the first time in this species that non-homologous centromeres are coupled prior to synapsis. We demonstrate that at early meiotic prophase the loading of the SC-associated structural protein ASY1, the cluster of telomeres, and distal synaptic initiation sites occupy the same polarised region of the nucleus. Through the use of advanced 3D image analysis, we show that synapsis is driven predominantly from the telomeres, and that new synaptic initiation sites arise during zygotene. In addition, we identified two different SC configurations through the use of super-resolution 3D structured illumination microscopy (3D-SIM). PMID:22761818
Storlazzi, Aurora; Tessé, Sophie; Gargano, Silvana; James, Françoise; Kleckner, Nancy; Zickler, Denise
2003-01-01
Chromosomal processes related to formation and function of meiotic chiasmata have been analyzed in Sordaria macrospora. Double-strand breaks (DSBs), programmed or γ-rays-induced, are found to promote four major events beyond recombination and accompanying synaptonemal complex formation: (1) juxtaposition of homologs from long-distance interactions to close presynaptic coalignment at midleptotene; (2) structural destabilization of chromosomes at leptotene/zygotene, including sister axis separation and fracturing, as revealed in a mutant altered in the conserved, axis-associated cohesin-related protein Spo76/Pds5p; (3) exit from the bouquet stage, with accompanying global chromosome movements, at zygotene/pachytene (bouquet stage exit is further found to be a cell-wide regulatory transition and DSB transesterase Spo11p is suggested to have a new noncatalytic role in this transition); (4) normal occurrence of both meiotic divisions, including normal sister separation. Functional interactions between DSBs and the spo76-1 mutation suggest that Spo76/Pds5p opposes local destabilization of axes at developing chiasma sites and raise the possibility of a regulatory mechanism that directly monitors the presence of chiasmata at metaphase I. Local chromosome remodeling at DSB sites appears to trigger an entire cascade of chromosome movements, morphogenetic changes, and regulatory effects that are superimposed upon a foundation of DSB-independent processes. PMID:14563680
Patterns of diversity and recombination along chromosome 1 of maize (Zea mays ssp. mays L.).
Tenaillon, Maud I; Sawkins, Mark C; Anderson, Lorinda K; Stack, Stephen M; Doebley, John; Gaut, Brandon S
2002-01-01
We investigate the interplay between genetic diversity and recombination in maize (Zea mays ssp. mays). Genetic diversity was measured in three types of markers: single-nucleotide polymorphisms, indels, and microsatellites. All three were examined in a sample of previously published DNA sequences from 21 loci on maize chromosome 1. Small indels (1-5 bp) were numerous and far more common than large indels. Furthermore, large indels (>100 bp) were infrequent in the population sample, suggesting they are slightly deleterious. The 21 loci also contained 47 microsatellites, of which 33 were polymorphic. Diversity in SNPs, indels, and microsatellites was compared to two measures of recombination: C (=4Nc) estimated from DNA sequence data and R based on a quantitative recombination nodule map of maize synaptonemal complex 1. SNP diversity was correlated with C (r = 0.65; P = 0.007) but not with R (r = -0.10; P = 0.69). Given the lack of correlation between R and SNP diversity, the correlation between SNP diversity and C may be driven by demography. In contrast to SNP diversity, microsatellite diversity was correlated with R (r = 0.45; P = 0.004) but not C (r = -0.025; P = 0.55). The correlation could arise if recombination is mutagenic for microsatellites, or it may be consistent with background selection that is apparent only in this class of rapidly evolving markers. PMID:12454083
2016-01-01
Meiotic recombination occurs as a programmed event that initiates by the formation of DNA double-strand breaks (DSBs) that give rise to the formation of crossovers that are observed as chiasmata. Chiasmata are essential for the accurate chromosome segregation and the generation of new combinations of parental alleles. Some treatments that provoke exogenous DSBs also lead to alterations in the recombination pattern of some species in which full homologous synapsis is achieved at pachytene. We have carried out a similar approach in males of the grasshopper Stethophyma grossum, whose homologues show incomplete synapsis and proximal chiasma localization. After irradiating males with γ rays we have studied the distribution of both the histone variant γ-H2AX and the recombinase RAD51. These proteins are cytological markers of DSBs at early prophase I. We have inferred synaptonemal complex (SC) formation via identification of SMC3 and RAD 21 cohesin subunits. Whereas thick and thin SMC3 filaments would correspond to synapsed and unsynapsed regions, the presence of RAD21 is only restricted to synapsed regions. Results show that irradiated spermatocytes maintain restricted synapsis between homologues. However, the frequency and distribution of chiasmata in metaphase I bivalents is slightly changed and quadrivalents were also observed. These results could be related to the singular nuclear polarization displayed by the spermatocytes of this species. PMID:28005992
NASA Astrophysics Data System (ADS)
Xu, Y. L.; Huang, Q.; Zhan, S.; Su, Z. Q.; Liu, H. J.
2014-06-01
How to use control devices to enhance system identification and damage detection in relation to a structure that requires both vibration control and structural health monitoring is an interesting yet practical topic. In this study, the possibility of using the added stiffness provided by control devices and frequency response functions (FRFs) to detect damage in a building complex was explored experimentally. Scale models of a 12-storey main building and a 3-storey podium structure were built to represent a building complex. Given that the connection between the main building and the podium structure is most susceptible to damage, damage to the building complex was experimentally simulated by changing the connection stiffness. To simulate the added stiffness provided by a semi-active friction damper, a steel circular ring was designed and used to add the related stiffness to the building complex. By varying the connection stiffness using an eccentric wheel excitation system and by adding or not adding the circular ring, eight cases were investigated and eight sets of FRFs were measured. The experimental results were used to detect damage (changes in connection stiffness) using a recently proposed FRF-based damage detection method. The experimental results showed that the FRF-based damage detection method could satisfactorily locate and quantify damage.
Han, Xiangzi; Aslanian, Aaron; Fu, Kang; Tsuji, Toshiya; Zhang, Youwei
2014-01-01
Chk1 is an essential mediator of the DNA damage response and cell cycle checkpoint. However, how exactly Chk1 transduces the checkpoint signaling is not fully understood. Here we report the identification of the heterohexamic minichromosome maintenance (MCM) complex that interacts with Chk1 by mass spectrometry. The interaction between Chk1 and the MCM complex was reduced by DNA damage treatment. We show that the MCM complex, at least partially, contributes to the chromatin association of Chk1, allowing for immediate phosphorylation of Chk1 by ataxia telangiectasia mutated and Rad3-related (ATR) in the presence of DNA damage. Further, phosphorylation of Chk1 at ATR sites reduces the interaction between Chk1 and the MCM complex, facilitating chromatin release of phosphorylated Chk1, a critical step in the initiation and amplification of cell cycle checkpoint. Together, these data provide novel insights into the activation of Chk1 in response to DNA damage. PMID:25049228
Complexities of high temperature metal fatigue: Some steps toward understanding
NASA Technical Reports Server (NTRS)
Manson, S. S.; Halford, G. R.
1983-01-01
After pointing out many of the complexities that attend high temperature metal fatigue beyond those already studied in the sub-creep range, a description of the micromechanisms of deformation and fracture is presented for several classes of materials that were studied over the past dozen years. Strainrange Partitioning (SRP) is used as a framework for interpreting the results. Several generic types of behavior were observed with regard both to deformation and fracture and each is discussed in the context of the micromechanisms involved. Treatment of cumulative fatigue damage and the possibility of ""healing'' of damage in successive loading loops, has led to a new interpretation of the Interaction Damage Rule of SRP. Using the concept of ""equivalent micromechanistic damage'' -- that the same damage on a microscopic scale is induced if the same hysteresis loops are generated, element for element -- it turns out the Interaction Damage Rule essentially compounds a number of variants of hysteresis loops, all of which have the same damage according to SRP concepts, into a set of loops each containing only one of the generic SRP strainranges. Thus the damage associcated with complex loops comprising several types of strainrange is analyzed by considering a combination of loops each containing only one type of strainrange. This concept is expanded to show how several independent loops can combine to ""heal'' creep damage in a complex loading history.
Detection of Damaged DNA Bases by DNA Glycosylase Enzymes†
Friedman, Joshua I.; Stivers, James T.
2010-01-01
A fundamental and shared process in all forms of life is the use of DNA glycosylase enzymes to excise rare damaged bases from genomic DNA. Without such enzymes, the highly-ordered primary sequences of genes would rapidly deteriorate. Recent structural and biophysical studies are beginning to reveal a fascinating multistep mechanism for damaged base detection that begins with short-range sliding of the glycosylase along the DNA chain in a distinct conformation we refer to as the search complex (SC). Sliding is frequently punctuated by the formation of a transient “interrogation” complex (IC) where the enzyme extrahelically inspects both normal and damaged bases in an exosite pocket that is distant from the active site. When normal bases are presented in the exosite, the IC rapidly collapses back to the SC, while a damaged base will efficiently partition forward into the active site to form the catalytically competent excision complex (EC). Here we review the unique problems associated with enzymatic detection of rare damaged DNA bases in the genome, and emphasize how each complex must have specific dynamic properties that are tuned to optimize the rate and efficiency of damage site location. PMID:20469926
RNF168 forms a functional complex with RAD6 during the DNA damage response
Liu, Chao; Wang, Degui; Wu, Jiaxue; Keller, Jennifer; Ma, Teng; Yu, Xiaochun
2013-01-01
Summary Protein ubiquitination plays an important role in initiating the DNA damage response. Following DNA damage, E2 ubiquitin conjugating enzymes are crucial for catalyzing substrate ubiquitination that recruits downstream DNA repair factors to DNA lesions. To identify novel E2 conjugating enzymes important for initiating the DNA-damage-induced ubiquitination cascade, we screened most of the known E2 enzymes and found that RAD6A and RAD6B function together with RNF168 in the ionizing radiation (IR)-induced DNA damage response. Similarly to RNF168-deficient cells, RAD6A- or RAD6B-deficient cells exhibit a reduction in DNA-damage-induced protein ubiquitination. Correspondingly, DNA-damage-induced foci formation of DNA damage repair proteins, such as BRCA1 and 53BP1, is impaired in the absence of RAD6A or RAD6B. Moreover, the RNF168–RAD6 complex targeted histone H1.2 for ubiquitination in vitro and regulated DNA-damage-induced histone H1.2 ubiquitination in vivo. Collectively, these data demonstrate that RNF168, in complex with RAD6A or RAD6B, is activated in the DNA-damage-induced protein ubiquitination cascade. PMID:23525009
Occult White Matter Damage Contributes to Intellectual Disability in Tuberous Sclerosis Complex
ERIC Educational Resources Information Center
Yu, Chunshui; Lin, Fuchun; Zhao, Li; Ye, Jing; Qin, Wen
2009-01-01
Whether patients with tuberous sclerosis complex (TSC) have brain normal-appearing white matter (NAWM) damage and whether such damage contributes to their intellectual disability were examined in 15 TSC patients and 15 gender- and age-matched healthy controls using diffusion tensor imaging (DTI). Histogram and region of interest (ROI) analyses of…
Oxidative stress/damage induces multimerization and interaction of Fanconi anemia proteins.
Park, Su-Jung; Ciccone, Samantha L M; Beck, Brian D; Hwang, Byounghoon; Freie, Brian; Clapp, D Wade; Lee, Suk-Hee
2004-07-16
Fanconi anemia (FANC) is a heterogeneous genetic disorder characterized by a hypersensitivity to DNA-damaging agents, chromosomal instability, and defective DNA repair. Eight FANC genes have been identified so far, and five of them (FANCA, -C, -E, -F, and -G) assemble in a multinuclear complex and function at least in part in a complex to activate FANCD2 by monoubiquitination. Here we show that FANCA and FANCG are redox-sensitive proteins that are multimerized and/or form a nuclear complex in response to oxidative stress/damage. Both FANCA and FANCG proteins exist as monomers under non-oxidizing conditions, whereas they become multimers following H2O2 treatment. Treatment of cells with oxidizing agent not only triggers the multimeric complex of FANCA and FANCG in vivo but also induces the interaction between FANCA and FANCG. N-Ethylmaleimide treatment abolishes multimerization and interaction of FANCA and FANCG in vitro. Taken together, our results lead us to conclude that FANCA and FANCG uniquely respond to oxidative damage by forming complex(es) via intermolecular disulfide linkage(s), which may be crucial in forming such complexes and in determining their function.
Formation of Clustered DNA Damage after High-LET Irradiation: A Review
NASA Technical Reports Server (NTRS)
Hada, Megumi; Georgakilas, Alexandros G.
2008-01-01
Radiation can cause as well as cure cancer. The risk of developing radiation-induced cancer has traditionally been estimated from cancer incidence among survivors of the atomic bombs in Hiroshima and Nagasaki. These data provide the best estimate of human cancer risk over the dose range for low linear energy transfer (LET) radiations, such as X- or gamma-rays. The situation of estimating the real biological effects becomes even more difficult in the case of high LET particles encountered in space or as the result of domestic exposure to particles from radon gas emitters or other radioactive emitters like uranium-238. Complex DNA damage, i.e., the signature of high-LET radiations comprises by closely spaced DNA lesions forming a cluster of DNA damage. The two basic groups of complex DNA damage are double strand breaks (DSBs) and non-DSB oxidative clustered DNA lesions (OCDL). Theoretical analysis and experimental evidence suggest there is increased complexity and severity of complex DNA damage with increasing LET (linear energy transfer) and a high mutagenic or carcinogenic potential. Data available on the formation of clustered DNA damage (DSBs and OCDL) by high-LET radiations are often controversial suggesting a variable response to dose and type of radiation. The chemical nature and cellular repair mechanisms of complex DNA damage have been much less characterized than those of isolated DNA lesions like an oxidized base or a single strand break especially in the case of high-LET radiation. This review will focus on the induction of clustered DNA damage by high-LET radiations presenting the earlier and recent relative data.
Saquilabon Cruz, Gladys Mae; Kong, Xiangduo; Silva, Bárbara Alcaraz; Khatibzadeh, Nima; Thai, Ryan; Berns, Michael W.; Yokomori, Kyoko
2016-01-01
Laser microirradiation is a powerful tool for real-time single-cell analysis of the DNA damage response (DDR). It is often found, however, that factor recruitment or modification profiles vary depending on the laser system employed. This is likely due to an incomplete understanding of how laser conditions/dosages affect the amounts and types of damage and the DDR. We compared different irradiation conditions using a femtosecond near-infrared laser and found distinct damage site recruitment thresholds for 53BP1 and TRF2 correlating with the dose-dependent increase of strand breaks and damage complexity. Low input-power microirradiation that induces relatively simple strand breaks led to robust recruitment of 53BP1 but not TRF2. In contrast, increased strand breaks with complex damage including crosslinking and base damage generated by high input-power microirradiation resulted in TRF2 recruitment to damage sites with no 53BP1 clustering. We found that poly(ADP-ribose) polymerase (PARP) activation distinguishes between the two damage states and that PARP activation is essential for rapid TRF2 recruitment while suppressing 53BP1 accumulation at damage sites. Thus, our results reveal that careful titration of laser irradiation conditions allows induction of varying amounts and complexities of DNA damage that are gauged by differential PARP activation regulating protein assembly at the damage site. PMID:26424850
NASA Astrophysics Data System (ADS)
Eaton, M.; Pearson, M.; Lee, W.; Pullin, R.
2015-07-01
The ability to accurately locate damage in any given structure is a highly desirable attribute for an effective structural health monitoring system and could help to reduce operating costs and improve safety. This becomes a far greater challenge in complex geometries and materials, such as modern composite airframes. The poor translation of promising laboratory based SHM demonstrators to industrial environments forms a barrier to commercial up take of technology. The acoustic emission (AE) technique is a passive NDT method that detects elastic stress waves released by the growth of damage. It offers very sensitive damage detection, using a sparse array of sensors to detect and globally locate damage within a structure. However its application to complex structures commonly yields poor accuracy due to anisotropic wave propagation and the interruption of wave propagation by structural features such as holes and thickness changes. This work adopts an empirical mapping technique for AE location, known as Delta T Mapping, which uses experimental training data to account for such structural complexities. The technique is applied to a complex geometry composite aerospace structure undergoing certification testing. The component consists of a carbon fibre composite tube with varying wall thickness and multiple holes, that was loaded under bending. The damage location was validated using X-ray CT scanning and the Delta T Mapping technique was shown to improve location accuracy when compared with commercial algorithms. The onset and progression of damage were monitored throughout the test and used to inform future design iterations.
Zhang, Xurui; Ye, Caiyong; Sun, Fang; Wei, Wenjun; Hu, Burong; Wang, Jufang
2016-01-01
Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92–1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research. PMID:27187621
2014-12-03
DNA damage . It is controlled by a complex network involving the RecA and LexA proteins. We have previously shown that the SOS response to DNA damage ...Research Triangle Park, NC 27709-2211 enteric bacterium E. coli, SOS Response, DNA damage REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT...Report Title The Escherichia coli (E. coli) SOS response is the largest, most complex, and best characterized bacterial network induced by DNA damage
Hopkins, Jessica; Bedigian, Rick; Oka, Kazuhiro; Overbeek, Paul; Murray, Steve; Jordan, Philip W.
2014-01-01
Cohesins are important for chromosome structure and chromosome segregation during mitosis and meiosis. Cohesins are composed of two structural maintenance of chromosomes (SMC1-SMC3) proteins that form a V-shaped heterodimer structure, which is bridged by a α-kleisin protein and a stromal antigen (STAG) protein. Previous studies in mouse have shown that there is one SMC1 protein (SMC1β), two α-kleisins (RAD21L and REC8) and one STAG protein (STAG3) that are meiosis-specific. During meiosis, homologous chromosomes must recombine with one another in the context of a tripartite structure known as the synaptonemal complex (SC). From interaction studies, it has been shown that there are at least four meiosis-specific forms of cohesin, which together with the mitotic cohesin complex, are lateral components of the SC. STAG3 is the only meiosis-specific subunit that is represented within all four meiosis-specific cohesin complexes. In Stag3 mutant germ cells, the protein level of other meiosis-specific cohesin subunits (SMC1β, RAD21L and REC8) is reduced, and their localization to chromosome axes is disrupted. In contrast, the mitotic cohesin complex remains intact and localizes robustly to the meiotic chromosome axes. The instability of meiosis-specific cohesins observed in Stag3 mutants results in aberrant DNA repair processes, and disruption of synapsis between homologous chromosomes. Furthermore, mutation of Stag3 results in perturbation of pericentromeric heterochromatin clustering, and disruption of centromere cohesion between sister chromatids during meiotic prophase. These defects result in early prophase I arrest and apoptosis in both male and female germ cells. The meiotic defects observed in Stag3 mutants are more severe when compared to single mutants for Smc1β, Rec8 and Rad21l, however they are not as severe as the Rec8, Rad21l double mutants. Taken together, our study demonstrates that STAG3 is required for the stability of all meiosis-specific cohesin complexes. Furthermore, our data suggests that STAG3 is required for structural changes of chromosomes that mediate chromosome pairing and synapsis, DNA repair and progression of meiosis. PMID:24992337
Hopkins, Jessica; Hwang, Grace; Jacob, Justin; Sapp, Nicklas; Bedigian, Rick; Oka, Kazuhiro; Overbeek, Paul; Murray, Steve; Jordan, Philip W
2014-07-01
Cohesins are important for chromosome structure and chromosome segregation during mitosis and meiosis. Cohesins are composed of two structural maintenance of chromosomes (SMC1-SMC3) proteins that form a V-shaped heterodimer structure, which is bridged by a α-kleisin protein and a stromal antigen (STAG) protein. Previous studies in mouse have shown that there is one SMC1 protein (SMC1β), two α-kleisins (RAD21L and REC8) and one STAG protein (STAG3) that are meiosis-specific. During meiosis, homologous chromosomes must recombine with one another in the context of a tripartite structure known as the synaptonemal complex (SC). From interaction studies, it has been shown that there are at least four meiosis-specific forms of cohesin, which together with the mitotic cohesin complex, are lateral components of the SC. STAG3 is the only meiosis-specific subunit that is represented within all four meiosis-specific cohesin complexes. In Stag3 mutant germ cells, the protein level of other meiosis-specific cohesin subunits (SMC1β, RAD21L and REC8) is reduced, and their localization to chromosome axes is disrupted. In contrast, the mitotic cohesin complex remains intact and localizes robustly to the meiotic chromosome axes. The instability of meiosis-specific cohesins observed in Stag3 mutants results in aberrant DNA repair processes, and disruption of synapsis between homologous chromosomes. Furthermore, mutation of Stag3 results in perturbation of pericentromeric heterochromatin clustering, and disruption of centromere cohesion between sister chromatids during meiotic prophase. These defects result in early prophase I arrest and apoptosis in both male and female germ cells. The meiotic defects observed in Stag3 mutants are more severe when compared to single mutants for Smc1β, Rec8 and Rad21l, however they are not as severe as the Rec8, Rad21l double mutants. Taken together, our study demonstrates that STAG3 is required for the stability of all meiosis-specific cohesin complexes. Furthermore, our data suggests that STAG3 is required for structural changes of chromosomes that mediate chromosome pairing and synapsis, DNA repair and progression of meiosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Qun; Yin, Guotian; Stewart, Sarah
2010-07-09
Ischemia damages the mitochondrial electron transport chain (ETC), mediated in part by damage generated by the mitochondria themselves. Mitochondrial damage resulting from ischemia, in turn, leads to cardiac injury during reperfusion. The goal of the present study was to localize the segment of the ETC that produces the ischemic mitochondrial damage. We tested if blockade of the proximal ETC at complex I differed from blockade distal in the chain at cytochrome oxidase. Isolated rabbit hearts were perfused for 15 min followed by 30 min stop-flow ischemia at 37 {sup o}C. Amobarbital (2.5 mM) or azide (5 mM) was used tomore » block proximal (complex I) or distal (cytochrome oxidase) sites in the ETC. Time control hearts were buffer-perfused for 45 min. Subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM) were isolated. Ischemia decreased cytochrome c content in SSM but not in IFM compared to time control. Blockade of electron transport at complex I preserved the cytochrome c content in SSM. In contrast, blockade of electron transport at cytochrome oxidase with azide did not retain cytochrome c in SSM during ischemia. Since blockade of electron transport at complex III also prevented cytochrome c loss during ischemia, the specific site that elicits mitochondrial damage during ischemia is likely located in the segment between complex III and cytochrome oxidase.« less
Plasticity of Meiotic Recombination Rates in Response to Temperature in Arabidopsis
Lloyd, Andrew; Morgan, Chris; H. Franklin, F. Chris
2018-01-01
Meiotic recombination shuffles genetic information from sexual species into gametes to create novel combinations in offspring. Thus, recombination is an important factor in inheritance, adaptation, and responses to selection. However, recombination is not a static parameter; meiotic recombination rate is sensitive to variation in the environment, especially temperature. That recombination rates change in response to both increases and decreases in temperature was reported in Drosophila a century ago, and since then in several other species. But it is still unclear what the underlying mechanism is, and whether low- and high-temperature effects are mechanistically equivalent. Here, we show that, as in Drosophila, both high and low temperatures increase meiotic crossovers in Arabidopsis thaliana. We show that, from a nadir at 18°, both lower and higher temperatures increase recombination through additional class I (interfering) crossovers. However, the increase in crossovers at high and low temperatures appears to be mechanistically at least somewhat distinct, as they differ in their association with the DNA repair protein MLH1. We also find that, in contrast to what has been reported in barley, synaptonemal complex length is negatively correlated with temperature; thus, an increase in chromosome axis length may account for increased crossovers at low temperature in A. thaliana, but cannot explain the increased crossovers observed at high temperature. The plasticity of recombination has important implications for evolution and breeding, and also for the interpretation of observations of recombination rate variation among natural populations. PMID:29496746
Uneven distribution of expressed sequence tag loci on maize pachytene chromosomes
Anderson, Lorinda K.; Lai, Ann; Stack, Stephen M.; Rizzon, Carene; Gaut, Brandon S.
2006-01-01
Examining the relationships among DNA sequence, meiotic recombination, and chromosome structure at a genome-wide scale has been difficult because only a few markers connect genetic linkage maps with physical maps. Here, we have positioned 1195 genetically mapped expressed sequence tag (EST) markers onto the 10 pachytene chromosomes of maize by using a newly developed resource, the RN-cM map. The RN-cM map charts the distribution of crossing over in the form of recombination nodules (RNs) along synaptonemal complexes (SCs, pachytene chromosomes) and allows genetic cM distances to be converted into physical micrometer distances on chromosomes. When this conversion is made, most of the EST markers used in the study are located distally on the chromosomes in euchromatin. ESTs are significantly clustered on chromosomes, even when only euchromatic chromosomal segments are considered. Gene density and recombination rate (as measured by EST and RN frequencies, respectively) are strongly correlated. However, crossover frequencies for telomeric intervals are much higher than was expected from their EST frequencies. For pachytene chromosomes, EST density is about fourfold higher in euchromatin compared with heterochromatin, while DNA density is 1.4 times higher in heterochromatin than in euchromatin. Based on DNA density values and the fraction of pachytene chromosome length that is euchromatic, we estimate that ∼1500 Mbp of the maize genome is in euchromatin. This overview of the organization of the maize genome will be useful in examining genome and chromosome evolution in plants. PMID:16339046
Specific association of mouse MDC1/NFBD1 with NBS1 at sites of DNA-damage.
Lee, Alicia C; Fernandez-Capetillo, Oscar; Pisupati, Venkat; Jackson, Stephen P; Nussenzweig, André
2005-01-01
Human MDC1/NFBD1 has been found to interact with key players of the DNA-damage response machinery. Here, we identify and describe a functional homologue of MDC1/ NFBD1 in Mus musculus. The mouse homologue, mMDC1, retains the key motifs identified in the human protein and in response to ionizing radiation forms foci that co-localize with the MRE11-RAD50-NBS1 (MRN) complex and factors such as gammaH2AX and 53BP1. In addition, mMDC1 is associated with DNA damage sites generated during meiotic recombination as well as the X and Y chromosomes during the late stages of meiotic prophase I. Finally, whereas MDC1 shows strong colocalization with the MRN complex in response to DNA damage it does not co-localize with the MRN complex on replicating chromatin. These data suggest that mMDC1 is a marker for both exogenously and endogenously generated DNA double-stranded breaks and that its interaction with the MRN complex is initiated exclusively by DNA damage.
Drissi, Romain; Dubois, Marie-Line; Douziech, Mélanie; Boisvert, François-Michel
2015-07-01
The minichromosome maintenance complex (MCM) proteins are required for processive DNA replication and are a target of S-phase checkpoints. The eukaryotic MCM complex consists of six proteins (MCM2-7) that form a heterohexameric ring with DNA helicase activity, which is loaded on chromatin to form the pre-replication complex. Upon entry in S phase, the helicase is activated and opens the DNA duplex to recruit DNA polymerases at the replication fork. The MCM complex thus plays a crucial role during DNA replication, but recent work suggests that MCM proteins could also be involved in DNA repair. Here, we employed a combination of stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics with immunoprecipitation of green fluorescent protein-tagged fusion proteins to identify proteins interacting with the MCM complex, and quantify changes in interactions in response to DNA damage. Interestingly, the MCM complex showed very dynamic changes in interaction with proteins such as Importin7, the histone chaperone ASF1, and the Chromodomain helicase DNA binding protein 3 (CHD3) following DNA damage. These changes in interactions were accompanied by an increase in phosphorylation and ubiquitination on specific sites on the MCM proteins and an increase in the co-localization of the MCM complex with γ-H2AX, confirming the recruitment of these proteins to sites of DNA damage. In summary, our data indicate that the MCM proteins is involved in chromatin remodeling in response to DNA damage. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Giovannelli, L; Testa, G; De Filippo, C; Cheynier, V; Clifford, M N; Dolara, P
2000-10-01
Dietary polyphenols have been reported to have a variety of biological actions, including anti-carcinogenic, antioxidant and anti-inflammatory activities. In the present study we have evaluated the effect of an oral treatment with complex polyphenols and tannins from red wine and tea on DNA oxidative damage in the rat colon mucosa. Isolated colonocytes were prepared from the colon mucosa of rats treated for ten days with either wine complex polyphenols (57.2 mg/kg/d) or thearubigin (40 mg/kg/d) by oral gavage. Colonocyte oxidative DNA damage was analysed at the single cell level using a modification of the comet assay technique. The results show that wine complex polyphenols and tannins induce a significant decrease (-62% for pyrimidine and -57% for purine oxidation) in basal DNA oxidative damage in colon mucosal cells without affecting the basal level of single-strand breaks. On the other hand, tea polyphenols, namely a crude extract of thearubigin, did not affect either strand breaks or pyrimidine oxidation in colon mucosal cells. Our experiments are the first demonstration that dietary polyphenols can modulate in vivo oxidative damage in the gastrointestinal tract of rodents. These data support the hypothesis that dietary polyphenols might have both a protective and a therapeutic potential in oxidative damage-related pathologies.
Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis
Mavragani, Ifigeneia V.; Nikitaki, Zacharenia; Souli, Maria P.; Aziz, Asef; Nowsheen, Somaira; Aziz, Khaled; Rogakou, Emmy
2017-01-01
Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15–20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent “danger” signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair. PMID:28718816
Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis.
Mavragani, Ifigeneia V; Nikitaki, Zacharenia; Souli, Maria P; Aziz, Asef; Nowsheen, Somaira; Aziz, Khaled; Rogakou, Emmy; Georgakilas, Alexandros G
2017-07-18
Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15-20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent "danger" signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair.
NASA Technical Reports Server (NTRS)
Jackson, Wade C.; Polis, Daniel L.
2014-01-01
Damage tolerance performance is critical to composite structures because surface impacts at relatively low energies may result in a significant strength loss. For certification, damage tolerance criteria require aerospace vehicles to meet design loads while containing damage at critical locations. Data from standard small coupon testing are difficult to apply to larger more complex structures. Due to the complexity of predicting both the impact damage and the residual properties, damage tolerance is demonstrated primarily by testing. A portable, spring-propelled, impact device was developed which allows the impact damage response to be investigated on large specimens, full-scale components, or entire vehicles. During impact, both the force history and projectile velocity are captured. The device was successfully used to demonstrate the damage tolerance performance of the NASA Composite Crew Module. The impactor was used to impact 18 different design features at impact energies up to 35 J. Detailed examples of these results are presented, showing impact force histories, damage inspection results, and response to loading.
OuYang, Qiuli; Tao, Nengguo; Zhang, Miaoling
2018-01-01
Citral exhibits strong antifungal activity against Penicillium digitatum. In this study, 41 over-expressed and 84 repressed proteins in P. digitatum after 1.0 μL/mL of citral exposure for 30 min were identified by the iTRAQ technique. The proteins were closely related with oxidative phosphorylation, the TCA cycle and RNA transport. The mitochondrial complex I, complex II, complex III, complex IV and complex V, which are involved in oxidative phosphorylation were drastically affected. Among of them, the activities of mitochondrial complex I and complex IV were apparently suppressed, whereas those of mitochondrial complex II, complex III and complex V were significantly induced. Meanwhile, citral apparently triggered a reduction in the intracellular ATP, the mitochondrial membrane potential (MMP) and glutathione content, in contrast to an increase in the glutathione S-transferase activity and the accumulation of reactive oxygen species (ROS). Addition of exogenous cysteine decreased the antifungal activity. In addition, cysteine maintained the basal ROS level, deferred the decrease of MMP and the membrane damage. These results indicate that citral inhibited the growth of P. digitatum by damaging oxidative phosphorylation and cell membranes through the massive accumulation of ROS. PMID:29503638
OuYang, Qiuli; Tao, Nengguo; Zhang, Miaoling
2018-01-01
Citral exhibits strong antifungal activity against Penicillium digitatum . In this study, 41 over-expressed and 84 repressed proteins in P. digitatum after 1.0 μL/mL of citral exposure for 30 min were identified by the iTRAQ technique. The proteins were closely related with oxidative phosphorylation, the TCA cycle and RNA transport. The mitochondrial complex I, complex II, complex III, complex IV and complex V, which are involved in oxidative phosphorylation were drastically affected. Among of them, the activities of mitochondrial complex I and complex IV were apparently suppressed, whereas those of mitochondrial complex II, complex III and complex V were significantly induced. Meanwhile, citral apparently triggered a reduction in the intracellular ATP, the mitochondrial membrane potential (MMP) and glutathione content, in contrast to an increase in the glutathione S-transferase activity and the accumulation of reactive oxygen species (ROS). Addition of exogenous cysteine decreased the antifungal activity. In addition, cysteine maintained the basal ROS level, deferred the decrease of MMP and the membrane damage. These results indicate that citral inhibited the growth of P. digitatum by damaging oxidative phosphorylation and cell membranes through the massive accumulation of ROS.
Complex damage distribution behaviour in cobalt implanted rutile TiO2 (1 1 0) lattice
NASA Astrophysics Data System (ADS)
Joshi, Shalik Ram; Padmanabhan, B.; Chanda, Anupama; Ojha, Sunil; Kanjilal, D.; Varma, Shikha
2017-11-01
The present work investigates the radiation damage, amorphization and structural modifications that are produced by ion-solid interactions in TiO2 crystals during 200 keV Cobalt ion implantation. RBS/C and GIXRD have been utilized to evaluate the damage in the host lattice as a function of ion fluence. Multiple scattering formalism has been applied to extract the depth dependent damage distributions in TiO2(1 1 0). The results have been compared with the MC simulations performed using SRIM-2013. RBS/C results delineate a buried amorphous layer at a low fluence. Surprisingly, ion induced dynamic activation produces a recovery in this damage at higher fluences. This improvement interestingly occurs only in deep regions (60-300 nm) where a systematic lowering in damage with fluence is observed. Formation of Co-Ti-O phases and generation of stress in TiO2 lattice can also be responsible for this improvement in deep regions. In contrast, surface region (0-60 nm) indicates a gradual increase in damage with fluence. Such a switch in the damage behavior creates a cross point in damage profiles at 60 nm. Surface region is a sink of vacancies whereas deep layers are interstitial rich. However, these regions are far separated from each other resulting in an intermediate (100-150 nm) region with a significant dip (valley) in damage which can be characterized by enhanced recombination of point defects. The damage profiles thus indicate a very complex behavior. MC simulations, however, present very different results. They depict a damage profile that extends to a depth of only 150 nm, which is only about half of the damage- width observed here via RBS/C. Moreover, MC simulations do not indicate presence of any valley like structure in the damage profile. The complex nature of damage distribution observed here via RBS/C may be related to the high ionic nature of the chemical bonds in the TiO2 lattice.
Visualization of complex DNA damage along accelerated ions tracks
NASA Astrophysics Data System (ADS)
Kulikova, Elena; Boreyko, Alla; Bulanova, Tatiana; Ježková, Lucie; Zadneprianetc, Mariia; Smirnova, Elena
2018-04-01
The most deleterious DNA lesions induced by ionizing radiation are clustered DNA double-strand breaks (DSB). Clustered or complex DNA damage is a combination of a few simple lesions (single-strand breaks, base damage etc.) within one or two DNA helix turns. It is known that yield of complex DNA lesions increases with increasing linear energy transfer (LET) of radiation. For investigation of the induction and repair of complex DNA lesions, human fibroblasts were irradiated with high-LET 15N ions (LET = 183.3 keV/μm, E = 13MeV/n) and low-LET 60Co γ-rays (LET ≈ 0.3 keV/μm) radiation. DNA DSBs (γH2AX and 53BP1) and base damage (OGG1) markers were visualized by immunofluorecence staining and high-resolution microscopy. The obtained results showed slower repair kinetics of induced DSBs in cells irradiated with accelerated ions compared to 60Co γ-rays, indicating induction of more complex DNA damage. Confirming previous assumptions, detailed 3D analysis of γH2AX/53BP1 foci in 15N ions tracks revealed more complicated structure of the foci in contrast to γ-rays. It was shown that proteins 53BP1 and OGG1 involved in repair of DNA DSBs and modified bases, respectively, were colocalized in tracks of 15N ions and thus represented clustered DNA DSBs.
Khajavi, Noushafarin; Akbari, Mohammad; Abolhassani, Farid; Dehpour, Ahmad Reza; Koruji, Morteza; Habibi Roudkenar, Mehryar
2014-01-01
Objective Spermatogonial stem cells (SSCs) are the only cell type that can restore fertility to an infertile recipient following transplantation. Much effort has been made to develop a protocol for differentiating isolated SSCs in vitro. Recently, three-dimensional (3D) culture system has been introduced as an appropriate microenvironment for clonal expansion and differentiation of SSCs. This system provides structural support and multiple options for several manipulation such as addition of different cells. Somatic cells have a critical role in stimulating spermatogenesis. They provide complex cell to cell interaction, transport proteins and produce enzymes and regulatory factors. This study aimed to optimize the culture condition by adding somatic testicular cells to the collagen gel culture system in order to induce spermatogenesis progression. Materials and Methods In this experimental study, the disassociation of SSCs was performed by using a two-step enzymatic digestion of type I collagenase, hyaluronidase and DNase. Somatic testicular cells including Sertoli cells and peritubular cells were obtained after the second digestion. SSCs were isolated by Magnetic Activated Cell Sorting (MACS) using GDNF family receptor alpha-1 (Gfrα-1) antibody. Two experimental designs were investigated. 1. Gfrα-1 positive SSCs were cultured in a collagen solution. 2. Somatic testicular cells were added to the Gfrα-1 positive SSCs in a collagen solution. Spermatogenesis progression was determined after three weeks by staining of synaptonemal complex protein 3 (SCP3)-positive cells. Semi-quantitative Reverse Transcription PCR was undertaken for SCP3 as a meiotic marker and, Crem and Thyroid transcription factor-1 (TTF1) as post meiotic markers. For statistical analysis student t test was performed. Results Testicular supporter cells increased the expression of meiotic and post meiotic markers and had a positive effect on extensive colony formation. Conclusion Collagen gel culture system supported by somatic testicular cells provides a microenvironment that mimics seminiferous epithelium and induces spermatogenesis in vitro. PMID:24518977
Yan, Rihui; McKee, Bruce D.
2013-01-01
Cohesion between sister chromatids is mediated by cohesin and is essential for proper meiotic segregation of both sister chromatids and homologs. solo encodes a Drosophila meiosis-specific cohesion protein with no apparent sequence homology to cohesins that is required in male meiosis for centromere cohesion, proper orientation of sister centromeres and centromere enrichment of the cohesin subunit SMC1. In this study, we show that solo is involved in multiple aspects of meiosis in female Drosophila. Null mutations in solo caused the following phenotypes: 1) high frequencies of homolog and sister chromatid nondisjunction (NDJ) and sharply reduced frequencies of homolog exchange; 2) reduced transmission of a ring-X chromosome, an indicator of elevated frequencies of sister chromatid exchange (SCE); 3) premature loss of centromere pairing and cohesion during prophase I, as indicated by elevated foci counts of the centromere protein CID; 4) instability of the lateral elements (LE)s and central regions of synaptonemal complexes (SCs), as indicated by fragmented and spotty staining of the chromosome core/LE component SMC1 and the transverse filament protein C(3)G, respectively, at all stages of pachytene. SOLO and SMC1 are both enriched on centromeres throughout prophase I, co-align along the lateral elements of SCs and reciprocally co-immunoprecipitate from ovarian protein extracts. Our studies demonstrate that SOLO is closely associated with meiotic cohesin and required both for enrichment of cohesin on centromeres and stable assembly of cohesin into chromosome cores. These events underlie and are required for stable cohesion of centromeres, synapsis of homologous chromosomes, and a recombination mechanism that suppresses SCE to preferentially generate homolog crossovers (homolog bias). We propose that SOLO is a subunit of a specialized meiotic cohesin complex that mediates both centromeric and axial arm cohesion and promotes homolog bias as a component of chromosome cores. PMID:23874232
Yan, Rihui; McKee, Bruce D
2013-01-01
Cohesion between sister chromatids is mediated by cohesin and is essential for proper meiotic segregation of both sister chromatids and homologs. solo encodes a Drosophila meiosis-specific cohesion protein with no apparent sequence homology to cohesins that is required in male meiosis for centromere cohesion, proper orientation of sister centromeres and centromere enrichment of the cohesin subunit SMC1. In this study, we show that solo is involved in multiple aspects of meiosis in female Drosophila. Null mutations in solo caused the following phenotypes: 1) high frequencies of homolog and sister chromatid nondisjunction (NDJ) and sharply reduced frequencies of homolog exchange; 2) reduced transmission of a ring-X chromosome, an indicator of elevated frequencies of sister chromatid exchange (SCE); 3) premature loss of centromere pairing and cohesion during prophase I, as indicated by elevated foci counts of the centromere protein CID; 4) instability of the lateral elements (LE)s and central regions of synaptonemal complexes (SCs), as indicated by fragmented and spotty staining of the chromosome core/LE component SMC1 and the transverse filament protein C(3)G, respectively, at all stages of pachytene. SOLO and SMC1 are both enriched on centromeres throughout prophase I, co-align along the lateral elements of SCs and reciprocally co-immunoprecipitate from ovarian protein extracts. Our studies demonstrate that SOLO is closely associated with meiotic cohesin and required both for enrichment of cohesin on centromeres and stable assembly of cohesin into chromosome cores. These events underlie and are required for stable cohesion of centromeres, synapsis of homologous chromosomes, and a recombination mechanism that suppresses SCE to preferentially generate homolog crossovers (homolog bias). We propose that SOLO is a subunit of a specialized meiotic cohesin complex that mediates both centromeric and axial arm cohesion and promotes homolog bias as a component of chromosome cores.
Lesion complexity drives age related cancer susceptibility in human mammary epithelial cells
Sridharan, Deepa M.; Enerio, Shiena; Stampfer, Martha M.; ...
2017-02-28
Exposures to various DNA damaging agents can deregulate a wide array of critical mechanisms that maintain genome integrity. It is unclear how these processes are impacted by one's age at the time of exposure and the complexity of the DNA lesion. To clarify this, we employed radiation as a tool to generate simple and complex lesions in normal primary human mammary epithelial cells derived from women of various ages. We hypothesized that genomic instability in the progeny of older cells exposed to complex damages will be exacerbated by age-associated deterioration in function and accentuate age-related cancer predisposition. Centrosome aberrations andmore » changes in stem cell numbers were examined to assess cancer susceptibility. Our data show that the frequency of centrosome aberrations proportionately increases with age following complex damage causing exposures. However, a dose-dependent increase in stem cell numbers was independent of both age and the nature of the insult. Phospho-protein signatures provide mechanistic clues to signaling networks implicated in these effects. Together these studies suggest that complex damage can threaten the genome stability of the stem cell population in older people. Propagation of this instability is subject to influence by the microenvironment and will ultimately define cancer risk in the older population.« less
Lesion complexity drives age related cancer susceptibility in human mammary epithelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Deepa M.; Enerio, Shiena; Stampfer, Martha M.
Exposures to various DNA damaging agents can deregulate a wide array of critical mechanisms that maintain genome integrity. It is unclear how these processes are impacted by one's age at the time of exposure and the complexity of the DNA lesion. To clarify this, we employed radiation as a tool to generate simple and complex lesions in normal primary human mammary epithelial cells derived from women of various ages. We hypothesized that genomic instability in the progeny of older cells exposed to complex damages will be exacerbated by age-associated deterioration in function and accentuate age-related cancer predisposition. Centrosome aberrations andmore » changes in stem cell numbers were examined to assess cancer susceptibility. Our data show that the frequency of centrosome aberrations proportionately increases with age following complex damage causing exposures. However, a dose-dependent increase in stem cell numbers was independent of both age and the nature of the insult. Phospho-protein signatures provide mechanistic clues to signaling networks implicated in these effects. Together these studies suggest that complex damage can threaten the genome stability of the stem cell population in older people. Propagation of this instability is subject to influence by the microenvironment and will ultimately define cancer risk in the older population.« less
Rad50S alleles of the Mre11 complex: questions answered and questions raised.
Usui, Takehiko; Petrini, John H J; Morales, Monica
2006-08-15
We find that Rad50S mutations in yeast and mammals exhibit constitutive PIKK (PI3-kinase like kinase)-dependent signaling [T. Usui, H. Ogawa, J.H. Petrini, A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol. Cell 7 (2001) 1255-1266.; M. Morales, J.W. Theunissen, C.F. Kim, R. Kitagawa, M.B. Kastan, J.H. Petrini, The Rad50S allele promotes ATM-dependent DNA damage responses and suppresses ATM deficiency: implications for the Mre11 complex as a DNA damage sensor. Genes Dev. 19 (2005) 3043-4354.]. The signaling depends on Mre11 complex functions, consistent with its role as a DNA damage sensor. Rad50S is distinct from hypomorphic mutations of Mre11 and Nbs1 in mammals [M. Morales, J.W. Theunissen, C.F. Kim, R. Kitagawa, M.B. Kastan, J.H. Petrini, The Rad50S allele promotes ATM-dependent DNA damage responses and suppresses ATM deficiency: implications for the Mre11 complex as a DNA damage sensor. Genes Dev. 19 (2005) 3043-3054.; J.P. Carney, R.S. Maser, H. Olivares, E.M. Davis, Le M. Beau, J.R. Yates, III, L. Hays, W.F. Morgan, J.H. Petrini, The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93 (1998) 477-486.; G.S. Stewart, R.S. Maser, T. Stankovic, D.A. Bressan, M.I. Kaplan, N.G. Jaspers, A. Raams, P.J. Byrd, J.H. Petrini, A.M. Taylor, The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99 (1999) 577-587.; B.R. Williams, O.K. Mirzoeva, W.F. Morgan, J. Lin, W. Dunnick, J.H. Petrini, A murine model of nijmegen breakage syndrome. Curr. Biol. 12 (2002) 648-653.; J.W. Theunissen, M.I. Kaplan, P.A. Hunt, B.R. Williams, D.O. Ferguson, F.W. Alt, J.H. Petrini, Checkpoint failure and chromosomal instability without lymphomagenesis in Mre11(ATLD1/ATLD1) mice. Mol. Cell 12 (2003) 1511-1523.] and the Mre11 complex deficiency in yeast [T. Usui, H. Ogawa, J.H. Petrini, A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol. Cell 7 (2001) 1255-1266.; D'D. Amours, S.P. Jackson, The yeast Xrs2 complex functions in S phase checkpoint regulation. Genes Dev. 15 (2001) 2238-49. ; M. Grenon, C. Gilbert, N.F. Lowndes, Checkpoint activation in response to double-strand breaks requires the Mre11/Rad50/Xrs2 complex. Nat. Cell Biol. 3 (2001) 844-847. ] where the signaling is compromised. Herein, we describe evidence for chronic signaling by Rad50S and discuss possible mechanisms.
Ojeda, Álvaro Huerta; Ríos, Luis Chirosa; Barrilao, Rafael Guisado; Ríos, Ignacio Chirosa; Serrano, Pablo Cáceres
2016-01-01
[Purpose] The aim of this study was to determine the variations in the blood muscular damage indicators post application of two complex training programs for back squats. [Subjects and Methods] Seven military athletes were the subjects of this study. The study had a quasi-experimental cross-over intra-subject design. Two complex training protocols were applied, and the variables to be measured were cortisol, metabolic creatine kinase, and total creatine kinase. For the statistical analysis, Student’s t-test was used. [Results] Twenty-four hours post effort, a significant decrease in cortisol level was shown for both protocols; however, the metabolic creatine kinase and total creatine kinase levels showed a significant increase. [Conclusion] Both protocols lowered the indicator of main muscular damage in the blood supply (cortisol). This proved that the work weight did not generate significant muscular damage in the 24-hour post-exercise period. PMID:27313356
Ojeda, Álvaro Huerta; Ríos, Luis Chirosa; Barrilao, Rafael Guisado; Ríos, Ignacio Chirosa; Serrano, Pablo Cáceres
2016-05-01
[Purpose] The aim of this study was to determine the variations in the blood muscular damage indicators post application of two complex training programs for back squats. [Subjects and Methods] Seven military athletes were the subjects of this study. The study had a quasi-experimental cross-over intra-subject design. Two complex training protocols were applied, and the variables to be measured were cortisol, metabolic creatine kinase, and total creatine kinase. For the statistical analysis, Student's t-test was used. [Results] Twenty-four hours post effort, a significant decrease in cortisol level was shown for both protocols; however, the metabolic creatine kinase and total creatine kinase levels showed a significant increase. [Conclusion] Both protocols lowered the indicator of main muscular damage in the blood supply (cortisol). This proved that the work weight did not generate significant muscular damage in the 24-hour post-exercise period.
Requirement of the Mre11 complex and exonuclease 1 for activation of the Mec1 signaling pathway.
Nakada, Daisuke; Hirano, Yukinori; Sugimoto, Katsunori
2004-11-01
The large protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), orchestrate DNA damage checkpoint pathways. In budding yeast, ATM and ATR homologs are encoded by TEL1 and MEC1, respectively. The Mre11 complex consists of two highly related proteins, Mre11 and Rad50, and a third protein, Xrs2 in budding yeast or Nbs1 in mammals. The Mre11 complex controls the ATM/Tel1 signaling pathway in response to double-strand break (DSB) induction. We show here that the Mre11 complex functions together with exonuclease 1 (Exo1) in activation of the Mec1 signaling pathway after DNA damage and replication block. Mec1 controls the checkpoint responses following UV irradiation as well as DSB induction. Correspondingly, the Mre11 complex and Exo1 play an overlapping role in activation of DSB- and UV-induced checkpoints. The Mre11 complex and Exo1 collaborate in producing long single-stranded DNA (ssDNA) tails at DSB ends and promote Mec1 association with the DSBs. The Ddc1-Mec3-Rad17 complex associates with sites of DNA damage and modulates the Mec1 signaling pathway. However, Ddc1 association with DSBs does not require the function of the Mre11 complex and Exo1. Mec1 controls checkpoint responses to stalled DNA replication as well. Accordingly, the Mre11 complex and Exo1 contribute to activation of the replication checkpoint pathway. Our results provide a model in which the Mre11 complex and Exo1 cooperate in generating long ssDNA tracts and thereby facilitate Mec1 association with sites of DNA damage or replication block.
Anuranjani; Bala, Madhu
2014-01-01
Whole body exposure to low linear energy transfer (LET) ionizing radiations (IRs) damages vital intracellular bio-molecules leading to multiple cellular and tissue injuries as well as pathophysiologies such as inflammation, immunosuppression etc. Nearly 70% of damage is caused indirectly by radiolysis of intracellular water leading to formation of reactive oxygen species (ROS) and free radicals and producing a state of oxidative stress. The damage is also caused by direct ionization of biomolecules. The type of radiation injuries is dependent on the absorbed radiation dose. Sub-lethal IR dose produces more of DNA base damages, whereas higher doses produce more DNA single strand break (SSBs), and double strand breaks (DSBs). The Nrf2-ARE pathway is an important oxidative stress regulating pathway. The DNA DSBs repair regulated by MRN complex, immunomodulation and inflammation regulated by HMGB1 and various types of cytokines are some of the key pathways which interact with each other in a complex manner and modify the radiation response. Because the majority of radiation damage is via oxidative stress, it is essential to gain in depth understanding of the mechanisms of Nrf2-ARE pathway and understand its interactions with MRN complex, HMGB1 and cytokines to increase our understanding on the radiation responses. Such information is of tremendous help in development of medical radiation countermeasures, radioprotective drugs and therapeutics. Till date no approved and safe countermeasure is available for human use. This study reviews the Nrf2-ARE pathway and its crosstalk with MRN-complex, HMGB1 and cytokines (TNF-a, IL-6, IFN-? etc.). An attempt is also made to review the modification of some of these pathways in presence of selected antioxidant radioprotective compounds or herbal extracts. PMID:25009785
Unhavaithaya, Yingdee; Orr-Weaver, Terry L
2013-12-03
Meiotic chromosome segregation involves pairing and segregation of homologous chromosomes in the first division and segregation of sister chromatids in the second division. Although it is known that the centromere and kinetochore are responsible for chromosome movement in meiosis as in mitosis, potential specialized meiotic functions are being uncovered. Centromere pairing early in meiosis I, even between nonhomologous chromosomes, and clustering of centromeres can promote proper homolog associations in meiosis I in yeast, plants, and Drosophila. It was not known, however, whether centromere proteins are required for this clustering. We exploited Drosophila mutants for the centromere proteins centromere protein-C (CENP-C) and chromosome alignment 1 (CAL1) to demonstrate that a functional centromere is needed for centromere clustering and pairing. The cenp-C and cal1 mutations result in C-terminal truncations, removing the domains through which these two proteins interact. The mutants show striking genetic interactions, failing to complement as double heterozygotes, resulting in disrupted centromere clustering and meiotic nondisjunction. The cluster of meiotic centromeres localizes to the nucleolus, and this association requires centromere function. In Drosophila, synaptonemal complex (SC) formation can initiate from the centromere, and the SC is retained at the centromere after it disassembles from the chromosome arms. Although functional CENP-C and CAL1 are dispensable for assembly of the SC, they are required for subsequent retention of the SC at the centromere. These results show that integral centromere proteins are required for nuclear position and intercentromere associations in meiosis.
Biswas, Uddipta; Wetzker, Cornelia; Lange, Julian; Christodoulou, Eleni G.; Seifert, Michael; Beyer, Andreas; Jessberger, Rolf
2013-01-01
Cohesin subunit SMC1β is specific and essential for meiosis. Previous studies showed functions of SMC1β in determining the axis-loop structure of synaptonemal complexes (SCs), in providing sister chromatid cohesion (SCC) in metaphase I and thereafter, in protecting telomere structure, and in synapsis. However, several central questions remained unanswered and concern roles of SMC1β in SCC and synapsis and processes related to these two processes. Here we show that SMC1β substantially supports prophase I SCC at centromeres but not along chromosome arms. Arm cohesion and some of centromeric cohesion in prophase I are provided by non-phosphorylated SMC1α. Besides supporting synapsis of autosomes, SMC1β is also required for synapsis and silencing of sex chromosomes. In absence of SMC1β, the silencing factor γH2AX remains associated with asynapsed autosomes and fails to localize to sex chromosomes. Microarray expression studies revealed up-regulated sex chromosome genes and many down-regulated autosomal genes. SMC1β is further required for non-homologous chromosome associations observed in absence of SPO11 and thus of programmed double-strand breaks. These breaks are properly generated in Smc1β−/− spermatocytes, but their repair is delayed on asynapsed chromosomes. SMC1α alone cannot support non-homologous associations. Together with previous knowledge, three main functions of SMC1β have emerged, which have multiple consequences for spermatocyte biology: generation of the loop-axis architecture of SCs, homologous and non-homologous synapsis, and SCC starting in early prophase I. PMID:24385917
Meiotic synapsis of homogeneously staining regions (HSRs) in chromosome 1 of Mus musculus.
Winking, H; Reuter, C; Traut, W
1993-05-01
About 50 copies of a long-range repeat DNA family with a repeat size of roughly 100 kb and with sequence homology to mRNAs are clustered in the G-light band D of chromosome 1 of the house mouse, Mus musculus. We studied amplified versions of the cluster which are found in many wild populations of M. musculus. They are cytogenetically conspicuous as one or two C-band positive homogeneously staining regions (single- and double band HSRs) which increase the mitotic length of chromosome 1. The double band HSR was phylogenetically derived from a single band HSR by a paracentric inversion. In homozygous condition, such HSRs contribute, albeit not as much as expected from their mitotic length, to the synaptonemal complex (SC) length of chromosome 1. In HSR heterozygous animals an elongation of the SCs was not noticeable. In single band HSR heterozygous males, synapsis proceeds regularly and continuously from the distal telomere towards the centromeric end without forming buckles. Thus, the single band HSR has no adverse effect on pairing. The same straight pairing behaviour was found in the majority of double band HSR heterozygous spermatocytes. This shows that extensive nonhomologous pairing can take place in the earliest phase of synapsis. Synapsis was discontinuous, leaving the central part of the bivalent 1 asynapsed, in only 14.3% of double band HSR heterozygous cells. In such cells the chromosome 1 SC is completed at a later stage of meiosis. The delay is presumably an effect of the inversion that includes one HSR band and the segment between the two HSR bands.
X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids.
Bhattacharyya, Tanmoy; Reifova, Radka; Gregorova, Sona; Simecek, Petr; Gergelits, Vaclav; Mistrik, Martin; Martincova, Iva; Pialek, Jaroslav; Forejt, Jiri
2014-02-01
Hybrid sterility (HS) belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X) harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2(Mmm) allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes.
Roelens, Baptiste; Schvarzstein, Mara; Villeneuve, Anne M.
2015-01-01
Meiotic chromosome segregation requires pairwise association between homologs, stabilized by the synaptonemal complex (SC). Here, we investigate factors contributing to pairwise synapsis by investigating meiosis in polyploid worms. We devised a strategy, based on transient inhibition of cohesin function, to generate polyploid derivatives of virtually any Caenorhabditis elegans strain. We exploited this strategy to investigate the contribution of recombination to pairwise synapsis in tetraploid and triploid worms. In otherwise wild-type polyploids, chromosomes first sort into homolog groups, then multipartner interactions mature into exclusive pairwise associations. Pairwise synapsis associations still form in recombination-deficient tetraploids, confirming a propensity for synapsis to occur in a strictly pairwise manner. However, the transition from multipartner to pairwise association was perturbed in recombination-deficient triploids, implying a role for recombination in promoting this transition when three partners compete for synapsis. To evaluate the basis of synapsis partner preference, we generated polyploid worms heterozygous for normal sequence and rearranged chromosomes sharing the same pairing center (PC). Tetraploid worms had no detectable preference for identical partners, indicating that PC-adjacent homology drives partner choice in this context. In contrast, triploid worms exhibited a clear preference for identical partners, indicating that homology outside the PC region can influence partner choice. Together, our findings, suggest a two-phase model for C. elegans synapsis: an early phase, in which initial synapsis interactions are driven primarily by recombination-independent assessment of homology near PCs and by a propensity for pairwise SC assembly, and a later phase in which mature synaptic interactions are promoted by recombination. PMID:26500263
X Chromosome Control of Meiotic Chromosome Synapsis in Mouse Inter-Subspecific Hybrids
Bhattacharyya, Tanmoy; Reifova, Radka; Gregorova, Sona; Simecek, Petr; Gergelits, Vaclav; Mistrik, Martin; Martincova, Iva; Pialek, Jaroslav; Forejt, Jiri
2014-01-01
Hybrid sterility (HS) belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X) harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2Mmm allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes. PMID:24516397
No evidence for neo-oogenesis may link to ovarian senescence in adult monkey.
Yuan, Jihong; Zhang, Dongdong; Wang, Lei; Liu, Mengyuan; Mao, Jian; Yin, Yu; Ye, Xiaoying; Liu, Na; Han, Jihong; Gao, Yingdai; Cheng, Tao; Keefe, David L; Liu, Lin
2013-11-01
Female germline or oogonial stem cells transiently residing in fetal ovaries are analogous to the spermatogonial stem cells or germline stem cells (GSCs) in adult testes where GSCs and meiosis continuously renew. Oocytes can be generated in vitro from embryonic stem cells and induced pluripotent stem cells, but the existence of GSCs and neo-oogenesis in adult mammalian ovaries is less clear. Preliminary findings of GSCs and neo-oogenesis in mice and humans have not been consistently reproducible. Monkeys provide the most relevant model of human ovarian biology. We searched for GSCs and neo-meiosis in ovaries of adult monkeys at various ages, and compared them with GSCs from adult monkey testis, which are characterized by cytoplasmic staining for the germ cell marker DAZL and nuclear expression of the proliferative markers PCNA and KI67, and pluripotency-associated genes LIN28 and SOX2, and lack of nuclear LAMIN A, a marker for cell differentiation. Early meiocytes undergo homologous pairing at prophase I distinguished by synaptonemal complex lateral filaments with telomere perinuclear distribution. By exhaustive searching using comprehensive experimental approaches, we show that proliferative GSCs and neo-meiocytes by these specific criteria were undetectable in adult mouse and monkey ovaries. However, we found proliferative nongermline somatic stem cells that do not express LAMIN A and germ cell markers in the adult ovaries, notably in the cortex and granulosa cells of growing follicles. These data support the paradigm that adult ovaries do not undergo germ cell renewal, which may contribute significantly to ovarian senescence that occurs with age. Copyright © 2013 AlphaMed Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarvis, Ian W.H., E-mail: Ian.Jarvis@ki.se; Bergvall, Christoffer, E-mail: Christoffer.Bergvall@anchem.su.se; Bottai, Matteo, E-mail: Matteo.Bottai@ki.se
2013-02-01
Complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are present in air particulate matter (PM) and have been associated with many adverse human health effects including cancer and respiratory disease. However, due to their complexity, the risk of exposure to mixtures is difficult to estimate. In the present study the effects of binary mixtures of benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) and complex mixtures of PAHs in urban air PM extracts on DNA damage signaling was investigated. Applying a statistical model to the data we observed a more than additive response for binary mixtures of BP and DBP on activation of DNAmore » damage signaling. Persistent activation of checkpoint kinase 1 (Chk1) was observed at significantly lower BP equivalent concentrations in air PM extracts than BP alone. Activation of DNA damage signaling was also more persistent in air PM fractions containing PAHs with more than four aromatic rings suggesting larger PAHs contribute a greater risk to human health. Altogether our data suggests that human health risk assessment based on additivity such as toxicity equivalency factor scales may significantly underestimate the risk of exposure to complex mixtures of PAHs. The data confirms our previous findings with PAH-contaminated soil (Niziolek-Kierecka et al., 2012) and suggests a possible role for Chk1 Ser317 phosphorylation as a biological marker for future analyses of complex mixtures of PAHs. -- Highlights: ► Benzo[a]pyrene (BP), dibenzo[a,l]pyrene (DBP) and air PM PAH extracts were compared. ► Binary mixture of BP and DBP induced a more than additive DNA damage response. ► Air PM PAH extracts were more potent than toxicity equivalency factor estimates. ► Larger PAHs (> 4 rings) contribute more to the genotoxicity of PAHs in air PM. ► Chk1 is a sensitive marker for persistent activation of DNA damage signaling from PAH mixtures.« less
Ubiquitination of exposed glycoproteins by SCFFBXO27 directs damaged lysosomes for autophagy
Yoshida, Yukiko; Yasuda, Sayaka; Fujita, Toshiharu; Hamasaki, Maho; Murakami, Arisa; Kawawaki, Junko; Iwai, Kazuhiro; Saeki, Yasushi; Yoshimori, Tamotsu; Matsuda, Noriyuki; Tanaka, Keiji
2017-01-01
Ubiquitination functions as a signal to recruit autophagic machinery to damaged organelles and induce their clearance. Here, we report the characterization of FBXO27, a glycoprotein-specific F-box protein that is part of the SCF (SKP1/CUL1/F-box protein) ubiquitin ligase complex, and demonstrate that SCFFBXO27 ubiquitinates glycoproteins in damaged lysosomes to regulate autophagic machinery recruitment. Unlike F-box proteins in other SCF complexes, FBXO27 is subject to N-myristoylation, which localizes it to membranes, allowing it to accumulate rapidly around damaged lysosomes. We also screened for proteins that are ubiquitinated upon lysosomal damage, and identified two SNARE proteins, VAMP3 and VAMP7, and five lysosomal proteins, LAMP1, LAMP2, GNS, PSAP, and TMEM192. Ubiquitination of all glycoproteins identified in this screen increased upon FBXO27 overexpression. We found that the lysosomal protein LAMP2, which is ubiquitinated preferentially on lysosomal damage, enhances autophagic machinery recruitment to damaged lysosomes. Thus, we propose that SCFFBXO27 ubiquitinates glycoproteins exposed upon lysosomal damage to induce lysophagy. PMID:28743755
Luo, Man; Bao, Zhengqiang; Xu, Feng; Wang, Xiaohui; Li, Fei; Li, Wen; Chen, Zhihua; Ying, Songmin; Shen, Huahao
2018-04-14
The inflammatory cascade can be initiated with the recognition of damaged DNA. Macrophages play an essential role in particulate matter (PM)-induced airway inflammation. In this study, we aim to explore the PM induced DNA damage response of macrophages and its function in airway inflammation. The DNA damage response and inflammatory response were assessed using bone marrow-derived macrophages following PM treatment and mouse model instilled intratracheally with PM. We found that PM induced significant DNA damage both in vitro and in vivo and simultaneously triggered a rapid DNA damage response, represented by nuclear RPA, 53BP1 and γH2AX foci formation. Genetic ablation or chemical inhibition of the DNA damage response sensor amplified the production of cytokines including Cxcl1, Cxcl2 and Ifn-γ after PM stimulation in bone marrow-derived macrophages. Similar to that seen in vitro , mice with myeloid-specific deletion of RAD50 showed higher levels of airway inflammation in response to the PM challenge, suggesting a protective role of DNA damage sensor during inflammation. These data demonstrate that PM exposure induces DNA damage and activation of DNA damage response sensor MRN complex in macrophages. Disruption of MRN complex lead to persistent, unrepaired DNA damage that causes elevated inflammatory response.
Casalini, C; Lodovici, M; Briani, C; Paganelli, G; Remy, S; Cheynier, V; Dolara, P
1999-08-01
Flavonoids are polyphenolic antioxidants occurring in vegetables and fruits as well as beverages such as tea and wine which have been thought to influence oxidative damage. We wanted to verify whether a complex mixture of wine tannins (wine complex polyphenols and tannins, WCPT) prevent chemically-induced oxidative DNA damage in vivo. Oxidative DNA damage was evaluated by measuring the ratio of 8-hydroxy-2'-deoxyguanosine (80HdG)/ 2-deoxyguanosine (2dG) x 10(-6) in hydrolyzed DNA using HPLC coupled with electrochemical and UV detectors. We treated rats with WCPT (57 mg/kg p.o.) for 14 d, a dose 10-fold higher than what a moderate wine drinker would be exposed to. WCPT administration significantly reduced the ratio of 80HdG/2dG x 10(-6) in liver DNA obtained from rats treated with 2-nitropropane (2NP) relative to controls administered 2NP only (33. 3 +/- 2.5 vs. 44.9 +/- 3.2 x 10(-6) 2dG; micro +/- SE; p<0.05). On the contrary, pretreatment with WCPT for 10 d did not protect the colon mucosa from oxidative DNA damage induced by 1, 2-dimethylhydrazine (DMH). 2NP and DMH are hepatic and colon carcinogens, respectively, capable of inducing oxidative DNA damage. WCPT have protective action against some types of chemically-induced oxidative DNA damage in vivo.
NASA Technical Reports Server (NTRS)
McElroy, Mark; Jackson, Wade; Pankow, Mark
2016-01-01
It is not easy to isolate the damage mechanisms associated with low-velocity impact in composites using traditional experiments. In this work, a new experiment is presented with the goal of generating data representative of progressive damage processes caused by low-velocity impact in composite materials. Carbon fiber reinforced polymer test specimens were indented quasi-statically such that a biaxial-bending state of deformation was achieved. As a result, a three-dimensional damage process, involving delamination and delamination-migration, was observed and documented using ultrasonic and x-ray computed tomography. Results from two different layups are presented in this paper. Delaminations occurred at up to three different interfaces and interacted with one another via transverse matrix cracks. Although this damage pattern is much less complex than that of low-velocity impact on a plate, it is more complex than that of a standard delamination coupon test and provides a way to generate delamination, matrix cracking, and delamination-migration in a controlled manner. By limiting the damage process in the experiment to three delaminations, the same damage mechanisms seen during impact could be observed but in a simplified manner. This type of data is useful in stages of model development and validation when the model is capable of simulating simple tests, but not yet capable of simulating more complex and realistic damage scenarios.
Kitamura, Chiaki; Nishihara, Tatsuji; Terashita, Masamichi; Tabata, Yasuhiko; Washio, Ayako
2012-01-01
Restorative and endodontic procedures have been recently developed in an attempt to preserve the vitality of dental pulp after exposure to external stimuli, such as caries infection or traumatic injury. When damage to dental pulp is reversible, pulp wound healing can proceed, whereas irreversible damage induces pathological changes in dental pulp, eventually requiring its removal. Nonvital teeth lose their defensive abilities and become severely damaged, resulting in extraction. Development of regeneration therapy for the dentin-pulp complex is important to overcome limitations with presently available therapies. Three strategies to regenerate the dentin-pulp complex have been proposed; regeneration of the entire tooth, local regeneration of the dentin-pulp complex from amputated dental pulp, and regeneration of dental pulp from apical dental pulp or periapical tissues. In this paper, we focus on the local regeneration of the dentin-pulp complex by application of exogenous growth factors and scaffolds to amputated dental pulp. PMID:22174717
Rebrov, I G; Kalinina, M V
2013-01-01
Functional activity of the CGABA(A)-receptor/Cl(-) ionophore complex was investigated the muscimol-stimulated entry of the radioactive isotope 36Cl(-) in synaptoneurosomes in changing the structure and permeability of neuronal membranes. Integrity of the membranes was damaged by removal of Ca(+2) and Mg(+2) from the incubation medium and by the method of freezing-thawing synaptoneurosomes. In both cases, an increase in basal 36Cl(-) entry into synaptoneurosomes, indicating increased nonspecific permeability of neuronal membranes, and decreased activity the CABA(A)-receptor/Cl(-) ionophore complex. The conclusion about the relationship of processes damage neuronal membranes and reducing the inhibitory processes in the epileptic focus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rundle, John B.; Klein, William
We have carried out research to determine the dynamics of failure in complex geomaterials, specifically focusing on the role of defects, damage and asperities in the catastrophic failure processes (now popularly termed “Black Swan events”). We have examined fracture branching and flow processes using models for invasion percolation, focusing particularly on the dynamics of bursts in the branching process. We have achieved a fundamental understanding of the dynamics of nucleation in complex geomaterials, specifically in the presence of inhomogeneous structures.
Re-examination of cumulative fatigue damage analysis - An engineering perspective
NASA Technical Reports Server (NTRS)
Manson, S. S.; Halford, G. R.
1986-01-01
A method which has evolved in the laboratories for the past 20 yr is re-examined with the intent of improving its accuracy and simplicity of application to engineering problems. Several modifications are introduced both to the analytical formulation of the Damage Curve Approach, and to the procedure for modifying this approach to achieve a Double Linear Damage Rule formulation which immensely simplifies the calculation. Improvements are also introduced in the treatment of mean stress for determining fatigue life of the individual events that enter into a complex loading history. While the procedure is completely consistent with the results of numerous two level tests that have been conducted on many materials, it is still necessary to verify applicability to complex loading histories. Caution is expressed that certain phenomenon can also influence the applicability - for example, unusual deformation and fracture modes inherent in complex loading especially if stresses are multiaxial. Residual stresses at crack tips, and metallurgical factors are also important in creating departures from the cumulative damage theories; examples of departures are provided.
Re-examination of cumulative fatigue damage analysis: An engineering perspective
NASA Technical Reports Server (NTRS)
Manson, S. S.; Halford, G. R.
1986-01-01
A method which has evolved in our laboratories for the past 20 yr is re-examined with the intent of improving its accuracy and simplicity of application to engineering problems. Several modifications are introduced both to the analytical formulation of the Damage Curve Approach, and to the procedure for modifying this approach to achieve a Double Linear Damage Rule formulation which immensely simplifies the calculation. Improvements are also introduced in the treatment of mean stress for determining fatigue life of the individual events that enter into a complex loading history. While the procedure is completely consistent with the results of numerous two level tests that have been conducted on many materials, it is still necessary to verify applicability to complex loading histories. Caution is expressed that certain phenomena can also influence the applicability - for example, unusual deformation and fracture modes inherent in complex loading - especially if stresses are multiaxial. Residual stresses at crack tips, and metallurgical factors are also important in creating departures from the cumulative damage theories; examples of departures are provided.
Multi-level damage identification with response reconstruction
NASA Astrophysics Data System (ADS)
Zhang, Chao-Dong; Xu, You-Lin
2017-10-01
Damage identification through finite element (FE) model updating usually forms an inverse problem. Solving the inverse identification problem for complex civil structures is very challenging since the dimension of potential damage parameters in a complex civil structure is often very large. Aside from enormous computation efforts needed in iterative updating, the ill-condition and non-global identifiability features of the inverse problem probably hinder the realization of model updating based damage identification for large civil structures. Following a divide-and-conquer strategy, a multi-level damage identification method is proposed in this paper. The entire structure is decomposed into several manageable substructures and each substructure is further condensed as a macro element using the component mode synthesis (CMS) technique. The damage identification is performed at two levels: the first is at macro element level to locate the potentially damaged region and the second is over the suspicious substructures to further locate as well as quantify the damage severity. In each level's identification, the damage searching space over which model updating is performed is notably narrowed down, not only reducing the computation amount but also increasing the damage identifiability. Besides, the Kalman filter-based response reconstruction is performed at the second level to reconstruct the response of the suspicious substructure for exact damage quantification. Numerical studies and laboratory tests are both conducted on a simply supported overhanging steel beam for conceptual verification. The results demonstrate that the proposed multi-level damage identification via response reconstruction does improve the identification accuracy of damage localization and quantization considerably.
Damage Detection in Rotorcraft Composite Structures Using Thermography and Laser-Based Ultrasound
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Zalameda, Joseph N.; Madaras, Eric I.
2004-01-01
New rotorcraft structural composite designs incorporate lower structural weight, reduced manufacturing complexity, and improved threat protection. These new structural concepts require nondestructive evaluation inspection technologies that can potentially be field-portable and able to inspect complex geometries for damage or structural defects. Two candidate technologies were considered: Thermography and Laser-Based Ultrasound (Laser UT). Thermography and Laser UT have the advantage of being non-contact inspection methods, with Thermography being a full-field imaging method and Laser UT a point scanning technique. These techniques were used to inspect composite samples that contained both embedded flaws and impact damage of various size and shape. Results showed that the inspection techniques were able to detect both embedded and impact damage with varying degrees of success.
Yadav, N; Kumar, S; Marlowe, T; Chaudhary, A K; Kumar, R; Wang, J; O'Malley, J; Boland, P M; Jayanthi, S; Kumar, T K S; Yadava, N; Chandra, D
2015-11-05
Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrial biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency whereas a reverse trend was observed with apicidin. Together, these finding provide a new strategy for differential mitochondrial targeting in cancer therapy.
Optimal sensor placement for active guided wave interrogation of complex metallic components
NASA Astrophysics Data System (ADS)
Coelho, Clyde K.; Kim, Seung Bum; Chattopadhyay, Aditi
2011-04-01
With research in structural health monitoring (SHM) moving towards increasingly complex structures for damage interrogation, the placement of sensors is becoming a key issue in the performance of the damage detection methodologies. For ultrasonic wave based approaches, this is especially important because of the sensitivity of the travelling Lamb waves to material properties, geometry and boundary conditions that may obscure the presence of damage if they are not taken into account during sensor placement. The framework proposed in this paper defines a sensing region for a pair of piezoelectric transducers in a pitch-catch damage detection approach by taking into account the material attenuation and probability of false alarm. Using information about the region interrogated by a sensoractuator pair, a simulated annealing optimization framework was implemented in order to place sensors on complex metallic geometries such that a selected minimum damage type and size could be detected with an acceptable probability of false alarm anywhere on the structure. This approach was demonstrated on a lug joint to detect a crack and on a large Naval SHM test bed and resulted in a placement of sensors that was able to interrogate all parts of the structure using the minimum number of transducers.
[Intrauterine infection and the preterm brain: dimensions of aetiology research].
Dammann, O
2006-02-01
Perinatal brain damage has a diverse and complex aetiology. Over the past decades, much progress has been made in this research field. In this article, I offer a discussion of seven dimensions of aetiological perinatal brain damage research: (1) hypoxia-ischaemia vs. inflammation; (2) "classic" vs. "remote" intrauterine infection; (3) focal vs. diffuse white matter damage; (4) maternal vs. foetal inflammatory response; (5) clinical vs. experimental data; (6) bacterial vs. viral infection; and (7) preterm vs. term delivery. Despite these complexities, it is hoped that obstetricians, neonatologists, and neuropaediatricians will agree on a perinatal neuroprotective strategy in the near future.
Rein, Katrin; Yanez, Diana A.; Terré, Berta; Palenzuela, Lluís; Aivio, Suvi; Wei, Kaichun; Edelmann, Winfried; Stark, Jeremy M.; Stracker, Travis H.
2015-01-01
The maintenance of genome stability is critical for the suppression of diverse human pathologies that include developmental disorders, premature aging, infertility and predisposition to cancer. The DNA damage response (DDR) orchestrates the appropriate cellular responses following the detection of lesions to prevent genomic instability. The MRE11 complex is a sensor of DNA double strand breaks (DSBs) and plays key roles in multiple aspects of the DDR, including DNA end resection that is critical for signaling and DNA repair. The MRE11 complex has been shown to function both upstream and in concert with the 5′-3′ exonuclease EXO1 in DNA resection, but it remains unclear to what extent EXO1 influences DSB responses independently of the MRE11 complex. Here we examine the genetic relationship of the MRE11 complex and EXO1 during mammalian development and in response to DNA damage. Deletion of Exo1 in mice expressing a hypomorphic allele of Nbs1 leads to severe developmental impairment, embryonic death and chromosomal instability. While EXO1 plays a minimal role in normal cells, its loss strongly influences DNA replication, DNA repair, checkpoint signaling and damage sensitivity in NBS1 hypomorphic cells. Collectively, our results establish a key role for EXO1 in modulating the severity of hypomorphic MRE11 complex mutations. PMID:26160886
NASA Technical Reports Server (NTRS)
George, Kerry; Wu, Honglu; Willingham, Veronica; Cucinotta, Francis A.
2002-01-01
High-LET radiation is more efficient in producing complex-type chromosome exchanges than sparsely ionizing radiation, and this can potentially be used as a biomarker of radiation quality. To investigate if complex chromosome exchanges are induced by the high-LET component of space radiation exposure, damage was assessed in astronauts' blood lymphocytes before and after long duration missions of 3-4 months. The frequency of simple translocations increased significantly for most of the crewmembers studied. However, there were few complex exchanges detected and only one crewmember had a significant increase after flight. It has been suggested that the yield of complex chromosome damage could be underestimated when analyzing metaphase cells collected at one time point after irradiation, and analysis of chemically-induced PCC may be more accurate since problems with complicated cell-cycle delays are avoided. However, in this case the yields of chromosome damage were similar for metaphase and PCC analysis of astronauts' lymphocytes. It appears that the use of complex-type exchanges as biomarker of radiation quality in vivo after low-dose chronic exposure in mixed radiation fields is hampered by statistical uncertainties.
Association of a Platinum Complex to a G-Quadruplex Ligand Enhances Telomere Disruption.
Charif, Razan; Granotier-Beckers, Christine; Bertrand, Hélène Charlotte; Poupon, Joël; Ségal-Bendirdjian, Evelyne; Teulade-Fichou, Marie-Paule; Boussin, François D; Bombard, Sophie
2017-08-21
Telomeres protect the ends of chromosomes against illegitimate recombination and repair. They can be targets for G-quadruplex ligands and platinum complexes due to their repeated G-rich sequences. Protection of telomeres is ensured by a complex of six proteins, including TRF2, which inhibits the DNA damage response pathway. We analyzed telomere modifications induced in cancer cells by the experimental hybrid platinum complex, Pt-MPQ, comprising both an ethylene diamine monofunctional platinum complex and a G-quadruplex recognition moiety (MPQ). Pt-MPQ promotes the displacement of two telomeric proteins (TRF2 and TRF1) from telomeres, as well as the formation of telomere damage and telomere sister losses, whereas the control compound MPQ does not. This suggests that the platinum moiety potentiates the targeting of the G-quadruplex ligand to telomeres, opening a new perspective for telomere biology and anticancer therapy. Interestingly, the chemotherapy drug cisplatin, which has no specific affinity for G-quadruplex structures, partially induces the TRF2 delocalization from telomeres but produces less telomeric DNA damage, suggesting that this TRF2 displacement could be independent of G-quadruplex recognition.
Jiang, Gaofeng; Zou, Yue; Wu, Xiaoming
2012-08-01
RPA (replication protein A), the eukaryotic ssDNA (single-stranded DNA)-binding protein, participates in most cellular processes in response to genotoxic insults, such as NER (nucleotide excision repair), DNA, DSB (double-strand break) repair and activation of cell cycle checkpoint signalling. RPA interacts with XPA (xeroderma pigmentosum A) and functions in early stage of NER. We have shown that in cells the RPA-XPA complex disassociated upon exposure of cells to high dose of UV irradiation. The dissociation required replication stress and was partially attributed to tRPA hyperphosphorylation. Treatment of cells with CPT (camptothecin) and HU (hydroxyurea), which cause DSB DNA damage and replication fork collapse respectively and also leads to the disruption of RPA-XPA complex. Purified RPA and XPA were unable to form complex in vitro in the presence of ssDNA. We propose that the competition-based RPA switch among different DNA metabolic pathways regulates the dissociation of RPA with XPA in cells after DNA damage. The biological significances of RPA-XPA complex disruption in relation with checkpoint activation, DSB repair and RPA hyperphosphorylation are discussed.
NASA Technical Reports Server (NTRS)
George, K.; Wu, H.; Willingham, V.; Furusawa, Y.; Kawata, T.; Cucinotta, F. A.; Dicello, J. F. (Principal Investigator)
2001-01-01
PURPOSE: To investigate how cell-cycle delays in human peripheral lymphocytes affect the expression of complex chromosome damage in metaphase following high- and low-LET radiation exposure. MATERIALS AND METHODS: Whole blood was irradiated in vitro with a low and a high dose of 1 GeV u(-1) iron particles, 400MeV u(-1) neon particles or y-rays. Lymphocytes were cultured and metaphase cells were collected at different time points after 48-84h in culture. Interphase chromosomes were prematurely condensed using calyculin-A, either 48 or 72 h after exposure to iron particles or gamma-rays. Cells in first division were analysed using a combination of FISH whole-chromosome painting and DAPI/ Hoechst 33258 harlequin staining. RESULTS: There was a delay in expression of chromosome damage in metaphase that was LET- and dose-dependant. This delay was mostly related to the late emergence of complex-type damage into metaphase. Yields of damage in PCC collected 48 h after irradiation with iron particles were similar to values obtained from cells undergoing mitosis after prolonged incubation. CONCLUSION: The yield of high-LET radiation-induced complex chromosome damage could be underestimated when analysing metaphase cells collected at one time point after irradiation. Chemically induced PCC is a more accurate technique since problems with complicated cell-cycle delays are avoided.
George, K; Wu, H; Willingham, V; Furusawa, Y; Kawata, T; Cucinotta, F A
2001-02-01
To investigate how cell-cycle delays in human peripheral lymphocytes affect the expression of complex chromosome damage in metaphase following high- and low-LET radiation exposure. Whole blood was irradiated in vitro with a low and a high dose of 1 GeV u(-1) iron particles, 400MeV u(-1) neon particles or y-rays. Lymphocytes were cultured and metaphase cells were collected at different time points after 48-84h in culture. Interphase chromosomes were prematurely condensed using calyculin-A, either 48 or 72 h after exposure to iron particles or gamma-rays. Cells in first division were analysed using a combination of FISH whole-chromosome painting and DAPI/ Hoechst 33258 harlequin staining. There was a delay in expression of chromosome damage in metaphase that was LET- and dose-dependant. This delay was mostly related to the late emergence of complex-type damage into metaphase. Yields of damage in PCC collected 48 h after irradiation with iron particles were similar to values obtained from cells undergoing mitosis after prolonged incubation. The yield of high-LET radiation-induced complex chromosome damage could be underestimated when analysing metaphase cells collected at one time point after irradiation. Chemically induced PCC is a more accurate technique since problems with complicated cell-cycle delays are avoided.
NASA Astrophysics Data System (ADS)
Schagerl, M.; Viechtbauer, C.; Hörrmann, S.
2015-07-01
Damage tolerance is a classical safety concept for the design of aircraft structures. Basically, this approach considers possible damages in the structure, predicts the damage growth under applied loading conditions and predicts the following decrease of the structural strength. As a fundamental result the damage tolerance approach yields the maximum inspection interval, which is the time a damage grows from a detectable to a critical level. The above formulation of the damage tolerance safety concept targets on metallic structures where the damage is typically a simple fatigue crack. Fiber-reinforced polymers show a much more complex damage behavior, such as delaminationsin laminated composites. Moreover, progressive damage in composites is often initiated by manufacturing defects. The complex manufacturing processes for composite structures almost certainly yield parts with defects, e.g. pores in the matrix or undulations of fibers. From such defects growing damages may start after a certain time of operation. The demand to simplify or even avoid the inspection of composite structures has therefore led to a comeback of the traditional safe-life safety concept. The aim of the so-called safe-life flaw tolerance concept is a structure that is capable of carrying the static loads during operation, despite significant damages and after a representative fatigue load spectrum. A structure with this property does not need to be inspected, respectively monitored at all during its service life. However, its load carrying capability is thereby not fully utilized. This article presents the possible refinement of the state-of-the-art safe-life flaw tolerance concept for composite structures towards a damage tolerance approach considering also the influence of manufacturing defects on damage initiation and growth. Based on fundamental physical relations and experimental observations the challenges when developing damage growth and residual strength curves are discussed.
RNA protects a nucleoprotein complex against radiation damage.
Bury, Charles S; McGeehan, John E; Antson, Alfred A; Carmichael, Ian; Gerstel, Markus; Shevtsov, Mikhail B; Garman, Elspeth F
2016-05-01
Radiation damage during macromolecular X-ray crystallographic data collection is still the main impediment for many macromolecular structure determinations. Even when an eventual model results from the crystallographic pipeline, the manifestations of radiation-induced structural and conformation changes, the so-called specific damage, within crystalline macromolecules can lead to false interpretations of biological mechanisms. Although this has been well characterized within protein crystals, far less is known about specific damage effects within the larger class of nucleoprotein complexes. Here, a methodology has been developed whereby per-atom density changes could be quantified with increasing dose over a wide (1.3-25.0 MGy) range and at higher resolution (1.98 Å) than the previous systematic specific damage study on a protein-DNA complex. Specific damage manifestations were determined within the large trp RNA-binding attenuation protein (TRAP) bound to a single-stranded RNA that forms a belt around the protein. Over a large dose range, the RNA was found to be far less susceptible to radiation-induced chemical changes than the protein. The availability of two TRAP molecules in the asymmetric unit, of which only one contained bound RNA, allowed a controlled investigation into the exact role of RNA binding in protein specific damage susceptibility. The 11-fold symmetry within each TRAP ring permitted statistically significant analysis of the Glu and Asp damage patterns, with RNA binding unexpectedly being observed to protect these otherwise highly sensitive residues within the 11 RNA-binding pockets distributed around the outside of the protein molecule. Additionally, the method enabled a quantification of the reduction in radiation-induced Lys and Phe disordering upon RNA binding directly from the electron density.
RNA protects a nucleoprotein complex against radiation damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bury, Charles S.; McGeehan, John E.; Antson, Alfred A.
Radiation damage during macromolecular X-ray crystallographic data collection is still the main impediment for many macromolecular structure determinations. Even when an eventual model results from the crystallographic pipeline, the manifestations of radiation-induced structural and conformation changes, the so-called specific damage, within crystalline macromolecules can lead to false interpretations of biological mechanisms. Although this has been well characterized within protein crystals, far less is known about specific damage effects within the larger class of nucleoprotein complexes. We developed a methodology whereby per-atom density changes could be quantified with increasing dose over a wide (1.3–25.0 MGy) range and at higher resolution (1.98more » Å) than the previous systematic specific damage study on a protein–DNA complex. Specific damage manifestations were determined within the largetrpRNA-binding attenuation protein (TRAP) bound to a single-stranded RNA that forms a belt around the protein. Over a large dose range, the RNA was found to be far less susceptible to radiation-induced chemical changes than the protein. The availability of two TRAP molecules in the asymmetric unit, of which only one contained bound RNA, allowed a controlled investigation into the exact role of RNA binding in protein specific damage susceptibility. The 11-fold symmetry within each TRAP ring permitted statistically significant analysis of the Glu and Asp damage patterns, with RNA binding unexpectedly being observed to protect these otherwise highly sensitive residues within the 11 RNA-binding pockets distributed around the outside of the protein molecule. In addition, the method enabled a quantification of the reduction in radiation-induced Lys and Phe disordering upon RNA binding directly from the electron density.« less
RNA protects a nucleoprotein complex against radiation damage
Bury, Charles S.; McGeehan, John E.; Antson, Alfred A.; ...
2016-04-26
Radiation damage during macromolecular X-ray crystallographic data collection is still the main impediment for many macromolecular structure determinations. Even when an eventual model results from the crystallographic pipeline, the manifestations of radiation-induced structural and conformation changes, the so-called specific damage, within crystalline macromolecules can lead to false interpretations of biological mechanisms. Although this has been well characterized within protein crystals, far less is known about specific damage effects within the larger class of nucleoprotein complexes. We developed a methodology whereby per-atom density changes could be quantified with increasing dose over a wide (1.3–25.0 MGy) range and at higher resolution (1.98more » Å) than the previous systematic specific damage study on a protein–DNA complex. Specific damage manifestations were determined within the largetrpRNA-binding attenuation protein (TRAP) bound to a single-stranded RNA that forms a belt around the protein. Over a large dose range, the RNA was found to be far less susceptible to radiation-induced chemical changes than the protein. The availability of two TRAP molecules in the asymmetric unit, of which only one contained bound RNA, allowed a controlled investigation into the exact role of RNA binding in protein specific damage susceptibility. The 11-fold symmetry within each TRAP ring permitted statistically significant analysis of the Glu and Asp damage patterns, with RNA binding unexpectedly being observed to protect these otherwise highly sensitive residues within the 11 RNA-binding pockets distributed around the outside of the protein molecule. In addition, the method enabled a quantification of the reduction in radiation-induced Lys and Phe disordering upon RNA binding directly from the electron density.« less
Lawler, John M
2011-05-01
Duchenne muscular dystrophy (DMD) is the most devastating type of muscular dystrophy, leading to progressive weakness of respiratory (e.g. diaphragm) and locomotor muscles (e.g. gastrocnemius). DMD is caused by X-linked defects in the gene that encodes for dystrophin, a key scaffolding protein of the dystroglycan complex (DCG) within the sarcolemmal cytoskeleton. As a result of a compromised dystroglycan complex, mechanical integrity is impaired and important signalling proteins (e.g. nNOS, caveolin-3) and pathways are disrupted. Disruption of the dystroglycan complex leads to high susceptibility to injury with repeated, eccentric contractions as well as inflammation, resulting in significant damage and necrosis. Chronic damage and repair cycling leads to fibrosis and weakness. While the link between inflammation with damage and weakness in the DMD diaphragm is unresolved, elevated oxidative stress may contribute to damage, weakness and possibly fibrosis. While utilization of non-specific antioxidant interventions has yielded inconsistent results, recent data suggest that NAD(P)H oxidase could play a pivotal role in elevating oxidative stress via integrated changes in caveolin-3 and stretch-activated channels (SACs). Oxidative stress may act as an amplifier, exacerbating disruption of the dystroglycan complex, upregulation of the inflammatory transcription factor NF-B, and thus functional impairment of force-generating capacity.
Damage Diagnosis in Semiconductive Materials Using Electrical Impedance Measurements
NASA Technical Reports Server (NTRS)
Ross, Richard W.; Hinton, Yolanda L.
2008-01-01
Recent aerospace industry trends have resulted in an increased demand for real-time, effective techniques for in-flight structural health monitoring. A promising technique for damage diagnosis uses electrical impedance measurements of semiconductive materials. By applying a small electrical current into a material specimen and measuring the corresponding voltages at various locations on the specimen, changes in the electrical characteristics due to the presence of damage can be assessed. An artificial neural network uses these changes in electrical properties to provide an inverse solution that estimates the location and magnitude of the damage. The advantage of the electrical impedance method over other damage diagnosis techniques is that it uses the material as the sensor. Simple voltage measurements can be used instead of discrete sensors, resulting in a reduction in weight and system complexity. This research effort extends previous work by employing finite element method models to improve accuracy of complex models with anisotropic conductivities and by enhancing the computational efficiency of the inverse techniques. The paper demonstrates a proof of concept of a damage diagnosis approach using electrical impedance methods and a neural network as an effective tool for in-flight diagnosis of structural damage to aircraft components.
Leckey, Cara A C; Rogge, Matthew D; Raymond Parker, F
2014-01-01
Three-dimensional (3D) elastic wave simulations can be used to investigate and optimize nondestructive evaluation (NDE) and structural health monitoring (SHM) ultrasonic damage detection techniques for aerospace materials. 3D anisotropic elastodynamic finite integration technique (EFIT) has been implemented for ultrasonic waves in carbon fiber reinforced polymer (CFRP) composite laminates. This paper describes 3D EFIT simulations of guided wave propagation in undamaged and damaged anisotropic and quasi-isotropic composite plates. Comparisons are made between simulations of guided waves in undamaged anisotropic composite plates and both experimental laser Doppler vibrometer (LDV) wavefield data and dispersion curves. Time domain and wavenumber domain comparisons are described. Wave interaction with complex geometry delamination damage is then simulated to investigate how simulation tools incorporating realistic damage geometries can aid in the understanding of wave interaction with CFRP damage. In order to move beyond simplistic assumptions of damage geometry, volumetric delamination data acquired via X-ray microfocus computed tomography is directly incorporated into the simulation. Simulated guided wave interaction with the complex geometry delamination is compared to experimental LDV time domain data and 3D wave interaction with the volumetric damage is discussed. Published by Elsevier B.V.
Hermo, Louis; Pelletier, R-Marc; Cyr, Daniel G; Smith, Charles E
2010-04-01
Spermatogenesis, a study of germ cell development, is a long, orderly, and well-defined process occurring in seminiferous tubules of the testis. It is a temporal event whereby undifferentiated spermatogonial germ cells evolve into maturing spermatozoa over a period of several weeks. Spermatogenesis is characterized by three specific functional phases: proliferation, meiosis, and differentiation, and it involves spermatogonia, spermatocytes, and spermatids. Germ cells at steps of development form various cellular associations or stages, with 6, 12, and 14 specific stages being identified in human, mouse, and rat, respectively. The stages evolve over time in a given area of the seminiferous tubule forming a cycle of the seminiferous epithelium that has a well-defined duration for a given species. In this part, we discuss the proliferation and meiotic phase whereby spermatogonia undergo several mitotic divisions to form spermatocytes that undergo two meiotic divisions to form haploid spermatids. In the rat, spermatogonia can be subdivided into several classes: stem cells (A(s)), proliferating cells (A(pr), A(al)), and differentiating cells (A(1)-A(4), In, B). They are dependent on a specific microenvironment (niche) contributed by Sertoli, myoid, and Leydig cells for proper development. Spermatogonia possess several surface markers whereby they can be identified from each other. During meiosis, spermatocytes undergo chromosomal pairing, synapsis, and genetic exchange as well as transforming into haploid cells following meiosis. The meiotic cells form specific structural entities such as the synaptonemal complex and sex body. Many genes involved in spermatogonial renewal and the meiotic process have been identified and shown to be essential for this event. Copyright 2009 Wiley-Liss, Inc.
Vimal, Divya; Kumar, Saurabh; Pandey, Ashutosh; Sharma, Divya; Saini, Sanjay; Gupta, Snigdha; Ravi Ram, Kristipati; Chowdhuri, Debapratim Kar
2018-03-01
Mismatch repair (MMR) system, a conserved DNA repair pathway, plays crucial role in DNA recombination and is involved in gametogenesis. The impact of alterations in MMR family of proteins (bacterial MutS and MutL homologues) on mammalian fertility is well documented. However, an insight to the role of MMR in reproduction of non-mammalian organisms is limited. Hence, in the present study, we analysed the impact of mlh1 (a MutL homologue) on meiotic crossing over/recombination and fertility in a genetically tractable model, Drosophila melanogaster. Using mlh1 e00130 hypomorphic allele, we report female specific adverse reproductive outcome for reduced mlh1 in Drosophila: mlh1 e00130 homozygous females had severely reduced fertility while males were fertile. Further, mlh1 e00130 females contained small ovaries with large number of early stages as well as significantly reduced mature oocytes, and laid fewer eggs, indicating discrepancies in egg production and ovulation. These observations contrast the sex independent and/or male specific sterility and normal follicular development as well as ovulation reported so far for MMR family proteins in mammals. However, analogous to the role(s) of mlh1 in meiotic crossing over and DNA repair processes underlying mammalian fertility, ovarian follicles from mlh1 e00130 females contained significantly increased DNA double strand breaks (DSBs) and reduced synaptonemal complex foci. In addition, large proportion of fertilized eggs display discrepancies in egg activation and fail to proceed beyond stage 5 of embryogenesis. Hence, reduction of the Mlh1 protein level leads to defective oocytes that fail to complete embryogenesis after fertilization thereby reducing female fertility. Copyright © 2017 Elsevier GmbH. All rights reserved.
Female Meiosis: Synapsis, Recombination, and Segregation in Drosophila melanogaster
Hughes, Stacie E.; Miller, Danny E.; Miller, Angela L.; Hawley, R. Scott
2018-01-01
A century of genetic studies of the meiotic process in Drosophila melanogaster females has been greatly augmented by both modern molecular biology and major advances in cytology. These approaches, and the findings they have allowed, are the subject of this review. Specifically, these efforts have revealed that meiotic pairing in Drosophila females is not an extension of somatic pairing, but rather occurs by a poorly understood process during premeiotic mitoses. This process of meiotic pairing requires the function of several components of the synaptonemal complex (SC). When fully assembled, the SC also plays a critical role in maintaining homolog synapsis and in facilitating the maturation of double-strand breaks (DSBs) into mature crossover (CO) events. Considerable progress has been made in elucidating not only the structure, function, and assembly of the SC, but also the proteins that facilitate the formation and repair of DSBs into both COs and noncrossovers (NCOs). The events that control the decision to mature a DSB as either a CO or an NCO, as well as determining which of the two CO pathways (class I or class II) might be employed, are also being characterized by genetic and genomic approaches. These advances allow a reconsideration of meiotic phenomena such as interference and the centromere effect, which were previously described only by genetic studies. In delineating the mechanisms by which the oocyte controls the number and position of COs, it becomes possible to understand the role of CO position in ensuring the proper orientation of homologs on the first meiotic spindle. Studies of bivalent orientation have occurred in the context of numerous investigations into the assembly, structure, and function of the first meiotic spindle. Additionally, studies have examined the mechanisms ensuring the segregation of chromosomes that have failed to undergo crossing over. PMID:29487146
Sato-Carlton, Aya; Li, Xuan; Crawley, Oliver; Testori, Sarah; Martinez-Perez, Enrique; Sugimoto, Asako; Carlton, Peter M.
2014-01-01
Prior to the meiotic divisions, dynamic chromosome reorganizations including pairing, synapsis, and recombination of maternal and paternal chromosome pairs must occur in a highly regulated fashion during meiotic prophase. How chromosomes identify each other's homology and exclusively pair and synapse with their homologous partners, while rejecting illegitimate synapsis with non-homologous chromosomes, remains obscure. In addition, how the levels of recombination initiation and crossover formation are regulated so that sufficient, but not deleterious, levels of DNA breaks are made and processed into crossovers is not understood well. We show that in Caenorhabditis elegans, the highly conserved Serine/Threonine protein phosphatase PP4 homolog, PPH-4.1, is required independently to carry out four separate functions involving meiotic chromosome dynamics: (1) synapsis-independent chromosome pairing, (2) restriction of synapsis to homologous chromosomes, (3) programmed DNA double-strand break initiation, and (4) crossover formation. Using quantitative imaging of mutant strains, including super-resolution (3D-SIM) microscopy of chromosomes and the synaptonemal complex, we show that independently-arising defects in each of these processes in the absence of PPH-4.1 activity ultimately lead to meiotic nondisjunction and embryonic lethality. Interestingly, we find that defects in double-strand break initiation and crossover formation, but not pairing or synapsis, become even more severe in the germlines of older mutant animals, indicating an increased dependence on PPH-4.1 with increasing maternal age. Our results demonstrate that PPH-4.1 plays multiple, independent roles in meiotic prophase chromosome dynamics and maintaining meiotic competence in aging germlines. PP4's high degree of conservation suggests it may be a universal regulator of meiotic prophase chromosome dynamics. PMID:25340746
Oh, Min Young; Garyn, Corey
2018-01-01
The double bromodomain and extra-terminal domain (BET) proteins are critical epigenetic readers that bind to acetylated histones in chromatin and regulate transcriptional activity and modulate changes in chromatin structure and organization. The testis-specific BET member, BRDT, is essential for the normal progression of spermatogenesis as mutations in the Brdt gene result in complete male sterility. Although BRDT is expressed in both spermatocytes and spermatids, loss of the first bromodomain of BRDT leads to severe defects in spermiogenesis without overtly compromising meiosis. In contrast, complete loss of BRDT blocks the progression of spermatocytes into the first meiotic division, resulting in a complete absence of post-meiotic cells. Although BRDT has been implicated in chromatin remodeling and mRNA processing during spermiogenesis, little is known about its role in meiotic processes. Here we report that BRDT is an essential regulator of chromatin organization and reprograming during prophase I of meiosis. Loss of BRDT function disrupts the epigenetic state of the meiotic sex chromosome inactivation in spermatocytes, affecting the synapsis and silencing of the X and Y chromosomes. We also found that BRDT controls the global chromatin organization and histone modifications of the chromatin attached to the synaptonemal complex. Furthermore, the homeostasis of crossover formation and localization during pachynema was altered, underlining a possible epigenetic mechanism by which crossovers are regulated and differentially established in mammalian male genomes. Our observations reveal novel findings about the function of BRDT in meiosis and provide insight into how epigenetic regulators modulate the progression of male mammalian meiosis and the formation of haploid gametes. PMID:29513658
Tishkoff, D. X.; Rockmill, B.; Roeder, G. S.; Kolodner, R. D.
1995-01-01
Strand exchange protein 1 (Sep1) from Saccharomyces cerevisiae promotes homologous pairing of DNA in vitro and sep1 mutants display pleiotropic phenotypes in both vegetative and meiotic cells. In this study, we examined in detail the ability of the sep1 mutant to progress through meiosis I prophase and to undergo meiotic recombination. In meiotic return-to-growth experiments, commitment to meiotic recombination began at the same time in wild type and mutant; however, recombinants accumulated at decreased rates in the mutant. Gene conversion eventually reached nearly wild-type levels, whereas crossing over reached 15-50% of wild type. In an assay of intrachromosomal pop-out recombination, the sep1, dmc1 and rad51 single mutations had only small effects; however, pop-out recombination was virtually eliminated in the sep1 dmc1 and sep1 rad51 double mutants, providing evidence for multiple recombination pathways. Analysis of meiotic recombination intermediates indicates that the sep1 mutant is deficient in meiotic double-strand break repair. In a physical assay, the formation of mature reciprocal recombinants in the sep1 mutant was delayed relative to wild type and ultimately reached only 50% of the wild-type level. Electron microscopic analysis of meiotic nuclear spreads indicates that the sep1δ mutant arrests in pachytene, with apparently normal synaptonemal complex. This arrest is RAD9-independent. We hypothesize that the Sep1 protein participates directly in meiotic recombination and that other strand exchange enzymes, acting in parallel recombination pathways, are able to substitute partially for the absence of the Sep1 protein. PMID:7713413
Guiraldelli, Michel F.; Eyster, Craig; Wilkerson, Joseph L.; Dresser, Michael E.; Pezza, Roberto J.
2013-01-01
Faithful chromosome segregation during meiosis requires that homologous chromosomes associate and recombine. Chiasmata, the cytological manifestation of recombination, provide the physical link that holds the homologs together as a pair, facilitating their orientation on the spindle at meiosis I. Formation of most crossover (CO) events requires the assistance of a group of proteins collectively known as ZMM. HFM1/Mer3 is in this group of proteins and is required for normal progression of homologous recombination and proper synapsis between homologous chromosomes in a number of model organisms. Our work is the first study in mammals showing the in vivo function of mouse HFM1. Cytological observations suggest that initial steps of recombination are largely normal in a majority of Hfm1−/− spermatocytes. Intermediate and late stages of recombination appear aberrant, as chromosomal localization of MSH4 is altered and formation of MLH1foci is drastically reduced. In agreement, chiasma formation is reduced, and cells arrest with subsequent apoptosis at diakinesis. Our results indicate that deletion of Hfm1 leads to the elimination of a major fraction but not all COs. Formation of chromosome axial elements and homologous pairing is apparently normal, and Hfm1−/− spermatocytes progress to the end of prophase I without apparent developmental delay or apoptosis. However, synapsis is altered with components of the central region of the synaptonemal complex frequently failing to extend the full length of the chromosome axes. We propose that initial steps of recombination are sufficient to support homology recognition, pairing, and initial chromosome synapsis and that HFM1 is required to form normal numbers of COs and to complete synapsis. PMID:23555294
Stage-specific expression of DDX4 and c-kit at different developmental stages of the porcine testis.
Lee, Ran; Lee, Won-Young; Park, Hyun-Jung; Ha, Woo-Tae; Woo, Jae-Seok; Chung, Hak-Jae; Lee, Ji-Heon; Hong, Kwonho; Song, Hyuk
2018-03-01
Spermatogenesis begins with spermatogonial stem cells (SSCs), which are located in the basement membrane of the adult testes. Previous studies have described specific biomarkers for undifferentiated porcine spermatogonia or SSCs; however, these markers are not sufficient to understand spermatogenesis at different developmental stages. The objective of this study was characterize the expression of DEAD-Box polypeptide 4 (DDX4, also known as VASA) and tyrosine-protein kinase kit (c-kit), as potential markers of male germ cells in the porcine testis. In porcine testis tissue at prepubertal stages (5, 30, and 60 days), DDX4 and c-kit protein expression was detected in the most undifferentiated spermatogonia, which also express protein gene product 9.5 (PGP9.5). However, in porcine testis tissues from pubertal and postpubertal stages (90, 120, and 150 days), DDX4 and c-kit were not detected in PGP9.5-positive undifferentiated spermatogonia. The DDX4 expression pattern was similar to that of c-kit in the porcine testis. In adult porcine testes, DDX4-expressing cells were located on the lumenal side, compared to synaptonemal complex protein 3-positive primary spermatocytes, but DDX-4 was not co-expressed with acrosin, a known acrosome marker. In addition, DDX4 was detected in PGP9.5-expressing porcine SSCs in culture. Based on our results, we suggest that DDX4 and c-kit are putative markers of undifferentiated spermatogonia in the prepubertal porcine testis. While in the postpubertal porcine testis, they are markers of differentiated spermatocytes. These findings may facilitate future studies of porcine spermatogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.
Phillips, Dylan; Wnetrzak, Joanna; Nibau, Candida; Barakate, Abdellah; Ramsay, Luke; Wright, Frank; Higgins, James D.; Perry, Ruth M.; Jenkins, Glyn
2013-01-01
In barley (Hordeum vulgare L.), chiasmata (the physical sites of genetic crossovers) are skewed towards the distal ends of chromosomes, effectively consigning a large proportion of genes to recombination coldspots. This has the effect of limiting potential genetic variability, and of reducing the efficiency of map-based cloning and breeding approaches for this crop. Shifting the sites of recombination to more proximal chromosome regions by forward and reverse genetic means may be profitable in terms of realizing the genetic potential of the species, but is predicated upon a better understanding of the mechanisms governing the sites of these events, and upon the ability to recognize real changes in recombination patterns. The barley MutL Homologue (HvMLH3), a marker for class I interfering crossovers, has been isolated and a specific antibody has been raised. Immunolocalization of HvMLH3 along with the synaptonemal complex transverse filament protein ZYP1, used in conjunction with fluorescence in situ hybridization (FISH) tagging of specific barley chromosomes, has enabled access to the physical recombination landscape of the barley cultivars Morex and Bowman. Consistent distal localization of HvMLH3 foci throughout the genome, and similar patterns of HvMLH3 foci within bivalents 2H and 3H have been observed. A difference in total numbers of HvMLH3 foci between these two cultivars has been quantified, which is interpreted as representing genotypic variation in class I crossover frequency. Discrepancies between the frequencies of HvMLH3 foci and crossover frequencies derived from linkage analysis point to the existence of at least two crossover pathways in barley. It is also shown that interference of HvMLH3 foci is relatively weak compared with other plant species. PMID:23554258
Vasnier, Christelle; de Muyt, Arnaud; Zhang, Liangran; Tessé, Sophie; Kleckner, Nancy E.; Zickler, Denise; Espagne, Eric
2014-01-01
Karyogamy, the process of nuclear fusion is required for two haploid gamete nuclei to form a zygote. Also, in haplobiontic organisms, karyogamy is required to produce the diploid nucleus/cell that then enters meiosis. We identify sun like protein 1 (Slp1), member of the mid–Sad1p, UNC-84–domain ubiquitous family, as essential for karyogamy in the filamentous fungus Sordaria macrospora, thus uncovering a new function for this protein family. Slp1 is required at the last step, nuclear fusion, not for earlier events including nuclear movements, recognition, and juxtaposition. Correspondingly, like other family members, Slp1 localizes to the endoplasmic reticulum and also to its extensions comprising the nuclear envelope. Remarkably, despite the absence of nuclear fusion in the slp1 null mutant, meiosis proceeds efficiently in the two haploid “twin” nuclei, by the same program and timing as in diploid nuclei with a single dramatic exception: the normal prophase program of recombination and synapsis between homologous chromosomes, including loading of recombination and synaptonemal complex proteins, occurs instead between sister chromatids. Moreover, the numbers of recombination-initiating double-strand breaks (DSBs) and ensuing recombinational interactions, including foci of the essential crossover factor Homo sapiens enhancer of invasion 10 (Hei10), occur at half the diploid level in each haploid nucleus, implying per-chromosome specification of DSB formation. Further, the distribution of Hei10 foci shows interference like in diploid meiosis. Centromere and spindle dynamics, however, still occur in the diploid mode during the two meiotic divisions. These observations imply that the prophase program senses absence of karyogamy and/or absence of a homolog partner and adjusts the interchromosomal interaction program accordingly. PMID:25210014
Celik-Ozenci, Ciler; Jakab, Attila; Kovacs, Tamas; Catalanotti, Jillian; Demir, Ramazan; Bray-Ward, Patricia; Ward, David; Huszar, Gabor
2004-09-01
We hypothesize that the potential relationship between abnormal sperm morphology and increased frequency of numerical chromosomal aberrations is based on two attributes of diminished sperm maturity: (i) cytoplasmic retention and consequential sperm shape abnormalities; and (ii) meiotic errors caused by low levels of the HspA2 chaperone, a component of the synaptonemal complex. Because sperm morphology and aneuploidies were assessed in semen, but not in the same spermatozoa, previous studies addressing this relationship were inconclusive. We recently demonstrated that sperm shape is preserved following fluorescence in situ hybridization (FISH). Thus, we examined the shape and chromosomal aberrations in the same sperm. We performed phase contrast microscopy and FISH, using centromeric probes for chromosomes X, Y, 10, 11 and 17 in 15 men. The fluorescence and respective phase contrast images were digitized using the Metamorph program. We studied 1286 sperm (256 disomic, 130 diploid and 900 haploid sperm) by three criteria: head and tail dimensions, head shape and Kruger strict morphology. Furthermore, in each analysis, we considered whether disomic or diploid sperm may be distinguished from haploid sperm. There was an overall, but not discriminative, relationship between abnormal sperm dimensions or shape and increased frequencies of numerical chromosomal aberrations. However, approximately 68 of the 256 disomic, and four of 130 diploid sperm showed head and tail dimensions comparable with the most normal, lowest tertile of the 900 haploid spermatozoa. Considering all 1286 sperm, among those with the most regular, symmetrical shape (n = 367), there were 63 and five with disomic and diploid nuclei, respectively. In line with these findings, among the 256 disomic sperm, 10% were Kruger normal. Sperm dimensions or shape are not reliable attributes in selection of haploid sperm for ICSI.
Complete deletion of the AZFb interval from the Y chromosome in an oligozoospermic man.
Longepied, Guy; Saut, Noemie; Aknin-Seifer, Isabelle; Levy, Rachel; Frances, Anne-Marie; Metzler-Guillemain, Catherine; Guichaoua, Marie-Roberte; Mitchell, Michael J
2010-10-01
Deletion of the entire AZFb interval from the Y chromosome is strictly associated with azoospermia arising from maturation arrest during meiosis. Here, we describe the exceptional case of an oligozoospermic man, 13-1217, with an AZFb + c (P5/distal-P1) deletion. Through the characterization of this patient, and two AZFb (P5/proximal-P1) patients with maturation arrest, we have explored three possible explanations for his exceptionally progressive spermatogenesis. We have determined the precise breakpoints of the deletion in 13-1217, and shown that 13-1217 is deleted for more AZFb material than one of the AZFb-deleted men (13-5349). Immunocytochemical analysis of spermatocytes with an antibody against a synaptonemal complex component indicates synapsis to be largely unaffected in 13-1217, in contrast to 13-5349 where extended asynapsis is frequent. Using PCR-based analyses of RNA and DNA from the same testicular biopsy, we show that 13-1217 expresses post-meiotic germ cell markers in the absence of genomic DNA and transcripts from the AZFb and AZFc intervals. We have determined the Y chromosome haplogroup of 13-1217 to be HgL-M185. Our results indicate that the post-meiotic spermatogenesis in 13-1217 is not a consequence of mosaicism or retention of a key AZFb gene. On the contrary, since the Hg-L Y chromosome carried by 13-1217 is uncommon in Western Europe, a Y-linked modifier locus remains a possible explanation for the oligozoospermia observed in patient 13-1217. Further cases must now be studied to understand how germ cells complete spermatogenesis in the absence of the AZFb interval.
Diagnosis of skin cancer by correlation and complexity analyses of damaged DNA
Namazi, Hamidreza; Kulish, Vladimir V.; Delaviz, Fatemeh; Delaviz, Ali
2015-01-01
Skin cancer is a common, low-grade cancerous (malignant) growth of the skin. It starts from cells that begin as normal skin cells and transform into those with the potential to reproduce in an out-of-control manner. Cancer develops when DNA, the molecule found in cells that encodes genetic information, becomes damaged and the body cannot repair the damage. A DNA walk of a genome represents how the frequency of each nucleotide of a pairing nucleotide couple changes locally. In this research in order to diagnose the skin cancer, first DNA walk plots of genomes of patients with skin cancer were generated. Then, the data so obtained was checked for complexity by computing the fractal dimension. Furthermore, the Hurst exponent has been employed in order to study the correlation of damaged DNA. By analysing different samples it has been found that the damaged DNA sequences are exhibiting higher degree of complexity and less correlation compared to normal DNA sequences. This investigation confirms that this method can be used for diagnosis of skin cancer. The method discussed in this research is useful not only for diagnosis of skin cancer but can be applied for diagnosis and growth analysis of different types of cancers. PMID:26497203
Deciphering the Binding between Nupr1 and MSL1 and Their DNA-Repairing Activity
Doménech, Rosa; Pantoja-Uceda, David; Gironella, Meritxell; Santoro, Jorge; Velázquez-Campoy, Adrián; Neira, José L.; Iovanna, Juan L.
2013-01-01
The stress protein Nupr1 is a highly basic, multifunctional, intrinsically disordered protein (IDP). MSL1 is a histone acetyl transferase-associated protein, known to intervene in the dosage compensation complex (DCC). In this work, we show that both Nupr1 and MSL1 proteins were recruited and formed a complex into the nucleus in response to DNA-damage, which was essential for cell survival in reply to cisplatin damage. We studied the interaction of Nupr1 and MSL1, and their binding affinities to DNA by spectroscopic and biophysical methods. The MSL1 bound to Nupr1, with a moderate affinity (2.8 µM) in an entropically-driven process. MSL1 did not bind to non-damaged DNA, but it bound to chemically-damaged-DNA with a moderate affinity (1.2 µM) also in an entropically-driven process. The Nupr1 protein bound to chemically-damaged-DNA with a slightly larger affinity (0.4 µM), but in an enthalpically-driven process. Nupr1 showed different interacting regions in the formed complexes with Nupr1 or DNA; however, they were always disordered (“fuzzy”), as shown by NMR. These results underline a stochastic description of the functionality of the Nupr1 and its other interacting partners. PMID:24205110
Mechanisms of mutagenesis: DNA replication in the presence of DNA damage
Liu, Binyan; Xue, Qizhen; Tang, Yong; Cao, Jia; Guengerich, F. Peter; Zhang, Huidong
2017-01-01
Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, E. coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis. PMID:27234563
Mechanisms of mutagenesis: DNA replication in the presence of DNA damage.
Liu, Binyan; Xue, Qizhen; Tang, Yong; Cao, Jia; Guengerich, F Peter; Zhang, Huidong
2016-01-01
Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, Escherichia coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Summers, Geoffrey P.; Burke, Edward A.; Shapiro, Philip; Statler, Richard; Messenger, Scott R.; Walters, Robert J.
1994-01-01
It has been found useful in the past to use the concept of 'equivalent fluence' to compare the radiation response of different solar cell technologies. Results are usually given in terms of an equivalent 1 MeV electron or an equivalent 10 MeV proton fluence. To specify cell response in a complex space-radiation environment in terms of an equivalent fluence, it is necessary to measure damage coefficients for a number of representative electron and proton energies. However, at the last Photovoltaic Specialist Conference we showed that nonionizing energy loss (NIEL) could be used to correlate damage coefficients for protons, using measurements for GaAs as an example. This correlation means that damage coefficients for all proton energies except near threshold can be predicted from a measurement made at one particular energy. NIEL is the exact equivalent for displacement damage of linear energy transfer (LET) for ionization energy loss. The use of NIEL in this way leads naturally to the concept of 10 MeV equivalent proton fluence. The situation for electron damage is more complex, however. It is shown that the concept of 'displacement damage dose' gives a more general way of unifying damage coefficients. It follows that 1 MeV electron equivalent fluence is a special case of a more general quantity for unifying electron damage coefficients which we call the 'effective 1 MeV electron equivalent dose'.
Rein, Katrin; Yanez, Diana A; Terré, Berta; Palenzuela, Lluís; Aivio, Suvi; Wei, Kaichun; Edelmann, Winfried; Stark, Jeremy M; Stracker, Travis H
2015-09-03
The maintenance of genome stability is critical for the suppression of diverse human pathologies that include developmental disorders, premature aging, infertility and predisposition to cancer. The DNA damage response (DDR) orchestrates the appropriate cellular responses following the detection of lesions to prevent genomic instability. The MRE11 complex is a sensor of DNA double strand breaks (DSBs) and plays key roles in multiple aspects of the DDR, including DNA end resection that is critical for signaling and DNA repair. The MRE11 complex has been shown to function both upstream and in concert with the 5'-3' exonuclease EXO1 in DNA resection, but it remains unclear to what extent EXO1 influences DSB responses independently of the MRE11 complex. Here we examine the genetic relationship of the MRE11 complex and EXO1 during mammalian development and in response to DNA damage. Deletion of Exo1 in mice expressing a hypomorphic allele of Nbs1 leads to severe developmental impairment, embryonic death and chromosomal instability. While EXO1 plays a minimal role in normal cells, its loss strongly influences DNA replication, DNA repair, checkpoint signaling and damage sensitivity in NBS1 hypomorphic cells. Collectively, our results establish a key role for EXO1 in modulating the severity of hypomorphic MRE11 complex mutations. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Yonathan Sunarsa, Timotius; Aryan, Pouria; Jeon, Ikgeun; Park, Byeongjin; Liu, Peipei; Sohn, Hoon
2017-12-08
Adhesive bonded structures have been widely used in aerospace, automobile, and marine industries. Due to the complex nature of the failure mechanisms of bonded structures, cost-effective and reliable damage detection is crucial for these industries. Most of the common damage detection methods are not adequately sensitive to the presence of weakened bonding. This paper presents an experimental and analytical method for the in-situ detection of damage in adhesive-bonded structures. The method is fully non-contact, using air-coupled ultrasonic transducers (ACT) for ultrasonic wave generation and sensing. The uniqueness of the proposed method relies on accurate detection and localization of weakened bonding in complex adhesive bonded structures. The specimens tested in this study are parts of real-world structures with critical and complex damage types, provided by Hyundai Heavy Industries ® and IKTS Fraunhofer ® . Various transmitter and receiver configurations, including through transmission, pitch-catch scanning, and probe holder angles, were attempted, and the obtained results were analyzed. The method examines the time-of-flight of the ultrasonic waves over a target inspection area, and the spatial variation of the time-of-flight information was examined to visualize and locate damage. The proposed method works without relying on reference data obtained from the pristine condition of the target specimen. Aluminum bonded plates and triplex adhesive layers with debonding and weakened bonding were used to examine the effectiveness of the method.
Yonathan Sunarsa, Timotius; Aryan, Pouria; Jeon, Ikgeun; Park, Byeongjin; Liu, Peipei
2017-01-01
Adhesive bonded structures have been widely used in aerospace, automobile, and marine industries. Due to the complex nature of the failure mechanisms of bonded structures, cost-effective and reliable damage detection is crucial for these industries. Most of the common damage detection methods are not adequately sensitive to the presence of weakened bonding. This paper presents an experimental and analytical method for the in-situ detection of damage in adhesive-bonded structures. The method is fully non-contact, using air-coupled ultrasonic transducers (ACT) for ultrasonic wave generation and sensing. The uniqueness of the proposed method relies on accurate detection and localization of weakened bonding in complex adhesive bonded structures. The specimens tested in this study are parts of real-world structures with critical and complex damage types, provided by Hyundai Heavy Industries® and IKTS Fraunhofer®. Various transmitter and receiver configurations, including through transmission, pitch-catch scanning, and probe holder angles, were attempted, and the obtained results were analyzed. The method examines the time-of-flight of the ultrasonic waves over a target inspection area, and the spatial variation of the time-of-flight information was examined to visualize and locate damage. The proposed method works without relying on reference data obtained from the pristine condition of the target specimen. Aluminum bonded plates and triplex adhesive layers with debonding and weakened bonding were used to examine the effectiveness of the method. PMID:29292752
Eichenfield, Dawn Z; Troutman, Ty Dale; Link, Verena M; Lam, Michael T; Cho, Han; Gosselin, David; Spann, Nathanael J; Lesch, Hanna P; Tao, Jenhan; Muto, Jun; Gallo, Richard L; Evans, Ronald M; Glass, Christopher K
2016-01-01
Although macrophages can be polarized to distinct phenotypes in vitro with individual ligands, in vivo they encounter multiple signals that control their varied functions in homeostasis, immunity, and disease. Here, we identify roles of Rev-erb nuclear receptors in regulating responses of mouse macrophages to complex tissue damage signals and wound repair. Rather than reinforcing a specific program of macrophage polarization, Rev-erbs repress subsets of genes that are activated by TLR ligands, IL4, TGFβ, and damage-associated molecular patterns (DAMPS). Unexpectedly, a complex damage signal promotes co-localization of NF-κB, Smad3, and Nrf2 at Rev-erb-sensitive enhancers and drives expression of genes characteristic of multiple polarization states in the same cells. Rev-erb-sensitive enhancers thereby integrate multiple damage-activated signaling pathways to promote a wound repair phenotype. DOI: http://dx.doi.org/10.7554/eLife.13024.001 PMID:27462873
Photoinduced DNA damage and cytotoxicity by a triphenylamine-modified platinum-diimine complex.
Zhang, Zhigang; Dai, Ruihui; Ma, Jiajia; Wang, Shuying; Wei, Xuehong; Wang, Hongfei
2015-02-01
Many planar photosensitizers tend to self-aggregate via van der Waals interactions between π-conjugated systems. The self-aggregation of the photosensitizer may reduce the efficiency of the photosensitizer to generate singlet oxygen, thereby diminishing its photodynamic activity. Efforts have been made to improve the photodynamic activity of bis-(o-diiminobenzosemiquinonato)platinum(II) which has planar geometry by the introduction of the sterically hindered triphenylamine moiety into the ligand. Herein we report the photoinduced DNA damage and cytotoxicity by a triphenylamine-modified platinum-diimine complex in red light studied by fluorescence spectra, agarose gel assay and cell viability assay. The results suggest that the triphenylamine-modified platinum-diimine complex has better capability to generate singlet oxygen than bis-(o-diiminobenzosemiquinonato)platinum(II), and it can induce DNA damage in red light, causing high photocytotoxicity in HepG-2 cells in vitro. Copyright © 2014 Elsevier Inc. All rights reserved.
Comparison of the effect of UV laser radiation and of a radiomimetic substance on chromatin
NASA Astrophysics Data System (ADS)
Radulescu, Irina; Radu, Liliana; Serbanescu, Ruxandra; Nelea, V. D.; Martin, C.; Mihailescu, Ion N.
1998-07-01
The damages of the complex of deoxyribonucleic acid (DNA) and proteins from chromatin, produced by the UV laser radiation and/or by treatment with a radiomimetic substance, bleomycin, were compared. The laser radiation and bleomycin effects on chromatin structure were determined by the static and dynamic fluorimetry of chromatin complexes with the DNA specific ligand-- proflavine and by the analysis of tryptophan chromatin intrinsic fluorescence. Time resolved spectroscopy is a sensitive technique which allows to determine the excited state lifetimes of chromatin--proflavine complexes. Also, the percentage contributions to the fluorescence of proflavine, bound and unbound to chromatin DNA, were evaluated. The damages produced by the UV laser radiation on chromatin are similar with those of radiomimetic substance action and consists in DNA and proteins destruction. The DNA damage degree has been determined. The obtained results may constitute some indications in the laser utilization in radiochimiotherapy.
Jiang, Gaofeng; Zou, Yue; Wu, Xiaoming
2013-01-01
RPA (replication protein A), the eukaryotic ssDNA (single-stranded DNA)-binding protein, participates in most cellular processes in response to genotoxic insults, such as NER (nucleotide excision repair), DNA, DSB (double-strand break) repair and activation of cell cycle checkpoint signalling. RPA interacts with XPA (xeroderma pigmentosum A) and functions in early stage of NER. We have shown that in cells the RPA–XPA complex disassociated upon exposure of cells to high dose of UV irradiation. The dissociation required replication stress and was partially attributed to tRPA hyperphosphorylation. Treatment of cells with CPT (camptothecin) and HU (hydroxyurea), which cause DSB DNA damage and replication fork collapse respectively and also leads to the disruption of RPA–XPA complex. Purified RPA and XPA were unable to form complex in vitro in the presence of ssDNA. We propose that the competition-based RPA switch among different DNA metabolic pathways regulates the dissociation of RPA with XPA in cells after DNA damage. The biological significances of RPA–XPA complex disruption in relation with checkpoint activation, DSB repair and RPA hyperphosphorylation are discussed. PMID:22578086
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, N.; Kumar, S.; Marlowe, T.
Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrialmore » biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency whereas a reverse trend was observed with apicidin. Together, these finding provide a new strategy for differential mitochondrial targeting in cancer therapy.« less
Yadav, N.; Kumar, S.; Marlowe, T.; ...
2015-11-05
Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrialmore » biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency whereas a reverse trend was observed with apicidin. Together, these finding provide a new strategy for differential mitochondrial targeting in cancer therapy.« less
Capacitance-based damage detection sensing for aerospace structural composites
NASA Astrophysics Data System (ADS)
Bahrami, P.; Yamamoto, N.; Chen, Y.; Manohara, H.
2014-04-01
Damage detection technology needs improvement for aerospace engineering application because detection within complex composite structures is difficult yet critical to avoid catastrophic failure. Damage detection is challenging in aerospace structures because not all the damage detection technology can cover the various defect types (delamination, fiber fracture, matrix crack etc.), or conditions (visibility, crack length size, etc.). These defect states are expected to become even more complex with future introduction of novel composites including nano-/microparticle reinforcement. Currently, non-destructive evaluation (NDE) methods with X-ray, ultrasound, or eddy current have good resolutions (< 0.1 mm), but their detection capabilities is limited by defect locations and orientations and require massive inspection devices. System health monitoring (SHM) methods are often paired with NDE technologies to signal out sensed damage, but their data collection and analysis currently requires excessive wiring and complex signal analysis. Here, we present a capacitance sensor-based, structural defect detection technology with improved sensing capability. Thin dielectric polymer layer is integrated as part of the structure; the defect in the structure directly alters the sensing layer's capacitance, allowing full-coverage sensing capability independent of defect size, orientation or location. In this work, capacitance-based sensing capability was experimentally demonstrated with a 2D sensing layer consisting of a dielectric layer sandwiched by electrodes. These sensing layers were applied on substrate surfaces. Surface indentation damage (~1mm diameter) and its location were detected through measured capacitance changes: 1 to 250 % depending on the substrates. The damage detection sensors are light weight, and they can be conformably coated and can be part of the composite structure. Therefore it is suitable for aerospace structures such as cryogenic tanks and rocket fairings for example. The sensors can also be operating in space and harsh environment such as high temperature and vacuum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velişa, G.; Wendler, E.; Zhao, S.
A combined experimental and computational evaluation of damage accumulation in ion-irradiated Ni, NiFe, and NiFeCoCr is presented. Furthermore, a suppressed damage accumulation, at early stages (low-fluence irradiation), is revealed in NiFeCoCr, with a linear dependence as a function of ion fluence, in sharp contrast with Ni and NiFe. This effect, observed at 16 K, is attributed to the complex energy landscape in these alloys that limits defect mobility and therefore enhances defect interaction and recombination. Our results, together with previous room-temperature and high-temperature investigations, suggest "self-healing" as an intrinsic property of complex alloys that is not a thermally activated process.
Velişa, G.; Wendler, E.; Zhao, S.; ...
2017-12-17
A combined experimental and computational evaluation of damage accumulation in ion-irradiated Ni, NiFe, and NiFeCoCr is presented. Furthermore, a suppressed damage accumulation, at early stages (low-fluence irradiation), is revealed in NiFeCoCr, with a linear dependence as a function of ion fluence, in sharp contrast with Ni and NiFe. This effect, observed at 16 K, is attributed to the complex energy landscape in these alloys that limits defect mobility and therefore enhances defect interaction and recombination. Our results, together with previous room-temperature and high-temperature investigations, suggest "self-healing" as an intrinsic property of complex alloys that is not a thermally activated process.
Khvostov, Mikhail V; Tolstikova, Tatjana G; Borisov, Sergey A; Zhukova, Natalja A; Dushkin, Alexander V; Chistyachenko, Yulia S; Polyakov, Nikolay E
2016-01-01
The main undesirable side effect of the aspirin is the damage to the gastrointestinal mucosa, leading to the formation of erosions, peptic ulcers, and as a result, bleeding. To overcome this problem "host-guest" complexation with natural polysaccharide arabinogalactan could be applied. The complex with a weight ratio of ASA:AG = 1:10 was prepared by solid phase method in a rotary mill. Complex was administered orally to mice or rats at doses of 250, 500 or 1000 mg/kg. The "acetic acid induced writhing" and "hot plate" tests were used as an in vivo pain models. The antiinflammatory activity was studied using "histamine swelling" test. Also, long-term (30 days) oral introduction of the complex to rats was performed and gastric mucosa damages were evaluated. In all experiments pure aspirin (ASA) was used as a control in appropriate doses. The minimal effective analgesic dose of the complex was 250 mg/kg, equivalent to 23 mg/kg of ASA, a dose in which aspirin itself was not active. The anti-inflammatory effect was found at relatively higher doses: 500 and 1000 mg/kg (46 and 92 mg/kg of ASA respectively) for the complex and only at 100 mg/kg for the ASA. Long-term introduction of the complex at doses of 250 and 500 mg/kg was safe for gastric mucosa, while ASA at the dose of 50 mg/kg showed a strong gastric mucosal damage. The effective analgesic and anti-inflammatory doses of 1:10 aspirin complex with arabinogalactan are twice less compared to pure aspirin and safer for the gastrointestinal mucosa.
Dynamic Evolution Of Off-Fault Medium During An Earthquake: A Micromechanics Based Model
NASA Astrophysics Data System (ADS)
Thomas, Marion Y.; Bhat, Harsha S.
2018-05-01
Geophysical observations show a dramatic drop of seismic wave speeds in the shallow off-fault medium following earthquake ruptures. Seismic ruptures generate, or reactivate, damage around faults that alter the constitutive response of the surrounding medium, which in turn modifies the earthquake itself, the seismic radiation, and the near-fault ground motion. We present a micromechanics based constitutive model that accounts for dynamic evolution of elastic moduli at high-strain rates. We consider 2D in-plane models, with a 1D right lateral fault featuring slip-weakening friction law. The two scenarios studied here assume uniform initial off-fault damage and an observationally motivated exponential decay of initial damage with fault normal distance. Both scenarios produce dynamic damage that is consistent with geological observations. A small difference in initial damage actively impacts the final damage pattern. The second numerical experiment, in particular, highlights the complex feedback that exists between the evolving medium and the seismic event. We show that there is a unique off-fault damage pattern associated with supershear transition of an earthquake rupture that could be potentially seen as a geological signature of this transition. These scenarios presented here underline the importance of incorporating the complex structure of fault zone systems in dynamic models of earthquakes.
Aydin, Özge Z.; Marteijn, Jurgen A.; Ribeiro-Silva, Cristina; Rodríguez López, Aida; Wijgers, Nils; Smeenk, Godelieve; van Attikum, Haico; Poot, Raymond A.; Vermeulen, Wim; Lans, Hannes
2014-01-01
Chromatin compaction of deoxyribonucleic acid (DNA) presents a major challenge to the detection and removal of DNA damage. Helix-distorting DNA lesions that block transcription are specifically repaired by transcription-coupled nucleotide excision repair, which is initiated by binding of the CSB protein to lesion-stalled RNA polymerase II. Using live cell imaging, we identify a novel function for two distinct mammalian ISWI adenosine triphosphate (ATP)-dependent chromatin remodeling complexes in resolving lesion-stalled transcription. Human ISWI isoform SMARCA5/SNF2H and its binding partners ACF1 and WSTF are rapidly recruited to UV-C induced DNA damage to specifically facilitate CSB binding and to promote transcription recovery. SMARCA5 targeting to UV-C damage depends on transcription and histone modifications and requires functional SWI2/SNF2-ATPase and SLIDE domains. After initial recruitment to UV damage, SMARCA5 re-localizes away from the center of DNA damage, requiring its HAND domain. Our studies support a model in which SMARCA5 targeting to DNA damage-stalled transcription sites is controlled by an ATP-hydrolysis-dependent scanning and proofreading mechanism, highlighting how SWI2/SNF2 chromatin remodelers identify and bind nucleosomes containing damaged DNA. PMID:24990377
Dynamic Evolution Of Off-Fault Medium During An Earthquake: A Micromechanics Based Model
NASA Astrophysics Data System (ADS)
Thomas, M. Y.; Bhat, H. S.
2017-12-01
Geophysical observations show a dramatic drop of seismic wave speeds in the shallow off-fault medium following earthquake ruptures. Seismic ruptures generate, or reactivate, damage around faults that alter the constitutive response of the surrounding medium, which in turn modifies the earthquake itself, the seismic radiation, and the near-fault ground motion. We present a micromechanics based constitutive model that accounts for dynamic evolution of elastic moduli at high-strain rates. We consider 2D in-plane models, with a 1D right lateral fault featuring slip-weakening friction law. The two scenarios studied here assume uniform initial off-fault damage and an observationally motivated exponential decay of initial damage with fault normal distance. Both scenarios produce dynamic damage that is consistent with geological observations. A small difference in initial damage actively impacts the final damage pattern. The second numerical experiment, in particular, highlights the complex feedback that exists between the evolving medium and the seismic event. We show that there is a unique off-fault damage pattern associated with supershear transition of an earthquake rupture that could be potentially seen as a geological signature of this transition. These scenarios presented here underline the importance of incorporating the complex structure of fault zone systems in dynamic models of earthquakes.
NASA Astrophysics Data System (ADS)
Malfense Fierro, Gian Piero; Meo, Michele
2017-04-01
Currently there are numerous phased array techniques such as Full Matrix Capture (FMC) and Total Focusing Method (TFM) that provide good damage assessment for composite materials. Although, linear methods struggle to evaluate and assess low levels of damage, while nonlinear methods have shown great promise in early damage detection. A sweep and subtraction evaluation method coupled with a constructive nonlinear array method (CNA) is proposed in order to assess damage specific nonlinearities, address issues with frequency selection when using nonlinear ultrasound imaging techniques and reduce equipment generated nonlinearities. These methods were evaluated using multiple excitation locations on an impacted composite panel with a complex damage (barely visible impact damage). According to various recent works, damage excitation can be accentuated by exciting at local defect resonance (LDR) frequencies; although these frequencies are not always easily determinable. The sweep methodology uses broadband excitation to determine both local defect and material resonances, by assessing local defect generated nonlinearities using a laser vibrometer it is possible to assess which frequencies excite the complex geometry of the crack. The dual effect of accurately determining local defect resonances, the use of an image subtraction method and the reduction of equipment based nonlinearities using CNA result in greater repeatability and clearer nonlinear imaging (NIM).
Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching.
Pathak, Nikky; Butcher, Cliff; Worswick, Michael James; Bellhouse, Erika; Gao, Jeff
2017-03-27
The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP) and Dual-Phase (DP) steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition) or drilled and then reamed (reamed edge condition). The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM) analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures.
Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching
Pathak, Nikky; Butcher, Cliff; Worswick, Michael James; Bellhouse, Erika; Gao, Jeff
2017-01-01
The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP) and Dual-Phase (DP) steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition) or drilled and then reamed (reamed edge condition). The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM) analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures. PMID:28772707
NASA Astrophysics Data System (ADS)
Levo, E.; Granberg, F.; Fridlund, C.; Nordlund, K.; Djurabekova, F.
2017-07-01
Single-phase multicomponent alloys of equal atomic concentrations ("equiatomic") have proven to exhibit promising mechanical and corrosion resistance properties, that are sought after in materials intended for use in hazardous environments like next-generation nuclear reactors. In this article, we investigate the damage production and dislocation mobility by simulating irradiation of elemental Ni and the alloys NiCo, NiCoCr, NiCoFe and NiFe, to assess the effect of elemental composition. We compare the defect production and the evolution of dislocation networks in the simulation cells of two different sizes, for all five studied materials. We find that the trends in defect evolution are in good agreement between the different cell sizes. The damage is generally reduced with increased alloy complexity, and the dislocation evolution is specific to each material, depending on its complexity. We show that increasing complexity of the alloys does not always lead to decreased susceptibility to damage accumulation under irradiation. We show that, for instance, the NiCo alloy behaves very similarly to Ni, while presence of Fe or Cr in the alloy even as a third component reduces the saturated level of damage substantially. Moreover, we linked the defect evolution with the dislocation transformations in the alloys. Sudden drops in defect number and large defect fluctuations from the continuous irradiation can be explained from the dislocation activity.
Paul, Shiv Shankar; Selim, Md; Saha, Abhijit; Mukherjea, Kalyan K
2014-02-21
The synthesis and structural characterization of two novel dioxomolybdenum(VI) (1) and dioxotungsten(VI) (2) complexes with 2-phenylacetylhydroxamic acid (PAHH) [M(O)2(PAH)2] [M = Mo, W] have been accomplished. The dioxomolybdenum(VI) and dioxotungsten(VI) moiety is coordinated by the hydroxamate group (-CONHO(-)) of the 2-phenylacetylhydroxamate (PAH) ligand in a bi-dentate fashion. In both the complexes the PAHH ligand is coordinated through oxygen atoms forming a five membered chelate. The hydrogen atom of N-H of the hydroxamate group is engaged in intermolecular H-bonding with the carbonyl oxygen of another coordinated hydroxamate ligand, thereby forming an extended 1D chain. The ligand as well as both the complexes exhibit the ability to protect from radiation induced damage both in CTDNA as well as in pUC19 plasmid DNA. As the damage to DNA is caused by the radicals generated during radiolysis, its scavenging imparts protection from the damage to DNA. To understand the mechanism of protection, binding affinities of the ligand and the complex with DNA were determined using absorption and emission spectral studies and viscosity measurements, whereby the results indicate that both the complexes and the hydroxamate ligand interact with calf thymus DNA in the minor groove. The intrinsic binding constants, obtained from UV-vis studies, are 7.2 × 10(3) M(-1), 5.2 × 10(4) M(-1) and 1.2 × 10(4) M(-1) for the ligand and complexes 1 and 2 respectively. The Stern-Volmer quenching constants obtained from a luminescence study for both the complexes are 5.6 × 10(4) M(-1) and 1.6 × 10(4) M(-1) respectively. The dioxomolybdenum(VI) complex is found to be a more potent radioprotector compared to the dioxotungsten(VI) complex and the ligand. Radical scavenging chemical studies suggest that the complexes have a greater ability to scavenge both the hydroxyl as well as the superoxide radicals compared to the ligand. The free radical scavenging ability of the ligand and the complexes was further established by EPR spectroscopy using a stable free radical, the DPPH, as a probe. The experimental results of DNA binding are further supported by molecular docking studies.
Rapid assessment of wildfire damage using Forest Inventory data: A case in Georgia
Richard A. Harper; John W. Coulsten; Jeffery A. Turner
2009-01-01
The rapid assessment of damage caused by natural disasters is essential for planning the appropriate amount of disaster relief funds and public communication. Annual Forest Inventory and Analysis (FIA) data provided initial estimates of damage to timberland in a timely manner to State leaders during the 2007 Georgia Bay Complex Wildfire in southeast Georgia. FIA plots...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Junjian; Pfenninger, Stefan
In this paper, we propose a strategy to control the self-organizing dynamics of the Bak-Tang-Wiesenfeld (BTW) sandpile model on complex networks by allowing some degree of failure tolerance for the nodes and introducing additional active dissipation while taking the risk of possible node damage. We show that the probability for large cascades significantly increases or decreases respectively when the risk for node damage outweighs the active dissipation and when the active dissipation outweighs the risk for node damage. By considering the potential additional risk from node damage, a non-trivial optimal active dissipation control strategy which minimizes the total cost inmore » the system can be obtained. Under some conditions the introduced control strategy can decrease the total cost in the system compared to the uncontrolled model. Moreover, when the probability of damaging a node experiencing failure tolerance is greater than the critical value, then no matter how successful the active dissipation control is, the total cost of the system will have to increase. This critical damage probability can be used as an indicator of the robustness of a network or system. Copyright (C) EPLA, 2015« less
3D Microstructures for Materials and Damage Models
Livescu, Veronica; Bronkhorst, Curt Allan; Vander Wiel, Scott Alan
2017-02-01
Many challenges exist with regard to understanding and representing complex physical processes involved with ductile damage and failure in polycrystalline metallic materials. Currently, the ability to accurately predict the macroscale ductile damage and failure response of metallic materials is lacking. Research at Los Alamos National Laboratory (LANL) is aimed at building a coupled experimental and computational methodology that supports the development of predictive damage capabilities by: capturing real distributions of microstructural features from real material and implementing them as digitally generated microstructures in damage model development; and, distilling structure-property information to link microstructural details to damage evolution under a multitudemore » of loading states.« less
Strength and failure of a damaged material
Cerreta, Ellen K.; Gray III, George T.; Trujillo, Carl P.; ...
2015-09-07
Under complex, dynamic loading conditions, damage can occur within a material. Should this damage not lead to catastrophic failure, the material can continue to sustain further loading. But, little is understood about how to represent the mechanical response of a material that has experienced dynamic loading leading to incipient damage. We examine this effect in copper. Copper is shock loaded to impart an incipient state of damage to the material. Thereafter compression and tensile specimens were sectioned from the dynamically damaged specimen to quantify the subsequent properties of the material in the region of intense incipient damage and in regionsmore » far from the damage. Finally, we observed that enhanced yield stresses result from the damaged material even over material, which has simply been shock loaded and not damaged. These results are rationalized in terms of stored plastic work due to the damage process.« less
Strength and failure of a damaged material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerreta, Ellen K.; Gray III, George T.; Trujillo, Carl P.
Under complex, dynamic loading conditions, damage can occur within a material. Should this damage not lead to catastrophic failure, the material can continue to sustain further loading. But, little is understood about how to represent the mechanical response of a material that has experienced dynamic loading leading to incipient damage. We examine this effect in copper. Copper is shock loaded to impart an incipient state of damage to the material. Thereafter compression and tensile specimens were sectioned from the dynamically damaged specimen to quantify the subsequent properties of the material in the region of intense incipient damage and in regionsmore » far from the damage. Finally, we observed that enhanced yield stresses result from the damaged material even over material, which has simply been shock loaded and not damaged. These results are rationalized in terms of stored plastic work due to the damage process.« less
Chen, Changchun; Huang, Bo; Eliasson, Mattias; Rydén, Patrik; Byström, Anders S
2011-09-01
Elongator complex is required for formation of the side chains at position 5 of modified nucleosides 5-carbamoylmethyluridine (ncm⁵U₃₄), 5-methoxycarbonylmethyluridine (mcm⁵U₃₄), and 5-methoxycarbonylmethyl-2-thiouridine (mcm⁵s²U₃₄) at wobble position in tRNA. These modified nucleosides are important for efficient decoding during translation. In a recent publication, Elongator complex was implicated to participate in telomeric gene silencing and DNA damage response by interacting with proliferating cell nuclear antigen (PCNA). Here we show that elevated levels of tRNA(Lys)(s²UUU), tRNA(Gln)(s²UUG), and tRNA(Glu)(s²UUC), which in a wild-type background contain the mcm⁵s²U nucleoside at position 34, suppress the defects in telomeric gene silencing and DNA damage response observed in the Elongator mutants. We also found that the reported differences in telomeric gene silencing and DNA damage response of various elp3 alleles correlated with the levels of modified nucleosides at U₃₄. Defects in telomeric gene silencing and DNA damage response are also observed in strains with the tuc2Δ mutation, which abolish the formation of the 2-thio group of the mcm⁵s²U nucleoside in tRNA(Lys)(mcm⁵s²UUU), tRNA(Gln)(mcm⁵s²UUG), and tRNA(Glu)(mcm⁵s²UUC). These observations show that Elongator complex does not directly participate in telomeric gene silencing and DNA damage response, but rather that modified nucleosides at U₃₄ are important for efficient expression of gene products involved in these processes. Consistent with this notion, we found that expression of Sir4, a silent information regulator required for assembly of silent chromatin at telomeres, was decreased in the elp3Δ mutants.
Chen, Changchun; Huang, Bo; Eliasson, Mattias; Rydén, Patrik; Byström, Anders S.
2011-01-01
Elongator complex is required for formation of the side chains at position 5 of modified nucleosides 5-carbamoylmethyluridine (ncm5U34), 5-methoxycarbonylmethyluridine (mcm5U34), and 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U34) at wobble position in tRNA. These modified nucleosides are important for efficient decoding during translation. In a recent publication, Elongator complex was implicated to participate in telomeric gene silencing and DNA damage response by interacting with proliferating cell nuclear antigen (PCNA). Here we show that elevated levels of tRNALys s2 UUU, tRNAGln s2 UUG, and tRNAGlu s2 UUC, which in a wild-type background contain the mcm5s2U nucleoside at position 34, suppress the defects in telomeric gene silencing and DNA damage response observed in the Elongator mutants. We also found that the reported differences in telomeric gene silencing and DNA damage response of various elp3 alleles correlated with the levels of modified nucleosides at U34. Defects in telomeric gene silencing and DNA damage response are also observed in strains with the tuc2Δ mutation, which abolish the formation of the 2-thio group of the mcm5s2U nucleoside in tRNALys mcm5s2UUU, tRNAGln mcm5s2UUG, and tRNAGlu mcm5s2UUC. These observations show that Elongator complex does not directly participate in telomeric gene silencing and DNA damage response, but rather that modified nucleosides at U34 are important for efficient expression of gene products involved in these processes. Consistent with this notion, we found that expression of Sir4, a silent information regulator required for assembly of silent chromatin at telomeres, was decreased in the elp3Δ mutants. PMID:21912530
ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1.
You, Zhongsheng; Chahwan, Charly; Bailis, Julie; Hunter, Tony; Russell, Paul
2005-07-01
ATM has a central role in controlling the cellular responses to DNA damage. It and other phosphoinositide 3-kinase-related kinases (PIKKs) have giant helical HEAT repeat domains in their amino-terminal regions. The functions of these domains in PIKKs are not well understood. ATM activation in response to DNA damage appears to be regulated by the Mre11-Rad50-Nbs1 (MRN) complex, although the exact functional relationship between the MRN complex and ATM is uncertain. Here we show that two pairs of HEAT repeats in fission yeast ATM (Tel1) interact with an FXF/Y motif at the C terminus of Nbs1. This interaction resembles nucleoporin FXFG motif binding to HEAT repeats in importin-beta. Budding yeast Nbs1 (Xrs2) appears to have two FXF/Y motifs that interact with Tel1 (ATM). In Xenopus egg extracts, the C terminus of Nbs1 recruits ATM to damaged DNA, where it is subsequently autophosphorylated. This interaction is essential for ATM activation. A C-terminal 147-amino-acid fragment of Nbs1 that has the Mre11- and ATM-binding domains can restore ATM activation in an Nbs1-depleted extract. We conclude that an interaction between specific HEAT repeats in ATM and the C-terminal FXF/Y domain of Nbs1 is essential for ATM activation. We propose that conformational changes in the MRN complex that occur upon binding to damaged DNA are transmitted through the FXF/Y-HEAT interface to activate ATM. This interaction also retains active ATM at sites of DNA damage.
NASA Astrophysics Data System (ADS)
An, Yun-Kyu; Song, Homin; Sohn, Hoon
2014-09-01
This paper presents a wireless ultrasonic wavefield imaging (WUWI) technique for detecting hidden damage inside a steel box girder bridge. The proposed technique allows (1) complete wireless excitation of piezoelectric transducers and noncontact sensing of the corresponding responses using laser beams, (2) autonomous damage visualization without comparing against baseline data previously accumulated from the pristine condition of a target structure and (3) robust damage diagnosis even for real structures with complex structural geometries. First, a new WUWI hardware system was developed by integrating optoelectronic-based signal transmitting and receiving devices and a scanning laser Doppler vibrometer. Next, a damage visualization algorithm, self-referencing f-k filter (SRF), was introduced to isolate and visualize only crack-induced ultrasonic modes from measured ultrasonic wavefield images. Finally, the performance of the proposed technique was validated through hidden crack visualization at a decommissioned Ramp-G Bridge in South Korea. The experimental results reveal that the proposed technique instantaneously detects and successfully visualizes hidden cracks even in the complex structure of a real bridge.
Schalk, Catherine; Cognat, Valérie; Graindorge, Stéfanie; Vincent, Timothée; Voinnet, Olivier; Molinier, Jean
2017-01-01
As photosynthetic organisms, plants need to prevent irreversible UV-induced DNA lesions. Through an unbiased, genome-wide approach, we have uncovered a previously unrecognized interplay between Global Genome Repair and small interfering RNAs (siRNAs) in the recognition of DNA photoproducts, prevalently in intergenic regions. Genetic and biochemical approaches indicate that, upon UV irradiation, the DNA DAMAGE-BINDING PROTEIN 2 (DDB2) and ARGONAUTE 1 (AGO1) of Arabidopsis thaliana form a chromatin-bound complex together with 21-nt siRNAs, which likely facilitates recognition of DNA damages in an RNA/DNA complementary strand-specific manner. The biogenesis of photoproduct-associated siRNAs involves the noncanonical, concerted action of RNA POLYMERASE IV, RNA-DEPENDENT RNA POLYMERASE-2, and DICER-LIKE-4. Furthermore, the chromatin association/dissociation of the DDB2-AGO1 complex is under the control of siRNA abundance and DNA damage signaling. These findings reveal unexpected nuclear functions for DCL4 and AGO1, and shed light on the interplay between small RNAs and DNA repair recognition factors at damaged sites. PMID:28325872
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livescu, Veronica; Bronkhorst, Curt Allan; Vander Wiel, Scott Alan
Many challenges exist with regard to understanding and representing complex physical processes involved with ductile damage and failure in polycrystalline metallic materials. Currently, the ability to accurately predict the macroscale ductile damage and failure response of metallic materials is lacking. Research at Los Alamos National Laboratory (LANL) is aimed at building a coupled experimental and computational methodology that supports the development of predictive damage capabilities by: capturing real distributions of microstructural features from real material and implementing them as digitally generated microstructures in damage model development; and, distilling structure-property information to link microstructural details to damage evolution under a multitudemore » of loading states.« less
Laser damage mechanisms in conductive widegap semiconductor films
Yoo, Jae-Hyuck; Menor, Marlon G.; Adams, John J.; ...
2016-07-25
Here, laser damage mechanisms of two conductive wide-bandgap semiconductor films - indium tin oxide (ITO) and silicon doped GaN (Si:GaN) were studied via microscopy, spectroscopy, photoluminescence (PL), and elemental analysis. Nanosecond laser pulse exposures with a laser photon energy (1.03 eV, 1064 nm) smaller than the conductive films bandgaps were applied and radically different film damage morphologies were produced. The laser damaged ITO film exhibited deterministic features of thermal degradation. In contrast, laser damage in the Si:GaN film resulted in highly localized eruptions originating at interfaces. For ITO, thermally driven damage was related to free carrier absorption and, for GaN,more » carbon complexes were proposed as potential damage precursors or markers.« less
1989-11-01
the high risk of fuel cells damaging as a consequence of the unfolding and refolding operations. - Difficulties to perform acceptance inspection tests...corners sometimes present in the structures. (See FIG. 6, 7, 8). - Additional installation costs and risk of damaging due to fuel cells anchoring...performed manually by very complex tying operations. (See. FIG. 9). - Risk of damaging of the thicker reinforced zones of the flexible fuel cells where
Damage pattern as a function of radiation quality and other factors.
Burkart, W; Jung, T; Frasch, G
1999-01-01
An understanding of damage pattern in critical cellular structures such as DNA is an important prerequisite for a mechanistic assessment of primary radiation damage, its possible repair, and the propagation of residual changes in somatic and germ cells as potential contributors to disease or ageing. Important quantitative insights have been made recently on the distribution in time and space of critical lesions from direct and indirect action of ionizing radiation on mammalian cells. When compared to damage from chemicals or from spontaneous degradation, e.g. depurination or base deamination in DNA, the potential of even low-LET radiation to create local hot spots of damage from single particle tracks is of utmost importance. This has important repercussions on inferences from critical biological effects at high dose and dose rate exposure situations to health risks at chronic, low-level exposures as experienced in environmental and controlled occupational settings. About 10,000 DNA lesions per human cell nucleus and day from spontaneous degradation and chemical attack cause no apparent effect, but a dose of 4 Gy translating into a similar number of direct and indirect DNA breaks induces acute lethality. Therefore, single lesions cannot explain the high efficiency of ionizing radiation in the induction of mutation, transformation and loss of proliferative capacity. Clustered damage leading to poorly repairable double-strand breaks or even more complex local DNA degradation, correlates better with fixed damage and critical biological endpoints. A comparison with other physical, chemical and biological agents indicates that ionizing radiation is indeed set apart from these by its unique micro- and nano-dosimetric traits. Only a few other agents such as bleomycin have a similar potential to cause complex damage from single events. However, in view of the multi-stage mechanism of carcinogenesis, it is still an open question whether dose-effect linearity for complex primary DNA damage and resulting fixed critical cellular lesions translate into linearity for radiation-induced cancer. To solve this enigma, a quantitative assessment of all genotoxic and harmful non-genotoxic agents affecting the human body would be needed.
Becceneri, Amanda Blanque; Popolin, Cecília Patrícia; Plutin, Ana Maria; Maistro, Edson Luis; Castellano, Eduardo Ernesto; Batista, Alzir Azevedo; Cominetti, Márcia Regina
2018-05-24
Triple negative breast cancer (TNBC) is a heterogeneous subtype of breast tumors that does not exhibit the expression of estrogen and progesterone receptors, neither the amplification of the human epidermal growth factor receptor 2 (HER-2) gene. Despite all the advances in cancer treatments, the development of new anticancer drugs for TNBC tumors is still a challenge. There is an increasing interest in new agents to be used in cancer treatment. Ruthenium is a metal that has unique characteristics and important in vivo and in vitro results achieved for cancer treatment. Thus, in this work, with the aim to develop anticancer drugs, three new ruthenium complexes containing acylthiourea ligands have been synthesized and characterized: trans-[Ru(PPh 3 ) 2 (N,N-dibutyl-N'-benzoylthioureato-k 2 O,S)(2,2'-bipyridine (bipy))]PF 6 (1), trans-[Ru(PPh 3 ) 2 (N,N-dimethyl-N'-thiophenylthioureato-k 2 O,S)(bipy)]PF 6 (2) and trans-[Ru(PPh 3 ) 2 (N,N-dimethyl-N'-benzoylthioureato-k 2 O,S)(bipy)]PF 6 (3). Then, the cytotoxicity of these three new ruthenium complexes was investigated in TNBC MDA-MB-231 and in non-tumor MCF-10A cells. Complex (2) was the most selective complex and was chosen for further studies to verify its effects on cell morphology, adhesion, migration, invasion, induction of apoptosis and DNA damage in vitro, as well as its toxicity and capacity of causing DNA damage in vivo. Complex (2) inhibited proliferation, migration, invasion, adhesion, changed morphology and induced apoptosis, DNA damage and nuclear fragmentation of TNBC cells at lower concentrations compared to non-tumor MCF-10A cells, suggesting an effective action for this complex on tumor cells. Finally, complex (2) did not induce toxicity or caused DNA damage in vivo when low doses were administered to mice. Copyright © 2018 Elsevier Inc. All rights reserved.
Matsunuma, Ryoichi; Ohhata, Tatsuya; Kitagawa, Kyoko; Sakai, Satoshi; Uchida, Chiharu; Shiotani, Bunsyo; Matsumoto, Masaki; Nakayama, Keiichi I.; Ogura, Hiroyuki; Shiiya, Norihiko; Kitagawa, Masatoshi
2015-01-01
Histone acetyltransferase binding to ORC-1 (HBO1) is a critically important histone acetyltransferase for forming the prereplicative complex (pre-RC) at the replication origin. Pre-RC formation is completed by loading of the MCM2-7 heterohexameric complex, which functions as a helicase in DNA replication. HBO1 recruited to the replication origin by CDT1 acetylates histone H4 to relax the chromatin conformation and facilitates loading of the MCM complex onto replication origins. However, the acetylation status and mechanism of regulation of histone H3 at replication origins remain elusive. HBO1 positively regulates cell proliferation under normal cell growth conditions. Whether HBO1 regulates proliferation in response to DNA damage is poorly understood. In this study, we demonstrated that HBO1 was degraded after DNA damage to suppress cell proliferation. Ser50 and Ser53 of HBO1 were phosphorylated in an ATM/ATR DNA damage sensor-dependent manner after UV treatment. ATM/ATR-dependently phosphorylated HBO1 preferentially interacted with DDB2 and was ubiquitylated by CRL4DDB2. Replacement of endogenous HBO1 in Ser50/53Ala mutants maintained acetylation of histone H3K14 and impaired cell cycle regulation in response to UV irradiation. Our findings demonstrate that HBO1 is one of the targets in the DNA damage checkpoint. These results show that ubiquitin-dependent control of the HBO1 protein contributes to cell survival during UV irradiation. PMID:26572825
Spot-shadowing optimization to mitigate damage growth in a high-energy-laser amplifier chain.
Bahk, Seung-Whan; Zuegel, Jonathan D; Fienup, James R; Widmayer, C Clay; Heebner, John
2008-12-10
A spot-shadowing technique to mitigate damage growth in a high-energy laser is studied. Its goal is to minimize the energy loss and undesirable hot spots in intermediate planes of the laser. A nonlinear optimization algorithm solves for the complex fields required to mitigate damage growth in the National Ignition Facility amplifier chain. The method is generally applicable to any large fusion laser.
Heat damaged forages: effects on forage energy content
USDA-ARS?s Scientific Manuscript database
Traditionally, educational materials describing the effects of heat damage within baled hays have focused on reduced bioavailability of crude protein as a result of Maillard reactions. These reactions are not simple, but actually occur in complex, multi-step pathways. Typically, the initial step inv...
Understanding and simulating the material behavior during multi-particle irradiations
Mir, Anamul H.; Toulemonde, M.; Jegou, C.; Miro, S.; Serruys, Y.; Bouffard, S.; Peuget, S.
2016-01-01
A number of studies have suggested that the irradiation behavior and damage processes occurring during sequential and simultaneous particle irradiations can significantly differ. Currently, there is no definite answer as to why and when such differences are seen. Additionally, the conventional multi-particle irradiation facilities cannot correctly reproduce the complex irradiation scenarios experienced in a number of environments like space and nuclear reactors. Therefore, a better understanding of multi-particle irradiation problems and possible alternatives are needed. This study shows ionization induced thermal spike and defect recovery during sequential and simultaneous ion irradiation of amorphous silica. The simultaneous irradiation scenario is shown to be equivalent to multiple small sequential irradiation scenarios containing latent damage formation and recovery mechanisms. The results highlight the absence of any new damage mechanism and time-space correlation between various damage events during simultaneous irradiation of amorphous silica. This offers a new and convenient way to simulate and understand complex multi-particle irradiation problems. PMID:27466040
Damage-mitigating control of space propulsion systems for high performance and extended life
NASA Technical Reports Server (NTRS)
Ray, Asok; Wu, Min-Kuang; Dai, Xiaowen; Carpino, Marc; Lorenzo, Carl F.
1993-01-01
Calculations are presented showing that a substantial improvement in service life of a reusable rocket engine can be achieved by an insignificant reduction in the system dynamic performance. The paper introduces the concept of damage mitigation and formulates a continuous-time model of fatigue damage dynamics. For control of complex mechanical systems, damage prediction and damage mitigation are carried out based on the available sensory and operational information such that the plant can be inexpensively maintained and safely and efficiently steered under diverse operating conditions. The results of simulation experiments are presented for transient operations of a reusable rocket engine.
Multiple damage identification on a wind turbine blade using a structural neural system
NASA Astrophysics Data System (ADS)
Kirikera, Goutham R.; Schulz, Mark J.; Sundaresan, Mannur J.
2007-04-01
A large number of sensors are required to perform real-time structural health monitoring (SHM) to detect acoustic emissions (AE) produced by damage growth on large complicated structures. This requires a large number of high sampling rate data acquisition channels to analyze high frequency signals. To overcome the cost and complexity of having such a large data acquisition system, a structural neural system (SNS) was developed. The SNS reduces the required number of data acquisition channels and predicts the location of damage within a sensor grid. The sensor grid uses interconnected sensor nodes to form continuous sensors. The combination of continuous sensors and the biomimetic parallel processing of the SNS tremendously reduce the complexity of SHM. A wave simulation algorithm (WSA) was developed to understand the flexural wave propagation in composite structures and to utilize the code for developing the SNS. Simulation of AE responses in a plate and comparison with experimental results are shown in the paper. The SNS was recently tested by a team of researchers from University of Cincinnati and North Carolina A&T State University during a quasi-static proof test of a 9 meter long wind turbine blade at the National Renewable Energy Laboratory (NREL) test facility in Golden, Colorado. Twelve piezoelectric sensor nodes were used to form four continuous sensors to monitor the condition of the blade during the test. The four continuous sensors are used as inputs to the SNS. There are only two analog output channels of the SNS, and these signals are digitized and analyzed in a computer to detect damage. In the test of the wind turbine blade, multiple damages were identified and later verified by sectioning of the blade. The results of damage identification using the SNS during this proof test will be shown in this paper. Overall, the SNS is very sensitive and can detect damage on complex structures with ribs, joints, and different materials, and the system relatively inexpensive and simple to implement on large structures.
NASA Technical Reports Server (NTRS)
Manson, S. S.; Halford, G. R.
1980-01-01
Simple procedures are presented for treating cumulative fatigue damage under complex loading history using either the damage curve concept or the double linear damage rule. A single equation is provided for use with the damage curve approach; each loading event providing a fraction of damage until failure is presumed to occur when the damage sum becomes unity. For the double linear damage rule, analytical expressions are provided for determining the two phases of life. The procedure involves two steps, each similar to the conventional application of the commonly used linear damage rule. When the sum of cycle ratios based on phase 1 lives reaches unity, phase 1 is presumed complete, and further loadings are summed as cycle ratios on phase 2 lives. When the phase 2 sum reaches unity, failure is presumed to occur. No other physical properties or material constants than those normally used in a conventional linear damage rule analysis are required for application of either of the two cumulative damage methods described. Illustrations and comparisons of both methods are discussed.
NASA Technical Reports Server (NTRS)
Manson, S. S.; Halford, G. R.
1981-01-01
Simple procedures are given for treating cumulative fatigue damage under complex loading history using either the damage curve concept or the double linear damage rule. A single equation is given for use with the damage curve approach; each loading event providing a fraction of damage until failure is presumed to occur when the damage sum becomes unity. For the double linear damage rule, analytical expressions are given for determining the two phases of life. The procedure comprises two steps, each similar to the conventional application of the commonly used linear damage rule. Once the sum of cycle ratios based on Phase I lives reaches unity, Phase I is presumed complete, and further loadings are summed as cycle ratios based on Phase II lives. When the Phase II sum attains unity, failure is presumed to occur. It is noted that no physical properties or material constants other than those normally used in a conventional linear damage rule analysis are required for application of either of the two cumulative damage methods described. Illustrations and comparisons are discussed for both methods.
Modeling of Damage Initiation and Progression in a SiC/SiC Woven Ceramic Matrix Composite
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.
2012-01-01
The goal of an ongoing project at NASA Glenn is to investigate the effects of the complex microstructure of a woven ceramic matrix composite and its variability on the effective properties and the durability of the material. Detailed analysis of these complex microstructures may provide clues for the material scientists who `design the material? or to structural analysts and designers who `design with the material? regarding damage initiation and damage propagation. A model material system, specifically a five-harness satin weave architecture CVI SiC/SiC composite composed of Sylramic-iBN fibers and a SiC matrix, has been analyzed. Specimens of the material were serially sectioned and polished to capture the detailed images of fiber tows, matrix and porosity. Open source analysis tools were used to isolate various constituents and finite elements models were then generated from simplified models of those images. Detailed finite element analyses were performed that examine how the variability in the local microstructure affected the macroscopic behavior as well as the local damage initiation and progression. Results indicate that the locations where damage initiated and propagated is linked to specific microstructural features.
Baseline-Subtraction-Free (BSF) Damage-Scattered Wave Extraction for Stiffened Isotropic Plates
NASA Technical Reports Server (NTRS)
He, Jiaze; Leser, Patrick E.; Leser, William P.
2017-01-01
Lamb waves enable long distance inspection of structures for health monitoring purposes. However, this capability is diminished when applied to complex structures where damage-scattered waves are often buried by scattering from various structural components or boundaries in the time-space domain. Here, a baseline-subtraction-free (BSF) inspection concept based on the Radon transform (RT) is proposed to identify and separate these scattered waves from those scattered by damage. The received time-space domain signals can be converted into the Radon domain, in which the scattered signals from structural components are suppressed into relatively small regions such that damage-scattered signals can be identified and extracted. In this study, a piezoelectric wafer and a linear scan via laser Doppler vibrometer (LDV) were used to excite and acquire the Lamb-wave signals in an aluminum plate with multiple stiffeners. Linear and inverse linear Radon transform algorithms were applied to the direct measurements. The results demonstrate the effectiveness of the Radon transform as a reliable extraction tool for damage-scattered waves in a stiffened aluminum plate and also suggest the possibility of generalizing this technique for application to a wide variety of complex, large-area structures.
Izhar, Lior; Adamson, Britt; Ciccia, Alberto; Lewis, Jedd; Pontano-Vaites, Laura; Leng, Yumei; Liang, Anthony C.; Westbrook, Thomas F.; Harper, J. Wade; Elledge, Stephen J.
2015-01-01
Localization to sites of DNA damage is a hallmark of DNA damage response (DDR) proteins. To identify new DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the ALS candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a PARP-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors and >70% of randomly tested transcription factors localized to sites of DNA damage and approximately 90% were PARP-dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding domain-dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP-dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins. PMID:26004182
1986-05-01
Composites Using Ultrasonic Nondestructive Evaluation Annual Technical Report I by Vikrai K. Kinra Depdrtment of Aerospace Engineering r and Mechanics...and identify by b ko number) 7It is well known that composite materials suffer complex damage when they are.-ub- jected to either monotonic or...Characterization of Damage States in Continuous Fiber Composites Using Ultrasonic Nondestructive Evaluation Annual Technical Report by Vikram K. Kinra Department
Modelling and Holographic Visualization of Space Radiation-Induced DNA Damage
NASA Technical Reports Server (NTRS)
Plante, Ianik
2017-01-01
Space radiation is composed by a mixture of ions of different energies. Among these, heavy inos are of particular importance because their health effects are poorly understood. In. the recent years, a software named RITRACKS (Relativistic Ion Tracks) was developed to simulate the detailed radiation track structure, several DNA models and DNA damage. As the DNA structure is complex due to packing, it is difficult to the damage using a regular computer screen.
Negureanu, Lacramioara; Salsbury, Freddie R.
2012-01-01
The cellular response to DNA damage signaling by MMR proteins is incompletely understood. It is generally accepted that MMR-dependent apoptosis pathway in response to DNA damage detection is independent of MMR's DNA repair function. In this study we investigate correlated motions in response to the binding of mismatched and PCL DNA fragments by MutSα, as derived from 50 ns molecular dynamics simulations. The protein dynamics in response to the mismatched and damaged DNA recognition suggests that MutSα signals their recognition through independent pathways providing evidence for the molecular origin of the MMR-dependent apoptosis. MSH2 subunit is indicated to play a key role in signaling both mismatched and damaged DNA recognition; localized and collective motions within the protein allow identifying sites on the MSH2 surface possible involved in recruiting proteins responsible for downstream events. Unlike in the mismatch complex, predicted key communication sites specific for the damage recognition are on the list of known cancer causing mutations or deletions. This confirms MSH2's role in signaling DNA-damage induced apoptosis and suggests that defects in MMR alone is sufficient to trigger tumorigenesis, supporting the experimental evidence that MMR-damage response function could protect from the early occurrence of tumors. Identifying these particular communication sites may have implications for the treatment of cancers that are not defective for MMR, but are unable to function optimally for MMR-dependent responses following DNA damage such as the case of resistance to cisplatin. PMID:22712459
Spectrum of complex DNA damages depends on the incident radiation
NASA Astrophysics Data System (ADS)
Hada, M.; Sutherland, B.
Ionizing radiation induces clustered DNA damages in DNA-two or more abasic sites oxidized bases and strand breaks on opposite DNA strands within a few helical turns Clustered damages are considered to be difficult to repair and therefore potentially lethal and mutagenic damages Although induction of single strand breaks and isolated lesions has been studied extensively little is known of factors affecting induction of clusters other than double strand breaks DSB The aim of the present study was to determine whether the type of incident radiation could affect yield or spectra of specific clusters Genomic T7 DNA a simple 40 kbp linear blunt-ended molecule was irradiated in non-scavenging buffer conditions with Fe 970 MeV n Ti 980 MeV n C 293 MeV n Si 586 MeV n ions or protons 1 GeV n at the NASA Space Radiation Laboratory or with 100 kVp X-rays Irradiated DNA was treated with homogeneous Fpg or Nfo proteins or without enzyme treatment for DSB quantitation then electrophoresed in neutral agarose gels DSB Fpg-OxyPurine clusters and Nfo-Abasic clusters were quantified by number average length analysis The results show that the yields of all these complex damages depend on the incident radiation Although LETs are similar protons induced twice as many DSBs than did X-rays Further the spectrum of damage also depends on the radiation The yield damage Mbp Gy of all damages decreased with increasing linear energy transfer LET of the radiation The relative frequencies of DSBs to Abasic- and OxyBase clusters were higher
NASA Astrophysics Data System (ADS)
Scaini, C.; Felpeto, A.; Martí, J.; Carniel, R.
2014-05-01
This paper presents a GIS-based methodology to estimate damages produced by volcanic eruptions. The methodology is constituted by four parts: definition and simulation of eruptive scenarios, exposure analysis, vulnerability assessment and estimation of expected damages. Multi-hazard eruptive scenarios are defined for the Teide-Pico Viejo active volcanic complex, and simulated through the VORIS tool. The exposure analysis identifies the elements exposed to the hazard at stake and focuses on the relevant assets for the study area. The vulnerability analysis is based on previous studies on the built environment and complemented with the analysis of transportation and urban infrastructures. Damage assessment is performed associating a qualitative damage rating to each combination of hazard and vulnerability. This operation consists in a GIS-based overlap, performed for each hazardous phenomenon considered and for each element. The methodology is then automated into a GIS-based tool using an ArcGIS® program. Given the eruptive scenarios and the characteristics of the exposed elements, the tool produces expected damage maps. The tool is applied to the Icod Valley (North of Tenerife Island) which is likely to be affected by volcanic phenomena in case of eruption from both the Teide-Pico Viejo volcanic complex and North-West basaltic rift. Results are thematic maps of vulnerability and damage that can be displayed at different levels of detail, depending on the user preferences. The aim of the tool is to facilitate territorial planning and risk management in active volcanic areas.
Modulation of inflammation and disease tolerance by DNA damage response pathways.
Neves-Costa, Ana; Moita, Luis F
2017-03-01
The accurate replication and repair of DNA is central to organismal survival. This process is challenged by the many factors that can change genetic information such as replication errors and direct damage to the DNA molecule by chemical and physical agents. DNA damage can also result from microorganism invasion as an integral step of their life cycle or as collateral damage from host defense mechanisms against pathogens. Here we review the complex crosstalk of DNA damage response and immune response pathways that might be evolutionarily connected and argue that DNA damage response pathways can be explored therapeutically to induce disease tolerance through the activation of tissue damage control processes. Such approach may constitute the missing pillar in the treatment of critical illnesses caused by multiple organ failure, such as sepsis and septic shock. © 2016 Federation of European Biochemical Societies.
Lymphocyte DNA damage in Turkish asphalt workers detected by the comet assay.
Bacaksiz, Aysegul; Kayaalti, Zeliha; Soylemez, Esma; Tutkun, Engin; Soylemezoglu, Tulin
2014-01-01
Asphalt has a highly complex structure and it contains several organic compounds including polycyclic aromatic hydrocarbons and heterocyclic compounds. In this study, comet assay was used to detect the DNA damage in blood lymphocytes of 30 workers exposed to asphalt fumes and 30 nonexposed controls. This is the first report on Turkish asphalt workers' investigated DNA damage using the alkaline single cell gel electrophoresis (SCGE). The DNA damage was evaluated by the percentage of DNA in the comet tail (% tail DNA) for each cell. According to our results, workers exposed to asphalt fumes had higher DNA damage than the control group (p < 0.01). The present study showed that asphalt fumes caused a significant increase in DNA damage and the comet assay is a suitable method for determining DNA damage in asphalt workers.
TEM observations of radiation damage in tungsten irradiated by 20 MeV W ions
NASA Astrophysics Data System (ADS)
Ciupiński, Ł.; Ogorodnikova, O. V.; Płociński, T.; Andrzejczuk, M.; Rasiński, M.; Mayer, M.; Kurzydłowski, K. J.
2013-12-01
Polycrystalline, recrystallized W targets were subjected to implantation with 20 MeV W6+ ions in order to simulate radiation damage caused by fusion neutrons. Three samples with cumulative damage of 0.01, 0.1 and 0.89 dpa were produced. The near-surface zone of each sample has been analyzed by transmission electron microscopy (TEM). To this end, lamellae oriented perpendicularly to the targets implanted surface were milled out using focused ion beam (FIB). A reference lamella from non-irradiated, recrystallized W target was also prepared to estimate the damage introduced during FIB processing. TEM studies revealed a complex microstructure of the damaged zones as well as its evolution with cumulative damage level. The experimentally observed damage depth agrees very well with the one calculated using the Stopping and Range of Ions in Matter (SRIM) software.
Modelling earthquake ruptures with dynamic off-fault damage
NASA Astrophysics Data System (ADS)
Okubo, Kurama; Bhat, Harsha S.; Klinger, Yann; Rougier, Esteban
2017-04-01
Earthquake rupture modelling has been developed for producing scenario earthquakes. This includes understanding the source mechanisms and estimating far-field ground motion with given a priori constraints like fault geometry, constitutive law of the medium and friction law operating on the fault. It is necessary to consider all of the above complexities of a fault systems to conduct realistic earthquake rupture modelling. In addition to the complexity of the fault geometry in nature, coseismic off-fault damage, which is observed by a variety of geological and seismological methods, plays a considerable role on the resultant ground motion and its spectrum compared to a model with simple planer fault surrounded by purely elastic media. Ideally all of these complexities should be considered in earthquake modelling. State of the art techniques developed so far, however, cannot treat all of them simultaneously due to a variety of computational restrictions. Therefore, we adopt the combined finite-discrete element method (FDEM), which can effectively deal with pre-existing complex fault geometry such as fault branches and kinks and can describe coseismic off-fault damage generated during the dynamic rupture. The advantage of FDEM is that it can handle a wide range of length scales, from metric to kilometric scale, corresponding to the off-fault damage and complex fault geometry respectively. We used the FDEM-based software tool called HOSSedu (Hybrid Optimization Software Suite - Educational Version) for the earthquake rupture modelling, which was developed by Los Alamos National Laboratory. We firstly conducted the cross-validation of this new methodology against other conventional numerical schemes such as the finite difference method (FDM), the spectral element method (SEM) and the boundary integral equation method (BIEM), to evaluate the accuracy with various element sizes and artificial viscous damping values. We demonstrate the capability of the FDEM tool for modelling earthquake ruptures. We then modelled earthquake ruptures allowing for coseismic off-fault damage with appropriate fracture nucleation and growth criteria. We studied the effect of different conditions such as rupture speed (sub-Rayleigh or supershear), the orientation of the initial maximum principal stress with respect to the fault and the magnitude of the initial stress (to mimic depth). The comparison between the sub-Rayleigh and supershear case shows that the coseismic off-fault damage is enhanced in the supershear case when compared with the sub-Rayleigh case. The orientation of the maximum principal stress also has significant difference such that the dynamic off-fault cracking is more likely to occur on the extensional side of the fault for high principal stress orientation. It is found that the coseismic off-fault damage reduces the rupture speed due to the dissipation of the energy by dynamic off-fault cracking generated in the vicinity of the rupture front. In terms of the ground motion amplitude spectra it is shown that the high-frequency radiation is enhanced by the coseismic off-fault damage though it is quickly attenuated. This is caused by the intricate superposition of the radiation generated by the off-fault damage and the perturbation of the rupture speed on the main fault.
USDA-ARS?s Scientific Manuscript database
Ambrosia beetles in the Euwallacea nr. fornicatus complex (Coleoptera: Curculionidae) vector Fusarium spp. fungi pathogenic to susceptible hosts, including avocado. The Florida avocado production area in Miami-Dade County was surveyed for E. nr. fornicatus upon observations of initial damage in 2016...
5. DETAIL VIEW OF SOUTH SIDE WITH DAMAGE TO METAL ...
5. DETAIL VIEW OF SOUTH SIDE WITH DAMAGE TO METAL DOORS WHEN INCENDIARY CHUNKS OF SOLID FUEL CRASHED THROUGH AWNING AND BURNED MELTING PORTIONS OF THE BUILDING; VIEW TO NORTHWEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 36009, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
Maréchal, Alexandre; Zou, Lee
2015-01-01
The Replication Protein A (RPA) complex is an essential regulator of eukaryotic DNA metabolism. RPA avidly binds to single-stranded DNA (ssDNA) through multiple oligonucleotide/oligosaccharide-binding folds and coordinates the recruitment and exchange of genome maintenance factors to regulate DNA replication, recombination and repair. The RPA-ssDNA platform also constitutes a key physiological signal which activates the master ATR kinase to protect and repair stalled or collapsed replication forks during replication stress. In recent years, the RPA complex has emerged as a key target and an important regulator of post-translational modifications in response to DNA damage, which is critical for its genome guardian functions. Phosphorylation and SUMOylation of the RPA complex, and more recently RPA-regulated ubiquitination, have all been shown to control specific aspects of DNA damage signaling and repair by modulating the interactions between RPA and its partners. Here, we review our current understanding of the critical functions of the RPA-ssDNA platform in the maintenance of genome stability and its regulation through an elaborate network of covalent modifications. PMID:25403473
Maréchal, Alexandre; Zou, Lee
2015-01-01
The Replication Protein A (RPA) complex is an essential regulator of eukaryotic DNA metabolism. RPA avidly binds to single-stranded DNA (ssDNA) through multiple oligonucleotide/oligosaccharide-binding folds and coordinates the recruitment and exchange of genome maintenance factors to regulate DNA replication, recombination and repair. The RPA-ssDNA platform also constitutes a key physiological signal which activates the master ATR kinase to protect and repair stalled or collapsed replication forks during replication stress. In recent years, the RPA complex has emerged as a key target and an important regulator of post-translational modifications in response to DNA damage, which is critical for its genome guardian functions. Phosphorylation and SUMOylation of the RPA complex, and more recently RPA-regulated ubiquitination, have all been shown to control specific aspects of DNA damage signaling and repair by modulating the interactions between RPA and its partners. Here, we review our current understanding of the critical functions of the RPA-ssDNA platform in the maintenance of genome stability and its regulation through an elaborate network of covalent modifications.
Towards a Molecular Understanding of the Fanconi Anemia Core Complex
Hodson, Charlotte; Walden, Helen
2012-01-01
Fanconi Anemia (FA) is a genetic disorder characterized by the inability of patient cells to repair DNA damage caused by interstrand crosslinking agents. There are currently 14 verified FA genes, where mutation of any single gene prevents repair of DNA interstrand crosslinks (ICLs). The accumulation of ICL damage results in genome instability and patients having a high predisposition to cancers. The key event of the FA pathway is dependent on an eight-protein core complex (CC), required for the monoubiquitination of each member of the FANCD2-FANCI complex. Interestingly, the majority of patient mutations reside in the CC. The molecular mechanisms underlying the requirement for such a large complex to carry out a monoubiquitination event remain a mystery. This paper documents the extensive efforts of researchers so far to understand the molecular roles of the CC proteins with regard to its main function in the FA pathway, the monoubiquitination of FANCD2 and FANCI. PMID:22675617
UV damage-specific DNA-binding protein in xeroderma pigmentosum complementation group E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kataoka, H.; Fujiwara, Y.
1991-03-29
The gel mobility shift assay method revealed a specifically ultraviolet (UV) damage recognizing, DNA-binding protein in nuclear extracts of normal human cells. The resulted DNA/protein complexes caused the two retarded mobility shifts. Four xeroderma pigmentosum complementation group E (XPE) fibroblast strains derived from unrelated Japanese families were not deficient in such a DNA damage recognition/binding protein because of the normal complex formation and gel mobility shifts, although we confirmed the reported lack of the protein in the European XPE (XP2RO and XP3RO) cells. Thus, the absence of this binding protein is not always commonly observed in all the XPE strains,more » and the partially repair-deficient and intermediately UV-hypersensitive phenotype of XPE cells are much similar whether or not they lack the protein.« less
Rotational 3D printing of damage-tolerant composites with programmable mechanics
Raney, Jordan R.; Compton, Brett G.; Ober, Thomas J.; Shea, Kristina; Lewis, Jennifer A.
2018-01-01
Natural composites exhibit exceptional mechanical performance that often arises from complex fiber arrangements within continuous matrices. Inspired by these natural systems, we developed a rotational 3D printing method that enables spatially controlled orientation of short fibers in polymer matrices solely by varying the nozzle rotation speed relative to the printing speed. Using this method, we fabricated carbon fiber–epoxy composites composed of volume elements (voxels) with programmably defined fiber arrangements, including adjacent regions with orthogonally and helically oriented fibers that lead to nonuniform strain and failure as well as those with purely helical fiber orientations akin to natural composites that exhibit enhanced damage tolerance. Our approach broadens the design, microstructural complexity, and performance space for fiber-reinforced composites through site-specific optimization of their fiber orientation, strain, failure, and damage tolerance. PMID:29348206
NASA Technical Reports Server (NTRS)
Leser, Patrick E.; Hochhalter, Jacob D.; Newman, John A.; Leser, William P.; Warner, James E.; Wawrzynek, Paul A.; Yuan, Fuh-Gwo
2015-01-01
Utilizing inverse uncertainty quantification techniques, structural health monitoring can be integrated with damage progression models to form probabilistic predictions of a structure's remaining useful life. However, damage evolution in realistic structures is physically complex. Accurately representing this behavior requires high-fidelity models which are typically computationally prohibitive. In the present work, a high-fidelity finite element model is represented by a surrogate model, reducing computation times. The new approach is used with damage diagnosis data to form a probabilistic prediction of remaining useful life for a test specimen under mixed-mode conditions.
Diamantis, Dimitrios A; Ramesova, Sarka; Chatzigiannis, Christos M; Degano, Ilaria; Gerogianni, Paraskevi S; Karadima, Constantina; Perikleous, Sonia; Rekkas, Dimitrios; Gerothanassis, Ioannis P; Galaris, Dimitrios; Mavromoustakos, Thomas; Valsami, Georgia; Sokolova, Romana; Tzakos, Andreas G
2018-06-07
Flavonoids possess a rich polypharmacological profile and their biological role is linked to their oxidation state protecting DNA from oxidative stress damage. However, their bioavailability is hampered due to their poor aqueous solubility. This can be surpassed through encapsulation to supramolecular carriers as cyclodextrin (CD). A quercetin- 2HP-β-CD complex has been formerly reported by us. However, once the flavonoid is in its 2HP-β-CD encapsulated state its oxidation potential, its decomplexation mechanism, its potential to protect DNA damage from oxidative stress remained elusive. To unveil this, an array of biophysical techniques was used. The quercetin-2HP-β-CD complex was evaluated through solubility and dissolution experiments, electrochemical and spectroelectrochemical studies (Cyclic Voltammetry) UV-Vis spectroscopy, HPLC-ESI-MS/MS and HPLC-DAD, fluorescence spectroscopy, NMR Spectroscopy, theoretical calculations (density functional theory (DFT)) and biological evaluation of the protection offered against H 2 O 2 -induced DNA damage. Encapsulation of quercetin inside the supramolecule's cavity enhanced its solubility and oxidation profile is retained in its encapsulated state. Although the protective ability of the quercetin-2HP-β-CD complex against H 2 O 2 was diminished, iron serves as a chemical stimulus to dissociate the complex and release quercetin. We found that in a quercetin-2HP-β-CD inclusion complex quercetin retains its oxidation profile similarly to its native state, while iron can operate as a chemical stimulus to release quercetin from its host cavity. The oxidation profile of a natural product once it is encapsulated in a supramolecular cyclodextrin carrier as also it was discovered that decomplexation can be triggered by a chemical stimulus. Copyright © 2018. Published by Elsevier B.V.
Evidence That BRCA1- or BRCA2-Associated Cancers Are Not Inevitable
Levin, Bess; Lech, Denise; Friedenson, Bernard
2012-01-01
Inheriting a BRCA1 or BRCA2 gene mutation can cause a deficiency in repairing complex DNA damage. This step leads to genomic instability and probably contributes to an inherited predisposition to breast and ovarian cancer. Complex DNA damage has been viewed as an integral part of DNA replication before cell division. It causes temporary replication blocks, replication fork collapse, chromosome breaks and sister chromatid exchanges (SCEs). Chemical modification of DNA may also occur spontaneously as a byproduct of normal processes. Pathways containing BRCA1 and BRCA2 gene products are essential to repair spontaneous complex DNA damage or to carry out SCEs if repair is not possible. This scenario creates a theoretical limit that effectively means there are spontaneous BRCA1/2-associated cancers that cannot be prevented or delayed. However, much evidence for high rates of spontaneous DNA mutation is based on measuring SCEs by using bromodeoxyuridine (BrdU). Here we find that the routine use of BrdU has probably led to overestimating spontaneous DNA damage and SCEs because BrdU is itself a mutagen. Evidence based on spontaneous chromosome abnormalities and epidemiologic data indicates strong effects from exogenous mutagens and does not support the inevitability of cancer in all BRCA1/2 mutation carriers. We therefore remove a theoretical argument that has limited efforts to develop chemoprevention strategies to delay or prevent cancers in BRCA1/2 mutation carriers. PMID:22972572
Providing structural modules with self-integrity monitoring
NASA Astrophysics Data System (ADS)
Walton, W. B.; Ibanez, P.; Yessaie, G.
1988-08-01
With the advent of complex space structures (i.e., U.S. Space Station), the need for methods for remotely detecting structural damage will become greater. Some of these structures will have hundreds of individual structural elements (i.e., strut members). Should some of them become damaged, it could be virtually impossible to detect it using visual or similar inspection techniques. The damage of only a few individual members may or may not be a serious problem. However, should a significant number of the members be damaged, a significant problem could be created. The implementation of an appropriate remote damage detection scheme would greatly reduce the likelihood of a serious problem related to structural damage ever occurring. This report presents the results of the research conducted on remote structural damage detection approaches and the related mathematical algorithms. The research was conducted for the Small Business Innovation and Research (SBIR) Phase 2 National Aeronautics and Space Administration (NASA) Contract NAS7-961.
NASA Technical Reports Server (NTRS)
Sutherland, Betsy M.; Georgakilas, Alexandros G.; Bennett, Paula V.; Laval, Jacques; Sutherland, John C.; Gewirtz, A. M. (Principal Investigator)
2003-01-01
Assessing DNA damage induction, repair and consequences of such damages requires measurement of specific DNA lesions by methods that are independent of biological responses to such lesions. Lesions affecting one DNA strand (altered bases, abasic sites, single strand breaks (SSB)) as well as damages affecting both strands (clustered damages, double strand breaks) can be quantified by direct measurement of DNA using gel electrophoresis, gel imaging and number average length analysis. Damage frequencies as low as a few sites per gigabase pair (10(9)bp) can be quantified by this approach in about 50ng of non-radioactive DNA, and single molecule methods may allow such measurements in DNA from single cells. This review presents the theoretical basis, biochemical requirements and practical aspects of this approach, and shows examples of their applications in identification and quantitation of complex clustered damages.
DNA Damage Signals and Space Radiation Risk
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
2011-01-01
Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.
In situ analysis of DNA damage response and repair using laser microirradiation.
Kim, Jong-Soo; Heale, Jason T; Zeng, Weihua; Kong, Xiangduo; Krasieva, Tatiana B; Ball, Alexander R; Yokomori, Kyoko
2007-01-01
A proper response to DNA damage is critical for the maintenance of genome integrity. However, it is difficult to study the in vivo kinetics and factor requirements of the damage recognition process in mammalian cells. In order to address how the cell reacts to DNA damage, we utilized a second harmonic (532 nm) pulsed Nd:YAG laser to induce highly concentrated damage in a small area in interphase cell nuclei and cytologically analyzed both protein recruitment and modification. Our results revealed for the first time the sequential recruitment of factors involved in two major DNA double-strand break (DSB) repair pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR), and the cell cycle-specific recruitment of the sister chromatid cohesion complex cohesin to the damage site. In this chapter, the strategy developed to study the DNA damage response using the 532-nm Nd:YAG laser will be summarized.
Liu, Chun-Hsin; Finke, Andreas; Díaz, Mariana; Rozhon, Wilfried; Poppenberger, Brigitte; Baubec, Tuncay; Pecinka, Ales
2015-01-01
DNA damage repair is an essential cellular mechanism that maintains genome stability. Here, we show that the nonmethylable cytidine analog zebularine induces a DNA damage response in Arabidopsis thaliana, independent of changes in DNA methylation. In contrast to genotoxic agents that induce damage in a cell cycle stage-independent manner, zebularine induces damage specifically during strand synthesis in DNA replication. The signaling of this damage is mediated by additive activity of ATAXIA TELANGIECTASIA MUTATED AND RAD3-RELATED and ATAXIA TELANGIECTASIA MUTATED kinases, which cause postreplicative cell cycle arrest and increased endoreplication. The repair requires a functional STRUCTURAL MAINTENANCE OF CHROMOSOMES5 (SMC5)-SMC6 complex and is accomplished predominantly by synthesis-dependent strand-annealing homologous recombination. Here, we provide insight into the response mechanism for coping with the genotoxic effects of zebularine and identify several components of the zebularine-induced DNA damage repair pathway. PMID:26023162
Providing structural modules with self-integrity monitoring
NASA Technical Reports Server (NTRS)
Walton, W. B.; Ibanez, P.; Yessaie, G.
1988-01-01
With the advent of complex space structures (i.e., U.S. Space Station), the need for methods for remotely detecting structural damage will become greater. Some of these structures will have hundreds of individual structural elements (i.e., strut members). Should some of them become damaged, it could be virtually impossible to detect it using visual or similar inspection techniques. The damage of only a few individual members may or may not be a serious problem. However, should a significant number of the members be damaged, a significant problem could be created. The implementation of an appropriate remote damage detection scheme would greatly reduce the likelihood of a serious problem related to structural damage ever occurring. This report presents the results of the research conducted on remote structural damage detection approaches and the related mathematical algorithms. The research was conducted for the Small Business Innovation and Research (SBIR) Phase 2 National Aeronautics and Space Administration (NASA) Contract NAS7-961.
Atmospheric skin aging-Contributors and inhibitors.
McDaniel, David; Farris, Patricia; Valacchi, Giuseppe
2018-04-01
Cutaneous aging is a complex biological process consisting of 2 elements: intrinsic aging, which is primarily determined by genetics, and extrinsic aging, which is largely caused by atmospheric factors, such as exposure to sunlight and air pollution, and lifestyle choices, such as diet and smoking. The role of the solar spectrum, comprised of ultraviolet light, specifically UVB (290-320 nm) and UVA (320-400) in causing skin damage, including skin cancers, has been well documented. In recent years, the contribution of visible light (400-700 nm) and infrared radiation (above 800 nm) in causing skin damage, similar to the photodamage caused by UV light, is also being elucidated. In addition, other atmospheric factors such as air pollution (smog, ozone, particulate matter, etc.) have been implicated in premature skin aging. The skin damage caused by environmental exposure is largely attributable to a complex cascade of reactions inside the skin initiated by the generation of reactive oxygen species (ROS), which causes oxidative damage to cellular components such as proteins, lipids, and nucleic acids. These damaged skin cells initiate inflammatory responses leading to the eventual damage manifested in chronically exposed skin. Novel therapeutic strategies to combat ROS species generation are being developed to prevent the skin damage caused by atmospheric factors. In addition to protecting skin from solar radiation using sunscreens, other approaches using topically applied ingredients, particularly antioxidants that penetrate the skin and protect the skin from within, have also been well documented. This review summarizes current knowledge of atmospheric aggressors, including UVA, UVB, visible light, infrared radiation (IR), and ozone on skin damage, and proposes new avenues for future research in the prevention and treatment of premature skin aging caused by such atmospheric factors. New therapeutic modalities currently being developed are also discussed. © 2018 Wiley Periodicals, Inc.
Investigation of Laser-Induced Retinal Damage: Wavelength and Pulsewidth Dependent Mechanisms
1994-06-30
Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1991;1072:129-57. 2. Artuc M, Ramshad M, Kappus H. Studies...M, Reinhold C, Kappus H. DNA damage caused by laser light activated hematoporphyrin derivatives in isolated nuclei of human melanoma cells. Arch
The DNA damage response (DDR) is a highly regulated signal transduction network that orchestrates the temporal and spatial organization of protein complexes required to repair (or tolerate) DNA damage (e.g., nucleotide excision repair, base excision repair, homologous recombination, non-homologous end joining, post-replication repair).
New discoveries linking transcription to DNA repair and damage tolerance pathways.
Cohen, Susan E; Walker, Graham C
2011-01-01
In Escherichia coli, the transcription elongation factor NusA is associated with all elongating RNA polymerases where it functions in transcription termination and antitermination. Here, we review our recent results implicating NusA in the recruitment of DNA repair and damage tolerance mechanisms to sites of stalled transcription complexes.
Philpott, Stacy M; Pardee, Gabriella L; Gonthier, David J
2012-05-01
Interactions between predators and the degree of functional redundancy among multiple predator species may determine whether herbivores experience increased or decreased predation risk. Specialist parasites can modify predator behavior, yet rarely have cascading effects on multiple predator species and prey been evaluated. We examined influences of specialist phorid parasites (Pseudacteon spp.) on three predatory ant species and herbivores in a coffee agroecosystem. Specifically, we examined whether changes in ant richness affected fruit damage by the coffee berry borer (Hypothenemus hampei) and whether phorids altered multi-predator effects. Each ant species reduced borer damage, and without phorids, increasing predator richness did not further decrease borer damage. However, with phorids, activity of one ant species was reduced, indicating that the presence of multiple ant species was necessary to limit borer damage. In addition, phorid presence revealed synergistic effects of multiple ant species, not observed without the presence of this parasite. Thus, a trait-mediated cascade resulting from a parasite-induced predator behavioral change revealed the importance of functional redundancy, predator diversity, and food web complexity for control of this important pest.
What I got wrong about shelterin.
de Lange, Titia
2018-05-24
The ASBMB 2018 Bert and Natalie Vallee award in Biomedical Sciences honors our work on shelterin, a protein complex that helps cells distinguish the chromosome ends from sites of DNA damage. Shelterin protects telomeres from all aspects of the DNA damage response, including ATM and ATR serine/threonine kinase signaling and several forms of double-strand break repair. Today, this six-subunit protein complex could easily be identified in one single proteomics step. But it took us more than 15 years to piece the entire shelterin complex together, one protein at a time. Although we did a lot of things right, here I tell the story of shelterin's discovery with an emphasis on the things that I got wrong along the way. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Literature review relevant to particle erosion in complex geometries
NASA Astrophysics Data System (ADS)
Volent, Eirik; Dahlhaug, Ole Gunnar
2018-06-01
Erosion is a challenge in many industries where fluid is transferred through pipe and valve arrangements. Wear can occur in a variety of systems and is often related to the presents of droplets or solid particles in the fluid stream. Solid particles are in many cases present in hydropower systems, and can cause severe damage to system components. Flow conditions, particle size and concentration vary greatly and can thus cause a vast variety of damage, ranging from manageable wear to component failure. The following paper will present a summary of literature relevant to the prediction of erosion in complex geometries. The intention of the review is to investigate the current state of the art, directly relevant to the prediction of wear due to solid particle erosion in complex geometries.
Influence of complex impurity centres on radiation damage in wide-gap metal oxides
NASA Astrophysics Data System (ADS)
Lushchik, A.; Lushchik, Ch.; Popov, A. I.; Schwartz, K.; Shablonin, E.; Vasil'chenko, E.
2016-05-01
Different mechanisms of radiation damage of wide-gap metal oxides as well as a dual influence of impurity ions on the efficiency of radiation damage have been considered on the example of binary ionic MgO and complex ionic-covalent Lu3Al5O12 single crystals. Particular emphasis has been placed on irradiation with ∼2 GeV heavy ions (197Au, 209Bi, 238U, fluence of 1012 ions/cm2) providing extremely high density of electronic excitations within ion tracks. Besides knock-out mechanism for Frenkel pair formation, the additional mechanism through the collapse of mobile discrete breathers at certain lattice places (e.g., complex impurity centres) leads to the creation of complex defects that involve a large number of host atoms. The experimental manifestations of the radiation creation of intrinsic and impurity antisite defects (Lu|Al or Ce|Al - a heavy ion in a wrong cation site) have been detected in LuAG and LuAG:Ce3+ single crystals. Light doping of LuAG causes a small enhancement of radiation resistance, while pair impurity centres (for instance, Ce|Lu-Ce|Al or Cr3+-Cr3+ in MgO) are formed with a rise of impurity concentration. These complex impurity centres as well as radiation-induced intrinsic antisite defects (Lu|Al strongly interacting with Lu in a regular site) tentatively serve as the places for breathers collapse, thus decreasing the material resistance against dense irradiation.
DART Support for Hurricane Matthew
2016-10-18
A construction trailer damaged by Hurricane Matthew is seen in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
DART Support for Hurricane Matthew
2016-10-18
An ice dispenser damaged by Hurricane Matthew is seen in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
Izhar, Lior; Adamson, Britt; Ciccia, Alberto; Lewis, Jedd; Pontano-Vaites, Laura; Leng, Yumei; Liang, Anthony C; Westbrook, Thomas F; Harper, J Wade; Elledge, Stephen J
2015-06-09
Localization to sites of DNA damage is a hallmark of DNA damage response (DDR) proteins. To identify DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the amyotrophic lateral sclerosis (ALS) candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a poly-(ADP-ribose) polymerase (PARP)-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors; > 70% of randomly tested transcription factors localized to sites of DNA damage, and of these, ∼90% were PARP dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding-domain dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Dongsheng; Du, Fangzhu; Ou, Jinping
2017-03-01
Glass-fiber reinforced plastic (GFRP)-confined circular concrete-filled steel tubular (CCFT) columns comprise of concrete, steel, and GFRP and show complex failure mechanics under cyclic loading. This paper investigated the failure mechanism and damage evolution of GFRP-CCFT columns by performing uniaxial cyclic loading tests that were monitored using the acoustic emission (AE) technique. Characteristic AE parameters were obtained during the damage evolution of GFRP-CCFT columns. Based on the relationship between the loading curve and these parameters, the damage evolution of GFRP-CCFT columns was classified into three stages that represented different damage degrees. Damage evolution and failure mode were investigated by analyzing the b-value and the ratio of rise time to waveform amplitude and average frequency. The damage severity of GFRP-CCFT columns were quantitatively estimated according to the modified index of damage and NDIS-2421 damage assessment criteria corresponding to each loading step. The proposed method can explain the damage evolution and failure mechanism for GFRP-CCFT columns and provide critical warning information for composite structures.
Calzia, Daniela; Panfoli, Isabella; Heinig, Nora; Schumann, Ulrike; Ader, Marius; Traverso, Carlo Enrico; Funk, Richard H W; Roehlecke, Cora
2016-06-01
Exposure to short wavelength light causes increased reactive oxygen intermediates production in the outer retina, particularly in the rod Outer Segments (OS). Consistently, the OS were shown to conduct aerobic ATP production through the ectopic expression of the electron transfer chain complexes I-IV and F1Fo-ATP synthase. These facts prompted us to verify if the oxidative phosphorylation in the OS is implied in the oxidative damage of the blue-light (BL) treated OS, in an organotypic model of mouse retina. Whole mouse eyeball cultures were treated with short wavelength BL (peak at 405 nm, output power 1 mW/cm(2)) for 6 h. Immunogold transmission electron microscopy confirmed the expression of Complex I and F1Fo-ATP synthase in the OS. In situ histochemical assays on unfixed sections showed impairment of respiratory Complexes I and II after BL exposure, both in the OS and IS, utilized as a control. Basal O2 consumption and ATP synthesis were impaired in the OS purified from blue-light irradiated eyeball cultures. Electron transfer capacity between Complex I and II as well as activity of Complexes I and II was decreased in blue-light irradiated purified OS. The severe malfunctioning of the OS aerobic respiratory capacity after 6 h BL treatment may be the consequence of a self-induced damage. BL exposure would cause an initial over-functioning of both the phototransduction and respiratory chain, with reactive oxygen species production. In a self-renewal vicious cycle, membrane and protein oxidative damage, proton leakage and uncoupling, would impair redox chains, perpetuating the damage and causing hypo-metabolism with eventual apoptosis of the rod. Data may shed new light on the rod-driven retinopathies such as Age Related Macular Degeneration, of which blue-light irradiated retina represents a model. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Moore, Henna M; Bai, Baoyan; Boisvert, François-Michel; Latonen, Leena; Rantanen, Ville; Simpson, Jeremy C; Pepperkok, Rainer; Lamond, Angus I; Laiho, Marikki
2011-10-01
The nucleolus is a nuclear organelle that coordinates rRNA transcription and ribosome subunit biogenesis. Recent proteomic analyses have shown that the nucleolus contains proteins involved in cell cycle control, DNA processing and DNA damage response and repair, in addition to the many proteins connected with ribosome subunit production. Here we study the dynamics of nucleolar protein responses in cells exposed to stress and DNA damage caused by ionizing and ultraviolet (UV) radiation in diploid human fibroblasts. We show using a combination of imaging and quantitative proteomics methods that nucleolar substructure and the nucleolar proteome undergo selective reorganization in response to UV damage. The proteomic responses to UV include alterations of functional protein complexes such as the SSU processome and exosome, and paraspeckle proteins, involving both decreases and increases in steady state protein ratios, respectively. Several nonhomologous end-joining proteins (NHEJ), such as Ku70/80, display similar fast responses to UV. In contrast, nucleolar proteomic responses to IR are both temporally and spatially distinct from those caused by UV, and more limited in terms of magnitude. With the exception of the NHEJ and paraspeckle proteins, where IR induces rapid and transient changes within 15 min of the damage, IR does not alter the ratios of most other functional nucleolar protein complexes. The rapid transient decrease of NHEJ proteins in the nucleolus indicates that it may reflect a response to DNA damage. Our results underline that the nucleolus is a specific stress response organelle that responds to different damage and stress agents in a unique, damage-specific manner.
Kim, Kee-Beom; Kim, Dong-Wook; Park, Jin Woo; Jeon, Young-Joo; Kim, Daehwan; Rhee, Sangmyung; Chae, Jung-Il; Seo, Sang-Beom
2014-07-01
DNA double-strand breaks (DSBs) can cause either cell death or genomic instability. The Ku heterodimer Ku70/80 is required for the NHEJ (non-homologous end-joining) DNA DSB repair pathway. The INHAT (inhibitor of histone acetyltransferases) complex subunit, SET/TAF-Iβ, can inhibit p300- and PCAF-mediated acetylation of both histone and p53, thereby repressing general transcription and that of p53 target genes. Here, we show that SET/TAF-Iβ interacts with Ku70/80, and that this interaction inhibits CBP- and PCAF-mediated Ku70 acetylation in an INHAT domain-dependent manner. Notably, DNA damage by UV disrupted the interaction between SET/TAF-Iβ and Ku70. Furthermore, we demonstrate that overexpressed SET/TAF-Iβ inhibits recruitment of Ku70/80 to DNA damage sites. We propose that dysregulation of SET/TAF-Iβ expression prevents repair of damaged DNA and also contributes to cellular proliferation. All together, our findings indicate that SET/TAF-Iβ interacts with Ku70/80 in the nucleus and inhibits Ku70 acetylation. Upon DNA damage, SET/TAF-Iβ dissociates from the Ku complex and releases Ku70/Ku80, which are then recruited to DNA DSB sites via the NHEJ DNA repair pathway.
Controlling the response to DNA damage by the APC/C-Cdh1.
de Boer, H Rudolf; Guerrero Llobet, S; van Vugt, Marcel A T M
2016-03-01
Proper cell cycle progression is safeguarded by the oscillating activities of cyclin/cyclin-dependent kinase complexes. An important player in the regulation of mitotic cyclins is the anaphase-promoting complex/cyclosome (APC/C), a multi-subunit E3 ubiquitin ligase. Prior to entry into mitosis, the APC/C remains inactive, which allows the accumulation of mitotic regulators. APC/C activation requires binding to either the Cdc20 or Cdh1 adaptor protein, which sequentially bind the APC/C and facilitate targeting of multiple mitotic regulators for proteasomal destruction, including Securin and Cyclin B, to ensure proper chromosome segregation and mitotic exit. Emerging data have indicated that the APC/C, particularly in association with Cdh1, also functions prior to mitotic entry. Specifically, the APC/C-Cdh1 is activated in response to DNA damage in G2 phase cells. These observations are in line with in vitro and in vivo genetic studies, in which cells lacking Cdh1 expression display various defects, including impaired DNA repair and aberrant cell cycle checkpoints. In this review, we summarize the current literature on APC/C regulation in response to DNA damage, the functions of APC/C-Cdh1 activation upon DNA damage, and speculate how APC/C-Cdh1 can control cell fate in the context of persistent DNA damage.
Das, Devashish; Faridounnia, Maryam; Kovacic, Lidija; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E.
2017-01-01
The nucleotide excision repair protein complex ERCC1-XPF is required for incision of DNA upstream of DNA damage. Functional studies have provided insights into the binding of ERCC1-XPF to various DNA substrates. However, because no structure for the ERCC1-XPF-DNA complex has been determined, the mechanism of substrate recognition remains elusive. Here we biochemically characterize the substrate preferences of the helix-hairpin-helix (HhH) domains of XPF and ERCC-XPF and show that the binding to single-stranded DNA (ssDNA)/dsDNA junctions is dependent on joint binding to the DNA binding domain of ERCC1 and XPF. We reveal that the homodimeric XPF is able to bind various ssDNA sequences but with a clear preference for guanine-containing substrates. NMR titration experiments and in vitro DNA binding assays also show that, within the heterodimeric ERCC1-XPF complex, XPF specifically recognizes ssDNA. On the other hand, the HhH domain of ERCC1 preferentially binds dsDNA through the hairpin region. The two separate non-overlapping DNA binding domains in the ERCC1-XPF heterodimer jointly bind to an ssDNA/dsDNA substrate and, thereby, at least partially dictate the incision position during damage removal. Based on structural models, NMR titrations, DNA-binding studies, site-directed mutagenesis, charge distribution, and sequence conservation, we propose that the HhH domain of ERCC1 binds to dsDNA upstream of the damage, and XPF binds to the non-damaged strand within a repair bubble. PMID:28028171
New Learning of Music after Bilateral Medial Temporal Lobe Damage: Evidence from an Amnesic Patient
Valtonen, Jussi; Gregory, Emma; Landau, Barbara; McCloskey, Michael
2014-01-01
Damage to the hippocampus impairs the ability to acquire new declarative memories, but not the ability to learn simple motor tasks. An unresolved question is whether hippocampal damage affects learning for music performance, which requires motor processes, but in a cognitively complex context. We studied learning of novel musical pieces by sight-reading in a newly identified amnesic, LSJ, who was a skilled amateur violist prior to contracting herpes simplex encephalitis. LSJ has suffered virtually complete destruction of the hippocampus bilaterally, as well as extensive damage to other medial temporal lobe structures and the left anterior temporal lobe. Because of LSJ’s rare combination of musical training and near-complete hippocampal destruction, her case provides a unique opportunity to investigate the role of the hippocampus for complex motor learning processes specifically related to music performance. Three novel pieces of viola music were composed and closely matched for factors contributing to a piece’s musical complexity. LSJ practiced playing two of the pieces, one in each of the two sessions during the same day. Relative to a third unpracticed control piece, LSJ showed significant pre- to post-training improvement for the two practiced pieces. Learning effects were observed both with detailed analyses of correctly played notes, and with subjective whole-piece performance evaluations by string instrument players. The learning effects were evident immediately after practice and 14 days later. The observed learning stands in sharp contrast to LSJ’s complete lack of awareness that the same pieces were being presented repeatedly, and to the profound impairments she exhibits in other learning tasks. Although learning in simple motor tasks has been previously observed in amnesic patients, our results demonstrate that non-hippocampal structures can support complex learning of novel musical sequences for music performance. PMID:25232312
Betanzos, Abigail; Javier-Reyna, Rosario; García-Rivera, Guillermina; Bañuelos, Cecilia; González-Mariscal, Lorenza; Schnoor, Michael; Orozco, Esther
2013-01-01
Entamoeba histolytica, the protozoan responsible for human amoebiasis, causes between 30,000 and 100,000 deaths per year worldwide. Amoebiasis is characterized by intestinal epithelial damage provoking severe diarrhea. However, the molecular mechanisms by which this protozoan causes epithelial damage are poorly understood. Here, we studied the initial molecular interactions between the E. histolytica EhCPADH112 virulence complex and epithelial MDCK and Caco-2 cells. By confocal microscopy, we discovered that after contact with trophozoites or trophozoite extracts (TE), EhCPADH112 and proteins forming this complex (EhCP112 and EhADH112) co-localize with occludin and claudin-1 at tight junctions (TJ). Immunoprecipitation assays revealed interaction between EhCPADH112 and occludin, claudin-1, ZO-1 and ZO-2. Overlay assays confirmed an interaction of EhCP112 and EhADH112 with occludin and claudin-1, whereas only EhADH112 interacted also with ZO-2. We observed degradation of all mentioned TJ proteins after incubation with TE. Importantly, inhibiting proteolytic activity or blocking the complex with a specific antibody not only prevented TJ protein degradation but also epithelial barrier disruption. Furthermore, we discovered that TE treatment induces autophagy and apoptosis in MDCK cells that could contribute to the observed barrier disruption. Our results suggest a model in which epithelial damage caused by E. histolytica is initiated by the interaction of EhCP112 and EhADH112 with TJ proteins followed by their degradation. Disruption of TJs then induces increased paracellular permeability, thus facilitating the entry of more proteases and other parasite molecules leading eventually to tissue destruction. PMID:23762290
Automatic Assessment of Complex Task Performance in Games and Simulations. CRESST Report 775
ERIC Educational Resources Information Center
Iseli, Markus R.; Koenig, Alan D.; Lee, John J.; Wainess, Richard
2010-01-01
Assessment of complex task performance is crucial to evaluating personnel in critical job functions such as Navy damage control operations aboard ships. Games and simulations can be instrumental in this process, as they can present a broad range of complex scenarios without involving harm to people or property. However, "automatic"…
Moiseeva, Tatiana; Gamper, Armin M.; Hood, Brian; Conrads, Thomas P.; Bakkenist, Christopher J.
2016-01-01
We describe a dynamic phosphorylation on serine-1940 of the catalytic subunit of human Pol ε, POLE1, following DNA damage. We also describe novel interactions between POLE1 and the iron-sulfur cluster assembly complex CIA proteins CIAO1 and MMS19. We show that serine-1940 is essential for the interaction between POLE1 and MMS19, but not POLE1 and CIAO1. No defect in either proliferation or survival was identified when POLE1 serine-1940 was mutated to alanine in human cells, even following treatment with DNA damaging agents. We conclude that serine-1940 phosphorylation and the interaction between serine-1940 and MMS19 are not essential functions in the C terminal domain of the catalytic subunit of DNA polymerase ε. PMID:27235625
NASA Technical Reports Server (NTRS)
Brucker, G. J.; Van Gunten, O.; Stassinopoulos, E. G.; Shapiro, P.; August, L. S.; Jordan, T. M.
1983-01-01
This paper reports on the recovery properties of rad-hard MOS devices during and after irradiation by electrons, protons, alphas, and gamma rays. The results indicated that complex recovery properties controlled the damage sensitivities of the tested parts. The results also indicated that damage sensitivities depended on dose rate, total dose, supply bias, gate bias, transistor type, radiation source, and particle energy. The complex nature of these dependencies make interpretation of LSI device performance in space (exposure to entire electron and proton spectra) difficult, if not impossible, without respective ground tests and analyses. Complete recovery of n-channel shifts was observed, in some cases within hours after irradiation, with equilibrium values of threshold voltages greater than their pre-irradiation values. This effect depended on total dose, radiation source, and gate bias during exposure. In contrast, the p-channel shifts recovered only 20 percent within 30 days after irradiation.
ATM-dependent pathways of chromatin remodelling and oxidative DNA damage responses.
Berger, N Daniel; Stanley, Fintan K T; Moore, Shaun; Goodarzi, Aaron A
2017-10-05
Ataxia-telangiectasia mutated (ATM) is a serine/threonine protein kinase with a master regulatory function in the DNA damage response. In this role, ATM commands a complex biochemical network that signals the presence of oxidative DNA damage, including the dangerous DNA double-strand break, and facilitates subsequent repair. Here, we review the current state of knowledge regarding ATM-dependent chromatin remodelling and epigenomic alterations that are required to maintain genomic integrity in the presence of DNA double-strand breaks and/or oxidative stress. We will focus particularly on the roles of ATM in adjusting nucleosome spacing at sites of unresolved DNA double-strand breaks within complex chromatin environments, and the impact of ATM on preserving the health of cells within the mammalian central nervous system.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'. © 2017 The Author(s).
Rotational 3D printing of damage-tolerant composites with programmable mechanics.
Raney, Jordan R; Compton, Brett G; Mueller, Jochen; Ober, Thomas J; Shea, Kristina; Lewis, Jennifer A
2018-02-06
Natural composites exhibit exceptional mechanical performance that often arises from complex fiber arrangements within continuous matrices. Inspired by these natural systems, we developed a rotational 3D printing method that enables spatially controlled orientation of short fibers in polymer matrices solely by varying the nozzle rotation speed relative to the printing speed. Using this method, we fabricated carbon fiber-epoxy composites composed of volume elements (voxels) with programmably defined fiber arrangements, including adjacent regions with orthogonally and helically oriented fibers that lead to nonuniform strain and failure as well as those with purely helical fiber orientations akin to natural composites that exhibit enhanced damage tolerance. Our approach broadens the design, microstructural complexity, and performance space for fiber-reinforced composites through site-specific optimization of their fiber orientation, strain, failure, and damage tolerance. Copyright © 2018 the Author(s). Published by PNAS.
NASA Astrophysics Data System (ADS)
Xi, Xiao-Wen; Chai, Chang-Chun; Liu, Yang; Yang, Yin-Tang; Fan, Qing-Yang; Shi, Chun-Lei
2016-08-01
An electromagnetic pulse (EMP)-induced damage model based on the internal damage mechanism of the GaAs pseudomorphic high electron mobility transistor (PHEMT) is established in this paper. With this model, the relationships among the damage power, damage energy, pulse width and signal amplitude are investigated. Simulation results show that the pulse width index from the damage power formula obtained here is higher than that from the empirical formula due to the hotspot transferring in the damage process of the device. It is observed that the damage energy is not a constant, which decreases with the signal amplitude increasing, and then changes little when the signal amplitude reaches up to a certain level. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (CAEP) (Grant No. 2015-0214.XY.K).
Vibration characteristics and damage detection in a suspension bridge
NASA Astrophysics Data System (ADS)
Wickramasinghe, Wasanthi R.; Thambiratnam, David P.; Chan, Tommy H. T.; Nguyen, Theanh
2016-08-01
Suspension bridges are flexible and vibration sensitive structures that exhibit complex and multi-modal vibration. Due to this, the usual vibration based methods could face a challenge when used for damage detection in these structures. This paper develops and applies a mode shape component specific damage index (DI) to detect and locate damage in a suspension bridge with pre-tensioned cables. This is important as suspension bridges are large structures and damage in them during their long service lives could easily go un-noticed. The capability of the proposed vibration based DI is demonstrated through its application to detect and locate single and multiple damages with varied locations and severity in the cables of the suspension bridge. The outcome of this research will enhance the safety and performance of these bridges which play an important role in the transport network.
Study of ion-irradiated tungsten in deuterium plasma
NASA Astrophysics Data System (ADS)
Khripunov, B. I.; Gureev, V. M.; Koidan, V. S.; Kornienko, S. N.; Latushkin, S. T.; Petrov, V. B.; Ryazanov, A. I.; Semenov, E. V.; Stolyarova, V. G.; Danelyan, L. S.; Kulikauskas, V. S.; Zatekin, V. V.; Unezhev, V. N.
2013-07-01
Experimental study aimed at investigation of neutron induced damage influence on fusion reactor plasma facing materials is reported. Displacement damage was produced in tungsten by high-energy helium and carbon ions at 3-10 MeV. The reached level of displacement damage ranged from several dpa to 600 dpa. The properties of the irradiated tungsten were studied in steady-state deuterium plasma on the LENTA linear divertor simulator. Plasma exposures were made at 250 eV of ion energy to fluence 1021-1022 ion/сm2. Erosion dynamics of the damaged layer and deuterium retention were observed. Surface microstructure modifications and important damage of the 5 μm layer shown. Deuterium retention in helium-damaged tungsten (ERD) showed its complex behavior (increase or decrease) depending on implanted helium quantity and the structure of the surface layer.
Damage and strength of composite materials: Trends, predictions, and challenges
NASA Technical Reports Server (NTRS)
Obrien, T. Kevin
1994-01-01
Research on damage mechanisms and ultimate strength of composite materials relevant to scaling issues will be addressed in this viewgraph presentation. The use of fracture mechanics and Weibull statistics to predict scaling effects for the onset of isolated damage mechanisms will be highlighted. The ability of simple fracture mechanics models to predict trends that are useful in parametric or preliminary designs studies will be reviewed. The limitations of these simple models for complex loading conditions will also be noted. The difficulty in developing generic criteria for the growth of these mechanisms needed in progressive damage models to predict strength will be addressed. A specific example for a problem where failure is a direct consequence of progressive delamination will be explored. A damage threshold/fail-safety concept for addressing composite damage tolerance will be discussed.
Kshirsagar, Rucha; Khan, Krishnendu; Joshi, Mamata V; Hosur, Ramakrishna V; Muniyappa, K
2017-05-23
A plethora of evidence suggests that different types of DNA quadruplexes are widely present in the genome of all organisms. The existence of a growing number of proteins that selectively bind and/or process these structures underscores their biological relevance. Moreover, G-quadruplex DNA has been implicated in the alignment of four sister chromatids by forming parallel guanine quadruplexes during meiosis; however, the underlying mechanism is not well defined. Here we show that a G/C-rich motif associated with a meiosis-specific DNA double-strand break (DSB) in Saccharomyces cerevisiae folds into G-quadruplex, and the C-rich sequence complementary to the G-rich sequence forms an i-motif. The presence of G-quadruplex or i-motif structures upstream of the green fluorescent protein-coding sequence markedly reduces the levels of gfp mRNA expression in S. cerevisiae cells, with a concomitant decrease in green fluorescent protein abundance, and blocks primer extension by DNA polymerase, thereby demonstrating the functional significance of these structures. Surprisingly, although S. cerevisiae Hop1, a component of synaptonemal complex axial/lateral elements, exhibits strong affinity to G-quadruplex DNA, it displays a much weaker affinity for the i-motif structure. However, the Hop1 C-terminal but not the N-terminal domain possesses strong i-motif binding activity, implying that the C-terminal domain has a distinct substrate specificity. Additionally, we found that Hop1 promotes intermolecular pairing between G/C-rich DNA segments associated with a meiosis-specific DSB site. Our results support the idea that the G/C-rich motifs associated with meiosis-specific DSBs fold into intramolecular G-quadruplex and i-motif structures, both in vitro and in vivo, thus revealing an important link between non-B form DNA structures and Hop1 in meiotic chromosome synapsis and recombination. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Temporal analysis of meiotic DNA double-strand break formation and repair in Drosophila females.
Mehrotra, S; McKim, K S
2006-11-24
Using an antibody against the phosphorylated form of His2Av (gamma-His2Av), we have described the time course for the series of events leading from the formation of a double-strand break (DSB) to a crossover in Drosophila female meiotic prophase. MEI-P22 is required for DSB formation and localizes to chromosomes prior to gamma-His2Av foci. Drosophila females, however, are among the group of organisms where synaptonemal complex (SC) formation is not dependent on DSBs. In the absence of two SC proteins, C(3)G and C(2)M, the number of DSBs in oocytes is significantly reduced. This is consistent with the appearance of SC protein staining prior to gamma-His2Av foci. However, SC formation is incomplete or absent in the neighboring nurse cells, and gamma-His2Av foci appear with the same kinetics as in oocytes and do not depend on SC proteins. Thus, competence for DSB formation in nurse cells occurs with a specific timing that is independent of the SC, whereas in the oocytes, some SC proteins may have a regulatory role to counteract the effects of a negative regulator of DSB formation. The SC is not sufficient for DSB formation, however, since DSBs were absent from the heterochromatin even though SC formation occurs in these regions. All gamma-His2Av foci disappear before the end of prophase, presumably as repair is completed and crossovers are formed. However, oocytes in early prophase exhibit a slower response to X-ray-induced DSBs compared to those in the late pachytene stage. Assuming all DSBs appear as gamma-His2Av foci, there is at least a 3:1 ratio of noncrossover to crossover products. From a comparison of the frequency of gamma-His2Av foci and crossovers, it appears that Drosophila females have only a weak mechanism to ensure a crossover in the presence of a low number of DSBs.
Lefrançois, Philippe; Rockmill, Beth; Xie, Pingxing; Roeder, G. Shirleen; Snyder, Michael
2016-01-01
During meiosis, chromosomes undergo a homology search in order to locate their homolog to form stable pairs and exchange genetic material. Early in prophase, chromosomes associate in mostly non-homologous pairs, tethered only at their centromeres. This phenomenon, conserved through higher eukaryotes, is termed centromere coupling in budding yeast. Both initiation of recombination and the presence of homologs are dispensable for centromere coupling (occurring in spo11 mutants and haploids induced to undergo meiosis) but the presence of the synaptonemal complex (SC) protein Zip1 is required. The nature and mechanism of coupling have yet to be elucidated. Here we present the first pairwise analysis of centromere coupling in an effort to uncover underlying rules that may exist within these non-homologous interactions. We designed a novel chromosome conformation capture (3C)-based assay to detect all possible interactions between non-homologous yeast centromeres during early meiosis. Using this variant of 3C-qPCR, we found a size-dependent interaction pattern, in which chromosomes assort preferentially with chromosomes of similar sizes, in haploid and diploid spo11 cells, but not in a coupling-defective mutant (spo11 zip1 haploid and diploid yeast). This pattern is also observed in wild-type diploids early in meiosis but disappears as meiosis progresses and homologous chromosomes pair. We found no evidence to support the notion that ancestral centromere homology plays a role in pattern establishment in S. cerevisiae post-genome duplication. Moreover, we found a role for the meiotic bouquet in establishing the size dependence of centromere coupling, as abolishing bouquet (using the bouquet-defective spo11 ndj1 mutant) reduces it. Coupling in spo11 ndj1 rather follows telomere clustering preferences. We propose that a chromosome size preference for centromere coupling helps establish efficient homolog recognition. PMID:27768699
O'Neil, Nigel J.; Martin, Julie S.; Youds, Jillian L.; Ward, Jordan D.; Petalcorin, Mark I. R.; Rose, Anne M.; Boulton, Simon J.
2013-01-01
The generation and resolution of joint molecule recombination intermediates is required to ensure bipolar chromosome segregation during meiosis. During wild type meiosis in Caenorhabditis elegans, SPO-11-generated double stranded breaks are resolved to generate a single crossover per bivalent and the remaining recombination intermediates are resolved as noncrossovers. We discovered that early recombination intermediates are limited by the C. elegans BLM ortholog, HIM-6, and in the absence of HIM-6 by the structure specific endonuclease MUS-81. In the absence of both MUS-81 and HIM-6, recombination intermediates persist, leading to chromosome breakage at diakinesis and inviable embryos. MUS-81 has an additional role in resolving late recombination intermediates in C. elegans. mus-81 mutants exhibited reduced crossover recombination frequencies suggesting that MUS-81 is required to generate a subset of meiotic crossovers. Similarly, the Mus81-related endonuclease XPF-1 is also required for a subset of meiotic crossovers. Although C. elegans gen-1 mutants have no detectable meiotic defect either alone or in combination with him-6, mus-81 or xpf-1 mutations, mus-81;xpf-1 double mutants are synthetic lethal. While mus-81;xpf-1 double mutants are proficient for the processing of early recombination intermediates, they exhibit defects in the post-pachytene chromosome reorganization and the asymmetric disassembly of the synaptonemal complex, presumably triggered by crossovers or crossover precursors. Consistent with a defect in resolving late recombination intermediates, mus-81; xpf-1 diakinetic bivalents are aberrant with fine DNA bridges visible between two distinct DAPI staining bodies. We were able to suppress the aberrant bivalent phenotype by microinjection of activated human GEN1 protein, which can cleave Holliday junctions, suggesting that the DNA bridges in mus-81; xpf-1 diakinetic oocytes are unresolved Holliday junctions. We propose that the MUS-81 and XPF-1 endonucleases act redundantly to process late recombination intermediates to form crossovers during C. elegans meiosis. PMID:23874209
Dynamic changes in Rad51 distribution on chromatin during meiosis in male and female vertebrates.
Ashley, T; Plug, A W; Xu, J; Solari, A J; Reddy, G; Golub, E I; Ward, D C
1995-10-01
Antibodies against human Rad51 protein were used to examine the distribution of Rad51 on meiotic chromatin in mouse spermatocytes and oocytes as well as chicken oocytes during sequential stages of meiosis. We observed the following dynamic changes in distribution of Rad51 during meiosis: (1) in early leptotene nuclei there are multiple, apparently randomly distributed, foci that by late leptonema become organized into tracks of foci. (2) These foci persist into zygonema, but most foci are now localized on Rad51-positive axes that correspond to lateral elements of the synaptonemal complex. As homologs synapse foci from homologous axes fuse. The distribution and involvement of Rad51 foci as contact points between homologs suggest that they may be components to early recombination nodules. (3) As pachynema progresses the number of foci drops dramatically; the temporal occurrence (mice) and physical and numerical distribution of foci on axes (chickens) suggest that they may be a component of late recombination nodules. (4) In early pachynema there are numerous Rad51 foci on the single axis of the X (mouse spermatocytes) or the Z (chicken oocytes) chromosomes that neither pair, nor recombine. (5) In late pachynema in mouse spermatocytes, but not oocytes, the Rad51 signal is preferentially enhanced at both ends of all the bivalents. As bivalents in spermatocytes, but not oocytes, begin to desynapse at diplonema they are often held together at these Rad51-positive termini. These observations parallel observations that recombination rates are exceptionally high near chromosome ends in male but not female eutherian mammals. (6) From diakinesis through metaphase I, Rad51 protein is detected as low-intensity fluorescent doublets that localize with CREST-specific antigens (kinetochores), suggesting that Rad51 participates, at least as a structural component of the materials involved, in sister kinetochore cohesiveness. Finally, the changes in Rad51 distribution during meiosis do not appear to be species specific, but intrinsic to the meiotic process.
Hosseinzadeh Shirzeily, Maryam; Pasbakhsh, Parichehr; Amidi, Fardin; Mehrannia, Kobra; Sobhani, Aligholi
2013-01-01
Background: Recent publications about differentiation of stem cells to germ cells have motivated researchers to make new approaches to infertility. In vitro production of germ cells improves understanding differentiation process of male and female germ cells. Due to the problem of using embryonic stem cells (ESC), it’s necessary the mentioned cells be replaced with some adult multi-potent stem cells in laboratories. Objective: The aim of this study was to obtain germ cells from appropriate source beyond ESC and compare differential potentials of adipocytes derived stem cells (ADMSCs) with bone marrow derived stem cells (BMMSCs). Materials and Methods: To find multi-potential entity, after providing purified ADMSCs and BMMSCs, differentiation to osteoblast and adipocyte was confirmed by using appropriate culture medium. To confirm mesenchymal lineage production superficial markers (expression of CD90 and CD44 and non-expression of CD45 and CD31) were investigated by flowcytometry. Then the cells were differentiated to germ cells in inductive medium containing retinoic acid for 7days. To evaluate germ cells characteristic markers [Dazl (Deleted in azoospermia-like), Mvh (Mouse vasa homolog gene), Stra8 (Stimulated by retinoic acid) and Scp3 (Synaptonemal complex protein 3)] flowcytometry, imunoflorescence and real time PCR were used. Results: Both types of cells were able to differentiate into osteoblast and adipocyte cells and presentation of stem cell superficial markers (CD90, CD44) and absence of endothelial and blood cell markers (CD31, CD45) were confirmative The flowcytometry, imunoflorescence and real time PCR results showed remarkable expression of germ cells characteristic markers (Mvh, Dazl, Stra8, and Scp3). Conclusion: It was found that although ADMSCs were attained easier and also cultured and differentiated rapidly, germ cell markers were expressed in BMMSCs significantly more than ADMSCs. This article extracted from M.Sc. thesis. (Maryam Hosseinzadeh Shirzeily) PMID:24639722
Mlynarczyk-Evans, Susanna; Roelens, Baptiste; Villeneuve, Anne M.
2013-01-01
Reduction in ploidy to generate haploid gametes during sexual reproduction is accomplished by the specialized cell division program of meiosis. Pairing between homologous chromosomes and assembly of the synaptonemal complex at their interface (synapsis) represent intermediate steps in the meiotic program that are essential to form crossover recombination-based linkages between homologs, which in turn enable segregation of the homologs to opposite poles at the meiosis I division. Here, we challenge the mechanisms of pairing and synapsis during C. elegans meiosis by disrupting the normal 1∶1 correspondence between homologs through karyotype manipulation. Using a combination of cytological tools, including S-phase labeling to specifically identify X chromosome territories in highly synchronous cohorts of nuclei and 3D rendering to visualize meiotic chromosome structures and organization, our analysis of trisomic (triplo-X) and polyploid meiosis provides insight into the principles governing pairing and synapsis and how the meiotic program is “wired” to maximize successful sexual reproduction. We show that chromosomes sort into homologous groups regardless of chromosome number, then preferentially achieve pairwise synapsis during a period of active chromosome mobilization. Further, comparisons of synapsis configurations in triplo-X germ cells that are proficient or defective for initiating recombination suggest a role for recombination in restricting chromosomal interactions to a pairwise state. Increased numbers of homologs prolong markers of the chromosome mobilization phase and/or boost germline apoptosis, consistent with triggering quality control mechanisms that promote resolution of synapsis problems and/or cull meiocytes containing synapsis defects. However, we also uncover evidence for the existence of mechanisms that “mask” defects, thus allowing resumption of prophase progression and survival of germ cells despite some asynapsis. We propose that coupling of saturable masking mechanisms with stringent quality controls maximizes meiotic success by making progression and survival dependent on achieving a level of synapsis sufficient for crossover formation without requiring perfect synapsis. PMID:24339786
Xu, Panglian; Yuan, Dongke; Liu, Ming; Li, Chunxin; Liu, Yiyang; Zhang, Shengchun; Yao, Nan; Yang, Chengwei
2013-04-01
Plants maintain stem cells in meristems to sustain lifelong growth; these stem cells must have effective DNA damage responses to prevent mutations that can propagate to large parts of the plant. However, the molecular links between stem cell functions and DNA damage responses remain largely unexplored. Here, we report that the small ubiquitin-related modifier E3 ligase AtMMS21 (for methyl methanesulfonate sensitivity gene21) acts to maintain the root stem cell niche by mediating DNA damage responses in Arabidopsis (Arabidopsis thaliana). Mutation of AtMMS21 causes defects in the root stem cell niche during embryogenesis and postembryonic stages. AtMMS21 is essential for the proper expression of stem cell niche-defining transcription factors. Moreover, mms21-1 mutants are hypersensitive to DNA-damaging agents, have a constitutively increased DNA damage response, and have more DNA double-strand breaks (DSBs) in the roots. Also, mms21-1 mutants exhibit spontaneous cell death within the root stem cell niche, and treatment with DSB-inducing agents increases this cell death, suggesting that AtMMS21 is required to prevent DSB-induced stem cell death. We further show that AtMMS21 functions as a subunit of the STRUCTURAL MAINTENANCE OF CHROMOSOMES5/6 complex, an evolutionarily conserved chromosomal ATPase required for DNA repair. These data reveal that AtMMS21 acts in DSB amelioration and stem cell niche maintenance during Arabidopsis root development.
Ned B. Klopfenstein; Jennifer Juzwik; Michael E. Ostry; Mee-Sook Kim; Paul J. Zambino; Robert C. Venette; Bryce A. Richardson; John E. Lundquist; D. Jean Lodge; Jessie A. Glaeser; Susan J. Frankel; William J. Otrosina; Pauline Spaine; Brian W. Geils
2010-01-01
Invasive pathogens have caused immeasurable ecological and economic damage to forest ecosystems. Damage will undoubtedly increase over time due to increased introductions and evolution of invasive pathogens in concert with complex environmental disturbances, such as climate change. Forest Service Research and Development must fulfill critical roles and responsibilities...
Loren D. Kellogg; Stephen J. Pilkerton
2013-01-01
Since the early 1990s, several studies have been undertaken to determine the planning requirements, productivity, costs, and residual stand damage of harvest operations in thinning treatments designed to promote development of complex forest structure in order to enhance ecological functioning and biological diversity. Th ese studies include the Oregon State...
Oxidative DNA Damage and Repair in Rats Treated with Potassium Bromate and a Mixture of Drinking Water Disinfection By-Products
Public drinking water treated with chemical disint'ectants contains a complex mixture of disinfection by-products (D BPs). There is a need for m...
Ortiz-Avila, Omar; Sámano-García, Carlos Alberto; Calderón-Cortés, Elizabeth; Pérez-Hernández, Ismael H; Mejía-Zepeda, Ricardo; Rodríguez-Orozco, Alain R; Saavedra-Molina, Alfredo; Cortés-Rojo, Christian
2013-06-01
Impaired complex III activity and reactive oxygen species (ROS) generation in mitochondria have been identified as key events leading to renal damage during diabetes. Due to its high content of oleic acid and antioxidants, we aimed to test whether avocado oil may attenuate the alterations in electron transfer at complex III induced by diabetes by a mechanism related with increased resistance to lipid peroxidation. 90 days of avocado oil administration prevented the impairment in succinate-cytochrome c oxidoreductase activity caused by streptozotocin-induced diabetes in kidney mitochondria. This was associated with a protection against decreased electron transfer through high potential chain in complex III related to cytochromes c + c1 loss. During Fe(2+)-induced oxidative stress, avocado oil improved the activities of complexes II and III and enhanced the protection conferred by a lipophilic antioxidant against damage by Fe(2+). Avocado oil also decreased ROS generation in Fe(2+)-damaged mitochondria. Alterations in the ratio of C20:4/C18:2 fatty acids were observed in mitochondria from diabetic animals that not were corrected by avocado oil treatment, which yielded lower peroxidizability indexes only in diabetic mitochondria although avocado oil caused an augment in the total content of monounsaturated fatty acids. Moreover, a protective effect of avocado oil against lipid peroxidation was observed consistently only in control mitochondria. Since the beneficial effects of avocado oil in diabetic mitochondria were not related to increased resistance to lipid peroxidation, these effects were discussed in terms of the antioxidant activity of both C18:1 and the carotenoids reported to be contained in avocado oil.
Bhattacharyya, Pranab Jyoti; Agrawal, Shweta; Barkataky, Jogesh Chandra; Bhattacharyya, Anjan Kumar
2015-01-01
Insulation break in a permanent pacemaker lead is a rare long-term complication. We describe an elderly male with a VVIR pacemaker, who presented with an episode of presyncope more than 3 years after the initial implantation procedure, attributed to insulation break possibly caused by lead entrapment in components of the medial subclavicular musculotendinous complex (MSMC) and repeated compressive damage over time during ipsilateral arm movement requiring lead replacement. The differential diagnosis of a clinical presentation when pacing stimuli are present with failure to capture and the role of the MSMC in causing lead damage late after implantation are discussed. PMID:26995445
Not nanocarbon but dispersant induced abnormality in lysosome in macrophages in vivo
NASA Astrophysics Data System (ADS)
Yudasaka, Masako; Zhang, Minfang; Matsumura, Sachiko; Yuge, Ryota; Ichihashi, Toshinari; Irie, Hiroshi; Shiba, Kiyotaka; Iijima, Sumio
2015-05-01
The properties of nanocarbons change from hydrophobic to hydrophilic as a result of coating them with dispersants, typically phospholipid polyethylene glycols, for biological studies. It has been shown that the dispersants remain attached to the nanocarbons when they are injected in mice and influence the nanocarbons’ biodistribution in vivo. We show in this report that the effects of dispersants also appear at the subcellular level in vivo. Carbon nanohorns (CNHs), a type of nanocarbon, were dispersed with ceramide polyethylene glycol (CPEG) and intravenously injected in mice. Histological observations and electron microscopy with energy dispersive x-ray analysis revealed that, in liver and spleen, the lysosome membranes were damaged, and the nanohorns formed a complex with hemosiderin in the lysosomes of the macrophages. It is inferred that the lysosomal membrane was damaged by sphigosine generated as a result of CPEG decomposition, which changed the intra lysosomal conditions, inducing the formation of the CPEG-CNH and hemosiderin complex. For comparison, when glucose was used instead of CPEG, neither the nanohorn-hemosiderin complex nor lysosomal membrane damage was found. Our results suggest that surface functionalization can control the behavior of nancarbons in cells in vivo and thereby improve their suitability for medical applications.
Wang, Yucai; Han, Xiao; Wu, Fangming; Leung, Justin W; Lowery, Megan G; Do, Huong; Chen, Junjie; Shi, Chaowei; Tian, Changlin; Li, Lei; Gong, Weimin
2013-01-01
The FANCM/FAAP24 heterodimer has distinct functions in protecting cells from complex DNA lesions such as interstrand crosslinks. These functions rely on the biochemical activity of FANCM/FAAP24 to recognize and bind to damaged DNA or stalled replication forks. However, the DNA-binding activity of this complex was not clearly defined. We investigated how FAAP24 contributes to the DNA-interacting functions of the FANCM/FAAP24 complex by acquiring the N-terminal and C-terminal solution structures of human FAAP24. Modeling of the FAAP24 structure indicates that FAAP24 may possess a high affinity toward single-stranded DNA (ssDNA). Testing of various FAAP24 mutations in vitro and in vivo validated this prediction derived from structural analyses. We found that the DNA-binding and FANCM-interacting functions of FAAP24, although both require the C-terminal (HhH)2 domain, can be distinguished by segregation-of-function mutations. These results demonstrate dual roles of FAAP24 in DNA damage response against crosslinking lesions, one through the formation of FANCM/FAAP24 heterodimer and the other via its ssDNA-binding activity required in optimized checkpoint activation. PMID:23999858
NASA Technical Reports Server (NTRS)
George, K.; Hada, M.; Chappell, L.; Cucinotta, F. A.
2012-01-01
Track structure models predict that at a fixed value of LET, particles with lower charge number, Z will have a higher biological effectiveness compared to particles with a higher Z. In this report we investigated how track structure effects induction of chromosomal aberration in human cells. Human lymphocytes were irradiated in vitro with various energies of accelerated iron, silicon, neon, or titanium ions and chromosome damage was assessed in using three color FISH chromosome painting in chemically induced PCC samples collected a first cell division post irradiation. The LET values for these ions ranged from 30 to 195 keV/micrometers. Of the particles studied, Neon ions have the highest biological effectiveness for induction of total chromosome damage, which is consistent with track structure model predictions. For complex-type exchanges 64 MeV/ u Neon and 450 MeV/u Iron were equally effective and induced the most complex damage. In addition we present data on chromosomes exchanges induced by six different energies of protons (5 MeV/u to 2.5 GeV/u). The linear dose response term was similar for all energies of protons suggesting that the effect of the higher LET at low proton energies is balanced by the production of nuclear secondaries from the high energy protons. All energies of protons have a much higher percentage of complex-type chromosome exchanges than gamma rays, signifying a cytogenetic signature for proton exposures.
Blaikley, Elizabeth J; Tinline-Purvis, Helen; Kasparek, Torben R; Marguerat, Samuel; Sarkar, Sovan; Hulme, Lydia; Hussey, Sharon; Wee, Boon-Yu; Deegan, Rachel S; Walker, Carol A; Pai, Chen-Chun; Bähler, Jürg; Nakagawa, Takuro; Humphrey, Timothy C
2014-05-01
DNA double-strand breaks (DSBs) can cause chromosomal rearrangements and extensive loss of heterozygosity (LOH), hallmarks of cancer cells. Yet, how such events are normally suppressed is unclear. Here we identify roles for the DNA damage checkpoint pathway in facilitating homologous recombination (HR) repair and suppressing extensive LOH and chromosomal rearrangements in response to a DSB. Accordingly, deletion of Rad3(ATR), Rad26ATRIP, Crb2(53BP1) or Cdc25 overexpression leads to reduced HR and increased break-induced chromosome loss and rearrangements. We find the DNA damage checkpoint pathway facilitates HR, in part, by promoting break-induced Cdt2-dependent nucleotide synthesis. We also identify additional roles for Rad17, the 9-1-1 complex and Chk1 activation in facilitating break-induced extensive resection and chromosome loss, thereby suppressing extensive LOH. Loss of Rad17 or the 9-1-1 complex results in a striking increase in break-induced isochromosome formation and very low levels of chromosome loss, suggesting the 9-1-1 complex acts as a nuclease processivity factor to facilitate extensive resection. Further, our data suggest redundant roles for Rad3ATR and Exo1 in facilitating extensive resection. We propose that the DNA damage checkpoint pathway coordinates resection and nucleotide synthesis, thereby promoting efficient HR repair and genome stability. © The Author(s) 2014. Published by Oxford University Press.
Ionizing Radiation: The issue of radiation quality
NASA Astrophysics Data System (ADS)
Prise, Kevin; Schettino, Giuseppe
Types of Ionising radiations are differentiated from each other by fundamental characteristics of their energy deposition patterns when they interact with biological materials. At the level of the DNA these non-random patterns drive differences in the yields and distributions of DNA damage patterns and specifically the production of clustered damage or complex lesions. The complex radiation fields found in space bring significant challenges for developing a mechanistic understanding of radiation effects from the perspective of radiation quality as these consist of a diverse range of particle and energy types unique to the space environment. Linear energy transfer, energy deposited per unit track length in units of keV per micron, has long been used as a comparator for different types of radiation but has limitations in that it is an average value. Difference in primary core ionizations relative to secondary delta ray ranges vary significantly with particle mass and energy leading to complex interrelationships with damage production at the cellular level. At the cellular level a greater mechanistic understanding is necessary, linking energy deposition patterns to DNA damage patterns and cellular response, to build appropriate biophysical models that are predictive for different radiation qualities and mixed field exposures. Defined studies using monoenergetic beams delivered under controlled conditions are building quantitative data sets of both initial and long term changes in cells as a basis for a great mechanistic understanding of radiation quality effects of relevance to not only space exposures but clinical application of ion-beams.
Variable Complexity Optimization of Composite Structures
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.
2002-01-01
The use of several levels of modeling in design has been dubbed variable complexity modeling. The work under the grant focused on developing variable complexity modeling strategies with emphasis on response surface techniques. Applications included design of stiffened composite plates for improved damage tolerance, the use of response surfaces for fitting weights obtained by structural optimization, and design against uncertainty using response surface techniques.
Genetics Home Reference: Björnstad syndrome
... species, which are harmful molecules that can damage DNA and tissues. BCS1L gene mutations involved in Björnstad syndrome alter the BCS1L protein and impair its ability to aid in complex III formation. The resulting decrease in complex III activity reduces ...
Detecting UV-lesions in the genome: The modular CRL4 ubiquitin ligase does it best!
Scrima, Andrea; Fischer, Eric S; Lingaraju, Gondichatnahalli M; Böhm, Kerstin; Cavadini, Simone; Thomä, Nicolas H
2011-09-16
The DDB1-DDB2-CUL4-RBX1 complex serves as the primary detection device for UV-induced lesions in the genome. It simultaneously functions as a CUL4 type E3 ubiquitin ligase. We review the current understanding of this dual function ubiquitin ligase and damage detection complex. The DDB2 damage binding module is merely one of a large family of possible DDB1-CUL4 associated factors (DCAF), most of which are substrate receptors for other DDB1-CUL4 complexes. DDB2 and the Cockayne-syndrome A protein (CSA) function in nucleotide excision repair, whereas the remaining receptors operate in a wide range of other biological pathways. We will examine the modular architecture of DDB1-CUL4 in complex with DDB2, CSA and CDT2 focusing on shared architectural, targeting and regulatory principles. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Design of Low Complexity Model Reference Adaptive Controllers
NASA Technical Reports Server (NTRS)
Hanson, Curt; Schaefer, Jacob; Johnson, Marcus; Nguyen, Nhan
2012-01-01
Flight research experiments have demonstrated that adaptive flight controls can be an effective technology for improving aircraft safety in the event of failures or damage. However, the nonlinear, timevarying nature of adaptive algorithms continues to challenge traditional methods for the verification and validation testing of safety-critical flight control systems. Increasingly complex adaptive control theories and designs are emerging, but only make testing challenges more difficult. A potential first step toward the acceptance of adaptive flight controllers by aircraft manufacturers, operators, and certification authorities is a very simple design that operates as an augmentation to a non-adaptive baseline controller. Three such controllers were developed as part of a National Aeronautics and Space Administration flight research experiment to determine the appropriate level of complexity required to restore acceptable handling qualities to an aircraft that has suffered failures or damage. The controllers consist of the same basic design, but incorporate incrementally-increasing levels of complexity. Derivations of the controllers and their adaptive parameter update laws are presented along with details of the controllers implementations.
Reconstitution and structure of a bacterial Pnkp1RnlHen1 RNA repair complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Pei; Selvadurai, Kiruthika; Huang, Raven H.
Ribotoxins cleave essential RNAs for cell killing, and RNA repair neutralizes the damage inflicted by ribotoxins for cell survival. We report a new bacterial RNA repair complex that performs RNA repair linked to immunity. This new RNA repair complex is a 270-kDa heterohexamer composed of three proteins—Pnkp1, Rnl and Hen1—that are required to repair ribotoxin-cleaved RNA in vitro. The crystal structure of the complex reveals the molecular architecture of the heterohexamer as two rhomboid-shaped ring structures of Pnkp1–Rnl–Hen1 heterotrimer fused at the Pnkp1 dimer interface. The four active sites required for RNA repair are located on the inner rim ofmore » each ring. Furthermore, the architecture and the locations of the active sites of the Pnkp1–Rnl–Hen1 heterohexamer suggest an ordered series of repair reactions at the broken RNA ends that confer immunity to recurrent damage.« less
Depth estimation of multi-layered impact damage in PMC using lateral thermography
NASA Astrophysics Data System (ADS)
Whitlow, Travis; Kramb, Victoria; Reibel, Rick; Dierken, Josiah
2018-04-01
Characterization of impact damage in polymer matrix composites (PMCs) continues to be a challenge due to the complex internal structure of the material. Nondestructive characterization approaches such as normal incident immersion ultrasound and flash thermography are sensitive to delamination damage, but do not provide information regarding damage obscured by the delaminations. Characterization of material state below a delamination requires a technique which is sensitive to in-plane damage modes such as matrix cracking and fiber breakage. Previous studies of the lateral heat flow through a composite laminate showed that the diffusion time was sensitive to the depth of the simulated damage zone. The current study will further evaluate the lateral diffusion model to provide sensitivity limits for the modeled flaw dimensions. Comparisons between the model simulations and experimental data obtained using a concentrated heat source and machined targets will also be presented.
Clustered DNA damages induced in human hematopoietic cells by low doses of ionizing radiation
NASA Technical Reports Server (NTRS)
Sutherland, Betsy M.; Bennett, Paula V.; Cintron-Torres, Nela; Hada, Megumi; Trunk, John; Monteleone, Denise; Sutherland, John C.; Laval, Jacques; Stanislaus, Marisha; Gewirtz, Alan
2002-01-01
Ionizing radiation induces clusters of DNA damages--oxidized bases, abasic sites and strand breaks--on opposing strands within a few helical turns. Such damages have been postulated to be difficult to repair, as are double strand breaks (one type of cluster). We have shown that low doses of low and high linear energy transfer (LET) radiation induce such damage clusters in human cells. In human cells, DSB are about 30% of the total of complex damages, and the levels of DSBs and oxidized pyrimidine clusters are similar. The dose responses for cluster induction in cells can be described by a linear relationship, implying that even low doses of ionizing radiation can produce clustered damages. Studies are in progress to determine whether clusters can be produced by mechanisms other than ionizing radiation, as well as the levels of various cluster types formed by low and high LET radiation.
Failure Mechanisms and Damage Model of Ductile Cast Iron Under Low-Cycle Fatigue Conditions
NASA Astrophysics Data System (ADS)
Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Sloss, Clayton
2014-10-01
Strain-controlled low-cycle fatigue (LCF) tests were conducted on ductile cast iron (DCI) at strain rates of 0.02, 0.002, and 0.0002/s in the temperature range from room temperature to 1073 K (800 °C). A constitutive-damage model was developed within the integrated creep-fatigue theory (ICFT) framework on the premise of strain decomposition into rate-independent plasticity and time-dependent creep. Four major damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement (IE), (iii) creep, and (iv) oxidation were considered in a nonlinear creep-fatigue interaction model which represents the overall damage accumulation process consisting of oxidation-assisted fatigue crack nucleation and propagation in coalescence with internally distributed damage ( e.g., IE and creep), leading to final fracture. The model was found to agree with the experimental observations of the complex DCI-LCF phenomena, for which the linear damage summation rule would fail.
Safety of trivalent chromium complexes: no evidence for DNA damage in human HaCaT keratinocytes.
Hininger, Isabelle; Benaraba, Rachida; Osman, Mireille; Faure, Henri; Marie Roussel, Anne; Anderson, Richard A
2007-06-15
Several studies have demonstrated beneficial effects of supplemental trivalent Cr in subjects with reduced insulin sensitivity with no documented signs of toxicity. However, recent studies have questioned the safety of supplemental trivalent Cr complexes. The objective of this study was to evaluate the cytotoxic and genotoxic potential of the Cr(III) complexes (histidinate, picolinate, and chloride) used as nutrient supplements compared with Cr(VI) dichromate. The cytotoxic and genotoxic effects of the Cr complexes were assessed in human HaCaT keratinocytes. The concentrations of Cr required to decrease cell viability were assessed by determining the ability of a keratinocyte cell line (HaCaT) to reduce tetrazolium dye, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. DNA damage using the Comet assay and the production of 8-hydroxy-2'-deoxyguanosine were also determined with and without hydrogen peroxide-induced stress. The LC50 for human cultured HaCaT keratinocytes was 50 microM for hexavalent sodium dichromate and more than 120-fold higher for Cr chloride (6 mM) and Cr histidinate (10 mM). For Cr picolinate at saturating concentration (120 microM) the LC50 was not attained. High Cr(III) concentrations, 250 microM Cr as Cr chloride and Cr histidinate and 120 microM Cr picolinate (highest amount soluble in the system), not only did not result in oxidative DNA damage but exhibited protective antioxidant effects when cells were exposed to hydrogen peroxide-induced oxidative stress. These data further support the low toxicity of trivalent Cr complexes used in nutrient supplements.
Damage detection of structures with detrended fluctuation and detrended cross-correlation analyses
NASA Astrophysics Data System (ADS)
Lin, Tzu-Kang; Fajri, Haikal
2017-03-01
Recently, fractal analysis has shown its potential for damage detection and assessment in fields such as biomedical and mechanical engineering. For its practicability in interpreting irregular, complex, and disordered phenomena, a structural health monitoring (SHM) system based on detrended fluctuation analysis (DFA) and detrended cross-correlation analysis (DCCA) is proposed. First, damage conditions can be swiftly detected by evaluating ambient vibration signals measured from a structure through DFA. Damage locations can then be determined by analyzing the cross correlation of signals of different floors by applying DCCA. A damage index is also proposed based on multi-scale DCCA curves to improve the damage location accuracy. To verify the performance of the proposed SHM system, a four-story numerical model was used to simulate various damage conditions with different noise levels. Furthermore, an experimental verification was conducted on a seven-story benchmark structure to assess the potential damage. The results revealed that the DFA method could detect the damage conditions satisfactorily, and damage locations can be identified through the DCCA method with an accuracy of 75%. Moreover, damage locations can be correctly assessed by the damage index method with an improved accuracy of 87.5%. The proposed SHM system has promising application in practical implementations.
NASA Astrophysics Data System (ADS)
Fernandez Galarreta, J.; Kerle, N.; Gerke, M.
2015-06-01
Structural damage assessment is critical after disasters but remains a challenge. Many studies have explored the potential of remote sensing data, but limitations of vertical data persist. Oblique imagery has been identified as more useful, though the multi-angle imagery also adds a new dimension of complexity. This paper addresses damage assessment based on multi-perspective, overlapping, very high resolution oblique images obtained with unmanned aerial vehicles (UAVs). 3-D point-cloud assessment for the entire building is combined with detailed object-based image analysis (OBIA) of façades and roofs. This research focuses not on automatic damage assessment, but on creating a methodology that supports the often ambiguous classification of intermediate damage levels, aiming at producing comprehensive per-building damage scores. We identify completely damaged structures in the 3-D point cloud, and for all other cases provide the OBIA-based damage indicators to be used as auxiliary information by damage analysts. The results demonstrate the usability of the 3-D point-cloud data to identify major damage features. Also the UAV-derived and OBIA-processed oblique images are shown to be a suitable basis for the identification of detailed damage features on façades and roofs. Finally, we also demonstrate the possibility of aggregating the multi-perspective damage information at building level.
2007-05-09
KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center's Vehicle Assembly Building, technicians observe the sander used to repair hail damage on Atlantis' nose cone. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch of Space Shuttle Atlantis on mission STS-117 now is targeted for June 8. Photo credit: NASA/Jack Pfaller
2007-05-09
KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center's Vehicle Assembly Building, technicians adjust the sander used to repair hail damage on Atlantis' nose cone. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch of Space Shuttle Atlantis on mission STS-117 now is targeted for June 8. Photo credit: NASA/Jack Pfaller
DART Support for Hurricane Matthew
2016-10-18
A construction trailer damaged by Hurricane Matthew is seen in front of the Mobile Launcher within the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
DART Support for Hurricane Matthew
2016-10-18
Siding damage caused by Hurricane Matthew is seen inside a support building in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
DART Support for Hurricane Matthew
2016-10-18
Ceiling and furniture damage caused by Hurricane Matthew is seen inside a support building in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
Bajinskis, Ainars; Olsson, Gunilla; Harms-Ringdahl, Mats
2012-03-01
The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO(3)). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure. Copyright © 2011 Elsevier B.V. All rights reserved.
Biological processing of dinuclear ruthenium complexes in eukaryotic cells.
Li, Xin; Heimann, Kirsten; Dinh, Xuyen Thi; Keene, F Richard; Collins, J Grant
2016-10-20
The biological processing - mechanism of cellular uptake, effects on the cytoplasmic and mitochondrial membranes, intracellular sites of localisation and induction of reactive oxygen species - of two dinuclear polypyridylruthenium(ii) complexes has been examined in three eukaryotic cells lines. Flow cytometry was used to determine the uptake of [{Ru(phen)2}2{μ-bb12}](4+) (Rubb12) and [Ru(phen)2(μ-bb7)Ru(tpy)Cl](3+) {Rubb7-Cl, where phen = 1,10-phenanthroline, tpy = 2,2':6',2''-terpyridine and bbn = bis[4(4'-methyl-2,2'-bipyridyl)]-1,n-alkane} in baby hamster kidney (BHK), human embryonic kidney (HEK-293) and liver carcinoma (HepG2) cell lines. The results demonstrated that the major uptake mechanism for Rubb12 and Rubb7-Cl was active transport, although with a significant contribution from carrier-assisted diffusion for Rubb12 and passive diffusion for Rubb7-Cl. Flow cytometry coupled with Annexin V/TO-PRO-3 double-staining was used to compare cell death by membrane damage or apoptosis. Rubb12 induced significant direct membrane damage, particularly with HepG2 cells, while Rubb7-Cl caused considerably less membrane damage but induced greater levels of apoptosis. Confocal microscopy, coupled with JC-1 assays, demonstrated that Rubb12 depolarises the mitochondrial membrane, whereas Rubb7-Cl had a much smaller affect. Cellular localisation experiments indicated that Rubb12 did not accumulate in the mitochondria, whereas significant mitochondrial accumulation was observed for Rubb7-Cl. The effect of Rubb12 and Rubb7-Cl on intracellular superoxide dismutase activity showed that the ruthenium complexes could induce cell death via a reactive oxygen species-mediated pathway. The results of this study demonstrate that Rubb12 predominantly kills eukaryotic cells by damaging the cytoplasmic membrane. As this dinuclear ruthenium complex has been previously shown to exhibit greater toxicity towards bacteria than eukaryotic cells, the results of the present study suggest that metal-based cationic oligomers can achieve selective toxicity against bacteria, despite exhibiting a non-specific membrane damage mechanism of action.
Hurricane Matthew Damage Survey
2016-10-08
The Launch Complex 39 area is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.
Hurricane Matthew Damage Survey
2016-10-08
Launch Complex 39B is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.
Hurricane Matthew Damage Survey
2016-10-08
Launch Complex 39B is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed
Hurricane Matthew Damage Survey
2016-10-08
The Kennedy Space Center Visitor Complex is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.
Karimi, Alireza; Rahmati, Seyed Mohammadali; Razaghi, Reza
2017-09-01
Understanding the mechanical properties of the human brain is deemed important as it may subject to various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the frontal lobe of the human brain. The constrained nonlinear minimization method was employed to identify the brain coefficients according to the axial and transversal compressive data. The pseudo-elastic damage model data was also well compared with that of the experimental data and it not only up to the primary loading but also the discontinuous softening could well address the mechanical behavior of the brain tissue.
Evidence for conformational capture mechanism for damage recognition by NER protein XPC/Rad4.
NASA Astrophysics Data System (ADS)
Chakraborty, Sagnik; Steinbach, Peter J.; Paul, Debamita; Min, Jung-Hyun; Ansari, Anjum
Altered flexibility of damaged DNA sites is considered to play an important role in damage recognition by DNA repair proteins. Characterizing lesion-induced DNA dynamics has remained a challenge. We have combined ps-resolved fluorescence lifetime measurements with cytosine analog FRET pair uniquely sensitive to local unwinding/twisting to analyze DNA conformational distributions. This innovative approach maps out with unprecedented sensitivity the alternative conformations accessible to a series of DNA constructs containing 3-base-pair mismatch, suitable model lesions for the DNA repair protein xeroderma pigmentosum C (XPC) complex. XPC initiates eukaryotic nucleotide excision repair by recognizing various DNA lesions primarily through DNA deformability. Structural studies show that Rad4 (yeast ortholog of XPC) unwinds DNA at the lesion site and flips out two nucleotide pairs. Our results elucidate a broad range of conformations accessible to mismatched DNA even in the absence of the protein. Notably, the most severely distorted conformations share remarkable resemblance to the deformed conformation seen in the crystal structure of the Rad4-bound ``recognition'' complex supporting for the first time a possible ``conformational capture'' mechanism for damage recognition by XPC/Rad4. NSF Univ of Illinois-Chicago.
Gutiérrez, José María; Rucavado, Alexandra; Escalante, Teresa; Herrera, Cristina; Fernández, Julián; Lomonte, Bruno; Fox, Jay W
2018-06-15
Snakebite envenoming by viperid species, and by some elapids, is characterized by a complex pattern of tissue damage at the anatomical site of venom injection. In severe cases, tissue destruction may be so extensive as to lead to permanent sequelae, with serious pathophysiological, social and psychological consequences. Significant advances have been performed in the study of venom-induced tissue damage, including identification and characterization of the toxins involved, insights into the mechanisms of action of venoms and toxins, and study of tissue responses to venom-induced injury. Nevertheless, much remains to be known and understood on the pathogenesis of these alterations. This review focuses on some of the pending issues in the topic of snake venom-induced local tissue damage. The traditional 'reductionist' approach, which has predominated in the study of snake venoms and their actions, needs to be complemented by more integrative and holistic perspectives aimed at capturing the complexity of these pathological alterations. Future advances in the study of these topics will certainly pave the way for innovative therapeutic interventions, with the goal of reducing the impact of this aspect of snakebite envenoming. Copyright © 2018 Elsevier Ltd. All rights reserved.
Characterization of Fatigue Damage for Bonded Composite Skin/Stringer Configurations
NASA Technical Reports Server (NTRS)
Paris, Isabelle; Cvitkovich, Michael; Krueger, Ronald
2008-01-01
The fatigue damage was characterized in specimens which consisted of a tapered composite flange bonded onto a composite skin. Quasi-static tension tests were performed first to determine the failure load. Subsequently, tension fatigue tests were performed at 40%, 50%, 60% and 70% of the failure load to evaluate the debonding mechanisms. For four specimens, the cycling loading was stopped at intervals. Photographs of the polished specimen edges were taken under a light microscope to document the damage. At two diagonally opposite corners of the flange, a delamination appeared to initiate at the flange tip from a matrix crack in the top 45deg skin ply and propagated at the top 45deg/-45deg skin ply interface. At the other two diagonally opposite corners, a delamination running in the bondline initiated from a matrix crack in the adhesive pocket. In addition, two specimens were cut longitudinally into several sections. Micrographs revealed a more complex pattern inside the specimen where the two delamination patterns observed at the edges are present simultaneously across most of the width of the specimen. The observations suggest that a more sophisticated nondestructive evaluation technique is required to capture the complex damage pattern of matrix cracking and multi-level delaminations.
NOTCH1 Inhibits Activation of ATM by Impairing the Formation of an ATM-FOXO3a-KAT5/Tip60 Complex.
Adamowicz, Marek; Vermezovic, Jelena; d'Adda di Fagagna, Fabrizio
2016-08-23
The DNA damage response (DDR) signal transduction pathway is responsible for sensing DNA damage and further relaying this signal into the cell. ATM is an apical DDR kinase that orchestrates the activation and the recruitment of downstream DDR factors to induce cell-cycle arrest and repair. We have previously shown that NOTCH1 inhibits ATM activation upon DNA damage, but the underlying mechanism remains unclear. Here, we show that NOTCH1 does not impair ATM recruitment to DNA double-strand breaks (DSBs). Rather, NOTCH1 prevents binding of FOXO3a and KAT5/Tip60 to ATM through a mechanism in which NOTCH1 competes with FOXO3a for ATM binding. Lack of FOXO3a binding to ATM leads to the loss of KAT5/Tip60 association with ATM. Moreover, expression of NOTCH1 or depletion of ATM impairs the formation of the FOXO3a-KAT5/Tip60 protein complex. Finally, we show that pharmacological induction of FOXO3a nuclear localization sensitizes NOTCH1-driven cancers to DNA-damage-induced cell death. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Yang, Q; Pan, Q; Li, C; Xu, Y; Wen, C; Sun, F
2016-08-01
NRAGE, a neurotrophin receptor-interacting melanoma antigen-encoding gene homolog, is significantly increased in the nucleus of radioresistant esophageal tumor cell lines and is highly upregulated to promote cell proliferation in esophageal carcinomas (ECs). However, whether the overexpressed NRAGE promotes cell growth by participating in DNA-damage response (DDR) is still unclear. Here we show that NRAGE is required for efficient double-strand breaks (DSBs) repair via homologous recombination repair (HRR) and downregulation of NRAGE greatly sensitizes EC cells to DNA-damaging agents both in vitro and in vivo. Moreover, NRAGE not only regulates the stability of DDR factors, RNF8 and BARD1, in a ubiquitin-proteolytic pathway, but also chaperons the interaction between BARD1 and RNF8 via their RING domains to form a novel ternary complex. Additionally, the expression of NRAGE is closely correlated with RNF8 and BARD1 in esophageal tumor tissues. In summary, our findings reveal a novel function of NRAGE that will help to guide personalized esophageal cancer treatments by targeting NRAGE to increase cell sensitivity to DNA-damaging therapeutics in the long run.
Persistence of chromosome aberrations in mice acutely exposed to 56Fe+26 ions.
Tucker, James D; Marples, Brian; Ramsey, Marilyn J; Lutze-Mann, Louise H
2004-06-01
Space exploration has the potential to yield exciting and significant discoveries, but it also brings with it many risks for flight crews. Among the less well studied of these are health effects from space radiation, which includes the highly charged, energetic particles of elements with high atomic numbers that constitute the galactic cosmic rays. In this study, we demonstrated that 1 Gy iron ions acutely administered to mice in vivo resulted in highly complex chromosome damage. We found that all types of aberrations, including dicentrics as well as translocations, insertions and acentric fragments, disappear rapidly with time after exposure, probably as a result of the death of heavily damaged cells, i.e. cells with multiple and/or complex aberrations. In addition, numerous cells have apparently simple exchanges as their only aberrations, and these cells appear to survive longer than heavily damaged cells. Eight weeks after exposure, the frequency of cells showing cytogenetic damage was reduced to less than 20% of the levels evident at 1 week, with little further decline apparent over an additional 8 weeks. These results indicate that exposure to 1 Gy iron ions produces heavily damaged cells, a small fraction of which appear to be capable of surviving for relatively long periods. The health effects of exposure to high-LET radiation in humans on prolonged space flights should remain a matter of concern.
Telomere Dysfunction Induced Foci (TIF) Analysis.
Mender, Ilgen; Shay, Jerry W
2015-11-20
Telomerase maintains telomeric DNA in eukaryotes during early developments, ~90% of cancer cells and some proliferative stem like cells. Telomeric repeats at the end of chromosomes are associated with the shelterin complex. This complex consists of TRF1, TRF2, Rap1, TIN2, TPP1, POT1 which protect DNA from being recognized as DNA double-stranded breaks. Critically short telomeres or impaired shelterin proteins can cause telomere dysfunction, which eventually induces DNA damage responses at the telomeres. DNA damage responses can be identified by antibodies to 53BP1, gammaH2AX, Rad17, ATM, and Mre11. DNA damage foci at uncapped telomeres are referred to as Telomere dysfunction-Induced Foci (TIFs) (de Lange, 2005; Takai et al. , 2003). The TIF assay is based on the co-localization detection of DNA damage by an antibody against DNA damage markers, such as gamma-H2AX, and telomeres using an antibody against one of the shelterin proteins such as TRF2 (Takai et al. , 2003; de Lange, 2002; Karlseder et al. , 1999). The method we describe here can be used in normal human and cancer cells. Other commonly used methods-Telomere Restriction Fragment (TRF) Analysis (Mender and Shay, 2015b) and Telomere Repeat Amplification Protocol (TRAP) (Mender and Shay, 2015a)- in telomere biology can be found by clicking on the indicated links.
Radiation Damage in XFEL: Case study from the oxygen-evolving complex of Photosystem II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amin, Muhamed; Badawi, Ashraf; Obayya, S. S.
Structural changes induced by radiation damage in X-ray crystallography hinder the ability to understand the structure/function relationship in chemical reactions. Serial femtosecond crystallography overcomes this problem by exposing the sample to very short and intense laser pulse leading to measurement before destruction. Here we use molecular modeling to map the radiation damage during the 10–50 fs to the intensity, the energy and the time duration of the laser pulse on the oxygen-evolving complex (OEC) of photosystem II. In the model, the nuclei move classically in a fully quantum potential created by electron density under the effect of strong laser pulsemore » in the Ehrenfest dynamics regime. The results show that the Mn-Mn and Mn-Ca distances are less affected by radiation damage due to the their heavy masses, while one μ-oxo bridge (O5) moves significantly. The radiation damage may induce conformational changes of the water ligands but only bond elongation for the amino acids ligands. These effects are relatively intensity independent from 10 16 to 10 17 W/cm 2, but changes increase dramatically if the beam intensity is increased to 10 18 W/cm 2. Finally, in addition, the self amplified spontaneous emission (SASE) nature of the laser beam does not affect the dynamics of the ions.« less
Radiation Damage in XFEL: Case study from the oxygen-evolving complex of Photosystem II
Amin, Muhamed; Badawi, Ashraf; Obayya, S. S.
2016-11-09
Structural changes induced by radiation damage in X-ray crystallography hinder the ability to understand the structure/function relationship in chemical reactions. Serial femtosecond crystallography overcomes this problem by exposing the sample to very short and intense laser pulse leading to measurement before destruction. Here we use molecular modeling to map the radiation damage during the 10–50 fs to the intensity, the energy and the time duration of the laser pulse on the oxygen-evolving complex (OEC) of photosystem II. In the model, the nuclei move classically in a fully quantum potential created by electron density under the effect of strong laser pulsemore » in the Ehrenfest dynamics regime. The results show that the Mn-Mn and Mn-Ca distances are less affected by radiation damage due to the their heavy masses, while one μ-oxo bridge (O5) moves significantly. The radiation damage may induce conformational changes of the water ligands but only bond elongation for the amino acids ligands. These effects are relatively intensity independent from 10 16 to 10 17 W/cm 2, but changes increase dramatically if the beam intensity is increased to 10 18 W/cm 2. Finally, in addition, the self amplified spontaneous emission (SASE) nature of the laser beam does not affect the dynamics of the ions.« less
The Random Telegraph Signal Behavior of Intermittently Stuck Bits in SDRAMs
NASA Astrophysics Data System (ADS)
Chugg, Andrew Michael; Burnell, Andrew J.; Duncan, Peter H.; Parker, Sarah; Ward, Jonathan J.
2009-12-01
This paper reports behavior analogous to the Random Telegraph Signal (RTS) seen in the leakage currents from radiation induced hot pixels in Charge Coupled Devices (CCDs), but in the context of stuck bits in Synchronous Dynamic Random Access Memories (SDRAMs). Our analysis suggests that pseudo-random sticking and unsticking of the SDRAM bits is due to thermally induced fluctuations in leakage current through displacement damage complexes in depletion regions that were created by high-energy neutron and proton interactions. It is shown that the number of observed stuck bits increases exponentially with temperature, due to the general increase in the leakage currents through the damage centers with temperature. Nevertheless, some stuck bits are seen to pseudo-randomly stick and unstick in the context of a continuously rising trend of temperature, thus demonstrating that their damage centers can exist in multiple widely spaced, discrete levels of leakage current, which is highly consistent with RTS. This implies that these intermittently stuck bits (ISBs) are a displacement damage phenomenon and are unrelated to microdose issues, which is confirmed by the observation that they also occur in unbiased irradiation. Finally, we note that observed variations in the periodicity of the sticking and unsticking behavior on several timescales is most readily explained by multiple leakage current pathways through displacement damage complexes spontaneously and independently opening and closing under the influence of thermal vibrations.
Meyers, J. Michael; Langtimm, Catherine A.; Smith, Thomas J.; Pednault-Willett, Kendra
2006-01-01
• On 13 August 2004, the first of four hurricanes to strike Florida in <6 weeks came ashore near J. N. “Ding” Darling National Wildlife Refuge (JNDDNWR) Complex, Sanibel Island, Florida. The eye of Category 4 Hurricane Charley passed just north of Sanibel Island with maximum sustained winds of 145 mph (123 knots) and a storm surge of 0.3-2.7 m (1-9 ft). Three USGS-BRD scientists (coastal ecologist and research wildlife biologists) and a USFWS wildlife biologist surveyed the storm damage to JNDDNWR Complex on the ground from 20-24 September 2004. • At the request of United States Fish and Wildlife Service refuge staff, the USGS team concentrated on assessing damage to wetlands and habitat for selected bird populations (especially mangrove forests, Mangrove Cuckoos [Coccyzus minor], and Black-whiskered Vireo [Vireo altiloquus]), waterbird rookeries (mangrove islands), impoundments (waterbirds and waterfowl), sea grass beds (manatees), and upland hardwood hammocks and ridges (threatened eastern indigo snake [Drymarchon couperi]). • The refuge complex sustained moderate to catastrophic damage to vegetation, especially mangrove forests and waterbird nesting or roosting islands. Lumpkin Island, Hemp Island, and Bird Key waterbird nesting areas had >50% and sometimes 90% of their vegetation severely damaged (dead, broken tree stems, and tipped trees). The Shell Mound Trail area of JNDDNWR sustained catastrophic damage to its old growth mangrove forests. Direct storm mortality and injury to manatees in the area of the JNDDNWR Complex was probably slight as manatees may have several strategies to reduce storm mortality. Damage to seagrass beds, an important habitat for manatees, fishes and invertebrates, is believed to be limited to the breach at North Captiva Island. At this breach, refuge staff documented inundation of beds by sand and scarring by trees dragged by winds. • Because seagrass beads and manatee habitat extend beyond refuge boundaries (see p. 28), a regional approach with partner agencies to more thoroughly assess storm impacts and monitor recovery of seagrass and manatees is recommended. • Besides intensive monitoring of waterbirds and their nesting habitat (pre- and post-storm), the survey team recommends that the Mangrove Cuckoo be used as an indicator species for recovery of mangrove forests and also for monitoring songbirds at risk (this songbird is habitat-area sensitive). Black-whiskered Vireo may be another potential indicator species to monitor in mangrove forests. Monitoring for these species can be done by distance sampling on transects or by species presenceabsence from point counts. • Damaged vegetation should be monitored for recovery (permanent or long-term plots), especially where previous study plots have been established and with additional plots in mangrove forests of waterbird nesting islands and freshwater wetlands. • Potential loss of wetlands (and information for management) may be prevented by water level monitoring (3 permanent stations), locating the positions (GPS-GIS) and maintaining existing water control structures, creating a GIS map of the refuge with accurate vertical data, and monitoring and eradicating invasive plants. Invasive species, including Brazilian pepper (Schinus terebinthifolius) and air potato (Dioscorea bulbifora), were common in a very limited survey and may become more dominant in areas damaged by the storm. Special attention is needed to eradicate these exotic plants. • As an important monitoring goal, the survey team recommends that species presence-absence data analysis (with probability of detection) be used to determine changes in animal communities. This could be accomplished possibly with comparison to other storm-damaged and undamaged refuges in the Region. This information may be helpful to refuge managers when storms return in the future.
If you take stand, how can you manage an ecosystem? The complex art of raising a forest.
Sally Duncan
2000-01-01
Managing whole ecosystem is a concept gaining considerable acceptance among forest managers throughout the Northwest, but it does not have a clear or simple definition. Terminology and definitions can be confusing. Forests are complex places, formed by complex processes, and the moment we try to simplify, we are likely to damage the healthy functioning of...
Experimental and simulated ultrasonic characterization of complex damage in fused silica.
Martin, L Peter; Chambers, David H; Thomas, Graham H
2002-02-01
The growth of a laser-induced, surface damage site in a fused silica window was monitored by the ultrasonic pulse-echo technique. The laser damage was grown using 12-ns pulses of 1.053-microm wavelength light at a fluence of approximately 27 J/cm2. The ultrasonic data were acquired after each pulse of the laser beam for 19 pulses. In addition, optical images of the surface and subsurface damage shape were recorded after each pulse of the laser. The ultrasonic signal amplitude exhibited variations with the damage size, which were attributed to the subsurface morphology of the damage site. A mechanism for the observed ultrasonic data based on the interaction of the ultrasound with cracks radiating from the damage site was tested using two-dimensional numerical simulations. The simulated results exhibit qualitatively similar characteristics to the experimental data and demonstrate the usefulness of numerical simulation as an aid for ultrasonic signal interpretation. The observed sensitivity to subsurface morphology makes the ultrasonic methodology a promising tool for monitoring laser damage in large aperture laser optics used in fusion energy research.
Compression of thick laminated composite beams with initial impact-like damage
NASA Technical Reports Server (NTRS)
Breivik, N. L.; Guerdal, Z.; Griffin, O. H., Jr.
1992-01-01
While the study of compression after impact of laminated composites has been under consideration for many years, the complexity of the damage initiated by low velocity impact has not lent itself to simple predictive models for compression strength. The damage modes due to non-penetrating, low velocity impact by large diameter objects can be simulated using quasi-static three-point bending. The resulting damage modes are less coupled and more easily characterized than actual impact damage modes. This study includes the compression testing of specimens with well documented initial damage states obtained from three-point bend testing. Compression strengths and failure modes were obtained for quasi-isotropic stacking sequences from 0.24 to 1.1 inches thick with both grouped and interspersed ply stacking. Initial damage prior to compression testing was divided into four classifications based on the type, extent, and location of the damage. These classifications are multiple through-thickness delaminations, isolated delamination, damage near the surface, and matrix cracks. Specimens from each classification were compared to specimens tested without initial damage in order to determine the effects of the initial damage on the final compression strength and failure modes. A finite element analysis was used to aid in the understanding and explanation of the experimental results.
NASA Astrophysics Data System (ADS)
Hoang, Tuan L.; Nazarov, Roman; Kang, Changwoo; Fan, Jiangyuan
2018-07-01
Under the multi-ion irradiation conditions present in accelerated material-testing facilities or fission/fusion nuclear reactors, the combined effects of atomic displacements with radiation products may induce complex synergies in the structural materials. However, limited access to multi-ion irradiation facilities and the lack of computational models capable of simulating the evolution of complex defects and their synergies make it difficult to understand the actual physical processes taking place in the materials under these extreme conditions. In this paper, we propose the application of pulsed single/dual-beam irradiation as replacements for the expensive steady triple-beam irradiation to study radiation damages in materials under multi-ion irradiation.
Zhai, Qingfeng; Duan, Huawei; Wang, Yadong; Huang, Chuanfeng; Niu, Yong; Dai, Yufei; Bin, Ping; Liu, Qingjun; Chen, Wen; Ma, Junxiang; Zheng, Yuxin
2012-08-01
Coke oven emissions are known as human carcinogen, which is a complex mixture of polycyclic aromatic hydrocarbon. In this study, we aimed to clarify the mechanism of action of coke oven emissions induced carcinogenesis and to identify biomarkers of early biological effects in a human bronchial epithelial cell line with CYP1A1 activity (HBE-CYP1A1). Particulate matter was collected in the oven area on glass filter, extracted and analyzed by GC/MS. DNA breaks and oxidative damage were evaluated by alkaline and endonucleases (FPG, hOGG1 and ENDO III)-modified comet assays. Cytotoxicity and chromosomal damage were assessed by the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay. The cells were treated with organic extract of coke oven emissions (OE-COE) representing 5, 10, 20, 40μg/mL extract for 24h. We found that there was a dose-effect relationship between the OE-COE and the direct DNA damage presented by tail length, tail intensity and Olive tail moment in the comet assay. The presence of lesion-specific endonucleases in the assays increased DNA migration after OE-COE treatment when compared to those without enzymes, which indicated that OE-COE produced oxidative damage at the level of pyrimidine and purine bases. The dose-dependent increase of micronuclei, nucleoplasmic bridges and nuclear buds in exposed cells was significant, indicating chromosomal and genomic damage induced by OE-COE. Based on the cytotoxic biomarkers in CBMN-Cyt assay, OE-COE may inhibit nuclear division, interfere with apoptosis, or induce cell necrosis. This study indicates that OE-COE exposure can induce DNA breaks/oxidative damage and genomic instability in HBE-CYP1A1 cells. The FPG-comet assay appears more specific for detecting oxidative DNA damage induced by complex mixtures of genotoxic substances. Copyright © 2012 Elsevier Ltd. All rights reserved.
Overview of HPM Effects in Electronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holloway, Michael A.
2012-06-04
The following presentation contains an overview of HPM effects in modern electronics. HPM effects can be categorized into two basic level of effects, which are damaging and non-damaging. Damaging effects include junction breakdowns, dielectric breakdowns, and latch-up. These types of effects render a system inoperable until repaired. With non-damaging effects, HPM signals couple to into system components generating circuit responses that can overwhelm normal operation. Non-damaging effects can temporarily render a system inoperable or cause a system to lock and require a restart. Since modern systems are so complex, fundamental mechanisms of upset in circuit primitives are studied. All topicsmore » covered and all figured contained within are found in open literature. All data plots presented were obtained from experimental measurements conducted at the University of Maryland College Park and are also found in the open literature.« less
[Core principles of treatment of corneal damage in patients with thyroid eye disease].
Grusha, Y O; Ismailova, D S; Sherstneva, L V
To develop a therapeutic approach and to estimate the efficiency of complex treatment of corneal damage in patients with thyroid eye disease (TED). The study enrolled 44 patients (52 eyes) divided into 2 groups depending on the severity of corneal damage. Treatment of those with severe involvement included pathogenetic measures (pulse steroid therapy and/or radiation therapy) and surgery (orbital decompression, eyelid and corneal surgery). As the result of the treatment, orbital inflammation decreased and the state of the cornea improved in all patients. The treatment of corneal damage in patients with TED may differ depending on numerous factors, such as the severity of corneal damage and activity of orbital inflammation. Taking into account the potential danger of corneal involvement, one should make efforts to early detection and management of the risk factors.
DDB2 promotes chromatin decondensation at UV-induced DNA damage
Lindh, Michael; Acs, Klara; Vrouwe, Mischa G.; Pines, Alex; van Attikum, Haico; Mullenders, Leon H.
2012-01-01
Nucleotide excision repair (NER) is the principal pathway that removes helix-distorting deoxyribonucleic acid (DNA) damage from the mammalian genome. Recognition of DNA lesions by xeroderma pigmentosum group C (XPC) protein in chromatin is stimulated by the damaged DNA-binding protein 2 (DDB2), which is part of a CUL4A–RING ubiquitin ligase (CRL4) complex. In this paper, we report a new function of DDB2 in modulating chromatin structure at DNA lesions. We show that DDB2 elicits unfolding of large-scale chromatin structure independently of the CRL4 ubiquitin ligase complex. Our data reveal a marked adenosine triphosphate (ATP)–dependent reduction in the density of core histones in chromatin containing UV-induced DNA lesions, which strictly required functional DDB2 and involved the activity of poly(adenosine diphosphate [ADP]–ribose) polymerase 1. Finally, we show that lesion recognition by XPC, but not DDB2, was strongly reduced in ATP-depleted cells and was regulated by the steady-state levels of poly(ADP-ribose) chains. PMID:22492724
Simple and efficient self-healing strategy for damaged complex networks
NASA Astrophysics Data System (ADS)
Gallos, Lazaros K.; Fefferman, Nina H.
2015-11-01
The process of destroying a complex network through node removal has been the subject of extensive interest and research. Node loss typically leaves the network disintegrated into many small and isolated clusters. Here we show that these clusters typically remain close to each other and we suggest a simple algorithm that is able to reverse the inflicted damage by restoring the network's functionality. After damage, each node decides independently whether to create a new link depending on the fraction of neighbors it has lost. In addition to relying only on local information, where nodes do not need knowledge of the global network status, we impose the additional constraint that new links should be as short as possible (i.e., that the new edge completes a shortest possible new cycle). We demonstrate that this self-healing method operates very efficiently, both in model and real networks. For example, after removing the most connected airports in the USA, the self-healing algorithm rejoined almost 90% of the surviving airports.
[Organ damage and cardiorenal syndrome in acute heart failure].
Casado Cerrada, Jesús; Pérez Calvo, Juan Ignacio
2014-03-01
Heart failure is a complex syndrome that affects almost all organs and systems of the body. Signs and symptoms of organ dysfunction, in particular kidney dysfunction, may be accentuated or become evident for the first time during acute decompensation of heart failure. Cardiorenal syndrome has been defined as the simultaneous dysfunction of both the heart and the kidney, regardless of which of the two organs may have suffered the initial damage and regardless also of their previous functional status. Research into the mechanisms regulating the complex relationship between the two organs is prompting the search for new biomarkers to help physicians detect renal damage in subclinical stages. Hence, a preventive approach to renal dysfunction may be adopted in the clinical setting in the near future. This article provides a general overview of cardiorenal syndrome and an update of the physiopathological mechanisms involved. Special emphasis is placed on the role of visceral congestion as an emergent mechanism in this syndrome. Copyright © 2014 Elsevier España, S.L. All rights reserved.
RNF8- and Ube2S-Dependent Ubiquitin Lysine 11-Linkage Modification in Response to DNA Damage.
Paul, Atanu; Wang, Bin
2017-05-18
Ubiquitin modification of proteins plays pivotal roles in the cellular response to DNA damage. Given the complexity of ubiquitin conjugation due to the formation of poly-conjugates of different linkages, functional roles of linkage-specific ubiquitin modification at DNA damage sites are largely unclear. We identify that Lys11-linkage ubiquitin modification occurs at DNA damage sites in an ATM-dependent manner, and ubiquitin-modifying enzymes, including Ube2S E2-conjugating enzyme and RNF8 E3 ligase, are responsible for the assembly of Lys11-linkage conjugates on damaged chromatin, including histone H2A/H2AX. We show that RNF8- and Ube2S-dependent Lys11-linkage ubiquitin conjugation plays an important role in regulating DNA damage-induced transcriptional silencing, distinct from the role of Lys63-linkage ubiquitin in the recruitment of DNA damage repair proteins 53BP1 and BRCA1. Thus, our study highlights the importance of linkage-specific ubiquitination at DNA damage sites, and it reveals that Lys11-linkage ubiquitin modification plays a crucial role in the DNA damage response. Copyright © 2017 Elsevier Inc. All rights reserved.
Verhoeven, Esther E. A.; van Kesteren, Marian; Turner, John J.; van der Marel, Gijs A.; van Boom, Jacques H.; Moolenaar, Geri F.; Goosen, Nora
2002-01-01
Nucleotide excision repair in Escherichia coli involves formation of the UvrB–DNA complex and subsequent DNA incisions on either site of the damage by UvrC. In this paper, we studied the incision of substrates with different damages in varying sequence contexts. We show that there is not always a correlation between the incision efficiency and the stability of the UvrB–DNA complex. Both stable and unstable UvrB–DNA complexes can be efficiently incised. However some lesions that give rise to stable UvrB–DNA complexes do result in a very low incision. We present evidence that this poor incision is due to sterical hindrance of the damage itself. In its C-terminal region UvrC contains two helix–hairpin–helix (HhH) motifs. Mutational analysis shows that these motifs constitute one functional unit, probably folded as one structural unit; the (HhH)2 domain. This (HhH)2 domain was previously shown to be important for the 5′ incision on a substrate containing a (cis-Pt)·GG adduct, but not for 3′ incision. Here we show that, mainly depending on the sequence context of the lesion, the (HhH)2 domain can be important for 3′ and/or 5′ incision. We propose that the (HhH)2 domain stabilises specific DNA structures required for the two incisions, thereby contributing to the flexibility of the UvrABC repair system. PMID:12034838
Allen, David G.; Whitehead, Nicholas P.; Froehner, Stanley C.
2015-01-01
Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numerous signaling proteins. Absence or reduced expression of dystrophin or many of the DPC components cause the muscular dystrophies, a group of inherited diseases in which repeated bouts of muscle damage lead to atrophy and fibrosis, and eventually muscle degeneration. The normal function of dystrophin is poorly defined. In its absence a complex series of changes occur with multiple muscle proteins showing reduced or increased expression or being modified in various ways. In this review, we will consider the various proteins whose expression and function is changed in muscular dystrophies, focusing on Ca2+-permeable channels, nitric oxide synthase, NADPH oxidase, and caveolins. Excessive Ca2+ entry, increased membrane permeability, disordered caveolar function, and increased levels of reactive oxygen species are early changes in the disease, and the hypotheses for these phenomena will be critically considered. The aim of the review is to define the early damage pathways in muscular dystrophy which might be appropriate targets for therapy designed to minimize the muscle degeneration and slow the progression of the disease. PMID:26676145
Berman, Gennady P; Nesterov, Alexander I; Gurvitz, Shmuel; Sayre, Richard T
2017-01-01
We analyze theoretically a simple and consistent quantum mechanical model that reveals the possible role of quantum interference, protein noise, and sink effects in the nonphotochemical quenching (NPQ) in light-harvesting complexes (LHCs). The model consists of a network of five interconnected sites (excitonic states of light-sensitive molecules) responsible for the NPQ mechanism. The model also includes the "damaging" and the dissipative channels. The damaging channel is responsible for production of singlet oxygen and other destructive outcomes. In our model, both damaging and "dissipative" charge transfer channels are described by discrete electron energy levels attached to their sinks, that mimic the continuum part of electron energy spectrum. All five excitonic sites interact with the protein environment that is modeled using a stochastic process. Our approach allowed us to derive the exact and closed system of linear ordinary differential equations for the reduced density matrix and its first momentums. These equations are solved numerically including for strong interactions between the light-sensitive molecules and protein environment. As an example, we apply our model to demonstrate possible contributions of quantum interference, protein noise, and sink effects in the NPQ mechanism in the CP29 minor LHC. The numerical simulations show that using proper combination of quantum interference effects, properties of noise, and sinks, one can significantly suppress the damaging channel. Our findings demonstrate the possible role of interference, protein noise, and sink effects for modeling, engineering, and optimizing the performance of the NPQ processes in both natural and artificial light-harvesting complexes.
Jab1 Mediates Protein Degradation of Rad9/Rad1/Hus1 Checkpoint Complex
Huang, Jin; Yuan, Honglin; Lu, Chongyuan; Liu, Ximeng; Cao, Xu; Wan, Mei
2009-01-01
Summary The Rad1-Rad9-Hus1 (9-1-1) complex serves a dual role as a DNA-damage sensor in checkpoint signaling and as a mediator in DNA repair pathway. However, the intercellular mechanisms that regulate 9-1-1 complex are poorly understood. Jab1, the fifth component of the COP9 signalosome complex, plays a central role in the degradation of multiple proteins and is emerging as an important regulator in cancer development. Here, we tested the hypothesis that Jab1 controls the protein stability of the 9-1-1 complex via the proteosome pathway. We provide evidence that Jab1 physically associates with the 9-1-1 complex. This association is mediated through direct interaction between Jab1 and Rad1, one of the subunits of 9-1-1 complex. Importantly, Jab1 causes the translocation of the 9-1-1 complex from the nucleus to the cytoplasm, mediating rapid degradation of the 9-1-1 complex via 26S proteasome. Furthermore, Jab1 significantly suppresses checkpoint signaling activation, DNA synthesis recovery from blockage and cell viability after replication stresses such as UV exposure, γ radiation and hydroxyurea treatment. These results suggest that Jab1 is an important regulator for 9-1-1 protein stability control in cells, which may provide novel information on the involvement of Jab1 in checkpoint and DNA repair signaling in response to DNA damage. PMID:17583730
Hail damage on Atlantis' external tank is inspected
2007-04-13
In the Vehicle Assembly Building, Mike Ravenscroft, with United Space Alliance, points to some of the foam repair done on the external tank of Space Shuttle Atlantis. Holes filled with foam are sanded flush with the adjacent area. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch now is targeted for June 8.
2007-05-09
KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center's Vehicle Assembly Building, one technician adjusts the sander while another observes as they work on repairing the hail damage to Atlantis' nose cone. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch of Space Shuttle Atlantis on mission STS-117 now is targeted for June 8. Photo credit: NASA/Jack Pfaller
DART Support for Hurricane Matthew
2016-10-18
A damaged construction trailer and several pieces of associated debris, aftermath of Hurricane Matthew, are seen in front of the Mobile Launcher in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
Studying damage accumulation in martensitic corrosion-resistant steel under cold radial reduction
NASA Astrophysics Data System (ADS)
Karamyshev, A. P.; Nekrasov, I. I.; Nesterenko, A. V.; Parshin, V. S.; Smirnov, S. V.; Shveikin, V. P.; Fedulov, A. A.
2017-12-01
Cold radial reduction of specimens made of the Kh17N2 corrosion-resistant martensitic steel is studied on a lever-type radial-forging machine (RFM). The mechanical properties of the deformed specimens, the "damage accumulation - strain" relation in the specimens are obtained with the application of hydrostatic and fractographic methods for fractured specimens. The damage of the Kh17N2 corrosion-resistant steel is evaluated as a result of an experimental study considering the data of simulation by a complex finite element model of cold deformation on a lever-type RFM.
DART Support for Hurricane Matthew
2016-10-18
A damaged construction trailer and several pieces of associated debris, aftermath of Hurricane Matthew, are seen near the Mobile Launcher in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
DART Support for Hurricane Matthew
2016-10-18
Damaged construction trailers and several pieces of associated debris, aftermath of Hurricane Matthew, are seen in front of the Mobile Launcher in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
Understanding radiation damage on sub-cellular scale using RADAMOL simulation tool
NASA Astrophysics Data System (ADS)
Štěpán, Václav; Davídková, Marie
2016-11-01
We present an overview of the biophysical model RADAMOL developed as a Monte Carlo simulation tool for physical, physico-chemical and chemical stages of ionizing radiation action. Direct and indirect radiation damage by 10 keV electrons, and protons and alpha particles with energies from 1 MeV up to 30 MeV to a free DNA oligomer or DNA in the complex with lac repressor protein is analyzed. The role of radiation type and energy, oxygen concentration and DNA interaction with proteins on yields and distributions of primary biomolecular damage is demonstrated and discussed.
Radiation damage to macromolecules: kill or cure?
Garman, Elspeth F; Weik, Martin
2015-03-01
Radiation damage induced by X-ray beams during macromolecular diffraction experiments remains an issue of concern in structural biology. While advances in our understanding of this phenomenon, driven in part by a series of workshops in this area, undoubtedly have been and are still being made, there are still questions to be answered. Eight papers in this volume give a flavour of ongoing investigations, addressing various issues. These range over: a proposed new metric derived from atomic B-factors for identifying potentially damaged amino acid residues, a study of the relative damage susceptibility of protein and DNA in a DNA/protein complex, a report of an indication of specific radiation damage to a protein determined from data collected using an X-ray free-electron laser (FEL), an account of the challenges in FEL raw diffraction data analysis, an exploration of the possibilities of using radiation damage induced phasing to solve structures using FELs, simulations of radiation damage as a function of FEL temporal pulse profiles, results on the influence of radiation damage during scanning X-ray diffraction measurements and, lastly, consideration of strategies for minimizing radiation damage during SAXS experiments. In this short introduction, these contributions are briefly placed in the context of other current work on radiation damage in the field.
HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism
Conrad, E; Polonio-Vallon, T; Meister, M; Matt, S; Bitomsky, N; Herbel, C; Liebl, M; Greiner, V; Kriznik, B; Schumacher, S; Krieghoff-Henning, E; Hofmann, T G
2016-01-01
Upon severe DNA damage a cellular signalling network initiates a cell death response through activating tumour suppressor p53 in association with promyelocytic leukaemia (PML) nuclear bodies. The deacetylase Sirtuin 1 (SIRT1) suppresses cell death after DNA damage by antagonizing p53 acetylation. To facilitate efficient p53 acetylation, SIRT1 function needs to be restricted. How SIRT1 activity is regulated under these conditions remains largely unclear. Here we provide evidence that SIRT1 activity is limited upon severe DNA damage through phosphorylation by the DNA damage-responsive kinase HIPK2. We found that DNA damage provokes interaction of SIRT1 and HIPK2, which phosphorylates SIRT1 at Serine 682 upon lethal damage. Furthermore, upon DNA damage SIRT1 and HIPK2 colocalize at PML nuclear bodies, and PML depletion abrogates DNA damage-induced SIRT1 Ser682 phosphorylation. We show that Ser682 phosphorylation inhibits SIRT1 activity and impacts on p53 acetylation, apoptotic p53 target gene expression and cell death. Mechanistically, we found that DNA damage-induced SIRT1 Ser682 phosphorylation provokes disruption of the complex between SIRT1 and its activator AROS. Our findings indicate that phosphorylation-dependent restriction of SIRT1 activity by HIPK2 shapes the p53 response. PMID:26113041
Testa, Claudia M; Sherer, Todd B; Greenamyre, J Timothy
2005-03-24
Rotenone, a pesticide and complex I inhibitor, causes nigrostriatal degeneration similar to Parkinson disease pathology in a chronic, systemic, in vivo rodent model [M. Alam, W.J. Schmidt, Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats, Behav. Brain Res. 136 (2002) 317-324; R. Betarbet, T.B. Sherer, G. MacKenzie, M. Garcia-Osuna, A.V. Panov, J.T. Greenamyre, Chronic systemic pesticide exposure reproduces features of Parkinson's disease, Nat. Neurosci. 3 (2000) 1301-1306; S.M. Fleming, C. Zhu, P.O. Fernagut, A. Mehta, C.D. DiCarlo, R.L. Seaman, M.F. Chesselet, Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone, Exp. Neurol. 187 (2004) 418-429; T.B. Sherer, J.H. Kim, R. Betarbet, J.T. Greenamyre, Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation, Exp. Neurol. 179 (2003) 9-16.]. To better investigate the role of mitochondria and complex I inhibition in chronic, progressive neurodegenerative disease, we developed methods for long-term culture of rodent postnatal midbrain organotypic slices. Chronic complex I inhibition over weeks by low dose (10-50 nM) rotenone in this system lead to dose- and time-dependent destruction of substantia nigra pars compacta neuron processes, morphologic changes, some neuronal loss, and decreased tyrosine hydroxylase (TH) protein levels. Chronic complex I inhibition also caused oxidative damage to proteins, measured by protein carbonyl levels. This oxidative damage was blocked by the antioxidant alpha-tocopherol (vitamin E). At the same time, alpha-tocopherol also blocked rotenone-induced reductions in TH protein and TH immunohistochemical changes. Thus, oxidative damage is a primary mechanism of mitochondrial toxicity in intact dopaminergic neurons. The organotypic culture system allows close study of this and other interacting mechanisms over a prolonged time period in mature dopaminergic neurons with intact processes, surrounding glia, and synaptic connections.
Abroudi, Ali; Samarasinghe, Sandhya; Kulasiri, Don
2017-09-21
Not many models of mammalian cell cycle system exist due to its complexity. Some models are too complex and hard to understand, while some others are too simple and not comprehensive enough. Moreover, some essential aspects, such as the response of G1-S and G2-M checkpoints to DNA damage as well as the growth factor signalling, have not been investigated from a systems point of view in current mammalian cell cycle models. To address these issues, we bring a holistic perspective to cell cycle by mathematically modelling it as a complex system consisting of important sub-systems that interact with each other. This retains the functionality of the system and provides a clearer interpretation to the processes within it while reducing the complexity in comprehending these processes. To achieve this, we first update a published ODE mathematical model of cell cycle with current knowledge. Then the part of the mathematical model relevant to each sub-system is shown separately in conjunction with a diagram of the sub-system as part of this representation. The model sub-systems are Growth Factor, DNA damage, G1-S, and G2-M checkpoint signalling. To further simplify the model and better explore the function of sub-systems, they are further divided into modules. Here we also add important new modules of: chk-related rapid cell cycle arrest, p53 modules expanded to seamlessly integrate with the rapid arrest module, Tyrosine phosphatase modules that activate Cyc_Cdk complexes and play a crucial role in rapid and delay arrest at both G1-S and G2-M, Tyrosine Kinase module that is important for inactivating nuclear transport of CycB_cdk1 through Wee1 to resist M phase entry, Plk1-Related module that is crucial in activating Tyrosine phosphatases and inactivating Tyrosine kinase, and APC-Related module to show steps in CycB degradation. This multi-level systems approach incorporating all known aspects of cell cycle allowed us to (i) study, through dynamic simulation of an ODE model, comprehensive details of cell cycle dynamics under normal and DNA damage conditions revealing the role and value of the added new modules and elements, (ii) assess, through a global sensitivity analysis, the most influential sub-systems, modules and parameters on system response, such as G1-S and G2-M transitions, and (iii) probe deeply into the relationship between DNA damage and cell cycle progression and test the biological evidence that G1-S is relatively inefficient in arresting damaged cells compared to G2-M checkpoint. To perform sensitivity analysis, Self-Organizing Map with Correlation Coefficient Analysis (SOMCCA) is developed which shows that Growth Factor and G1-S Checkpoint sub-systems and 13 parameters in the modules within them are crucial for G1-S and G2-M transitions. To study the relative efficiency of DNA damage checkpoints, a Checkpoint Efficiency Evaluator (CEE) is developed based on perturbation studies and statistical Type II error. Accordingly, cell cycle is about 96% efficient in arresting damaged cells with G2-M checkpoint being more efficient than G1-S. Further, both checkpoint systems are near perfect (98.6%) in passing healthy cells. Thus this study has shown the efficacy of the proposed systems approach to gain a better understanding of different aspects of mammalian cell cycle system separately and as an integrated system that will also be useful in investigating targeted therapy in future cancer treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Nematodes within the Xiphinema americanum species complex are economically important because they vector nepoviruses which cause considerable damage to a variety of agricultural crops. The taxonomy of X. americanum is controversial, with the number of putative species being the subject of debate. Ac...
Alizadeh, Elahe; Orlando, Thomas M; Sanche, Léon
2015-04-01
Many experimental and theoretical advances have recently allowed the study of direct and indirect effects of low-energy electrons (LEEs) on DNA damage. In an effort to explain how LEEs damage the human genome, researchers have focused efforts on LEE interactions with bacterial plasmids, DNA bases, sugar analogs, phosphate groups, and longer DNA moieties. Here, we summarize the current understanding of the fundamental mechanisms involved in LEE-induced damage of DNA and complex biomolecule films. Results obtained by several laboratories on films prepared and analyzed by different methods and irradiated with different electron-beam current densities and fluencies are presented. Despite varied conditions (e.g., film thicknesses and morphologies, intrinsic water content, substrate interactions, and extrinsic atmospheric compositions), comparisons show a striking resemblance in the types of damage produced and their yield functions. The potential of controlling this damage using molecular and nanoparticle targets with high LEE yields in targeted radiation-based cancer therapies is also discussed.
Casorelli, Ida; Bossa, Cecilia; Bignami, Margherita
2012-01-01
Most antitumour therapies damage tumour cell DNA either directly or indirectly. Without repair, damage can result in genetic instability and eventually cancer. The strong association between the lack of DNA damage repair, mutations and cancer is dramatically demonstrated by a number of cancer-prone human syndromes, such as xeroderma pigmentosum, ataxia-telangiectasia and Fanconi anemia. Notably, DNA damage responses, and particularly DNA repair, influence the outcome of therapy. Because DNA repair normally excises lethal DNA lesions, it is intuitive that efficient repair will contribute to intrinsic drug resistance. Unexpectedly, a paradoxical relationship between DNA mismatch repair and drug sensitivity has been revealed by model studies in cell lines. This suggests that connections between DNA repair mechanism efficiency and tumour therapy might be more complex. Here, we review the evidence for the contribution of carcinogenic properties of several drugs as well as of alterations in specific mechanisms involved in drug-induced DNA damage response and repair in the pathogenesis of therapy-related cancers. PMID:23066388
Vibro-Acoustic Modulation Based Damage Identification in a Composite Skin-Stiffener Structure
NASA Technical Reports Server (NTRS)
Ooijevaar, T. H.; Loendersloot, R.; Rogge, M. D.; Akkerman, R.; Tinga, T.
2014-01-01
The vibro-acoustic modulation method is applied to a composite skin-stiffener structure to investigate the possibilities to utilize this method for damage identification in terms of detection, localisation and damage quantification. The research comprises a theoretical part and an experimental part. An impact load is applied to the skin-stiffener structure, resulting in a delamination underneath the stiffener. The structure is interrogated with a low frequency pump excitation and a high frequency carrier excitation. The analysis of the response in a frequency band around the carrier frequency is employed to assess the damage identification capabilities and to gain a better understanding of the modulations occurring and the underlying physical phenomena. Though vibro-acoustic is shown to be a sensitive method for damage identification, the complexity of the damage, combined with a high modal density, complicate the understanding of the relation between the physical phenomena and the modulations occurring. more research is recommended to reveal the physics behind the observations.
Fatigue Damage of Collagenous Tissues: Experiment, Modeling and Simulation Studies
Martin, Caitlin; Sun, Wei
2017-01-01
Mechanical fatigue damage is a critical issue for soft tissues and tissue-derived materials, particularly for musculoskeletal and cardiovascular applications; yet, our understanding of the fatigue damage process is incomplete. Soft tissue fatigue experiments are often difficult and time-consuming to perform, which has hindered progress in this area. However, the recent development of soft-tissue fatigue-damage constitutive models has enabled simulation-based fatigue analyses of tissues under various conditions. Computational simulations facilitate highly controlled and quantitative analyses to study the distinct effects of various loading conditions and design features on tissue durability; thus, they are advantageous over complex fatigue experiments. Although significant work to calibrate the constitutive models from fatigue experiments and to validate predictability remains, further development in these areas will add to our knowledge of soft-tissue fatigue damage and will facilitate the design of durable treatments and devices. In this review, the experimental, modeling, and simulation efforts to study collagenous tissue fatigue damage are summarized and critically assessed. PMID:25955007
Multiscale Modeling of Dewetting Damage in Highly Filled Particulate Composites
NASA Astrophysics Data System (ADS)
Geubelle, P. H.; Inglis, H. M.; Kramer, J. D.; Patel, J. J.; Kumar, N. C.; Tan, H.
2008-02-01
Particle debonding or dewetting constitutes one of the key damage processes in highly filled particulate composites such as solid propellant and other energetic materials. To analyze this failure process, we have developed a multiscale finite element framework that combines, at the microscale, a nonlinear description of the binder response with a cohesive model of the damage process taking place in a representative periodic unit cell (PUC). To relate micro-scale damage to the macroscopic constitutive response of the material, we employ the mathematical theory of homogenization (MTH). After a description of the numerical scheme, we present the results of the damage response of a highly filled particulate composite subjected to a uniaxial macroscopic strain, and show the direct correlation between the complex damage processes taking place in the PUC and the nonlinear macroscopic constitutive response. We also present a detailed study of the PUC size and a comparison between the finite element MTH-based study and a micromechanics model of the dewetting process.
Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease
van der Crabben, Saskia N.; Hennus, Marije P.; McGregor, Grant A.; Ritter, Deborah I.; Nagamani, Sandesh C.S.; Wells, Owen S.; Harakalova, Magdalena; Chinn, Ivan K.; Alt, Aaron; Vondrova, Lucie; Hochstenbach, Ron; van Montfrans, Joris M.; Terheggen-Lagro, Suzanne W.; van Lieshout, Stef; van Roosmalen, Markus J.; Renkens, Ivo; Duran, Karen; Nijman, Isaac J.; Kloosterman, Wigard P.; Hennekam, Eric; van Hasselt, Peter M.; Wheeler, David A.; Palecek, Jan J.; Lehmann, Alan R.; Oliver, Antony W.; Pearl, Laurence H.; Plon, Sharon E.; Murray, Johanne M.
2016-01-01
The structural maintenance of chromosomes (SMC) family of proteins supports mitotic proliferation, meiosis, and DNA repair to control genomic stability. Impairments in chromosome maintenance are linked to rare chromosome breakage disorders. Here, we have identified a chromosome breakage syndrome associated with severe lung disease in early childhood. Four children from two unrelated kindreds died of severe pulmonary disease during infancy following viral pneumonia with evidence of combined T and B cell immunodeficiency. Whole exome sequencing revealed biallelic missense mutations in the NSMCE3 (also known as NDNL2) gene, which encodes a subunit of the SMC5/6 complex that is essential for DNA damage response and chromosome segregation. The NSMCE3 mutations disrupted interactions within the SMC5/6 complex, leading to destabilization of the complex. Patient cells showed chromosome rearrangements, micronuclei, sensitivity to replication stress and DNA damage, and defective homologous recombination. This work associates missense mutations in NSMCE3 with an autosomal recessive chromosome breakage syndrome that leads to defective T and B cell function and acute respiratory distress syndrome in early childhood. PMID:27427983
Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease.
van der Crabben, Saskia N; Hennus, Marije P; McGregor, Grant A; Ritter, Deborah I; Nagamani, Sandesh C S; Wells, Owen S; Harakalova, Magdalena; Chinn, Ivan K; Alt, Aaron; Vondrova, Lucie; Hochstenbach, Ron; van Montfrans, Joris M; Terheggen-Lagro, Suzanne W; van Lieshout, Stef; van Roosmalen, Markus J; Renkens, Ivo; Duran, Karen; Nijman, Isaac J; Kloosterman, Wigard P; Hennekam, Eric; Orange, Jordan S; van Hasselt, Peter M; Wheeler, David A; Palecek, Jan J; Lehmann, Alan R; Oliver, Antony W; Pearl, Laurence H; Plon, Sharon E; Murray, Johanne M; van Haaften, Gijs
2016-08-01
The structural maintenance of chromosomes (SMC) family of proteins supports mitotic proliferation, meiosis, and DNA repair to control genomic stability. Impairments in chromosome maintenance are linked to rare chromosome breakage disorders. Here, we have identified a chromosome breakage syndrome associated with severe lung disease in early childhood. Four children from two unrelated kindreds died of severe pulmonary disease during infancy following viral pneumonia with evidence of combined T and B cell immunodeficiency. Whole exome sequencing revealed biallelic missense mutations in the NSMCE3 (also known as NDNL2) gene, which encodes a subunit of the SMC5/6 complex that is essential for DNA damage response and chromosome segregation. The NSMCE3 mutations disrupted interactions within the SMC5/6 complex, leading to destabilization of the complex. Patient cells showed chromosome rearrangements, micronuclei, sensitivity to replication stress and DNA damage, and defective homologous recombination. This work associates missense mutations in NSMCE3 with an autosomal recessive chromosome breakage syndrome that leads to defective T and B cell function and acute respiratory distress syndrome in early childhood.
RESEARCH ACTIVITIES IN THE FIELD OF MATERIALS SCIENCE.
MAGNETIC RESONANCE, COMPLEX COMPOUNDS, CRYSTAL STRUCTURE, ELECTROCHEMISTRY, CHEMILUMINESCENCE, PHOTOCHEMICAL REACTIONS, PHOSPHORUS HETEROCYCLIC COMPOUNDS...RADIATION CHEMISTRY, POLYMERS, ROCK, SUPERCONDUCTORS, POSITRONS , DAMAGE, RADIATION EFFECTS, HALIDES
Clustered DNA damages induced by high and low LET radiation, including heavy ions
NASA Technical Reports Server (NTRS)
Sutherland, B. M.; Bennett, P. V.; Schenk, H.; Sidorkina, O.; Laval, J.; Trunk, J.; Monteleone, D.; Sutherland, J.; Lowenstein, D. I. (Principal Investigator)
2001-01-01
Clustered DNA damages--here defined as two or more lesions (strand breaks, oxidized purines, oxidized pyrimidines or abasic sites) within a few helical turns--have been postulated as difficult to repair accurately, and thus highly significant biological lesions. Further, attempted repair of clusters may produce double strand breaks (DSBs). However, until recently, there was no way to measure ionizing radiation-induced clustered damages, except DSB. We recently described an approach for measuring classes of clustered damages (oxidized purine clusters, oxidized pyrimidine clusters, abasic clusters, along with DSB). We showed that ionizing radiation (gamma rays and Fe ions, 1 GeV/amu) does induce such clusters in genomic DNA in solution and in human cells. These studies also showed that each damage cluster results from one radiation hit (and its track), thus indicating that they can be induced by very low doses of radiation, i.e. two independent hits are not required for cluster induction. Further, among all complex damages, double strand breaks comprise--at most-- 20%, with the other clustered damages being at least 80%.
Lamb Wave Damage Quantification Using GA-Based LS-SVM.
Sun, Fuqiang; Wang, Ning; He, Jingjing; Guan, Xuefei; Yang, Jinsong
2017-06-12
Lamb waves have been reported to be an efficient tool for non-destructive evaluations (NDE) for various application scenarios. However, accurate and reliable damage quantification using the Lamb wave method is still a practical challenge, due to the complex underlying mechanism of Lamb wave propagation and damage detection. This paper presents a Lamb wave damage quantification method using a least square support vector machine (LS-SVM) and a genetic algorithm (GA). Three damage sensitive features, namely, normalized amplitude, phase change, and correlation coefficient, were proposed to describe changes of Lamb wave characteristics caused by damage. In view of commonly used data-driven methods, the GA-based LS-SVM model using the proposed three damage sensitive features was implemented to evaluate the crack size. The GA method was adopted to optimize the model parameters. The results of GA-based LS-SVM were validated using coupon test data and lap joint component test data with naturally developed fatigue cracks. Cases of different loading and manufacturer were also included to further verify the robustness of the proposed method for crack quantification.
Lamb Wave Damage Quantification Using GA-Based LS-SVM
Sun, Fuqiang; Wang, Ning; He, Jingjing; Guan, Xuefei; Yang, Jinsong
2017-01-01
Lamb waves have been reported to be an efficient tool for non-destructive evaluations (NDE) for various application scenarios. However, accurate and reliable damage quantification using the Lamb wave method is still a practical challenge, due to the complex underlying mechanism of Lamb wave propagation and damage detection. This paper presents a Lamb wave damage quantification method using a least square support vector machine (LS-SVM) and a genetic algorithm (GA). Three damage sensitive features, namely, normalized amplitude, phase change, and correlation coefficient, were proposed to describe changes of Lamb wave characteristics caused by damage. In view of commonly used data-driven methods, the GA-based LS-SVM model using the proposed three damage sensitive features was implemented to evaluate the crack size. The GA method was adopted to optimize the model parameters. The results of GA-based LS-SVM were validated using coupon test data and lap joint component test data with naturally developed fatigue cracks. Cases of different loading and manufacturer were also included to further verify the robustness of the proposed method for crack quantification. PMID:28773003
Independent mechanisms recruit the cohesin loader protein NIPBL to sites of DNA damage.
Bot, Christopher; Pfeiffer, Annika; Giordano, Fosco; Manjeera, Dharani E; Dantuma, Nico P; Ström, Lena
2017-03-15
NIPBL is required to load the cohesin complex on to DNA. While the canonical role of cohesin is to couple replicated sister chromatids together until the onset of mitosis, it also promotes tolerance to DNA damage. Here, we show that NIPBL is recruited to DNA damage throughout the cell cycle via independent mechanisms, influenced by type of damage. First, the heterochromatin protein HP1γ (also known as CBX3) recruits NIPBL to DNA double-strand breaks (DSBs) through the corresponding HP1-binding motif within the N-terminus. By contrast, the C-terminal HEAT repeat domain is unable to recruit NIPBL to DSBs but independently targets NIPBL to laser microirradiation-induced DNA damage. Each mechanism is dependent on the RNF8 and RNF168 ubiquitylation pathway, while the recruitment of the HEAT repeat domain requires further ATM or ATR activity. Thus, NIPBL has evolved a sophisticated response to damaged DNA that is influenced by the form of damage, suggesting a highly dynamic role for NIPBL in maintaining genomic stability. © 2017. Published by The Company of Biologists Ltd.
Displacement Damage in Bipolar Linear Integrated Circuits
NASA Technical Reports Server (NTRS)
Rax, B. G.; Johnston, A. H.; Miyahira, T.
2000-01-01
Although many different processes can be used to manufacture linear integrated circuits, the process that is used for most circuits is optimized for high voltage -- a total power supply voltage of about 40 V -- and low cost. This process, which has changed little during the last twenty years, uses lateral and substrate p-n-p transistors. These p-n-p transistors have very wide base regions, increasing their sensitivity to displacement damage from electrons and protons. Although displacement damage effects can be easily treated for individual transistors, the net effect on linear circuits can be far more complex because circuit operation often depends on the interaction of several internal transistors. Note also that some circuits are made with more advanced processes with much narrower base widths. Devices fabricated with these newer processes are not expected to be significantly affected by displacement damage for proton fluences below 1 x 10(exp 12) p/sq cm. This paper discusses displacement damage in linear integrated circuits with more complex failure modes than those exhibited by simpler devices, such as the LM111 comparator, where the dominant response mode is gain degradation of the input transistor. Some circuits fail catastrophically at much lower equivalent total dose levels compared to tests with gamma rays. The device works satisfactorily up to nearly 1 Mrad(Si) when it is irradiated with gamma rays, but fails catastrophically between 50 and 70 krad(Si) when it is irradiated with protons.
Damage Mechanisms and Mechanical Properties of High-Strength Multiphase Steels.
Heibel, Sebastian; Dettinger, Thomas; Nester, Winfried; Clausmeyer, Till; Tekkaya, A Erman
2018-05-09
The usage of high-strength steels for structural components and reinforcement parts is inevitable for modern car-body manufacture in reaching lightweight design as well as increasing passive safety. Depending on their microstructure these steels show differing damage mechanisms and various mechanical properties which cannot be classified comprehensively via classical uniaxial tensile testing. In this research, damage initiation, evolution and final material failure are characterized for commercially produced complex-phase (CP) and dual-phase (DP) steels in a strength range between 600 and 1000 MPa. Based on these investigations CP steels with their homogeneous microstructure are characterized as damage tolerant and hence less edge-crack sensitive than DP steels. As final fracture occurs after a combination of ductile damage evolution and local shear band localization in ferrite grains at a characteristic thickness strain, this strain measure is introduced as a new parameter for local formability. In terms of global formability DP steels display advantages because of their microstructural composition of soft ferrite matrix including hard martensite particles. Combining true uniform elongation as a measure for global formability with the true thickness strain at fracture for local formability the mechanical material response can be assessed on basis of uniaxial tensile testing incorporating all microstructural characteristics on a macroscopic scale. Based on these findings a new classification scheme for the recently developed high-strength multiphase steels with significantly better formability resulting of complex underlying microstructures is introduced. The scheme overcomes the steel designations using microstructural concepts, which provide no information about design and production properties.
Multiaxial and thermomechanical fatigue considerations in damage tolerant design
NASA Technical Reports Server (NTRS)
Leese, G. E.; Bill, R. C.
1985-01-01
In considering damage tolerant design concepts for gas turbine hot section components, several challenging concerns arise: Complex multiaxial loading situations are encountered; Thermomechanical fatigue loading involving very wide temperature ranges is imposed on components; Some hot section materials are extremely anisotropic; and coatings and environmental interactions play an important role in crack propagation. The effects of multiaxiality and thermomechanical fatigue are considered from the standpoint of their impact on damage tolerant design concepts. Recently obtained research results as well as results from the open literature are examined and their implications for damage tolerant design are discussed. Three important needs required to advance analytical capabilities in support of damage tolerant design become readily apparent: (1) a theoretical basis to account for the effect of nonproportional loading (mechanical and mechanical/thermal); (2) the development of practical crack growth parameters that are applicable to thermomechanical fatigue situations; and (3) the development of crack growth models that address multiple crack failures.
Boege, Yannick; Malehmir, Mohsen; Healy, Marc E; Bettermann, Kira; Lorentzen, Anna; Vucur, Mihael; Ahuja, Akshay K; Böhm, Friederike; Mertens, Joachim C; Shimizu, Yutaka; Frick, Lukas; Remouchamps, Caroline; Mutreja, Karun; Kähne, Thilo; Sundaravinayagam, Devakumar; Wolf, Monika J; Rehrauer, Hubert; Koppe, Christiane; Speicher, Tobias; Padrissa-Altés, Susagna; Maire, Renaud; Schattenberg, Jörn M; Jeong, Ju-Seong; Liu, Lei; Zwirner, Stefan; Boger, Regina; Hüser, Norbert; Davis, Roger J; Müllhaupt, Beat; Moch, Holger; Schulze-Bergkamen, Henning; Clavien, Pierre-Alain; Werner, Sabine; Borsig, Lubor; Luther, Sanjiv A; Jost, Philipp J; Weinlich, Ricardo; Unger, Kristian; Behrens, Axel; Hillert, Laura; Dillon, Christopher; Di Virgilio, Michela; Wallach, David; Dejardin, Emmanuel; Zender, Lars; Naumann, Michael; Walczak, Henning; Green, Douglas R; Lopes, Massimo; Lavrik, Inna; Luedde, Tom; Heikenwalder, Mathias; Weber, Achim
2017-09-11
Concomitant hepatocyte apoptosis and regeneration is a hallmark of chronic liver diseases (CLDs) predisposing to hepatocellular carcinoma (HCC). Here, we mechanistically link caspase-8-dependent apoptosis to HCC development via proliferation- and replication-associated DNA damage. Proliferation-associated replication stress, DNA damage, and genetic instability are detectable in CLDs before any neoplastic changes occur. Accumulated levels of hepatocyte apoptosis determine and predict subsequent hepatocarcinogenesis. Proliferation-associated DNA damage is sensed by a complex comprising caspase-8, FADD, c-FLIP, and a kinase-dependent function of RIPK1. This platform requires a non-apoptotic function of caspase-8, but no caspase-3 or caspase-8 cleavage. It may represent a DNA damage-sensing mechanism in hepatocytes that can act via JNK and subsequent phosphorylation of the histone variant H2AX. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Structural damage detection using deep learning of ultrasonic guided waves
NASA Astrophysics Data System (ADS)
Melville, Joseph; Alguri, K. Supreet; Deemer, Chris; Harley, Joel B.
2018-04-01
Structural health monitoring using ultrasonic guided waves relies on accurate interpretation of guided wave propagation to distinguish damage state indicators. However, traditional physics based models do not provide an accurate representation, and classic data driven techniques, such as a support vector machine, are too simplistic to capture the complex nature of ultrasonic guide waves. To address this challenge, this paper uses a deep learning interpretation of ultrasonic guided waves to achieve fast, accurate, and automated structural damaged detection. To achieve this, full wavefield scans of thin metal plates are used, half from the undamaged state and half from the damaged state. This data is used to train our deep network to predict the damage state of a plate with 99.98% accuracy given signals from just 10 spatial locations on the plate, as compared to that of a support vector machine (SVM), which achieved a 62% accuracy.
Li, Jun; Zhang, Hong; Han, Yinshan; Wang, Baodong
2016-01-01
Focusing on the diversity, complexity and uncertainty of the third-party damage accident, the failure probability of third-party damage to urban gas pipeline was evaluated on the theory of analytic hierarchy process and fuzzy mathematics. The fault tree of third-party damage containing 56 basic events was built by hazard identification of third-party damage. The fuzzy evaluation of basic event probabilities were conducted by the expert judgment method and using membership function of fuzzy set. The determination of the weight of each expert and the modification of the evaluation opinions were accomplished using the improved analytic hierarchy process, and the failure possibility of the third-party to urban gas pipeline was calculated. Taking gas pipelines of a certain large provincial capital city as an example, the risk assessment structure of the method was proved to conform to the actual situation, which provides the basis for the safety risk prevention.
DNA damage in an animal model of maple syrup urine disease.
Scaini, Giselli; Jeremias, Isabela C; Morais, Meline O S; Borges, Gabriela D; Munhoz, Bruna P; Leffa, Daniela D; Andrade, Vanessa M; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L
2012-06-01
Maple syrup urine disease is an inborn error of metabolism caused by a severe deficiency of the branched chain alpha-ketoacid dehydrogenase complex. Neurological dysfunction is a common finding in patients with maple syrup urine disease. However, the mechanisms underlying the neuropathology of brain damage in this disorder are poorly understood. In this study, we investigated whether acute or chronic administration of a branched chain amino acid pool (leucine, isoleucine and valine) causes transient DNA damage, as determined by the alkaline comet assay, in the brain and blood of rats during development and whether antioxidant treatment prevented the alterations induced by branched chain amino acids. Our results showed that the acute administration of branched chain amino acids increased the DNA damage frequency and damage index in the hippocampus. However, the chronic administration of branched chain amino acids increased the DNA damage frequency and damage index in both the hippocampus and the striatum, and the antioxidant treatment was able to prevent DNA damage in the hippocampus and striatum. The present study demonstrated that metabolite accumulation in MSUD induces DNA damage in the hippocampus and striatum and that it may be implicated in the neuropathology observed in the affected patients. We demonstrated that the effect of antioxidant treatment (N-acetylcysteine plus deferoxamine) prevented DNA damage, suggesting the involvement of oxidative stress in DNA damage. Copyright © 2012 Elsevier Inc. All rights reserved.
Spermatogenesis in Platynereis massiliensis (Polychaeta: Nereidae)
NASA Astrophysics Data System (ADS)
Lücht, Joachim; Pfannenstiel, Hans-Dieter
1989-03-01
Stage 1 of spermatogenesis in the protandrous polychaete Platynereis massiliensis is represented by clusters of about 60 spermatogonia which appear in the coelomic cavity. There are no testes in P. massiliensis. The origin of the spermatogonial clusters is not known. Subclusters of approximately 20 primary spermatocytes each represent stage 2. The appearance of synaptonemal figures in the spermatocyte nuclei marks the beginning of stage 3. Cells tend to lose their tight packing during stage 3 but interdigitate with cellular processes. Then very small subclusters of 4 to 8 spermatocytes appear. Meiosis is completed during stage 4, giving rise to secondary spermatocytes and then to spermatid tetrads. Spermatogonia and primary spermatocytes are interconnected by structurally specialized fusomes while secondary spermatocytes and spermatids, which are also in cytoplasmic continuity, show rather simple cell bridges. Synthesis of acrosomal material starts during stage 2. During spermiogenesis the proacrosomal vesicles of Golgi origin travel from the posterior part of the cell to its anterior part to form the acrosome proper. Acrosome formation, nuclear condensation, shaping of the long and slender sperm nucleus, and development of the sperm tail are the main events during spermiogenesis. Sperm morphology is briefly discussed wity respect to its phylogenetic bearings.
Mary E. Mason; Jennifer L. Koch; Marek Krasowski; Judy Loo
2013-01-01
Beech bark disease is an insect-fungus complex that damages and often kills American beech trees and has major ecological and economic impacts on forests of the northeastern United States and southeastern Canadian forests. The disease begins when exotic beech scale insects feed on the bark of trees, and is followed by infection of damaged bark tissues by one of the...
Modern Initial Management of Severe Limbs Trauma in War Surgery: Orthopaedic Damage Control
2010-04-01
avoid fat embolism , allow an optimal nursing and medical evacuation without any secondary functional consequences [3]. 2.2.1 Indications: The...decrease the risk of fat embolism . Modern Initial Management of Severe Limbs Trauma in War Surgery: “Orthopaedic Damage Control” RTO-MP-HFM-182 17...injuries. Orthopaedic Imperious: Multiple open shaft fractures with blood loss, complex epiphysal fractures requiring a long difficult surgical bloody
NASA Technical Reports Server (NTRS)
George, K.; Hada, M.; Chappell, L.; Cucinotta, F. A.
2011-01-01
Track structure models predict that at a fixed value of LET, particles with lower charge number, Z will have a higher biological effectiveness compared to particles with a higher Z. In this report we investigated how track structure effects induction of chromosomal aberration in human cells. Human lymphocytes were irradiated in vitro with various energies of accelerated iron, silicon, neon, or titanium ions and chromosome damage was assessed in using three color FISH chromosome painting in chemically induced PCC samples collected a first cell division post irradiation. The LET values for these ions ranged from 30 to195 keV/micron. Of the particles studied, Neon ions have the highest biological effectiveness for induction of total chromosome damage, which is consistent with track structure model predictions. For complex-type exchanges 64 MeV/ u Neon and 450 MeV/u Iron were equally effective and induced the most complex damage. In addition we present data on chromosomes exchanges induced by six different energies of protons (5 MeV/u to 2.5 GeV/u). The linear dose response term was similar for all energies of protons suggesting that the effect of the higher LET at low proton energies is balanced by the production of nuclear secondaries from the high energy protons.
Carvalho, Nathalia S; Silva, Mônica M; Silva, Renan O; Nicolau, Lucas A D; Sousa, Francisca Beatriz M; Damasceno, Samara R B; Silva, Durcilene A; Barbosa, André L R; Leite, José Roberto S A; Medeiros, Jand Venes R
2015-05-01
Long-term use nonsteroidal anti-inflammatory drug is associated with gastrointestinal (GI) lesion formation. The aim of this study was to investigate the protective activity of cashew gum (CG), a complex heteropolysaccharide extracted from Anacardium occidentale on naproxen (NAP)-induced GI damage. Male Wistar rats were pretreated with vehicle or CG (1, 3, 10, and 30 mg/kg, p.o.) twice daily for 2 days; after 1 h, NAP (80 mg/kg, p.o.) was administered. The rats were euthanized on the 2nd day of treatment, 4 h after NAP administration. Stomach lesions were measured using digital calipers. The medial small intestine was used for the evaluation of macroscopic lesion scores. Samples of the stomach and the intestine were used for histological evaluation, and assays for glutathione (GSH), malonyldialdehyde (MDA), and myeloperoxidase (MPO). Additional rats were used to measure gastric mucus and secretion. Pretreatment with CG reduced the macroscopic and microscopic damage induced by NAP. CG significantly attenuated NAP-induced alterations in MPO, GSH, and MDA levels. Furthermore, CG returned adherent mucus levels to normal values. These results suggest that CG has a protective effect against GI damage via mechanisms that involve the inhibition of inflammation and increasing the amount of adherent mucus in mucosa. © 2015 Wiley Periodicals, Inc.
Girling, Robbie D.; Stewart-Jones, Alex; Dherbecourt, Julie; Staley, Joanna T.; Wright, Denis J.; Poppy, Guy M.
2011-01-01
Plants produce volatile organic compounds (VOCs) in response to herbivore attack, and these VOCs can be used by parasitoids of the herbivore as host location cues. We investigated the behavioural responses of the parasitoid Cotesia vestalis to VOCs from a plant–herbivore complex consisting of cabbage plants (Brassica oleracea) and the parasitoids host caterpillar, Plutella xylostella. A Y-tube olfactometer was used to compare the parasitoids' responses to VOCs produced as a result of different levels of attack by the caterpillar and equivalent levels of mechanical damage. Headspace VOC production by these plant treatments was examined using gas chromatography–mass spectrometry. Cotesia vestalis were able to exploit quantitative and qualitative differences in volatile emissions, from the plant–herbivore complex, produced as a result of different numbers of herbivores feeding. Cotesia vestalis showed a preference for plants with more herbivores and herbivore damage, but did not distinguish between different levels of mechanical damage. Volatile profiles of plants with different levels of herbivores/herbivore damage could also be separated by canonical discriminant analyses. Analyses revealed a number of compounds whose emission increased significantly with herbivore load, and these VOCs may be particularly good indicators of herbivore number, as the parasitoid processes cues from its external environment. PMID:21270031
Arthur, Aston L; Hoffmann, Ary A; Umina, Paul A
2015-10-01
A key component for spray decision-making in IPM programmes is the establishment of economic injury levels (EILs) and economic thresholds (ETs). We aimed to establish an EIL for the redlegged earth mite (Halotydeus destructor Tucker) on canola. Complex interactions between mite numbers, feeding damage and plant recovery were found, highlighting the challenges in linking H. destructor numbers to yield. A guide of 10 mites plant(-1) was established at the first-true-leaf stage; however, simple relationships were not evident at other crop development stages, making it difficult to establish reliable EILs based on mite number. Yield was, however, strongly associated with plant damage and plant densities, reflecting the impact of mite feeding damage and indicating a plant-based alternative for establishing thresholds for H. destructor. Drawing on data from multiple field trials, we show that plant densities below 30-40 plants m(-2) could be used as a proxy for mite damage when reliable estimates of mite densities are not possible. This plant-based threshold provides a practical tool that avoids the difficulties of accurately estimating mite densities. The approach may be applicable to other situations where production conditions are unpredictable and interactions between pests and plant hosts are complex. © 2015 Society of Chemical Industry.
Ironside, J W; Bell, J E
2007-12-01
A wide range of infectious diseases can result in dementia, although the identity and nature of these diseases has changed over time. Two of the most significant current groups in terms of scientific complexity are HIV/AIDS and prion diseases. In these disorders, dementia occurs either as a consequence of targeting the brain and selectively damaging neurones, or by an indirect effect of neuroinflammation. In prion diseases, both direct neurotoxicity and neuroinflammation may act to result in neuronal damage. In HIV encephalitis, the progression of the dementia is slower, perhaps reflecting indirect damage that appears to result from neuroinflammation as a main cause of neuronal death. An ever-increasing range of model systems is now available to study the neuronal damage in infectious dementias, ranging from cell culture systems to animal models, some of which, particularly in the case of prion diseases, are very well characterised and amenable to controlled manipulation in terms of both host and agent parameters. As valuable as these experimental models are, they do not allow a direct approach to an understanding of dementia, the complexities of which cannot readily be studied in vitro or in animal models, but they do allow studies of interventions and therapeutic strategies. This review summarises the current state of knowledge regarding the major infective dementias.
Complexation and molecular modeling studies of europium(III)-gallic acid-amino acid complexes.
Taha, Mohamed; Khan, Imran; Coutinho, João A P
2016-04-01
With many metal-based drugs extensively used today in the treatment of cancer, attention has focused on the development of new coordination compounds with antitumor activity with europium(III) complexes recently introduced as novel anticancer drugs. The aim of this work is to design new Eu(III) complexes with gallic acid, an antioxida'nt phenolic compound. Gallic acid was chosen because it shows anticancer activity without harming health cells. As antioxidant, it helps to protect human cells against oxidative damage that implicated in DNA damage, cancer, and accelerated cell aging. In this work, the formation of binary and ternary complexes of Eu(III) with gallic acid, primary ligand, and amino acids alanine, leucine, isoleucine, and tryptophan was studied by glass electrode potentiometry in aqueous solution containing 0.1M NaNO3 at (298.2 ± 0.1) K. Their overall stability constants were evaluated and the concentration distributions of the complex species in solution were calculated. The protonation constants of gallic acid and amino acids were also determined at our experimental conditions and compared with those predicted by using conductor-like screening model for realistic solvation (COSMO-RS) model. The geometries of Eu(III)-gallic acid complexes were characterized by the density functional theory (DFT). The spectroscopic UV-visible and photoluminescence measurements are carried out to confirm the formation of Eu(III)-gallic acid complexes in aqueous solutions. Copyright © 2016 Elsevier Inc. All rights reserved.
Ma, Songyun; Scheider, Ingo; Bargmann, Swantje
2016-09-01
An anisotropic constitutive model is proposed in the framework of finite deformation to capture several damage mechanisms occurring in the microstructure of dental enamel, a hierarchical bio-composite. It provides the basis for a homogenization approach for an efficient multiscale (in this case: multiple hierarchy levels) investigation of the deformation and damage behavior. The influence of tension-compression asymmetry and fiber-matrix interaction on the nonlinear deformation behavior of dental enamel is studied by 3D micromechanical simulations under different loading conditions and fiber lengths. The complex deformation behavior and the characteristics and interaction of three damage mechanisms in the damage process of enamel are well captured. The proposed constitutive model incorporating anisotropic damage is applied to the first hierarchical level of dental enamel and validated by experimental results. The effect of the fiber orientation on the damage behavior and compressive strength is studied by comparing micro-pillar experiments of dental enamel at the first hierarchical level in multiple directions of fiber orientation. A very good agreement between computational and experimental results is found for the damage evolution process of dental enamel. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Guzder, S N; Sung, P; Prakash, L; Prakash, S
1998-11-20
Saccharomyces cerevisiae Rad4 and Rad23 proteins are required for the nucleotide excision repair of UV light-damaged DNA. Previous studies have indicated that these two DNA repair proteins are associated in a tight complex, which we refer to as nucleotide excision repair factor 2 (NEF2). In a reconstituted nucleotide excision repair reaction, incision of UV-damaged DNA is dependent on NEF2, indicating a role of NEF2 in an early step of the repair process. NEF2 does not, however, possess an enzymatic activity, and its function in the damage-specific incision reaction has not yet been defined. Here we use a DNA mobility shift assay to demonstrate that NEF2 binds specifically to UV-damaged DNA. Elimination of cyclobutane pyrimidine dimers from the UV-damaged DNA by enzymatic photoreactivation has little effect on the affinity of NEF2 for the DNA, suggesting that NEF2 recognizes the 6-(1, 2)-dihydro-2-oxo-4-pyrimidinyl)-5-methyl-2,4-(1H,3H)-pyrimidinedione photoproducts in the damaged DNA. These results highlight the intricacy of the DNA damage-demarcation reaction during nucleotide excision repair in eukaryotes.
Equivalent damage: A critical assessment
NASA Technical Reports Server (NTRS)
Laflen, J. R.; Cook, T. S.
1982-01-01
Concepts in equivalent damage were evaluated to determine their applicability to the life prediction of hot path components of aircraft gas turbine engines. Equivalent damage was defined as being those effects which influence the crack initiation life-time beyond the damage that is measured in uniaxial, fully-reversed sinusoidal and isothermal experiments at low homologous temperatures. Three areas of equivalent damage were examined: mean stress, cumulative damage, and multiaxiality. For each area, a literature survey was conducted to aid in selecting the most appropriate theories. Where possible, data correlations were also used in the evaluation process. A set of criteria was developed for ranking the theories in each equivalent damage regime. These criteria considered aspects of engine utilization as well as the theoretical basis and correlative ability of each theory. In addition, consideration was given to the complex nature of the loading cycle at fatigue critical locations of hot path components; this loading includes non-proportional multiaxial stressing, combined temperature and strain fluctuations, and general creep-fatigue interactions. Through applications of selected equivalent damage theories to some suitable data sets it was found that there is insufficient data to allow specific recommendations of preferred theories for general applications. A series of experiments and areas of further investigations were identified.
Systemic estimation of the effect of photodynamic therapy of cancer
NASA Astrophysics Data System (ADS)
Kogan, Eugenia A.; Meerovich, Gennadii A.; Torshina, Nadezgda L.; Loschenov, Victor B.; Volkova, Anna I.; Posypanova, Anna M.
1997-12-01
The effects of photodynamic therapy (PDT) of cancer needs objective estimation and its unification in experimental as well as in clinical studies. They must include not only macroscopical changes but also the complex of following morphological criteria: (1) the level of direct tumor damage (direct necrosis and apoptosis); (2) the level of indirect tumor damage (ischemic necrosis); (3) the signs of vascular alterations; (4) the local and systemic antiblastome resistance; (5) the proliferative activity and malignant potential of survival tumor tissue. We have performed different regimes PDT using phthalocyanine derivatives. The complex of morphological methods (Ki-67, p53, c-myc, bcl-2) was used. Obtained results showed the connection of the tilted morphological criteria with tumor regression.
Rajasekaran, Shanmuganathan; Maheswaran, Anupama; Aiyer, Siddharth N; Kanna, Rishi; Dumpa, Srikanth Reddy; Shetty, Ajoy Prasad
2016-06-01
We aimed to formulate a radiological index based on plain radiographs and computer tomography (CT) to reliably detect posterior ligamentous complex (PLC) injury without need for MRI. Sixty out of 148 consecutive thoracolumbar fractures with doubtful PLC were assessed with MRI, CT and radiographs. PLC injury was assessed with the following radiological parameters: superior-inferior end plate angle (SIEA), vertebral body height (BH), local kyphosis (LK), inter-spinous distance (ISD) and inter-pedicular distance (IPD) and correlated with MRI findings of PLC injury. Statistical analysis was performed to identify the predictive values for the parameters to identify PLC damage. MRI identified PLC injury in 25/60 cases. The ISD and LK were found to be significant predictors of PLC injury. On radiographs the mean LK with PLC damage was 25.86° compared to 21.02° with an intact PLC (p = 0.006). The ISD difference was 6.70 mm in cases with PLC damage compared to 2.86 mm with an intact PLC (p = 0.011). In CT images, the mean LK with PLC damage was 22.96° compared to 18.44° with an intact PLC ( p = 0.019). The ISD difference was 3.10 mm with PLC damage compared to 1.62 mm without PLC damage (p = 0.005). On plain radiographs the presence of LK greater than 20 °(CI 64-95) and ISD difference greater than 2 mm (CI 70-97) can predict PLC injury. These guidelines may be utilised in the emergency room especially when the associated cost, availability and time delay in performing MRI are a concern.
Fortin, Paul R; Cloutier, Nathalie; Bissonnette, Vincent; Aghdassi, Ellie; Eder, Lihi; Simonyan, David; Laflamme, Nathalie; Boilard, Eric
2016-11-01
Microparticles (MP) are small extracellular vesicles present in body fluids. MP originate from different cellular lineages, principally from platelets in blood, and may expose phosphatidylserine (PS). In systemic lupus erythematosus (SLE), MP harbor immunoglobulin G (IgG), thereby forming MP-containing immune complexes (mpIC). We aimed to verify an association between SLE disease activity, damage, and surrogate markers of atherosclerosis and MP harboring IgG, taking into account the platelet origin and PS exposure of MP. MP expressing surface IgG, platelet antigen (CD41+), and PS were quantified using flow cytometry in plasma of 191 women with SLE. Carotid ultrasounds (US) were available in 113 patients. Spearman correlation analysis was used to analyze whether levels of MP were associated with the following outcomes: SLE Disease Activity Index 2000 (SLEDAI-2K), Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index (SDI), and carotid US plaques and intima-media thickness (CIMT) as surrogates for vascular damage. We found CD41+ MP harboring IgG present in SLE. A positive correlation was found between SLEDAI-2K and levels of CD41+ MP harboring IgG and exposing (p = 0.027) and non-exposing PS (p = 0.001). Conversely, SDI (p = 0.024) and CIMT (p = 0.016) correlated with concentrations of CD41- MP harboring IgG and exposing PS. Associations were independent of low-density lipoprotein cholesterol level, body mass index, and antimalarial drug use. Different subtypes of mpIC are produced in SLE and are associated with distinct clinical characteristics such as disease activity and vascular damage. The assessment of MP subtypes might serve for the design of predictive markers of disease activity and vascular damage in patients.
Brun, Sonia; Abella, Neus; Berciano, Maria T; Tapia, Olga; Jaumot, Montserrat; Freire, Raimundo; Lafarga, Miguel; Agell, Neus
2017-01-01
We previously showed that p21Cip1 transits through the nucleolus on its way from the nucleus to the cytoplasm and that DNA damage inhibits this transit and induces the formation of p21Cip1-containing intranucleolar bodies (INoBs). Here, we demonstrate that these INoBs also contain SUMO-1 and UBC9, the E2 SUMO-conjugating enzyme. Furthermore, whereas wild type SUMO-1 localized in INoBs, a SUMO-1 mutant, which is unable to conjugate with proteins, does not, suggesting the presence of SUMOylated proteins at INoBs. Moreover, depletion of the SUMO-conjugating enzyme UBC9 or the sumo hydrolase SENP2 changed p21Cip1 intracellular distribution. In addition to SUMO-1 and p21Cip1, cell cycle regulators and DNA damage checkpoint proteins, including Cdk2, Cyclin E, PCNA, p53 and Mdm2, and PML were also detected in INoBs. Importantly, depletion of UBC9 or p21Cip1 impacted INoB biogenesis and the nucleolar accumulation of the cell cycle regulators and DNA damage checkpoint proteins following DNA damage. The impact of p21Cip1 and SUMO-1 on the accumulation of proteins in INoBs extends also to CRM1, a nuclear exportin that is also important for protein translocation from the cytoplasm to the nucleolus. Thus, SUMO and p21Cip1 regulate the transit of proteins through the nucleolus, and that disruption of nucleolar export by DNA damage induces SUMO and p21Cip1 to act as hub proteins to form a multiprotein complex in the nucleolus.
Brun, Sonia; Abella, Neus; Berciano, Maria T.; Tapia, Olga; Jaumot, Montserrat; Freire, Raimundo; Lafarga, Miguel
2017-01-01
We previously showed that p21Cip1 transits through the nucleolus on its way from the nucleus to the cytoplasm and that DNA damage inhibits this transit and induces the formation of p21Cip1-containing intranucleolar bodies (INoBs). Here, we demonstrate that these INoBs also contain SUMO-1 and UBC9, the E2 SUMO-conjugating enzyme. Furthermore, whereas wild type SUMO-1 localized in INoBs, a SUMO-1 mutant, which is unable to conjugate with proteins, does not, suggesting the presence of SUMOylated proteins at INoBs. Moreover, depletion of the SUMO-conjugating enzyme UBC9 or the sumo hydrolase SENP2 changed p21Cip1 intracellular distribution. In addition to SUMO-1 and p21Cip1, cell cycle regulators and DNA damage checkpoint proteins, including Cdk2, Cyclin E, PCNA, p53 and Mdm2, and PML were also detected in INoBs. Importantly, depletion of UBC9 or p21Cip1 impacted INoB biogenesis and the nucleolar accumulation of the cell cycle regulators and DNA damage checkpoint proteins following DNA damage. The impact of p21Cip1 and SUMO-1 on the accumulation of proteins in INoBs extends also to CRM1, a nuclear exportin that is also important for protein translocation from the cytoplasm to the nucleolus. Thus, SUMO and p21Cip1 regulate the transit of proteins through the nucleolus, and that disruption of nucleolar export by DNA damage induces SUMO and p21Cip1 to act as hub proteins to form a multiprotein complex in the nucleolus. PMID:28582471
Yu, Emma P K; Reinhold, Johannes; Yu, Haixiang; Starks, Lakshi; Uryga, Anna K; Foote, Kirsty; Finigan, Alison; Figg, Nichola; Pung, Yuh-Fen; Logan, Angela; Murphy, Michael P; Bennett, Martin
2017-12-01
Mitochondrial DNA (mtDNA) damage is present in murine and human atherosclerotic plaques. However, whether endogenous levels of mtDNA damage are sufficient to cause mitochondrial dysfunction and whether decreasing mtDNA damage and improving mitochondrial respiration affects plaque burden or composition are unclear. We examined mitochondrial respiration in human atherosclerotic plaques and whether augmenting mitochondrial respiration affects atherogenesis. Human atherosclerotic plaques showed marked mitochondrial dysfunction, manifested as reduced mtDNA copy number and oxygen consumption rate in fibrous cap and core regions. Vascular smooth muscle cells derived from plaques showed impaired mitochondrial respiration, reduced complex I expression, and increased mitophagy, which was induced by oxidized low-density lipoprotein. Apolipoprotein E-deficient (ApoE -/- ) mice showed decreased mtDNA integrity and mitochondrial respiration, associated with increased mitochondrial reactive oxygen species. To determine whether alleviating mtDNA damage and increasing mitochondrial respiration affects atherogenesis, we studied ApoE -/- mice overexpressing the mitochondrial helicase Twinkle (Tw + /ApoE -/- ). Tw + /ApoE -/- mice showed increased mtDNA integrity, copy number, respiratory complex abundance, and respiration. Tw + /ApoE -/- mice had decreased necrotic core and increased fibrous cap areas, and Tw + /ApoE -/- bone marrow transplantation also reduced core areas. Twinkle increased vascular smooth muscle cell mtDNA integrity and respiration. Twinkle also promoted vascular smooth muscle cell proliferation and protected both vascular smooth muscle cells and macrophages from oxidative stress-induced apoptosis. Endogenous mtDNA damage in mouse and human atherosclerosis is associated with significantly reduced mitochondrial respiration. Reducing mtDNA damage and increasing mitochondrial respiration decrease necrotic core and increase fibrous cap areas independently of changes in reactive oxygen species and may be a promising therapeutic strategy in atherosclerosis. © 2017 The Authors.
Ataxia telangiectasia mutated (ATM) interacts with p400 ATPase for an efficient DNA damage response.
Smith, Rebecca J; Savoian, Matthew S; Weber, Lauren E; Park, Jeong Hyeon
2016-11-04
Ataxia telangiectasia mutated (ATM) and TRRAP proteins belong to the phosphatidylinositol 3-kinase-related kinase family and are involved in DNA damage repair and chromatin remodeling. ATM is a checkpoint kinase that is recruited to sites of DNA double-strand breaks where it phosphorylates a diverse range of proteins that are part of the chromatin and DNA repair machinery. As an integral subunit of the TRRAP-TIP60 complexes, p400 ATPase is a chromatin remodeler that is also targeted to DNA double-strand break sites. While it is understood that DNA binding transcriptional activators recruit p400 ATPase into a regulatory region of the promoter, how p400 recognises and moves to DNA double-strand break sites is far less clear. Here we investigate a possibility whether ATM serves as a shuttle to deliver p400 to break sites. Our data indicate that p400 co-immunoprecipitates with ATM independently of DNA damage state and that the N-terminal domain of p400 is vital for this interaction. Heterologous expression studies using Sf9 cells revealed that the ATM-p400 complex can be reconstituted without other mammalian bridging proteins. Overexpression of ATM-interacting p400 regions in U2OS cells induced dominant negative effects including the inhibition of both DNA damage repair and cell proliferation. Consistent with the dominant negative effect, the stable expression of an N-terminal p400 fragment showed a decrease in the association of p400 with ATM, but did not alter the association of p400 with TRRAP. Taken together, our findings suggest that a protein-protein interaction between ATM and p400 ATPase occurs independently of DNA damage and contributes to efficient DNA damage response and repair.
NDE and SHM Simulation for CFRP Composites
NASA Technical Reports Server (NTRS)
Leckey, Cara A. C.; Parker, F. Raymond
2014-01-01
Ultrasound-based nondestructive evaluation (NDE) is a common technique for damage detection in composite materials. There is a need for advanced NDE that goes beyond damage detection to damage quantification and characterization in order to enable data driven prognostics. The damage types that exist in carbon fiber-reinforced polymer (CFRP) composites include microcracking and delaminations, and can be initiated and grown via impact forces (due to ground vehicles, tool drops, bird strikes, etc), fatigue, and extreme environmental changes. X-ray microfocus computed tomography data, among other methods, have shown that these damage types often result in voids/discontinuities of a complex volumetric shape. The specific damage geometry and location within ply layers affect damage growth. Realistic threedimensional NDE and structural health monitoring (SHM) simulations can aid in the development and optimization of damage quantification and characterization techniques. This paper is an overview of ongoing work towards realistic NDE and SHM simulation tools for composites, and also discusses NASA's need for such simulation tools in aeronautics and spaceflight. The paper describes the development and implementation of a custom ultrasound simulation tool that is used to model ultrasonic wave interaction with realistic 3-dimensional damage in CFRP composites. The custom code uses elastodynamic finite integration technique and is parallelized to run efficiently on computing cluster or multicore machines.
NASA Astrophysics Data System (ADS)
Khalili, Ashkan
Wave propagation analysis in 1-D and 2-D composite structures is performed efficiently and accurately through the formulation of a User-Defined Element (UEL) based on the wavelet spectral finite element (WSFE) method. The WSFE method is based on the first order shear deformation theory which yields accurate results for wave motion at high frequencies. The wave equations are reduced to ordinary differential equations using Daubechies compactly supported, orthonormal, wavelet scaling functions for approximations in time and one spatial dimension. The 1-D and 2-D WSFE models are highly efficient computationally and provide a direct relationship between system input and output in the frequency domain. The UEL is formulated and implemented in Abaqus for wave propagation analysis in composite structures with complexities. Frequency domain formulation of WSFE leads to complex valued parameters, which are decoupled into real and imaginary parts and presented to Abaqus as real values. The final solution is obtained by forming a complex value using the real number solutions given by Abaqus. Several numerical examples are presented here for 1-D and 2-D composite waveguides. Wave motions predicted by the developed UEL correlate very well with Abaqus simulations using shear flexible elements. The results also show that the UEL largely retains computational efficiency of the WSFE method and extends its ability to model complex features. An enhanced cross-correlation method (ECCM) is developed in order to accurately predict damage location in plates. Three major modifications are proposed to the widely used cross-correlation method (CCM) to improve damage localization capabilities, namely actuator-sensor configuration, signal pre-processing method, and signal post-processing method. The ECCM is investigated numerically (FEM simulation) and experimentally. Experimental investigations for damage detection employ a PZT transducer as actuator and laser Doppler vibrometer as sensor. Both numerical and experimental results show that the developed method is capable of damage localization with high precision. Further, ECCM is used to detect and localize debonding in a composite material skin-stiffener joint. The UEL is used to represent the healthy case whereas the damaged case is simulated using Abaqus. It is shown that the ECCM successfully detects the location of the debond in the skin-stiffener joint.
NASA Technical Reports Server (NTRS)
Seshadri, Banavara R.; Krishnamurthy, Thiagarajan; Ross, Richard W.
2016-01-01
The development of multidisciplinary Integrated Vehicle Health Management (IVHM) tools will enable accurate detection, diagnosis and prognosis of damage under normal and adverse conditions during flight. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and structural damage conditions. A major concern is the growth of undetected damage/cracks due to fatigue and low velocity foreign object impact that can reach a critical size during flight, resulting in loss of control of the aircraft. To avoid unstable catastrophic propagation of damage during a flight, load levels must be maintained that are below the load-carrying capacity for damaged aircraft structures. Hence, a capability is needed for accurate real-time predictions of safe load carrying capacity for aircraft structures with complex damage configurations. In the present work, a procedure is developed that uses guided wave responses to interrogate damage. As the guided wave interacts with damage, the signal attenuates in some directions and reflects in others. This results in a difference in signal magnitude as well as phase shifts between signal responses for damaged and undamaged structures. Accurate estimation of damage size and location is made by evaluating the cumulative signal responses at various pre-selected sensor locations using a genetic algorithm (GA) based optimization procedure. The damage size and location is obtained by minimizing the difference between the reference responses and the responses obtained by wave propagation finite element analysis of different representative cracks, geometries and sizes.
Hippocampal Damage Increases Deontological Responses during Moral Decision Making
Rosenthal, Clive R.; Miller, Thomas D.
2016-01-01
Complex moral decision making is associated with the ventromedial prefrontal cortex (vmPFC) in humans, and damage to this region significantly increases the frequency of utilitarian judgments. Since the vmPFC has strong anatomical and functional links with the hippocampus, here we asked how patients with selective bilateral hippocampal damage would derive moral decisions on a classic moral dilemmas paradigm. We found that the patients approved of the utilitarian options significantly less often than control participants, favoring instead deontological responses—rejecting actions that harm even one person. Thus, patients with hippocampal damage have a strikingly opposite approach to moral decision making than vmPFC-lesioned patients. Skin-conductance data collected during the task showed increased emotional arousal in the hippocampal-damaged patients and they stated that their moral decisions were based on emotional instinct. By contrast, control participants made moral decisions based on the integration of an adverse emotional response to harming others, visualization of the consequences of one's action, and the rational re-evaluation of future benefits. This integration may be disturbed in patients with either hippocampal or vmPFC damage. Hippocampal lesions decreased the ability to visualize a scenario and its future consequences, which seemed to render the adverse emotional response overwhelmingly dominant. In patients with vmPFC damage, visualization might also be reduced alongside an inability to detect the adverse emotional response, leaving only the utilitarian option open. Overall, these results provide insights into the processes involved in moral decision making and highlight the complementary roles played by two closely connected brain regions. SIGNIFICANCE STATEMENT The ventromedial prefrontal cortex (vmPFC) is closely associated with the ability to make complex moral judgements. When this area is damaged, patients become more utilitarian (the ends justify the means) and have decreased emotional arousal during moral decision making. The vmPFC is closely connected with another brain region—the hippocampus. In this study we found that patients with selective bilateral hippocampal damage show a strikingly opposite response pattern to those with vmPFC damage when making moral judgements. They rejected harmful actions of any kind (thus their responses were deontological) and showed increased emotional arousal. These results provide new insights into the processes involved in moral decision making and highlight the complementary roles played by two closely connected brain regions. PMID:27903725
Hippocampal Damage Increases Deontological Responses during Moral Decision Making.
McCormick, Cornelia; Rosenthal, Clive R; Miller, Thomas D; Maguire, Eleanor A
2016-11-30
Complex moral decision making is associated with the ventromedial prefrontal cortex (vmPFC) in humans, and damage to this region significantly increases the frequency of utilitarian judgments. Since the vmPFC has strong anatomical and functional links with the hippocampus, here we asked how patients with selective bilateral hippocampal damage would derive moral decisions on a classic moral dilemmas paradigm. We found that the patients approved of the utilitarian options significantly less often than control participants, favoring instead deontological responses-rejecting actions that harm even one person. Thus, patients with hippocampal damage have a strikingly opposite approach to moral decision making than vmPFC-lesioned patients. Skin-conductance data collected during the task showed increased emotional arousal in the hippocampal-damaged patients and they stated that their moral decisions were based on emotional instinct. By contrast, control participants made moral decisions based on the integration of an adverse emotional response to harming others, visualization of the consequences of one's action, and the rational re-evaluation of future benefits. This integration may be disturbed in patients with either hippocampal or vmPFC damage. Hippocampal lesions decreased the ability to visualize a scenario and its future consequences, which seemed to render the adverse emotional response overwhelmingly dominant. In patients with vmPFC damage, visualization might also be reduced alongside an inability to detect the adverse emotional response, leaving only the utilitarian option open. Overall, these results provide insights into the processes involved in moral decision making and highlight the complementary roles played by two closely connected brain regions. The ventromedial prefrontal cortex (vmPFC) is closely associated with the ability to make complex moral judgements. When this area is damaged, patients become more utilitarian (the ends justify the means) and have decreased emotional arousal during moral decision making. The vmPFC is closely connected with another brain region-the hippocampus. In this study we found that patients with selective bilateral hippocampal damage show a strikingly opposite response pattern to those with vmPFC damage when making moral judgements. They rejected harmful actions of any kind (thus their responses were deontological) and showed increased emotional arousal. These results provide new insights into the processes involved in moral decision making and highlight the complementary roles played by two closely connected brain regions. Copyright © 2015 McCormick et al.
Robots that can adapt like animals.
Cully, Antoine; Clune, Jeff; Tarapore, Danesh; Mouret, Jean-Baptiste
2015-05-28
Robots have transformed many industries, most notably manufacturing, and have the power to deliver tremendous benefits to society, such as in search and rescue, disaster response, health care and transportation. They are also invaluable tools for scientific exploration in environments inaccessible to humans, from distant planets to deep oceans. A major obstacle to their widespread adoption in more complex environments outside factories is their fragility. Whereas animals can quickly adapt to injuries, current robots cannot 'think outside the box' to find a compensatory behaviour when they are damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes, and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots. A promising approach to reducing robot fragility involves having robots learn appropriate behaviours in response to damage, but current techniques are slow even with small, constrained search spaces. Here we introduce an intelligent trial-and-error algorithm that allows robots to adapt to damage in less than two minutes in large search spaces without requiring self-diagnosis or pre-specified contingency plans. Before the robot is deployed, it uses a novel technique to create a detailed map of the space of high-performing behaviours. This map represents the robot's prior knowledge about what behaviours it can perform and their value. When the robot is damaged, it uses this prior knowledge to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a behaviour that compensates for the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new algorithm will enable more robust, effective, autonomous robots, and may shed light on the principles that animals use to adapt to injury.
Nakajima, Nakako Izumi; Niimi, Atsuko; Isono, Mayu; Oike, Takahiro; Sato, Hiro; Nakano, Takashi; Shibata, Atsushi
2017-08-01
Immunotherapy is expected to be promising as a next generation cancer therapy. Immunoreceptors are often activated constitutively in cancer cells, however, such levels of ligand expression are not effectively recognized by the native immune system due to tumor microenvironmental adaptation. Studies have demonstrated that natural-killer group 2, member D (NKG2D), a major activating immunoreceptor, responds to DNA damage. The upregulation of major histocompatibility complex class I-related chain A and B (MICA/B) (members of NKG2D ligands) expression after DNA damage is associated with NK cell-mediated killing of cancer cells. However, the regulation of DNA damage-induced MICA/B expression has not been fully elucidated in the context of the types of cancer cell lines. In the present study, we found that MICA/B expression varied between cancer cell lines after DNA damage. Screening in terms of chromatin remodeling identified that inhibitors related to chromatin relaxation via post-translational modification on histone H3K9, i.e. HDAC, Suv39 or G9a inhibition, restored DNA damage-dependent MICA/B expression in insensitive cells. In addition, we revealed that the restored MICA/B expression was dependent on ATR as well as E2F1, a transcription factor. We further revealed that low‑dose treatment of an HDAC inhibitor was sufficient to restore MICA/B expression in insensitive cells. Finally, we demonstrated that HDAC inhibition restored DNA damage‑dependent cytotoxic NK activity against insensitive cells. Thus, the present study revealed that DNA damage‑dependent MICA/B expression in insensitive cancer cells can be restored by chromatin relaxation via the HDAC/Suv39/G9a pathway. Collectively, manipulation of chromatin status by therapeutic cancer drugs may potentiate the antitumor effect by enhancing immune activation following radiotherapy and DNA damage-associated chemotherapy.
Robots that can adapt like animals
NASA Astrophysics Data System (ADS)
Cully, Antoine; Clune, Jeff; Tarapore, Danesh; Mouret, Jean-Baptiste
2015-05-01
Robots have transformed many industries, most notably manufacturing, and have the power to deliver tremendous benefits to society, such as in search and rescue, disaster response, health care and transportation. They are also invaluable tools for scientific exploration in environments inaccessible to humans, from distant planets to deep oceans. A major obstacle to their widespread adoption in more complex environments outside factories is their fragility. Whereas animals can quickly adapt to injuries, current robots cannot `think outside the box' to find a compensatory behaviour when they are damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes, and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots. A promising approach to reducing robot fragility involves having robots learn appropriate behaviours in response to damage, but current techniques are slow even with small, constrained search spaces. Here we introduce an intelligent trial-and-error algorithm that allows robots to adapt to damage in less than two minutes in large search spaces without requiring self-diagnosis or pre-specified contingency plans. Before the robot is deployed, it uses a novel technique to create a detailed map of the space of high-performing behaviours. This map represents the robot's prior knowledge about what behaviours it can perform and their value. When the robot is damaged, it uses this prior knowledge to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a behaviour that compensates for the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new algorithm will enable more robust, effective, autonomous robots, and may shed light on the principles that animals use to adapt to injury.
Exposing the Complex III Qo semiquinone radical
Zhang, Haibo; Osyczka, Artur; Dutton, P. L.; Moser, Christopher C.
2012-01-01
Complex III Qo site semiquinone has been assigned pivotal roles in productive energy-conversion and destructive superoxide generation. After a 30 year search, a genetic heme bH knockout arrests this transient semiquinone EPR radical, revealing the natural engineering balance pitting energy-conserving, short-circuit minimizing, split electron transfer and catalytic speed against damaging oxygen reduction. PMID:17560537
NASA Technical Reports Server (NTRS)
Rosheim, Mark; Trechsel, Hans
1993-01-01
Anthropomorphic telerobotic hand contains actuators, joints, sensors, and complex wiring harnesses. Glove protects interior components of hand from dirt and damage. Imitates motions of human fingers and wrist in lifelike and dexterous way. Incorporates pitch/yaw joints in wrist and head knuckles. Hand modular; so fingers removable, interchangeable units. Feature simplifies servicing and maintenance, which must be done frequently in such complex mechanism.
Jim Campbell-Spickler; Stephen C. Sillett
2017-01-01
Crowns of old redwoods (Sequoia sempervirens (D. Don) Endl.) are teaming with life. Storm damage followed by recovery via trunk reiteration increases the structural complexity of redwood crowns over time. Bark and wood surfaces within complex redwood crowns accumulate debris and become covered with epiphytes. Arboreal soils develop beneath...
[Arthroscopy-guided fracture management. Ankle joint and calcaneus].
Schoepp, C; Rixen, D
2013-04-01
Arthroscopic fracture management of the ankle and calcaneus requires a differentiated approach. The aim is to minimize surgical soft tissue damage and to visualize anatomical fracture reduction arthroscopically. Moreover, additional cartilage damage can be detected and treated. The arthroscopic approach is limited by deep impressions of the joint surface needing cancellous bone grafting, by multiple fracture lines on the articular side and by high-grade soft tissue damage. An alternative to the minimally invasive arthroscopic approach is open arthroscopic reduction in conventional osteosynthesis. This facilitates correct assessment of surgical reduction of complex calcaneal fractures, otherwise remaining non-anatomical reduction might not be fluoroscopically detected during surgery.
Computational simulation of composite structures with and without damage. M.S. Thesis Final Report
NASA Technical Reports Server (NTRS)
Wilt, Thomas F.
1994-01-01
A methodology is described which uses finite element analysis of various laminates to computationally simulate the effects of delamination damage initiation and growth on the structural behavior of laminated composite structures. The delamination area is expanded according to a set pattern. As the delamination area increases, how the structural response of the laminate changes with respect to buckling and strain energy release rate are investigated. Rules are presented for laminates of different configurations, materials and thickness. These results demonstrate that computational simulation methods can provide alternate methods to investigate the complex delamination damage mechanisms found in composite structures.
Impairment of social and moral behavior related to early damage in human prefrontal cortex.
Anderson, S W; Bechara, A; Damasio, H; Tranel, D; Damasio, A R
1999-11-01
The long-term consequences of early prefrontal cortex lesions occurring before 16 months were investigated in two adults. As is the case when such damage occurs in adulthood, the two early-onset patients had severely impaired social behavior despite normal basic cognitive abilities, and showed insensitivity to future consequences of decisions, defective autonomic responses to punishment contingencies and failure to respond to behavioral interventions. Unlike adult-onset patients, however, the two patients had defective social and moral reasoning, suggesting that the acquisition of complex social conventions and moral rules had been impaired. Thus early-onset prefrontal damage resulted in a syndrome resembling psychopathy.
Dynamics of the DNA damage response: insights from live-cell imaging
Karanam, Ketki; Loewer, Alexander
2013-01-01
All organisms have to safeguard the integrity of their genome to prevent malfunctioning and oncogenic transformation. Sophisticated DNA damage response mechanisms have evolved to detect and repair genomic lesions. With the emergence of live-cell microscopy of individual cells, we now begin to appreciate the complex spatiotemporal kinetics of the DNA damage response and can address the causes and consequences of the heterogeneity in the responses of genetically identical cells. Here, we highlight key discoveries where live-cell imaging has provided unprecedented insights into how cells respond to DNA double-strand breaks and discuss the main challenges and promises in using this technique. PMID:23292635
2007-05-09
KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center's Vehicle Assembly Building, technicians are inspecting the sanding performed on Atlantis' nose cone to repair hail damage. The equipment on the side of the nose cone is the sander. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch of Space Shuttle Atlantis on mission STS-117 now is targeted for June 8. Photo credit: NASA/Jack Pfaller
2007-04-13
KENNEDY SPACE CENTER, FLA. -- In the Vehicle Assembly Building, the repair work of hail damage on Atlantis' external tank is inspected. At left is Brian Miller, with NASA Quality Assurance; at right is Mike Ravenscroft, with United Space Alliance. In the front is Sabrena Yedo, with NASA Safety. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch now is targeted for June 8. Photo credit: NASA/George Shelton
Strand, Janne M; Scheffler, Katja; Bjørås, Magnar; Eide, Lars
2014-06-01
The cellular genomes are continuously damaged by reactive oxygen species (ROS) from aerobic processes. The impact of DNA damage depends on the specific site as well as the cellular state. The steady-state level of DNA damage is the net result of continuous formation and subsequent repair, but it is unknown to what extent heterogeneous damage distribution is caused by variations in formation or repair of DNA damage. Here, we used a restriction enzyme/qPCR based method to analyze DNA damage in promoter and coding regions of four nuclear genes: the two house-keeping genes Gadph and Tbp, and the Ndufa9 and Ndufs2 genes encoding mitochondrial complex I subunits, as well as mt-Rnr1 encoded by mitochondrial DNA (mtDNA). The distribution of steady-state levels of damage varied in a site-specific manner. Oxidative stress induced damage in nDNA to a similar extent in promoter and coding regions, and more so in mtDNA. The subsequent removal of damage from nDNA was efficient and comparable with recovery times depending on the initial damage load, while repair of mtDNA was delayed with subsequently slower repair rate. The repair was furthermore found to be independent of transcription or the transcription-coupled repair factor CSB, but dependent on cellular ATP. Our results demonstrate that the capacity to repair DNA is sufficient to remove exogenously induced damage. Thus, we conclude that the heterogeneous steady-state level of DNA damage in promoters and coding regions is caused by site-specific DNA damage/modifications that take place under normal metabolism. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Chao; Guo, Xiaofei; Cai, Wenqian; Ma, Yue; Zhao, Xiaoyan
2015-04-01
The binding characteristics and protective capacity of cyanidin (Cy) and cyanidin-3-glucoside (C3G) to calf thymus DNA were explored for the first time. The Cy and C3G gave a bathochromic shift to the ultraviolet-visible spectra of the DNA, indicating the formation of the DNA-Cy and DNA-C3G complexes. The complexes were formed by an intercalative binding mode based on the results of the fluorescence spectra and competitive binding analysis. Meanwhile, the Cy and C3G protected the DNA from the damage induced by the hydroxyl radical. The binding capacity and protective capacity of the C3G were stronger than that of the Cy. Furthermore, the formation of the DNA-anthocyanin complexes was spontaneous when the hydrogen bond and hydrophobic force played a key role. Hence, the Cy and C3G could protect the DNA automatically from the damage induced by the hydroxyl radical. © 2015 Institute of Food Technologists®
Shamim, Hossain Mohammad; Minami, Yukako; Tanaka, Daiki; Ukimori, Shinobu; Murray, Johanne M; Ueno, Masaru
2017-01-01
Thymidine kinase converts 5-fluorodeoxyuridine to 5-fluorodeoxyuridine monophosphate, which causes disruption of deoxynucleotide triphosphate ratios. The fission yeast Schizosaccharomyces pombe does not express endogenous thymidine kinase but 5-fluorodeoxyuridine inhibits growth when exogenous thymidine kinase is expressed. Unexpectedly, we found that 5-fluorodeoxyuridine causes S phase arrest even without thymidine kinase expression. DNA damage checkpoint proteins such as the 9-1-1 complex were required for viability in the presence of 5-fluorodeoxyuridine. We also found that strains with circular chromosomes, due to loss of pot1+, which have higher levels of replication stress, were more sensitive to loss of the 9-1-1 complex in the presence of 5-fluorodeoxyuridine. Thus, our results suggest that strains carrying circular chromosomes exhibit a greater dependence on DNA damage checkpoints to ensure viability in the presence of 5-fluorodeoxyuridine compared to stains that have linear chromosomes.
The effect of MRN complex and ATM kinase inhibitors on Zebrafish embryonic development
NASA Astrophysics Data System (ADS)
Kumaran, Malina; Fazry, Shazrul
2018-04-01
Zebrafish is an ideal animal model to study developmental biology due to its transparent embryos and rapid development stages of embryogenesis. Here we investigate the role of DNA damage proteins, specifically Mre11/Rad50/NBN (MRN) complex and ataxia-telangiectasia mutated (ATM) kinase during embryogenesis by inhibiting its function using specific MRN complex (Mirin) and ATM Kinase inhibitors (Ku60019 and Ku55933). Zebrafish embryos at midblastula transition (MBT) stage are treated with Mirin, Ku60019 and Ku55933. The embryonic development of the embryos was monitored at 24 hours-post fertilisation (hpf), 48 hpf and 72 hpf. We observed that at the lowest concentrations (3 µM of Mirin, 1.5 nM of Ku60019 and 3 nM of Ku55933), the inhibitors treated embryos have 100% survivability. However, with increasing inhibitor concentration, the survivability drops. Control or mock treatment of all embryos shows 100 % survivability rate. This study suggests that DNA damage repair proteins may be crucial for normal zebrafish embryo development and survival.
Molecular biology of Fanconi anaemia--an old problem, a new insight.
Ahmad, Shamim I; Hanaoka, Fumio; Kirk, Sandra H
2002-05-01
Fanconi anaemia (FA) comprises a group of autosomal recessive disorders resulting from mutations in one of eight genes (FANCA, FANCB, FANCC, FANCD1, FANCD2, FANCE, FANCF and FANCG). Although caused by relatively simple mutations, the disease shows a complex phenotype, with a variety of features including developmental abnormalities and ultimately severe anaemia and/or leukemia leading to death in the mid teens. Since 1992 all but two of the genes have been identified, and molecular analysis of their products has revealed a complex mode of action. Many of the proteins form a nuclear multisubunit complex that appears to be involved in the repair of double-strand DNA breaks. Additionally, at least one of the proteins, FANCC, influences apoptotic pathways in response to oxidative damage. Further analysis of the FANC proteins will provide vital information on normal cell responses to damage and allow therapeutic strategies to be developed that will hopefully supplant bone marrow transplantation. Copyright 2002 Wiley Periodicals, Inc.
The NAD+/PARP1/SIRT1 Axis in Aging.
Mendelsohn, Andrew R; Larrick, James W
2017-06-01
NAD+ levels decline with age in diverse animals from Caenorhabditis elegans to mice. Raising NAD+ levels by dietary supplementation with NAD+ precursors, nicotinamide riboside (NR) or nicotinamide mononucleotide (NMN), improves mitochondrial function and muscle and neural and melanocyte stem cell function in mice, as well as increases murine life span. Decreased NAD+ levels with age reduce SIRT1 function and reduce the mitochondrial unfolded protein response, which can be overcome by NR supplementation. Decreased NAD+ levels cause NAD+-binding protein DBC1 to form a complex with PARP1, inhibiting poly(adenosine diphosphate-ribose) polymerase (PARP) catalytic activity. Old mice have increased amounts of DBC1-PARP1 complexes, lower PARP activity, increased DNA damage, and reduced nonhomologous end joining and homologous recombination repair. DBC1-PARP1 complexes in old mice can be broken by increasing NAD+ levels through treatment with NMN, reducing DNA damage and restoring PARP activity to youthful levels. The mechanism of declining NAD+ levels and its fundamental importance to aging are yet to be elucidated. There is a correlation of PARP activity with mammalian life span that suggests that NAD+/SIRT1/PARP1 may be more significant than the modest effects on life span observed for NR supplementation in old mice. The NAD+/PARP1/SIRT1 axis may link NAD+ levels and DNA damage with the apparent epigenomic DNA methylation clocks that have been described.
NASA Astrophysics Data System (ADS)
Liang, Ying; Fu, Qibin; Wang, Xudong; Liu, Feng; Yang, Gen; Luo, Chunxiong; Ouyang, Qi; Wang, Yugang
2017-03-01
Current knowledge in radiobiology ascribes the adverse biological effects of ionizing radiation primarily to the induction of DNA double-strand breaks (DSBs), which is supposed to be potentially lethal and may be converted to lethal damage due to misrepair. Soft and ultrasoft x-rays have been found to bear elevated biological effectiveness for cell killing compared with conventional x-rays or 60Co γ-rays. This phenomenon is qualitatively interpreted as the increased level of DSB induction for low energy photons, however, a thorough quantitative reasoning is lacking. Here, we systematically compared the relative biological effectiveness (RBE) with relative DSB induction for photons from several hundreds of eV up to MeV. Although there is an approximate two-fold increase in the yields of DSB for low energy photons found in our calculation and a large number of experimental measurements, it is far from enough to account for the three- to four-fold increase in RBE. Further theoretical investigations show that DSB complexity (additional single-strand breaks and base damage within 10 base pairs) increases notably for low energy photons, which largely reconciles the discrepancy between RBE and DSB induction. Our theoretical results are in line with accumulating experimental evidence that complex DSBs are refractory to repair machinery and may contribute predominantly to the formation of lethal damage.
NASA Astrophysics Data System (ADS)
Zavala, G. J.; Lopez, S.; Ebinger, C. J.; Pando, M. A.; Lambert, C.; Morales, R.; Uceda, S.; Perucchio, R.; Castaneda, B.; Aguilar, R.
2014-12-01
This paper presents results of near surface geophysical tests to help assess the geotechnical conditions of the archaeological complex of Huaca de la Luna located near the coastal city of Trujillo, Peru. This area of Peru has experienced damaging earthquakes and tsunamis in historic time. The huaca complex is a massive adobe temple progressively built by the Moche civilization from 100 AD to 650 AD. The geophysical tests carried out included Ground Penetrating Radar (GPR), magnetic gradiometer, and Multichannel Analysis of Surface Waves (MASW) to help assess geotechnical conditions such as buried cavities and hallways, thickness and elastic properties of sand sediments, and the depth to the underlying granitic bedrock. The tests were performed to help with the investigation of structural damage observed along a massive adobe wall (north façade) which has shown signs of distress including fissures, settlements, and other damage. The geophysical results together with detailed Lidar surveying are being used as part of this investigation and highlight the usefulness of these non-destructive techniques for archaeological and historical sites.
The Role of JMY in p53 Regulation.
Adighibe, Omanma; Pezzella, Francesco
2018-05-31
Following the event of DNA damage, the level of tumour suppressor protein p53 increases inducing either cell cycle arrest or apoptosis. Junctional Mediating and Regulating Y protein (JMY) is a transcription co-factor involved in p53 regulation. In event of DNA damage, JMY levels also upregulate in the nucleus where JMY forms a co-activator complex with p300/CREB-binding protein (p300/CBP), Apoptosis-stimulating protein of p53 (ASPP) and Stress responsive activator of p53 (Strap). This co-activator complex then binds to and increases the ability of p53 to induce transcription of proteins triggering apoptosis but not cell cycle arrest. This then suggests that the increase of JMY levels due to DNA damage putatively "directs" p53 activity toward triggering apoptosis. JMY expression is also linked to increased cell motility as it: (1) downregulates the expression of adhesion molecules of the Cadherin family and (2) induces actin nucleation, making cells less adhesive and more mobile, favouring metastasis. All these characteristics taken together imply that JMY possesses both tumour suppressive and tumour metastasis promoting capabilities.
Comparing DNA damage-processing pathways by computer analysis of chromosome painting data.
Levy, Dan; Vazquez, Mariel; Cornforth, Michael; Loucas, Bradford; Sachs, Rainer K; Arsuaga, Javier
2004-01-01
Chromosome aberrations are large-scale illegitimate rearrangements of the genome. They are indicative of DNA damage and informative about damage processing pathways. Despite extensive investigations over many years, the mechanisms underlying aberration formation remain controversial. New experimental assays such as multiplex fluorescent in situ hybridyzation (mFISH) allow combinatorial "painting" of chromosomes and are promising for elucidating aberration formation mechanisms. Recently observed mFISH aberration patterns are so complex that computer and graph-theoretical methods are needed for their full analysis. An important part of the analysis is decomposing a chromosome rearrangement process into "cycles." A cycle of order n, characterized formally by the cyclic graph with 2n vertices, indicates that n chromatin breaks take part in a single irreducible reaction. We here describe algorithms for computing cycle structures from experimentally observed or computer-simulated mFISH aberration patterns. We show that analyzing cycles quantitatively can distinguish between different aberration formation mechanisms. In particular, we show that homology-based mechanisms do not generate the large number of complex aberrations, involving higher-order cycles, observed in irradiated human lymphocytes.
A real time neural net estimator of fatigue life
NASA Technical Reports Server (NTRS)
Troudet, T.; Merrill, W.
1990-01-01
A neural network architecture is proposed to estimate, in real-time, the fatigue life of mechanical components, as part of the intelligent Control System for Reusable Rocket Engines. Arbitrary component loading values were used as input to train a two hidden-layer feedforward neural net to estimate component fatigue damage. The ability of the net to learn, based on a local strain approach, the mapping between load sequence and fatigue damage has been demonstrated for a uniaxial specimen. Because of its demonstrated performance, the neural computation may be extended to complex cases where the loads are biaxial or triaxial, and the geometry of the component is complex (e.g., turbopumps blades). The generality of the approach is such that load/damage mappings can be directly extracted from experimental data without requiring any knowledge of the stress/strain profile of the component. In addition, the parallel network architecture allows real-time life calculations even for high-frequency vibrations. Owing to its distributed nature, the neural implementation will be robust and reliable, enabling its use in hostile environments such as rocket engines.
Emanuele, Michael J; Ciccia, Alberto; Elia, Andrew E H; Elledge, Stephen J
2011-06-14
The anaphase-promoting complex/cyclosome (APC/C) is a cell cycle-regulated E3 ubiquitin ligase that controls the degradation of substrate proteins at mitotic exit and throughout the G1 phase. We have identified an APC/C substrate and cell cycle-regulated protein, KIAA0101/PAF15. PAF15 protein levels peak in the G2/M phase of the cell cycle and drop rapidly at mitotic exit in an APC/C- and KEN-box-dependent fashion. PAF15 associates with proliferating cell nuclear antigen (PCNA), and depletion of PAF15 decreases the number of cells in S phase, suggesting a role for it in cell cycle regulation. Following irradiation, PAF15 colocalized with γH2AX foci at sites of DNA damage through its interaction with PCNA. Finally, PAF15 depletion led to an increase in homologous recombination-mediated DNA repair, and overexpression caused sensitivity to UV-induced DNA damage. We conclude that PAF15 is an APC/C-regulated protein involved in both cell cycle progression and the DNA damage response.
The role of the antioxidant system during intense endurance exercise: lessons from migrating birds.
Cooper-Mullin, Clara; McWilliams, Scott R
2016-12-01
During migration, birds substantially increase their metabolic rate and burn fats as fuel and yet somehow avoid succumbing to overwhelming oxidative damage. The physiological means by which vertebrates such as migrating birds can counteract an increased production of reactive species (RS) are rather limited: they can upregulate their endogenous antioxidant system and/or consume dietary antioxidants (prophylactically or therapeutically). Thus, birds can alter different components of their antioxidant system to respond to the demands of long-duration flights, but much remains to be discovered about the complexities of RS production and antioxidant protection throughout migration. Here, we use bird migration as an example to discuss how RS are produced during endurance exercise and how the complex antioxidant system can protect against cellular damage caused by RS. Understanding how a bird's antioxidant system responds during migration can lend insights into how antioxidants protect birds during other life-history stages when metabolic rate may be high, and how antioxidants protect other vertebrates from oxidative damage during endurance exercise. © 2016. Published by The Company of Biologists Ltd.
Sreeja, S; Krishnan Nair, C K
2018-02-15
To evaluate the therapeutic efficacy of hypoxic cell-sensitizer Sanazole (SAN) -directed targeting of cytotoxic drug Berberine (BBN) and Iron-oxide nanoparticle (NP) complexes, to solid tumor in Swiss albino mice. NP-BBN-SAN complexes were characterized by FTIR, XRD, TEM and Nano-size analyzer. This complex was orally administered to mice-bearing solid tumor in hind limb. Tumor regression was analysed by measuring tumor volume. Cellular DNA damages were assessed by comet assay. Transcriptional expression of genes related to tumor hypoxia and apoptosis was evaluated by quantitative real-time PCR and morphological changes in tissues were analysed by histopathology. Also levels of antioxidants and tumor markers in tissues and serum biochemical parameters were analysed. Administration of NP-BBN-SAN complexes reduced tumor volume and studies were focussed on the underlying mechanisms. Extensive damage to cellular-DNA; down-regulated transcription of hif-1α, vegf, akt and bcl2; and up-regulated expression of bax and caspases, were observed in tumor. Results on tumor markers, antioxidant-status and serum parameters corroborated the molecular findings. Histopathology of tumor, liver and kidney revealed the therapeutic specificity of NP-BBN-SAN. Thus SAN and NP can be used for specific targeting of drugs, to hypoxic solid tumor, to improve therapeutic efficacy. Copyright © 2017. Published by Elsevier Inc.
Assessment of the role of DNA repair in damaged forensic samples.
Ambers, Angie; Turnbough, Meredith; Benjamin, Robert; King, Jonathan; Budowle, Bruce
2014-11-01
Previous studies on DNA damage and repair have involved in vitro laboratory procedures that induce a single type of lesion in naked templates. Although repair of singular, sequestered types of DNA damage has shown some success, forensic and ancient specimens likely contain a number of different types of lesions. This study sought to (1) develop protocols to damage DNA in its native state, (2) generate a pool of candidate samples for repair that more likely emulate authentic forensic samples, and (3) assess the ability of the PreCR(TM) Repair Mix to repair the resultant lesions. Complexed, native DNA is more difficult to damage than naked DNA. Modified procedures included the use of higher concentrations and longer exposure times. Three types of samples, those that demonstrated damage based on short tandem repeat (STR) profile signals, were selected for repair experiments: environmentally damaged bloodstains, bleach-damaged whole blood, and human skeletal remains. Results showed trends of improved performance of STR profiling of bleach-damaged DNA. However, the repair assay did not improve DNA profiles from environmentally damaged bloodstains or bone, and in some cases resulted in lower RFU values for STR alleles. The extensive spectrum of DNA damage and myriad combinations of lesions that can be present in forensic samples appears to pose a challenge for the in vitro PreCR(TM) assay. The data suggest that the use of PreCR in casework should be considered with caution due to the assay's varied results.
Panico, Anna Maria; Puglisi, Giovanni
2017-01-01
The aim of this study was to evaluate the antidegenerative effect in osteoarthritis damage of eriocitrin alone and eriocitrin formulated as innovative “dietary flavonoid supplement.” A complexation between eriocitrin and hydroxypropyl β-cyclodextrin by solubilization/freeze-drying method was performed. The complex in solution was evaluated by phase solubility studies and the optimal 1 : 2 flavanone/cyclodextrin molar ratio was selected. Hydroxypropyl β-cyclodextrin was able to complex eriocitrin as confirmed by UV-Vis absorption, DSC, and FTIR studies. The complex formed increased the eriocitrin water solubility (from 4.1 ± 0.2 g·L−1 to 11.0 ± 0.1 g·L−1) and dissolution rate (from 37.0% to 100%) in 30 min. The in vitro studies exhibit the notion that eriocitrin and its complex inhibit AGEs in a similar manner because hydroxypropyl β-cyclodextrin does not interfere with the flavanone intrinsic property. Instead, the presence of cyclodextrin improves eriocitrin antioxidant stability maintaining a high fluorescence value until 8 hours with respect to the pure materials. Moreover, hydroxypropyl β-cyclodextrin showed moderate GAGs restoration acting synergistically with the complexed compound to maintain the structural chondrocytes integrity. The results point out that ERT/HP-betaCD complex possesses technological and biological characteristics able to obtain an easily soluble nutraceutical product, which reduces the degenerative and oxidative damage which occurs in osteoarthritis, and improve the patient compliance. PMID:28367273
Damage Mechanisms and Mechanical Properties of High-Strength Multiphase Steels
Heibel, Sebastian; Dettinger, Thomas; Nester, Winfried; Tekkaya, A. Erman
2018-01-01
The usage of high-strength steels for structural components and reinforcement parts is inevitable for modern car-body manufacture in reaching lightweight design as well as increasing passive safety. Depending on their microstructure these steels show differing damage mechanisms and various mechanical properties which cannot be classified comprehensively via classical uniaxial tensile testing. In this research, damage initiation, evolution and final material failure are characterized for commercially produced complex-phase (CP) and dual-phase (DP) steels in a strength range between 600 and 1000 MPa. Based on these investigations CP steels with their homogeneous microstructure are characterized as damage tolerant and hence less edge-crack sensitive than DP steels. As final fracture occurs after a combination of ductile damage evolution and local shear band localization in ferrite grains at a characteristic thickness strain, this strain measure is introduced as a new parameter for local formability. In terms of global formability DP steels display advantages because of their microstructural composition of soft ferrite matrix including hard martensite particles. Combining true uniform elongation as a measure for global formability with the true thickness strain at fracture for local formability the mechanical material response can be assessed on basis of uniaxial tensile testing incorporating all microstructural characteristics on a macroscopic scale. Based on these findings a new classification scheme for the recently developed high-strength multiphase steels with significantly better formability resulting of complex underlying microstructures is introduced. The scheme overcomes the steel designations using microstructural concepts, which provide no information about design and production properties. PMID:29747417
TSARINA: A computer model for assessing conventional and chemical attacks on air bases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emerson, D.E.; Wegner, L.H.
This Note describes the latest version of the TSARINA (TSAR INputs using AIDA) airbase damage assessment computer program that has been developed to estimate the on-base concentration of toxic agents that would be deposited by a chemical attack and to assess losses to various on-base resources from conventional attacks, as well as the physical damage to runways, taxiways, buildings, and other facilities. Although the model may be used as a general-purpose, complex-target damage assessment model, its primary role in intended to be in support of the TSAR (Theater Simulation of Airbase Resources) aircraft sortie generation simulation program. When used withmore » TSAR, multiple trials of a multibase airbase-attack campaign can be assessed with TSARINA, and the impact of those attacks on sortie generation can be derived using the TSAR simulation model. TSARINA, as currently configured, permits damage assessments of attacks on an airbase (or other) complex that is compassed of up to 1000 individual targets (buildings, taxiways, etc,), and 2500 packets of resources. TSARINA determines the actual impact points (pattern centroids for CBUs and container burst point for chemical weapons) by Monte Carlo procedures-i.e., by random selections from the appropriate error distributions. Uncertainties in wind velocity and heading are also considered for chemical weapons. Point-impact weapons that impact within a specified distance of each target type are classed as hits, and estimates of the damage to the structures and to the various classes of support resources are assessed using cookie-cutter weapon-effects approximations.« less
NASA Astrophysics Data System (ADS)
Mosby, Matthew; Matouš, Karel
2015-12-01
Three-dimensional simulations capable of resolving the large range of spatial scales, from the failure-zone thickness up to the size of the representative unit cell, in damage mechanics problems of particle reinforced adhesives are presented. We show that resolving this wide range of scales in complex three-dimensional heterogeneous morphologies is essential in order to apprehend fracture characteristics, such as strength, fracture toughness and shape of the softening profile. Moreover, we show that computations that resolve essential physical length scales capture the particle size-effect in fracture toughness, for example. In the vein of image-based computational materials science, we construct statistically optimal unit cells containing hundreds to thousands of particles. We show that these statistically representative unit cells are capable of capturing the first- and second-order probability functions of a given data-source with better accuracy than traditional inclusion packing techniques. In order to accomplish these large computations, we use a parallel multiscale cohesive formulation and extend it to finite strains including damage mechanics. The high-performance parallel computational framework is executed on up to 1024 processing cores. A mesh convergence and a representative unit cell study are performed. Quantifying the complex damage patterns in simulations consisting of tens of millions of computational cells and millions of highly nonlinear equations requires data-mining the parallel simulations, and we propose two damage metrics to quantify the damage patterns. A detailed study of volume fraction and filler size on the macroscopic traction-separation response of heterogeneous adhesives is presented.
Sundararajan, Rangapriya; Freudenreich, Catherine H.
2011-01-01
Repetitive DNA elements are mutational hotspots in the genome, and their instability is linked to various neurological disorders and cancers. Although it is known that expanded trinucleotide repeats can interfere with DNA replication and repair, the cellular response to these events has not been characterized. Here, we demonstrate that an expanded CAG/CTG repeat elicits a DNA damage checkpoint response in budding yeast. Using microcolony and single cell pedigree analysis, we found that cells carrying an expanded CAG repeat frequently experience protracted cell division cycles, persistent arrests, and morphological abnormalities. These phenotypes were further exacerbated by mutations in DSB repair pathways, including homologous recombination and end joining, implicating a DNA damage response. Cell cycle analysis confirmed repeat-dependent S phase delays and G2/M arrests. Furthermore, we demonstrate that the above phenotypes are due to the activation of the DNA damage checkpoint, since expanded CAG repeats induced the phosphorylation of the Rad53 checkpoint kinase in a rad52Δ recombination deficient mutant. Interestingly, cells mutated for the MRX complex (Mre11-Rad50-Xrs2), a central component of DSB repair which is required to repair breaks at CAG repeats, failed to elicit repeat-specific arrests, morphological defects, or Rad53 phosphorylation. We therefore conclude that damage at expanded CAG/CTG repeats is likely sensed by the MRX complex, leading to a checkpoint response. Finally, we show that repeat expansions preferentially occur in cells experiencing growth delays. Activation of DNA damage checkpoints in repeat-containing cells could contribute to the tissue degeneration observed in trinucleotide repeat expansion diseases. PMID:21437275
Variations in the Processing of DNA Double-Strand Breaks Along 60-MeV Therapeutic Proton Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhary, Pankaj; Marshall, Thomas I.; Currell, Frederick J.
Purpose: To investigate the variations in induction and repair of DNA damage along the proton path, after a previous report on the increasing biological effectiveness along clinically modulated 60-MeV proton beams. Methods and Materials: Human skin fibroblast (AG01522) cells were irradiated along a monoenergetic and a modulated spread-out Bragg peak (SOBP) proton beam used for treating ocular melanoma at the Douglas Cyclotron, Clatterbridge Centre for Oncology, Wirral, Liverpool, United Kingdom. The DNA damage response was studied using the 53BP1 foci formation assay. The linear energy transfer (LET) dependence was studied by irradiating the cells at depths corresponding to entrance, proximal, middle, andmore » distal positions of SOBP and the entrance and peak position for the pristine beam. Results: A significant amount of persistent foci was observed at the distal end of the SOBP, suggesting complex residual DNA double-strand break damage induction corresponding to the highest LET values achievable by modulated proton beams. Unlike the directly irradiated, medium-sharing bystander cells did not show any significant increase in residual foci. Conclusions: The DNA damage response along the proton beam path was similar to the response of X rays, confirming the low-LET quality of the proton exposure. However, at the distal end of SOBP our data indicate an increased complexity of DNA lesions and slower repair kinetics. A lack of significant induction of 53BP1 foci in the bystander cells suggests a minor role of cell signaling for DNA damage under these conditions.« less
Online damage inspection of optics for ATP system
NASA Astrophysics Data System (ADS)
Chen, Jing; Jiang, Yu; Mao, Yao; Gan, Xun; Liu, Qiong
2016-09-01
In the Electro-Optical acquisition-tracking-pointing system (ATP), the optical components will be damaged with the several influencing factors. In this situation, the rate will increase sharply when the arrival of damage to some extent. As the complex processing techniques and long processing cycle of optical components, the damage will cause the great increase of the system development cost and cycle. Therefore, it is significant to detect the laser-induced damage in the ATP system. At present, the major research on the on-line damage detection technology of optical components is for the large optical system in the international. The relevant detection systems have complicated structures and many of components, and require enough installation space reserved, which do not apply for ATP system. To solve the problem mentioned before, This paper use a method based on machine vision to detect the damage on-line for the present ATP system. To start with, CCD and PC are used for image acquisition. Secondly, smoothing filters are used to restrain false damage points produced by noise. Then, with the shape feature included in the damage image, the OTSU Method which can define the best segmentation threshold automatically is used to achieve the goal to locate the damage regions. At last, we can supply some opinions for the lifetime of the optical components by analyzing the damage data, such as damage area, damage position. The method has the characteristics of few-detectors and simple-structures which can be installed without any changes of the original light path. With the method, experimental results show that it is stable and effective to achieve the goal of detecting the damage of optical components on-line in the ATP system.
Photoprotection in plants: a new light on photosystem II damage.
Takahashi, Shunichi; Badger, Murray R
2011-01-01
Sunlight damages photosynthetic machinery, primarily photosystem II (PSII), and causes photoinhibition that can limit plant photosynthetic activity, growth and productivity. The extent of photoinhibition is associated with a balance between the rate of photodamage and its repair. Recent studies have shown that light absorption by the manganese cluster in the oxygen-evolving complex of PSII causes primary photodamage, whereas excess light absorbed by light-harvesting complexes acts to cause inhibition of the PSII repair process chiefly through the generation of reactive oxygen species. As we review here, PSII photodamage and the inhibition of repair are therefore alleviated by photoprotection mechanisms associated with avoiding light absorption by the manganese cluster and successfully consuming or dissipating the light energy absorbed by photosynthetic pigments, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.
Animal models of cerebral ischemia
NASA Astrophysics Data System (ADS)
Khodanovich, M. Yu.; Kisel, A. A.
2015-11-01
Cerebral ischemia remains one of the most frequent causes of death and disability worldwide. Animal models are necessary to understand complex molecular mechanisms of brain damage as well as for the development of new therapies for stroke. This review considers a certain range of animal models of cerebral ischemia, including several types of focal and global ischemia. Since animal models vary in specificity for the human disease which they reproduce, the complexity of surgery, infarct size, reliability of reproduction for statistical analysis, and adequate models need to be chosen according to the aim of a study. The reproduction of a particular animal model needs to be evaluated using appropriate tools, including the behavioral assessment of injury and non-invasive and post-mortem control of brain damage. These problems also have been summarized in the review.
NASA Astrophysics Data System (ADS)
Qiu, Zeyang; Liang, Wei; Wang, Xue; Lin, Yang; Zhang, Meng
2017-05-01
As an important part of national energy supply system, transmission pipelines for natural gas are possible to cause serious environmental pollution, life and property loss in case of accident. The third party damage is one of the most significant causes for natural gas pipeline system accidents, and it is very important to establish an effective quantitative risk assessment model of the third party damage for reducing the number of gas pipelines operation accidents. Against the third party damage accident has the characteristics such as diversity, complexity and uncertainty, this paper establishes a quantitative risk assessment model of the third party damage based on Analytic Hierarchy Process (AHP) and Fuzzy Comprehensive Evaluation (FCE). Firstly, risk sources of third party damage should be identified exactly, and the weight of factors could be determined via improved AHP, finally the importance of each factor is calculated by fuzzy comprehensive evaluation model. The results show that the quantitative risk assessment model is suitable for the third party damage of natural gas pipelines and improvement measures could be put forward to avoid accidents based on the importance of each factor.
Cellular mechanisms of noise-induced hearing loss.
Kurabi, Arwa; Keithley, Elizabeth M; Housley, Gary D; Ryan, Allen F; Wong, Ann C-Y
2017-06-01
Exposure to intense sound or noise can result in purely temporary threshold shift (TTS), or leave a residual permanent threshold shift (PTS) along with alterations in growth functions of auditory nerve output. Recent research has revealed a number of mechanisms that contribute to noise-induced hearing loss (NIHL). The principle cause of NIHL is damage to cochlear hair cells and associated synaptopathy. Contributions to TTS include reversible damage to hair cell (HC) stereocilia or synapses, while moderate TTS reflects protective purinergic hearing adaptation. PTS represents permanent damage to or loss of HCs and synapses. While the substrates of HC damage are complex, they include the accumulation of reactive oxygen species and the active stimulation of intracellular stress pathways, leading to programmed and/or necrotic cell death. Permanent damage to cochlear neurons can also contribute to the effects of NIHL, in addition to HC damage. These mechanisms have translational potential for pharmacological intervention and provide multiple opportunities to prevent HC damage or to rescue HCs and spiral ganglion neurons that have suffered injury. This paper reviews advances in our understanding of cellular mechanisms that contribute to NIHL and their potential for therapeutic manipulation. Published by Elsevier B.V.
Continuum damage modeling and simulation of hierarchical dental enamel
NASA Astrophysics Data System (ADS)
Ma, Songyun; Scheider, Ingo; Bargmann, Swantje
2016-05-01
Dental enamel exhibits high fracture toughness and stiffness due to a complex hierarchical and graded microstructure, optimally organized from nano- to macro-scale. In this study, a 3D representative volume element (RVE) model is adopted to study the deformation and damage behavior of the fibrous microstructure. A continuum damage mechanics model coupled to hyperelasticity is developed for modeling the initiation and evolution of damage in the mineral fibers as well as protein matrix. Moreover, debonding of the interface between mineral fiber and protein is captured by employing a cohesive zone model. The dependence of the failure mechanism on the aspect ratio of the mineral fibers is investigated. In addition, the effect of the interface strength on the damage behavior is studied with respect to geometric features of enamel. Further, the effect of an initial flaw on the overall mechanical properties is analyzed to understand the superior damage tolerance of dental enamel. The simulation results are validated by comparison to experimental data from micro-cantilever beam testing at two hierarchical levels. The transition of the failure mechanism at different hierarchical levels is also well reproduced in the simulations.
The strainrange conversion principle for treating cumulative fatigue damage in the creep range
NASA Technical Reports Server (NTRS)
Manson, S. S.
1983-01-01
A formula is derived for combining effects of successive hysteresis loops in the creep range of materials when one loop has excess tensile creep, while the other contains excess compressive creep. The resultant effect resembles single loops involving balanced tensile and compressive creep. The attempt to use the Interaction Damage Rule as a tool in combining loops of non-equal size and complex strainrange content has led to important new concepts useful in future studies of creep-fatigue. It turns out that the Interaction Damage Rule is basically an expression of how a set of hysteresis loops involving only single generic strains can combine to produce the same micromechanistic damage as the loop containing the combined strainranges which it analyzes. Making use of the underlying concept of Strainrange Partitioning that only the strainrange content of a hysteresis loop governs fatigue life, not order of introducing strainranges, a rational derivation of the Interaction Damage Rule is provided, showing also how it can effectively be used to synthesize independent loops and determine both damaging and healing effects.
Oxidative DNA damage background estimated by a system model of base excision repair
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokhansanj, B A; Wilson, III, D M
Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level based on measuring 8-oxoguanine lesions as a biomarker have led to estimates varying over 3-4 orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parametersmore » from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our results show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.« less
Guided wave energy trapping to detect hidden multilayer delamination damage
NASA Astrophysics Data System (ADS)
Leckey, Cara A. C.; Seebo, Jeffrey P.
2015-03-01
Nondestructive Evaluation (NDE) and Structural Health Monitoring (SHM) simulation tools capable of modeling three-dimensional (3D) realistic energy-damage interactions are needed for aerospace composites. Current practice in NDE/SHM simulation for composites commonly involves over-simplification of the material parameters and/or a simplified two-dimensional (2D) approach. The unique damage types that occur in composite materials (delamination, microcracking, etc) develop as complex 3D geometry features. This paper discusses the application of 3D custom ultrasonic simulation tools to study wave interaction with multilayer delamination damage in carbon-fiber reinforced polymer (CFRP) composites. In particular, simulation based studies of ultrasonic guided wave energy trapping due to multilayer delamination damage were performed. The simulation results show changes in energy trapping at the composite surface as additional delaminations are added through the composite thickness. The results demonstrate a potential approach for identifying the presence of hidden multilayer delamination damage in applications where only single-sided access to a component is available. The paper also describes recent advancements in optimizing the custom ultrasonic simulation code for increases in computation speed.
Engineering long term clinical success of advanced ceramic prostheses.
Rekow, Dianne; Thompson, Van P
2007-01-01
Biocompatability and, in some applications, esthetics make all-ceramic prostheses compelling choices but despite significant improvements in materials properties and toughening mechanisms, these still have significant failure rates. Factors that contribute to the degradation in strength and survival include material selection and prosthesis design which set the upper limit for performance. However, fabrication operations introduce damage that can be exacerbated by environmental conditions and clinical function. Using all-ceramic dental crowns as an example, experimentally derived models provide insight into the relationships between materials properties and initial critical loads to failure. Analysis of fabrication operations suggests strategies to minimize damage. Environmental conditions can create viscoplastic flow of supporting components which can contribute additional stress within the prosthesis. Fatigue is a particularly challenging problem, not only providing the energy to propagate existing damage but, when combined with the wet environment, can create new damage modes. While much is known, the influence of these new damage modes has not been completely elucidated. The role of complex prosthesis geometry and its interaction with other factors on damage initiation and propagation has yet to be well characterized.
Candida albicans Pathogenesis: Fitting within the Host-Microbe Damage Response Framework
Kong, Eric F.; Tsui, Christina; Nguyen, M. Hong; Clancy, Cornelius J.; Fidel, Paul L.; Noverr, Mairi
2016-01-01
Historically, the nature and extent of host damage by a microbe were considered highly dependent on virulence attributes of the microbe. However, it has become clear that disease is a complex outcome which can arise because of pathogen-mediated damage, host-mediated damage, or both, with active participation from the host microbiota. This awareness led to the formulation of the damage response framework (DRF), a revolutionary concept that defined microbial virulence as a function of host immunity. The DRF outlines six classifications of host damage outcomes based on the microbe and the strength of the immune response. In this review, we revisit this concept from the perspective of Candida albicans, a microbial pathogen uniquely adapted to its human host. This fungus commonly colonizes various anatomical sites without causing notable damage. However, depending on environmental conditions, a diverse array of diseases may occur, ranging from mucosal to invasive systemic infections resulting in microbe-mediated and/or host-mediated damage. Remarkably, C. albicans infections can fit into all six DRF classifications, depending on the anatomical site and associated host immune response. Here, we highlight some of these diverse and site-specific diseases and how they fit the DRF classifications, and we describe the animal models available to uncover pathogenic mechanisms and related host immune responses. PMID:27430274
Unraveling the non-senescence phenomenon in Hydra.
Dańko, Maciej J; Kozłowski, Jan; Schaible, Ralf
2015-10-07
Unlike other metazoans, Hydra does not experience the distinctive rise in mortality with age known as senescence, which results from an increasing imbalance between cell damage and cell repair. We propose that the Hydra controls damage accumulation mainly through damage-dependent cell selection and cell sloughing. We examine our hypothesis with a model that combines cellular damage with stem cell renewal, differentiation, and elimination. The Hydra individual can be seen as a large single pool of three types of stem cells with some features of differentiated cells. This large stem cell community prevents "cellular damage drift," which is inevitable in complex conglomerate (differentiated) metazoans with numerous and generally isolated pools of stem cells. The process of cellular damage drift is based on changes in the distribution of damage among cells due to random events, and is thus similar to Muller's ratchet in asexual populations. Events in the model that are sources of randomness include budding, cellular death, and cellular damage and repair. Our results suggest that non-senescence is possible only in simple Hydra-like organisms which have a high proportion and number of stem cells, continuous cell divisions, an effective cell selection mechanism, and stem cells with the ability to undertake some roles of differentiated cells. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Environmental impacts of forest road construction on mountainous terrain.
Caliskan, Erhan
2013-03-15
Forest roads are the base infrastructure foundation of forestry operations. These roads entail a complex engineering effort because they can cause substantial environmental damage to forests and include a high-cost construction. This study was carried out in four sample sites of Giresun, Trabzon(2) and Artvin Forest Directorate, which is in the Black Sea region of Turkey. The areas have both steep terrain (30-50% gradient) and very steep terrain (51-80% gradient). Bulldozers and hydraulic excavators were determined to be the main machines for forest road construction, causing environmental damage and cross sections in mountainous areas.As a result of this study, the percent damage to forests was determined as follows: on steep terrain, 21% of trees were damaged by excavators and 33% of trees were damaged by bulldozers during forest road construction, and on very steep terrain, 27% of trees were damaged by excavators and 44% of trees were damaged by bulldozers during forest road construction. It was also determined that on steep terrain, when excavators were used, 12.23% less forest area was destroyed compared with when bulldozers were used and 16.13% less area was destroyed by excavators on very steep terrain. In order to reduce the environmental damage on the forest ecosystem, especially in steep terrains, hydraulic excavators should replace bulldozers in forest road construction activities.
Chan, Eugene; Rose, L R Francis; Wang, Chun H
2015-05-01
Existing damage imaging algorithms for detecting and quantifying structural defects, particularly those based on diffraction tomography, assume far-field conditions for the scattered field data. This paper presents a major extension of diffraction tomography that can overcome this limitation and utilises a near-field multi-static data matrix as the input data. This new algorithm, which employs numerical solutions of the dynamic Green's functions, makes it possible to quantitatively image laminar damage even in complex structures for which the dynamic Green's functions are not available analytically. To validate this new method, the numerical Green's functions and the multi-static data matrix for laminar damage in flat and stiffened isotropic plates are first determined using finite element models. Next, these results are time-gated to remove boundary reflections, followed by discrete Fourier transform to obtain the amplitude and phase information for both the baseline (damage-free) and the scattered wave fields. Using these computationally generated results and experimental verification, it is shown that the new imaging algorithm is capable of accurately determining the damage geometry, size and severity for a variety of damage sizes and shapes, including multi-site damage. Some aspects of minimal sensors requirement pertinent to image quality and practical implementation are also briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe
2017-03-01
In this work, direct DNA damage induced by low-energy electrons (sub-keV) is simulated using a Monte Carlo method. The characteristics of the present simulation are to consider the new mechanism of DNA damage due to dissociative electron attachment (DEA) and to allow determining damage to specific bases (i.e., adenine, thymine, guanine, or cytosine). The electron track structure in liquid water is generated, based on the dielectric response model for describing electron inelastic scattering and on a free-parameter theoretical model and the NIST database for calculating electron elastic scattering. Ionization cross sections of DNA bases are used to generate base radicals, and available DEA cross sections of DNA components are applied for determining DNA-strand breaks and base damage induced by sub-ionization electrons. The electron elastic scattering from DNA components is simulated using cross sections from different theoretical calculations. The resulting yields of various strand breaks and base damage in cellular environment are given. Especially, the contributions of sub-ionization electrons to various strand breaks and base damage are quantitatively presented, and the correlation between complex clustered DNA damage and the corresponding damaged bases is explored. This work shows that the contribution of sub-ionization electrons to strand breaks is substantial, up to about 40-70%, and this contribution is mainly focused on single-strand break. In addition, the base damage induced by sub-ionization electrons contributes to about 20-40% of the total base damage, and there is an evident correlation between single-strand break and damaged base pair A-T.
Rodent repellent studies. IV. Preparation and properties of trinitrobenzene-aryl amine complexes
DeWitt, J.B.; Bellack, E.; Welch, J.F.
1953-01-01
Data are presented on methods of preparation, chemical arid physical characteristics, toxicity, and repellency to rodents of complexes of symmetrical trinitrohenzene with various aromatic amines: When applied in suitable carriers or incorporated in plastic .films, members of this series ofmaterials were shown to offer significant increases in time required by wild rodents to damage common packaging materials.
Archaeal Genome Guardians Give Insights into Eukaryotic DNA Replication and Damage Response Proteins
Shin, David S.; Pratt, Ashley J.; Tainer, John A.
2014-01-01
As the third domain of life, archaea, like the eukarya and bacteria, must have robust DNA replication and repair complexes to ensure genome fidelity. Archaea moreover display a breadth of unique habitats and characteristics, and structural biologists increasingly appreciate these features. As archaea include extremophiles that can withstand diverse environmental stresses, they provide fundamental systems for understanding enzymes and pathways critical to genome integrity and stress responses. Such archaeal extremophiles provide critical data on the periodic table for life as well as on the biochemical, geochemical, and physical limitations to adaptive strategies allowing organisms to thrive under environmental stress relevant to determining the boundaries for life as we know it. Specifically, archaeal enzyme structures have informed the architecture and mechanisms of key DNA repair proteins and complexes. With added abilities to temperature-trap flexible complexes and reveal core domains of transient and dynamic complexes, these structures provide insights into mechanisms of maintaining genome integrity despite extreme environmental stress. The DNA damage response protein structures noted in this review therefore inform the basis for genome integrity in the face of environmental stress, with implications for all domains of life as well as for biomanufacturing, astrobiology, and medicine. PMID:24701133
Transcription-Coupled Repair and Complex Biology.
Portman, James R; Strick, Terence R
2018-05-04
All active living organisms mitigate DNA damage via DNA repair, and the so-called nucleotide excision repair pathway (NER) represents a functionally major part of the cell's DNA repair repertoire [1]. In this pathway, the damaged strand of DNA is incised and removed before being resynthesized. This form of DNA repair requires a multitude of proteins working in a complex choreography. Repair thus typically involves detection of a DNA lesion; validation of that detection event; search for an appropriate incision site and subsequent DNA incision; DNA unwinding/removal; and DNA resynthesis and religation. These activities are ultimately the result of molecules randomly diffusing and bumping into each other and acting in succession. It is also true however that repair components are often assembled into functional complexes which may be more efficient or regular in their mode of action. Studying DNA repair complexes for their mechanisms of assembly, action, and disassembly can help address fundamental questions such as whether DNA repair pathways are branched or linear; whether for instance they tolerate fluctuations in numbers of components; and more broadly how search processes between macromolecules take place or can be enhanced. Copyright © 2018. Published by Elsevier Ltd.
Systems approach to the study of brain damage in the very preterm newborn
Leviton, Alan; Gressens, Pierre; Wolkenhauer, Olaf; Dammann, Olaf
2015-01-01
Background: A systems approach to the study of brain damage in very preterm newborns has been lacking. Methods: In this perspective piece, we offer encephalopathy of prematurity as an example of the complexity and interrelatedness of brain-damaging molecular processes that can be initiated inflammatory phenomena. Results: Using three transcription factors, nuclear factor-kappa B (NF-κB), Notch-1, and nuclear factor erythroid 2 related factor 2 (NRF2), we show the inter-connectedness of signaling pathways activated by some antecedents of encephalopathy of prematurity. Conclusions: We hope that as biomarkers of exposures and processes leading to brain damage in the most immature newborns become more readily available, those who apply a systems approach to the study of neuroscience can be persuaded to study the pathogenesis of brain disorders in the very preterm newborn. PMID:25926780
Nondestructive damage evaluation in ceramic matrix composites for aerospace applications.
Dassios, Konstantinos G; Kordatos, Evangelos Z; Aggelis, Dimitrios G; Matikas, Theodore E
2013-01-01
Infrared thermography (IRT) and acoustic emission (AE) are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs) for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material's performance under fatigue. IRT and AE parameters are specifically used for the characterization of the complex damage mechanisms that occur during CMC fracture, and they enable the identification of the micromechanical processes that control material failure, mainly crack formation and propagation. Additionally, these nondestructive parameters help in early prediction of the residual life of the material and in establishing the fatigue limit of materials rapidly and accurately.
Modulation of Pathogenic B Cells through Inhibition of Phosphatidylinositol 3-Kinases
2016-03-01
of the antibodies bound to the proteins can lodge in the kidneys resulting in damage to the filtering capacity of the kidney . The disease is most...such as nuclear proteins and DNA. These antibodies can cause additional pathologic changes because immune complexes lodge in the kidney which...secreting B cells in a mouse model for lupus, which results in less kidney damage and increased lifespan. 2. KEYWORDS: Lupus, PI3K, B cell, signal
United States Air Force Research Initiation Program for 1987. Volume 1
1989-04-01
complexity for analyzing such models depends upon the repair or replace- ment times distributions, the repair policy for damaged components and a...distributions, repair policy for various comDonents and a number of other factors. Problems o interest for such models include the determinations of (a...Thus. some more assumption is needed as to the order in which repair is to be made when more than one component is damaged. We will adopt a policy
2007-04-25
KENNEDY SPACE CENTER, FLA. -- In the Vehicle Assembly Building, workers check foam repairs on Atlantis' external tank. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch now is targeted for June 8. Photo credit: NASA/Jack Pfaller
Computational Electromagnetic Modeling of SansEC(Trade Mark) Sensors
NASA Technical Reports Server (NTRS)
Smith, Laura J.; Dudley, Kenneth L.; Szatkowski, George N.
2011-01-01
This paper describes the preliminary effort to apply computational design tools to aid in the development of an electromagnetic SansEC resonant sensor composite materials damage detection system. The computational methods and models employed on this research problem will evolve in complexity over time and will lead to the development of new computational methods and experimental sensor systems that demonstrate the capability to detect, diagnose, and monitor the damage of composite materials and structures on aerospace vehicles.
Structural damage diagnostics via wave propagation-based filtering techniques
NASA Astrophysics Data System (ADS)
Ayers, James T., III
Structural health monitoring (SHM) of aerospace components is a rapidly emerging field due in part to commercial and military transport vehicles remaining in operation beyond their designed life cycles. Damage detection strategies are sought that provide real-time information of the structure's integrity. One approach that has shown promise to accurately identify and quantify structural defects is based on guided ultrasonic wave (GUW) inspections, where low amplitude attenuation properties allow for long range and large specimen evaluation. One drawback to GUWs is that they exhibit a complex multi-modal response, such that each frequency corresponds to at least two excited modes, and thus intelligent signal processing is required for even the simplest of structures. In addition, GUWs are dispersive, whereby the wave velocity is a function of frequency, and the shape of the wave packet changes over the spatial domain, requiring sophisticated detection algorithms. Moreover, existing damage quantification measures are typically formulated as a comparison of the damaged to undamaged response, which has proven to be highly sensitive to changes in environment, and therefore often unreliable. As a response to these challenges inherent to GUW inspections, this research develops techniques to locate and estimate the severity of the damage. Specifically, a phase gradient based localization algorithm is introduced to identify the defect position independent of excitation frequency and damage size. Mode separation through the filtering technique is central in isolating and extracting single mode components, such as reflected, converted, and transmitted modes that may arise from the incident wave impacting a damage. Spatially-integrated single and multiple component mode coefficients are also formulated with the intent to better characterize wave reflections and conversions and to increase the signal to noise ratios. The techniques are applied to damaged isotropic finite element plate models and experimental data obtained from Scanning Laser Doppler Vibrometry tests. Numerical and experimental parametric studies are conducted, and the current strengths and weaknesses of the proposed approaches are discussed. In particular, limitations to the damage profiling characterization are shown for low ultrasonic frequency regimes, whereas the multiple component mode conversion coefficients provide excellent noise mitigation. Multiple component estimation relies on an experimental technique developed for the estimation of Lamb wave polarization using a 1D Laser Vibrometer. Lastly, suggestions are made to apply the techniques to more structurally complex geometries.
Fiber Optic Strain Sensor for Planetary Gear Diagnostics
NASA Technical Reports Server (NTRS)
Kiddy, Jason S.; Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason
2011-01-01
This paper presents a new sensing approach for helicopter damage detection in the planetary stage of a helicopter transmission based on a fiber optic strain sensor array. Complete helicopter transmission damage detection has proven itself a difficult task due to the complex geometry of the planetary reduction stage. The crowded and complex nature of the gearbox interior does not allow for attachment of sensors within the rotating frame. Hence, traditional vibration-based diagnostics are instead based on measurements from externally mounted sensors, typically accelerometers, fixed to the gearbox exterior. However, this type of sensor is susceptible to a number of external disturbances that can corrupt the data, leading to false positives or missed detection of potentially catastrophic faults. Fiber optic strain sensors represent an appealing alternative to the accelerometer. Their small size and multiplexibility allows for potentially greater sensing resolution and accuracy, as well as redundancy, when employed as an array of sensors. The work presented in this paper is focused on the detection of gear damage in the planetary stage of a helicopter transmission using a fiber optic strain sensor band. The sensor band includes an array of 13 strain sensors, and is mounted on the ring gear of a Bell Helicopter OH-58C transmission. Data collected from the sensor array is compared to accelerometer data, and the damage detection results are presented
Ventromedial Frontal Lobe Damage Alters how Specific Attributes are Weighed in Subjective Valuation.
Vaidya, Avinash R; Sefranek, Marcus; Fellows, Lesley K
2017-10-23
The concept of subjective value is central to current neurobiological views of economic decision-making. Much of this work has focused on signals in the ventromedial frontal lobe (VMF) that correlate with the subjective value of a variety of stimuli (e.g., food, monetary gambles), and are thought to support decision-making. However, the neural processes involved in assessing and integrating value information from the attributes of such complex options remain to be defined. Here, we tested the necessary role of VMF in weighting attributes of naturalistic stimuli during value judgments. We asked how distinct attributes of visual artworks influenced the subjective value ratings of subjects with VMF damage, compared to healthy participants and a frontal lobe damaged control group. Subjects with VMF damage were less influenced by the energy (emotion, complexity) and color radiance (warmth, saturation) of the artwork, while they were similar to control groups in considering saliency, balance and concreteness. These dissociations argue that VMF is critical for allowing certain affective content to influence subjective value, while sparing the influence of perceptual or representational information. These distinctions are important for better defining the often-underspecified concept of subjective value and developing more detailed models of the brain mechanisms underlying decision behavior. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Remodeling Functional Connectivity in Multiple Sclerosis: A Challenging Therapeutic Approach.
Stampanoni Bassi, Mario; Gilio, Luana; Buttari, Fabio; Maffei, Pierpaolo; Marfia, Girolama A; Restivo, Domenico A; Centonze, Diego; Iezzi, Ennio
2017-01-01
Neurons in the central nervous system are organized in functional units interconnected to form complex networks. Acute and chronic brain damage disrupts brain connectivity producing neurological signs and/or symptoms. In several neurological diseases, particularly in Multiple Sclerosis (MS), structural imaging studies cannot always demonstrate a clear association between lesion site and clinical disability, originating the "clinico-radiological paradox." The discrepancy between structural damage and disability can be explained by a complex network perspective. Both brain networks architecture and synaptic plasticity may play important roles in modulating brain networks efficiency after brain damage. In particular, long-term potentiation (LTP) may occur in surviving neurons to compensate network disconnection. In MS, inflammatory cytokines dramatically interfere with synaptic transmission and plasticity. Importantly, in addition to acute and chronic structural damage, inflammation could contribute to reduce brain networks efficiency in MS leading to worse clinical recovery after a relapse and worse disease progression. These evidence suggest that removing inflammation should represent the main therapeutic target in MS; moreover, as synaptic plasticity is particularly altered by inflammation, specific strategies aimed at promoting LTP mechanisms could be effective for enhancing clinical recovery. Modulation of plasticity with different non-invasive brain stimulation (NIBS) techniques has been used to promote recovery of MS symptoms. Better knowledge of features inducing brain disconnection in MS is crucial to design specific strategies to promote recovery and use NIBS with an increasingly tailored approach.
Guided Wave Delamination Detection and Quantification With Wavefield Data Analysis
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Campbell Leckey, Cara A.; Seebo, Jeffrey P.; Yu, Lingyu
2014-01-01
Unexpected damage can occur in aerospace composites due to impact events or material stress during off-nominal loading events. In particular, laminated composites are susceptible to delamination damage due to weak transverse tensile and inter-laminar shear strengths. Developments of reliable and quantitative techniques to detect delamination damage in laminated composites are imperative for safe and functional optimally-designed next-generation composite structures. In this paper, we investigate guided wave interactions with delamination damage and develop quantification algorithms by using wavefield data analysis. The trapped guided waves in the delamination region are observed from the wavefield data and further quantitatively interpreted by using different wavenumber analysis methods. The frequency-wavenumber representation of the wavefield shows that new wavenumbers are present and correlate to trapped waves in the damage region. These new wavenumbers are used to detect and quantify the delamination damage through the wavenumber analysis, which can show how the wavenumber changes as a function of wave propagation distance. The location and spatial duration of the new wavenumbers can be identified, providing a useful means not only for detecting the presence of delamination damage but also allowing for estimation of the delamination size. Our method has been applied to detect and quantify real delamination damage with complex geometry (grown using a quasi-static indentation technique). The detection and quantification results show the location, size, and shape of the delamination damage.
Al-Anbaky, Qudes; Al-Karakooly, Zeiyad; Kilaparty, Surya P; Agrawal, Megha; Albkuri, Yahya M; RanguMagar, Ambar B; Ghosh, Anindya; Ali, Nawab
2016-11-01
Manganese (Mn) complexes are widely studied because of their important catalytic properties in synthetic and biochemical reactions. A Mn (III) complex of an amidoamine ligand was synthesized using a tetradentate amidoamine ligand. In this study, the Mn (III) complex was evaluated for its biological activity by measuring its cytotoxicity in human breast adenocarcinoma cell line (MCF-7). Cytotoxic effects of the Mn (III) complex were determined using established biomarkers in an attempt to delineate the mechanism of action and the utility of the complex as a potential anticancer drug. The Mn (III) complex induces cell death in a dose- and time-dependent manner as shown by microculture tetrazolium assay, a measure of cytotoxic cell death. Our results demonstrated that cytotoxic effects were significantly increased at higher concentrations of Mn (III) complex and with longer time of treatment. The IC 50 (Inhibitor concentration that results in 50% cell death) value of Mn (III) complex in MCF-7 cells was determined to be 2.5 mmol/L for 24 hours of treatment. In additional experiments, we determined the Mn (III) complex-mediated cell death was due to both apoptotic and nonspecific necrotic cell death mechanisms. This was assessed by ethidium bromide/acridine orange staining and flow cytometry techniques. The Mn (III) complex produced reactive oxygen species (ROS) triggering the expression of manganese superoxide dismutase 1 and ultimately damaging the mitochondrial function as is evident by a decline in mitochondrial membrane potential. Treatment of the cells with free radical scavenger, N, N-dimethylthiourea decreased Mn (III) complex-mediated generation of ROS and attenuated apoptosis. Together, these results suggest that the Mn (III) complex-mediated MCF-7 cell death utilizes combined mechanism involving apoptosis and necrosis perhaps due to the generation of ROS. © The Author(s) 2016.
Li, Jun; Zhang, Hong; Han, Yinshan; Wang, Baodong
2016-01-01
Focusing on the diversity, complexity and uncertainty of the third-party damage accident, the failure probability of third-party damage to urban gas pipeline was evaluated on the theory of analytic hierarchy process and fuzzy mathematics. The fault tree of third-party damage containing 56 basic events was built by hazard identification of third-party damage. The fuzzy evaluation of basic event probabilities were conducted by the expert judgment method and using membership function of fuzzy set. The determination of the weight of each expert and the modification of the evaluation opinions were accomplished using the improved analytic hierarchy process, and the failure possibility of the third-party to urban gas pipeline was calculated. Taking gas pipelines of a certain large provincial capital city as an example, the risk assessment structure of the method was proved to conform to the actual situation, which provides the basis for the safety risk prevention. PMID:27875545
Falquez, Rosalux; Dinu-Biringer, Ramona; Stopsack, Malte; Arens, Elisabeth A; Wick, Wolfgang; Barnow, Sven
2015-01-01
Previous investigations have demonstrated the relationship between inhibitory deficits and maladaptive emotion regulation. Although several neuropsychological studies show that frontal lobe damage can lead to extreme inhibition impairments, there have been no investigations regarding the influence of frontal lobe damage and related inhibition impairments on the use of maladaptive strategies. The goal of the current study was to examine the impact of executive functions impairments due to frontal lobe damage on cognitive emotion regulation. Fifteen patients with frontal lobe damage were compared to twenty-two healthy controls on their reported use of maladaptive strategies. The effect of behavioral inhibition deficits among the frontal lobe damage group was examined. Patients reflected a heightened use of maladaptive strategies compared to healthy controls, significantly mediated by Go/NoGo task errors, which are an indicator for response inhibition deficits. Results suggest that a heightened use of maladaptive strategies by patients relies to a strong extent on their impaired impulse control, highlighting the complex interplay between executive functions and emotional regulation.
Structural damage identification using damping: a compendium of uses and features
NASA Astrophysics Data System (ADS)
Cao, M. S.; Sha, G. G.; Gao, Y. F.; Ostachowicz, W.
2017-04-01
The vibration responses of structures under controlled or ambient excitation can be used to detect structural damage by correlating changes in structural dynamic properties extracted from responses with damage. Typical dynamic properties refer to modal parameters: natural frequencies, mode shapes, and damping. Among these parameters, natural frequencies and mode shapes have been investigated extensively for their use in damage characterization by associating damage with reduction in local stiffness of structures. In contrast, the use of damping as a dynamic property to represent structural damage has not been comprehensively elucidated, primarily due to the complexities of damping measurement and analysis. With advances in measurement technologies and analysis tools, the use of damping to identify damage is becoming a focus of increasing attention in the damage detection community. Recently, a number of studies have demonstrated that damping has greater sensitivity for characterizing damage than natural frequencies and mode shapes in various applications, but damping-based damage identification is still a research direction ‘in progress’ and is not yet well resolved. This situation calls for an overall survey of the state-of-the-art and the state-of-the-practice of using damping to detect structural damage. To this end, this study aims to provide a comprehensive survey of uses and features of applying damping in structural damage detection. First, we present various methods for damping estimation in different domains including the time domain, the frequency domain, and the time-frequency domain. Second, we investigate the features and applications of damping-based damage detection methods on the basis of two predominant infrastructure elements, reinforced concrete structures and fiber-reinforced composites. Third, we clarify the influential factors that can impair the capability of damping to characterize damage. Finally, we recommend future research directions for advancing damping-based damage detection. This work holds the promise of (a) helping researchers identify crucial components in damping-based damage detection theories, methods, and technologies, and (b) leading practitioners to better implement damping-based structural damage identification.
Covering Cavities by Electrodeposition
NASA Technical Reports Server (NTRS)
Schmeets, M.; Duesberg, J.
1986-01-01
Reworking technique allows complex surfaces to be reshaped. Contours of large machined parts reworked quickly and inexpensively by electrodeposition and machining, with little risk of damage. Reworking method employs simple, reliable, well-known procedures.
NASA Astrophysics Data System (ADS)
van Velden, Julia L.; Smith, Tanya; Ryan, Peter G.
2016-12-01
The Western Cape population of Blue Cranes ( Anthropoides paradiseus) in South Africa is of great importance as the largest population throughout its range. However, Blue Cranes are strongly associated with agricultural lands in the Western Cape, and therefore may come into conflict with farmers who perceive them as damaging to crops. We investigated the viability of this population by exploring farmer attitudes toward crane damage in two regions of the Western Cape, the Swartland and Overberg, using semi-structured interviews. Perceptions of cranes differed widely between regions: farmers in the Swartland perceived crane flocks to be particularly damaging to the feed crop sweet lupin (65 % of farmers reported some level of damage by cranes), and 40 % of these farmers perceived cranes as more problematic than other common bird pests. Farmers in the Overberg did not perceive cranes as highly damaging, although there was concern about cranes eating feed at sheep troughs. Farmers who had experienced large flocks on their farms and farmers who ranked cranes as more problematic than other bird pests more often perceived cranes to be damaging to their livelihoods. Biographical variables and crop profiles could not be related to the perception of damage, indicating the complexity of this human-wildlife conflict. Farmers' need for management alternatives was related to the perceived severity of damage. These results highlight the need for location-specific management solutions to crop damage by cranes, and contribute to the management of this vulnerable species.
Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation
NASA Technical Reports Server (NTRS)
Sutherland, B. M.; Bennett, P. V.; Sidorkina, O.; Laval, J.; Lowenstein, D. I. (Principal Investigator)
2000-01-01
Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.