Quantitative evaluation of muscle synergy models: a single-trial task decoding approach
Delis, Ioannis; Berret, Bastien; Pozzo, Thierry; Panzeri, Stefano
2013-01-01
Muscle synergies, i.e., invariant coordinated activations of groups of muscles, have been proposed as building blocks that the central nervous system (CNS) uses to construct the patterns of muscle activity utilized for executing movements. Several efficient dimensionality reduction algorithms that extract putative synergies from electromyographic (EMG) signals have been developed. Typically, the quality of synergy decompositions is assessed by computing the Variance Accounted For (VAF). Yet, little is known about the extent to which the combination of those synergies encodes task-discriminating variations of muscle activity in individual trials. To address this question, here we conceive and develop a novel computational framework to evaluate muscle synergy decompositions in task space. Unlike previous methods considering the total variance of muscle patterns (VAF based metrics), our approach focuses on variance discriminating execution of different tasks. The procedure is based on single-trial task decoding from muscle synergy activation features. The task decoding based metric evaluates quantitatively the mapping between synergy recruitment and task identification and automatically determines the minimal number of synergies that captures all the task-discriminating variability in the synergy activations. In this paper, we first validate the method on plausibly simulated EMG datasets. We then show that it can be applied to different types of muscle synergy decomposition and illustrate its applicability to real data by using it for the analysis of EMG recordings during an arm pointing task. We find that time-varying and synchronous synergies with similar number of parameters are equally efficient in task decoding, suggesting that in this experimental paradigm they are equally valid representations of muscle synergies. Overall, these findings stress the effectiveness of the decoding metric in systematically assessing muscle synergy decompositions in task space. PMID:23471195
NASA Technical Reports Server (NTRS)
Simmons, Reid; Apfelbaum, David
2005-01-01
Task Description Language (TDL) is an extension of the C++ programming language that enables programmers to quickly and easily write complex, concurrent computer programs for controlling real-time autonomous systems, including robots and spacecraft. TDL is based on earlier work (circa 1984 through 1989) on the Task Control Architecture (TCA). TDL provides syntactic support for hierarchical task-level control functions, including task decomposition, synchronization, execution monitoring, and exception handling. A Java-language-based compiler transforms TDL programs into pure C++ code that includes calls to a platform-independent task-control-management (TCM) library. TDL has been used to control and coordinate multiple heterogeneous robots in projects sponsored by NASA and the Defense Advanced Research Projects Agency (DARPA). It has also been used in Brazil to control an autonomous airship and in Canada to control a robotic manipulator.
A unifying model of concurrent spatial and temporal modularity in muscle activity.
Delis, Ioannis; Panzeri, Stefano; Pozzo, Thierry; Berret, Bastien
2014-02-01
Modularity in the central nervous system (CNS), i.e., the brain capability to generate a wide repertoire of movements by combining a small number of building blocks ("modules"), is thought to underlie the control of movement. Numerous studies reported evidence for such a modular organization by identifying invariant muscle activation patterns across various tasks. However, previous studies relied on decompositions differing in both the nature and dimensionality of the identified modules. Here, we derive a single framework that encompasses all influential models of muscle activation modularity. We introduce a new model (named space-by-time decomposition) that factorizes muscle activations into concurrent spatial and temporal modules. To infer these modules, we develop an algorithm, referred to as sample-based nonnegative matrix trifactorization (sNM3F). We test the space-by-time decomposition on a comprehensive electromyographic dataset recorded during execution of arm pointing movements and show that it provides a low-dimensional yet accurate, highly flexible and task-relevant representation of muscle patterns. The extracted modules have a well characterized functional meaning and implement an efficient trade-off between replication of the original muscle patterns and task discriminability. Furthermore, they are compatible with the modules extracted from existing models, such as synchronous synergies and temporal primitives, and generalize time-varying synergies. Our results indicate the effectiveness of a simultaneous but separate condensation of spatial and temporal dimensions of muscle patterns. The space-by-time decomposition accommodates a unified view of the hierarchical mapping from task parameters to coordinated muscle activations, which could be employed as a reference framework for studying compositional motor control.
Delis, Ioannis; Berret, Bastien; Pozzo, Thierry; Panzeri, Stefano
2013-01-01
Muscle synergies have been hypothesized to be the building blocks used by the central nervous system to generate movement. According to this hypothesis, the accomplishment of various motor tasks relies on the ability of the motor system to recruit a small set of synergies on a single-trial basis and combine them in a task-dependent manner. It is conceivable that this requires a fine tuning of the trial-to-trial relationships between the synergy activations. Here we develop an analytical methodology to address the nature and functional role of trial-to-trial correlations between synergy activations, which is designed to help to better understand how these correlations may contribute to generating appropriate motor behavior. The algorithm we propose first divides correlations between muscle synergies into types (noise correlations, quantifying the trial-to-trial covariations of synergy activations at fixed task, and signal correlations, quantifying the similarity of task tuning of the trial-averaged activation coefficients of different synergies), and then uses single-trial methods (task-decoding and information theory) to quantify their overall effect on the task-discriminating information carried by muscle synergy activations. We apply the method to both synchronous and time-varying synergies and exemplify it on electromyographic data recorded during performance of reaching movements in different directions. Our method reveals the robust presence of information-enhancing patterns of signal and noise correlations among pairs of synchronous synergies, and shows that they enhance by 9-15% (depending on the set of tasks) the task-discriminating information provided by the synergy decompositions. We suggest that the proposed methodology could be useful for assessing whether single-trial activations of one synergy depend on activations of other synergies and quantifying the effect of such dependences on the task-to-task differences in muscle activation patterns.
Tzur, Gabriel; Berger, Andrea
2009-03-17
Theta rhythm has been connected to ERP components such as the error-related negativity (ERN) and the feedback-related negativity (FRN). The nature of this theta activity is still unclear, that is, whether it is related to error detection, conflict between responses or reinforcement learning processes. We examined slow (e.g., theta) and fast (e.g., gamma) brain rhythms related to rule violation. A time-frequency decomposition analysis on a wide range of frequencies band (0-95 Hz) indicated that the theta activity relates to evaluation processes, regardless of motor/action processes. Similarities between the theta activities found in rule-violation tasks and in tasks eliciting ERN/FRN suggest that this theta activity reflects the operation of general evaluation mechanisms. Moreover, significant effects were found also in fast brain rhythms. These effects might be related to the synchronization between different types of cognitive processes involving the fulfillment of a task (e.g., working memory, visual perception, mathematical calculation, etc.).
On the decomposition of synchronous state mechines using sequence invariant state machines
NASA Technical Reports Server (NTRS)
Hebbalalu, K.; Whitaker, S.; Cameron, K.
1992-01-01
This paper presents a few techniques for the decomposition of Synchronous State Machines of medium to large sizes into smaller component machines. The methods are based on the nature of the transitions and sequences of states in the machine and on the number and variety of inputs to the machine. The results of the decomposition, and of using the Sequence Invariant State Machine (SISM) Design Technique for generating the component machines, include great ease and quickness in the design and implementation processes. Furthermore, there is increased flexibility in making modifications to the original design leading to negligible re-design time.
Scenario Decomposition for 0-1 Stochastic Programs: Improvements and Asynchronous Implementation
Ryan, Kevin; Rajan, Deepak; Ahmed, Shabbir
2016-05-01
We recently proposed scenario decomposition algorithm for stochastic 0-1 programs finds an optimal solution by evaluating and removing individual solutions that are discovered by solving scenario subproblems. In our work, we develop an asynchronous, distributed implementation of the algorithm which has computational advantages over existing synchronous implementations of the algorithm. Improvements to both the synchronous and asynchronous algorithm are proposed. We also test the results on well known stochastic 0-1 programs from the SIPLIB test library and is able to solve one previously unsolved instance from the test set.
The effects of dual tasking on gait synchronization during over-ground side-by-side walking.
Zivotofsky, Ari Z; Bernad-Elazari, Hagar; Grossman, Pnina; Hausdorff, Jeffrey M
2018-06-01
Recent studies have shown that gait synchronization during natural walking is not merely anecdotal, but it is a repeatable phenomenon that is quantifiable and is apparently related to available sensory feedback modalities. However, the mechanisms underlying this phase-locking of gait have only recently begun to be investigated. For example, it is not known what role, if any, attention plays. We employed a dual tasking paradigm in order to investigate the role attention plays in gait synchronization. Sixteen pairs of subjects walked under six conditions that manipulated the available sensory feedback and the degree of difficulty of the dual task, i.e., the attention. Movement was quantified using a trunk-mounted tri-axial accelerometer. A gait synchronization index (GSI) was calculated in order to quantify the degree of synchronization of the gait pattern. A simple dual task resulted in an increased level of synchronization, whereas a more complex dual task lead to a reduction in synchronization. Handholding increased synchronization, compared to the same attention condition without handholding. These results indicate that in order for two walkers to synchronize, some level of attention is apparently required, such that a relatively complex dual task utilizes enough attentional resources to reduce the occurrence of synchronization. Copyright © 2018 Elsevier B.V. All rights reserved.
Merchant, Hugo; Honing, Henkjan
2013-01-01
We propose a decomposition of the neurocognitive mechanisms that might underlie interval-based timing and rhythmic entrainment. Next to reviewing the concepts central to the definition of rhythmic entrainment, we discuss recent studies that suggest rhythmic entrainment to be specific to humans and a selected group of bird species, but, surprisingly, is not obvious in non-human primates. On the basis of these studies we propose the gradual audiomotor evolution hypothesis that suggests that humans fully share interval-based timing with other primates, but only partially share the ability of rhythmic entrainment (or beat-based timing). This hypothesis accommodates the fact that non-human primates (i.e., macaques) performance is comparable to humans in single interval tasks (such as interval reproduction, categorization, and interception), but show differences in multiple interval tasks (such as rhythmic entrainment, synchronization, and continuation). Furthermore, it is in line with the observation that macaques can, apparently, synchronize in the visual domain, but show less sensitivity in the auditory domain. And finally, while macaques are sensitive to interval-based timing and rhythmic grouping, the absence of a strong coupling between the auditory and motor system of non-human primates might be the reason why macaques cannot rhythmically entrain in the way humans do.
NASA Astrophysics Data System (ADS)
Tarai, Madhumita; Kumar, Keshav; Divya, O.; Bairi, Partha; Mishra, Kishor Kumar; Mishra, Ashok Kumar
2017-09-01
The present work compares the dissimilarity and covariance based unsupervised chemometric classification approaches by taking the total synchronous fluorescence spectroscopy data sets acquired for the cumin and non-cumin based herbal preparations. The conventional decomposition method involves eigenvalue-eigenvector analysis of the covariance of the data set and finds the factors that can explain the overall major sources of variation present in the data set. The conventional approach does this irrespective of the fact that the samples belong to intrinsically different groups and hence leads to poor class separation. The present work shows that classification of such samples can be optimized by performing the eigenvalue-eigenvector decomposition on the pair-wise dissimilarity matrix.
Tarai, Madhumita; Kumar, Keshav; Divya, O; Bairi, Partha; Mishra, Kishor Kumar; Mishra, Ashok Kumar
2017-09-05
The present work compares the dissimilarity and covariance based unsupervised chemometric classification approaches by taking the total synchronous fluorescence spectroscopy data sets acquired for the cumin and non-cumin based herbal preparations. The conventional decomposition method involves eigenvalue-eigenvector analysis of the covariance of the data set and finds the factors that can explain the overall major sources of variation present in the data set. The conventional approach does this irrespective of the fact that the samples belong to intrinsically different groups and hence leads to poor class separation. The present work shows that classification of such samples can be optimized by performing the eigenvalue-eigenvector decomposition on the pair-wise dissimilarity matrix. Copyright © 2017 Elsevier B.V. All rights reserved.
Keough, N; L'Abbé, E N; Steyn, M; Pretorius, S
2015-01-01
Forensic anthropologists are tasked with interpreting the sequence of events from death to the discovery of a body. Burned bone often evokes questions as to the timing of burning events. The purpose of this study was to assess the progression of thermal damage on bones with advancement in decomposition. Twenty-five pigs in various stages of decomposition (fresh, early, advanced, early and late skeletonisation) were exposed to fire for 30 min. The scored heat-related features on bone included colour change (unaltered, charred, calcined), brown and heat borders, heat lines, delineation, greasy bone, joint shielding, predictable and minimal cracking, delamination and heat-induced fractures. Colour changes were scored according to a ranked percentage scale (0-3) and the remaining traits as absent or present (0/1). Kappa statistics was used to evaluate intra- and inter-observer error. Transition analysis was used to formulate probability mass functions [P(X=j|i)] to predict decomposition stage from the scored features of thermal destruction. Nine traits displayed potential to predict decomposition stage from burned remains. An increase in calcined and charred bone occurred synchronously with advancement of decomposition with subsequent decrease in unaltered surfaces. Greasy bone appeared more often in the early/fresh stages (fleshed bone). Heat borders, heat lines, delineation, joint shielding, predictable and minimal cracking are associated with advanced decomposition, when bone remains wet but lacks extensive soft tissue protection. Brown burn/borders, delamination and other heat-induced fractures are associated with early and late skeletonisation, showing that organic composition of bone and percentage of flesh present affect the manner in which it burns. No statistically significant difference was noted among observers for the majority of the traits, indicating that they can be scored reliably. Based on the data analysis, the pattern of heat-induced changes may assist in estimating decomposition stage from unknown, burned remains. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Effects of mental tasks on the cardiorespiratory synchronization.
Zhang, Jianbao; Yu, Xiaolin; Xie, Dongdong
2010-01-31
The cardiovascular and respiratory systems are functionally related to each other, but it is unclear if the cerebral cortex can affect their interaction. The effect of a mental task on the synchronization between cardiovascular and respiratory systems was investigated in the article. Electroencephalogram (EEG), electrocardiogram (ECG) and respiratory signal (RES) were collected from 29 healthy male subjects during the mental arithmetic (MA) task and the synchrogram was used to estimate the strength of cardiorespiratory synchronization. Our results showed that MA task significantly increased the breath rate, the heart rate and the EEG power spectral energy in theta band at FC3, FC4 and C4 electrodes (p<0.01), decreased the duration of cardiorespiratory synchronization epochs (p<0.05). Moreover the duration of cardiorespiratory synchronization epochs during MA task was negatively correlated with the EEG power spectral energy in theta band at FC3, FC4 and C4 electrodes and the sympathetic activity (p<0.05). The results demonstrated that ANS and cerebral cortex are implicated in the changes of cardiorespiratory synchronization during MA task. Copyright 2009 Elsevier B.V. All rights reserved.
The two faces of avoidance: Time-frequency correlates of motivational disposition in blood phobia.
Mennella, Rocco; Sarlo, Michela; Messerotti Benvenuti, Simone; Buodo, Giulia; Mento, Giovanni; Palomba, Daniela
2017-11-01
Contrary to other phobias, individuals with blood phobia do not show a clear-cut withdrawal disposition from the feared stimulus. The study of response inhibition provides insights into reduced action disposition in blood phobia. Twenty individuals with and 20 without blood phobia completed an emotional go/no-go task including phobia-related pictures, as well as phobia-unrelated unpleasant, neutral, and pleasant stimuli. Behavioral results did not indicate a phobia-specific reduced action disposition in the phobic group. Time-frequency decomposition of event-related EEG data showed a reduction of right prefrontal activity, as indexed by an increase in alpha power (200 ms), for no-go mutilation trials in the phobic group but not in controls. Moreover, theta power (300 ms) increased specifically for phobia-related pictures in individuals with, but not without, blood phobia, irrespective of go or no-go trial types. Passive avoidance of phobia-related stimuli subtended by the increased alpha in the right prefrontal cortex, associated with increased emotional salience indexed by theta synchronization, represents a possible neurophysiological correlate of the conflicting motivational response in blood phobia. Through the novel use of time-frequency decomposition in an emotional go/no-go task, the present study contributed to clarifying the neurophysiological correlates of the overlapping motivational tendencies in blood phobia. © 2017 Society for Psychophysiological Research.
Inter-subject phase synchronization for exploratory analysis of task-fMRI.
Bolt, Taylor; Nomi, Jason S; Vij, Shruti G; Chang, Catie; Uddin, Lucina Q
2018-08-01
Analysis of task-based fMRI data is conventionally carried out using a hypothesis-driven approach, where blood-oxygen-level dependent (BOLD) time courses are correlated with a hypothesized temporal structure. In some experimental designs, this temporal structure can be difficult to define. In other cases, experimenters may wish to take a more exploratory, data-driven approach to detecting task-driven BOLD activity. In this study, we demonstrate the efficiency and power of an inter-subject synchronization approach for exploratory analysis of task-based fMRI data. Combining the tools of instantaneous phase synchronization and independent component analysis, we characterize whole-brain task-driven responses in terms of group-wise similarity in temporal signal dynamics of brain networks. We applied this framework to fMRI data collected during performance of a simple motor task and a social cognitive task. Analyses using an inter-subject phase synchronization approach revealed a large number of brain networks that dynamically synchronized to various features of the task, often not predicted by the hypothesized temporal structure of the task. We suggest that this methodological framework, along with readily available tools in the fMRI community, provides a powerful exploratory, data-driven approach for analysis of task-driven BOLD activity. Copyright © 2018 Elsevier Inc. All rights reserved.
Distributed Cooperation Solution Method of Complex System Based on MAS
NASA Astrophysics Data System (ADS)
Weijin, Jiang; Yuhui, Xu
To adapt the model in reconfiguring fault diagnosing to dynamic environment and the needs of solving the tasks of complex system fully, the paper introduced multi-Agent and related technology to the complicated fault diagnosis, an integrated intelligent control system is studied in this paper. Based on the thought of the structure of diagnostic decision and hierarchy in modeling, based on multi-layer decomposition strategy of diagnosis task, a multi-agent synchronous diagnosis federation integrated different knowledge expression modes and inference mechanisms are presented, the functions of management agent, diagnosis agent and decision agent are analyzed, the organization and evolution of agents in the system are proposed, and the corresponding conflict resolution algorithm in given, Layered structure of abstract agent with public attributes is build. System architecture is realized based on MAS distributed layered blackboard. The real world application shows that the proposed control structure successfully solves the fault diagnose problem of the complex plant, and the special advantage in the distributed domain.
Reactive Goal Decomposition Hierarchies for On-Board Autonomy
NASA Astrophysics Data System (ADS)
Hartmann, L.
2002-01-01
As our experience grows, space missions and systems are expected to address ever more complex and demanding requirements with fewer resources (e.g., mass, power, budget). One approach to accommodating these higher expectations is to increase the level of autonomy to improve the capabilities and robustness of on- board systems and to simplify operations. The goal decomposition hierarchies described here provide a simple but powerful form of goal-directed behavior that is relatively easy to implement for space systems. A goal corresponds to a state or condition that an operator of the space system would like to bring about. In the system described here goals are decomposed into simpler subgoals until the subgoals are simple enough to execute directly. For each goal there is an activation condition and a set of decompositions. The decompositions correspond to different ways of achieving the higher level goal. Each decomposition contains a gating condition and a set of subgoals to be "executed" sequentially or in parallel. The gating conditions are evaluated in order and for the first one that is true, the corresponding decomposition is executed in order to achieve the higher level goal. The activation condition specifies global conditions (i.e., for all decompositions of the goal) that need to hold in order for the goal to be achieved. In real-time, parameters and state information are passed between goals and subgoals in the decomposition; a termination indication (success, failure, degree) is passed up when a decomposition finishes executing. The lowest level decompositions include servo control loops and finite state machines for generating control signals and sequencing i/o. Semaphores and shared memory are used to synchronize and coordinate decompositions that execute in parallel. The goal decomposition hierarchy is reactive in that the generated behavior is sensitive to the real-time state of the system and the environment. That is, the system is able to react to state and environment and in general can terminate the execution of a decomposition and attempt a new decomposition at any level in the hierarchy. This goal decomposition system is suitable for workstation, microprocessor and fpga implementation and thus is able to support the full range of prototyping activities, from mission design in the laboratory to development of the fpga firmware for the flight system. This approach is based on previous artificial intelligence work including (1) Brooks' subsumption architecture for robot control, (2) Firby's Reactive Action Package System (RAPS) for mediating between high level automated planning and low level execution and (3) hierarchical task networks for automated planning. Reactive goal decomposition hierarchies can be used for a wide variety of on-board autonomy applications including automating low level operation sequences (such as scheduling prerequisite operations, e.g., heaters, warm-up periods, monitoring power constraints), coordinating multiple spacecraft as in formation flying and constellations, robot manipulator operations, rendez-vous, docking, servicing, assembly, on-orbit maintenance, planetary rover operations, solar system and interstellar probes, intelligent science data gathering and disaster early warning. Goal decomposition hierarchies can support high level fault tolerance. Given models of on-board resources and goals to accomplish, the decomposition hierarchy could allocate resources to goals taking into account existing faults and in real-time reallocating resources as new faults arise. Resources to be modeled include memory (e.g., ROM, FPGA configuration memory, processor memory, payload instrument memory), processors, on-board and interspacecraft network nodes and links, sensors, actuators (e.g., attitude determination and control, guidance and navigation) and payload instruments. A goal decomposition hierarchy could be defined to map mission goals and tasks to available on-board resources. As faults occur and are detected the resource allocation is modified to avoid using the faulty resource. Goal decomposition hierarchies can implement variable autonomy (in which the operator chooses to command the system at a high or low level, mixed initiative planning (in which the system is able to interact with the operator, e.g, to request operator intervention when a working envelope is exceeded) and distributed control (in which, for example, multiple spacecraft cooperate to accomplish a task without a fixed master). The full paper will describe in greater detail how goal decompositions work, how they can be implemented, techniques for implementing a candidate application and the current state of the fpga implementation.
Scheurich, Rebecca; Zamm, Anna; Palmer, Caroline
2018-01-01
The ability to flexibly adapt one’s behavior is critical for social tasks such as speech and music performance, in which individuals must coordinate the timing of their actions with others. Natural movement frequencies, also called spontaneous rates, constrain synchronization accuracy between partners during duet music performance, whereas musical training enhances synchronization accuracy. We investigated the combined influences of these factors on the flexibility with which individuals can synchronize their actions with sequences at different rates. First, we developed a novel musical task capable of measuring spontaneous rates in both musicians and non-musicians in which participants tapped the rhythm of a familiar melody while hearing the corresponding melody tones. The novel task was validated by similar measures of spontaneous rates generated by piano performance and by the tapping task from the same pianists. We then implemented the novel task with musicians and non-musicians as they synchronized tapping of a familiar melody with a metronome at their spontaneous rates, and at rates proportionally slower and faster than their spontaneous rates. Musicians synchronized more flexibly across rates than non-musicians, indicated by greater synchronization accuracy. Additionally, musicians showed greater engagement of error correction mechanisms than non-musicians. Finally, differences in flexibility were characterized by more recurrent (repetitive) and patterned synchronization in non-musicians, indicative of greater temporal rigidity. PMID:29681872
Representation and Analysis of Real-Time Control Structures.
1980-08-01
external processes which cannot be forced to cooperate with programmed processes through use of a synchronization primitive such as a semaphore [Dijkstre...amounts to each task, but the time slices are synchronized with program execution. The length of the codestrip is determined by the response time...which might be synchronous or asynchronous with respect to the executing task. The notation can represent total and partial orderings among its tasks, and
Synchronization in networks with heterogeneous coupling delays
NASA Astrophysics Data System (ADS)
Otto, Andreas; Radons, Günter; Bachrathy, Dániel; Orosz, Gábor
2018-01-01
Synchronization in networks of identical oscillators with heterogeneous coupling delays is studied. A decomposition of the network dynamics is obtained by block diagonalizing a newly introduced adjacency lag operator which contains the topology of the network as well as the corresponding coupling delays. This generalizes the master stability function approach, which was developed for homogenous delays. As a result the network dynamics can be analyzed by delay differential equations with distributed delay, where different delay distributions emerge for different network modes. Frequency domain methods are used for the stability analysis of synchronized equilibria and synchronized periodic orbits. As an example, the synchronization behavior in a system of delay-coupled Hodgkin-Huxley neurons is investigated. It is shown that the parameter regions where synchronized periodic spiking is unstable expand when increasing the delay heterogeneity.
Bouncing Ball with a Uniformly Varying Velocity in a Metronome Synchronization Task.
Huang, Yingyu; Gu, Li; Yang, Junkai; Wu, Xiang
2017-09-21
Sensorimotor synchronization (SMS), a fundamental human ability to coordinate movements with external rhythms, has long been thought to be modality specific. In the canonical metronome synchronization task that requires tapping a finger along with an isochronous sequence, a well-established finding is that synchronization is much more stable to an auditory sequence consisting of auditory tones than to a visual sequence consisting of visual flashes. However, recent studies have shown that periodically moving visual stimuli can substantially improve synchronization compared with visual flashes. In particular, synchronization of a visual bouncing ball that has a uniformly varying velocity was found to be not less stable than synchronization of auditory tones. Here, the current protocol describes the application of the bouncing ball with a uniformly varying velocity in a metronome synchronization task. The usage of the bouncing ball in sequences with different inter-onset intervals (IOI) is included. The representative results illustrate synchronization performance of the bouncing ball, as compared with the performances of auditory tones and visual flashes. Given its comparable synchronization performance to that of auditory tones, the bouncing ball is of particular importance for addressing the current research topic of whether modality-specific mechanisms underlay SMS.
Mohr, Maurice; Nann, Marius; von Tscharner, Vinzenz; Eskofier, Bjoern; Nigg, Benno Maurus
2015-01-01
Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity-the synchronized discharge of individual motor units across muscles within time intervals of 5ms-for the Vastus Medialis (VM) and Lateralis (VL). Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role. Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG) was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum. For all tasks, except for singe-leg balance, coherence between 15-80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30-60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat. There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement task at hand.
Mohr, Maurice; Nann, Marius; von Tscharner, Vinzenz; Eskofier, Bjoern; Nigg, Benno Maurus
2015-01-01
Purpose Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity–the synchronized discharge of individual motor units across muscles within time intervals of 5ms–for the Vastus Medialis (VM) and Lateralis (VL). Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role. Methods Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG) was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum. Results For all tasks, except for singe-leg balance, coherence between 15–80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30–60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat. Conclusion There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement task at hand. PMID:26529604
Investigation of automated task learning, decomposition and scheduling
NASA Technical Reports Server (NTRS)
Livingston, David L.; Serpen, Gursel; Masti, Chandrashekar L.
1990-01-01
The details and results of research conducted in the application of neural networks to task planning and decomposition are presented. Task planning and decomposition are operations that humans perform in a reasonably efficient manner. Without the use of good heuristics and usually much human interaction, automatic planners and decomposers generally do not perform well due to the intractable nature of the problems under consideration. The human-like performance of neural networks has shown promise for generating acceptable solutions to intractable problems such as planning and decomposition. This was the primary reasoning behind attempting the study. The basis for the work is the use of state machines to model tasks. State machine models provide a useful means for examining the structure of tasks since many formal techniques have been developed for their analysis and synthesis. It is the approach to integrate the strong algebraic foundations of state machines with the heretofore trial-and-error approach to neural network synthesis.
ERIC Educational Resources Information Center
Collentine, Karina
2009-01-01
Second language acquisition (SLA) researchers strive to understand the language and exchanges that learners generate in synchronous computer-mediated communication (SCMC). Doughty and Long (2003) advocate replacing open-ended SCMC with task-based language teaching (TBLT) design principles. Since most task-based SCMC (TB-SCMC) research addresses an…
Distributed-Memory Breadth-First Search on Massive Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buluc, Aydin; Beamer, Scott; Madduri, Kamesh
This chapter studies the problem of traversing large graphs using the breadth-first search order on distributed-memory supercomputers. We consider both the traditional level-synchronous top-down algorithm as well as the recently discovered direction optimizing algorithm. We analyze the performance and scalability trade-offs in using different local data structures such as CSR and DCSC, enabling in-node multithreading, and graph decompositions such as 1D and 2D decomposition.
NASA Technical Reports Server (NTRS)
Bortolussi, Michael R.; Hart, Sandra G.; Shively, Robert J.
1987-01-01
A simulation was conducted to determine whether the sensitivity of secondary task measures of pilot workload could be improved by synchronizing their presentation to the occurrence of specific events or pilot actions. This synchronous method of presentation was compared to the more typical asynchronous method, where secondary task presentations are independent of pilot's flight-related activities. Twelve pilots flew low- and high-difficulty scenarios in a motion-base trainer with and without concurrent secondary tasks (e.g., choice reaction time and time production). The difficulty of each scenario was manipulated by the addition of 21 flight-related tasks superimposed on a standard approach and landing sequence. The insertion of the secondary tasks did not affect primary flight performance. However, secondary task performance did reflect workload differences between scenarios and among flight segments within scenarios, replicating the results of an earlier study in which the secondary tasks were presented asynchronously (Bortolussi et al., 1986).
Ji, Hongfei; Li, Jie; Lu, Rongrong; Gu, Rong; Cao, Lei; Gong, Xiaoliang
2016-01-01
Electroencephalogram- (EEG-) based brain-computer interface (BCI) systems usually utilize one type of changes in the dynamics of brain oscillations for control, such as event-related desynchronization/synchronization (ERD/ERS), steady state visual evoked potential (SSVEP), and P300 evoked potentials. There is a recent trend to detect more than one of these signals in one system to create a hybrid BCI. However, in this case, EEG data were always divided into groups and analyzed by the separate processing procedures. As a result, the interactive effects were ignored when different types of BCI tasks were executed simultaneously. In this work, we propose an improved tensor based multiclass multimodal scheme especially for hybrid BCI, in which EEG signals are denoted as multiway tensors, a nonredundant rank-one tensor decomposition model is proposed to obtain nonredundant tensor components, a weighted fisher criterion is designed to select multimodal discriminative patterns without ignoring the interactive effects, and support vector machine (SVM) is extended to multiclass classification. Experiment results suggest that the proposed scheme can not only identify the different changes in the dynamics of brain oscillations induced by different types of tasks but also capture the interactive effects of simultaneous tasks properly. Therefore, it has great potential use for hybrid BCI. PMID:26880873
Ji, Hongfei; Li, Jie; Lu, Rongrong; Gu, Rong; Cao, Lei; Gong, Xiaoliang
2016-01-01
Electroencephalogram- (EEG-) based brain-computer interface (BCI) systems usually utilize one type of changes in the dynamics of brain oscillations for control, such as event-related desynchronization/synchronization (ERD/ERS), steady state visual evoked potential (SSVEP), and P300 evoked potentials. There is a recent trend to detect more than one of these signals in one system to create a hybrid BCI. However, in this case, EEG data were always divided into groups and analyzed by the separate processing procedures. As a result, the interactive effects were ignored when different types of BCI tasks were executed simultaneously. In this work, we propose an improved tensor based multiclass multimodal scheme especially for hybrid BCI, in which EEG signals are denoted as multiway tensors, a nonredundant rank-one tensor decomposition model is proposed to obtain nonredundant tensor components, a weighted fisher criterion is designed to select multimodal discriminative patterns without ignoring the interactive effects, and support vector machine (SVM) is extended to multiclass classification. Experiment results suggest that the proposed scheme can not only identify the different changes in the dynamics of brain oscillations induced by different types of tasks but also capture the interactive effects of simultaneous tasks properly. Therefore, it has great potential use for hybrid BCI.
ERIC Educational Resources Information Center
Freiermuth, Mark R.; Huang, Hsin-chou
2012-01-01
This study examines the motivation of 20 Japanese students of English as a foreign language (EFL) who chatted electronically with 19 Taiwanese EFL students using online synchronous chat software. In particular, we were interested in four factors that affect task-based motivation: the willingness to communicate, task attractiveness, task…
Rhythm Patterns Interaction - Synchronization Behavior for Human-Robot Joint Action
Mörtl, Alexander; Lorenz, Tamara; Hirche, Sandra
2014-01-01
Interactive behavior among humans is governed by the dynamics of movement synchronization in a variety of repetitive tasks. This requires the interaction partners to perform for example rhythmic limb swinging or even goal-directed arm movements. Inspired by that essential feature of human interaction, we present a novel concept and design methodology to synthesize goal-directed synchronization behavior for robotic agents in repetitive joint action tasks. The agents’ tasks are described by closed movement trajectories and interpreted as limit cycles, for which instantaneous phase variables are derived based on oscillator theory. Events segmenting the trajectories into multiple primitives are introduced as anchoring points for enhanced synchronization modes. Utilizing both continuous phases and discrete events in a unifying view, we design a continuous dynamical process synchronizing the derived modes. Inverse to the derivation of phases, we also address the generation of goal-directed movements from the behavioral dynamics. The developed concept is implemented to an anthropomorphic robot. For evaluation of the concept an experiment is designed and conducted in which the robot performs a prototypical pick-and-place task jointly with human partners. The effectiveness of the designed behavior is successfully evidenced by objective measures of phase and event synchronization. Feedback gathered from the participants of our exploratory study suggests a subjectively pleasant sense of interaction created by the interactive behavior. The results highlight potential applications of the synchronization concept both in motor coordination among robotic agents and in enhanced social interaction between humanoid agents and humans. PMID:24752212
NASA Astrophysics Data System (ADS)
Insausti, Matías; de Araújo Gomes, Adriano; Camiña, José Manuel; de Araújo, Mario Cesar Ugulino; Band, Beatriz Susana Fernández
2017-03-01
The present work proposes the use of total synchronous fluorescence spectroscopy (TSFS) as a discrimination methodology for fluorescent compounds in edible oils, which are preserved after the transesterification processes in the biodiesel production. In the same way, a similar study is presented to identify fluorophores that do not change in expired vegetal oils, to associate physicochemical parameters to fluorescent measures, as contribution to a fingerprint for increasing the chemical knowledge of these products. The fluorescent fingerprints were obtained by Tucker3 decomposition of a three-way array of the total synchronous fluorescence matrices. This chemometric method presents the ability for modeling non-bilinear data, as Total Synchronous Fluorescence Spectra data, and consists in the decomposition of the three way data arrays (samples × Δλ × λ excitation), into four new data matrices: A (scores), B (profile in Δλ mode), C (profile in spectra mode) and G (relationships between A, B and C). In this study, 50 samples of oil from soybean, corn and sunflower seeds before and after its expiration time, as well as 50 biodiesel samples obtained by transesterification of the same oils were measured by TSFS. This study represents an immediate application of chemical fingerprint for the discrimination of non-expired and expired edible oils and biodiesel. This method does not require the use of reagents or laborious procedures for the chemical characterization of samples.
NASA Astrophysics Data System (ADS)
Bravo-Imaz, Inaki; Davari Ardakani, Hossein; Liu, Zongchang; García-Arribas, Alfredo; Arnaiz, Aitor; Lee, Jay
2017-09-01
This paper focuses on analyzing motor current signature for fault diagnosis of gearboxes operating under transient speed regimes. Two different strategies are evaluated, extensively tested and compared to analyze the motor current signature in order to implement a condition monitoring system for gearboxes in industrial machinery. A specially designed test bench is used, thoroughly monitored to fully characterize the experiments, in which gears in different health status are tested. The measured signals are analyzed using discrete wavelet decomposition, in different decomposition levels using a range of mother wavelets. Moreover, a dual-level time synchronous averaging analysis is performed on the same signal to compare the performance of the two methods. From both analyses, the relevant features of the signals are extracted and cataloged using a self-organizing map, which allows for an easy detection and classification of the diverse health states of the gears. The results demonstrate the effectiveness of both methods for diagnosing gearbox faults. A slightly better performance was observed for dual-level time synchronous averaging method. Based on the obtained results, the proposed methods can used as effective and reliable condition monitoring procedures for gearbox condition monitoring using only motor current signature.
Ceux, Tanja; Montagne, Gilles; Buekers, Martinus J
2010-12-01
The present study examined whether the beneficial role of coherently grouped visual motion structures for performing complex (interlimb) coordination patterns can be generalized to synchronization behavior in a visuo-proprioceptive conflict situation. To achieve this goal, 17 participants had to synchronize a self-moved circle, representing the arm movement, with a visual target signal corresponding to five temporally shifted visual feedback conditions (0%, 25%, 50%, 75%, and 100% of the target cycle duration) in three synchronization modes (in-phase, anti-phase, and intermediate). The results showed that the perception of a newly generated perceptual Gestalt between the visual feedback of the arm and the target signal facilitated the synchronization performance in the preferred in-phase synchronization mode in contrast to the less stable anti-phase and intermediate mode. Our findings suggest that the complexity of the synchronization mode defines to what extent the visual and/or proprioceptive information source affects the synchronization performance in the present unimanual synchronization task. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Grzybowski, H.; Mosdorf, R.
2016-09-01
The temperature fluctuations occurring in flow boiling in parallel minichannels with diameter of 1 mm have been experimentally investigated and analysed. The wall temperature was recorded at each minichannel outlet by thermocouple with 0.08 mm diameter probe. The time series where recorded during dynamic two-phase flow instabilities which are accompanied by chaotic temperature fluctuations. Time series were denoised using wavelet decomposition and were analysed using cross recurrence plots (CRP) which enables the study of two time series synchronization.
Dalla Bella, Simone; Sowiński, Jakub
2015-03-16
A set of behavioral tasks for assessing perceptual and sensorimotor timing abilities in the general population (i.e., non-musicians) is presented here with the goal of uncovering rhythm disorders, such as beat deafness. Beat deafness is characterized by poor performance in perceiving durations in auditory rhythmic patterns or poor synchronization of movement with auditory rhythms (e.g., with musical beats). These tasks include the synchronization of finger tapping to the beat of simple and complex auditory stimuli and the detection of rhythmic irregularities (anisochrony detection task) embedded in the same stimuli. These tests, which are easy to administer, include an assessment of both perceptual and sensorimotor timing abilities under different conditions (e.g., beat rates and types of auditory material) and are based on the same auditory stimuli, ranging from a simple metronome to a complex musical excerpt. The analysis of synchronized tapping data is performed with circular statistics, which provide reliable measures of synchronization accuracy (e.g., the difference between the timing of the taps and the timing of the pacing stimuli) and consistency. Circular statistics on tapping data are particularly well-suited for detecting individual differences in the general population. Synchronized tapping and anisochrony detection are sensitive measures for identifying profiles of rhythm disorders and have been used with success to uncover cases of poor synchronization with spared perceptual timing. This systematic assessment of perceptual and sensorimotor timing can be extended to populations of patients with brain damage, neurodegenerative diseases (e.g., Parkinson's disease), and developmental disorders (e.g., Attention Deficit Hyperactivity Disorder).
ERIC Educational Resources Information Center
Li, Jinrong
2012-01-01
The dissertation examines how synchronous text-based computer-mediated communication (SCMC) tasks may affect English as a Second Language (ESL) learners' development of second language (L2) and academic literacy. The study is motivated by two issues concerning the use of SCMC tasks in L2 writing classes. First, although some of the alleged…
Task decomposition for a multilimbed robot to work in reachable but unorientable space
NASA Technical Reports Server (NTRS)
Su, Chau; Zheng, Yuan F.
1991-01-01
Robot manipulators installed on legged mobile platforms are suggested for enlarging robot workspace. To plan the motion of such a system, the arm-platform motion coordination problem is raised, and a task decomposition is proposed to solve the problem. A given task described by the destination position and orientation of the end effector is decomposed into subtasks for arm manipulation and for platform configuration, respectively. The former is defined as the end-effector position and orientation with respect to the platform, and the latter as the platform position and orientation in the base coordinates. Three approaches are proposed for the task decomposition. The approaches are also evaluated in terms of the displacements, from which an optimal approach can be selected.
Measuring pilot workload in a motion base simulator. III - Synchronous secondary task
NASA Technical Reports Server (NTRS)
Kantowitz, Barry H.; Bortolussi, Michael R.; Hart, Sandra G.
1987-01-01
This experiment continues earlier research of Kantowitz et al. (1983) conducted in a GAT-1 motion-base trainer to evaluate choice-reaction secondary tasks as measures of pilot work load. The earlier work used an asynchronous secondary task presented every 22 sec regardless of flying performance. The present experiment uses a synchronous task presented only when a critical event occurred on the flying task. Both two- and four-choice visual secondary tasks were investigated. Analysis of primary flying-task results showed no decrement in error for altitude, indicating that the key assumption necessary for using a choice secondary task was satisfied. Reaction times showed significant differences between 'easy' and 'hard' flight scenarios as well as the ability to discriminate among flight tasks.
Mitkidis, Panagiotis; Roepstorff, Andreas
2016-01-01
A variety of joint action studies show that people tend to fall into synchronous behavior with others participating in the same task, and that such synchronization is beneficial, leading to greater rapport, satisfaction, and performance. It has been noted that many of these task environments require simple interactions that involve little planning of action coordination toward a shared goal. The present study utilized a complex joint construction task in which dyads were instructed to build model cars while their hand movements and heart rates were measured. Participants built these models under varying conditions, delimiting how freely they could divide labor during a build session. While hand movement synchrony was sensitive to the different tasks and outcomes, the heart rate measure did not show any effects of interpersonal synchrony. Results for hand movements show that the more participants were constrained by a particular building strategy, the greater their behavioral synchrony. Within the different conditions, the degree of synchrony was predictive of subjective satisfaction and objective product outcomes. However, in contrast to many previous findings, synchrony was negatively associated with superior products, and, depending on the constraints on the interaction, positively or negatively correlated with higher subjective satisfaction. These results show that the task context critically shapes the role of synchronization during joint action, and that in more complex tasks, not synchronization of behavior, but rather complementary types of behavior may be associated with superior task outcomes. PMID:27997558
Psychophysical and ergogenic effects of synchronous music during treadmill walking.
Karageorghis, Costas I; Mouzourides, Denis A; Priest, David-Lee; Sasso, Tariq A; Morrish, Daley J; Walley, Carolyn J
2009-02-01
The present study examined the impact of motivational music and oudeterous (neutral in terms of motivational qualities) music on endurance and a range of psychophysical indices during a treadmill walking task. Experimental participants (N=30; mean age=20.5 years, SD=1.0 years) selected a program of either pop or rock tracks from artists identified in an earlier survey. They walked to exhaustion, starting at 75% maximal heart rate reserve, under conditions of motivational synchronous music, oudeterous synchronous music, and a no-music control. Dependent measures included time to exhaustion, ratings of perceived exertion (RPE), and in-task affect (both recorded at 2-min intervals), and exercise-induced feeling states. A one-way repeated measures ANOVA was used to analyze time to exhaustion data. Two-way repeated measures (Music Condition ? Trial Point) ANOVAs were used to analyze in-task measures, whereas a one-way repeated measures MANOVA was used to analyze the exercise-induced feeling states data. Results indicated that endurance was increased in both music conditions and that motivational music had a greater ergogenic effect than did oudeterous music (p<.01). In addition, in-task affect was enhanced by motivational synchronous music when compared with control throughout the trial (p<.01). The experimental conditions did not impact significantly (p>.05) upon RPE or exercise-induced feeling states, although a moderate effect size was recorded for the latter (etap2=.09). The present results indicate that motivational synchronous music can elicit an ergogenic effect and enhance in-task affect during an exhaustive endurance task.
Modeling shared resources with generalized synchronization within a Petri net bottom-up approach.
Ferrarini, L; Trioni, M
1996-01-01
This paper proposes a simple and effective way to represent shared resources in manufacturing systems within a Petri net model previously developed. Such a model relies on the bottom-up and modular approach to synthesis and analysis. The designer may define elementary tasks and then connect them with one another with three kinds of connections: self-loops, inhibitor arcs and simple synchronizations. A theoretical framework has been established for the analysis of liveness and reversibility of such models. The generalized synchronization, here formalized, represents an extension of the simple synchronization, allowing the merging of suitable subnets among elementary tasks. It is proved that under suitable, but not restrictive, hypotheses the generalized synchronization may be substituted for a simple one, thus being compatible with all the developed theoretical body.
Relation between SM-covers and SM-decompositions of Petri nets
NASA Astrophysics Data System (ADS)
Karatkevich, Andrei; Wiśniewski, Remigiusz
2015-12-01
A task of finding for a given Petri net a set of sequential components being able to represent together the behavior of the net arises often in formal analysis of Petri nets and in applications of Petri net to logical control. Such task can be met in two different variants: obtaining a Petri net cover or a decomposition. Petri net cover supposes that a set of the subnets of given net is selected, and the sequential nets forming a decomposition may have additional places, which do not belong to the decomposed net. The paper discusses difference and relations between two mentioned tasks and their results.
Multidisciplinary optimization for engineering systems - Achievements and potential
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw
1989-01-01
The currently common sequential design process for engineering systems is likely to lead to suboptimal designs. Recently developed decomposition methods offer an alternative for coming closer to optimum by breaking the large task of system optimization into smaller, concurrently executed and, yet, coupled tasks, identified with engineering disciplines or subsystems. The hierarchic and non-hierarchic decompositions are discussed and illustrated by examples. An organization of a design process centered on the non-hierarchic decomposition is proposed.
Multidisciplinary optimization for engineering systems: Achievements and potential
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw
1989-01-01
The currently common sequential design process for engineering systems is likely to lead to suboptimal designs. Recently developed decomposition methods offer an alternative for coming closer to optimum by breaking the large task of system optimization into smaller, concurrently executed and, yet, coupled tasks, identified with engineering disciplines or subsystems. The hierarchic and non-hierarchic decompositions are discussed and illustrated by examples. An organization of a design process centered on the non-hierarchic decomposition is proposed.
Nonoccurrence of Negotiation of Meaning in Task-Based Synchronous Computer-Mediated Communication
ERIC Educational Resources Information Center
Van Der Zwaard, Rose; Bannink, Anne
2016-01-01
This empirical study investigated the occurrence of meaning negotiation in an interactive synchronous computer-mediated second language (L2) environment. Sixteen dyads (N = 32) consisting of nonnative speakers (NNSs) and native speakers (NSs) of English performed 2 different tasks using videoconferencing and written chat. The data were coded and…
Negotiation of Meaning in Synchronous Computer-Mediated Communication in Relation to Task Types
ERIC Educational Resources Information Center
Cho, Hye-jin
2011-01-01
The present study explored how negotiation of meaning occurred in task-based synchronous computer-mediated communication (SCMC) environment among college English learners. Based on the theoretical framework of the interaction hypothesis and negotiation of meaning, four research questions arose: (1) how negotiation of meaning occur in non-native…
ESL Students' Interaction in Second Life: Task-Based Synchronous Computer-Mediated Communication
ERIC Educational Resources Information Center
Jee, Min Jung
2010-01-01
The purpose of the present study was to explore ESL students' interactions in task-based synchronous computer-mediated communication (SCMC) in Second Life, a virtual environment by which users can interact through representational figures. I investigated Low-Intermediate and High-Intermediate ESL students' interaction patterns before, during, and…
Synchronized movement experience enhances peer cooperation in preschool children.
Rabinowitch, Tal-Chen; Meltzoff, Andrew N
2017-08-01
Cooperating with other people is a key achievement in child development and is essential for human culture. We examined whether we could induce 4-year-old children to increase their cooperation with an unfamiliar peer by providing the peers with synchronized motion experience prior to the tasks. Children were randomly assigned to independent treatment and control groups. The treatment of synchronous motion caused children to enhance their cooperation, as measured by the speed of joint task completion, compared with control groups that underwent asynchronous motion or no motion at all. Further analysis suggested that synchronization experience increased intentional communication between peer partners, resulting in increased coordination and cooperation. Copyright © 2017 Elsevier Inc. All rights reserved.
Simulating Synchronous Processors
1988-06-01
34f Fvtvru m LABORATORY FOR INMASSACHUSETTSFCOMPUTER SCIENCE TECHNOLOGY MIT/LCS/TM-359 SIMULATING SYNCHRONOUS PROCESSORS Jennifer Lundelius Welch...PROJECT TASK WORK UNIT Arlington, VA 22217 ELEMENT NO. NO. NO ACCESSION NO. 11. TITLE Include Security Classification) Simulating Synchronous Processors...necessary and identify by block number) In this paper we show how a distributed system with synchronous processors and asynchro- nous message delays can
EEG alpha synchronization is related to top-down processing in convergent and divergent thinking
Benedek, Mathias; Bergner, Sabine; Könen, Tanja; Fink, Andreas; Neubauer, Aljoscha C.
2011-01-01
Synchronization of EEG alpha activity has been referred to as being indicative of cortical idling, but according to more recent evidence it has also been associated with active internal processing and creative thinking. The main objective of this study was to investigate to what extent EEG alpha synchronization is related to internal processing demands and to specific cognitive process involved in creative thinking. To this end, EEG was measured during a convergent and a divergent thinking task (i.e., creativity-related task) which once were processed involving low and once involving high internal processing demands. High internal processing demands were established by masking the stimulus (after encoding) and thus preventing further bottom-up processing. Frontal alpha synchronization was observed during convergent and divergent thinking only under exclusive top-down control (high internal processing demands), but not when bottom-up processing was allowed (low internal processing demands). We conclude that frontal alpha synchronization is related to top-down control rather than to specific creativity-related cognitive processes. Frontal alpha synchronization, which has been observed in a variety of different creativity tasks, thus may not reflect a brain state that is specific for creative cognition but can probably be attributed to high internal processing demands which are typically involved in creative thinking. PMID:21925520
Task-discriminative space-by-time factorization of muscle activity
Delis, Ioannis; Panzeri, Stefano; Pozzo, Thierry; Berret, Bastien
2015-01-01
Movement generation has been hypothesized to rely on a modular organization of muscle activity. Crucial to this hypothesis is the ability to perform reliably a variety of motor tasks by recruiting a limited set of modules and combining them in a task-dependent manner. Thus far, existing algorithms that extract putative modules of muscle activations, such as Non-negative Matrix Factorization (NMF), identify modular decompositions that maximize the reconstruction of the recorded EMG data. Typically, the functional role of the decompositions, i.e., task accomplishment, is only assessed a posteriori. However, as motor actions are defined in task space, we suggest that motor modules should be computed in task space too. In this study, we propose a new module extraction algorithm, named DsNM3F, that uses task information during the module identification process. DsNM3F extends our previous space-by-time decomposition method (the so-called sNM3F algorithm, which could assess task performance only after having computed modules) to identify modules gauging between two complementary objectives: reconstruction of the original data and reliable discrimination of the performed tasks. We show that DsNM3F recovers the task dependence of module activations more accurately than sNM3F. We also apply it to electromyographic signals recorded during performance of a variety of arm pointing tasks and identify spatial and temporal modules of muscle activity that are highly consistent with previous studies. DsNM3F achieves perfect task categorization without significant loss in data approximation when task information is available and generalizes as well as sNM3F when applied to new data. These findings suggest that the space-by-time decomposition of muscle activity finds robust task-discriminating modular representations of muscle activity and that the insertion of task discrimination objectives is useful for describing the task modulation of module recruitment. PMID:26217213
Task-discriminative space-by-time factorization of muscle activity.
Delis, Ioannis; Panzeri, Stefano; Pozzo, Thierry; Berret, Bastien
2015-01-01
Movement generation has been hypothesized to rely on a modular organization of muscle activity. Crucial to this hypothesis is the ability to perform reliably a variety of motor tasks by recruiting a limited set of modules and combining them in a task-dependent manner. Thus far, existing algorithms that extract putative modules of muscle activations, such as Non-negative Matrix Factorization (NMF), identify modular decompositions that maximize the reconstruction of the recorded EMG data. Typically, the functional role of the decompositions, i.e., task accomplishment, is only assessed a posteriori. However, as motor actions are defined in task space, we suggest that motor modules should be computed in task space too. In this study, we propose a new module extraction algorithm, named DsNM3F, that uses task information during the module identification process. DsNM3F extends our previous space-by-time decomposition method (the so-called sNM3F algorithm, which could assess task performance only after having computed modules) to identify modules gauging between two complementary objectives: reconstruction of the original data and reliable discrimination of the performed tasks. We show that DsNM3F recovers the task dependence of module activations more accurately than sNM3F. We also apply it to electromyographic signals recorded during performance of a variety of arm pointing tasks and identify spatial and temporal modules of muscle activity that are highly consistent with previous studies. DsNM3F achieves perfect task categorization without significant loss in data approximation when task information is available and generalizes as well as sNM3F when applied to new data. These findings suggest that the space-by-time decomposition of muscle activity finds robust task-discriminating modular representations of muscle activity and that the insertion of task discrimination objectives is useful for describing the task modulation of module recruitment.
ERIC Educational Resources Information Center
Shintani, Natsuko
2016-01-01
This case study investigated the characteristics of computer-mediated synchronous corrective feedback (SCF, provided while students wrote) and asynchronous corrective feedback (ACF, provided after students had finished writing) in an EFL writing task. The task, designed to elicit the use of the hypothetical conditional, was completed by two…
Signal detection by means of orthogonal decomposition
NASA Astrophysics Data System (ADS)
Hajdu, C. F.; Dabóczi, T.; Péceli, G.; Zamantzas, C.
2018-03-01
Matched filtering is a well-known method frequently used in digital signal processing to detect the presence of a pattern in a signal. In this paper, we suggest a time variant matched filter, which, unlike a regular matched filter, maintains a given alignment between the input signal and the template carrying the pattern, and can be realized recursively. We introduce a method to synchronize the two signals for presence detection, usable in case direct synchronization between the signal generator and the receiver is not possible or not practical. We then propose a way of realizing and extending the same filter by modifying a recursive spectral observer, which gives rise to orthogonal filter channels and also leads to another way to synchronize the two signals.
Theta-Modulated Gamma-Band Synchronization Among Activated Regions During a Verb Generation Task
Doesburg, Sam M.; Vinette, Sarah A.; Cheung, Michael J.; Pang, Elizabeth W.
2012-01-01
Expressive language is complex and involves processing within a distributed network of cortical regions. Functional MRI and magnetoencephalography (MEG) have identified brain areas critical for expressive language, but how these regions communicate across the network remains poorly understood. It is thought that synchronization of oscillations between neural populations, particularly at a gamma rate (>30 Hz), underlies functional integration within cortical networks. Modulation of gamma rhythms by theta-band oscillations (4–8 Hz) has been proposed as a mechanism for the integration of local cell coalitions into large-scale networks underlying cognition and perception. The present study tested the hypothesis that these oscillatory mechanisms of functional integration were present within the expressive language network. We recorded MEG while subjects performed a covert verb generation task. We localized activated cortical regions using beamformer analysis, calculated inter-regional phase locking between activated areas, and measured modulation of inter-regional gamma synchronization by theta phase. The results show task-dependent gamma-band synchronization among regions activated during the performance of the verb generation task, and we provide evidence that these transient and periodic instances of high-frequency connectivity were modulated by the phase of cortical theta oscillations. These findings suggest that oscillatory synchronization and cross-frequency interactions are mechanisms for functional integration among distributed brain areas supporting expressive language processing. PMID:22707946
Feature-Oriented Domain Analysis (FODA) Feasibility Study
1990-11-01
controlling the synchronous behavior of the task. A task may wait for one or more synchronizing or message queue events. "* Each task is designed using the...Comparative Study 13 2.2.1. The Genesis System 13 2.2.2. MCC Work 15 2.2.2.1. The DESIRE Design Recovery Tool 15 0 2.2.2.2. Domain Analysis Method 1f...Illustration 43 Figure 6-1: Architectural Layers 48 Figure 6-2: Window Management Subsystem Design Structure 49 Figure 7-1: Function of a Window Manager
ERIC Educational Resources Information Center
Hampel, Regina
2006-01-01
This article discusses a framework for the development of tasks in a synchronous online environment used for language learning and teaching. It shows how a theoretical approach based on second language acquisition (SLA) principles, sociocultural and constructivist theories, and concepts taken from research on multimodality and new literacies, can…
NASA Technical Reports Server (NTRS)
John, Bonnie; Vera, Alonso; Matessa, Michael; Freed, Michael; Remington, Roger
2002-01-01
CPM-GOMS is a modeling method that combines the task decomposition of a GOMS analysis with a model of human resource usage at the level of cognitive, perceptual, and motor operations. CPM-GOMS models have made accurate predictions about skilled user behavior in routine tasks, but developing such models is tedious and error-prone. We describe a process for automatically generating CPM-GOMS models from a hierarchical task decomposition expressed in a cognitive modeling tool called Apex. Resource scheduling in Apex automates the difficult task of interleaving the cognitive, perceptual, and motor resources underlying common task operators (e.g. mouse move-and-click). Apex's UI automatically generates PERT charts, which allow modelers to visualize a model's complex parallel behavior. Because interleaving and visualization is now automated, it is feasible to construct arbitrarily long sequences of behavior. To demonstrate the process, we present a model of automated teller interactions in Apex and discuss implications for user modeling. available to model human users, the Goals, Operators, Methods, and Selection (GOMS) method [6, 21] has been the most widely used, providing accurate, often zero-parameter, predictions of the routine performance of skilled users in a wide range of procedural tasks [6, 13, 15, 27, 28]. GOMS is meant to model routine behavior. The user is assumed to have methods that apply sequences of operators and to achieve a goal. Selection rules are applied when there is more than one method to achieve a goal. Many routine tasks lend themselves well to such decomposition. Decomposition produces a representation of the task as a set of nested goal states that include an initial state and a final state. The iterative decomposition into goals and nested subgoals can terminate in primitives of any desired granularity, the choice of level of detail dependent on the predictions required. Although GOMS has proven useful in HCI, tools to support the construction of GOMS models have not yet come into general use.
Kline, Joshua C.
2014-01-01
Over the past four decades, various methods have been implemented to measure synchronization of motor-unit firings. In this work, we provide evidence that prior reports of the existence of universal common inputs to all motoneurons and the presence of long-term synchronization are misleading, because they did not use sufficiently rigorous statistical tests to detect synchronization. We developed a statistically based method (SigMax) for computing synchronization and tested it with data from 17,736 motor-unit pairs containing 1,035,225 firing instances from the first dorsal interosseous and vastus lateralis muscles—a data set one order of magnitude greater than that reported in previous studies. Only firing data, obtained from surface electromyographic signal decomposition with >95% accuracy, were used in the study. The data were not subjectively selected in any manner. Because of the size of our data set and the statistical rigor inherent to SigMax, we have confidence that the synchronization values that we calculated provide an improved estimate of physiologically driven synchronization. Compared with three other commonly used techniques, ours revealed three types of discrepancies that result from failing to use sufficient statistical tests necessary to detect synchronization. 1) On average, the z-score method falsely detected synchronization at 16 separate latencies in each motor-unit pair. 2) The cumulative sum method missed one out of every four synchronization identifications found by SigMax. 3) The common input assumption method identified synchronization from 100% of motor-unit pairs studied. SigMax revealed that only 50% of motor-unit pairs actually manifested synchronization. PMID:25210152
Sensorimotor synchronization: neurophysiological markers of the asynchrony in a finger-tapping task.
Bavassi, Luz; Kamienkowski, Juan E; Sigman, Mariano; Laje, Rodrigo
2017-01-01
Sensorimotor synchronization (SMS) is a form of referential behavior in which an action is coordinated with a predictable external stimulus. The neural bases of the synchronization ability remain unknown, even in the simpler, paradigmatic task of finger tapping to a metronome. In this task the subject is instructed to tap in synchrony with a periodic sequence of brief tones, and the time difference between each response and the corresponding stimulus tone (asynchrony) is recorded. We make a step towards the identification of the neurophysiological markers of SMS by recording high-density EEG event-related potentials and the concurrent behavioral response-stimulus asynchronies during an isochronous paced finger-tapping task. Using principal component analysis, we found an asymmetry between the traces for advanced and delayed responses to the stimulus, in accordance with previous behavioral observations from perturbation studies. We also found that the amplitude of the second component encodes the higher-level percept of asynchrony 100 ms after the current stimulus. Furthermore, its amplitude predicts the asynchrony of the next step, past 300 ms from the previous stimulus, independently of the period length. Moreover, the neurophysiological processing of synchronization errors is performed within a fixed-duration interval after the stimulus. Our results suggest that the correction of a large asynchrony in a periodic task and the recovery of synchrony after a perturbation could be driven by similar neural processes.
ERIC Educational Resources Information Center
Morimoto, Chie; Hida, Eisuke; Shima, Keisuke; Okamura, Hitoshi
2018-01-01
To identify a specific sensorimotor impairment feature of autism spectrum disorder (ASD), we focused on temporal processing with millisecond accuracy. A synchronized finger-tapping task was used to characterize temporal processing in individuals with ASD as compared to typically developing (TD) individuals. We found that individuals with ASD…
Du, Yue; Clark, Jane E; Whitall, Jill
2017-05-01
Timing control, such as producing movements at a given rate or synchronizing movements to an external event, has been studied through a finger-tapping task where timing is measured at the initial contact between finger and tapping surface or the point when a key is pressed. However, the point of peak force is after the time registered at the tapping surface and thus is a less obvious but still an important event during finger tapping. Here, we compared the time at initial contact with the time at peak force as participants tapped their finger on a force sensor at a given rate after the metronome was turned off (continuation task) or in synchrony with the metronome (sensorimotor synchronization task). We found that, in the continuation task, timing was comparably accurate between initial contact and peak force. These two timing events also exhibited similar trial-by-trial statistical dependence (i.e., lag-one autocorrelation). However, the central clock variability was lower at the peak force than the initial contact. In the synchronization task, timing control at peak force appeared to be less variable and more accurate than that at initial contact. In addition to lower central clock variability, the mean SE magnitude at peak force (SEP) was around zero while SE at initial contact (SEC) was negative. Although SEC and SEP demonstrated the same trial-by-trial statistical dependence, we found that participants adjusted the time of tapping to correct SEP, but not SEC, toward zero. These results suggest that timing at peak force is a meaningful target of timing control, particularly in synchronization tapping. This result may explain the fact that SE at initial contact is typically negative as widely observed in the preexisting literature.
Moving Stimuli Facilitate Synchronization But Not Temporal Perception
Silva, Susana; Castro, São Luís
2016-01-01
Recent studies have shown that a moving visual stimulus (e.g., a bouncing ball) facilitates synchronization compared to a static stimulus (e.g., a flashing light), and that it can even be as effective as an auditory beep. We asked a group of participants to perform different tasks with four stimulus types: beeps, siren-like sounds, visual flashes (static) and bouncing balls. First, participants performed synchronization with isochronous sequences (stimulus-guided synchronization), followed by a continuation phase in which the stimulus was internally generated (imagery-guided synchronization). Then they performed a perception task, in which they judged whether the final part of a temporal sequence was compatible with the previous beat structure (stimulus-guided perception). Similar to synchronization, an imagery-guided variant was added, in which sequences contained a gap in between (imagery-guided perception). Balls outperformed flashes and matched beeps (powerful ball effect) in stimulus-guided synchronization but not in perception (stimulus- or imagery-guided). In imagery-guided synchronization, performance accuracy decreased for beeps and balls, but not for flashes and sirens. Our findings suggest that the advantages of moving visual stimuli over static ones are grounded in action rather than perception, and they support the hypothesis that the sensorimotor coupling mechanisms for auditory (beeps) and moving visual stimuli (bouncing balls) overlap. PMID:27909419
Moving Stimuli Facilitate Synchronization But Not Temporal Perception.
Silva, Susana; Castro, São Luís
2016-01-01
Recent studies have shown that a moving visual stimulus (e.g., a bouncing ball) facilitates synchronization compared to a static stimulus (e.g., a flashing light), and that it can even be as effective as an auditory beep. We asked a group of participants to perform different tasks with four stimulus types: beeps, siren-like sounds, visual flashes (static) and bouncing balls. First, participants performed synchronization with isochronous sequences (stimulus-guided synchronization), followed by a continuation phase in which the stimulus was internally generated (imagery-guided synchronization). Then they performed a perception task, in which they judged whether the final part of a temporal sequence was compatible with the previous beat structure (stimulus-guided perception). Similar to synchronization, an imagery-guided variant was added, in which sequences contained a gap in between (imagery-guided perception). Balls outperformed flashes and matched beeps (powerful ball effect) in stimulus-guided synchronization but not in perception (stimulus- or imagery-guided). In imagery-guided synchronization, performance accuracy decreased for beeps and balls, but not for flashes and sirens. Our findings suggest that the advantages of moving visual stimuli over static ones are grounded in action rather than perception, and they support the hypothesis that the sensorimotor coupling mechanisms for auditory (beeps) and moving visual stimuli (bouncing balls) overlap.
Leadership Styles in Synchronous and Asynchronous Virtual Learning Environments
ERIC Educational Resources Information Center
Ruggieri, Stefano; Boca, Stefano; Garro, Maria
2013-01-01
A comparison of the effects of transactional and transformational leadership in synchronous and a synchronous online teamwork was conducted. In the study, groups of four participants interacted in online text chat and online text forum in problem solving tasks. The groups were lead by a confederate who acted as a transactional or a…
The acquisition of socio-motor improvisation in the mirror game.
Gueugnon, Mathieu; Salesse, Robin N; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G; Marin, Ludovic
2016-04-01
Socio-motor improvisation is defined as the creative action of two or more people without a script or anticipated preparation. It is evaluated through two main parameters: movement synchronization and movement richness. Experts in art (e.g., dance, theater or music) are known to exhibit higher synchronization and to perform richer movements during interpersonal improvisation, but how these competences evolve over time is largely unknown. In the present study, we investigated whether performing more synchronized and richer movements over time can promote the acquisition of improvisation. Pairs of novice participants were instructed to play an improvisation mirror game in three different sessions. Between sessions, they performed an unintended interpersonal coordination task in which synchronization and richness were manipulated, resulting in four different groups of dyads. Our results demonstrate that synchronization during improvisation improved for all groups whereas movement richness only enhanced for dyads that performed synchronized movements during unintended coordination tasks. Our findings suggest that movement synchrony contributes more than movement richness to the acquisition of socio-motor improvisation in the mirror game. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Yikang; Li, Xue; Liu, Lei
2009-12-01
Gravity field measurement for the interested planets and their moos in solar system, such as Luna and Mars, is one important task in the next step of deep-space mission. In this paper, Similar to GRACE mission, LLSST and DOWR technology of common-orbit master-slave satellites around task planet is inherited in this scheme. Furthermore, by intersatellite 2-way UQPSK-DSSS link, time synchronization and data processing are implemented autonomously by masterslave satellites instead of GPS and ground facilities supporting system. Conclusion is derived that the ISL DOWR based on 2-way incoherent time synchronization has the same precise level to GRACE DOWR based on GPS time synchronization. Moreover, because of inter-satellite link, the proposed scheme is rather autonomous for gravity field measurement of the task planet in deep-space mission.
NASREN: Standard reference model for telerobot control
NASA Technical Reports Server (NTRS)
Albus, J. S.; Lumia, R.; Mccain, H.
1987-01-01
A hierarchical architecture is described which supports space station telerobots in a variety of modes. The system is divided into three hierarchies: task decomposition, world model, and sensory processing. Goals at each level of the task dedomposition heirarchy are divided both spatially and temporally into simpler commands for the next lower level. This decomposition is repreated until, at the lowest level, the drive signals to the robot actuators are generated. To accomplish its goals, task decomposition modules must often use information stored it the world model. The purpose of the sensory system is to update the world model as rapidly as possible to keep the model in registration with the physical world. The architecture of the entire control system hierarch is described and how it can be applied to space telerobot applications.
Enhancements to the Design Manager's Aide for Intelligent Decomposition (DeMAID)
NASA Technical Reports Server (NTRS)
Rogers, James L.; Barthelemy, Jean-Francois M.
1992-01-01
This paper discusses the addition of two new enhancements to the program Design Manager's Aide for Intelligent Decomposition (DeMAID). DeMAID is a knowledge-based tool used to aid a design manager in understanding the interactions among the tasks of a complex design problem. This is done by ordering the tasks to minimize feedback, determining the participating subsystems, and displaying them in an easily understood format. The two new enhancements include (1) rules for ordering a complex assembly process and (2) rules for determining which analysis tasks must be re-executed to compute the output of one task based on a change in input to that or another task.
Enhancements to the Design Manager's Aide for Intelligent Decomposition (DeMaid)
NASA Technical Reports Server (NTRS)
Rogers, James L.; Barthelemy, Jean-Francois M.
1992-01-01
This paper discusses the addition of two new enhancements to the program Design Manager's Aide for Intelligent Decomposition (DeMAID). DeMAID is a knowledge-based tool used to aid a design manager in understanding the interactions among the tasks of a complex design problem. This is done by ordering the tasks to minimize feedback, determining the participating subsystems, and displaying them in an easily understood format. The two new enhancements include (1) rules for ordering a complex assembly process and (2) rules for determining which analysis tasks must be re-executed to compute the output of one task based on a change in input to that or another task.
De Luca, Carlo J; Kline, Joshua C
2014-12-01
Over the past four decades, various methods have been implemented to measure synchronization of motor-unit firings. In this work, we provide evidence that prior reports of the existence of universal common inputs to all motoneurons and the presence of long-term synchronization are misleading, because they did not use sufficiently rigorous statistical tests to detect synchronization. We developed a statistically based method (SigMax) for computing synchronization and tested it with data from 17,736 motor-unit pairs containing 1,035,225 firing instances from the first dorsal interosseous and vastus lateralis muscles--a data set one order of magnitude greater than that reported in previous studies. Only firing data, obtained from surface electromyographic signal decomposition with >95% accuracy, were used in the study. The data were not subjectively selected in any manner. Because of the size of our data set and the statistical rigor inherent to SigMax, we have confidence that the synchronization values that we calculated provide an improved estimate of physiologically driven synchronization. Compared with three other commonly used techniques, ours revealed three types of discrepancies that result from failing to use sufficient statistical tests necessary to detect synchronization. 1) On average, the z-score method falsely detected synchronization at 16 separate latencies in each motor-unit pair. 2) The cumulative sum method missed one out of every four synchronization identifications found by SigMax. 3) The common input assumption method identified synchronization from 100% of motor-unit pairs studied. SigMax revealed that only 50% of motor-unit pairs actually manifested synchronization. Copyright © 2014 the American Physiological Society.
Detecting synchronization clusters in multivariate time series via coarse-graining of Markov chains.
Allefeld, Carsten; Bialonski, Stephan
2007-12-01
Synchronization cluster analysis is an approach to the detection of underlying structures in data sets of multivariate time series, starting from a matrix R of bivariate synchronization indices. A previous method utilized the eigenvectors of R for cluster identification, analogous to several recent attempts at group identification using eigenvectors of the correlation matrix. All of these approaches assumed a one-to-one correspondence of dominant eigenvectors and clusters, which has however been shown to be wrong in important cases. We clarify the usefulness of eigenvalue decomposition for synchronization cluster analysis by translating the problem into the language of stochastic processes, and derive an enhanced clustering method harnessing recent insights from the coarse-graining of finite-state Markov processes. We illustrate the operation of our method using a simulated system of coupled Lorenz oscillators, and we demonstrate its superior performance over the previous approach. Finally we investigate the question of robustness of the algorithm against small sample size, which is important with regard to field applications.
Ordering Design Tasks Based on Coupling Strengths
NASA Technical Reports Server (NTRS)
Rogers, J. L.; Bloebaum, C. L.
1994-01-01
The design process associated with large engineering systems requires an initial decomposition of the complex system into modules of design tasks which are coupled through the transference of output data. In analyzing or optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the system solution. Many decomposition approaches assume the capability is available to determine what design tasks and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature for DeMAID (Design Manager's Aid for Intelligent Decomposition) will allow the design manager to use coupling strength information to find a proper sequence for ordering the design tasks. In addition, these coupling strengths aid in deciding if certain tasks or couplings could be removed (or temporarily suspended) from consideration to achieve computational savings without a significant loss of system accuracy. New rules are presented and two small test cases are used to show the effects of using coupling strengths in this manner.
Ordering design tasks based on coupling strengths
NASA Technical Reports Server (NTRS)
Rogers, James L., Jr.; Bloebaum, Christina L.
1994-01-01
The design process associated with large engineering systems requires an initial decomposition of the complex system into modules of design tasks which are coupled through the transference of output data. In analyzing or optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the system solution. Many decomposition approaches assume the capability is available to determine what design tasks and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature for DeMAID (Design Manager's Aid for Intelligent Decomposition) will allow the design manager to use coupling strength information to find a proper sequence for ordering the design tasks. In addition, these coupling strengths aid in deciding if certain tasks or couplings could be removed (or temporarily suspended) from consideration to achieve computational savings without a significant loss of system accuracy. New rules are presented and two small test cases are used to show the effects of using coupling strengths in this manner.
Casula, Elias P; Mayer, Isabella M S; Desikan, Mahalekshmi; Tabrizi, Sarah J; Rothwell, John C; Orth, Michael
2018-03-01
In Huntington's disease there is evidence of structural damage in the motor system, but it is still unclear how to link this to the behavioral disorder of movement. One feature of choreic movement is variable timing and coordination between sequences of actions. We postulate this results from desynchronization of neural activity in cortical motor areas. The objective of this study was to explore the ability to synchronize activity in a motor network using transcranial magnetic stimulation and to relate this to timing of motor performance. We examined synchronization in oscillatory activity of cortical motor areas in response to an external input produced by a pulse of transcranial magnetic stimulation. We combined this with EEG to compare the response of 16 presymptomatic Huntington's disease participants with 16 age-matched healthy volunteers to test whether the strength of synchronization relates to the variability of motor performance at the following 2 tasks: a grip force task and a speeded-tapping task. Phase synchronization in response to M1 stimulation was lower in Huntington's disease than healthy volunteers (P < .01), resulting in a reduced cortical activity at global (P < .02) and local levels (P < .01). Participants who showed better timed motor performance also showed stronger oscillatory synchronization (r = -0.356; P < .05) and higher cortical activity (r = -0.393; P < .05). Our data may model the ability of the motor command to respond to more subtle, physiological inputs from other brain areas. This novel insight indicates that impairments of the timing accuracy of synchronization and desynchronization could be a physiological basis for some key clinical features of Huntington's disease. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.
An application for multi-person task synchronization
NASA Technical Reports Server (NTRS)
Brown, Robert L.; Doyle, Dee
1990-01-01
Computer applications are studied that will enable a group of people to synchronize their actions when following a predefined task sequence. It is assumed that the people involved only have computer workstations available to them for communication. Hence, the approach is to study how the computer can be used to help a group remain synchronized. A series of applications were designed and developed that can be used as vehicles for experimentation. An example of how this technique can be used for a remote coaching capability is explained in a report describing an experiment that simulated a Life Sciences experiment on-board Space Station Freedom, with a ground based principal investigator providing the expertise by coaching the on-orbit mission specialist.
Grouping individual independent BOLD effects: a new way to ICA group analysis
NASA Astrophysics Data System (ADS)
Duann, Jeng-Ren; Jung, Tzyy-Ping; Sejnowski, Terrence J.; Makeig, Scott
2009-04-01
A new group analysis method to summarize the task-related BOLD responses based on independent component analysis (ICA) was presented. As opposite to the previously proposed group ICA (gICA) method, which first combined multi-subject fMRI data in either temporal or spatial domain and applied ICA decomposition only once to the combined fMRI data to extract the task-related BOLD effects, the method presented here applied ICA decomposition to the individual subjects' fMRI data to first find the independent BOLD effects specifically for each individual subject. Then, the task-related independent BOLD component was selected among the resulting independent components from the single-subject ICA decomposition and hence grouped across subjects to derive the group inference. In this new ICA group analysis (ICAga) method, one does not need to assume that the task-related BOLD time courses are identical across brain areas and subjects as used in the grand ICA decomposition on the spatially concatenated fMRI data. Neither does one need to assume that after spatial normalization, the voxels at the same coordinates represent exactly the same functional or structural brain anatomies across different subjects. These two assumptions have been problematic given the recent BOLD activation evidences. Further, since the independent BOLD effects were obtained from each individual subject, the ICAga method can better account for the individual differences in the task-related BOLD effects. Unlike the gICA approach whereby the task-related BOLD effects could only be accounted for by a single unified BOLD model across multiple subjects. As a result, the newly proposed method, ICAga, was able to better fit the task-related BOLD effects at individual level and thus allow grouping more appropriate multisubject BOLD effects in the group analysis.
Developing Battery Computer Aided Engineering Tools for Military Vehicles
2013-12-01
Task 1.b Modeling Bullet penetration. The purpose of Task 1.a was to extend the chemical kinetics models of CoO2 cathodes developed under CAEBAT to...lithium- ion batteries. The new finite element model captures swelling/shrinking in cathodes /anodes due to thermal expansion and lithium intercalation...Solid Electrolyte Interphase (SEI) layer decomposition 80 2 Anode — electrolyte 100 3 Cathode — electrolyte 130 4 Electrolyte decomposition 180
Age-Related Changes in Bimanual Instrument Playing with Rhythmic Cueing
Kim, Soo Ji; Cho, Sung-Rae; Yoo, Ga Eul
2017-01-01
Deficits in bimanual coordination of older adults have been demonstrated to significantly limit their functioning in daily life. As a bimanual sensorimotor task, instrument playing has great potential for motor and cognitive training in advanced age. While the process of matching a person’s repetitive movements to auditory rhythmic cueing during instrument playing was documented to involve motor and attentional control, investigation into whether the level of cognitive functioning influences the ability to rhythmically coordinate movement to an external beat in older populations is relatively limited. Therefore, the current study aimed to examine how timing accuracy during bimanual instrument playing with rhythmic cueing differed depending on the degree of participants’ cognitive aging. Twenty one young adults, 20 healthy older adults, and 17 older adults with mild dementia participated in this study. Each participant tapped an electronic drum in time to the rhythmic cueing provided using both hands simultaneously and in alternation. During bimanual instrument playing with rhythmic cueing, mean and variability of synchronization errors were measured and compared across the groups and the tempo of cueing during each type of tapping task. Correlations of such timing parameters with cognitive measures were also analyzed. The results showed that the group factor resulted in significant differences in the synchronization errors-related parameters. During bimanual tapping tasks, cognitive decline resulted in differences in synchronization errors between younger adults and older adults with mild dimentia. Also, in terms of variability of synchronization errors, younger adults showed significant differences in maintaining timing performance from older adults with and without mild dementia, which may be attributed to decreased processing time for bimanual coordination due to aging. Significant correlations were observed between variability of synchronization errors and performance of cognitive tasks involving executive control and cognitive flexibility when asked for bimanual coordination in response to external timing cues at adjusted tempi. Also, significant correlations with cognitive measures were more prevalent in variability of synchronization errors during alternative tapping compared to simultaneous tapping. The current study supports that bimanual tapping may be predictive of cognitive processing of older adults. Also, tempo and type of movement required for instrument playing both involve cognitive and motor loads at different levels, and such variables could be important factors for determining the complexity of the task and the involved task requirements for interventions using instrument playing. PMID:29085309
Task Decomposition Module For Telerobot Trajectory Generation
NASA Astrophysics Data System (ADS)
Wavering, Albert J.; Lumia, Ron
1988-10-01
A major consideration in the design of trajectory generation software for a Flight Telerobotic Servicer (FTS) is that the FTS will be called upon to perform tasks which require a diverse range of manipulator behaviors and capabilities. In a hierarchical control system where tasks are decomposed into simpler and simpler subtasks, the task decomposition module which performs trajectory planning and execution should therefore be able to accommodate a wide range of algorithms. In some cases, it will be desirable to plan a trajectory for an entire motion before manipulator motion commences, as when optimizing over the entire trajectory. Many FTS motions, however, will be highly sensory-interactive, such as moving to attain a desired position relative to a non-stationary object whose position is periodically updated by a vision system. In this case, the time-varying nature of the trajectory may be handled either by frequent replanning using updated sensor information, or by using an algorithm which creates a less specific state-dependent plan that determines the manipulator path as the trajectory is executed (rather than a priori). This paper discusses a number of trajectory generation techniques from these categories and how they may be implemented in a task decompo-sition module of a hierarchical control system. The structure, function, and interfaces of the proposed trajectory gener-ation module are briefly described, followed by several examples of how different algorithms may be performed by the module. The proposed task decomposition module provides a logical structure for trajectory planning and execution, and supports a large number of published trajectory generation techniques.
Preissmann, Delphine; Charbonnier, Caecilia; Chagué, Sylvain; Antonietti, Jean-Philippe; Llobera, Joan; Ansermet, Francois; Magistretti, Pierre J.
2016-01-01
The feeling of synchrony is fundamental for most social activities and prosocial behaviors. However, little is known about the behavioral correlates of this feeling and its modulation by intergroup differences. We previously showed that the subjective feeling of synchrony in subjects involved in a mirror imitation task was modulated by objective behavioral measures, as well as contextual factors such as task difficulty and duration of the task performance. In the present study, we extended our methodology to investigate possible interindividual differences. We hypothesized that being in a romantic relationship or being a professional musician can modulate both implicit and explicit synchronization and the feeling of synchrony as well as the ability to detect synchrony from a third person perspective. Contrary to our hypothesis, we did not find significant differences between people in a romantic relationship and control subjects. However, we observed differences between musicians and control subjects. For the implicit synchrony (spontaneous synchronization during walking), the results revealed that musicians that had never met before spontaneously synchronized their movements earlier among themselves than control subjects, but not better than people sharing a romantic relationship. Moreover, in explicit behavioral synchronization tasks (mirror game), musicians reported earlier feeling of synchrony and had less speed errors than control subjects. This was in interaction with tasks difficulty as these differences appeared only in tasks with intermediate difficulty. Finally, when subjects had to judge synchrony from a third person perspective, musicians had a better performance to identify if they were present or not in the videos. Taken together, our results suggest that being a professional musician can play a role in the feeling of synchrony and its underlying mechanisms. PMID:27833580
Seamless Image Mosaicking via Synchronization
NASA Astrophysics Data System (ADS)
Santellani, E.; Maset, E.; Fusiello, A.
2018-05-01
This paper proposes an innovative method to create high-quality seamless planar mosaics. The developed pipeline ensures good robustness against many common mosaicking problems (e.g., misalignments, colour distortion, moving objects, parallax) and differs from other works in the literature because a global approach, known as synchronization, is used for image registration and colour correction. To better conceal the mosaic seamlines, images are cut along specific paths, computed using a Voronoi decomposition of the mosaic area and a shortest path algorithm. Results obtained on challenging real datasets show that the colour correction mitigates significantly the colour variations between the original images and the seams on the final mosaic are not evident.
Hilt, Pauline M.; Delis, Ioannis; Pozzo, Thierry; Berret, Bastien
2018-01-01
The modular control hypothesis suggests that motor commands are built from precoded modules whose specific combined recruitment can allow the performance of virtually any motor task. Despite considerable experimental support, this hypothesis remains tentative as classical findings of reduced dimensionality in muscle activity may also result from other constraints (biomechanical couplings, data averaging or low dimensionality of motor tasks). Here we assessed the effectiveness of modularity in describing muscle activity in a comprehensive experiment comprising 72 distinct point-to-point whole-body movements during which the activity of 30 muscles was recorded. To identify invariant modules of a temporal and spatial nature, we used a space-by-time decomposition of muscle activity that has been shown to encompass classical modularity models. To examine the decompositions, we focused not only on the amount of variance they explained but also on whether the task performed on each trial could be decoded from the single-trial activations of modules. For the sake of comparison, we confronted these scores to the scores obtained from alternative non-modular descriptions of the muscle data. We found that the space-by-time decomposition was effective in terms of data approximation and task discrimination at comparable reduction of dimensionality. These findings show that few spatial and temporal modules give a compact yet approximate representation of muscle patterns carrying nearly all task-relevant information for a variety of whole-body reaching movements. PMID:29666576
Lowet, Eric; Roberts, Mark J.; Bonizzi, Pietro; Karel, Joël; De Weerd, Peter
2016-01-01
Synchronization or phase-locking between oscillating neuronal groups is considered to be important for coordination of information among cortical networks. Spectral coherence is a commonly used approach to quantify phase locking between neural signals. We systematically explored the validity of spectral coherence measures for quantifying synchronization among neural oscillators. To that aim, we simulated coupled oscillatory signals that exhibited synchronization dynamics using an abstract phase-oscillator model as well as interacting gamma-generating spiking neural networks. We found that, within a large parameter range, the spectral coherence measure deviated substantially from the expected phase-locking. Moreover, spectral coherence did not converge to the expected value with increasing signal-to-noise ratio. We found that spectral coherence particularly failed when oscillators were in the partially (intermittent) synchronized state, which we expect to be the most likely state for neural synchronization. The failure was due to the fast frequency and amplitude changes induced by synchronization forces. We then investigated whether spectral coherence reflected the information flow among networks measured by transfer entropy (TE) of spike trains. We found that spectral coherence failed to robustly reflect changes in synchrony-mediated information flow between neural networks in many instances. As an alternative approach we explored a phase-locking value (PLV) method based on the reconstruction of the instantaneous phase. As one approach for reconstructing instantaneous phase, we used the Hilbert Transform (HT) preceded by Singular Spectrum Decomposition (SSD) of the signal. PLV estimates have broad applicability as they do not rely on stationarity, and, unlike spectral coherence, they enable more accurate estimations of oscillatory synchronization across a wide range of different synchronization regimes, and better tracking of synchronization-mediated information flow among networks. PMID:26745498
International Space Station Future Correlation Analysis Improvements
NASA Technical Reports Server (NTRS)
Laible, Michael R.; Pinnamaneni, Murthy; Sugavanam, Sujatha; Grygier, Michael
2018-01-01
Ongoing modal analyses and model correlation are performed on different configurations of the International Space Station (ISS). These analyses utilize on-orbit dynamic measurements collected using four main ISS instrumentation systems: External Wireless Instrumentation System (EWIS), Internal Wireless Instrumentation System (IWIS), Space Acceleration Measurement System (SAMS), and Structural Dynamic Measurement System (SDMS). Remote Sensor Units (RSUs) are network relay stations that acquire flight data from sensors. Measured data is stored in the Remote Sensor Unit (RSU) until it receives a command to download data via RF to the Network Control Unit (NCU). Since each RSU has its own clock, it is necessary to synchronize measurements before analysis. Imprecise synchronization impacts analysis results. A study was performed to evaluate three different synchronization techniques: (i) measurements visually aligned to analytical time-response data using model comparison, (ii) Frequency Domain Decomposition (FDD), and (iii) lag from cross-correlation to align measurements. This paper presents the results of this study.
Detection of Nonverbal Synchronization through Phase Difference in Human Communication.
Kwon, Jinhwan; Ogawa, Ken-ichiro; Ono, Eisuke; Miyake, Yoshihiro
2015-01-01
Nonverbal communication is an important factor in human communication, and body movement synchronization in particular is an important part of nonverbal communication. Some researchers have analyzed body movement synchronization by focusing on changes in the amplitude of body movements. However, the definition of "body movement synchronization" is still unclear. From a theoretical viewpoint, phase difference is the most important factor in synchronization analysis. Therefore, there is a need to measure the synchronization of body movements using phase difference. The purpose of this study was to provide a quantitative definition of the phase difference distribution for detecting body movement synchronization in human communication. The phase difference distribution was characterized using four statistical measurements: density, mean phase difference, standard deviation (SD) and kurtosis. To confirm the effectiveness of our definition, we applied it to human communication in which the roles of speaker and listener were defined. Specifically, we examined the difference in the phase difference distribution between two different communication situations: face-to-face communication with visual interaction and remote communication with unidirectional visual perception. Participant pairs performed a task supposing lecture in the face-to-face communication condition and in the remote communication condition via television. Throughout the lecture task, we extracted a set of phase differences from the time-series data of the acceleration norm of head nodding motions between two participants. Statistical analyses of the phase difference distribution revealed the characteristics of head nodding synchronization. Although the mean phase differences in synchronized head nods did not differ significantly between the conditions, there were significant differences in the densities, the SDs and the kurtoses of the phase difference distributions of synchronized head nods. These results show the difference in nonverbal synchronization between different communication types. Our study indicates that the phase difference distribution is useful in detecting nonverbal synchronization in various human communication situations.
Integrated Network Decompositions and Dynamic Programming for Graph Optimization (INDDGO)
DOE Office of Scientific and Technical Information (OSTI.GOV)
The INDDGO software package offers a set of tools for finding exact solutions to graph optimization problems via tree decompositions and dynamic programming algorithms. Currently the framework offers serial and parallel (distributed memory) algorithms for finding tree decompositions and solving the maximum weighted independent set problem. The parallel dynamic programming algorithm is implemented on top of the MADNESS task-based runtime.
Distributed synchronization of networked drive-response systems: A nonlinear fixed-time protocol.
Zhao, Wen; Liu, Gang; Ma, Xi; He, Bing; Dong, Yunfeng
2017-11-01
The distributed synchronization of networked drive-response systems is investigated in this paper. A novel nonlinear protocol is proposed to ensure that the tracking errors converge to zeros in a fixed-time. By comparison with previous synchronization methods, the present method considers more practical conditions and the synchronization time is not dependent of arbitrary initial conditions but can be offline pre-assign according to the task assignment. Finally, the feasibility and validity of the presented protocol have been illustrated by a numerical simulation. Copyright © 2017. Published by Elsevier Ltd.
A Hybrid Procedural/Deductive Executive for Autonomous Spacecraft
NASA Technical Reports Server (NTRS)
Pell, Barney; Gamble, Edward B.; Gat, Erann; Kessing, Ron; Kurien, James; Millar, William; Nayak, P. Pandurang; Plaunt, Christian; Williams, Brian C.; Lau, Sonie (Technical Monitor)
1998-01-01
The New Millennium Remote Agent (NMRA) will be the first AI system to control an actual spacecraft. The spacecraft domain places a strong premium on autonomy and requires dynamic recoveries and robust concurrent execution, all in the presence of tight real-time deadlines, changing goals, scarce resource constraints, and a wide variety of possible failures. To achieve this level of execution robustness, we have integrated a procedural executive based on generic procedures with a deductive model-based executive. A procedural executive provides sophisticated control constructs such as loops, parallel activity, locks, and synchronization which are used for robust schedule execution, hierarchical task decomposition, and routine configuration management. A deductive executive provides algorithms for sophisticated state inference and optimal failure recover), planning. The integrated executive enables designers to code knowledge via a combination of procedures and declarative models, yielding a rich modeling capability suitable to the challenges of real spacecraft control. The interface between the two executives ensures both that recovery sequences are smoothly merged into high-level schedule execution and that a high degree of reactivity is retained to effectively handle additional failures during recovery.
Visually cued motor synchronization: modulation of fMRI activation patterns by baseline condition.
Cerasa, Antonio; Hagberg, Gisela E; Bianciardi, Marta; Sabatini, Umberto
2005-01-03
A well-known issue in functional neuroimaging studies, regarding motor synchronization, is to design suitable control tasks able to discriminate between the brain structures involved in primary time-keeper functions and those related to other processes such as attentional effort. The aim of this work was to investigate how the predictability of stimulus onsets in the baseline condition modulates the activity in brain structures related to processes involved in time-keeper functions during the performance of a visually cued motor synchronization task (VM). The rational behind this choice derives from the notion that using different stimulus predictability can vary the subject's attention and the consequently neural activity. For this purpose, baseline levels of BOLD activity were obtained from 12 subjects during a conventional-baseline condition: maintained fixation of the visual rhythmic stimuli presented in the VM task, and a random-baseline condition: maintained fixation of visual stimuli occurring randomly. fMRI analysis demonstrated that while brain areas with a documented role in basic time processing are detected independent of the baseline condition (right cerebellum, bilateral putamen, left thalamus, left superior temporal gyrus, left sensorimotor cortex, left dorsal premotor cortex and supplementary motor area), the ventral premotor cortex, caudate nucleus, insula and inferior frontal gyrus exhibited a baseline-dependent activation. We conclude that maintained fixation of unpredictable visual stimuli can be employed in order to reduce or eliminate neural activity related to attentional components present in the synchronization task.
Violante, Ines R; Li, Lucia M; Carmichael, David W; Lorenz, Romy; Leech, Robert; Hampshire, Adam; Rothwell, John C; Sharp, David J
2017-03-14
Cognitive functions such as working memory (WM) are emergent properties of large-scale network interactions. Synchronisation of oscillatory activity might contribute to WM by enabling the coordination of long-range processes. However, causal evidence for the way oscillatory activity shapes network dynamics and behavior in humans is limited. Here we applied transcranial alternating current stimulation (tACS) to exogenously modulate oscillatory activity in a right frontoparietal network that supports WM. Externally induced synchronization improved performance when cognitive demands were high. Simultaneously collected fMRI data reveals tACS effects dependent on the relative phase of the stimulation and the internal cognitive processing state. Specifically, synchronous tACS during the verbal WM task increased parietal activity, which correlated with behavioral performance. Furthermore, functional connectivity results indicate that the relative phase of frontoparietal stimulation influences information flow within the WM network. Overall, our findings demonstrate a link between behavioral performance in a demanding WM task and large-scale brain synchronization.
Violante, Ines R; Li, Lucia M; Carmichael, David W; Lorenz, Romy; Leech, Robert; Hampshire, Adam; Rothwell, John C; Sharp, David J
2017-01-01
Cognitive functions such as working memory (WM) are emergent properties of large-scale network interactions. Synchronisation of oscillatory activity might contribute to WM by enabling the coordination of long-range processes. However, causal evidence for the way oscillatory activity shapes network dynamics and behavior in humans is limited. Here we applied transcranial alternating current stimulation (tACS) to exogenously modulate oscillatory activity in a right frontoparietal network that supports WM. Externally induced synchronization improved performance when cognitive demands were high. Simultaneously collected fMRI data reveals tACS effects dependent on the relative phase of the stimulation and the internal cognitive processing state. Specifically, synchronous tACS during the verbal WM task increased parietal activity, which correlated with behavioral performance. Furthermore, functional connectivity results indicate that the relative phase of frontoparietal stimulation influences information flow within the WM network. Overall, our findings demonstrate a link between behavioral performance in a demanding WM task and large-scale brain synchronization. DOI: http://dx.doi.org/10.7554/eLife.22001.001 PMID:28288700
Detection of Nonverbal Synchronization through Phase Difference in Human Communication
Kwon, Jinhwan; Ogawa, Ken-ichiro; Ono, Eisuke; Miyake, Yoshihiro
2015-01-01
Nonverbal communication is an important factor in human communication, and body movement synchronization in particular is an important part of nonverbal communication. Some researchers have analyzed body movement synchronization by focusing on changes in the amplitude of body movements. However, the definition of “body movement synchronization” is still unclear. From a theoretical viewpoint, phase difference is the most important factor in synchronization analysis. Therefore, there is a need to measure the synchronization of body movements using phase difference. The purpose of this study was to provide a quantitative definition of the phase difference distribution for detecting body movement synchronization in human communication. The phase difference distribution was characterized using four statistical measurements: density, mean phase difference, standard deviation (SD) and kurtosis. To confirm the effectiveness of our definition, we applied it to human communication in which the roles of speaker and listener were defined. Specifically, we examined the difference in the phase difference distribution between two different communication situations: face-to-face communication with visual interaction and remote communication with unidirectional visual perception. Participant pairs performed a task supposing lecture in the face-to-face communication condition and in the remote communication condition via television. Throughout the lecture task, we extracted a set of phase differences from the time-series data of the acceleration norm of head nodding motions between two participants. Statistical analyses of the phase difference distribution revealed the characteristics of head nodding synchronization. Although the mean phase differences in synchronized head nods did not differ significantly between the conditions, there were significant differences in the densities, the SDs and the kurtoses of the phase difference distributions of synchronized head nods. These results show the difference in nonverbal synchronization between different communication types. Our study indicates that the phase difference distribution is useful in detecting nonverbal synchronization in various human communication situations. PMID:26208100
1995-01-01
possible to determine communication points. For this version, a C program spawning Posix threads and using semaphores to synchronize would have to...performance such as the time required for network communication and synchronization as well as issues of asynchrony and memory hierarchy. For example...enhances reusability. Process (or task) parallel computations can also be succinctly expressed with a small set of process creation and synchronization
Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task
Torre, Emiliano; Quaglio, Pietro; Denker, Michael; Brochier, Thomas; Riehle, Alexa
2016-01-01
The computational role of spike time synchronization at millisecond precision among neurons in the cerebral cortex is hotly debated. Studies performed on data of limited size provided experimental evidence that low-order correlations occur in relation to behavior. Advances in electrophysiological technology to record from hundreds of neurons simultaneously provide the opportunity to observe coordinated spiking activity of larger populations of cells. We recently published a method that combines data mining and statistical evaluation to search for significant patterns of synchronous spikes in massively parallel spike trains (Torre et al., 2013). The method solves the computational and multiple testing problems raised by the high dimensionality of the data. In the current study, we used our method on simultaneous recordings from two macaque monkeys engaged in an instructed-delay reach-to-grasp task to determine the emergence of spike synchronization in relation to behavior. We found a multitude of synchronous spike patterns aligned in both monkeys along a preferential mediolateral orientation in brain space. The occurrence of the patterns is highly specific to behavior, indicating that different behaviors are associated with the synchronization of different groups of neurons (“cell assemblies”). However, pooled patterns that overlap in neuronal composition exhibit no specificity, suggesting that exclusive cell assemblies become active during different behaviors, but can recruit partly identical neurons. These findings are consistent across multiple recording sessions analyzed across the two monkeys. SIGNIFICANCE STATEMENT Neurons in the brain communicate via electrical impulses called spikes. How spikes are coordinated to process information is still largely unknown. Synchronous spikes are effective in triggering a spike emission in receiving neurons and have been shown to occur in relation to behavior in a number of studies on simultaneous recordings of few neurons. We recently published a method to extend this type of investigation to larger data. Here, we apply it to simultaneous recordings of hundreds of neurons from the motor cortex of macaque monkeys performing a motor task. Our analysis reveals groups of neurons selectively synchronizing their activity in relation to behavior, which sheds new light on the role of synchrony in information processing in the cerebral cortex. PMID:27511007
Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task.
Torre, Emiliano; Quaglio, Pietro; Denker, Michael; Brochier, Thomas; Riehle, Alexa; Grün, Sonja
2016-08-10
The computational role of spike time synchronization at millisecond precision among neurons in the cerebral cortex is hotly debated. Studies performed on data of limited size provided experimental evidence that low-order correlations occur in relation to behavior. Advances in electrophysiological technology to record from hundreds of neurons simultaneously provide the opportunity to observe coordinated spiking activity of larger populations of cells. We recently published a method that combines data mining and statistical evaluation to search for significant patterns of synchronous spikes in massively parallel spike trains (Torre et al., 2013). The method solves the computational and multiple testing problems raised by the high dimensionality of the data. In the current study, we used our method on simultaneous recordings from two macaque monkeys engaged in an instructed-delay reach-to-grasp task to determine the emergence of spike synchronization in relation to behavior. We found a multitude of synchronous spike patterns aligned in both monkeys along a preferential mediolateral orientation in brain space. The occurrence of the patterns is highly specific to behavior, indicating that different behaviors are associated with the synchronization of different groups of neurons ("cell assemblies"). However, pooled patterns that overlap in neuronal composition exhibit no specificity, suggesting that exclusive cell assemblies become active during different behaviors, but can recruit partly identical neurons. These findings are consistent across multiple recording sessions analyzed across the two monkeys. Neurons in the brain communicate via electrical impulses called spikes. How spikes are coordinated to process information is still largely unknown. Synchronous spikes are effective in triggering a spike emission in receiving neurons and have been shown to occur in relation to behavior in a number of studies on simultaneous recordings of few neurons. We recently published a method to extend this type of investigation to larger data. Here, we apply it to simultaneous recordings of hundreds of neurons from the motor cortex of macaque monkeys performing a motor task. Our analysis reveals groups of neurons selectively synchronizing their activity in relation to behavior, which sheds new light on the role of synchrony in information processing in the cerebral cortex. Copyright © 2016 Torre, et al.
Brázdil, Milan; Janeček, Jiří; Klimeš, Petr; Mareček, Radek; Roman, Robert; Jurák, Pavel; Chládek, Jan; Daniel, Pavel; Rektor, Ivan; Halámek, Josef; Plešinger, Filip; Jirsa, Viktor
2013-01-01
Using intracerebral EEG recordings in a large cohort of human subjects, we investigate the time course of neural cross-talk during a simple cognitive task. Our results show that human brain dynamics undergo a characteristic sequence of synchronization patterns across different frequency bands following a visual oddball stimulus. In particular, an initial global reorganization in the delta and theta bands (2–8 Hz) is followed by gamma (20–95 Hz) and then beta band (12–20 Hz) synchrony. PMID:23696809
Error reduction in EMG signal decomposition
Kline, Joshua C.
2014-01-01
Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequently, they are subject to errors. We set out to classify and reduce these errors by analyzing 1,061 motor-unit action-potential trains (MUAPTs), obtained by decomposing surface EMG (sEMG) signals recorded during human voluntary contractions. Decomposition errors were classified into two general categories: location errors representing variability in the temporal localization of each motor-unit firing instance and identification errors consisting of falsely detected or missed firing instances. To mitigate these errors, we developed an error-reduction algorithm that combines multiple decomposition estimates to determine a more probable estimate of motor-unit firing instances with fewer errors. The performance of the algorithm is governed by a trade-off between the yield of MUAPTs obtained above a given accuracy level and the time required to perform the decomposition. When applied to a set of sEMG signals synthesized from real MUAPTs, the identification error was reduced by an average of 1.78%, improving the accuracy to 97.0%, and the location error was reduced by an average of 1.66 ms. The error-reduction algorithm in this study is not limited to any specific decomposition strategy. Rather, we propose it be used for other decomposition methods, especially when analyzing precise motor-unit firing instances, as occurs when measuring synchronization. PMID:25210159
Rhythm synchronization performance and auditory working memory in early- and late-trained musicians.
Bailey, Jennifer A; Penhune, Virginia B
2010-07-01
Behavioural and neuroimaging studies provide evidence for a possible "sensitive" period in childhood development during which musical training results in long-lasting changes in brain structure and auditory and motor performance. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 (early-trained; ET) perform better on a visuomotor task than those who begin after the age of 7 (late-trained; LT), even when matched on total years of musical training and experience. Two questions were raised regarding the findings from this experiment. First, would this group performance difference be observed using a more familiar, musically relevant task such as auditory rhythms? Second, would cognitive abilities mediate this difference in task performance? To address these questions, ET and LT musicians, matched on years of musical training, hours of current practice and experience, were tested on an auditory rhythm synchronization task. The task consisted of six woodblock rhythms of varying levels of metrical complexity. In addition, participants were tested on cognitive subtests measuring vocabulary, working memory and pattern recognition. The two groups of musicians differed in their performance of the rhythm task, such that the ET musicians were better at reproducing the temporal structure of the rhythms. There were no group differences on the cognitive measures. Interestingly, across both groups, individual task performance correlated with auditory working memory abilities and years of formal training. These results support the idea of a sensitive period during the early years of childhood for developing sensorimotor synchronization abilities via musical training.
Decomposition of Composite Electric Field in a Three-Phase D-Dot Voltage Transducer Measuring System
Hu, Xueqi; Wang, Jingang; Wei, Gang; Deng, Xudong
2016-01-01
In line with the wider application of non-contact voltage transducers in the engineering field, transducers are required to have better performance for different measuring environments. In the present study, the D-dot voltage transducer is further improved based on previous research in order to meet the requirements for long-distance measurement of electric transmission lines. When measuring three-phase electric transmission lines, problems such as synchronous data collection and composite electric field need to be resolved. A decomposition method is proposed with respect to the superimposed electric field generated between neighboring phases. The charge simulation method is utilized to deduce the decomposition equation of the composite electric field and the validity of the proposed method is verified by simulation calculation software. With the deduced equation as the algorithm foundation, this paper improves hardware circuits, establishes a measuring system and constructs an experimental platform for examination. Under experimental conditions, a 10 kV electric transmission line was tested for steady-state errors, and the measuring results of the transducer and the high-voltage detection head were compared. Ansoft Maxwell Stimulation Software was adopted to obtain the electric field intensity in different positions under transmission lines; its values and the measuring values of the transducer were also compared. Experimental results show that the three-phase transducer is characterized by a relatively good synchronization for data measurement, measuring results with high precision, and an error ratio within a prescribed limit. Therefore, the proposed three-phase transducer can be broadly applied and popularized in the engineering field. PMID:27754340
Role of Gamma-Band Synchronization in Priming of Form Discrimination for Multiobject Displays
ERIC Educational Resources Information Center
Lu, Hongjing; Morrison, Robert G.; Hummel, John E.; Holyoak, Keith J.
2006-01-01
Previous research has shown that synchronized flicker can facilitate detection of a single Kanizsa square. The present study investigated the role of temporally structured priming in discrimination tasks involving perceptual relations between multiple Kanizsa-type figures. Results indicate that visual information presented as temporally structured…
Oral Conversations Online: Redefining Oral Competence in Synchronous Environments
ERIC Educational Resources Information Center
Lamy, Marie-Noelle
2004-01-01
In this article the focus is on methodology for analysing learner-learner oral conversations mediated by computers. With the increasing availability of synchronous voice-based groupware and the additional facilities offered by audio-graphic tools, language learners have opportunities for collaborating on oral tasks, supported by visual and textual…
Synchronization in Scratch: A Case Study with Education Science Students
ERIC Educational Resources Information Center
Nikolos, Dimitris; Komis, Vassilis
2015-01-01
The Scratch programming language is an introductory programming language for students. It is also a visual concurrent programming language, where multiple threads are executed simultaneously. Synchronization in concurrent languages is a complex task for novices to understand. Our research is focused on strategies and methods applied by novice…
A characterization of the two-step reaction mechanism of phenol decomposition by a Fenton reaction
NASA Astrophysics Data System (ADS)
Valdés, Cristian; Alzate-Morales, Jans; Osorio, Edison; Villaseñor, Jorge; Navarro-Retamal, Carlos
2015-11-01
Phenol is one of the worst contaminants at date, and its degradation has been a crucial task over years. Here, the decomposition process of phenol, in a Fenton reaction, is described. Using scavengers, it was observed that decomposition of phenol was mainly influenced by production of hydroxyl radicals. Experimental and theoretical activation energies (Ea) for phenol oxidation intermediates were calculated. According to these Ea, phenol decomposition is a two-step reaction mechanism mediated predominantly by hydroxyl radicals, producing a decomposition yield order given as hydroquinone > catechol > resorcinol. Furthermore, traces of reaction derived acids were detected by HPLC and GS-MS.
Automated ILA design for synchronous sequential circuits
NASA Technical Reports Server (NTRS)
Liu, M. N.; Liu, K. Z.; Maki, G. K.; Whitaker, S. R.
1991-01-01
An iterative logic array (ILA) architecture for synchronous sequential circuits is presented. This technique utilizes linear algebra to produce the design equations. The ILA realization of synchronous sequential logic can be fully automated with a computer program. A programmable design procedure is proposed to fullfill the design task and layout generation. A software algorithm in the C language has been developed and tested to generate 1 micron CMOS layouts using the Hewlett-Packard FUNGEN module generator shell.
Control of Task Sequences: What Is the Role of Language?
ERIC Educational Resources Information Center
Mayr, Ulrich; Kleffner-Canucci, Killian; Kikumoto, Atsushi; Redford, Melissa A.
2014-01-01
It is almost a truism that language aids serial-order control through self-cuing of upcoming sequential elements. We measured speech onset latencies as subjects performed hierarchically organized task sequences while "thinking aloud" each task label. Surprisingly, speech onset latencies and response times (RTs) were highly synchronized,…
Enhanced phase synchrony in the electroencephalograph γ band for musicians while listening to music
NASA Astrophysics Data System (ADS)
Bhattacharya, Joydeep; Petsche, Hellmuth
2001-07-01
Multichannel electroencephalograph signals from two broad groups, 10 musicians and 10 nonmusicians, recorded in different states (in resting states or no task condition, with eyes opened and eyes closed, and with two musical tasks, listening to two different pieces of music) were studied. Degrees of phase synchrony in various frequency bands were assessed. No differences in the degree of synchronization in any frequency band were found between the two groups in resting conditions. Yet, while listening to music, significant increases of synchronization were found only in the γ-frequency range (>30 Hz) over large cortical areas for the group of musicians. This high degree of synchronization elicited by music in the group of musicians might be due to their ability to host long-term memory representations of music and mediate access to these stored representations.
Synthetic Proxy Infrastructure for Task Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junghans, Christoph; Pavel, Robert
The Synthetic Proxy Infrastructure for Task Evaluation is a proxy application designed to support application developers in gauging the performance of various task granularities when determining how best to utilize task based programming models.The infrastructure is designed to provide examples of common communication patterns with a synthetic workload intended to provide performance data to evaluate programming model and platform overheads for the purpose of determining task granularity for task decomposition purposes. This is presented as a reference implementation of a proxy application with run-time configurable input and output task dependencies ranging from an embarrassingly parallel scenario to patterns with stencil-likemore » dependencies upon their nearest neighbors. Once all, if any, inputs are satisfied each task will execute a synthetic workload (a simple DGEMM of in this case) of varying size and output all, if any, outputs to the next tasks.The intent is for this reference implementation to be implemented as a proxy app in different programming models so as to provide the same infrastructure and to allow for application developers to simulate their own communication needs to assist in task decomposition under various models on a given platform.« less
Current harmonics elimination control method for six-phase PM synchronous motor drives.
Yuan, Lei; Chen, Ming-liang; Shen, Jian-qing; Xiao, Fei
2015-11-01
To reduce the undesired 5th and 7th stator harmonic current in the six-phase permanent magnet synchronous motor (PMSM), an improved vector control algorithm was proposed based on vector space decomposition (VSD) transformation method, which can control the fundamental and harmonic subspace separately. To improve the traditional VSD technology, a novel synchronous rotating coordinate transformation matrix was presented in this paper, and only using the traditional PI controller in d-q subspace can meet the non-static difference adjustment, the controller parameter design method is given by employing internal model principle. Moreover, the current PI controller parallel with resonant controller is employed in x-y subspace to realize the specific 5th and 7th harmonic component compensation. In addition, a new six-phase SVPWM algorithm based on VSD transformation theory is also proposed. Simulation and experimental results verify the effectiveness of current decoupling vector controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Control of Task Sequences: What is the Role of Language?
Mayr, Ulrich; Kleffner, Killian; Kikumoto, Atsushi; Redford, Melissa A.
2015-01-01
It is almost a truism that language aids serial-order control through self-cuing of upcoming sequential elements. We measured speech onset latencies as subjects performed hierarchically organized task sequences while "thinking aloud" each task label. Surprisingly, speech onset latencies and response times (RTs) were highly synchronized, a pattern that is not consistent with the hypothesis that speaking aids proactive retrieval of upcoming sequential elements during serial-order control. We also found that when instructed to do so, participants were able to speak task labels prior to presentation of response-relevant stimuli and that this substantially reduced RT signatures of retrieval—however at the cost of more sequencing errors. Thus, while proactive retrieval is possible in principle, in natural situations it seems to be prevented through a strong, "gestalt-like" tendency to synchronize speech and action. We suggest that this tendency may support context updating rather than proactive control. PMID:24274386
The nexus between geopolitical uncertainty and crude oil markets: An entropy-based wavelet analysis
NASA Astrophysics Data System (ADS)
Uddin, Gazi Salah; Bekiros, Stelios; Ahmed, Ali
2018-04-01
The global financial crisis and the subsequent geopolitical turbulence in energy markets have brought increased attention to the proper statistical modeling especially of the crude oil markets. In particular, we utilize a time-frequency decomposition approach based on wavelet analysis to explore the inherent dynamics and the casual interrelationships between various types of geopolitical, economic and financial uncertainty indices and oil markets. Via the introduction of a mixed discrete-continuous multiresolution analysis, we employ the entropic criterion for the selection of the optimal decomposition level of a MODWT as well as the continuous-time coherency and phase measures for the detection of business cycle (a)synchronization. Overall, a strong heterogeneity in the revealed interrelationships is detected over time and across scales.
Chaos synchronization in networks of semiconductor superlattices
NASA Astrophysics Data System (ADS)
Li, Wen; Aviad, Yaara; Reidler, Igor; Song, Helun; Huang, Yuyang; Biermann, Klaus; Rosenbluh, Michael; Zhang, Yaohui; Grahn, Holger T.; Kanter, Ido
2015-11-01
Chaos synchronization has been demonstrated as a useful building block for various tasks in secure communications, including a source of all-electronic ultrafast physical random number generators based on room temperature spontaneous chaotic oscillations in a DC-biased weakly coupled GaAs/Al0.45Ga0.55As semiconductor superlattice (SSL). Here, we experimentally demonstrate the emergence of several types of chaos synchronization, e.g. leader-laggard, face-to-face and zero-lag synchronization in network motifs of coupled SSLs consisting of unidirectional and mutual coupling as well as self-feedback coupling. Each type of synchronization clearly reflects the symmetry of the topology of its network motif. The emergence of a chaotic SSL without external feedback and synchronization among different structured SSLs open up the possibility for advanced secure multi-user communication methods based on large networks of coupled SSLs.
ERIC Educational Resources Information Center
Kim, Hye Yeong
2014-01-01
Effectively exploring the efficacy of synchronous computer-mediated communication (SCMC) for pedagogical purposes can be achieved through the careful investigation of potentially beneficial, inherent attributes of SCMC. This study provides empirical evidence for the capacity of task-based SCMC to draw learner attention to linguistic forms by…
ERIC Educational Resources Information Center
Fernández, Susana S.; Pozzo, María Isabel
2017-01-01
This paper discusses to what extent synchronous communication via Skype by Argentine university students of History and Danish university students of Spanish contributed to fostering intercultural competence in the two groups of participants. Intercultural gains are considered both as part of the planned tasks to be solved by the participants…
A Case Study of Language Learners' Social Presence in Synchronous CMC
ERIC Educational Resources Information Center
Ko, Chao-Jung
2012-01-01
This study adopts a case study approach to investigate the impacts of synchronous computer-mediated communication (CMC) learning environments on learners' perception of social presence. The participants were twelve French as a foreign language (FFL) beginners in a Taiwanese university. Divided into three groups, they conducted some tasks in three…
The effect of time synchronization of wireless sensors on the modal analysis of structures
NASA Astrophysics Data System (ADS)
Krishnamurthy, V.; Fowler, K.; Sazonov, E.
2008-10-01
Driven by the need to reduce the installation cost and maintenance cost of structural health monitoring (SHM) systems, wireless sensor networks (WSNs) are becoming increasingly popular. Perfect time synchronization amongst the wireless sensors is a key factor enabling the use of low-cost, low-power WSNs for structural health monitoring applications based on output-only modal analysis of structures. In this paper we present a theoretical framework for analysis of the impact created by time delays in the measured system response on the reconstruction of mode shapes using the popular frequency domain decomposition (FDD) technique. This methodology directly estimates the change in mode shape values based on sensor synchronicity. We confirm the proposed theoretical model by experimental validation in modal identification experiments performed on an aluminum beam. The experimental validation was performed using a wireless intelligent sensor and actuator network (WISAN) which allows for close time synchronization between sensors (0.6-10 µs in the tested configuration) and guarantees lossless data delivery under normal conditions. The experimental results closely match theoretical predictions and show that even very small delays in output response impact the mode shapes.
Quantum Clock Synchronization with a Single Qudit
NASA Astrophysics Data System (ADS)
Tavakoli, Armin; Cabello, Adán; Żukowski, Marek; Bourennane, Mohamed
2015-01-01
Clock synchronization for nonfaulty processes in multiprocess networks is indispensable for a variety of technologies. A reliable system must be able to resynchronize the nonfaulty processes upon some components failing causing the distribution of incorrect or conflicting information in the network. The task of synchronizing such networks is related to Byzantine agreement (BA), which can classically be solved using recursive algorithms if and only if less than one-third of the processes are faulty. Here we introduce a nonrecursive quantum algorithm, based on a quantum solution of the detectable BA, which achieves clock synchronization in the presence of arbitrary many faulty processes by using only a single quantum system.
On chaos synchronization and secure communication.
Kinzel, W; Englert, A; Kanter, I
2010-01-28
Chaos synchronization, in particular isochronal synchronization of two chaotic trajectories to each other, may be used to build a means of secure communication over a public channel. In this paper, we give an overview of coupling schemes of Bernoulli units deduced from chaotic laser systems, different ways to transmit information by chaos synchronization and the advantage of bidirectional over unidirectional coupling with respect to secure communication. We present the protocol for using dynamical private commutative filters for tap-proof transmission of information that maps the task of a passive attacker to the class of non-deterministic polynomial time-complete problems. This journal is © 2010 The Royal Society
White matter microstructural properties correlate with sensorimotor synchronization abilities.
Blecher, Tal; Tal, Idan; Ben-Shachar, Michal
2016-09-01
Sensorimotor synchronization (SMS) to an external auditory rhythm is a developed ability in humans, particularly evident in dancing and singing. This ability is typically measured in the lab via a simple task of finger tapping to an auditory beat. While simplistic, there is some evidence that poor performance on this task could be related to impaired phonological and reading abilities in children. Auditory-motor synchronization is hypothesized to rely on a tight coupling between auditory and motor neural systems, but the specific pathways that mediate this coupling have not been identified yet. In this study, we test this hypothesis and examine the contribution of fronto-temporal and callosal connections to specific measures of rhythmic synchronization. Twenty participants went through SMS and diffusion magnetic resonance imaging (dMRI) measurements. We quantified the mean asynchrony between an auditory beat and participants' finger taps, as well as the time to resynchronize (TTR) with an altered meter, and examined the correlations between these behavioral measures and diffusivity in a small set of predefined pathways. We found significant correlations between asynchrony and fractional anisotropy (FA) in the left (but not right) arcuate fasciculus and in the temporal segment of the corpus callosum. On the other hand, TTR correlated with FA in the precentral segment of the callosum. To our knowledge, this is the first demonstration that relates these particular white matter tracts with performance on an auditory-motor rhythmic synchronization task. We propose that left fronto-temporal and temporal-callosal fibers are involved in prediction and constant comparison between auditory inputs and motor commands, while inter-hemispheric connections between the motor/premotor cortices contribute to successful resynchronization of motor responses with a new external rhythm, perhaps via inhibition of tapping to the previous rhythm. Our results indicate that auditory-motor synchronization skills are associated with anatomical pathways that have been previously related to phonological awareness, thus offering a possible anatomical basis for the behavioral covariance between these abilities. Copyright © 2016 Elsevier Inc. All rights reserved.
Domain decomposition for aerodynamic and aeroacoustic analyses, and optimization
NASA Technical Reports Server (NTRS)
Baysal, Oktay
1995-01-01
The overarching theme was the domain decomposition, which intended to improve the numerical solution technique for the partial differential equations at hand; in the present study, those that governed either the fluid flow, or the aeroacoustic wave propagation, or the sensitivity analysis for a gradient-based optimization. The role of the domain decomposition extended beyond the original impetus of discretizing geometrical complex regions or writing modular software for distributed-hardware computers. It induced function-space decompositions and operator decompositions that offered the valuable property of near independence of operator evaluation tasks. The objectives have gravitated about the extensions and implementations of either the previously developed or concurrently being developed methodologies: (1) aerodynamic sensitivity analysis with domain decomposition (SADD); (2) computational aeroacoustics of cavities; and (3) dynamic, multibody computational fluid dynamics using unstructured meshes.
Iterative filtering decomposition based on local spectral evolution kernel
Wang, Yang; Wei, Guo-Wei; Yang, Siyang
2011-01-01
The synthesizing information, achieving understanding, and deriving insight from increasingly massive, time-varying, noisy and possibly conflicting data sets are some of most challenging tasks in the present information age. Traditional technologies, such as Fourier transform and wavelet multi-resolution analysis, are inadequate to handle all of the above-mentioned tasks. The empirical model decomposition (EMD) has emerged as a new powerful tool for resolving many challenging problems in data processing and analysis. Recently, an iterative filtering decomposition (IFD) has been introduced to address the stability and efficiency problems of the EMD. Another data analysis technique is the local spectral evolution kernel (LSEK), which provides a near prefect low pass filter with desirable time-frequency localizations. The present work utilizes the LSEK to further stabilize the IFD, and offers an efficient, flexible and robust scheme for information extraction, complexity reduction, and signal and image understanding. The performance of the present LSEK based IFD is intensively validated over a wide range of data processing tasks, including mode decomposition, analysis of time-varying data, information extraction from nonlinear dynamic systems, etc. The utility, robustness and usefulness of the proposed LESK based IFD are demonstrated via a large number of applications, such as the analysis of stock market data, the decomposition of ocean wave magnitudes, the understanding of physiologic signals and information recovery from noisy images. The performance of the proposed method is compared with that of existing methods in the literature. Our results indicate that the LSEK based IFD improves both the efficiency and the stability of conventional EMD algorithms. PMID:22350559
Jauk, Emanuel; Benedek, Mathias; Neubauer, Aljoscha C.
2012-01-01
The distinction between convergent and divergent cognitive processes given by Guilford (1956) had a strong influence on the empirical research on creative thinking. Neuroscientific studies typically find higher event-related synchronization in the EEG alpha rhythm for individuals engaged in creative ideation tasks compared to intelligence-related tasks. This study examined, whether these neurophysiological effects can also be found when both cognitive processing modes (convergent vs. divergent) are assessed by means of the same task employing a simple variation of instruction. A sample of 55 participants performed the alternate uses task as well as a more basic word association task while EEG was recorded. On a trial-by-trial basis, participants were either instructed to find a most common solution (convergent condition) or a most uncommon solution (divergent condition). The answers given in the divergent condition were in both tasks significantly more original than those in the convergent condition. Moreover, divergent processing was found to involve higher task-related EEG alpha power than convergent processing in both the alternate uses task and the word association task. EEG alpha synchronization can hence explicitly be associated with divergent cognitive processing rather than with general task characteristics of creative ideation tasks. Further results point to a differential involvement of frontal and parietal cortical areas by individuals of lower versus higher trait creativity. PMID:22390860
Li, Huiyan; Wei, Zishang; Huangfu, Chaohe; Chen, Xinwei; Yang, Dianlin
2017-01-01
In natural ecosystems, invasive plant litter is often mixed with that of native species, yet few studies have examined the decomposition dynamics of such mixtures, especially across different degrees of invasion. We conducted a 1-year litterbag experiment using leaf litters from the invasive species Flaveria bidentis (L.) and the dominant co-occurring native species, Setaria viridis (L.). Litters were allowed to decompose either separately or together at different ratios in a mothproof screen house. The mass loss of all litter mixtures was non-additive, and the direction and strength of effects varied with species ratio and decomposition stage. During the initial stages of decomposition, all mixtures had a neutral effect on the mass loss; however, at later stages of decomposition, mixtures containing more invasive litter had synergistic effects on mass loss. Importantly, an increase in F. bidentis litter with a lower C:N ratio in mixtures led to greater net release of N over time. These results highlight the importance of trait dissimilarity in determining the decomposition rates of litter mixtures and suggest that F. bidentis could further synchronize N release from litter as an invasion proceeds, potentially creating a positive feedback linked through invasion as the invader outcompetes the natives for nutrients. Our findings also demonstrate the importance of species composition as well as the identity of dominant species when considering how changes in plant community structure influence plant invasion.
NASA Astrophysics Data System (ADS)
Jamal, Wasifa; Das, Saptarshi; Maharatna, Koushik; Pan, Indranil; Kuyucu, Doga
2015-09-01
Degree of phase synchronization between different Electroencephalogram (EEG) channels is known to be the manifestation of the underlying mechanism of information coupling between different brain regions. In this paper, we apply a continuous wavelet transform (CWT) based analysis technique on EEG data, captured during face perception tasks, to explore the temporal evolution of phase synchronization, from the onset of a stimulus. Our explorations show that there exists a small set (typically 3-5) of unique synchronized patterns or synchrostates, each of which are stable of the order of milliseconds. Particularly, in the beta (β) band, which has been reported to be associated with visual processing task, the number of such stable states has been found to be three consistently. During processing of the stimulus, the switching between these states occurs abruptly but the switching characteristic follows a well-behaved and repeatable sequence. This is observed in a single subject analysis as well as a multiple-subject group-analysis in adults during face perception. We also show that although these patterns remain topographically similar for the general category of face perception task, the sequence of their occurrence and their temporal stability varies markedly between different face perception scenarios (stimuli) indicating toward different dynamical characteristics for information processing, which is stimulus-specific in nature. Subsequently, we translated these stable states into brain complex networks and derived informative network measures for characterizing the degree of segregated processing and information integration in those synchrostates, leading to a new methodology for characterizing information processing in human brain. The proposed methodology of modeling the functional brain connectivity through the synchrostates may be viewed as a new way of quantitative characterization of the cognitive ability of the subject, stimuli and information integration/segregation capability.
Basic Timing Abilities Stay Intact in Patients with Musician's Dystonia
van der Steen, M. C.; van Vugt, Floris T.; Keller, Peter E.; Altenmüller, Eckart
2014-01-01
Task-specific focal dystonia is a movement disorder that is characterized by the loss of voluntary motor control in extensively trained movements. Musician's dystonia is a type of task-specific dystonia that is elicited in professional musicians during instrumental playing. The disorder has been associated with deficits in timing. In order to test the hypothesis that basic timing abilities are affected by musician's dystonia, we investigated a group of patients (N = 15) and a matched control group (N = 15) on a battery of sensory and sensorimotor synchronization tasks. Results did not show any deficits in auditory-motor processing for patients relative to controls. Both groups benefited from a pacing sequence that adapted to their timing (in a sensorimotor synchronization task at a stable tempo). In a purely perceptual task, both groups were able to detect a misaligned metronome when it was late rather than early relative to a musical beat. Overall, the results suggest that basic timing abilities stay intact in patients with musician's dystonia. This supports the idea that musician's dystonia is a highly task-specific movement disorder in which patients are mostly impaired in tasks closely related to the demands of actually playing their instrument. PMID:24667273
ERIC Educational Resources Information Center
Ko, Chao-Jung
2012-01-01
This study investigated the possibility that initial-level learners may acquire oral skills through synchronous computer-mediated communication (SCMC). Twelve Taiwanese French as a foreign language (FFL) students, divided into three groups, were required to conduct a variety of tasks in one of the three learning environments (video/audio, audio,…
Attentional modulation of cell-class specific gamma-band synchronization in awake monkey area V4
Vinck, Martin; Womelsdorf, Thilo; Buffalo, Elizabeth A.; Desimone, Robert; Fries, Pascal
2013-01-01
Summary Selective visual attention is subserved by selective neuronal synchronization, entailing precise orchestration among excitatory and inhibitory cells. We tentatively identified these as broad (BS) and narrow spiking (NS) cells and analyzed their synchronization to the local field potential in two macaque monkeys performing a selective visual attention task. Across cells, gamma phases scattered widely but were unaffected by stimulation or attention. During stimulation, NS cells lagged BS cells on average by ~60° and gamma synchronized twice as strongly. Attention enhanced and reduced the gamma locking of strongly and weakly activated cells, respectively. During a pre-stimulus attentional cue period, BS cells showed weak gamma synchronization, while NS cells gamma synchronized as strongly as with visual stimulation. These analyses reveal the cell-type specific dynamics of the gamma cycle in macaque visual cortex and suggest that attention affects neurons differentially depending on cell type and activation level. PMID:24267656
Wen, Shiping; Zeng, Zhigang; Chen, Michael Z Q; Huang, Tingwen
2017-10-01
This paper addresses the issue of synchronization of switched delayed neural networks with communication delays via event-triggered control. For synchronizing coupled switched neural networks, we propose a novel event-triggered control law which could greatly reduce the number of control updates for synchronization tasks of coupled switched neural networks involving embedded microprocessors with limited on-board resources. The control signals are driven by properly defined events, which depend on the measurement errors and current-sampled states. By using a delay system method, a novel model of synchronization error system with delays is proposed with the communication delays and event-triggered control in the unified framework for coupled switched neural networks. The criteria are derived for the event-triggered synchronization analysis and control synthesis of switched neural networks via the Lyapunov-Krasovskii functional method and free weighting matrix approach. A numerical example is elaborated on to illustrate the effectiveness of the derived results.
Stable Scalp EEG Spatiospectral Patterns Across Paradigms Estimated by Group ICA.
Labounek, René; Bridwell, David A; Mareček, Radek; Lamoš, Martin; Mikl, Michal; Slavíček, Tomáš; Bednařík, Petr; Baštinec, Jaromír; Hluštík, Petr; Brázdil, Milan; Jan, Jiří
2018-01-01
Electroencephalography (EEG) oscillations reflect the superposition of different cortical sources with potentially different frequencies. Various blind source separation (BSS) approaches have been developed and implemented in order to decompose these oscillations, and a subset of approaches have been developed for decomposition of multi-subject data. Group independent component analysis (Group ICA) is one such approach, revealing spatiospectral maps at the group level with distinct frequency and spatial characteristics. The reproducibility of these distinct maps across subjects and paradigms is relatively unexplored domain, and the topic of the present study. To address this, we conducted separate group ICA decompositions of EEG spatiospectral patterns on data collected during three different paradigms or tasks (resting-state, semantic decision task and visual oddball task). K-means clustering analysis of back-reconstructed individual subject maps demonstrates that fourteen different independent spatiospectral maps are present across the different paradigms/tasks, i.e. they are generally stable.
Tool Choice for E-Learning: Task-Technology Fit through Media Synchronicity
ERIC Educational Resources Information Center
Sun, Jun; Wang, Ying
2014-01-01
One major challenge in online education is how to select appropriate e-learning tools for different learning tasks. Based on the premise of Task-Technology Fit Theory, this study suggests that the effectiveness of student learning in online courses depends on the alignment between two. Furthermore, it conceptualizes the formation of such a fit…
Managing CMC-Based Task through Text-Based Dialogue: An Exploratory Study in a Chinese EFL Context
ERIC Educational Resources Information Center
Yu, Lianfen; Zeng, Gang
2011-01-01
This paper examines EFL learners' dialogic interaction in the implementation of a computer-mediated communication (CMC) task. Within the framework of sociocultural theory, the research focuses on how learners working in pairs collaboratively perform task management and build relationship in the synchronous CMC context. Sixteen Chinese tertiary EFL…
Wilquin, Hélène; Delevoye-Turrell, Yvonne; Dione, Mariama; Giersch, Anne
2018-01-01
Objective: Basic temporal dysfunctions have been described in patients with schizophrenia, which may impact their ability to connect and synchronize with the outer world. The present study was conducted with the aim to distinguish between interval timing and synchronization difficulties and more generally the spatial-temporal organization disturbances for voluntary actions. A new sensorimotor synchronization task was developed to test these abilities. Method: Twenty-four chronic schizophrenia patients matched with 27 controls performed a spatial-tapping task in which finger taps were to be produced in synchrony with a regular metronome to six visual targets presented around a virtual circle on a tactile screen. Isochronous (time intervals of 500 ms) and non-isochronous auditory sequences (alternated time intervals of 300/600 ms) were presented. The capacity to produce time intervals accurately versus the ability to synchronize own actions (tap) with external events (tone) were measured. Results: Patients with schizophrenia were able to produce the tapping patterns of both isochronous and non-isochronous auditory sequences as accurately as controls producing inter-response intervals close to the expected interval of 500 and 900 ms, respectively. However, the synchronization performances revealed significantly more positive asynchrony means (but similar variances) in the patient group than in the control group for both types of auditory sequences. Conclusion: The patterns of results suggest that patients with schizophrenia are able to perceive and produce both simple and complex sequences of time intervals but are impaired in the ability to synchronize their actions with external events. These findings suggest a specific deficit in predictive timing, which may be at the core of early symptoms previously described in schizophrenia.
Koehne, Svenja; Behrends, Andrea; Fairhurst, Merle T; Dziobek, Isabel
2016-01-01
Since social cognition is impaired in individuals with autism spectrum disorder (ASD), this study aimed at establishing the efficacy of a newly developed imitation- and synchronization-based dance/movement intervention (SI-DMI) in fostering emotion inference and empathic feelings (emotional reaction to feelings of others) in adults with high-functioning ASD. Fifty-five adults with ASD (IQ ≥85) who were blinded to the aim of the study were assigned to receive either 10 weeks of a dance/movement intervention focusing on interpersonal movement imitation and synchronization (SI-DMI, n = 27) or a control movement intervention (CMI, n = 24) focusing on individual motor coordination (2 participants from each group declined before baseline testing). The primary outcome measure was the objective Multifaceted Empathy Test targeting emotion inference and empathic feelings. Secondary outcomes were scores on the self-rated Interpersonal Reactivity Index. The well-established automatic imitation task and synchronization finger-tapping task were used to quantify effects on imitation and synchronization functions, complemented by the more naturalistic Assessment of Spontaneous Interaction in Movement. Intention-to-treat analyses revealed that from baseline to 3 months, patients treated with SI-DMI showed a significantly larger improvement in emotion inference (d = 0.58), but not empathic feelings, than those treated with CMI (d = -0.04). On the close generalization level, SI-DMI increased synchronization skills and imitation tendencies, as well as whole-body imitation/synchronization and movement reciprocity/dialogue, compared to CMI. SI-DMI can be successful in promoting emotion inference in adults with ASD and warrants further investigation. © 2015 S. Karger AG, Basel.
Pinal, Diego; Zurrón, Montserrat; Díaz, Fernando; Sauseng, Paul
2015-04-01
Aging-related decline in short-term memory capacity seems to be caused by deficient balancing of task-related and resting state brain networks activity; however, the exact neural mechanism underlying this deficit remains elusive. Here, we studied brain oscillatory activity in healthy young and old adults during visual information maintenance in a delayed match-to-sample task. Particular emphasis was on long range phase:amplitude coupling of frontal alpha (8-12 Hz) and posterior fast oscillatory activity (>30 Hz). It is argued that through posterior fast oscillatory activity nesting into the excitatory or the inhibitory phase of frontal alpha wave, long-range networks can be efficiently coupled or decoupled, respectively. On the basis of this mechanism, we show that healthy, elderly participants exhibit a lack of synchronization in task-relevant networks while maintaining synchronized regions of the resting state network. Lacking disconnection of this resting state network is predictive of aging-related short-term memory decline. These results support the idea of inefficient orchestration of competing brain networks in the aging human brain and identify the neural mechanism responsible for this control breakdown. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Bradley, D. B.; Cain, J. B., III; Williard, M. W.
1978-01-01
The task was to evaluate the ability of a set of timing/synchronization subsystem features to provide a set of desirable characteristics for the evolving Defense Communications System digital communications network. The set of features related to the approaches by which timing/synchronization information could be disseminated throughout the network and the manner in which this information could be utilized to provide a synchronized network. These features, which could be utilized in a large number of different combinations, included mutual control, directed control, double ended reference links, independence of clock error measurement and correction, phase reference combining, and self organizing.
FTAP: a Linux-based program for tapping and music experiments.
Finney, S A
2001-02-01
This paper describes FTAP, a flexible data collection system for tapping and music experiments. FTAP runs on standard PC hardware with the Linux operating system and can process input keystrokes and auditory output with reliable millisecond resolution. It uses standard MIDI devices for input and output and is particularly flexible in the area of auditory feedback manipulation. FTAP can run a wide variety of experiments, including synchronization/continuation tasks (Wing & Kristofferson, 1973), synchronization tasks combined with delayed auditory feedback (Aschersleben & Prinz, 1997), continuation tasks with isolated feedback perturbations (Wing, 1977), and complex alterations of feedback in music performance (Finney, 1997). Such experiments have often been implemented with custom hardware and software systems, but with FTAP they can be specified by a simple ASCII text parameter file. FTAP is available at no cost in source-code form.
A Graph Based Backtracking Algorithm for Solving General CSPs
NASA Technical Reports Server (NTRS)
Pang, Wanlin; Goodwin, Scott D.
2003-01-01
Many AI tasks can be formalized as constraint satisfaction problems (CSPs), which involve finding values for variables subject to constraints. While solving a CSP is an NP-complete task in general, tractable classes of CSPs have been identified based on the structure of the underlying constraint graphs. Much effort has been spent on exploiting structural properties of the constraint graph to improve the efficiency of finding a solution. These efforts contributed to development of a class of CSP solving algorithms called decomposition algorithms. The strength of CSP decomposition is that its worst-case complexity depends on the structural properties of the constraint graph and is usually better than the worst-case complexity of search methods. Its practical application is limited, however, since it cannot be applied if the CSP is not decomposable. In this paper, we propose a graph based backtracking algorithm called omega-CDBT, which shares merits and overcomes the weaknesses of both decomposition and search approaches.
ERIC Educational Resources Information Center
Bueno Alastuey, M. C.
2011-01-01
This study explored the benefits and drawbacks of synchronous voice-based computer-mediated communication (CMC) in a blended course of English for specific purposes. Quantitative and qualitative data from two groups following the same syllabus, except for the oral component, were compared. Oral tasks were carried out face-to-face with same L1…
Synchronization of spontaneous eyeblinks while viewing video stories
Nakano, Tamami; Yamamoto, Yoshiharu; Kitajo, Keiichi; Takahashi, Toshimitsu; Kitazawa, Shigeru
2009-01-01
Blinks are generally suppressed during a task that requires visual attention and tend to occur immediately before or after the task when the timing of its onset and offset are explicitly given. During the viewing of video stories, blinks are expected to occur at explicit breaks such as scene changes. However, given that the scene length is unpredictable, there should also be appropriate timing for blinking within a scene to prevent temporal loss of critical visual information. Here, we show that spontaneous blinks were highly synchronized between and within subjects when they viewed the same short video stories, but were not explicitly tied to the scene breaks. Synchronized blinks occurred during scenes that required less attention such as at the conclusion of an action, during the absence of the main character, during a long shot and during repeated presentations of a similar scene. In contrast, blink synchronization was not observed when subjects viewed a background video or when they listened to a story read aloud. The results suggest that humans share a mechanism for controlling the timing of blinks that searches for an implicit timing that is appropriate to minimize the chance of losing critical information while viewing a stream of visual events. PMID:19640888
An involuntary stereotypical grasp tendency pervades voluntary dynamic multifinger manipulation
Rácz, Kornelius; Brown, Daniel
2012-01-01
We used a novel apparatus with three hinged finger pads to characterize collaborative multifinger interactions during dynamic manipulation requiring individuated control of fingertip motions and forces. Subjects placed the thumb, index, and middle fingertips on each hinged finger pad and held it—unsupported—with constant total grasp force while voluntarily oscillating the thumb's pad. This task combines the need to 1) hold the object against gravity while 2) dynamically reconfiguring the grasp. Fingertip force variability in this combined motion and force task exhibited strong synchrony among normal (i.e., grasp) forces. Mechanical analysis and simulation show that such synchronous variability is unnecessary and cannot be explained solely by signal-dependent noise. Surprisingly, such variability also pervaded control tasks requiring different individuated fingertip motions and forces, but not tasks without finger individuation such as static grasp. These results critically extend notions of finger force variability by exposing and quantifying a pervasive challenge to dynamic multifinger manipulation: the need for the neural controller to carefully and continuously overlay individuated finger actions over mechanically unnecessary synchronous interactions. This is compatible with—and may explain—the phenomenology of strong coupling of hand muscles when this delicate balance is not yet developed, as in early childhood, or when disrupted, as in brain injury. We conclude that the control of healthy multifinger dynamic manipulation has barely enough neuromechanical degrees of freedom to meet the multiple demands of ecological tasks and critically depends on the continuous inhibition of synchronous grasp tendencies, which we speculate may be of vestigial evolutionary origin. PMID:22956798
Polar synchrony and the climatic history of Antarctica deduced from Greenland's
NASA Astrophysics Data System (ADS)
Oh, J.; Rial, J. A.; Reischmann, E.
2012-12-01
Polar synchronization brings new insights into the dynamic processes that link Greenland's Dansgaard-Oeschger (DO) abrupt temperature fluctuations to Antarctic temperature variability. The term synchronization as used here describes how two or more coupled nonlinear oscillators adjust their (initially different) natural rhythms to a common frequency and constant relative phase. It is shown that, consistent with the presence of polar synchronization, the time series of the most representative abrupt climate events of the last glaciation recorded in Greenland and Antarctica can be transformed into one another by a pi/2 phase shift at millennial scale, with Antarctica temperature variations leading Greenland's. For this study we employ Van der Pol Synchronizing Oscillators model to simulate Antarctic temperature proxy based on the synchronized relationship between two poles for the last 800ky after removing ~100ky glaciation cycles. The separated long period (~100ky) signal is reproduced by frequency modulation. As separation techniques, Singular Spectrum Analysis and Empirical Mode Decomposition are adopted and decomposed long period signals are compared with them from linear filter. It is shown that remarkable close simulations of Antarctic temperature proxy are obtained with a model consisting of a few nonlinear differential equations especially when coupling terms have strong effects. This, plus the close reproduction of glaciation cycles by frequency modulation suggests the intriguing possibility that there are simple rules governing the complex behavior of global paleoclimate such as heat and mass transfer through the intervening ocean and atmosphere.
ERIC Educational Resources Information Center
Hsu, Hsiu-Chen
2017-01-01
This study explored the effect of two planning conditions [the simultaneous use of rehearsal and careful online planning (ROP), and the careful online planning alone (OP)] on L2 production complexity and accuracy and the subsequent development of these two linguistic areas in the context of text-based synchronous computer-mediated communication.…
Unified Behavior Framework for Reactive Robot Control in Real-Time Systems
2007-03-01
maintain coherent operation in concurrent programs by employing standard communication and synchronization patterns. Some typical ones are: semaphores ...through the semaphore . Signals, whether persistent or transient, are used to communicate between threads as a means of synchronizing their progress...tasks to be decomposed into collections of low-level primitive behaviors, Figure 2.b. This approach takes on the self- contradictory term, reactive
Advanced Software Quality Assurance
1977-03-01
Lamsweerde, "On an Extension of Dijkstra’s Semaphore Primitives ," Information Processing Letters, 1, North Holland Publishing Co., New York, October...definitions of the allowed operations, and synchronize cooperating tasks through Delay and Continue operations. ) 152 We will now give an example...that the monitor has been successful in solving the problem of exclusive access to the search return data set and at the same time has synchronized
Zhai, Di-Hua; Xia, Yuanqing
2018-02-01
This paper addresses the adaptive control for task-space teleoperation systems with constrained predefined synchronization error, where a novel switched control framework is investigated. Based on multiple Lyapunov-Krasovskii functionals method, the stability of the resulting closed-loop system is established in the sense of state-independent input-to-output stability. Compared with previous work, the developed method can simultaneously handle the unknown kinematics/dynamics, asymmetric varying time delays, and prescribed performance control in a unified framework. It is shown that the developed controller can guarantee the prescribed transient-state and steady-state synchronization performances between the master and slave robots, which is demonstrated by the simulation study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chrisochoides, N.; Sukup, F.
In this paper we present a parallel implementation of the Bowyer-Watson (BW) algorithm using the task-parallel programming model. The BW algorithm constitutes an ideal mesh refinement strategy for implementing a large class of unstructured mesh generation techniques on both sequential and parallel computers, by preventing the need for global mesh refinement. Its implementation on distributed memory multicomputes using the traditional data-parallel model has been proven very inefficient due to excessive synchronization needed among processors. In this paper we demonstrate that with the task-parallel model we can tolerate synchronization costs inherent to data-parallel methods by exploring concurrency in the processor level.more » Our preliminary performance data indicate that the task- parallel approach: (i) is almost four times faster than the existing data-parallel methods, (ii) scales linearly, and (iii) introduces minimum overheads compared to the {open_quotes}best{close_quotes} sequential implementation of the BW algorithm.« less
The 3-Second Rule in Hereditary Pure Cerebellar Ataxia: A Synchronized Tapping Study
Matsuda, Shunichi; Matsumoto, Hideyuki; Furubayashi, Toshiaki; Hanajima, Ritsuko; Tsuji, Shoji; Ugawa, Yoshikazu; Terao, Yasuo
2015-01-01
The ‘3-second rule’ has been proposed based on miscellaneous observations that a time period of around 3 seconds constitutes the fundamental unit of time related to the neuro-cognitive machinery in normal humans. The aim of paper was to investigate the temporal processing in patients with spinocerebellar ataxia type 6 (SCA6) and SCA31, pure cerebellar types of spinocerebellar degeneration, using a synchronized tapping task. Seventeen SCA patients (11 SCA6, 6 SCA31) and 17 normal age-matched volunteers participated. The task required subjects to tap a keyboard in synchrony with sequences of auditory stimuli presented at fixed interstimulus intervals (ISIs) between 200 and 4800 ms. In this task, the subjects required non-motor components to estimate the time of forthcoming tone in addition to motor components to tap. Normal subjects synchronized their taps to the presented tones at shorter ISIs, whereas as the ISI became longer, the normal subjects displayed greater latency between the tone and the tapping (transition zone). After the transition zone, normal subjects pressed the button delayed relative to the tone. On the other hand, SCA patients could not synchronize their tapping with the tone even at shorter ISIs, although they pressed the button delayed relative to the tone earlier than normal subjects did. The earliest time of delayed tapping appearance after the transition zone was 4800 ms in normal subjects but 1800 ms in SCA patients. The span of temporal integration in SCA patients is shortened compared to that in normal subjects. This could represent non-motor cerebellar dysfunction in SCA patients. PMID:25706752
Extended FDD-WT method based on correcting the errors due to non-synchronous sensing of sensors
NASA Astrophysics Data System (ADS)
Tarinejad, Reza; Damadipour, Majid
2016-05-01
In this research, a combinational non-parametric method called frequency domain decomposition-wavelet transform (FDD-WT) that was recently presented by the authors, is extended for correction of the errors resulting from asynchronous sensing of sensors, in order to extend the application of the algorithm for different kinds of structures, especially for huge structures. Therefore, the analysis process is based on time-frequency domain decomposition and is performed with emphasis on correcting time delays between sensors. Time delay estimation (TDE) methods are investigated for their efficiency and accuracy for noisy environmental records and the Phase Transform - β (PHAT-β) technique was selected as an appropriate method to modify the operation of traditional FDD-WT in order to achieve the exact results. In this paper, a theoretical example (3DOF system) has been provided in order to indicate the non-synchronous sensing effects of the sensors on the modal parameters; moreover, the Pacoima dam subjected to 13 Jan 2001 earthquake excitation was selected as a case study. The modal parameters of the dam obtained from the extended FDD-WT method were compared with the output of the classical signal processing method, which is referred to as 4-Spectral method, as well as other literatures relating to the dynamic characteristics of Pacoima dam. The results comparison indicates that values are correct and reliable.
A discrete structure of the brain waves.
NASA Astrophysics Data System (ADS)
Dabaghian, Yuri; Perotti, Luca; oscillons in biological rhythms Collaboration; physics of biological rhythms Team
A physiological interpretation of the biological rhythms, e.g., of the local field potentials (LFP) depends on the mathematical approaches used for the analysis. Most existing mathematical methods are based on decomposing the signal into a set of ``primitives,'' e.g., sinusoidal harmonics, and correlating them with different cognitive and behavioral phenomena. A common feature of all these methods is that the decomposition semantics is presumed from the onset, and the goal of the subsequent analysis reduces merely to identifying the combination that best reproduces the original signal. We propose a fundamentally new method in which the decomposition components are discovered empirically, and demonstrate that it is more flexible and more sensitive to the signal's structure than the standard Fourier method. Applying this method to the rodent LFP signals reveals a fundamentally new structure of these ``brain waves.'' In particular, our results suggest that the LFP oscillations consist of a superposition of a small, discrete set of frequency modulated oscillatory processes, which we call ``oscillons''. Since these structures are discovered empirically, we hypothesize that they may capture the signal's actual physical structure, i.e., the pattern of synchronous activity in neuronal ensembles. Proving this hypothesis will help to advance our principal understanding of the neuronal synchronization mechanisms and reveal new structure within the LFPs and other biological oscillations. NSF 1422438 Grant, Houston Bioinformatics Endowment Fund.
Market-Based Coordination and Auditing Mechanisms for Self-Interested Multi-Robot Systems
ERIC Educational Resources Information Center
Ham, MyungJoo
2009-01-01
We propose market-based coordinated task allocation mechanisms, which allocate complex tasks that require synchronized and collaborated services of multiple robot agents to robot agents, and an auditing mechanism, which ensures proper behaviors of robot agents by verifying inter-agent activities, for self-interested, fully-distributed, and…
Instructional Uses of Instant Messaging (IM) during Classroom Lectures
ERIC Educational Resources Information Center
Kinzie, Mable B.; Whitaker, Stephen D.; Hofer, Mark J.
2005-01-01
Can "Information Age" learners effectively multi-task in the classroom? Can synchronous classroom activities be designed around conceptually related tasks, to encourage deeper processing and greater learning of classroom content? This research was undertaken to begin to address these questions. In this study, we explored the use of…
Does Learning a Complex Task Have To Be Complex?: A Study in Learning Decomposition.
ERIC Educational Resources Information Center
Lee, Frank J.; Anderson, John R.
2001-01-01
Decomposed the learning in the Kanfer-Ackerman Air-Traffic Controller Task (P. Ackerman, 1988) down to learning at the keyboard level. Reanalyzed the Ackerman data to show that learning in this complex task reflects learning at the keystroke level. Conducted an eye-tracking experiment with 10 adults that showed that learning at the key stroke…
Wang, Chenbo; Oyserman, Daphna; Liu, Qiang; Li, Hong; Han, Shihui
2013-01-01
Self-construal priming modulates human behavior and associated neural activity. However, the neural activity associated with the self-construal priming procedure itself remains unknown. It is also unclear whether and how self-construal priming affects neural activity prior to engaging in a particular task. To address this gap, we scanned Chinese adults, using functional magnetic resonance imaging, during self-construal priming and a following resting state. We found that, relative to a calculation task, both interdependent and independent self-construal priming activated the ventral medial prefrontal cortex (MPFC) and the posterior cingulate cortex (PCC). The contrast of interdependent vs. independent self-construal priming also revealed increased activity in the dorsal MPFC and left middle frontal cortex. The regional homogeneity analysis of the resting-state activity revealed increased local synchronization of spontaneous activity in the dorsal MPFC but decreased local synchronization of spontaneous activity in the PCC when contrasting interdependent vs. independent self-construal priming. The functional connectivity analysis of the resting-state activity, however, did not show significant difference in synchronization of activities in remote brain regions between different priming conditions. Our findings suggest that accessible collectivistic/individualistic mind-set induced by self-construal priming is associated with modulations of both task-related and resting-state activity in the default mode network.
Frontal theta activation during motor synchronization in autism.
Kawasaki, Masahiro; Kitajo, Keiichi; Fukao, Kenjiro; Murai, Toshiya; Yamaguchi, Yoko; Funabiki, Yasuko
2017-11-08
Autism is characterized by two primary characteristics: deficits in social interaction and repetitive behavioral patterns. Because interpersonal communication is extremely complicated, its underlying brain mechanisms remain unclear. Here we showed that both characteristics can be explained by a unifying underlying mechanism related to difficulties with irregularities. To address the issues, we measured electroencephalographm during a cooperative tapping task, which required participants to tap a key alternately and synchronously with constant rhythmic a PC program, a variable rhythmic PC program, or a human partner. We found that people with autism had great difficulty synchronizing tapping behavior with others, and exhibited greater than normal theta-wave (6 Hz) activity in the frontal cortex during the task, especially when their partner behaved somewhat irregularly (i.e. a variable rhythmic PC program or a human partner). Importantly, the higher theta-wave activity was related to the severity of autism, not the performance on the task. This indicates that people with autism need to use intense cognition when trying to adapt to irregular behavior and can easily become overtaxed. Difficulty adapting to irregular behavior in others is likely related to their own tendencies for repetitive and regular behaviors. Thus, while the two characteristics of autism have been comprehended separately, our unifying theory makes understanding the condition and developing therapeutic strategies more tractable.
Doesburg, Sam M; Ribary, Urs; Herdman, Anthony T; Miller, Steven P; Poskitt, Kenneth J; Moiseev, Alexander; Whitfield, Michael F; Synnes, Anne; Grunau, Ruth E
2011-02-01
Children born very preterm, even when intelligence is broadly normal, often experience selective difficulties in executive function and visual-spatial processing. Development of structural cortical connectivity is known to be altered in this group, and functional magnetic resonance imaging (fMRI) evidence indicates that very preterm children recruit different patterns of functional connectivity between cortical regions during cognition. Synchronization of neural oscillations across brain areas has been proposed as a mechanism for dynamically assigning functional coupling to support perceptual and cognitive processing, but little is known about what role oscillatory synchronization may play in the altered neurocognitive development of very preterm children. To investigate this, we recorded magnetoencephalographic (MEG) activity while 7-8 year old children born very preterm and age-matched full-term controls performed a visual short-term memory task. Very preterm children exhibited reduced long-range synchronization in the alpha-band during visual short-term memory retention, indicating that cortical alpha rhythms may play a critical role in altered patterns functional connectivity expressed by this population during cognitive and perceptual processing. Long-range alpha-band synchronization was also correlated with task performance and visual-perceptual ability within the very preterm group, indicating that altered alpha oscillatory mechanisms mediating transient functional integration between cortical regions may be relevant to selective problems in neurocognitive development in this vulnerable population at school age. Copyright © 2010 Elsevier Inc. All rights reserved.
Finding the beat: a neural perspective across humans and non-human primates.
Merchant, Hugo; Grahn, Jessica; Trainor, Laurel; Rohrmeier, Martin; Fitch, W Tecumseh
2015-03-19
Humans possess an ability to perceive and synchronize movements to the beat in music ('beat perception and synchronization'), and recent neuroscientific data have offered new insights into this beat-finding capacity at multiple neural levels. Here, we review and compare behavioural and neural data on temporal and sequential processing during beat perception and entrainment tasks in macaques (including direct neural recording and local field potential (LFP)) and humans (including fMRI, EEG and MEG). These abilities rest upon a distributed set of circuits that include the motor cortico-basal-ganglia-thalamo-cortical (mCBGT) circuit, where the supplementary motor cortex (SMA) and the putamen are critical cortical and subcortical nodes, respectively. In addition, a cortical loop between motor and auditory areas, connected through delta and beta oscillatory activity, is deeply involved in these behaviours, with motor regions providing the predictive timing needed for the perception of, and entrainment to, musical rhythms. The neural discharge rate and the LFP oscillatory activity in the gamma- and beta-bands in the putamen and SMA of monkeys are tuned to the duration of intervals produced during a beat synchronization-continuation task (SCT). Hence, the tempo during beat synchronization is represented by different interval-tuned cells that are activated depending on the produced interval. In addition, cells in these areas are tuned to the serial-order elements of the SCT. Thus, the underpinnings of beat synchronization are intrinsically linked to the dynamics of cell populations tuned for duration and serial order throughout the mCBGT. We suggest that a cross-species comparison of behaviours and the neural circuits supporting them sets the stage for a new generation of neurally grounded computational models for beat perception and synchronization. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Research on air and missile defense task allocation based on extended contract net protocol
NASA Astrophysics Data System (ADS)
Zhang, Yunzhi; Wang, Gang
2017-10-01
Based on the background of air and missile defense distributed element corporative engagement, the interception task allocation problem of multiple weapon units with multiple targets under network condition is analyzed. Firstly, a mathematical model of task allocation is established by combat task decomposition. Secondly, the initialization assignment based on auction contract and the adjustment allocation scheme based on swap contract were introduced to the task allocation. Finally, through the simulation calculation of typical situation, the model can be used to solve the task allocation problem in complex combat environment.
Gender and autistic traits modulate implicit motor synchrony
Cheng, Miao; Kato, Masaharu
2017-01-01
Interpersonal motor synchrony during walking or dancing is universally observed across cultures, and this joint movement was modulated by physical and social parameters. However, human interactions are greatly shaped by our unique traits, and self-related factors are surprisingly little studied in the context of interpersonal motor synchrony. In this study, we investigated two such factors known to be highly associated with motor coordination: gender and autistic traits. We employed a real-world task extending our understanding beyond laboratory tasks. Participants of the same gender were paired up to walk and chat in a natural environment. A cover story was introduced so that participants would not know their walking steps were being recorded and instead believed that their location was being tracked by a global positioning system (GPS), so they would ignore the motor recording. We found that the female pairs’ steps were more synchronized than those of the males, and higher autistic tendencies (measured by the autism-spectrum quotient) attenuated synchronous steps. Those who synchronized better had higher impression rating increase for their walking partners (measured by interpersonal judgement scale) than those who synchronized less well. Our results indicated that the participants’ joint movements were shaped by predisposed traits and might share similar mechanism with social functions such as empathy. PMID:28873419
Hierarchical organization of brain functional networks during visual tasks.
Zhuo, Zhao; Cai, Shi-Min; Fu, Zhong-Qian; Zhang, Jie
2011-09-01
The functional network of the brain is known to demonstrate modular structure over different hierarchical scales. In this paper, we systematically investigated the hierarchical modular organizations of the brain functional networks that are derived from the extent of phase synchronization among high-resolution EEG time series during a visual task. In particular, we compare the modular structure of the functional network from EEG channels with that of the anatomical parcellation of the brain cortex. Our results show that the modular architectures of brain functional networks correspond well to those from the anatomical structures over different levels of hierarchy. Most importantly, we find that the consistency between the modular structures of the functional network and the anatomical network becomes more pronounced in terms of vision, sensory, vision-temporal, motor cortices during the visual task, which implies that the strong modularity in these areas forms the functional basis for the visual task. The structure-function relationship further reveals that the phase synchronization of EEG time series in the same anatomical group is much stronger than that of EEG time series from different anatomical groups during the task and that the hierarchical organization of functional brain network may be a consequence of functional segmentation of the brain cortex.
Cooperative Learning and Interpersonal Synchrony.
Vink, Roy; Wijnants, Maarten L; Cillessen, Antonius H N; Bosman, Anna M T
2017-04-01
Cooperative learning has been shown to result in better task performance, compared to individual and competitive learning, and can lead to positive social effects. However, potential working mechanisms at a micro level remain unexplored. One potential working mechanism might be the level of interpersonal synchrony between cooperating individuals. It has been shown that increased levels of interpersonal synchrony are related to better cognitive performance (e.g., increased memory). Social factors also appear to be affected by the level of interpersonal synchrony, with more interpersonal synchrony leading to increased likeability. In the present study, interpersonal synchrony of postural sway and its relation to task performance and social factors (i.e., popularity, social acceptance, and likeability) was examined. To test this, 183 dyads performed a tangram task while each child stood on a Nintendo Wii Balance Board that recorded their postural sway. The results showed that lower levels of interpersonal synchrony were related to better task performance and those dyads who were on average more popular synchronized more. These results contradict previous findings. It is suggested that for task performance, a more loosely coupled system is better than a synchronized system. In terms of social competence, dyad popularity was associated with more interpersonal synchrony.
Designing torus-doubling solutions to discrete time systems by hybrid projective synchronization
NASA Astrophysics Data System (ADS)
Xie, Hui; Wen, Guilin
2013-11-01
Doubling of torus occurs in high dimensional nonlinear systems, which is related to a certain kind of typical second bifurcations. It is a nontrivial task to create a torus-doubling solution with desired dynamical properties based on the classical bifurcation theories. In this paper, dead-beat hybrid projective synchronization is employed to build a novel method for designing stable torus-doubling solutions into discrete time systems with proper properties to achieve the purpose of utilizing bifurcation solutions as well as avoiding the possible conflict of physical meaning of the created solution. Although anti-controls of bifurcation and chaos synchronizations are two different topics in nonlinear dynamics and control, the results imply that it is possible to develop some new interdisciplinary methods between chaos synchronization and anti-controls of bifurcations.
ERIC Educational Resources Information Center
Xu, Chang; LeFevre, Jo-Anne
2016-01-01
Are there differential benefits of training sequential number knowledge versus spatial skills for children's numerical and spatial performance? Three- to five-year-old children (N = 84) participated in 1 session of either sequential training (e.g., what comes before and after the number 5?) or non-numerical spatial training (i.e., decomposition of…
[Detection of constitutional types of EEG using the orthogonal decomposition method].
Kuznetsova, S M; Kudritskaia, O V
1987-01-01
The authors present an algorithm of investigation into the processes of brain bioelectrical activity with the help of an orthogonal decomposition device intended for the identification of constitutional types of EEGs. The method has helped to effectively solve the task of the diagnosis of constitutional types of EEGs, which are determined by a variable degree of hereditary predisposition for longevity or cerebral stroke.
Huang, Yulin; Zha, Yuebo; Wang, Yue; Yang, Jianyu
2015-06-18
The forward looking radar imaging task is a practical and challenging problem for adverse weather aircraft landing industry. Deconvolution method can realize the forward looking imaging but it often leads to the noise amplification in the radar image. In this paper, a forward looking radar imaging based on deconvolution method is presented for adverse weather aircraft landing. We first present the theoretical background of forward looking radar imaging task and its application for aircraft landing. Then, we convert the forward looking radar imaging task into a corresponding deconvolution problem, which is solved in the framework of algebraic theory using truncated singular decomposition method. The key issue regarding the selecting of the truncated parameter is addressed using generalized cross validation approach. Simulation and experimental results demonstrate that the proposed method is effective in achieving angular resolution enhancement with suppressing the noise amplification in forward looking radar imaging.
A Bayesian hierarchical diffusion model decomposition of performance in Approach–Avoidance Tasks
Krypotos, Angelos-Miltiadis; Beckers, Tom; Kindt, Merel; Wagenmakers, Eric-Jan
2015-01-01
Common methods for analysing response time (RT) tasks, frequently used across different disciplines of psychology, suffer from a number of limitations such as the failure to directly measure the underlying latent processes of interest and the inability to take into account the uncertainty associated with each individual's point estimate of performance. Here, we discuss a Bayesian hierarchical diffusion model and apply it to RT data. This model allows researchers to decompose performance into meaningful psychological processes and to account optimally for individual differences and commonalities, even with relatively sparse data. We highlight the advantages of the Bayesian hierarchical diffusion model decomposition by applying it to performance on Approach–Avoidance Tasks, widely used in the emotion and psychopathology literature. Model fits for two experimental data-sets demonstrate that the model performs well. The Bayesian hierarchical diffusion model overcomes important limitations of current analysis procedures and provides deeper insight in latent psychological processes of interest. PMID:25491372
Effect of Modality and Task Type on Interlanguage Variation
ERIC Educational Resources Information Center
Kim, Hye Yeong
2017-01-01
An essential component for assessing the accuracy and fluency of language learners is understanding how mode of communication and task type affect performance in second-language (L2) acquisition. This study investigates how text-based synchronous computer-mediated communication (SCMC) and face-to-face (F2F) oral interaction can influence the…
Task Virtuality and Its Effect on Student Project Team Effectiveness
ERIC Educational Resources Information Center
Pineda, Rodley C.
2015-01-01
This study explores the extent to which students in colocated teams use synchronous and asynchronous computer-mediated communication channels (task virtuality) and how this use affects their perceptions of the team's performance, their satisfaction with the team, and the learning they derive from the process. Survey results show that different…
Oral Computer-Mediated Interaction between L2 Learners: It's about Time!
ERIC Educational Resources Information Center
Yanguas, Inigo
2010-01-01
This study explores task-based, synchronous oral computer-mediated communication (CMC) among intermediate-level learners of Spanish. In particular, this paper examines (a) how learners in video and audio CMC groups negotiate for meaning during task-based interaction, (b) possible differences between both oral CMC modes and traditional face-to-face…
Mild traumatic brain injury: graph-model characterization of brain networks for episodic memory.
Tsirka, Vasso; Simos, Panagiotis G; Vakis, Antonios; Kanatsouli, Kassiani; Vourkas, Michael; Erimaki, Sofia; Pachou, Ellie; Stam, Cornelis Jan; Micheloyannis, Sifis
2011-02-01
Episodic memory is among the cognitive functions that can be affected in the acute phase following mild traumatic brain injury (MTBI). The present study used EEG recordings to evaluate global synchronization and network organization of rhythmic activity during the encoding and recognition phases of an episodic memory task varying in stimulus type (kaleidoscope images, pictures, words, and pseudowords). Synchronization of oscillatory activity was assessed using a linear and nonlinear connectivity estimator and network analyses were performed using algorithms derived from graph theory. Twenty five MTBI patients (tested within days post-injury) and healthy volunteers were closely matched on demographic variables, verbal ability, psychological status variables, as well as on overall task performance. Patients demonstrated sub-optimal network organization, as reflected by changes in graph parameters in the theta and alpha bands during both encoding and recognition. There were no group differences in spectral energy during task performance or on network parameters during a control condition (rest). Evidence of less optimally organized functional networks during memory tasks was more prominent for pictorial than for verbal stimuli. Copyright © 2010 Elsevier B.V. All rights reserved.
Assessment of a cooperative workstation.
Beuscart, R. J.; Molenda, S.; Souf, N.; Foucher, C.; Beuscart-Zephir, M. C.
1996-01-01
Groupware and new Information Technologies have now made it possible for people in different places to work together in synchronous cooperation. Very often, designers of this new type of software are not provided with a model of the common workspace, which is prejudicial to software development and its acceptance by potential users. The authors take the example of a task of medical co-diagnosis, using a multi-media communication workstation. Synchronous cooperative work is made possible by using local ETHERNET or public ISDN Networks. A detailed ergonomic task analysis studies the cognitive functioning of the physicians involved, compares their behaviour in the normal and the mediatized situations, and leads to an interpretation of the likely causes for success or failure of CSCW tools. PMID:8947764
Tommasin, Silvia; Mascali, Daniele; Moraschi, Marta; Gili, Tommaso; Assan, Ibrahim Eid; Fratini, Michela; DiNuzzo, Mauro; Wise, Richard G; Mangia, Silvia; Macaluso, Emiliano; Giove, Federico
2018-06-14
Brain activity at rest is characterized by widely distributed and spatially specific patterns of synchronized low-frequency blood-oxygenation level-dependent (BOLD) fluctuations, which correspond to physiologically relevant brain networks. This network behaviour is known to persist also during task execution, yet the details underlying task-associated modulations of within- and between-network connectivity are largely unknown. In this study we exploited a multi-parametric and multi-scale approach to investigate how low-frequency fluctuations adapt to a sustained n-back working memory task. We found that the transition from the resting state to the task state involves a behaviourally relevant and scale-invariant modulation of synchronization patterns within both task-positive and default mode networks. Specifically, decreases of connectivity within networks are accompanied by increases of connectivity between networks. In spite of large and widespread changes of connectivity strength, the overall topology of brain networks is remarkably preserved. We show that these findings are strongly influenced by connectivity at rest, suggesting that the absolute change of connectivity (i.e., disregarding the baseline) may be not the most suitable metric to study dynamic modulations of functional connectivity. Our results indicate that a task can evoke scale-invariant, distributed changes of BOLD fluctuations, further confirming that low frequency BOLD oscillations show a specialized response and are tightly bound to task-evoked activation. Copyright © 2018. Published by Elsevier Inc.
Bailey, Jennifer A; Penhune, Virginia B
2013-01-01
A sensitive period associated with musical training has been proposed, suggesting the influence of musical training on the brain and behavior is strongest during the early years of childhood. Experiments from our laboratory have directly tested the sensitive period hypothesis for musical training by comparing musicians who began their training prior to age seven with those who began their training after age seven, while matching the two groups in terms of musical experience (Watanabe et al., 2007; Bailey and Penhune, 2010, 2012). Using this matching paradigm, the early-trained groups have demonstrated enhanced sensorimotor synchronization skills and associated differences in brain structure (Bailey et al., 2013; Steele et al., 2013). The current study takes a different approach to investigating the sensitive period hypothesis for musical training by examining a single large group of unmatched musicians (N = 77) and exploring the relationship between age of onset of musical training as a continuous variable and performance on the Rhythm Synchronization Task (RST), a previously used auditory-motor RST. Interestingly, age of onset was correlated with task performance for those who began training earlier, however, no such relationship was observed among those who began training in their later childhood years. In addition, years of formal training showed a similar pattern. However, individual working memory scores were predictive of task performance, regardless of age of onset of musical training. Overall, these results support the sensitive period hypothesis for musical training and suggest a non-linear relationship between age of onset of musical training and auditory-motor rhythm synchronization abilities, such that a relationship exists early in childhood but then plateaus later on in development, similar to maturational growth trajectories of brain regions implicated in playing music.
Matias, Fernanda S.; Carelli, Pedro V.; Mirasso, Claudio R.; Copelli, Mauro
2015-01-01
Several cognitive tasks related to learning and memory exhibit synchronization of macroscopic cortical areas together with synaptic plasticity at neuronal level. Therefore, there is a growing effort among computational neuroscientists to understand the underlying mechanisms relating synchrony and plasticity in the brain. Here we numerically study the interplay between spike-timing dependent plasticity (STDP) and anticipated synchronization (AS). AS emerges when a dominant flux of information from one area to another is accompanied by a negative time lag (or phase). This means that the receiver region pulses before the sender does. In this paper we study the interplay between different synchronization regimes and STDP at the level of three-neuron microcircuits as well as cortical populations. We show that STDP can promote auto-organized zero-lag synchronization in unidirectionally coupled neuronal populations. We also find synchronization regimes with negative phase difference (AS) that are stable against plasticity. Finally, we show that the interplay between negative phase difference and STDP provides limited synaptic weight distribution without the need of imposing artificial boundaries. PMID:26474165
The effect of binaural beats on verbal working memory and cortical connectivity.
Beauchene, Christine; Abaid, Nicole; Moran, Rosalyn; Diana, Rachel A; Leonessa, Alexander
2017-04-01
Synchronization in activated regions of cortical networks affect the brain's frequency response, which has been associated with a wide range of states and abilities, including memory. A non-invasive method for manipulating cortical synchronization is binaural beats. Binaural beats take advantage of the brain's response to two pure tones, delivered independently to each ear, when those tones have a small frequency mismatch. The mismatch between the tones is interpreted as a beat frequency, which may act to synchronize cortical oscillations. Neural synchrony is particularly important for working memory processes, the system controlling online organization and retention of information for successful goal-directed behavior. Therefore, manipulation of synchrony via binaural beats provides a unique window into working memory and associated connectivity of cortical networks. In this study, we examined the effects of different acoustic stimulation conditions during an N-back working memory task, and we measured participant response accuracy and cortical network topology via EEG recordings. Six acoustic stimulation conditions were used: None, Pure Tone, Classical Music, 5 Hz binaural beats, 10 Hz binaural beats, and 15 Hz binaural beats. We determined that listening to 15 Hz binaural beats during an N-Back working memory task increased the individual participant's accuracy, modulated the cortical frequency response, and changed the cortical network connection strengths during the task. Only the 15 Hz binaural beats produced significant change in relative accuracy compared to the None condition. Listening to 15 Hz binaural beats during the N-back task activated salient frequency bands and produced networks characterized by higher information transfer as compared to other auditory stimulation conditions.
Reducing Response Time Bounds for DAG-Based Task Systems on Heterogeneous Multicore Platforms
2016-01-01
synchronous parallel tasks on multicore platforms. In 25th ECRTS, 2013. [10] U. Devi. Soft Real - Time Scheduling on Multiprocessors. PhD thesis...report, Washington University in St Louis, 2014. [18] C. Liu and J. Anderson. Supporting soft real - time DAG-based sys- tems on multiprocessors with...analysis for DAG-based real - time task systems im- plemented on heterogeneous multicore platforms. The spe- cific analysis problem that is considered was
NASA Astrophysics Data System (ADS)
Hu, Hwai-Tsu; Chou, Hsien-Hsin; Yu, Chu; Hsu, Ling-Yuan
2014-12-01
This paper presents a novel approach for blind audio watermarking. The proposed scheme utilizes the flexibility of discrete wavelet packet transformation (DWPT) to approximate the critical bands and adaptively determines suitable embedding strengths for carrying out quantization index modulation (QIM). The singular value decomposition (SVD) is employed to analyze the matrix formed by the DWPT coefficients and embed watermark bits by manipulating singular values subject to perceptual criteria. To achieve even better performance, two auxiliary enhancement measures are attached to the developed scheme. Performance evaluation and comparison are demonstrated with the presence of common digital signal processing attacks. Experimental results confirm that the combination of the DWPT, SVD, and adaptive QIM achieves imperceptible data hiding with satisfying robustness and payload capacity. Moreover, the inclusion of self-synchronization capability allows the developed watermarking system to withstand time-shifting and cropping attacks.
Temporal prediction abilities are mediated by motor effector and rhythmic expertise.
Manning, Fiona C; Harris, Jennifer; Schutz, Michael
2017-03-01
Motor synchronization is a critical part of musical performance and listening. Recently, motor control research has described how movements that contain more available degrees of freedom are more accurately timed. Previously, we demonstrated that stick tapping improves perception in a timing detection task, where percussionists greatly outperformed non-percussionists only when tapping along. Since most synchronization studies implement finger tapping to examine simple motor synchronization, here we completed a similar task where percussionists and non-percussionists synchronized using finger tapping; movement with fewer degrees of freedom than stick tapping. Percussionists and non-percussionists listened to an isochronous beat sequence and identified the timing of a probe tone. On half of the trials, they tapped along with their index finger, and on the other half of the trials, they listened without moving prior to making timing judgments. We found that both groups benefited from tapping overall. Interestingly, percussionists performed only marginally better than did non-percussionists when finger tapping and no different when listening alone, differing from past studies reporting highly superior timing abilities in percussionists. Additionally, we found that percussionist finger tapping was less variable and less asynchronous than was non-percussionist tapping. Moreover, in both groups finger tapping was more variable and more asynchronous than stick tapping in our previous study. This study demonstrates that the motor effector implemented in tapping studies affects not only synchronization abilities, but also subsequent prediction abilities. We discuss these findings in light of effector-specific training and degrees of freedom in motor timing, both of which impact timing abilities to different extents.
A Critical Interpersonal Distance Switches between Two Coordination Modes in Kendo Matches
Okumura, Motoki; Kijima, Akifumi; Kadota, Koji; Yokoyama, Keiko; Suzuki, Hiroo; Yamamoto, Yuji
2012-01-01
In many competitive sports, players need to quickly and continuously execute movements that co-adapt to various movements executed by their opponents and physical objects. In a martial art such as kendo, players must be able to skillfully change interpersonal distance in order to win. However, very little information about the task and expertise properties of the maneuvers affecting interpersonal distance is available. This study investigated behavioral dynamics underlying opponent tasks by analyzing changes in interpersonal distance made by expert players in kendo matches. Analysis of preferred interpersonal distances indicated that players tended to step toward and away from their opponents based on two distances. The most preferred distance enabled the players to execute both striking and defensive movements immediately. The relative phase analysis of the velocities at which players executed steps toward and away revealed that players developed anti-phase synchronizations at near distances to maintain safe distances from their opponents. Alternatively, players shifted to in-phase synchronization to approach their opponents from far distances. This abrupt phase-transition phenomenon constitutes a characteristic bifurcation dynamics that regularly and instantaneously occurs between in- and anti-phase synchronizations at a critical interpersonal distance. These dynamics are profoundly affected by the task constraints of kendo and the physical constraints of the players. Thus, the current study identifies the clear behavioral dynamics that emerge in a sport setting. PMID:23284799
Cascaded systems analysis of noise and detectability in dual-energy cone-beam CT
Gang, Grace J.; Zbijewski, Wojciech; Webster Stayman, J.; Siewerdsen, Jeffrey H.
2012-01-01
Purpose: Dual-energy computed tomography and dual-energy cone-beam computed tomography (DE-CBCT) are promising modalities for applications ranging from vascular to breast, renal, hepatic, and musculoskeletal imaging. Accordingly, the optimization of imaging techniques for such applications would benefit significantly from a general theoretical description of image quality that properly incorporates factors of acquisition, reconstruction, and tissue decomposition in DE tomography. This work reports a cascaded systems analysis model that includes the Poisson statistics of x rays (quantum noise), detector model (flat-panel detectors), anatomical background, image reconstruction (filtered backprojection), DE decomposition (weighted subtraction), and simple observer models to yield a task-based framework for DE technique optimization. Methods: The theoretical framework extends previous modeling of DE projection radiography and CBCT. Signal and noise transfer characteristics are propagated through physical and mathematical stages of image formation and reconstruction. Dual-energy decomposition was modeled according to weighted subtraction of low- and high-energy images to yield the 3D DE noise-power spectrum (NPS) and noise-equivalent quanta (NEQ), which, in combination with observer models and the imaging task, yields the dual-energy detectability index (d′). Model calculations were validated with NPS and NEQ measurements from an experimental imaging bench simulating the geometry of a dedicated musculoskeletal extremities scanner. Imaging techniques, including kVp pair and dose allocation, were optimized using d′ as an objective function for three example imaging tasks: (1) kidney stone discrimination; (2) iodine vs bone in a uniform, soft-tissue background; and (3) soft tissue tumor detection on power-law anatomical background. Results: Theoretical calculations of DE NPS and NEQ demonstrated good agreement with experimental measurements over a broad range of imaging conditions. Optimization results suggest a lower fraction of total dose imparted by the low-energy acquisition, a finding consistent with previous literature. The selection of optimal kVp pair reveals the combined effect of both quantum noise and contrast in the kidney stone discrimination and soft-tissue tumor detection tasks, whereas the K-edge effect of iodine was the dominant factor in determining kVp pairs in the iodine vs bone task. The soft-tissue tumor task illustrated the benefit of dual-energy imaging in eliminating anatomical background noise and improving detectability beyond that achievable by single-energy scans. Conclusions: This work established a task-based theoretical framework that is predictive of DE image quality. The model can be utilized in optimizing a broad range of parameters in image acquisition, reconstruction, and decomposition, providing a useful tool for maximizing DE-CBCT image quality and reducing dose. PMID:22894440
ERIC Educational Resources Information Center
Hoffstaedter, Petra; Kohn, Kurt
2014-01-01
Our contribution focuses on synchronous oral telecollaboration in secondary schools. With reference to the EU project TILA, aspects of task design and implementation are discussed against the backdrop of issues of technological quality in connection with class organisation in computer labs. Case study evidence is provided in favour of the…
BOLDSync: a MATLAB-based toolbox for synchronized stimulus presentation in functional MRI.
Joshi, Jitesh; Saharan, Sumiti; Mandal, Pravat K
2014-02-15
Precise and synchronized presentation of paradigm stimuli in functional magnetic resonance imaging (fMRI) is central to obtaining accurate information about brain regions involved in a specific task. In this manuscript, we present a new MATLAB-based toolbox, BOLDSync, for synchronized stimulus presentation in fMRI. BOLDSync provides a user friendly platform for design and presentation of visual, audio, as well as multimodal audio-visual (AV) stimuli in functional imaging experiments. We present simulation experiments that demonstrate the millisecond synchronization accuracy of BOLDSync, and also illustrate the functionalities of BOLDSync through application to an AV fMRI study. BOLDSync gains an advantage over other available proprietary and open-source toolboxes by offering a user friendly and accessible interface that affords both precision in stimulus presentation and versatility across various types of stimulus designs and system setups. BOLDSync is a reliable, efficient, and versatile solution for synchronized stimulus presentation in fMRI study. Copyright © 2013 Elsevier B.V. All rights reserved.
How to Develop an Engineering Design Task
ERIC Educational Resources Information Center
Dankenbring, Chelsey; Capobianco, Brenda M.; Eichinger, David
2014-01-01
In this article, the authors provide an overview of engineering and the engineering design process, and describe the steps they took to develop a fifth grade-level, standards-based engineering design task titled "Getting the Dirt on Decomposition." Their main goal was to focus more on modeling the discrete steps they took to create and…
Anderson, John R; Bothell, Daniel; Fincham, Jon M; Anderson, Abraham R; Poole, Ben; Qin, Yulin
2011-12-01
Part- and whole-task conditions were created by manipulating the presence of certain components of the Space Fortress video game. A cognitive model was created for two-part games that could be combined into a model that performed the whole game. The model generated predictions both for behavioral patterns and activation patterns in various brain regions. The activation predictions concerned both tonic activation that was constant in these regions during performance of the game and phasic activation that occurred when there was resource competition. The model's predictions were confirmed about how tonic and phasic activation in different regions would vary with condition. These results support the Decomposition Hypothesis that the execution of a complex task can be decomposed into a set of information-processing components and that these components combine unchanged in different task conditions. In addition, individual differences in learning gains were predicted by individual differences in phasic activation in those regions that displayed highest tonic activity. This individual difference pattern suggests that the rate of learning of a complex skill is determined by capacity limits.
Frelat, Romain; Lindegren, Martin; Denker, Tim Spaanheden; Floeter, Jens; Fock, Heino O; Sguotti, Camilla; Stäbler, Moritz; Otto, Saskia A; Möllmann, Christian
2017-01-01
Understanding spatio-temporal dynamics of biotic communities containing large numbers of species is crucial to guide ecosystem management and conservation efforts. However, traditional approaches usually focus on studying community dynamics either in space or in time, often failing to fully account for interlinked spatio-temporal changes. In this study, we demonstrate and promote the use of tensor decomposition for disentangling spatio-temporal community dynamics in long-term monitoring data. Tensor decomposition builds on traditional multivariate statistics (e.g. Principal Component Analysis) but extends it to multiple dimensions. This extension allows for the synchronized study of multiple ecological variables measured repeatedly in time and space. We applied this comprehensive approach to explore the spatio-temporal dynamics of 65 demersal fish species in the North Sea, a marine ecosystem strongly altered by human activities and climate change. Our case study demonstrates how tensor decomposition can successfully (i) characterize the main spatio-temporal patterns and trends in species abundances, (ii) identify sub-communities of species that share similar spatial distribution and temporal dynamics, and (iii) reveal external drivers of change. Our results revealed a strong spatial structure in fish assemblages persistent over time and linked to differences in depth, primary production and seasonality. Furthermore, we simultaneously characterized important temporal distribution changes related to the low frequency temperature variability inherent in the Atlantic Multidecadal Oscillation. Finally, we identified six major sub-communities composed of species sharing similar spatial distribution patterns and temporal dynamics. Our case study demonstrates the application and benefits of using tensor decomposition for studying complex community data sets usually derived from large-scale monitoring programs.
Antzoulatos, Evan G; Miller, Earl K
2016-01-01
Categorization has been associated with distributed networks of the primate brain, including the prefrontal cortex (PFC) and posterior parietal cortex (PPC). Although category-selective spiking in PFC and PPC has been established, the frequency-dependent dynamic interactions of frontoparietal networks are largely unexplored. We trained monkeys to perform a delayed-match-to-spatial-category task while recording spikes and local field potentials from the PFC and PPC with multiple electrodes. We found category-selective beta- and delta-band synchrony between and within the areas. However, in addition to the categories, delta synchrony and spiking activity also reflected irrelevant stimulus dimensions. By contrast, beta synchrony only conveyed information about the task-relevant categories. Further, category-selective PFC neurons were synchronized with PPC beta oscillations, while neurons that carried irrelevant information were not. These results suggest that long-range beta-band synchrony could act as a filter that only supports neural representations of the variables relevant to the task at hand. DOI: http://dx.doi.org/10.7554/eLife.17822.001 PMID:27841747
New evidence favoring multilevel decomposition and optimization
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; Polignone, Debra A.
1990-01-01
The issue of the utility of multilevel decomposition and optimization remains controversial. To date, only the structural optimization community has actively developed and promoted multilevel optimization techniques. However, even this community acknowledges that multilevel optimization is ideally suited for a rather limited set of problems. It is warned that decomposition typically requires eliminating local variables by using global variables and that this in turn causes ill-conditioning of the multilevel optimization by adding equality constraints. The purpose is to suggest a new multilevel optimization technique. This technique uses behavior variables, in addition to design variables and constraints, to decompose the problem. The new technique removes the need for equality constraints, simplifies the decomposition of the design problem, simplifies the programming task, and improves the convergence speed of multilevel optimization compared to conventional optimization.
Endogenous synchronous fluorescence spectroscopy (SFS) of basal cell carcinoma-initial study
NASA Astrophysics Data System (ADS)
Borisova, E.; Zhelyazkova, Al.; Keremedchiev, M.; Penkov, N.; Semyachkina-Glushkovskaya, O.; Avramov, L.
2016-01-01
The human skin is a complex, multilayered and inhomogeneous organ with spatially varying optical properties. Analysis of cutaneous fluorescence spectra could be a very complicated task; therefore researchers apply complex mathematical tools for data evaluation, or try to find some specific approaches, that would simplify the spectral analysis. Synchronous fluorescence spectroscopy (SFS) allows improving the spectral resolution, which could be useful for the biological tissue fluorescence characterization and could increase the tumour detection diagnostic accuracy.
Hoefer, M; Tyll, S; Kanowski, M; Brosch, M; Schoenfeld, M A; Heinze, H-J; Noesselt, T
2013-10-01
Although multisensory integration has been an important area of recent research, most studies focused on audiovisual integration. Importantly, however, the combination of audition and touch can guide our behavior as effectively which we studied here using psychophysics and functional magnetic resonance imaging (fMRI). We tested whether task-irrelevant tactile stimuli would enhance auditory detection, and whether hemispheric asymmetries would modulate these audiotactile benefits using lateralized sounds. Spatially aligned task-irrelevant tactile stimuli could occur either synchronously or asynchronously with the sounds. Auditory detection was enhanced by non-informative synchronous and asynchronous tactile stimuli, if presented on the left side. Elevated fMRI-signals to left-sided synchronous bimodal stimulation were found in primary auditory cortex (A1). Adjacent regions (planum temporale, PT) expressed enhanced BOLD-responses for synchronous and asynchronous left-sided bimodal conditions. Additional connectivity analyses seeded in right-hemispheric A1 and PT for both bimodal conditions showed enhanced connectivity with right-hemispheric thalamic, somatosensory and multisensory areas that scaled with subjects' performance. Our results indicate that functional asymmetries interact with audiotactile interplay which can be observed for left-lateralized stimulation in the right hemisphere. There, audiotactile interplay recruits a functional network of unisensory cortices, and the strength of these functional network connections is directly related to subjects' perceptual sensitivity. Copyright © 2013 Elsevier Inc. All rights reserved.
Repp, Bruno H
2004-10-01
In a task that requires in-phase synchronization of finger taps with an isochronous sequence of target tones that is interleaved with a sequence of distractor tones at various fixed phase relationships, the taps tend to be attracted to the distractor tones, especially when the distractor tones closely precede the target tones [Repp, B. H. (2003a). Phase attraction in sensorimotor synchronization with auditory sequences: Effects of single and periodic distractors on synchronization accuracy. Journal of Experimental Psychology: Human Perception and Performance, 29, 290-309]. The present research addressed two related questions about this distractor effect: (1) Is it a function of the absolute temporal separation or of the relative phase of the two stimulus sequences? (2) Is it the result of perceptual grouping (integration) of target and distractor tones or of simultaneous attraction to two independent sequences? In three experiments, distractor effects were compared across two different sequence rates. The results suggest that absolute temporal separation, not relative phase, is the critical variable. Experiment 3 also included an anti-phase tapping task that addressed the second question directly. The results suggest that the attraction of taps to distractor tones is caused mainly by temporal integration of target and distractor tones within a fixed window of 100-150 ms duration, with the earlier-occurring tone being weighted more strongly than the later-occurring one.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrinan, Thomas; Leigh, Jason; Renambot, Luc
Mixed presence collaboration involves remote collaboration between multiple collocated groups. This paper presents the design and results of a user study that focused on mixed presence collaboration using large-scale tiled display walls. The research was conducted in order to compare data synchronization schemes for multi-user visualization applications. Our study compared three techniques for sharing data between display spaces with varying constraints and affordances. The results provide empirical evidence that using data sharing techniques with continuous synchronization between the sites lead to improved collaboration for a search and analysis task between remotely located groups. We have also identified aspects of synchronizedmore » sessions that result in increased remote collaborator awareness and parallel task coordination. It is believed that this research will lead to better utilization of large-scale tiled display walls for distributed group work.« less
Cooperation in lovers: An fNIRS-based hyperscanning study.
Pan, Yafeng; Cheng, Xiaojun; Zhang, Zhenxin; Li, Xianchun; Hu, Yi
2017-02-01
This study investigated interactive exchange in lovers and the associated interpersonal brain synchronization (IBS) using functional near-infrared spectroscopy (fNIRS)-based hyperscanning. Three types of female-male dyads, lovers, friends, and strangers, performed a cooperation task during which brain activity was recorded in right frontoparietal regions. We measured better cooperative behavior in lover dyads compared with friend and stranger dyads. Lover dyads demonstrated increased IBS in right superior frontal cortex, which also covaried with their task performance. Granger causality analyses in lover dyads revealed stronger directional synchronization from females to males than from males to females, suggesting different roles for females and males during cooperation. Our study refines the theoretical explanation of romantic interaction between lovers. Hum Brain Mapp 38:831-841, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Kanaya, Shoko; Fujisaki, Waka; Nishida, Shin'ya; Furukawa, Shigeto; Yokosawa, Kazuhiko
2015-02-01
Temporal phase discrimination is a useful psychophysical task to evaluate how sensory signals, synchronously detected in parallel, are perceptually bound by human observers. In this task two stimulus sequences synchronously alternate between two states (say, A-B-A-B and X-Y-X-Y) in either of two temporal phases (ie A and B are respectively paired with X and Y, or vice versa). The critical alternation frequency beyond which participants cannot discriminate the temporal phase is measured as an index characterizing the temporal property of the underlying binding process. This task has been used to reveal the mechanisms underlying visual and cross-modal bindings. To directly compare these binding mechanisms with those in another modality, this study used the temporal phase discrimination task to reveal the processes underlying auditory bindings. The two sequences were alternations between two pitches. We manipulated the distance between the two sequences by changing intersequence frequency separation, or presentation ears (diotic vs dichotic). Results showed that the alternation frequency limit ranged from 7 to 30 Hz, becoming higher as the intersequence distance decreased, as is the case with vision. However, unlike vision, auditory phase discrimination limits were higher and more variable across participants. © 2015 SAGE Publications.
An Approach to Operational Analysis: Doctrinal Task Decomposition
2016-08-04
Once the unit is selected , CATS will output all of the doctrinal collective tasks associated with the unit. Currently, CATS outputs this information...Army unit are controlled data items, but for explanation purposes consider this simple example using a restaurant as the unit of interest. Table 1...shows an example Task Model for a restaurant using language and format similar to what CATS provides. Only 3 levels are shown in the example, but
NASA Astrophysics Data System (ADS)
Cork, Christopher; Miloslavsky, Alexander; Friedberg, Paul; Luk-Pat, Gerry
2013-04-01
Lithographers had hoped that single patterning would be enabled at the 20nm node by way of EUV lithography. However, due to delays in EUV readiness, double patterning with 193i lithography is currently relied upon for volume production for the 20nm node's metal 1 layer. At the 14nm and likely at the 10nm node, LE-LE-LE triple patterning technology (TPT) is one of the favored options [1,2] for patterning local interconnect and Metal 1 layers. While previous research has focused on TPT for contact mask, metal layers offer new challenges and opportunities, in particular the ability to decompose design polygons across more than one mask. The extra flexibility offered by the third mask and ability to leverage polygon stitching both serve to improve compliance. However, ensuring TPT compliance - the task of finding a 3-color mask decomposition for a design - is still a difficult task. Moreover, scalability concerns multiply the difficulty of triple patterning decomposition which is an NP-complete problem. Indeed previous work shows that network sizes above a few thousand nodes or polygons start to take significantly longer times to compute [3], making full chip decomposition for arbitrary layouts impractical. In practice Metal 1 layouts can be considered as two separate problem domains, namely: decomposition of standard cells and decomposition of IP blocks. Standard cells typically include only a few 10's of polygons and should be amenable to fast decomposition. Successive design iterations should resolve compliance issues and improve packing density. Density improvements are multiplied repeatedly as standard cells are placed multiple times. IP blocks, on the other hand, may involve very large networks. This paper evaluates multiple approaches to triple patterning decomposition for the Metal 1 layer. The benefits of polygon stitching, in particular, the ability to resolve commonly encountered non-compliant layout configurations and improve packing density, are weighed against the increased difficulty in finding an optimized, legal decomposition and coping with the increased scalability challenges.
Hirvonen, Jonni; Wibral, Michael; Palva, J Matias; Singer, Wolf; Uhlhaas, Peter; Palva, Satu
2017-01-01
Current theories of schizophrenia (ScZ) posit that the symptoms and cognitive dysfunctions arise from a dysconnection syndrome. However, studies that have examined this hypothesis with physiological data at realistic time scales are so far scarce. The current study employed a state-of-the-art approach using Magnetoencephalography (MEG) to test alterations in large-scale phase synchronization in a sample of n = 16 chronic ScZ patients, 10 males and n = 19 healthy participants, 10 males, during a perceptual closure task. We identified large-scale networks from source reconstructed MEG data using data-driven analyses of neuronal synchronization. Oscillation amplitudes and interareal phase-synchronization in the 3-120 Hz frequency range were estimated for 400 cortical parcels and correlated with clinical symptoms and neuropsychological scores. ScZ patients were characterized by a reduction in γ-band (30-120 Hz) oscillation amplitudes that was accompanied by a pronounced deficit in large-scale synchronization at γ-band frequencies. Synchronization was reduced within visual regions as well as between visual and frontal cortex and the reduction of synchronization correlated with elevated clinical disorganization. Accordingly, these data highlight that ScZ is associated with a profound disruption of transient synchronization, providing critical support for the notion that core aspect of the pathophysiology arises from an impairment in coordination of distributed neural activity.
Hirvonen, Jonni; Palva, J. Matias; Singer, Wolf; Uhlhaas, Peter
2017-01-01
Abstract Current theories of schizophrenia (ScZ) posit that the symptoms and cognitive dysfunctions arise from a dysconnection syndrome. However, studies that have examined this hypothesis with physiological data at realistic time scales are so far scarce. The current study employed a state-of-the-art approach using Magnetoencephalography (MEG) to test alterations in large-scale phase synchronization in a sample of n = 16 chronic ScZ patients, 10 males and n = 19 healthy participants, 10 males, during a perceptual closure task. We identified large-scale networks from source reconstructed MEG data using data-driven analyses of neuronal synchronization. Oscillation amplitudes and interareal phase-synchronization in the 3–120 Hz frequency range were estimated for 400 cortical parcels and correlated with clinical symptoms and neuropsychological scores. ScZ patients were characterized by a reduction in γ-band (30–120 Hz) oscillation amplitudes that was accompanied by a pronounced deficit in large-scale synchronization at γ-band frequencies. Synchronization was reduced within visual regions as well as between visual and frontal cortex and the reduction of synchronization correlated with elevated clinical disorganization. Accordingly, these data highlight that ScZ is associated with a profound disruption of transient synchronization, providing critical support for the notion that core aspect of the pathophysiology arises from an impairment in coordination of distributed neural activity. PMID:29085902
NASA Technical Reports Server (NTRS)
Miller, Steven P.; Whalen, Mike W.; O'Brien, Dan; Heimdahl, Mats P.; Joshi, Anjali
2005-01-01
Recent advanced in model-checking have made it practical to formally verify the correctness of many complex synchronous systems (i.e., systems driven by a single clock). However, many computer systems are implemented by asynchronously composing several synchronous components, where each component has its own clock and these clocks are not synchronized. Formal verification of such Globally Asynchronous/Locally Synchronous (GA/LS) architectures is a much more difficult task. In this report, we describe a methodology for developing and reasoning about such systems. This approach allows a developer to start from an ideal system specification and refine it along two axes. Along one axis, the system can be refined one component at a time towards an implementation. Along the other axis, the behavior of the system can be relaxed to produce a more cost effective but still acceptable solution. We illustrate this process by applying it to the synchronization logic of a Dual Fight Guidance System, evolving the system from an ideal case in which the components do not fail and communicate synchronously to one in which the components can fail and communicate asynchronously. For each step, we show how the system requirements have to change if the system is to be implemented and prove that each implementation meets the revised system requirements through modelchecking.
Su, Yi-Huang; Keller, Peter E
2018-01-29
Motor simulation has been implicated in how musicians anticipate the rhythm of another musician's action to achieve interpersonal synchronization. Here, we investigated whether similar mechanisms govern a related form of rhythmic action: dance. We examined (1) whether synchronization with visual dance stimuli was influenced by movement agency, (2) whether music training modulated simulation efficiency, and (3) what cues were relevant for simulating the dance rhythm. Participants were first recorded dancing the basic Charleston steps paced by a metronome, and later in a synchronization task they tapped to the rhythm of their own point-light dance stimuli, stimuli of another physically matched participant or one matched in movement kinematics, and a quantitative average across individuals. Results indicated that, while there was no overall "self advantage" and synchronization was generally most stable with the least variable (averaged) stimuli, motor simulation was driven-indicated by high tap-beat variability correlations-by familiar movement kinematics rather than morphological features. Furthermore, music training facilitated simulation, such that musicians outperformed non-musicians when synchronizing with others' movements but not with their own movements. These findings support action simulation as underlying synchronization in dance, linking action observation and rhythm processing in a common motor framework.
Learner Agency and Its Effect on Spoken Interaction Time in the Target Language
ERIC Educational Resources Information Center
Knight, Janine; Barberà, Elena
2017-01-01
This paper presents the results of how four dyads in an online task-based synchronous computer-mediated (TB-SCMC) interaction event use their agency to carry out speaking tasks, and how their choices and actions affect time spent interacting in the target language. A case study approach was employed to analyse the language functions and cognitive…
ERIC Educational Resources Information Center
Hedayati, Mohsen; Foomani, Elham Mohammadi
2015-01-01
The study reported here explores whether English as a foreign Language (EFL) learners' preferred ways of learning (i.e., learning styles) affect their task performance in computer-mediated communication (CMC). As Ellis (2010) points out, while the increasing use of different sorts of technology is witnessed in language learning contexts, it is…
ERIC Educational Resources Information Center
Eslami, Zohreh R.; Kung, Wan-Tsai
2016-01-01
The purpose of this study was to explore the occurrence of incidental focus-on-form and its effect on subsequent second language (L2) production of learners of different dyads in an online task-based language learning context. The participants included Taiwanese learners of English as a foreign language at different proficiency levels, and native…
The Speech Focus Position Effect on Jaw-Finger Coordination in a Pointing Task
ERIC Educational Resources Information Center
Rochet-Capellan, Amelie; Laboissiere, Rafael; Galvan, Arturo; Schwartz, Jean-Luc
2008-01-01
Purpose: This article investigates jaw-finger coordination in a task involving pointing to a target while naming it with a 'CVCV (e.g., /'papa/) versus CV'CV (e.g., /pa'pa/) word. According to the authors' working hypothesis, the pointing apex (gesture extremum) would be synchronized with the apex of the jaw-opening gesture corresponding to the…
ERIC Educational Resources Information Center
Mayer, Andreas; Träuble, Birgit
2015-01-01
Previous cross-cultural research using false-belief tasks has explored whether children's theory of mind develops synchronously across cultures. Success on false-belief tasks is usually interpreted as an important indicator of children's mental state understanding, but inconsistent findings have led to questions regarding the interpretation of…
ERIC Educational Resources Information Center
Ko, Chao-Jung
2016-01-01
This study aims to clarify the relationship between task types and foreign language learners' social presence (SP) in text-based SCMC learning modes. The participants in this study comprised 38 high-intermediate level English as a foreign language (EFL) learners from different disciplines of a university in Taiwan. They were divided into two…
A Drastic Change in Background Luminance or Motion Degrades the Preview Benefit.
Osugi, Takayuki; Murakami, Ikuya
2017-01-01
When some distractors (old items) precede some others (new items) in an inefficient visual search task, the search is restricted to new items, and yields a phenomenon termed the preview benefit. It has recently been demonstrated that, in this preview search task, the onset of repetitive changes in the background disrupts the preview benefit, whereas a single transient change in the background does not. In the present study, we explored this effect with dynamic background changes occurring in the context of realistic scenes, to examine the robustness and usefulness of visual marking. We examined whether preview benefit in a preview search task survived through task-irrelevant changes in the scene, namely a luminance change and the initiation of coherent motion, both occurring in the background. Luminance change of the background disrupted preview benefit if it was synchronized with the onset of the search display. Furthermore, although the presence of coherent background motion per se did not affect preview benefit, its synchronized initiation with the onset of the search display did disrupt preview benefit if the motion speed was sufficiently high. These results suggest that visual marking can be destroyed by a transient event in the scene if that event is sufficiently drastic.
Stability of Synchronization Clusters and Seizurability in Temporal Lobe Epilepsy
Palmigiano, Agostina; Pastor, Jesús; García de Sola, Rafael; Ortega, Guillermo J.
2012-01-01
Purpose Identification of critical areas in presurgical evaluations of patients with temporal lobe epilepsy is the most important step prior to resection. According to the “epileptic focus model”, localization of seizure onset zones is the main task to be accomplished. Nevertheless, a significant minority of epileptic patients continue to experience seizures after surgery (even when the focus is correctly located), an observation that is difficult to explain under this approach. However, if attention is shifted from a specific cortical location toward the network properties themselves, then the epileptic network model does allow us to explain unsuccessful surgical outcomes. Methods The intraoperative electrocorticography records of 20 patients with temporal lobe epilepsy were analyzed in search of interictal synchronization clusters. Synchronization was analyzed, and the stability of highly synchronized areas was quantified. Surrogate data were constructed and used to statistically validate the results. Our results show the existence of highly localized and stable synchronization areas in both the lateral and the mesial areas of the temporal lobe ipsilateral to the clinical seizures. Synchronization areas seem to play a central role in the capacity of the epileptic network to generate clinical seizures. Resection of stable synchronization areas is associated with elimination of seizures; nonresection of synchronization clusters is associated with the persistence of seizures after surgery. Discussion We suggest that synchronization clusters and their stability play a central role in the epileptic network, favoring seizure onset and propagation. We further speculate that the stability distribution of these synchronization areas would differentiate normal from pathologic cases. PMID:22844524
Synchronizing movements with the metronome: nonlinear error correction and unstable periodic orbits.
Engbert, Ralf; Krampe, Ralf Th; Kurths, Jürgen; Kliegl, Reinhold
2002-02-01
The control of human hand movements is investigated in a simple synchronization task. We propose and analyze a stochastic model based on nonlinear error correction; a mechanism which implies the existence of unstable periodic orbits. This prediction is tested in an experiment with human subjects. We find that our experimental data are in good agreement with numerical simulations of our theoretical model. These results suggest that feedback control of the human motor systems shows nonlinear behavior. Copyright 2001 Elsevier Science (USA).
Hardware implementation of Lorenz circuit systems for secure chaotic communication applications.
Chen, Hsin-Chieh; Liau, Ben-Yi; Hou, Yi-You
2013-02-18
This paper presents the synchronization between the master and slave Lorenz chaotic systems by slide mode controller (SMC)-based technique. A proportional-integral (PI) switching surface is proposed to simplify the task of assigning the performance of the closed-loop error system in sliding mode. Then, extending the concept of equivalent control and using some basic electronic components, a secure communication system is constructed. Experimental results show the feasibility of synchronizing two Lorenz circuits via the proposed SMC.
The effect of binaural beats on verbal working memory and cortical connectivity
NASA Astrophysics Data System (ADS)
Beauchene, Christine; Abaid, Nicole; Moran, Rosalyn; Diana, Rachel A.; Leonessa, Alexander
2017-04-01
Objective. Synchronization in activated regions of cortical networks affect the brain’s frequency response, which has been associated with a wide range of states and abilities, including memory. A non-invasive method for manipulating cortical synchronization is binaural beats. Binaural beats take advantage of the brain’s response to two pure tones, delivered independently to each ear, when those tones have a small frequency mismatch. The mismatch between the tones is interpreted as a beat frequency, which may act to synchronize cortical oscillations. Neural synchrony is particularly important for working memory processes, the system controlling online organization and retention of information for successful goal-directed behavior. Therefore, manipulation of synchrony via binaural beats provides a unique window into working memory and associated connectivity of cortical networks. Approach. In this study, we examined the effects of different acoustic stimulation conditions during an N-back working memory task, and we measured participant response accuracy and cortical network topology via EEG recordings. Six acoustic stimulation conditions were used: None, Pure Tone, Classical Music, 5 Hz binaural beats, 10 Hz binaural beats, and 15 Hz binaural beats. Main results. We determined that listening to 15 Hz binaural beats during an N-Back working memory task increased the individual participant’s accuracy, modulated the cortical frequency response, and changed the cortical network connection strengths during the task. Only the 15 Hz binaural beats produced significant change in relative accuracy compared to the None condition. Significance. Listening to 15 Hz binaural beats during the N-back task activated salient frequency bands and produced networks characterized by higher information transfer as compared to other auditory stimulation conditions.
Kittilstved, Tiffani; Reilly, Kevin J.; Harkrider, Ashley W.; Casenhiser, Devin; Thornton, David; Jenson, David E.; Hedinger, Tricia; Bowers, Andrew L.; Saltuklaroglu, Tim
2018-01-01
Objective: To determine whether changes in sensorimotor control resulting from speaking conditions that induce fluency in people who stutter (PWS) can be measured using electroencephalographic (EEG) mu rhythms in neurotypical speakers. Methods: Non-stuttering (NS) adults spoke in one control condition (solo speaking) and four experimental conditions (choral speech, delayed auditory feedback (DAF), prolonged speech and pseudostuttering). Independent component analysis (ICA) was used to identify sensorimotor μ components from EEG recordings. Time-frequency analyses measured μ-alpha (8–13 Hz) and μ-beta (15–25 Hz) event-related synchronization (ERS) and desynchronization (ERD) during each speech condition. Results: 19/24 participants contributed μ components. Relative to the control condition, the choral and DAF conditions elicited increases in μ-alpha ERD in the right hemisphere. In the pseudostuttering condition, increases in μ-beta ERD were observed in the left hemisphere. No differences were present between the prolonged speech and control conditions. Conclusions: Differences observed in the experimental conditions are thought to reflect sensorimotor control changes. Increases in right hemisphere μ-alpha ERD likely reflect increased reliance on auditory information, including auditory feedback, during the choral and DAF conditions. In the left hemisphere, increases in μ-beta ERD during pseudostuttering may have resulted from the different movement characteristics of this task compared with the solo speaking task. Relationships to findings in stuttering are discussed. Significance: Changes in sensorimotor control related feedforward and feedback control in fluency-enhancing speech manipulations can be measured using time-frequency decompositions of EEG μ rhythms in neurotypical speakers. This quiet, non-invasive, and temporally sensitive technique may be applied to learn more about normal sensorimotor control and fluency enhancement in PWS. PMID:29670516
Muthuraman, Muthuraman; Tamás, Gertrúd; Hellriegel, Helge; Deuschl, Günther; Raethjen, Jan
2012-01-01
We hypothesized that post-movement beta synchronization (PMBS) and cortico-muscular coherence (CMC) during movement termination relate to each other and have similar role in sensorimotor integration. We calculated the parameters and estimated the sources of these phenomena.We measured 64-channel EEG simultaneously with surface EMG of the right first dorsal interosseus muscle in 11 healthy volunteers. In Task1, subjects kept a medium-strength contraction continuously; in Task2, superimposed on this movement, they performed repetitive self-paced short contractions. In Task3 short contractions were executed alone. Time-frequency analysis of the EEG and CMC was performed with respect to the offset of brisk movements and averaged in each subject. Sources of PMBS and CMC were also calculated.High beta power in Task1, PMBS in Task2-3, and CMC in Task1-2 could be observed in the same individual frequency bands. While beta synchronization in Task1 and PMBS in Task2-3 appeared bilateral with contralateral predominance, CMC in Task1-2 was strictly a unilateral phenomenon; their main sources did not differ contralateral to the movement in the primary sensorimotor cortex in 7 of 11 subjects in Task1, and in 6 of 9 subjects in Task2. In Task2, CMC and PMBS had the same latency but their amplitudes did not correlate with each other. In Task2, weaker PMBS source was found bilaterally within the secondary sensory cortex, while the second source of CMC was detected in the premotor cortex, contralateral to the movement. In Task3, weaker sources of PMBS could be estimated in bilateral supplementary motor cortex and in the thalamus. PMBS and CMC appear simultaneously at the end of a phasic movement possibly suggesting similar antikinetic effects, but they may be separate processes with different active functions. Whereas PMBS seems to reset the supraspinal sensorimotor network, cortico-muscular coherence may represent the recalibration of cortico-motoneuronal and spinal systems.
Demiral, Şükrü Barış; Golosheykin, Simon; Anokhin, Andrey P
2017-05-01
Detection and evaluation of the mismatch between the intended and actually obtained result of an action (reward prediction error) is an integral component of adaptive self-regulation of behavior. Extensive human and animal research has shown that evaluation of action outcome is supported by a distributed network of brain regions in which the anterior cingulate cortex (ACC) plays a central role, and the integration of distant brain regions into a unified feedback-processing network is enabled by long-range phase synchronization of cortical oscillations in the theta band. Neural correlates of feedback processing are associated with individual differences in normal and abnormal behavior, however, little is known about the role of genetic factors in the cerebral mechanisms of feedback processing. Here we examined genetic influences on functional cortical connectivity related to prediction error in young adult twins (age 18, n=399) using event-related EEG phase coherence analysis in a monetary gambling task. To identify prediction error-specific connectivity pattern, we compared responses to loss and gain feedback. Monetary loss produced a significant increase of theta-band synchronization between the frontal midline region and widespread areas of the scalp, particularly parietal areas, whereas gain resulted in increased synchrony primarily within the posterior regions. Genetic analyses showed significant heritability of frontoparietal theta phase synchronization (24 to 46%), suggesting that individual differences in large-scale network dynamics are under substantial genetic control. We conclude that theta-band synchronization of brain oscillations related to negative feedback reflects genetically transmitted differences in the neural mechanisms of feedback processing. To our knowledge, this is the first evidence for genetic influences on task-related functional brain connectivity assessed using direct real-time measures of neuronal synchronization. Copyright © 2016 Elsevier B.V. All rights reserved.
Assaad, Aziz; Pontvianne, Steve; Pons, Marie-Noëlle
2017-05-01
To rapidly monitor the surface water quality in terms of organic pollution of an industrial river undergoing restoration, optical methods (UV-visible spectrometry and fluorescence) were applied in parallel to classical physical-chemical analyses. UV-visible spectra were analyzed using the maximum of the second derivative at 225 nm (related to nitrates), specific absorbance at 254 nm (SUVA 254 ), and the spectral slope between 275 and 295 nm (S 275-295 ) (related to the aromaticity and molecular weight of dissolved organic carbon). The synchronous fluorescence spectra (wavelength difference = 50 nm) exhibited a high variability in the composition of dissolved organic material between the upstream and downstream sections and also versus time. The principal components analysis of the entire set of synchronous fluorescence spectra helped to define three river sections with different pollution characteristics. Spectral decomposition was applied to the two most upstream sections: five fluorophores, classical in rivers impacted by domestic sewage and related to protein-like (λ ex = 280 nm) and humic-like fluorescence (M-type with λ ex ≈ 305-310 nm and C-type with λ ex ≥ 335 nm), were identified. The irregular shape of the synchronous fluorescence spectra in the most downstream section is likely due to organic pollutants of industrial origin; however, their variability and the complexity of the spectra did not allow the further elucidation of their nature.
Experiences with Cray multi-tasking
NASA Technical Reports Server (NTRS)
Miya, E. N.
1985-01-01
The issues involved in modifying an existing code for multitasking is explored. They include Cray extensions to FORTRAN, an examination of the application code under study, designing workable modifications, specific code modifications to the VAX and Cray versions, performance, and efficiency results. The finished product is a faster, fully synchronous, parallel version of the original program. A production program is partitioned by hand to run on two CPUs. Loop splitting multitasks three key subroutines. Simply dividing subroutine data and control structure down the middle of a subroutine is not safe. Simple division produces results that are inconsistent with uniprocessor runs. The safest way to partition the code is to transfer one block of loops at a time and check the results of each on a test case. Other issues include debugging and performance. Task startup and maintenance (e.g., synchronization) are potentially expensive.
Public channel cryptography: chaos synchronization and Hilbert's tenth problem.
Kanter, Ido; Kopelowitz, Evi; Kinzel, Wolfgang
2008-08-22
The synchronization process of two mutually delayed coupled deterministic chaotic maps is demonstrated both analytically and numerically. The synchronization is preserved when the mutually transmitted signals are concealed by two commutative private filters, a convolution of the truncated time-delayed output signals or some powers of the delayed output signals. The task of a passive attacker is mapped onto Hilbert's tenth problem, solving a set of nonlinear Diophantine equations, which was proven to be in the class of NP-complete problems [problems that are both NP (verifiable in nondeterministic polynomial time) and NP-hard (any NP problem can be translated into this problem)]. This bridge between nonlinear dynamics and NP-complete problems opens a horizon for new types of secure public-channel protocols.
Lindegren, Martin; Denker, Tim Spaanheden; Floeter, Jens; Fock, Heino O.; Sguotti, Camilla; Stäbler, Moritz; Otto, Saskia A.; Möllmann, Christian
2017-01-01
Understanding spatio-temporal dynamics of biotic communities containing large numbers of species is crucial to guide ecosystem management and conservation efforts. However, traditional approaches usually focus on studying community dynamics either in space or in time, often failing to fully account for interlinked spatio-temporal changes. In this study, we demonstrate and promote the use of tensor decomposition for disentangling spatio-temporal community dynamics in long-term monitoring data. Tensor decomposition builds on traditional multivariate statistics (e.g. Principal Component Analysis) but extends it to multiple dimensions. This extension allows for the synchronized study of multiple ecological variables measured repeatedly in time and space. We applied this comprehensive approach to explore the spatio-temporal dynamics of 65 demersal fish species in the North Sea, a marine ecosystem strongly altered by human activities and climate change. Our case study demonstrates how tensor decomposition can successfully (i) characterize the main spatio-temporal patterns and trends in species abundances, (ii) identify sub-communities of species that share similar spatial distribution and temporal dynamics, and (iii) reveal external drivers of change. Our results revealed a strong spatial structure in fish assemblages persistent over time and linked to differences in depth, primary production and seasonality. Furthermore, we simultaneously characterized important temporal distribution changes related to the low frequency temperature variability inherent in the Atlantic Multidecadal Oscillation. Finally, we identified six major sub-communities composed of species sharing similar spatial distribution patterns and temporal dynamics. Our case study demonstrates the application and benefits of using tensor decomposition for studying complex community data sets usually derived from large-scale monitoring programs. PMID:29136658
NASA Astrophysics Data System (ADS)
Chen, Yi-Feng; Atal, Kiran; Xie, Sheng-Quan; Liu, Quan
2017-08-01
Objective. Accurate and efficient detection of steady-state visual evoked potentials (SSVEP) in electroencephalogram (EEG) is essential for the related brain-computer interface (BCI) applications. Approach. Although the canonical correlation analysis (CCA) has been applied extensively and successfully to SSVEP recognition, the spontaneous EEG activities and artifacts that often occur during data recording can deteriorate the recognition performance. Therefore, it is meaningful to extract a few frequency sub-bands of interest to avoid or reduce the influence of unrelated brain activity and artifacts. This paper presents an improved method to detect the frequency component associated with SSVEP using multivariate empirical mode decomposition (MEMD) and CCA (MEMD-CCA). EEG signals from nine healthy volunteers were recorded to evaluate the performance of the proposed method for SSVEP recognition. Main results. We compared our method with CCA and temporally local multivariate synchronization index (TMSI). The results suggest that the MEMD-CCA achieved significantly higher accuracy in contrast to standard CCA and TMSI. It gave the improvements of 1.34%, 3.11%, 3.33%, 10.45%, 15.78%, 18.45%, 15.00% and 14.22% on average over CCA at time windows from 0.5 s to 5 s and 0.55%, 1.56%, 7.78%, 14.67%, 13.67%, 7.33% and 7.78% over TMSI from 0.75 s to 5 s. The method outperformed the filter-based decomposition (FB), empirical mode decomposition (EMD) and wavelet decomposition (WT) based CCA for SSVEP recognition. Significance. The results demonstrate the ability of our proposed MEMD-CCA to improve the performance of SSVEP-based BCI.
Formal Semanol Specification of Ada.
1980-09-01
concurrent task modeling involved very little change to the SEMANOL metalanguage. A primitive capable of initiating concurrent SEMANOL task processors...i.e., #CO-COMPUTE) and two primitivc-; corresponding to integer semaphores (i.c., #P and #V) were all that were required. In addition, these changes... synchronization techniques and choice of correct unblocking alternatives. We should note that it had been our original intention to use the Ada Translator program
The Components of Working Memory Updating: An Experimental Decomposition and Individual Differences
ERIC Educational Resources Information Center
Ecker, Ullrich K. H.; Lewandowsky, Stephan; Oberauer, Klaus; Chee, Abby E. H.
2010-01-01
Working memory updating (WMU) has been identified as a cognitive function of prime importance for everyday tasks and has also been found to be a significant predictor of higher mental abilities. Yet, little is known about the constituent processes of WMU. We suggest that operations required in a typical WMU task can be decomposed into 3 major…
Concurrent Path Planning with One or More Humanoid Robots
NASA Technical Reports Server (NTRS)
Reiland, Matthew J. (Inventor); Sanders, Adam M. (Inventor)
2014-01-01
A robotic system includes a controller and one or more robots each having a plurality of robotic joints. Each of the robotic joints is independently controllable to thereby execute a cooperative work task having at least one task execution fork, leading to multiple independent subtasks. The controller coordinates motion of the robot(s) during execution of the cooperative work task. The controller groups the robotic joints into task-specific robotic subsystems, and synchronizes motion of different subsystems during execution of the various subtasks of the cooperative work task. A method for executing the cooperative work task using the robotic system includes automatically grouping the robotic joints into task-specific subsystems, and assigning subtasks of the cooperative work task to the subsystems upon reaching a task execution fork. The method further includes coordinating execution of the subtasks after reaching the task execution fork.
Anderson, John R.; Bothell, Daniel; Fincham, Jon M.; Anderson, Abraham R.; Poole, Ben; Qin, Yulin
2013-01-01
Part- and whole-task conditions were created by manipulating the presence of certain components of the Space Fortress video game. A cognitive model was created for two-part games that could be combined into a model that performed the whole game. The model generated predictions both for behavioral patterns and activation patterns in various brain regions. The activation predictions concerned both tonic activation that was constant in these regions during performance of the game and phasic activation that occurred when there was resource competition. The model’s predictions were confirmed about how tonic and phasic activation in different regions would vary with condition. These results support the Decomposition Hypothesis that the execution of a complex task can be decomposed into a set of information-processing components and that these components combine unchanged in different task conditions. In addition, individual differences in learning gains were predicted by individual differences in phasic activation in those regions that displayed highest tonic activity. This individual difference pattern suggests that the rate of learning of a complex skill is determined by capacity limits. PMID:21557648
Psychophysiological effects of synchronous versus asynchronous music during cycling.
Lim, Harry B T; Karageorghis, Costas I; Romer, Lee M; Bishop, Daniel T
2014-02-01
Synchronizing movement to a musical beat may reduce the metabolic cost of exercise, but findings to date have been equivocal. Our aim was to examine the degree to which the synchronous application of music moderates the metabolic demands of a cycle ergometer task. Twenty-three recreationally active men made two laboratory visits. During the first visit, participants completed a maximal incremental ramp test on a cycle ergometer. At the second visit, they completed four randomized 6-min cycling bouts at 90% of ventilatory threshold (control, metronome, synchronous music, and asynchronous music). Main outcome variables were oxygen uptake, HR, ratings of dyspnea and limb discomfort, affective valence, and arousal. No significant differences were evident for oxygen uptake. HR was lower under the metronome condition (122 ± 15 bpm) compared to asynchronous music (124 ± 17 bpm) and control (125 ± 16 bpm). Limb discomfort was lower while listening to the metronome (2.5 ± 1.2) and synchronous music (2.3 ± 1.1) compared to control (3.0 ± 1.5). Both music conditions, synchronous (1.9 ± 1.2) and asynchronous (2.1 ± 1.3), elicited more positive affective valence compared to metronome (1.2 ± 1.4) and control (1.2 ± 1.2), while arousal was higher with synchronous music (3.4 ± 0.9) compared to metronome (2.8 ± 1.0) and control (2.8 ± 0.9). Synchronizing movement to a rhythmic stimulus does not reduce metabolic cost but may lower limb discomfort. Moreover, synchronous music has a stronger effect on limb discomfort and arousal when compared to asynchronous music.
Music and speech distractors disrupt sensorimotor synchronization: effects of musical training.
Białuńska, Anita; Dalla Bella, Simone
2017-12-01
Humans display a natural tendency to move to the beat of music, more than to the rhythm of any other auditory stimulus. We typically move with music, but rarely with speech. This proclivity is apparent early during development and can be further developed over the years via joint dancing, singing, or instrument playing. Synchronization of movement to the beat can thus improve with age, but also with musical experience. In a previous study, we found that music perturbed synchronization with a metronome more than speech fragments; music superiority disappeared when distractors shared isochrony and the same meter (Dalla Bella et al., PLoS One 8(8):e71945, 2013). Here, we examined if the interfering effect of music and speech distractors in a synchronization task is influenced by musical training. Musicians and non-musicians synchronized by producing finger force pulses to the sounds of a metronome while music and speech distractors were presented at one of various phase relationships with respect to the target. Distractors were familiar musical excerpts and fragments of children poetry comparable in terms of beat/stress isochrony. Music perturbed synchronization with the metronome more than speech did in both groups. However, the difference in synchronization error between music and speech distractors was smaller for musicians than for non-musicians, especially when the peak force of movement is reached. These findings point to a link between musical training and timing of sensorimotor synchronization when reacting to music and speech distractors.
Sensorimotor Synchronization with Different Metrical Levels of Point-Light Dance Movements.
Su, Yi-Huang
2016-01-01
Rhythm perception and synchronization have been extensively investigated in the auditory domain, as they underlie means of human communication such as music and speech. Although recent studies suggest comparable mechanisms for synchronizing with periodically moving visual objects, the extent to which it applies to ecologically relevant information, such as the rhythm of complex biological motion, remains unknown. The present study addressed this issue by linking rhythm of music and dance in the framework of action-perception coupling. As a previous study showed that observers perceived multiple metrical periodicities in dance movements that embodied this structure, the present study examined whether sensorimotor synchronization (SMS) to dance movements resembles what is known of auditory SMS. Participants watched a point-light figure performing two basic steps of Swing dance cyclically, in which the trunk bounced at every beat and the limbs moved at every second beat, forming two metrical periodicities. Participants tapped synchronously to the bounce of the trunk with or without the limbs moving in the stimuli (Experiment 1), or tapped synchronously to the leg movements with or without the trunk bouncing simultaneously (Experiment 2). Results showed that, while synchronization with the bounce (lower-level pulse) was not influenced by the presence or absence of limb movements (metrical accent), synchronization with the legs (beat) was improved by the presence of the bounce (metrical subdivision) across different movement types. The latter finding parallels the "subdivision benefit" often demonstrated in auditory tasks, suggesting common sensorimotor mechanisms for visual rhythms in dance and auditory rhythms in music.
Driver state examination--Treading new paths.
Wascher, Edmund; Getzmann, Stephan; Karthaus, Melanie
2016-06-01
A large proportion of crashes in road driving can be attributed to driver fatigue. Several types of fatigue are discussed, comprising sleep-related fatigue, active task-related fatigue (as a consequence of workload in demanding driving situations) as well as passive task-related fatigue (as related to monotonous driving situations). The present study investigated actual states of fatigue in a monotonous driving situation, using EEG measures and a long-lasting driving simulation experiment, in which drivers had to keep the vehicle on track by compensating crosswind of different strength. Performance data and electrophysiological correlates of mental fatigue (EEG Alpha and Theta power, Inter Trial Coherence (ITC), and auditory event-related potentials to short sound stimuli) were analyzed. Driving errors and driving lane variability increased with time on task and with increasing crosswind. The posterior Alpha and Theta power also increased with time on task, but decreased with stronger crosswind. The P3a to sound stimuli decreased with time on task when the crosswind was weak, but remained stable when the crosswind was strong. The analysis of ITC revealed less frontal Alpha and Theta band synchronization with time on task, but no effect of crosswind. The results suggest that Alpha power in monotonous driving situations reflects boredom or attentional withdrawal due to monotony rather than the decline of processing abilities as a consequence of high mental effort. A more valid indicator of declining mental resources with increasing time on task seems to be provided by brain oscillatory synchronization measures and event-related activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Implicit versus explicit frequency comparisons: two mechanisms of auditory change detection.
Demany, Laurent; Semal, Catherine; Pressnitzer, Daniel
2011-04-01
Listeners had to compare, with respect to pitch (frequency), a pure tone (T) to a combination of pure tones presented subsequently (C). The elements of C were either synchronous, and therefore difficult to hear out individually, or asynchronous and therefore easier to hear out individually. In the "present/absent" condition, listeners had to judge if T reappeared in C or not. In the "up/down" condition, the task was to judge if the element of C most similar to T was higher or lower than T. When the elements of C were synchronous, the up/down task was found to be easier than the present/absent task; the converse result was obtained when the elements of C were asynchronous. This provides evidence for a duality of auditory comparisons between tone frequencies: (1) implicit comparisons made by automatic and direction-sensitive "frequency-shift detectors"; (2) explicit comparisons more sensitive to the magnitude of a frequency change than to its direction. Another experiment suggests that although the frequency-shift detectors cannot compare effectively two tones separated by an interfering tone, they are largely insensitive to interfering noise bursts.
Kornysheva, Katja; Schubotz, Ricarda I.
2011-01-01
Integrating auditory and motor information often requires precise timing as in speech and music. In humans, the position of the ventral premotor cortex (PMv) in the dorsal auditory stream renders this area a node for auditory-motor integration. Yet, it remains unknown whether the PMv is critical for auditory-motor timing and which activity increases help to preserve task performance following its disruption. 16 healthy volunteers participated in two sessions with fMRI measured at baseline and following rTMS (rTMS) of either the left PMv or a control region. Subjects synchronized left or right finger tapping to sub-second beat rates of auditory rhythms in the experimental task, and produced self-paced tapping during spectrally matched auditory stimuli in the control task. Left PMv rTMS impaired auditory-motor synchronization accuracy in the first sub-block following stimulation (p<0.01, Bonferroni corrected), but spared motor timing and attention to task. Task-related activity increased in the homologue right PMv, but did not predict the behavioral effect of rTMS. In contrast, anterior midline cerebellum revealed most pronounced activity increase in less impaired subjects. The present findings suggest a critical role of the left PMv in feed-forward computations enabling accurate auditory-motor timing, which can be compensated by activity modulations in the cerebellum, but not in the homologue region contralateral to stimulation. PMID:21738657
Bartolo, Ramón; Merchant, Hugo
2015-03-18
β oscillations in the basal ganglia have been associated with interval timing. We recorded the putaminal local field potentials (LFPs) from monkeys performing a synchronization-continuation task (SCT) and a serial reaction-time task (RTT), where the animals produced regularly and irregularly paced tapping sequences, respectively. We compared the activation profile of β oscillations between tasks and found transient bursts of β activity in both the RTT and SCT. During the RTT, β power was higher at the beginning of the task, especially when LFPs were aligned to the stimuli. During the SCT, β was higher during the internally driven continuation phase, especially for tap-aligned LFPs. Interestingly, a set of LFPs showed an initial burst of β at the beginning of the SCT, similar to the RTT, followed by a decrease in β oscillations during the synchronization phase, to finally rebound during the continuation phase. The rebound during the continuation phase of the SCT suggests that the corticostriatal circuit is involved in the control of internally driven motor sequences. In turn, the transient bursts of β activity at the beginning of both tasks suggest that the basal ganglia produce a general initiation signal that engages the motor system in different sequential behaviors. Copyright © 2015 the authors 0270-6474/15/354635-06$15.00/0.
Projection decomposition algorithm for dual-energy computed tomography via deep neural network.
Xu, Yifu; Yan, Bin; Chen, Jian; Zeng, Lei; Li, Lei
2018-03-15
Dual-energy computed tomography (DECT) has been widely used to improve identification of substances from different spectral information. Decomposition of the mixed test samples into two materials relies on a well-calibrated material decomposition function. This work aims to establish and validate a data-driven algorithm for estimation of the decomposition function. A deep neural network (DNN) consisting of two sub-nets is proposed to solve the projection decomposition problem. The compressing sub-net, substantially a stack auto-encoder (SAE), learns a compact representation of energy spectrum. The decomposing sub-net with a two-layer structure fits the nonlinear transform between energy projection and basic material thickness. The proposed DNN not only delivers image with lower standard deviation and higher quality in both simulated and real data, and also yields the best performance in cases mixed with photon noise. Moreover, DNN costs only 0.4 s to generate a decomposition solution of 360 × 512 size scale, which is about 200 times faster than the competing algorithms. The DNN model is applicable to the decomposition tasks with different dual energies. Experimental results demonstrated the strong function fitting ability of DNN. Thus, the Deep learning paradigm provides a promising approach to solve the nonlinear problem in DECT.
Layout compliance for triple patterning lithography: an iterative approach
NASA Astrophysics Data System (ADS)
Yu, Bei; Garreton, Gilda; Pan, David Z.
2014-10-01
As the semiconductor process further scales down, the industry encounters many lithography-related issues. In the 14nm logic node and beyond, triple patterning lithography (TPL) is one of the most promising techniques for Metal1 layer and possibly Via0 layer. As one of the most challenging problems in TPL, recently layout decomposition efforts have received more attention from both industry and academia. Ideally the decomposer should point out locations in the layout that are not triple patterning decomposable and therefore manual intervention by designers is required. A traditional decomposition flow would be an iterative process, where each iteration consists of an automatic layout decomposition step and manual layout modification task. However, due to the NP-hardness of triple patterning layout decomposition, automatic full chip level layout decomposition requires long computational time and therefore design closure issues continue to linger around in the traditional flow. Challenged by this issue, we present a novel incremental layout decomposition framework to facilitate accelerated iterative decomposition. In the first iteration, our decomposer not only points out all conflicts, but also provides the suggestions to fix them. After the layout modification, instead of solving the full chip problem from scratch, our decomposer can provide a quick solution for a selected portion of layout. We believe this framework is efficient, in terms of performance and designer friendly.
Dynamic load balancing algorithm for molecular dynamics based on Voronoi cells domain decompositions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fattebert, J.-L.; Richards, D.F.; Glosli, J.N.
2012-12-01
We present a new algorithm for automatic parallel load balancing in classical molecular dynamics. It assumes a spatial domain decomposition of particles into Voronoi cells. It is a gradient method which attempts to minimize a cost function by displacing Voronoi sites associated with each processor/sub-domain along steepest descent directions. Excellent load balance has been obtained for quasi-2D and 3D practical applications, with up to 440·10 6 particles on 65,536 MPI tasks.
Lobier, Muriel; Palva, J Matias; Palva, Satu
2018-01-15
Visuospatial attention prioritizes processing of attended visual stimuli. It is characterized by lateralized alpha-band (8-14 Hz) amplitude suppression in visual cortex and increased neuronal activity in a network of frontal and parietal areas. It has remained unknown what mechanisms coordinate neuronal processing among frontoparietal network and visual cortices and implement the attention-related modulations of alpha-band amplitudes and behavior. We investigated whether large-scale network synchronization could be such a mechanism. We recorded human cortical activity with magnetoencephalography (MEG) during a visuospatial attention task. We then identified the frequencies and anatomical networks of inter-areal phase synchronization from source localized MEG data. We found that visuospatial attention is associated with robust and sustained long-range synchronization of cortical oscillations exclusively in the high-alpha (10-14 Hz) frequency band. This synchronization connected frontal, parietal and visual regions and was observed concurrently with amplitude suppression of low-alpha (6-9 Hz) band oscillations in visual cortex. Furthermore, stronger high-alpha phase synchronization was associated with decreased reaction times to attended stimuli and larger suppression of alpha-band amplitudes. These results thus show that high-alpha band phase synchronization is functionally significant and could coordinate the neuronal communication underlying the implementation of visuospatial attention. Copyright © 2017 Elsevier Inc. All rights reserved.
Using chaotic forcing to detect damage in a structure
Moniz, L.; Nichols, J.; Trickey, S.; Seaver, M.; Pecora, D.; Pecora, L.
2005-01-01
In this work we develop a numerical test for Holder continuity and apply it and another test for continuity to the difficult problem of detecting damage in structures. We subject a thin metal plate with incremental damage to the plate changes, its filtering properties, and therefore the phase space trajectories of the response chaotic excitation of various bandwidths. Damage to the plate changes its filtering properties and therefore the phase space of the response. Because the data are multivariate (the plate is instrumented with multiple sensors) we use a singular value decomposition of the set of the output time series to reduce the embedding dimension of the response time series. We use two geometric tests to compare an attractor reconstructed from data from an undamaged structure to that reconstructed from data from a damaged structure. These two tests translate to testing for both generalized and differentiable synchronization between responses. We show loss of synchronization of responses with damage to the structure. ?? 2005 American Institute of Physics.
Using chaotic forcing to detect damage in a structure.
Moniz, L.; Nichols, J.; Trickey, S.; Seaver, M.; Pecora, D.; Pecora, L.
2005-01-01
In this work we develop a numerical test for Holder continuity and apply it and another test for continuity to the difficult problem of detecting damage in structures. We subject a thin metal plate with incremental damage to the plate changes, its filtering properties, and therefore the phase space trajectories of the response chaotic excitation of various bandwidths. Damage to the plate changes its filtering properties and therefore the phase space of the response. Because the data are multivariate (the plate is instrumented with multiple sensors) we use a singular value decomposition of the set of the output time series to reduce the embedding dimension of the response time series. We use two geometric tests to compare an attractor reconstructed from data from an undamaged structure to that reconstructed from data from a damaged structure. These two tests translate to testing for both generalized and differentiable synchronization between responses. We show loss of synchronization of responses with damage to the structure.
NASA Astrophysics Data System (ADS)
Zhou, Zhong-xing; Wan, Bai-kun; Ming, Dong; Qi, Hong-zhi
2010-08-01
In this study, we proposed and evaluated the use of the empirical mode decomposition (EMD) technique combined with phase synchronization analysis to investigate the human brain synchrony of the supplementary motor area (SMA) and primary motor area (M1) during complex motor imagination of combined body and limb action. We separated the EEG data of the SMA and M1 into intrinsic mode functions (IMFs) using the EMD method and determined the characteristic IMFs by power spectral density (PSD) analysis. Thereafter, the instantaneous phases of the characteristic IMFs were obtained by the Hilbert transformation, and the single-trial phase-locking value (PLV) features for brain synchrony measurement between the SMA and M1 were investigated separately. The classification performance suggests that the proposed approach is effective for phase synchronization analysis and is promising for the application of a brain-computer interface in motor nerve reconstruction of the lower limbs.
Synchronized flash photolysis and pulse deposition in matrix isolation experiments
NASA Technical Reports Server (NTRS)
Allamandola, Louis J.; Lucas, Donald; Pimentel, George C.
1978-01-01
An apparatus is described which permits flash photolysis of a pulse-deposited gas mixture in a matrix isolation experiment. This technique obviates the limitations of in situ photolysis imposed by the cage effect and by secondary photolysis. The matrix is deposited in pulses at 30-s intervals and photolyzed sequentially by four synchronized flashlamps approximately 1 ms before the pulse strikes the cold surface. Pulsed deposition maintains adequate isolation and causes line narrowing, which enhances spectral sensitivity. The efficacy of flash photolysis combined with pulsed deposition for producing and trapping transient species was demonstrated by infrated detection of CF3 (from photolysis of CF3I/Ar mixtures) and of ClCO (from photolysis of Cl2/CO/Ar mixtures). The apparatus was used to study the photolytic decomposition of gaseous tricarbonylironcyclobutadiene, C4H4Fe(CO)3. The results indicate that the primary photolytic step is not elimination of C4H4, as suggested earlier, but rather of CO.
Independent EEG Sources Are Dipolar
Delorme, Arnaud; Palmer, Jason; Onton, Julie; Oostenveld, Robert; Makeig, Scott
2012-01-01
Independent component analysis (ICA) and blind source separation (BSS) methods are increasingly used to separate individual brain and non-brain source signals mixed by volume conduction in electroencephalographic (EEG) and other electrophysiological recordings. We compared results of decomposing thirteen 71-channel human scalp EEG datasets by 22 ICA and BSS algorithms, assessing the pairwise mutual information (PMI) in scalp channel pairs, the remaining PMI in component pairs, the overall mutual information reduction (MIR) effected by each decomposition, and decomposition ‘dipolarity’ defined as the number of component scalp maps matching the projection of a single equivalent dipole with less than a given residual variance. The least well-performing algorithm was principal component analysis (PCA); best performing were AMICA and other likelihood/mutual information based ICA methods. Though these and other commonly-used decomposition methods returned many similar components, across 18 ICA/BSS algorithms mean dipolarity varied linearly with both MIR and with PMI remaining between the resulting component time courses, a result compatible with an interpretation of many maximally independent EEG components as being volume-conducted projections of partially-synchronous local cortical field activity within single compact cortical domains. To encourage further method comparisons, the data and software used to prepare the results have been made available (http://sccn.ucsd.edu/wiki/BSSComparison). PMID:22355308
Spectral simplicity of apparent complexity. II. Exact complexities and complexity spectra
NASA Astrophysics Data System (ADS)
Riechers, Paul M.; Crutchfield, James P.
2018-03-01
The meromorphic functional calculus developed in Part I overcomes the nondiagonalizability of linear operators that arises often in the temporal evolution of complex systems and is generic to the metadynamics of predicting their behavior. Using the resulting spectral decomposition, we derive closed-form expressions for correlation functions, finite-length Shannon entropy-rate approximates, asymptotic entropy rate, excess entropy, transient information, transient and asymptotic state uncertainties, and synchronization information of stochastic processes generated by finite-state hidden Markov models. This introduces analytical tractability to investigating information processing in discrete-event stochastic processes, symbolic dynamics, and chaotic dynamical systems. Comparisons reveal mathematical similarities between complexity measures originally thought to capture distinct informational and computational properties. We also introduce a new kind of spectral analysis via coronal spectrograms and the frequency-dependent spectra of past-future mutual information. We analyze a number of examples to illustrate the methods, emphasizing processes with multivariate dependencies beyond pairwise correlation. This includes spectral decomposition calculations for one representative example in full detail.
Analysis of tasks for dynamic man/machine load balancing in advanced helicopters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorgensen, C.C.
1987-10-01
This report considers task allocation requirements imposed by advanced helicopter designs incorporating mixes of human pilots and intelligent machines. Specifically, it develops an analogy between load balancing using distributed non-homogeneous multiprocessors and human team functions. A taxonomy is presented which can be used to identify task combinations likely to cause overload for dynamic scheduling and process allocation mechanisms. Designer criteria are given for function decomposition, separation of control from data, and communication handling for dynamic tasks. Possible effects of n-p complete scheduling problems are noted and a class of combinatorial optimization methods are examined.
Storing wind energy into electrical accumulators
NASA Astrophysics Data System (ADS)
Dordescu, M.; Petrescu, D. I.; Erdodi, G. M.
2016-12-01
Shall be determined, in this work, the energy stored in the accumulators electrical, AE, at a wind system operating at wind speeds time-varying. mechanical energy caught in the turbine from the wind, (TV), is transformed into electrical energy by the generator synchronous with the permanent magnets, GSMP. The Generator synchronous with the permanent magnets saws, via a rectifier, energy in a battery AE, finished in a choice of two: variant 1-unregulated rectifier and variant of the 2-controlled rectifier and task adapted. Through simulation determine the differences between the two versions
Force of Choice: Optimizing Theater Special Operations Commands to Achieve Synchronized Effects
2012-12-01
GCC Geographic Combatant Command GFM Global Force Management GSN Global SOF Network (aka EGSN) IA Interagency IATF Interagency Task Force...and through African partners.75 SOCOM NCR was chosen because it is a primary outgrowth of the SOCOM Interagency Task Force ( IATF ), and the...result, SOCOM established the IATF and Special Operations Support Teams (SOST). While the IATF remained at SOCOM Headquarters at MacDill AFB, the
Operating Room of the Future: Advanced Technologies in Safe and Efficient Operating Rooms
2008-10-01
fit” or compatibility with different tasks. Ideally, the optimal match between tasks and well-designed display alternatives will be self -apparent...hierarchical display environment. The FARO robot arm is used as an accurate and reliable tracker to control a virtual camera. The virtual camera pose is...in learning outcomes due to self -feedback, improvements in learning outcomes due to instructor feedback and synchronous versus asynchronous
Gipson, Christina L; Gorman, Jamie C; Hessler, Eric E
2016-04-01
Coordination with others is such a fundamental part of human activity that it can happen unintentionally. This unintentional coordination can manifest as synchronization and is observed in physical and human systems alike. We investigated the role of top-down influences (prior knowledge of the perceptual modality their partner is using) and bottom-up factors (perceptual modality combination) on spontaneous interpersonal synchronization. We examine this phenomena with respect to two different theoretical perspectives that differently emphasize top-down and bottom-up factors in interpersonal synchronization: joint-action/shared cognition theories and ecological-interactive theories. In an empirical study twelve dyads performed a finger oscillation task while attending to each other's movements through either visual, auditory, or visual and auditory perceptual modalities. Half of the participants were given prior knowledge of their partner's perceptual capabilities for coordinating across these different perceptual modality combinations. We found that the effect of top-down influence depends on the perceptual modality combination between two individuals. When people used the same perceptual modalities, top-down influence resulted in less synchronization and when people used different perceptual modalities, top-down influence resulted in more synchronization. Furthermore, persistence in the change in behavior as a result of having perceptual information about each other ('social memory') was stronger when this top-down influence was present.
NASA Astrophysics Data System (ADS)
Chen, Dechao; Zhang, Yunong
2017-10-01
Dual-arm redundant robot systems are usually required to handle primary tasks, repetitively and synchronously in practical applications. In this paper, a jerk-level synchronous repetitive motion scheme is proposed to remedy the joint-angle drift phenomenon and achieve the synchronous control of a dual-arm redundant robot system. The proposed scheme is novelly resolved at jerk level, which makes the joint variables, i.e. joint angles, joint velocities and joint accelerations, smooth and bounded. In addition, two types of dynamics algorithms, i.e. gradient-type (G-type) and zeroing-type (Z-type) dynamics algorithms, for the design of repetitive motion variable vectors, are presented in detail with the corresponding circuit schematics. Subsequently, the proposed scheme is reformulated as two dynamical quadratic programs (DQPs) and further integrated into a unified DQP (UDQP) for the synchronous control of a dual-arm robot system. The optimal solution of the UDQP is found by the piecewise-linear projection equation neural network. Moreover, simulations and comparisons based on a six-degrees-of-freedom planar dual-arm redundant robot system substantiate the operation effectiveness and tracking accuracy of the robot system with the proposed scheme for repetitive motion and synchronous control.
NASA Technical Reports Server (NTRS)
Stankovic, Ana V.
2003-01-01
Professor Stankovic will be developing and refining Simulink based models of the PM alternator and comparing the simulation results with experimental measurements taken from the unit. Her first task is to validate the models using the experimental data. Her next task is to develop alternative control techniques for the application of the Brayton Cycle PM Alternator in a nuclear electric propulsion vehicle. The control techniques will be first simulated using the validated models then tried experimentally with hardware available at NASA. Testing and simulation of a 2KW PM synchronous generator with diode bridge output is described. The parameters of a synchronous PM generator have been measured and used in simulation. Test procedures have been developed to verify the PM generator model with diode bridge output. Experimental and simulation results are in excellent agreement.
When the rhythm disappears and the mind keeps dancing: sustained effects of attentional entrainment.
Trapp, Sabrina; Havlicek, Ondrej; Schirmer, Annett; Keller, Peter E
2018-01-17
Research has demonstrated that the human cognitive system allocates attention most efficiently to a stimulus that occurs in synchrony with an established rhythmic background. However, our environment is dynamic and constantly changing. What happens when rhythms to which our cognitive system adapted disappear? We addressed this question using a visual categorization task comprising emotional and neutral faces. The task was split into three blocks of which the first and the last were completed in silence. The second block was accompanied by an acoustic background rhythm that, for one group of participants, was synchronous with face presentations, and for another group was asynchronous. Irrespective of group, performance improved with background stimulation. Importantly, improved performance extended into the third silent block for the synchronous, but not for the asynchronous group. These data suggest that attentional entrainment resulting from rhythmic environmental regularities disintegrates only gradually after the regularities disappear.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Khaled Z.; Epifanovsky, Evgeny; Williams, Samuel
Coupled-cluster methods provide highly accurate models of molecular structure through explicit numerical calculation of tensors representing the correlation between electrons. These calculations are dominated by a sequence of tensor contractions, motivating the development of numerical libraries for such operations. While based on matrix–matrix multiplication, these libraries are specialized to exploit symmetries in the molecular structure and in electronic interactions, and thus reduce the size of the tensor representation and the complexity of contractions. The resulting algorithms are irregular and their parallelization has been previously achieved via the use of dynamic scheduling or specialized data decompositions. We introduce our efforts tomore » extend the Libtensor framework to work in the distributed memory environment in a scalable and energy-efficient manner. We achieve up to 240× speedup compared with the optimized shared memory implementation of Libtensor. We attain scalability to hundreds of thousands of compute cores on three distributed-memory architectures (Cray XC30 and XC40, and IBM Blue Gene/Q), and on a heterogeneous GPU-CPU system (Cray XK7). As the bottlenecks shift from being compute-bound DGEMM's to communication-bound collectives as the size of the molecular system scales, we adopt two radically different parallelization approaches for handling load-imbalance, tasking and bulk synchronous models. Nevertheless, we preserve a unified interface to both programming models to maintain the productivity of computational quantum chemists.« less
Reward Expectation Modulates Feedback-Related Negativity and EEG Spectra
Cohen, Michael X; Elger, Christian E.; Ranganath, Charan
2007-01-01
The ability to evaluate outcomes of previous decisions is critical to adaptive decision-making. The feedback-related negativity (FRN) is an event-related potential (ERP) modulation that distinguishes losses from wins, but little is known about the effects of outcome probability on these ERP responses. Further, little is known about the frequency characteristics of feedback processing, for example, event-related oscillations and phase synchronizations. Here, we report an EEG experiment designed to address these issues. Subjects engaged in a probabilistic reinforcement learning task in which we manipulated, across blocks, the probability of winning and losing to each of two possible decision options. Behaviorally, all subjects quickly adapted their decision-making to maximize rewards. ERP analyses revealed that the probability of reward modulated neural responses to wins, but not to losses. This was seen both across blocks as well as within blocks, as learning progressed. Frequency decomposition via complex wavelets revealed that EEG responses to losses, compared to wins, were associated with enhanced power and phase coherence in the theta frequency band. As in the ERP analyses, power and phase coherence values following wins but not losses were modulated by reward probability. Some findings between ERP and frequency analyses diverged, suggesting that these analytic approaches provide complementary insights into neural processing. These findings suggest that the neural mechanisms of feedback processing may differ between wins and losses. PMID:17257860
Ibrahim, Khaled Z.; Epifanovsky, Evgeny; Williams, Samuel; ...
2017-03-08
Coupled-cluster methods provide highly accurate models of molecular structure through explicit numerical calculation of tensors representing the correlation between electrons. These calculations are dominated by a sequence of tensor contractions, motivating the development of numerical libraries for such operations. While based on matrix–matrix multiplication, these libraries are specialized to exploit symmetries in the molecular structure and in electronic interactions, and thus reduce the size of the tensor representation and the complexity of contractions. The resulting algorithms are irregular and their parallelization has been previously achieved via the use of dynamic scheduling or specialized data decompositions. We introduce our efforts tomore » extend the Libtensor framework to work in the distributed memory environment in a scalable and energy-efficient manner. We achieve up to 240× speedup compared with the optimized shared memory implementation of Libtensor. We attain scalability to hundreds of thousands of compute cores on three distributed-memory architectures (Cray XC30 and XC40, and IBM Blue Gene/Q), and on a heterogeneous GPU-CPU system (Cray XK7). As the bottlenecks shift from being compute-bound DGEMM's to communication-bound collectives as the size of the molecular system scales, we adopt two radically different parallelization approaches for handling load-imbalance, tasking and bulk synchronous models. Nevertheless, we preserve a unified interface to both programming models to maintain the productivity of computational quantum chemists.« less
2011-08-15
system must, at a minimum, include design and configuration framework supporting: Part 1. Net Ready. The system must support net ‐ centric operations...Analyze, evaluate and incorporate relevant DoD Architecture Framework . 5) Document standards for each task / condition combination. 6) Prepare final FAA...task Analyze, evaluate and incorporate relevant Army Architecture Framework Document standards for each task/condition combination forming
Task planning with uncertainty for robotic systems. Thesis
NASA Technical Reports Server (NTRS)
Cao, Tiehua
1993-01-01
In a practical robotic system, it is important to represent and plan sequences of operations and to be able to choose an efficient sequence from them for a specific task. During the generation and execution of task plans, different kinds of uncertainty may occur and erroneous states need to be handled to ensure the efficiency and reliability of the system. An approach to task representation, planning, and error recovery for robotic systems is demonstrated. Our approach to task planning is based on an AND/OR net representation, which is then mapped to a Petri net representation of all feasible geometric states and associated feasibility criteria for net transitions. Task decomposition of robotic assembly plans based on this representation is performed on the Petri net for robotic assembly tasks, and the inheritance of properties of liveness, safeness, and reversibility at all levels of decomposition are explored. This approach provides a framework for robust execution of tasks through the properties of traceability and viability. Uncertainty in robotic systems are modeled by local fuzzy variables, fuzzy marking variables, and global fuzzy variables which are incorporated in fuzzy Petri nets. Analysis of properties and reasoning about uncertainty are investigated using fuzzy reasoning structures built into the net. Two applications of fuzzy Petri nets, robot task sequence planning and sensor-based error recovery, are explored. In the first application, the search space for feasible and complete task sequences with correct precedence relationships is reduced via the use of global fuzzy variables in reasoning about subgoals. In the second application, sensory verification operations are modeled by mutually exclusive transitions to reason about local and global fuzzy variables on-line and automatically select a retry or an alternative error recovery sequence when errors occur. Task sequencing and task execution with error recovery capability for one and multiple soft components in robotic systems are investigated.
NASA Astrophysics Data System (ADS)
Sepantaie, Marc M.; Namazi, Nader M.; Sepantaie, Amir M.
2016-05-01
This paper is devoted to addressing the synchronization, and detection of random binary data exposed to inherent channel variations existing in Free Space Optical (FSO) communication systems. This task is achieved by utilizing the identical synchronization methodology of Lorenz chaotic communication system, and its synergetic interaction in adversities imposed by the FSO channel. Moreover, the Lorenz system has been analyzed, and revealed to induce Stochastic Resonance (SR) once exposed to Additive White Gaussian Noise (AWGN). In particular, the resiliency of the Lorenz chaotic system, in light of channel adversities, has been attributed to the success of the proposed communication system. Furthermore, this paper advocates the use of Haar wavelet transform for enhanced detection capability of the proposed chaotic communication system, which utilizes Chaotic Parameter Modulation (CPM) technique for means of transmission.
Synchronized excitability in a network enables generation of internal neuronal sequences
Wang, Yingxue; Roth, Zachary; Pastalkova, Eva
2016-01-01
Hippocampal place field sequences are supported by sensory cues and network internal mechanisms. In contrast, sharp-wave (SPW) sequences, theta sequences, and episode field sequences are internally generated. The relationship of these sequences to memory is unclear. SPW sequences have been shown to support learning and have been assumed to also support episodic memory. Conversely, we demonstrate these SPW sequences were present in trained rats even after episodic memory was impaired and after other internal sequences – episode field and theta sequences – were eliminated. SPW sequences did not support memory despite continuing to ‘replay’ all task-related sequences – place- field and episode field sequences. Sequence replay occurred selectively during synchronous increases of population excitability -- SPWs. Similarly, theta sequences depended on the presence of repeated synchronized waves of excitability – theta oscillations. Thus, we suggest that either intermittent or rhythmic synchronized changes of excitability trigger sequential firing of neurons, which in turn supports learning and/or memory. DOI: http://dx.doi.org/10.7554/eLife.20697.001 PMID:27677848
An optimization approach for fitting canonical tensor decompositions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunlavy, Daniel M.; Acar, Evrim; Kolda, Tamara Gibson
Tensor decompositions are higher-order analogues of matrix decompositions and have proven to be powerful tools for data analysis. In particular, we are interested in the canonical tensor decomposition, otherwise known as the CANDECOMP/PARAFAC decomposition (CPD), which expresses a tensor as the sum of component rank-one tensors and is used in a multitude of applications such as chemometrics, signal processing, neuroscience, and web analysis. The task of computing the CPD, however, can be difficult. The typical approach is based on alternating least squares (ALS) optimization, which can be remarkably fast but is not very accurate. Previously, nonlinear least squares (NLS) methodsmore » have also been recommended; existing NLS methods are accurate but slow. In this paper, we propose the use of gradient-based optimization methods. We discuss the mathematical calculation of the derivatives and further show that they can be computed efficiently, at the same cost as one iteration of ALS. Computational experiments demonstrate that the gradient-based optimization methods are much more accurate than ALS and orders of magnitude faster than NLS.« less
Portable parallel portfolio optimization in the Aurora Financial Management System
NASA Astrophysics Data System (ADS)
Laure, Erwin; Moritsch, Hans
2001-07-01
Financial planning problems are formulated as large scale, stochastic, multiperiod, tree structured optimization problems. An efficient technique for solving this kind of problems is the nested Benders decomposition method. In this paper we present a parallel, portable, asynchronous implementation of this technique. To achieve our portability goals we elected the programming language Java for our implementation and used a high level Java based framework, called OpusJava, for expressing the parallelism potential as well as synchronization constraints. Our implementation is embedded within a modular decision support tool for portfolio and asset liability management, the Aurora Financial Management System.
Si, Jiwei; Li, Hongxia; Sun, Yan; Xu, Yanli; Sun, Yu
2016-01-01
The present study used the choice/no-choice method to investigate the effect of math anxiety on the strategy used in computational estimation and mental arithmetic tasks and to examine age-related differences in this regard. Fifty-seven fourth graders, 56 sixth graders, and 60 adults were randomly selected to participate in the experiment. Results showed the following: (1) High-anxious individuals were more likely to use a rounding-down strategy in the computational estimation task under the best-choice condition. Additionally, sixth-grade students and adults performed faster than fourth-grade students on the strategy execution parameter. Math anxiety affected response times (RTs) and the accuracy with which strategies were executed. (2) The execution of the partial-decomposition strategy was superior to that of the full-decomposition strategy on the mental arithmetic task. Low-math-anxious persons provided more accurate answers than did high-math-anxious participants under the no-choice condition. This difference was significant for sixth graders. With regard to the strategy selection parameter, the RTs for strategy selection varied with age. PMID:27803685
Si, Jiwei; Li, Hongxia; Sun, Yan; Xu, Yanli; Sun, Yu
2016-01-01
The present study used the choice/no-choice method to investigate the effect of math anxiety on the strategy used in computational estimation and mental arithmetic tasks and to examine age-related differences in this regard. Fifty-seven fourth graders, 56 sixth graders, and 60 adults were randomly selected to participate in the experiment. Results showed the following: (1) High-anxious individuals were more likely to use a rounding-down strategy in the computational estimation task under the best-choice condition. Additionally, sixth-grade students and adults performed faster than fourth-grade students on the strategy execution parameter. Math anxiety affected response times (RTs) and the accuracy with which strategies were executed. (2) The execution of the partial-decomposition strategy was superior to that of the full-decomposition strategy on the mental arithmetic task. Low-math-anxious persons provided more accurate answers than did high-math-anxious participants under the no-choice condition. This difference was significant for sixth graders. With regard to the strategy selection parameter, the RTs for strategy selection varied with age.
Morphological learning in a novel language: A cross-language comparison.
Havas, Viktória; Waris, Otto; Vaquero, Lucía; Rodríguez-Fornells, Antoni; Laine, Matti
2015-01-01
Being able to extract and interpret the internal structure of complex word forms such as the English word dance+r+s is crucial for successful language learning. We examined whether the ability to extract morphological information during word learning is affected by the morphological features of one's native tongue. Spanish and Finnish adult participants performed a word-picture associative learning task in an artificial language where the target words included a suffix marking the gender of the corresponding animate object. The short exposure phase was followed by a word recognition task and a generalization task for the suffix. The participants' native tongues vary greatly in terms of morphological structure, leading to two opposing hypotheses. On the one hand, Spanish speakers may be more effective in identifying gender in a novel language because this feature is present in Spanish but not in Finnish. On the other hand, Finnish speakers may have an advantage as the abundance of bound morphemes in their language calls for continuous morphological decomposition. The results support the latter alternative, suggesting that lifelong experience on morphological decomposition provides an advantage in novel morphological learning.
The two-way time synchronization system via a satellite voice channel
NASA Technical Reports Server (NTRS)
Heng-Qiu, Zheng; Ren-Huan, Zhang; Yong-Hui, HU
1994-01-01
A newly developed two-way time synchronization system is described in this paper. The system uses one voice channel at a SCPC satellite digital communication earth station, whose bandwidth is only 45 kHz, thus saving satellite resources greatly. The system is composed of one master station and one or several, up to sixty-two, secondary stations. The master and secondary stations are equipped with the same equipment, including a set of timing equipment, a synthetic data terminal for time synchronizing, and a interface unit between the data terminal and the satellite earth station. The synthetic data terminal for time synchronization also has an IRIG-B code generator and a translator. The data terminal of master station is the key part of whole system. The system synchronization process is full automatic, which is controlled by the master station. Employing an autoscanning technique and conversational mode, the system accomplishes the following tasks: linking up liaison with each secondary station in turn, establishing a coarse time synchronization, calibrating date (years, months, days) and time of day (hours, minutes, seconds), precisely measuring the time difference between local station and the opposite station, exchanging measurement data, statistically processing the data, rejecting error terms, printing the data, calculating the clock difference and correcting the phase, thus realizing real-time synchronization from one point to multiple points. We also designed an adaptive phase circuit to eliminate the phase ambiguity of the PSK demodulator. The experiments have shown that the time synchronization accuracy is better than 2 mu S. The system has been put into regular operation.
Sensorimotor Synchronization with Different Metrical Levels of Point-Light Dance Movements
Su, Yi-Huang
2016-01-01
Rhythm perception and synchronization have been extensively investigated in the auditory domain, as they underlie means of human communication such as music and speech. Although recent studies suggest comparable mechanisms for synchronizing with periodically moving visual objects, the extent to which it applies to ecologically relevant information, such as the rhythm of complex biological motion, remains unknown. The present study addressed this issue by linking rhythm of music and dance in the framework of action-perception coupling. As a previous study showed that observers perceived multiple metrical periodicities in dance movements that embodied this structure, the present study examined whether sensorimotor synchronization (SMS) to dance movements resembles what is known of auditory SMS. Participants watched a point-light figure performing two basic steps of Swing dance cyclically, in which the trunk bounced at every beat and the limbs moved at every second beat, forming two metrical periodicities. Participants tapped synchronously to the bounce of the trunk with or without the limbs moving in the stimuli (Experiment 1), or tapped synchronously to the leg movements with or without the trunk bouncing simultaneously (Experiment 2). Results showed that, while synchronization with the bounce (lower-level pulse) was not influenced by the presence or absence of limb movements (metrical accent), synchronization with the legs (beat) was improved by the presence of the bounce (metrical subdivision) across different movement types. The latter finding parallels the “subdivision benefit” often demonstrated in auditory tasks, suggesting common sensorimotor mechanisms for visual rhythms in dance and auditory rhythms in music. PMID:27199709
Leader emergence through interpersonal neural synchronization
Jiang, Jing; Chen, Chuansheng; Dai, Bohan; Shi, Guang; Ding, Guosheng; Liu, Li; Lu, Chunming
2015-01-01
The neural mechanism of leader emergence is not well understood. This study investigated (i) whether interpersonal neural synchronization (INS) plays an important role in leader emergence, and (ii) whether INS and leader emergence are associated with the frequency or the quality of communications. Eleven three-member groups were asked to perform a leaderless group discussion (LGD) task, and their brain activities were recorded via functional near infrared spectroscopy (fNIRS)-based hyperscanning. Video recordings of the discussions were coded for leadership and communication. Results showed that the INS for the leader–follower (LF) pairs was higher than that for the follower–follower (FF) pairs in the left temporo-parietal junction (TPJ), an area important for social mentalizing. Although communication frequency was higher for the LF pairs than for the FF pairs, the frequency of leader-initiated and follower-initiated communication did not differ significantly. Moreover, INS for the LF pairs was significantly higher during leader-initiated communication than during follower-initiated communications. In addition, INS for the LF pairs during leader-initiated communication was significantly correlated with the leaders’ communication skills and competence, but not their communication frequency. Finally, leadership could be successfully predicted based on INS as well as communication frequency early during the LGD (before half a minute into the task). In sum, this study found that leader emergence was characterized by high-level neural synchronization between the leader and followers and that the quality, rather than the frequency, of communications was associated with synchronization. These results suggest that leaders emerge because they are able to say the right things at the right time. PMID:25831535
Leader emergence through interpersonal neural synchronization.
Jiang, Jing; Chen, Chuansheng; Dai, Bohan; Shi, Guang; Ding, Guosheng; Liu, Li; Lu, Chunming
2015-04-07
The neural mechanism of leader emergence is not well understood. This study investigated (i) whether interpersonal neural synchronization (INS) plays an important role in leader emergence, and (ii) whether INS and leader emergence are associated with the frequency or the quality of communications. Eleven three-member groups were asked to perform a leaderless group discussion (LGD) task, and their brain activities were recorded via functional near infrared spectroscopy (fNIRS)-based hyperscanning. Video recordings of the discussions were coded for leadership and communication. Results showed that the INS for the leader-follower (LF) pairs was higher than that for the follower-follower (FF) pairs in the left temporo-parietal junction (TPJ), an area important for social mentalizing. Although communication frequency was higher for the LF pairs than for the FF pairs, the frequency of leader-initiated and follower-initiated communication did not differ significantly. Moreover, INS for the LF pairs was significantly higher during leader-initiated communication than during follower-initiated communications. In addition, INS for the LF pairs during leader-initiated communication was significantly correlated with the leaders' communication skills and competence, but not their communication frequency. Finally, leadership could be successfully predicted based on INS as well as communication frequency early during the LGD (before half a minute into the task). In sum, this study found that leader emergence was characterized by high-level neural synchronization between the leader and followers and that the quality, rather than the frequency, of communications was associated with synchronization. These results suggest that leaders emerge because they are able to say the right things at the right time.
NASA Astrophysics Data System (ADS)
Hu, Xiaogang; Rymer, William Z.; Suresh, Nina L.
2014-04-01
Objective. The aim of this study is to assess the accuracy of a surface electromyogram (sEMG) motor unit (MU) decomposition algorithm during low levels of muscle contraction. Approach. A two-source method was used to verify the accuracy of the sEMG decomposition system, by utilizing simultaneous intramuscular and surface EMG recordings from the human first dorsal interosseous muscle recorded during isometric trapezoidal force contractions. Spike trains from each recording type were decomposed independently utilizing two different algorithms, EMGlab and dEMG decomposition algorithms. The degree of agreement of the decomposed spike timings was assessed for three different segments of the EMG signals, corresponding to specified regions in the force task. A regression analysis was performed to examine whether certain properties of the sEMG and force signal can predict the decomposition accuracy. Main results. The average accuracy of successful decomposition among the 119 MUs that were common to both intramuscular and surface records was approximately 95%, and the accuracy was comparable between the different segments of the sEMG signals (i.e., force ramp-up versus steady state force versus combined). The regression function between the accuracy and properties of sEMG and force signals revealed that the signal-to-noise ratio of the action potential and stability in the action potential records were significant predictors of the surface decomposition accuracy. Significance. The outcomes of our study confirm the accuracy of the sEMG decomposition algorithm during low muscle contraction levels and provide confidence in the overall validity of the surface dEMG decomposition algorithm.
Bells, Sonya; Lefebvre, Jérémie; Prescott, Steven A; Dockstader, Colleen; Bouffet, Eric; Skocic, Jovanka; Laughlin, Suzanne; Mabbott, Donald J
2017-08-23
Cognition is compromised by white matter (WM) injury but the neurophysiological alterations linking them remain unclear. We hypothesized that reduced neural synchronization caused by disruption of neural signal propagation is involved. To test this, we evaluated group differences in: diffusion tensor WM microstructure measures within the optic radiations, primary visual area (V1), and cuneus; neural phase synchrony to a visual attention cue during visual-motor task; and reaction time to a response cue during the same task between 26 pediatric patients (17/9: male/female) treated with cranial radiation treatment for a brain tumor (12.67 ± 2.76 years), and 26 healthy children (16/10: male/female; 12.01 ± 3.9 years). We corroborated our findings using a corticocortical computational model representing perturbed signal conduction from myelin. Patients show delayed reaction time, WM compromise, and reduced phase synchrony during visual attention compared with healthy children. Notably, using partial least-squares-path modeling we found that WM insult within the optic radiations, V1, and cuneus is a strong predictor of the slower reaction times via disruption of neural synchrony in visual cortex. Observed changes in synchronization were reproduced in a computational model of WM injury. These findings provide new evidence linking cognition with WM via the reliance of neural synchronization on propagation of neural signals. SIGNIFICANCE STATEMENT By comparing brain tumor patients to healthy children, we establish that changes in the microstructure of the optic radiations and neural synchrony during visual attention predict reaction time. Furthermore, by testing the directionality of these links through statistical modeling and verifying our findings with computational modeling, we infer a causal relationship, namely that changes in white matter microstructure impact cognition in part by disturbing the ability of neural assemblies to synchronize. Together, our human imaging data and computer simulations show a fundamental connection between WM microstructure and neural synchronization that is critical for cognitive processing. Copyright © 2017 the authors 0270-6474/17/378227-12$15.00/0.
Joint Rhythmic Movement Increases 4-Year-Old Children's Prosocial Sharing and Fairness Toward Peers.
Rabinowitch, Tal-Chen; Meltzoff, Andrew N
2017-01-01
The allocation of resources to a peer partner is a prosocial act that is of fundamental importance. Joint rhythmic movement, such as occurs during musical interaction, can induce positive social experiences, which may play a role in developing and enhancing young children's prosocial skills. Here, we investigated whether joint rhythmic movement, free of musical context, increases 4-year-olds' sharing and sense of fairness in a resource allocation task involving peers. We developed a precise procedure for administering joint synchronous experience, joint asynchronous experience, and a baseline control involving no treatment. Then we tested how participants allocated resources between self and peer. We found an increase in the generous allocation of resources to peers following both synchronous and asynchronous movement compared to no treatment. At a more theoretical level, this result is considered in relation to previous work testing other aspects of child prosociality, for example, peer cooperation, which can be distinguished from judgments of fairness in resource allocation tasks. We draw a conceptual distinction between two types of prosocial behavior: resource allocation (an other-directed individual behavior) and cooperation (a goal-directed collaborative endeavor). Our results highlight how rhythmic interactions, which are prominent in joint musical engagements and synchronized activity, influence prosocial behavior between preschool peers.
Joint Rhythmic Movement Increases 4-Year-Old Children’s Prosocial Sharing and Fairness Toward Peers
Rabinowitch, Tal-Chen; Meltzoff, Andrew N.
2017-01-01
The allocation of resources to a peer partner is a prosocial act that is of fundamental importance. Joint rhythmic movement, such as occurs during musical interaction, can induce positive social experiences, which may play a role in developing and enhancing young children’s prosocial skills. Here, we investigated whether joint rhythmic movement, free of musical context, increases 4-year-olds’ sharing and sense of fairness in a resource allocation task involving peers. We developed a precise procedure for administering joint synchronous experience, joint asynchronous experience, and a baseline control involving no treatment. Then we tested how participants allocated resources between self and peer. We found an increase in the generous allocation of resources to peers following both synchronous and asynchronous movement compared to no treatment. At a more theoretical level, this result is considered in relation to previous work testing other aspects of child prosociality, for example, peer cooperation, which can be distinguished from judgments of fairness in resource allocation tasks. We draw a conceptual distinction between two types of prosocial behavior: resource allocation (an other-directed individual behavior) and cooperation (a goal-directed collaborative endeavor). Our results highlight how rhythmic interactions, which are prominent in joint musical engagements and synchronized activity, influence prosocial behavior between preschool peers. PMID:28694786
Bingham, Adrian; Arjunan, Sridhar P; Kumar, Dinesh K
2016-08-01
In this study we have tested the hypothesis regarding the increase in synchronization with the onset of muscle fatigue. For this aim, we have investigated the difference in the synchronicity between high density surface electromyogram (sEMG) channels of the rested muscles and when at the limit of endurance. Synchronization was measured by computing and normalizing the mutual information between the sEMG signals recorded from the high-density array electrode locations. Ten volunteers (Age range: 21 and 35 years; Mean age = 26 years; Male = 6, Female = 4) participated in our experiment. The participants performed isometric dorsiflexion of their dominate foot at two levels of contraction; 40% and 80% of their maximum voluntary contraction (MVC) until task failure. During the experiment an array of 64 electrodes (16 by 4) placed over the TA parallel to the muscle fiber was used to record the HD-sEMG. Normalized Mutual Information (NMI) between electrodes was calculated using the HD-sEMG data and then analyzed. The results show that that the average NMI of the TA significantly increased during fatigue at both levels of contraction. There was a statistically significant difference between NMI of the rested muscle compared with it being at the point of task failure.
Fellner, Marie-Christin; Bäuml, Karl-Heinz T; Hanslmayr, Simon
2013-10-01
Memory crucially depends on the way information is processed during encoding. Differences in processes during encoding not only lead to differences in memory performance but also rely on different brain networks. Although these assumptions are corroborated by several previous fMRI and ERP studies, little is known about how brain oscillations dissociate between different memory encoding tasks. The present study therefore compared encoding related brain oscillatory activity elicited by two very efficient encoding tasks: a typical deep semantic item feature judgment task and a more elaborative survival encoding task. Subjects were asked to judge words either for survival relevance or for animacy, as indicated by a cue presented prior to the item. This allowed dissociating pre-item activity from item-related activity for both tasks. Replicating prior studies, survival processing led to higher recognition performance than semantic processing. Successful encoding in the semantic condition was reflected by a strong decrease in alpha and beta power, whereas successful encoding in the survival condition was related to increased alpha and beta long-range phase synchrony. Moreover, a pre-item subsequent memory effect in theta power was found which did not vary with encoding condition. These results show that measures of local synchrony (power) and global long range-synchrony (phase synchronization) dissociate between memory encoding processes. Whereas semantic encoding was reflected in decreases in local synchrony, increases in global long range synchrony were related to elaborative survival encoding, presumably reflecting the involvement of a more widespread cortical network in this task. Copyright © 2013 Elsevier Inc. All rights reserved.
Task-level control for autonomous robots
NASA Technical Reports Server (NTRS)
Simmons, Reid
1994-01-01
Task-level control refers to the integration and coordination of planning, perception, and real-time control to achieve given high-level goals. Autonomous mobile robots need task-level control to effectively achieve complex tasks in uncertain, dynamic environments. This paper describes the Task Control Architecture (TCA), an implemented system that provides commonly needed constructs for task-level control. Facilities provided by TCA include distributed communication, task decomposition and sequencing, resource management, monitoring and exception handling. TCA supports a design methodology in which robot systems are developed incrementally, starting first with deliberative plans that work in nominal situations, and then layering them with reactive behaviors that monitor plan execution and handle exceptions. To further support this approach, design and analysis tools are under development to provide ways of graphically viewing the system and validating its behavior.
VAXELN Experimentation: Programming a Real-Time Periodic Task Dispatcher Using VAXELN Ada 1.1
1987-11-01
synchronization to the SQM and VAXELN semaphores. Based on real-time scheduling theory, the optimal rate-monotonic scheduling algorithm [Lui 73...schedulability test based on the rate-monotonic algorithm , namely task-lumping [Sha 871, was necessary to cal- culate the theoretically expected schedulability...8217 Guide Digital Equipment Corporation, Maynard, MA, 1986. [Lui 73] Liu, C.L., Layland, J.W. Scheduling Algorithms for Multi-programming in a Hard-Real-Time
Yang, Yana; Hua, Changchun; Guan, Xinping
2016-03-01
Due to the cognitive limitations of the human operator and lack of complete information about the remote environment, the work performance of such teleoperation systems cannot be guaranteed in most cases. However, some practical tasks conducted by the teleoperation system require high performances, such as tele-surgery needs satisfactory high speed and more precision control results to guarantee patient' health status. To obtain some satisfactory performances, the error constrained control is employed by applying the barrier Lyapunov function (BLF). With the constrained synchronization errors, some high performances, such as, high convergence speed, small overshoot, and an arbitrarily predefined small residual constrained synchronization error can be achieved simultaneously. Nevertheless, like many classical control schemes only the asymptotic/exponential convergence, i.e., the synchronization errors converge to zero as time goes infinity can be achieved with the error constrained control. It is clear that finite time convergence is more desirable. To obtain a finite-time synchronization performance, the terminal sliding mode (TSM)-based finite time control method is developed for teleoperation system with position error constrained in this paper. First, a new nonsingular fast terminal sliding mode (NFTSM) surface with new transformed synchronization errors is proposed. Second, adaptive neural network system is applied for dealing with the system uncertainties and the external disturbances. Third, the BLF is applied to prove the stability and the nonviolation of the synchronization errors constraints. Finally, some comparisons are conducted in simulation and experiment results are also presented to show the effectiveness of the proposed method.
Neural Synchronization and Cryptography
NASA Astrophysics Data System (ADS)
Ruttor, Andreas
2007-11-01
Neural networks can synchronize by learning from each other. In the case of discrete weights full synchronization is achieved in a finite number of steps. Additional networks can be trained by using the inputs and outputs generated during this process as examples. Several learning rules for both tasks are presented and analyzed. In the case of Tree Parity Machines synchronization is much faster than learning. Scaling laws for the number of steps needed for full synchronization and successful learning are derived using analytical models. They indicate that the difference between both processes can be controlled by changing the synaptic depth. In the case of bidirectional interaction the synchronization time increases proportional to the square of this parameter, but it grows exponentially, if information is transmitted in one direction only. Because of this effect neural synchronization can be used to construct a cryptographic key-exchange protocol. Here the partners benefit from mutual interaction, so that a passive attacker is usually unable to learn the generated key in time. The success probabilities of different attack methods are determined by numerical simulations and scaling laws are derived from the data. They show that the partners can reach any desired level of security by just increasing the synaptic depth. Then the complexity of a successful attack grows exponentially, but there is only a polynomial increase of the effort needed to generate a key. Further improvements of security are possible by replacing the random inputs with queries generated by the partners.
Ireland, Kierla; Parker, Averil; Foster, Nicholas; Penhune, Virginia
2018-01-01
Measuring musical abilities in childhood can be challenging. When music training and maturation occur simultaneously, it is difficult to separate the effects of specific experience from age-based changes in cognitive and motor abilities. The goal of this study was to develop age-equivalent scores for two measures of musical ability that could be reliably used with school-aged children (7-13) with and without musical training. The children's Rhythm Synchronization Task (c-RST) and the children's Melody Discrimination Task (c-MDT) were adapted from adult tasks developed and used in our laboratories. The c-RST is a motor task in which children listen and then try to synchronize their taps with the notes of a woodblock rhythm while it plays twice in a row. The c-MDT is a perceptual task in which the child listens to two melodies and decides if the second was the same or different. We administered these tasks to 213 children in music camps (musicians, n = 130) and science camps (non-musicians, n = 83). We also measured children's paced tapping, non-paced tapping, and phonemic discrimination as baseline motor and auditory abilities We estimated internal-consistency reliability for both tasks, and compared children's performance to results from studies with adults. As expected, musically trained children outperformed those without music lessons, scores decreased as difficulty increased, and older children performed the best. Using non-musicians as a reference group, we generated a set of age-based z-scores, and used them to predict task performance with additional years of training. Years of lessons significantly predicted performance on both tasks, over and above the effect of age. We also assessed the relation between musician's scores on music tasks, baseline tasks, auditory working memory, and non-verbal reasoning. Unexpectedly, musician children outperformed non-musicians in two of three baseline tasks. The c-RST and c-MDT fill an important need for researchers interested in evaluating the impact of musical training in longitudinal studies, those interested in comparing the efficacy of different training methods, and for those assessing the impact of training on non-musical cognitive abilities such as language processing.
Ireland, Kierla; Parker, Averil; Foster, Nicholas; Penhune, Virginia
2018-01-01
Measuring musical abilities in childhood can be challenging. When music training and maturation occur simultaneously, it is difficult to separate the effects of specific experience from age-based changes in cognitive and motor abilities. The goal of this study was to develop age-equivalent scores for two measures of musical ability that could be reliably used with school-aged children (7–13) with and without musical training. The children's Rhythm Synchronization Task (c-RST) and the children's Melody Discrimination Task (c-MDT) were adapted from adult tasks developed and used in our laboratories. The c-RST is a motor task in which children listen and then try to synchronize their taps with the notes of a woodblock rhythm while it plays twice in a row. The c-MDT is a perceptual task in which the child listens to two melodies and decides if the second was the same or different. We administered these tasks to 213 children in music camps (musicians, n = 130) and science camps (non-musicians, n = 83). We also measured children's paced tapping, non-paced tapping, and phonemic discrimination as baseline motor and auditory abilities We estimated internal-consistency reliability for both tasks, and compared children's performance to results from studies with adults. As expected, musically trained children outperformed those without music lessons, scores decreased as difficulty increased, and older children performed the best. Using non-musicians as a reference group, we generated a set of age-based z-scores, and used them to predict task performance with additional years of training. Years of lessons significantly predicted performance on both tasks, over and above the effect of age. We also assessed the relation between musician's scores on music tasks, baseline tasks, auditory working memory, and non-verbal reasoning. Unexpectedly, musician children outperformed non-musicians in two of three baseline tasks. The c-RST and c-MDT fill an important need for researchers interested in evaluating the impact of musical training in longitudinal studies, those interested in comparing the efficacy of different training methods, and for those assessing the impact of training on non-musical cognitive abilities such as language processing. PMID:29674984
NASA Astrophysics Data System (ADS)
Gao, Shibo; Cheng, Yongmei; Song, Chunhua
2013-09-01
The technology of vision-based probe-and-drogue autonomous aerial refueling is an amazing task in modern aviation for both manned and unmanned aircraft. A key issue is to determine the relative orientation and position of the drogue and the probe accurately for relative navigation system during the approach phase, which requires locating the drogue precisely. Drogue detection is a challenging task due to disorderly motion of drogue caused by both the tanker wake vortex and atmospheric turbulence. In this paper, the problem of drogue detection is considered as a problem of moving object detection. A drogue detection algorithm based on low rank and sparse decomposition with local multiple features is proposed. The global and local information of drogue is introduced into the detection model in a unified way. The experimental results on real autonomous aerial refueling videos show that the proposed drogue detection algorithm is effective.
Robust-mode analysis of hydrodynamic flows
NASA Astrophysics Data System (ADS)
Roy, Sukesh; Gord, James R.; Hua, Jia-Chen; Gunaratne, Gemunu H.
2017-04-01
The emergence of techniques to extract high-frequency high-resolution data introduces a new avenue for modal decomposition to assess the underlying dynamics, especially of complex flows. However, this task requires the differentiation of robust, repeatable flow constituents from noise and other irregular features of a flow. Traditional approaches involving low-pass filtering and principle components analysis have shortcomings. The approach outlined here, referred to as robust-mode analysis, is based on Koopman decomposition. Three applications to (a) a counter-rotating cellular flame state, (b) variations in financial markets, and (c) turbulent injector flows are provided.
Multiple multicontrol unitary operations: Implementation and applications
NASA Astrophysics Data System (ADS)
Lin, Qing
2018-04-01
The efficient implementation of computational tasks is critical to quantum computations. In quantum circuits, multicontrol unitary operations are important components. Here, we present an extremely efficient and direct approach to multiple multicontrol unitary operations without decomposition to CNOT and single-photon gates. With the proposed approach, the necessary two-photon operations could be reduced from O( n 3) with the traditional decomposition approach to O( n), which will greatly relax the requirements and make large-scale quantum computation feasible. Moreover, we propose the potential application to the ( n- k)-uniform hypergraph state.
Audiovisual Temporal Processing and Synchrony Perception in the Rat.
Schormans, Ashley L; Scott, Kaela E; Vo, Albert M Q; Tyker, Anna; Typlt, Marei; Stolzberg, Daniel; Allman, Brian L
2016-01-01
Extensive research on humans has improved our understanding of how the brain integrates information from our different senses, and has begun to uncover the brain regions and large-scale neural activity that contributes to an observer's ability to perceive the relative timing of auditory and visual stimuli. In the present study, we developed the first behavioral tasks to assess the perception of audiovisual temporal synchrony in rats. Modeled after the parameters used in human studies, separate groups of rats were trained to perform: (1) a simultaneity judgment task in which they reported whether audiovisual stimuli at various stimulus onset asynchronies (SOAs) were presented simultaneously or not; and (2) a temporal order judgment task in which they reported whether they perceived the auditory or visual stimulus to have been presented first. Furthermore, using in vivo electrophysiological recordings in the lateral extrastriate visual (V2L) cortex of anesthetized rats, we performed the first investigation of how neurons in the rat multisensory cortex integrate audiovisual stimuli presented at different SOAs. As predicted, rats ( n = 7) trained to perform the simultaneity judgment task could accurately (~80%) identify synchronous vs. asynchronous (200 ms SOA) trials. Moreover, the rats judged trials at 10 ms SOA to be synchronous, whereas the majority (~70%) of trials at 100 ms SOA were perceived to be asynchronous. During the temporal order judgment task, rats ( n = 7) perceived the synchronous audiovisual stimuli to be "visual first" for ~52% of the trials, and calculation of the smallest timing interval between the auditory and visual stimuli that could be detected in each rat (i.e., the just noticeable difference (JND)) ranged from 77 ms to 122 ms. Neurons in the rat V2L cortex were sensitive to the timing of audiovisual stimuli, such that spiking activity was greatest during trials when the visual stimulus preceded the auditory by 20-40 ms. Ultimately, given that our behavioral and electrophysiological results were consistent with studies conducted on human participants and previous recordings made in multisensory brain regions of different species, we suggest that the rat represents an effective model for studying audiovisual temporal synchrony at both the neuronal and perceptual level.
Audiovisual Temporal Processing and Synchrony Perception in the Rat
Schormans, Ashley L.; Scott, Kaela E.; Vo, Albert M. Q.; Tyker, Anna; Typlt, Marei; Stolzberg, Daniel; Allman, Brian L.
2017-01-01
Extensive research on humans has improved our understanding of how the brain integrates information from our different senses, and has begun to uncover the brain regions and large-scale neural activity that contributes to an observer’s ability to perceive the relative timing of auditory and visual stimuli. In the present study, we developed the first behavioral tasks to assess the perception of audiovisual temporal synchrony in rats. Modeled after the parameters used in human studies, separate groups of rats were trained to perform: (1) a simultaneity judgment task in which they reported whether audiovisual stimuli at various stimulus onset asynchronies (SOAs) were presented simultaneously or not; and (2) a temporal order judgment task in which they reported whether they perceived the auditory or visual stimulus to have been presented first. Furthermore, using in vivo electrophysiological recordings in the lateral extrastriate visual (V2L) cortex of anesthetized rats, we performed the first investigation of how neurons in the rat multisensory cortex integrate audiovisual stimuli presented at different SOAs. As predicted, rats (n = 7) trained to perform the simultaneity judgment task could accurately (~80%) identify synchronous vs. asynchronous (200 ms SOA) trials. Moreover, the rats judged trials at 10 ms SOA to be synchronous, whereas the majority (~70%) of trials at 100 ms SOA were perceived to be asynchronous. During the temporal order judgment task, rats (n = 7) perceived the synchronous audiovisual stimuli to be “visual first” for ~52% of the trials, and calculation of the smallest timing interval between the auditory and visual stimuli that could be detected in each rat (i.e., the just noticeable difference (JND)) ranged from 77 ms to 122 ms. Neurons in the rat V2L cortex were sensitive to the timing of audiovisual stimuli, such that spiking activity was greatest during trials when the visual stimulus preceded the auditory by 20–40 ms. Ultimately, given that our behavioral and electrophysiological results were consistent with studies conducted on human participants and previous recordings made in multisensory brain regions of different species, we suggest that the rat represents an effective model for studying audiovisual temporal synchrony at both the neuronal and perceptual level. PMID:28119580
Reduced beta connectivity during emotional face processing in adolescents with autism.
Leung, Rachel C; Ye, Annette X; Wong, Simeon M; Taylor, Margot J; Doesburg, Sam M
2014-01-01
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social cognition. The biological basis of deficits in social cognition in ASD, and their difficulty in processing emotional face information in particular, remains unclear. Atypical communication within and between brain regions has been reported in ASD. Interregional phase-locking is a neurophysiological mechanism mediating communication among brain areas and is understood to support cognitive functions. In the present study we investigated interregional magnetoencephalographic phase synchronization during the perception of emotional faces in adolescents with ASD. A total of 22 adolescents with ASD (18 males, mean age =14.2 ± 1.15 years, 22 right-handed) with mild to no cognitive delay and 17 healthy controls (14 males, mean age =14.4 ± 0.33 years, 16 right-handed) performed an implicit emotional processing task requiring perception of happy, angry and neutral faces while we recorded neuromagnetic signals. The faces were presented rapidly (80 ms duration) to the left or right of a central fixation cross and participants responded to a scrambled pattern that was presented concurrently on the opposite side of the fixation point. Task-dependent interregional phase-locking was calculated among source-resolved brain regions. Task-dependent increases in interregional beta synchronization were observed. Beta-band interregional phase-locking in adolescents with ASD was reduced, relative to controls, during the perception of angry faces in a distributed network involving the right fusiform gyrus and insula. No significant group differences were found for happy or neutral faces, or other analyzed frequency ranges. Significant reductions in task-dependent beta connectivity strength, clustering and eigenvector centrality (all P <0.001) in the right insula were found in adolescents with ASD, relative to controls. Reduced beta synchronization may reflect inadequate recruitment of task-relevant networks during emotional face processing in ASD. The right insula, specifically, was a hub of reduced functional connectivity and may play a prominent role in the inability to effectively extract emotional information from faces. These findings suggest that functional disconnection in brain networks mediating emotional processes may contribute to deficits in social cognition in this population.
The coordination dynamics of social neuromarkers.
Tognoli, Emmanuelle; Kelso, J A Scott
2015-01-01
Social behavior is a complex integrative function that entails many aspects of the brain's sensory, cognitive, emotional and movement capacities. Its neural processes are seldom simultaneous but occur according to precise spatiotemporal choreographies, manifested by the coordination of their oscillations within and between brains. Methods with good temporal resolution can help to identify so-called "neuromarkers" of social function and aid in disentangling the dynamical architecture of social brains. In our ongoing research, we have used dual-electroencephalography (EEG) to study neuromarker dynamics during synchronic interactions in which pairs of subjects coordinate behavior spontaneously and intentionally (social coordination) and during diachronic transactions that require subjects to perceive or behave in turn (action observation, delayed imitation). In this paper, after outlining our dynamical approach to the neurophysiological basis of social behavior, we examine commonalities and differences in the neuromarkers that are recruited for both kinds of tasks. We find the neuromarker landscape to be task-specific: synchronic paradigms of social coordination reveal medial mu, alpha and the phi complex as contributing neuromarkers. Diachronic tasks recruit alpha as well, in addition to lateral mu rhythms and the newly discovered nu and kappa rhythms whose functional significance is still unclear. Social coordination, observation, and delayed imitation share commonality of context: in each of our experiments, subjects exchanged information through visual perception and moved in similar ways. Nonetheless, there was little overlap between their neuromarkers, a result that hints strongly of task-specific neural mechanisms for social behavior. The only neuromarker that transcended both synchronic and diachronic social behaviors was the ubiquitous alpha rhythm, which appears to be a key signature of visually-mediated social behaviors. The present paper is both an entry point and a challenge: much work remains to determine the nature and scope of recruitment of other neuromarkers, and to create theoretical models of their within- and between-brain dynamics during social interaction.
The coordination dynamics of social neuromarkers
Tognoli, Emmanuelle; Kelso, J. A. Scott
2015-01-01
Social behavior is a complex integrative function that entails many aspects of the brain’s sensory, cognitive, emotional and movement capacities. Its neural processes are seldom simultaneous but occur according to precise spatiotemporal choreographies, manifested by the coordination of their oscillations within and between brains. Methods with good temporal resolution can help to identify so-called “neuromarkers” of social function and aid in disentangling the dynamical architecture of social brains. In our ongoing research, we have used dual-electroencephalography (EEG) to study neuromarker dynamics during synchronic interactions in which pairs of subjects coordinate behavior spontaneously and intentionally (social coordination) and during diachronic transactions that require subjects to perceive or behave in turn (action observation, delayed imitation). In this paper, after outlining our dynamical approach to the neurophysiological basis of social behavior, we examine commonalities and differences in the neuromarkers that are recruited for both kinds of tasks. We find the neuromarker landscape to be task-specific: synchronic paradigms of social coordination reveal medial mu, alpha and the phi complex as contributing neuromarkers. Diachronic tasks recruit alpha as well, in addition to lateral mu rhythms and the newly discovered nu and kappa rhythms whose functional significance is still unclear. Social coordination, observation, and delayed imitation share commonality of context: in each of our experiments, subjects exchanged information through visual perception and moved in similar ways. Nonetheless, there was little overlap between their neuromarkers, a result that hints strongly of task-specific neural mechanisms for social behavior. The only neuromarker that transcended both synchronic and diachronic social behaviors was the ubiquitous alpha rhythm, which appears to be a key signature of visually-mediated social behaviors. The present paper is both an entry point and a challenge: much work remains to determine the nature and scope of recruitment of other neuromarkers, and to create theoretical models of their within- and between-brain dynamics during social interaction. PMID:26557067
Dong, Chao; Qin, Ling; Liu, Yongchun; Zhang, Xinan; Sato, Yu
2011-01-01
Repeated acoustic events are ubiquitous temporal features of natural sounds. To reveal the neural representation of the sound repetition rate, a number of electrophysiological studies have been conducted on various mammals and it has been proposed that both the spike-time and firing rate of primary auditory cortex (A1) neurons encode the repetition rate. However, previous studies rarely examined how the experimental animals perceive the difference in the sound repetition rate, and a caveat to these experiments is that they compared physiological data obtained from animals with psychophysical data obtained from humans. In this study, for the first time, we directly investigated acoustic perception and the underlying neural mechanisms in the same experimental animal by examining spike activities in the A1 of free-moving cats while performing a Go/No-go task to discriminate the click-trains at different repetition rates (12.5-200 Hz). As reported by previous studies on passively listening animals, A1 neurons showed both synchronized and non-synchronized responses to the click-trains. We further found that the neural performance estimated from the precise temporal information of synchronized units was good enough to distinguish all 16.7-200 Hz from the 12.5 Hz repetition rate; however, the cats showed declining behavioral performance with the decrease of the target repetition rate, indicating an increase of difficulty in discriminating two slower click-trains. Such behavioral performance was well explained by the firing rate of some synchronized and non-synchronized units. Trial-by-trial analysis indicated that A1 activity was not affected by the cat's judgment of behavioral response. Our results suggest that the main function of A1 is to effectively represent temporal signals using both spike timing and firing rate, while the cats may read out the rate-coding information to perform the task in this experiment.
Dynamic Load Balancing Based on Constrained K-D Tree Decomposition for Parallel Particle Tracing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiang; Guo, Hanqi; Yuan, Xiaoru
Particle tracing is a fundamental technique in flow field data visualization. In this work, we present a novel dynamic load balancing method for parallel particle tracing. Specifically, we employ a constrained k-d tree decomposition approach to dynamically redistribute tasks among processes. Each process is initially assigned a regularly partitioned block along with duplicated ghost layer under the memory limit. During particle tracing, the k-d tree decomposition is dynamically performed by constraining the cutting planes in the overlap range of duplicated data. This ensures that each process is reassigned particles as even as possible, and on the other hand the newmore » assigned particles for a process always locate in its block. Result shows good load balance and high efficiency of our method.« less
Ananth, D V N; Nagesh Kumar, G V
2016-05-01
With increase in electric power demand, transmission lines were forced to operate close to its full load and due to the drastic change in weather conditions, thermal limit is increasing and the system is operating with less security margin. To meet the increased power demand, a doubly fed induction generator (DFIG) based wind generation system is a better alternative. For improving power flow capability and increasing security STATCOM can be adopted. As per modern grid rules, DFIG needs to operate without losing synchronism called low voltage ride through (LVRT) during severe grid faults. Hence, an enhanced field oriented control technique (EFOC) was adopted in Rotor Side Converter of DFIG converter to improve power flow transfer and to improve dynamic and transient stability. A STATCOM is coordinated to the system for obtaining much better stability and enhanced operation during grid fault. For the EFOC technique, rotor flux reference changes its value from synchronous speed to zero during fault for injecting current at the rotor slip frequency. In this process DC-Offset component of flux is controlled, decomposition during symmetric and asymmetric faults. The offset decomposition of flux will be oscillatory in a conventional field oriented control, whereas in EFOC it was aimed to damp quickly. This paper mitigates voltage and limits surge currents to enhance the operation of DFIG during symmetrical and asymmetrical faults. The system performance with different types of faults like single line to ground, double line to ground and triple line to ground was applied and compared without and with a STATCOM occurring at the point of common coupling with fault resistance of a very small value at 0.001Ω. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Distributed Task Offloading in Heterogeneous Vehicular Crowd Sensing
Liu, Yazhi; Wang, Wendong; Ma, Yuekun; Yang, Zhigang; Yu, Fuxing
2016-01-01
The ability of road vehicles to efficiently execute different sensing tasks varies because of the heterogeneity in their sensing ability and trajectories. Therefore, the data collection sensing task, which requires tempo-spatial sensing data, becomes a serious problem in vehicular sensing systems, particularly those with limited sensing capabilities. A utility-based sensing task decomposition and offloading algorithm is proposed in this paper. The utility function for a task executed by a certain vehicle is built according to the mobility traces and sensing interfaces of the vehicle, as well as the sensing data type and tempo-spatial coverage requirements of the sensing task. Then, the sensing tasks are decomposed and offloaded to neighboring vehicles according to the utilities of the neighboring vehicles to the decomposed sensing tasks. Real trace-driven simulation shows that the proposed task offloading is able to collect much more comprehensive and uniformly distributed sensing data than other algorithms. PMID:27428967
NASA Astrophysics Data System (ADS)
Li, Miao; Lin, Zaiping; Long, Yunli; An, Wei; Zhou, Yiyu
2016-05-01
The high variability of target size makes small target detection in Infrared Search and Track (IRST) a challenging task. A joint detection and tracking method based on block-wise sparse decomposition is proposed to address this problem. For detection, the infrared image is divided into overlapped blocks, and each block is weighted on the local image complexity and target existence probabilities. Target-background decomposition is solved by block-wise inexact augmented Lagrange multipliers. For tracking, label multi-Bernoulli (LMB) tracker tracks multiple targets taking the result of single-frame detection as input, and provides corresponding target existence probabilities for detection. Unlike fixed-size methods, the proposed method can accommodate size-varying targets, due to no special assumption for the size and shape of small targets. Because of exact decomposition, classical target measurements are extended and additional direction information is provided to improve tracking performance. The experimental results show that the proposed method can effectively suppress background clutters, detect and track size-varying targets in infrared images.
Rotational-path decomposition based recursive planning for spacecraft attitude reorientation
NASA Astrophysics Data System (ADS)
Xu, Rui; Wang, Hui; Xu, Wenming; Cui, Pingyuan; Zhu, Shengying
2018-02-01
The spacecraft reorientation is a common task in many space missions. With multiple pointing constraints, it is greatly difficult to solve the constrained spacecraft reorientation planning problem. To deal with this problem, an efficient rotational-path decomposition based recursive planning (RDRP) method is proposed in this paper. The uniform pointing-constraint-ignored attitude rotation planning process is designed to solve all rotations without considering pointing constraints. Then the whole path is checked node by node. If any pointing constraint is violated, the nearest critical increment approach will be used to generate feasible alternative nodes in the process of rotational-path decomposition. As the planning path of each subdivision may still violate pointing constraints, multiple decomposition is needed and the reorientation planning is designed as a recursive manner. Simulation results demonstrate the effectiveness of the proposed method. The proposed method has been successfully applied in two SPARK microsatellites to solve onboard constrained attitude reorientation planning problem, which were developed by the Shanghai Engineering Center for Microsatellites and launched on 22 December 2016.
A Model for Determining Task Set Schedulability in the Presence of System Effects
1992-12-01
A-34 A.20.100ps data (cont) .............................................. A- 35 A.21.100ps data (cont...Specification Item [ Range User Tasks 0 to 99 System Tasks no limit Simulation Time (in ps) 0 to 2,100,000,000 (0 to 35 minutes) Synchronization Events...3.800* 32 363.4 57 332.3 82 310.1 8 3.800* 33 352.6 58 332.5 83 307.9 9 3.800* 34 359.3 59 330.1 84 314.3 10 3.800* 35 353.3 60 324.8 85 304.6 11 3.800
Runtime support for data parallel tasks
NASA Technical Reports Server (NTRS)
Haines, Matthew; Hess, Bryan; Mehrotra, Piyush; Vanrosendale, John; Zima, Hans
1994-01-01
We have recently introduced a set of Fortran language extensions that allow for integrated support of task and data parallelism, and provide for shared data abstractions (SDA's) as a method for communications and synchronization among these tasks. In this paper we discuss the design and implementation issues of the runtime system necessary to support these extensions, and discuss the underlying requirements for such a system. To test the feasibility of this approach, we implement a prototype of the runtime system and use this to support an abstract multidisciplinary optimization (MDO) problem for aircraft design. We give initial results and discuss future plans.
Hemakom, Apit; Powezka, Katarzyna; Goverdovsky, Valentin; Jaffer, Usman; Mandic, Danilo P
2017-12-01
A highly localized data-association measure, termed intrinsic synchrosqueezing transform (ISC), is proposed for the analysis of coupled nonlinear and non-stationary multivariate signals. This is achieved based on a combination of noise-assisted multivariate empirical mode decomposition and short-time Fourier transform-based univariate and multivariate synchrosqueezing transforms. It is shown that the ISC outperforms six other combinations of algorithms in estimating degrees of synchrony in synthetic linear and nonlinear bivariate signals. Its advantage is further illustrated in the precise identification of the synchronized respiratory and heart rate variability frequencies among a subset of bass singers of a professional choir, where it distinctly exhibits better performance than the continuous wavelet transform-based ISC. We also introduce an extension to the intrinsic phase synchrony (IPS) measure, referred to as nested intrinsic phase synchrony (N-IPS), for the empirical quantification of physically meaningful and straightforward-to-interpret trends in phase synchrony. The N-IPS is employed to reveal physically meaningful variations in the levels of cooperation in choir singing and performing a surgical procedure. Both the proposed techniques successfully reveal degrees of synchronization of the physiological signals in two different aspects: (i) precise localization of synchrony in time and frequency (ISC), and (ii) large-scale analysis for the empirical quantification of physically meaningful trends in synchrony (N-IPS).
Task Decomposition Model for Dispatchers in Dynamic Scheduling of Demand Responsive Transit Systems
DOT National Transportation Integrated Search
2000-06-01
Since the passage of ADA, the demand for paratransit service is steadily increasing. Paratransit companies are relying on computer automation to streamline dispatch operations, increase productivity and reduce operator stress and error. Little resear...
Decomposition Odour Profiling in the Air and Soil Surrounding Vertebrate Carrion
2014-01-01
Chemical profiling of decomposition odour is conducted in the environmental sciences to detect malodourous target sources in air, water or soil. More recently decomposition odour profiling has been employed in the forensic sciences to generate a profile of the volatile organic compounds (VOCs) produced by decomposed remains. The chemical profile of decomposition odour is still being debated with variations in the VOC profile attributed to the sample collection technique, method of chemical analysis, and environment in which decomposition occurred. To date, little consideration has been given to the partitioning of odour between different matrices and the impact this has on developing an accurate VOC profile. The purpose of this research was to investigate the decomposition odour profile surrounding vertebrate carrion to determine how VOCs partition between soil and air. Four pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their odour profile monitored over a period of two months. Corresponding control sites were also monitored to determine the VOC profile of the surrounding environment. Samples were collected from the soil below and the air (headspace) above the decomposed remains using sorbent tubes and analysed using gas chromatography-mass spectrometry. A total of 249 compounds were identified but only 58 compounds were common to both air and soil samples. This study has demonstrated that soil and air samples produce distinct subsets of VOCs that contribute to the overall decomposition odour. Sample collection from only one matrix will reduce the likelihood of detecting the complete spectrum of VOCs, which further confounds the issue of determining a complete and accurate decomposition odour profile. Confirmation of this profile will enhance the performance of cadaver-detection dogs that are tasked with detecting decomposition odour in both soil and air to locate victim remains. PMID:24740412
Decomposition odour profiling in the air and soil surrounding vertebrate carrion.
Forbes, Shari L; Perrault, Katelynn A
2014-01-01
Chemical profiling of decomposition odour is conducted in the environmental sciences to detect malodourous target sources in air, water or soil. More recently decomposition odour profiling has been employed in the forensic sciences to generate a profile of the volatile organic compounds (VOCs) produced by decomposed remains. The chemical profile of decomposition odour is still being debated with variations in the VOC profile attributed to the sample collection technique, method of chemical analysis, and environment in which decomposition occurred. To date, little consideration has been given to the partitioning of odour between different matrices and the impact this has on developing an accurate VOC profile. The purpose of this research was to investigate the decomposition odour profile surrounding vertebrate carrion to determine how VOCs partition between soil and air. Four pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their odour profile monitored over a period of two months. Corresponding control sites were also monitored to determine the VOC profile of the surrounding environment. Samples were collected from the soil below and the air (headspace) above the decomposed remains using sorbent tubes and analysed using gas chromatography-mass spectrometry. A total of 249 compounds were identified but only 58 compounds were common to both air and soil samples. This study has demonstrated that soil and air samples produce distinct subsets of VOCs that contribute to the overall decomposition odour. Sample collection from only one matrix will reduce the likelihood of detecting the complete spectrum of VOCs, which further confounds the issue of determining a complete and accurate decomposition odour profile. Confirmation of this profile will enhance the performance of cadaver-detection dogs that are tasked with detecting decomposition odour in both soil and air to locate victim remains.
NASA Technical Reports Server (NTRS)
Choudhary, Alok Nidhi; Leung, Mun K.; Huang, Thomas S.; Patel, Janak H.
1989-01-01
Computer vision systems employ a sequence of vision algorithms in which the output of an algorithm is the input of the next algorithm in the sequence. Algorithms that constitute such systems exhibit vastly different computational characteristics, and therefore, require different data decomposition techniques and efficient load balancing techniques for parallel implementation. However, since the input data for a task is produced as the output data of the previous task, this information can be exploited to perform knowledge based data decomposition and load balancing. Presented here are algorithms for a motion estimation system. The motion estimation is based on the point correspondence between the involved images which are a sequence of stereo image pairs. Researchers propose algorithms to obtain point correspondences by matching feature points among stereo image pairs at any two consecutive time instants. Furthermore, the proposed algorithms employ non-iterative procedures, which results in saving considerable amounts of computation time. The system consists of the following steps: (1) extraction of features; (2) stereo match of images in one time instant; (3) time match of images from consecutive time instants; (4) stereo match to compute final unambiguous points; and (5) computation of motion parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faby, Sebastian; Maier, Joscha; Sawall, Stefan
2016-07-15
Purpose: To introduce and evaluate an increment matrix approach (IMA) describing the signal statistics of energy-selective photon counting detectors including spatial–spectral correlations between energy bins of neighboring detector pixels. The importance of the occurring correlations for image-based material decomposition is studied. Methods: An IMA describing the counter increase patterns in a photon counting detector is proposed. This IMA has the potential to decrease the number of required random numbers compared to Monte Carlo simulations by pursuing an approach based on convolutions. To validate and demonstrate the IMA, an approximate semirealistic detector model is provided, simulating a photon counting detector inmore » a simplified manner, e.g., by neglecting count rate-dependent effects. In this way, the spatial–spectral correlations on the detector level are obtained and fed into the IMA. The importance of these correlations in reconstructed energy bin images and the corresponding detector performance in image-based material decomposition is evaluated using a statistically optimal decomposition algorithm. Results: The results of IMA together with the semirealistic detector model were compared to other models and measurements using the spectral response and the energy bin sensitivity, finding a good agreement. Correlations between the different reconstructed energy bin images could be observed, and turned out to be of weak nature. These correlations were found to be not relevant in image-based material decomposition. An even simpler simulation procedure based on the energy bin sensitivity was tested instead and yielded similar results for the image-based material decomposition task, as long as the fact that one incident photon can increase multiple counters across neighboring detector pixels is taken into account. Conclusions: The IMA is computationally efficient as it required about 10{sup 2} random numbers per ray incident on a detector pixel instead of an estimated 10{sup 8} random numbers per ray as Monte Carlo approaches would need. The spatial–spectral correlations as described by IMA are not important for the studied image-based material decomposition task. Respecting the absolute photon counts and thus the multiple counter increases by a single x-ray photon, the same material decomposition performance could be obtained with a simpler detector description using the energy bin sensitivity.« less
Adamopoulou, Theodora; Papadaki, Maria I; Kounalakis, Manolis; Vazquez-Carreto, Victor; Pineda-Solano, Alba; Wang, Qingsheng; Mannan, M Sam
2013-06-15
Thermal decomposition of hydroxylamine, NH2OH, was responsible for two serious accidents. However, its reactive behavior and the synergy of factors affecting its decomposition are not being understood. In this work, the global enthalpy of hydroxylamine decomposition has been measured in the temperature range of 130-150 °C employing isoperibolic calorimetry. Measurements were performed in a metal reactor, employing 30-80 ml solutions containing 1.4-20 g of pure hydroxylamine (2.8-40 g of the supplied reagent). The measurements showed that increased concentration or temperature, results in higher global enthalpies of reaction per unit mass of reactant. At 150 °C, specific enthalpies as high as 8 kJ per gram of hydroxylamine were measured, although in general they were in the range of 3-5 kJ g(-1). The accurate measurement of the generated heat was proven to be a cumbersome task as (a) it is difficult to identify the end of decomposition, which after a fast initial stage, proceeds very slowly, especially at lower temperatures and (b) the environment of gases affects the reaction rate. Copyright © 2013 Elsevier B.V. All rights reserved.
An Overview of Starfish: A Table-Centric Tool for Interactive Synthesis
NASA Technical Reports Server (NTRS)
Tsow, Alex
2008-01-01
Engineering is an interactive process that requires intelligent interaction at many levels. My thesis [1] advances an engineering discipline for high-level synthesis and architectural decomposition that integrates perspicuous representation, designer interaction, and mathematical rigor. Starfish, the software prototype for the design method, implements a table-centric transformation system for reorganizing control-dominated system expressions into high-level architectures. Based on the digital design derivation (DDD) system a designer-guided synthesis technique that applies correctness preserving transformations to synchronous data flow specifications expressed as co- recursive stream equations Starfish enhances user interaction and extends the reachable design space by incorporating four innovations: behavior tables, serialization tables, data refinement, and operator retiming. Behavior tables express systems of co-recursive stream equations as a table of guarded signal updates. Developers and users of the DDD system used manually constructed behavior tables to help them decide which transformations to apply and how to specify them. These design exercises produced several formally constructed hardware implementations: the FM9001 microprocessor, an SECD machine for evaluating LISP, and the SchemEngine, garbage collected machine for interpreting a byte-code representation of compiled Scheme programs. Bose and Tuna, two of DDD s developers, have subsequently commercialized the design derivation methodology at Derivation Systems, Inc. (DSI). DSI has formally derived and validated PCI bus interfaces and a Java byte-code processor; they further executed a contract to prototype SPIDER-NASA's ultra-reliable communications bus. To date, most derivations from DDD and DRS have targeted hardware due to its synchronous design paradigm. However, Starfish expressions are independent of the synchronization mechanism; there is no commitment to hardware or globally broadcast clocks. Though software back-ends for design derivation are limited to the DDD stream-interpreter, targeting synchronous or real-time software is not substantively different from targeting hardware.
Wired and Wireless Camera Triggering with Arduino
NASA Astrophysics Data System (ADS)
Kauhanen, H.; Rönnholm, P.
2017-10-01
Synchronous triggering is an important task that allows simultaneous data capture from multiple cameras. Accurate synchronization enables 3D measurements of moving objects or from a moving platform. In this paper, we describe one wired and four wireless variations of Arduino-based low-cost remote trigger systems designed to provide a synchronous trigger signal for industrial cameras. Our wireless systems utilize 315 MHz or 434 MHz frequencies with noise filtering capacitors. In order to validate the synchronization accuracy, we developed a prototype of a rotating trigger detection system (named RoTriDeS). This system is suitable to detect the triggering accuracy of global shutter cameras. As a result, the wired system indicated an 8.91 μs mean triggering time difference between two cameras. Corresponding mean values for the four wireless triggering systems varied between 7.92 and 9.42 μs. Presented values include both camera-based and trigger-based desynchronization. Arduino-based triggering systems appeared to be feasible, and they have the potential to be extended to more complicated triggering systems.
Experimental Evaluation of Processing Time for the Synchronization of XML-Based Business Objects
NASA Astrophysics Data System (ADS)
Ameling, Michael; Wolf, Bernhard; Springer, Thomas; Schill, Alexander
Business objects (BOs) are data containers for complex data structures used in business applications such as Supply Chain Management and Customer Relationship Management. Due to the replication of application logic, multiple copies of BOs are created which have to be synchronized and updated. This is a complex and time consuming task because BOs rigorously vary in their structure according to the distribution, number and size of elements. Since BOs are internally represented as XML documents, the parsing of XML is one major cost factor which has to be considered for minimizing the processing time during synchronization. The prediction of the parsing time for BOs is an significant property for the selection of an efficient synchronization mechanism. In this paper, we present a method to evaluate the influence of the structure of BOs on their parsing time. The results of our experimental evaluation incorporating four different XML parsers examine the dependencies between the distribution of elements and the parsing time. Finally, a general cost model will be validated and simplified according to the results of the experimental setup.
Alternative majority-voting methods for real-time computing systems
NASA Technical Reports Server (NTRS)
Shin, Kang G.; Dolter, James W.
1989-01-01
Two techniques that provide a compromise between the high time overhead in maintaining synchronous voting and the difficulty of combining results in asynchronous voting are proposed. These techniques are specifically suited for real-time applications with a single-source/single-sink structure that need instantaneous error masking. They provide a compromise between a tightly synchronized system in which the synchronization overhead can be quite high, and an asynchronous system which lacks suitable algorithms for combining the output data. Both quorum-majority voting (QMV) and compare-majority voting (CMV) are most applicable to distributed real-time systems with single-source/single-sink tasks. All real-time systems eventually have to resolve their outputs into a single action at some stage. The development of the advanced information processing system (AIPS) and other similar systems serve to emphasize the importance of these techniques. Time bounds suggest that it is possible to reduce the overhead for quorum-majority voting to below that for synchronous voting. All the bounds assume that the computation phase is nonpreemptive and that there is no multitasking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Classen, Aimee T; Chapman, Samantha K.; Whitham, Thomas G
2007-01-01
It is generally assumed that leaf and root litter decomposition have similar drivers and that nutrient release from these substrates is synchronized. Few studies have examined these assumptions, and none has examined how plant genetics (i.e., plant susceptibility to herbivory) could affect these relationships. Here we examine the effects of herbivore susceptibility and resistance on needle and fine root litter decomposition of pi on pine, Pinus edulis. The study population consists of individual trees that are either susceptible or resistant to herbivory by the pi on needle scale, Matsucoccus acalyptus, or the stem-boring moth, Dioryctria albovittella. Genetic analyses and experimentalmore » removals and additions of these insects have identified trees that are naturally resistant and susceptible to these insects. These herbivores increase the chemical quality of litter inputs and alter soil microclimate, both of which are important decomposition drivers. Our research leads to four major conclusions: Herbivore susceptibility and resistance effects on 1) needle litter mass loss and phosphorus (P) retention in moth susceptible and resistant litter are governed by microclimate, 2) root litter nitrogen (N) and P retention, and needle litter N retention are governed by litter chemical quality, 3) net nutrient release from litter can reverse over time, 4) root and needle litter mass loss and nutrient release are determined by location (above- vs. belowground), suggesting that the regulators of needle and root decomposition differ at the local scale. Understanding of decomposition and nutrient retention in ecosystems requires consideration of herbivore effects on above- and belowground processes and how these effects may be governed by plant genotype. Because an underlying genetic component to herbivory is common to most ecosystems of the world and herbivory may increase in climatic change scenarios, it is important to evaluate the role of plant genetics in affecting carbon and nutrient fluxes.« less
Finding the beat: a neural perspective across humans and non-human primates
Merchant, Hugo; Grahn, Jessica; Trainor, Laurel; Rohrmeier, Martin; Fitch, W. Tecumseh
2015-01-01
Humans possess an ability to perceive and synchronize movements to the beat in music (‘beat perception and synchronization’), and recent neuroscientific data have offered new insights into this beat-finding capacity at multiple neural levels. Here, we review and compare behavioural and neural data on temporal and sequential processing during beat perception and entrainment tasks in macaques (including direct neural recording and local field potential (LFP)) and humans (including fMRI, EEG and MEG). These abilities rest upon a distributed set of circuits that include the motor cortico-basal-ganglia–thalamo-cortical (mCBGT) circuit, where the supplementary motor cortex (SMA) and the putamen are critical cortical and subcortical nodes, respectively. In addition, a cortical loop between motor and auditory areas, connected through delta and beta oscillatory activity, is deeply involved in these behaviours, with motor regions providing the predictive timing needed for the perception of, and entrainment to, musical rhythms. The neural discharge rate and the LFP oscillatory activity in the gamma- and beta-bands in the putamen and SMA of monkeys are tuned to the duration of intervals produced during a beat synchronization–continuation task (SCT). Hence, the tempo during beat synchronization is represented by different interval-tuned cells that are activated depending on the produced interval. In addition, cells in these areas are tuned to the serial-order elements of the SCT. Thus, the underpinnings of beat synchronization are intrinsically linked to the dynamics of cell populations tuned for duration and serial order throughout the mCBGT. We suggest that a cross-species comparison of behaviours and the neural circuits supporting them sets the stage for a new generation of neurally grounded computational models for beat perception and synchronization. PMID:25646516
Amyloid causes intermittent network disruptions in cognitively intact older subjects.
Mueller, Susanne G
2018-05-16
Recent findings in AD models but also human patients suggest that amyloid can cause intermittent neuronal hyperactivity. The overall goal of this study was to use dynamic fMRI analysis combined with graph analysis to a) characterize the graph analytical signature of two types of intermittent hyperactivity (spike-like (spike) and hypersynchronus-like (synchron)) in simulated data and b) to attempt to identify one of these signatures in task-free fMRIs of cognitively intact subjects (CN) with or without increased brain amyloid. The toolbox simtb was used to generate 33 data sets with 2 short spike events, 33 with 2 synchron and 33 baseline data sets. A combination of sliding windows, hierarchical cluster analysis and graph analysis was used to characterize the spike and the synchron signature. Florbetapir-F18 PET and task-free 3 T fMRI was acquired in 49 CN (age = 70.7 ± 6.4). Processing the real data with the same approach as the simulated data identified phases whose graph analytical signature resembled that of the synchron signature in the simulated data. The duration of these phases was positively correlated with amyloid load (r = 0.42, p < 0.05) and negatively with memory performance (r = -0.43, p < 0.05). In conclusion, amyloid positivity is associated with intermittent hyperactivity that is caused by short phases of hypersynchronous activity. The negative association with memory performance suggests that these disturbances have the potential to interfere with cognitive processes and could lead to cognitive impairment if they become more frequent or more severe with increasing amyloid deposition.
Perceived Conventionality in Co-speech Gestures Involves the Fronto-Temporal Language Network.
Wolf, Dhana; Rekittke, Linn-Marlen; Mittelberg, Irene; Klasen, Martin; Mathiak, Klaus
2017-01-01
Face-to-face communication is multimodal; it encompasses spoken words, facial expressions, gaze, and co-speech gestures. In contrast to linguistic symbols (e.g., spoken words or signs in sign language) relying on mostly explicit conventions, gestures vary in their degree of conventionality. Bodily signs may have a general accepted or conventionalized meaning (e.g., a head shake) or less so (e.g., self-grooming). We hypothesized that subjective perception of conventionality in co-speech gestures relies on the classical language network, i.e., the left hemispheric inferior frontal gyrus (IFG, Broca's area) and the posterior superior temporal gyrus (pSTG, Wernicke's area) and studied 36 subjects watching video-recorded story retellings during a behavioral and an functional magnetic resonance imaging (fMRI) experiment. It is well documented that neural correlates of such naturalistic videos emerge as intersubject covariance (ISC) in fMRI even without involving a stimulus (model-free analysis). The subjects attended either to perceived conventionality or to a control condition (any hand movements or gesture-speech relations). Such tasks modulate ISC in contributing neural structures and thus we studied ISC changes to task demands in language networks. Indeed, the conventionality task significantly increased covariance of the button press time series and neuronal synchronization in the left IFG over the comparison with other tasks. In the left IFG, synchronous activity was observed during the conventionality task only. In contrast, the left pSTG exhibited correlated activation patterns during all conditions with an increase in the conventionality task at the trend level only. Conceivably, the left IFG can be considered a core region for the processing of perceived conventionality in co-speech gestures similar to spoken language. In general, the interpretation of conventionalized signs may rely on neural mechanisms that engage during language comprehension.
Perceived Conventionality in Co-speech Gestures Involves the Fronto-Temporal Language Network
Wolf, Dhana; Rekittke, Linn-Marlen; Mittelberg, Irene; Klasen, Martin; Mathiak, Klaus
2017-01-01
Face-to-face communication is multimodal; it encompasses spoken words, facial expressions, gaze, and co-speech gestures. In contrast to linguistic symbols (e.g., spoken words or signs in sign language) relying on mostly explicit conventions, gestures vary in their degree of conventionality. Bodily signs may have a general accepted or conventionalized meaning (e.g., a head shake) or less so (e.g., self-grooming). We hypothesized that subjective perception of conventionality in co-speech gestures relies on the classical language network, i.e., the left hemispheric inferior frontal gyrus (IFG, Broca's area) and the posterior superior temporal gyrus (pSTG, Wernicke's area) and studied 36 subjects watching video-recorded story retellings during a behavioral and an functional magnetic resonance imaging (fMRI) experiment. It is well documented that neural correlates of such naturalistic videos emerge as intersubject covariance (ISC) in fMRI even without involving a stimulus (model-free analysis). The subjects attended either to perceived conventionality or to a control condition (any hand movements or gesture-speech relations). Such tasks modulate ISC in contributing neural structures and thus we studied ISC changes to task demands in language networks. Indeed, the conventionality task significantly increased covariance of the button press time series and neuronal synchronization in the left IFG over the comparison with other tasks. In the left IFG, synchronous activity was observed during the conventionality task only. In contrast, the left pSTG exhibited correlated activation patterns during all conditions with an increase in the conventionality task at the trend level only. Conceivably, the left IFG can be considered a core region for the processing of perceived conventionality in co-speech gestures similar to spoken language. In general, the interpretation of conventionalized signs may rely on neural mechanisms that engage during language comprehension. PMID:29249945
Interpersonal synergies: static prehension tasks performed by two actors.
Solnik, Stanislaw; Reschechtko, Sasha; Wu, Yen-Hsun; Zatsiorsky, Vladimir M; Latash, Mark L
2016-08-01
We investigated multidigit synergies stabilizing components of the resultant force vector during joint performance of a static prehension task by two persons as compared to similar tasks performed by a single person using both hands. Subjects transferred the instrumented handle from the right hand to the left hand (one-person condition) or passed that handle to another person (two-person condition) while keeping the handle's position and orientation stationary. Only three digits were involved per hand, the thumb, the index finger, and the middle finger; the forces and moments produced by the digits were measured by six-component sensors. We estimated the performance-stabilizing synergies within the uncontrolled manifold framework by quantifying the intertrial variance structure of digit forces and moments. The analysis was performed at three levels: between hands, between virtual finger and virtual thumb (imagined digits producing the same mechanical variables as the corresponding actual digits combined) produced by the two hands (in both interpersonal and intrapersonal conditions), and between the thumb and virtual finger for one hand only. Additionally, we performed correlation and phase synchronization analyses of resultant tangential forces and internal normal forces. Overall, the one-person conditions were characterized by higher amount of intertrial variance that did not affect resultant normal force components, higher internal components of normal forces, and stronger synchronization of the normal forces generated by the hands. Our observations suggest that in two-person tasks, when participants try to achieve a common mechanical outcome, the performance-stabilizing synergies depend on non-visual information exchange, possibly via the haptic and proprioceptive systems. Therefore, synergies quantified in tasks using visual feedback only may not be generalizable to more natural tasks.
Conducting Telephone Conference IEPs
ERIC Educational Resources Information Center
Patterson, Philip Patrick; Petit, Constance; Williams, Shandelyn
2007-01-01
Synchronizing the availability of team members for Individual Education Plan (IEP) meetings can be a daunting task. Fortunately, the Individuals with Disabilities Education Improvement Act of 2004 permits alternative means of conducting such meetings. An example of an alternate means is a telephone conference, whereby parents communicate over the…
Force Analysis and Energy Operation of Chaotic System of Permanent-Magnet Synchronous Motor
NASA Astrophysics Data System (ADS)
Qi, Guoyuan; Hu, Jianbing
2017-12-01
The disadvantage of a nondimensionalized model of a permanent-magnet synchronous Motor (PMSM) is identified. The original PMSM model is transformed into a Kolmogorov system to aid dynamic force analysis. The vector field of the PMSM is analogous to the force field including four types of torque — inertial, internal, dissipative, and generalized external. Using the feedback thought, the error torque between external torque and dissipative torque is identified. The pitchfork bifurcation of the PMSM is performed. Four forms of energy are identified for the system — kinetic, potential, dissipative, and supplied. The physical interpretations of the decomposition of force and energy exchange are given. Casimir energy is stored energy, and its rate of change is the error power between the dissipative energy and the energy supplied to the motor. Error torque and error power influence the different types of dynamic modes. The Hamiltonian energy and Casimir energy are compared to find the function of each in producing the dynamic modes. A supremum bound for the chaotic attractor is proposed using the error power and Lagrange multiplier.
Phase stability analysis of chirp evoked auditory brainstem responses by Gabor frame operators.
Corona-Strauss, Farah I; Delb, Wolfgang; Schick, Bernhard; Strauss, Daniel J
2009-12-01
We have recently shown that click evoked auditory brainstem responses (ABRs) can be efficiently processed using a novelty detection paradigm. Here, ABRs as a large-scale reflection of a stimulus locked neuronal group synchronization at the brainstem level are detected as novel instance-novel as compared to the spontaneous activity which does not exhibit a regular stimulus locked synchronization. In this paper we propose for the first time Gabor frame operators as an efficient feature extraction technique for ABR single sweep sequences that is in line with this paradigm. In particular, we use this decomposition technique to derive the Gabor frame phase stability (GFPS) of sweep sequences of click and chirp evoked ABRs. We show that the GFPS of chirp evoked ABRs provides a stable discrimination of the spontaneous activity from stimulations above the hearing threshold with a small number of sweeps, even at low stimulation intensities. It is concluded that the GFPS analysis represents a robust feature extraction method for ABR single sweep sequences. Further studies are necessary to evaluate the value of the presented approach for clinical applications.
Phase-synchronization, energy cascade, and intermittency in solar-wind turbulence.
Perri, S; Carbone, V; Vecchio, A; Bruno, R; Korth, H; Zurbuchen, T H; Sorriso-Valvo, L
2012-12-14
The energy cascade in solar wind magnetic turbulence is investigated using MESSENGER data in the inner heliosphere. The decomposition of magnetic field time series in intrinsic functions, each characterized by a typical time scale, reveals phase reorganization. This allows for the identification of structures of all sizes generated by the nonlinear turbulent cascade, covering both the inertial and the dispersive ranges of the turbulent magnetic power spectrum. We find that the correlation (or anticorrelation) of phases occurs between pairs of neighboring time scales, whenever localized peaks of magnetic energy are present at both scales, consistent with the local character of the energy transfer process.
Jared, Debra; Jouravlev, Olessia; Joanisse, Marc F
2017-03-01
Decomposition theories of morphological processing in visual word recognition posit an early morpho-orthographic parser that is blind to semantic information, whereas parallel distributed processing (PDP) theories assume that the transparency of orthographic-semantic relationships influences processing from the beginning. To test these alternatives, the performance of participants on transparent (foolish), quasi-transparent (bookish), opaque (vanish), and orthographic control words (bucket) was examined in a series of 5 experiments. In Experiments 1-3 variants of a masked priming lexical-decision task were used; Experiment 4 used a masked priming semantic decision task, and Experiment 5 used a single-word (nonpriming) semantic decision task with a color-boundary manipulation. In addition to the behavioral data, event-related potential (ERP) data were collected in Experiments 1, 2, 4, and 5. Across all experiments, we observed a graded effect of semantic transparency in behavioral and ERP data, with the largest effect for semantically transparent words, the next largest for quasi-transparent words, and the smallest for opaque words. The results are discussed in terms of decomposition versus PDP approaches to morphological processing. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Theta synchronizes the activity of medial prefrontal neurons during learning
Paz, Rony; Bauer, Elizabeth P.; Paré, Denis
2008-01-01
Memory consolidation is thought to involve the gradual transfer of transient hippocampal-dependent traces to distributed neocortical sites via the rhinal cortices. Recently, medial prefrontal (mPFC) neurons were shown to facilitate this process when their activity becomes synchronized. However, the mechanisms underlying this enhanced synchrony remain unclear. Because the hippocampus projects to the mPFC, we tested whether theta oscillations contribute to synchronize mPFC neurons during learning. Thus, we obtained field (LFP) and unit recordings from multiple mPFC sites during the acquisition of a trace-conditioning task, where a visual conditioned stimulus (CS) predicted reward delivery. In quiet waking, the activity of mPFC neurons was modulated by theta oscillations. During conditioning, CS presentation caused an increase in mPFC theta power that augmented as the CS gained predictive value for reward delivery. This increased theta power coincided with a transient theta phase locking at distributed mPFC sites, an effect that was also manifest in the timing of mPFC unit activity. Overall, these results show that theta oscillations contribute to synchronize neuronal activity at distributed mPFC sites, suggesting that the hippocampus, by generating a stronger theta source during learning, can synchronize mPFC activity, in turn facilitating rhinal transfer of its activity to the neocortex. PMID:18612069
Peña, Raul; Ávila, Alfonso; Muñoz, David; Lavariega, Juan
2015-01-01
The recognition of clinical manifestations in both video images and physiological-signal waveforms is an important aid to improve the safety and effectiveness in medical care. Physicians can rely on video-waveform (VW) observations to recognize difficult-to-spot signs and symptoms. The VW observations can also reduce the number of false positive incidents and expand the recognition coverage to abnormal health conditions. The synchronization between the video images and the physiological-signal waveforms is fundamental for the successful recognition of the clinical manifestations. The use of conventional equipment to synchronously acquire and display the video-waveform information involves complex tasks such as the video capture/compression, the acquisition/compression of each physiological signal, and the video-waveform synchronization based on timestamps. This paper introduces a data hiding technique capable of both enabling embedding channels and synchronously hiding samples of physiological signals into encoded video sequences. Our data hiding technique offers large data capacity and simplifies the complexity of the video-waveform acquisition and reproduction. The experimental results revealed successful embedding and full restoration of signal's samples. Our results also demonstrated a small distortion in the video objective quality, a small increment in bit-rate, and embedded cost savings of -2.6196% for high and medium motion video sequences.
Menashe, Shay
2017-01-01
The main aim of the present study was to determine whether adult dyslexic readers demonstrate the "Asynchrony Theory" (Breznitz [Reading Fluency: Synchronization of Processes, Lawrence Erlbaum and Associates, Mahwah, NJ, USA, 2006]) when selective attention is studied. Event-related potentials (ERPs) and behavioral parameters were collected from nonimpaired readers group and dyslexic readers group performing alphabetic and nonalphabetic tasks. The dyslexic readers group was found to demonstrate asynchrony between the auditory and the visual modalities when it came to processing alphabetic stimuli. These findings were found both for behavioral and ERPs parameters. Unlike the dyslexic readers, the nonimpaired readers showed synchronized speed of processing in the auditory and the visual modalities while processing alphabetic stimuli. The current study suggests that established reading is dependent on a synchronization between the auditory and the visual modalities even when it comes to selective attention.
NASA Technical Reports Server (NTRS)
Vrnak, Daniel R.; Stueber, Thomas J.; Le, Dzu K.
2012-01-01
This report presents a method for running a dynamic legacy inlet simulation in concert with another dynamic simulation that uses a graphical interface. The legacy code, NASA's LArge Perturbation INlet (LAPIN) model, was coded using the FORTRAN 77 (The Portland Group, Lake Oswego, OR) programming language to run in a command shell similar to other applications that used the Microsoft Disk Operating System (MS-DOS) (Microsoft Corporation, Redmond, WA). Simulink (MathWorks, Natick, MA) is a dynamic simulation that runs on a modern graphical operating system. The product of this work has both simulations, LAPIN and Simulink, running synchronously on the same computer with periodic data exchanges. Implementing the method described in this paper avoided extensive changes to the legacy code and preserved its basic operating procedure. This paper presents a novel method that promotes inter-task data communication between the synchronously running processes.
Rapid learning in visual cortical networks.
Wang, Ye; Dragoi, Valentin
2015-08-26
Although changes in brain activity during learning have been extensively examined at the single neuron level, the coding strategies employed by cell populations remain mysterious. We examined cell populations in macaque area V4 during a rapid form of perceptual learning that emerges within tens of minutes. Multiple single units and LFP responses were recorded as monkeys improved their performance in an image discrimination task. We show that the increase in behavioral performance during learning is predicted by a tight coordination of spike timing with local population activity. More spike-LFP theta synchronization is correlated with higher learning performance, while high-frequency synchronization is unrelated with changes in performance, but these changes were absent once learning had stabilized and stimuli became familiar, or in the absence of learning. These findings reveal a novel mechanism of plasticity in visual cortex by which elevated low-frequency synchronization between individual neurons and local population activity accompanies the improvement in performance during learning.
Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance.
Liebe, Stefanie; Hoerzer, Gregor M; Logothetis, Nikos K; Rainer, Gregor
2012-01-29
Short-term memory requires communication between multiple brain regions that collectively mediate the encoding and maintenance of sensory information. It has been suggested that oscillatory synchronization underlies intercortical communication. Yet, whether and how distant cortical areas cooperate during visual memory remains elusive. We examined neural interactions between visual area V4 and the lateral prefrontal cortex using simultaneous local field potential (LFP) recordings and single-unit activity (SUA) in monkeys performing a visual short-term memory task. During the memory period, we observed enhanced between-area phase synchronization in theta frequencies (3-9 Hz) of LFPs together with elevated phase locking of SUA to theta oscillations across regions. In addition, we found that the strength of intercortical locking was predictive of the animals' behavioral performance. This suggests that theta-band synchronization coordinates action potential communication between V4 and prefrontal cortex that may contribute to the maintenance of visual short-term memories.
NASA Astrophysics Data System (ADS)
Jain, Anoop; Ghose, Debasish
2018-01-01
This paper considers collective circular motion of multi-agent systems in which all the agents are required to traverse different circles or a common circle at a prescribed angular velocity. It is required to achieve these collective motions with the heading angles of the agents synchronized or balanced. In synchronization, the agents and their centroid have a common velocity direction, while in balancing, the movement of agents causes the location of the centroid to become stationary. The agents are initially considered to move at unit speed around individual circles at different angular velocities. It is assumed that the agents are subjected to limited communication constraints, and exchange relative information according to a time-invariant undirected graph. We present suitable feedback control laws for each of these motion coordination tasks by considering a second-order rotational dynamics of the agent. Simulations are given to illustrate the theoretical findings.
Horizontal decomposition of data table for finding one reduct
NASA Astrophysics Data System (ADS)
Hońko, Piotr
2018-04-01
Attribute reduction, being one of the most essential tasks in rough set theory, is a challenge for data that does not fit in the available memory. This paper proposes new definitions of attribute reduction using horizontal data decomposition. Algorithms for computing superreduct and subsequently exact reducts of a data table are developed and experimentally verified. In the proposed approach, the size of subtables obtained during the decomposition can be arbitrarily small. Reducts of the subtables are computed independently from one another using any heuristic method for finding one reduct. Compared with standard attribute reduction methods, the proposed approach can produce superreducts that usually inconsiderably differ from an exact reduct. The approach needs comparable time and much less memory to reduce the attribute set. The method proposed for removing unnecessary attributes from superreducts executes relatively fast for bigger databases.
The neural basis of novelty and appropriateness in processing of creative chunk decomposition.
Huang, Furong; Fan, Jin; Luo, Jing
2015-06-01
Novelty and appropriateness have been recognized as the fundamental features of creative thinking. However, the brain mechanisms underlying these features remain largely unknown. In this study, we used event-related functional magnetic resonance imaging (fMRI) to dissociate these mechanisms in a revised creative chunk decomposition task in which participants were required to perform different types of chunk decomposition that systematically varied in novelty and appropriateness. We found that novelty processing involved functional areas for procedural memory (caudate), mental rewarding (substantia nigra, SN), and visual-spatial processing, whereas appropriateness processing was mediated by areas for declarative memory (hippocampus), emotional arousal (amygdala), and orthography recognition. These results indicate that non-declarative and declarative memory systems may jointly contribute to the two fundamental features of creative thinking. Copyright © 2015 Elsevier Inc. All rights reserved.
The Subpolar North Atlantic Ocean Heat Content Variability and its Decomposition.
Zhang, Weiwei; Yan, Xiao-Hai
2017-10-23
The Subpolar North Atlantic (SPNA) is one of the most important areas to global climate because its ocean heat content (OHC) is highly correlated with the Atlantic Meridional Overturning Circulation (AMOC), and its circulation strength affects the salt transport by the AMOC, which in turn feeds and sustains the strength of the AMOC. Moreover, the recent global surface warming "hiatus" may be attributed to the SPNA as one of the major planetary heat sinks. Although almost synchronized before 1996, the OHC has greater spatial disparities afterwards, which cannot be explained as driven by the North Atlantic Oscillation (NAO). Temperature decomposition reveals that the western SPNA OHC is mainly determined by the along isopycnal changes, while in the eastern SPNA along isopycnal changes and isopycnal undulation are both important. Further analysis indicates that heat flux dominates the western SPNA OHC, but in the eastern SPNA wind forcing affects the OHC significantly. It is worth noting that the along isopycnal OHC changes can also induce heaving, thus the observed heaving domination in global oceans cannot mask the extra heat in the ocean during the recent "hiatus".
Liu, Pan; Han, Jiuhui; Guo, Xianwei; Ito, Yoshikazu; Yang, Chuchu; Ning, Shoucong; Fujita, Takeshi; Hirata, Akihiko; Chen, Mingwei
2018-02-16
Rechargeable non-aqueous lithium-oxygen batteries with a large theoretical capacity are emerging as a high-energy electrochemical device for sustainable energy strategy. Despite many efforts made to understand the fundamental Li-O 2 electrochemistry, the kinetic process of cathodic reactions, associated with the formation and decomposition of a solid Li 2 O 2 phase during charging and discharging, remains debate. Here we report direct visualization of the charge/discharge reactions on a gold cathode in a non-aqueous lithium-oxygen micro-battery using liquid-cell aberration-corrected scanning transmission electron microscopy (STEM) combining with synchronized electrochemical measurements. The real-time and real-space characterization by time-resolved STEM reveals the electrochemical correspondence of discharge/charge overpotentials to the nucleation, growth and decomposition of Li 2 O 2 at a constant current density. The nano-scale operando observations would enrich our knowledge on the underlying reaction mechanisms of lithium-oxygen batteries during round-trip discharging and charging and shed lights on the strategies in improving the performances of lithium-oxygen batteries by tailoring the cathodic reactions.
Time-critical multirate scheduling using contemporary real-time operating system services
NASA Technical Reports Server (NTRS)
Eckhardt, D. E., Jr.
1983-01-01
Although real-time operating systems provide many of the task control services necessary to process time-critical applications (i.e., applications with fixed, invariant deadlines), it may still be necessary to provide a scheduling algorithm at a level above the operating system in order to coordinate a set of synchronized, time-critical tasks executing at different cyclic rates. The scheduling requirements for such applications and develops scheduling algorithms using services provided by contemporary real-time operating systems.
Mueller matrix imaging and analysis of cancerous cells
NASA Astrophysics Data System (ADS)
Fernández, A.; Fernández-Luna, J. L.; Moreno, F.; Saiz, J. M.
2017-08-01
Imaging polarimetry is a focus of increasing interest in diagnostic medicine because of its non-invasive nature and its potential for recognizing abnormal tissues. However, handling polarimetric images is not an easy task, and different intermediate steps have been proposed to introduce physical parameters that may be helpful to interpret results. In this work, transmission Mueller matrices (MM) corresponding to cancer cell samples have been experimentally obtained, and three different transformations have been applied: MM-Polar Decomposition, MM-Transformation and MM-Differential Decomposition. Special attention has been paid to diattenuation as a sensitive parameter to identify apoptosis processes induced by cisplatin and etoposide.
A Conceptual Framework for Adaptive Project Management in the Department of Defense
2016-04-30
schedule work) established a core set of principles that went unchallenged until the start of the 21st century. This belief that managing...detailed planning, task decomposition and assignment of hours at the start of a project as unnecessary, often wasted effort that sacrifices accuracy...with the illusion of precision. Work, at the task level, is best assigned by the team performing the work as close as possible to the actual start
Crosslinking EEG time-frequency decomposition and fMRI in error monitoring.
Hoffmann, Sven; Labrenz, Franziska; Themann, Maria; Wascher, Edmund; Beste, Christian
2014-03-01
Recent studies implicate a common response monitoring system, being active during erroneous and correct responses. Converging evidence from time-frequency decompositions of the response-related ERP revealed that evoked theta activity at fronto-central electrode positions differentiates correct from erroneous responses in simple tasks, but also in more complex tasks. However, up to now it is unclear how different electrophysiological parameters of error processing, especially at the level of neural oscillations are related, or predictive for BOLD signal changes reflecting error processing at a functional-neuroanatomical level. The present study aims to provide crosslinks between time domain information, time-frequency information, MRI BOLD signal and behavioral parameters in a task examining error monitoring due to mistakes in a mental rotation task. The results show that BOLD signal changes reflecting error processing on a functional-neuroanatomical level are best predicted by evoked oscillations in the theta frequency band. Although the fMRI results in this study account for an involvement of the anterior cingulate cortex, middle frontal gyrus, and the Insula in error processing, the correlation of evoked oscillations and BOLD signal was restricted to a coupling of evoked theta and anterior cingulate cortex BOLD activity. The current results indicate that although there is a distributed functional-neuroanatomical network mediating error processing, only distinct parts of this network seem to modulate electrophysiological properties of error monitoring.
Massively Parallel Dantzig-Wolfe Decomposition Applied to Traffic Flow Scheduling
NASA Technical Reports Server (NTRS)
Rios, Joseph Lucio; Ross, Kevin
2009-01-01
Optimal scheduling of air traffic over the entire National Airspace System is a computationally difficult task. To speed computation, Dantzig-Wolfe decomposition is applied to a known linear integer programming approach for assigning delays to flights. The optimization model is proven to have the block-angular structure necessary for Dantzig-Wolfe decomposition. The subproblems for this decomposition are solved in parallel via independent computation threads. Experimental evidence suggests that as the number of subproblems/threads increases (and their respective sizes decrease), the solution quality, convergence, and runtime improve. A demonstration of this is provided by using one flight per subproblem, which is the finest possible decomposition. This results in thousands of subproblems and associated computation threads. This massively parallel approach is compared to one with few threads and to standard (non-decomposed) approaches in terms of solution quality and runtime. Since this method generally provides a non-integral (relaxed) solution to the original optimization problem, two heuristics are developed to generate an integral solution. Dantzig-Wolfe followed by these heuristics can provide a near-optimal (sometimes optimal) solution to the original problem hundreds of times faster than standard (non-decomposed) approaches. In addition, when massive decomposition is employed, the solution is shown to be more likely integral, which obviates the need for an integerization step. These results indicate that nationwide, real-time, high fidelity, optimal traffic flow scheduling is achievable for (at least) 3 hour planning horizons.
Understanding neuromotor strategy during functional upper extremity tasks using symbolic dynamics.
Nathan, Dominic E; Guastello, Stephen J; Prost, Robert W; Jeutter, Dean C
2012-01-01
The ability to model and quantify brain activation patterns that pertain to natural neuromotor strategy of the upper extremities during functional task performance is critical to the development of therapeutic interventions such as neuroprosthetic devices. The mechanisms of information flow, activation sequence and patterns, and the interaction between anatomical regions of the brain that are specific to movement planning, intention and execution of voluntary upper extremity motor tasks were investigated here. This paper presents a novel method using symbolic dynamics (orbital decomposition) and nonlinear dynamic tools of entropy, self-organization and chaos to describe the underlying structure of activation shifts in regions of the brain that are involved with the cognitive aspects of functional upper extremity task performance. Several questions were addressed: (a) How is it possible to distinguish deterministic or causal patterns of activity in brain fMRI from those that are really random or non-contributory to the neuromotor control process? (b) Can the complexity of activation patterns over time be quantified? (c) What are the optimal ways of organizing fMRI data to preserve patterns of activation, activation levels, and extract meaningful temporal patterns as they evolve over time? Analysis was performed using data from a custom developed time resolved fMRI paradigm involving human subjects (N=18) who performed functional upper extremity motor tasks with varying time delays between the onset of intention and onset of actual movements. The results indicate that there is structure in the data that can be quantified through entropy and dimensional complexity metrics and statistical inference, and furthermore, orbital decomposition is sensitive in capturing the transition of states that correlate with the cognitive aspects of functional task performance.
Mind the Gap: Bridging economic and naturalistic risk-taking with cognitive neuroscience
Schonberg, Tom; Fox, Craig R.; Poldrack, Russell A.
2010-01-01
Economists define risk in terms of variability of possible outcomes whereas clinicians and laypeople generally view risk as exposure to possible loss or harm. Neuroeconomic studies using relatively simple behavioral tasks have identified a network of brain regions that respond to economic risk, but these studies have had limited success predicting naturalistic risk-taking. In contrast, more complex behavioral tasks developed by clinicians (e.g., Balloon Analogue Risk Task and Iowa Gambling Task) correlate with naturalistic risk-taking but resist decomposition into distinct cognitive constructs. We propose that to bridge this gap and better understand neural substrates of naturalistic risk-taking, new tasks are needed that: (1) are decomposable into basic cognitive/economic constructs; (2) predict naturalistic risk-taking; and (3) engender dynamic, affective engagement. PMID:21130018
A Four-Stage Hybrid Model for Hydrological Time Series Forecasting
Di, Chongli; Yang, Xiaohua; Wang, Xiaochao
2014-01-01
Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for hydrological time series forecasting based on the principle of ‘denoising, decomposition and ensemble’. The proposed model has four stages, i.e., denoising, decomposition, components prediction and ensemble. In the denoising stage, the empirical mode decomposition (EMD) method is utilized to reduce the noises in the hydrological time series. Then, an improved method of EMD, the ensemble empirical mode decomposition (EEMD), is applied to decompose the denoised series into a number of intrinsic mode function (IMF) components and one residual component. Next, the radial basis function neural network (RBFNN) is adopted to predict the trend of all of the components obtained in the decomposition stage. In the final ensemble prediction stage, the forecasting results of all of the IMF and residual components obtained in the third stage are combined to generate the final prediction results, using a linear neural network (LNN) model. For illustration and verification, six hydrological cases with different characteristics are used to test the effectiveness of the proposed model. The proposed hybrid model performs better than conventional single models, the hybrid models without denoising or decomposition and the hybrid models based on other methods, such as the wavelet analysis (WA)-based hybrid models. In addition, the denoising and decomposition strategies decrease the complexity of the series and reduce the difficulties of the forecasting. With its effective denoising and accurate decomposition ability, high prediction precision and wide applicability, the new model is very promising for complex time series forecasting. This new forecast model is an extension of nonlinear prediction models. PMID:25111782
A four-stage hybrid model for hydrological time series forecasting.
Di, Chongli; Yang, Xiaohua; Wang, Xiaochao
2014-01-01
Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for hydrological time series forecasting based on the principle of 'denoising, decomposition and ensemble'. The proposed model has four stages, i.e., denoising, decomposition, components prediction and ensemble. In the denoising stage, the empirical mode decomposition (EMD) method is utilized to reduce the noises in the hydrological time series. Then, an improved method of EMD, the ensemble empirical mode decomposition (EEMD), is applied to decompose the denoised series into a number of intrinsic mode function (IMF) components and one residual component. Next, the radial basis function neural network (RBFNN) is adopted to predict the trend of all of the components obtained in the decomposition stage. In the final ensemble prediction stage, the forecasting results of all of the IMF and residual components obtained in the third stage are combined to generate the final prediction results, using a linear neural network (LNN) model. For illustration and verification, six hydrological cases with different characteristics are used to test the effectiveness of the proposed model. The proposed hybrid model performs better than conventional single models, the hybrid models without denoising or decomposition and the hybrid models based on other methods, such as the wavelet analysis (WA)-based hybrid models. In addition, the denoising and decomposition strategies decrease the complexity of the series and reduce the difficulties of the forecasting. With its effective denoising and accurate decomposition ability, high prediction precision and wide applicability, the new model is very promising for complex time series forecasting. This new forecast model is an extension of nonlinear prediction models.
NASA Astrophysics Data System (ADS)
Jamal, Wasifa; Das, Saptarshi; Oprescu, Ioana-Anastasia; Maharatna, Koushik; Apicella, Fabio; Sicca, Federico
2014-08-01
Objective. The paper investigates the presence of autism using the functional brain connectivity measures derived from electro-encephalogram (EEG) of children during face perception tasks. Approach. Phase synchronized patterns from 128-channel EEG signals are obtained for typical children and children with autism spectrum disorder (ASD). The phase synchronized states or synchrostates temporally switch amongst themselves as an underlying process for the completion of a particular cognitive task. We used 12 subjects in each group (ASD and typical) for analyzing their EEG while processing fearful, happy and neutral faces. The minimal and maximally occurring synchrostates for each subject are chosen for extraction of brain connectivity features, which are used for classification between these two groups of subjects. Among different supervised learning techniques, we here explored the discriminant analysis and support vector machine both with polynomial kernels for the classification task. Main results. The leave one out cross-validation of the classification algorithm gives 94.7% accuracy as the best performance with corresponding sensitivity and specificity values as 85.7% and 100% respectively. Significance. The proposed method gives high classification accuracies and outperforms other contemporary research results. The effectiveness of the proposed method for classification of autistic and typical children suggests the possibility of using it on a larger population to validate it for clinical practice.
Integrating Sensory/Actuation Systems in Agricultural Vehicles
Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo
2014-01-01
In recent years, there have been major advances in the development of new and more powerful perception systems for agriculture, such as computer-vision and global positioning systems. Due to these advances, the automation of agricultural tasks has received an important stimulus, especially in the area of selective weed control where high precision is essential for the proper use of resources and the implementation of more efficient treatments. Such autonomous agricultural systems incorporate and integrate perception systems for acquiring information from the environment, decision-making systems for interpreting and analyzing such information, and actuation systems that are responsible for performing the agricultural operations. These systems consist of different sensors, actuators, and computers that work synchronously in a specific architecture for the intended purpose. The main contribution of this paper is the selection, arrangement, integration, and synchronization of these systems to form a whole autonomous vehicle for agricultural applications. This type of vehicle has attracted growing interest, not only for researchers but also for manufacturers and farmers. The experimental results demonstrate the success and performance of the integrated system in guidance and weed control tasks in a maize field, indicating its utility and efficiency. The whole system is sufficiently flexible for use in other agricultural tasks with little effort and is another important contribution in the field of autonomous agricultural vehicles. PMID:24577525
Muscular forearm activation in hand-grip tasks with superimposition of mechanical vibrations.
Fattorini, L; Tirabasso, A; Lunghi, A; Di Giovanni, R; Sacco, F; Marchetti, E
2016-02-01
The purpose of this paper is to evaluate the muscular activation of the forearm, with or without vibration stimuli at different frequencies while performing a grip tasks of 45s at various level of exerted force. In 16 individuals, 9 females and 7 males, the surface electromyogram (EMG) of extensor carpi radialis longus and the flexor carpi ulnari muscles were assessed. At a short latency from onset EMG, RMS and the level of MU synchronization were assessed to evaluate the muscular adaptations. Whilst a trend of decay of EMG Median frequency (MDFd) was employed as an index of muscular fatigue. Muscular tasks consists of the grip of an instrumented handle at a force level of 20%, 30%, 40%, 60% of the maximum voluntary force. Vibration was supplied by a shaker to the hand in mono-frequential waves at 20, 30, 33 and 40Hz. In relation to EMG, RMS and MU synchronization, the muscular activation does not seem to change with the superimposition of the mechanical vibrations, on the contrary a lower MDFd was observed at 33Hz than in absence of vibration. This suggests an early muscular fatigue induced by vibration due to the fact that 33Hz is a resonance frequency for the hand-arm system. Copyright © 2015 Elsevier Ltd. All rights reserved.
Integrating sensory/actuation systems in agricultural vehicles.
Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo
2014-02-26
In recent years, there have been major advances in the development of new and more powerful perception systems for agriculture, such as computer-vision and global positioning systems. Due to these advances, the automation of agricultural tasks has received an important stimulus, especially in the area of selective weed control where high precision is essential for the proper use of resources and the implementation of more efficient treatments. Such autonomous agricultural systems incorporate and integrate perception systems for acquiring information from the environment, decision-making systems for interpreting and analyzing such information, and actuation systems that are responsible for performing the agricultural operations. These systems consist of different sensors, actuators, and computers that work synchronously in a specific architecture for the intended purpose. The main contribution of this paper is the selection, arrangement, integration, and synchronization of these systems to form a whole autonomous vehicle for agricultural applications. This type of vehicle has attracted growing interest, not only for researchers but also for manufacturers and farmers. The experimental results demonstrate the success and performance of the integrated system in guidance and weed control tasks in a maize field, indicating its utility and efficiency. The whole system is sufficiently flexible for use in other agricultural tasks with little effort and is another important contribution in the field of autonomous agricultural vehicles.
NASA Technical Reports Server (NTRS)
Kuo, Kenneth K.; Lu, Yeu-Cherng; Chiaverini, Martin J.; Johnson, David K.; Serin, Nadir; Risha, Grant A.; Merkle, Charles L.; Venkateswaran, Sankaran
1996-01-01
This final report summarizes the major findings on the subject of 'Fundamental Phenomena on Fuel Decomposition and Boundary-Layer Combustion Processes with Applications to Hybrid Rocket Motors', performed from 1 April 1994 to 30 June 1996. Both experimental results from Task 1 and theoretical/numerical results from Task 2 are reported here in two parts. Part 1 covers the experimental work performed and describes the test facility setup, data reduction techniques employed, and results of the test firings, including effects of operating conditions and fuel additives on solid fuel regression rate and thermal profiles of the condensed phase. Part 2 concerns the theoretical/numerical work. It covers physical modeling of the combustion processes including gas/surface coupling, and radiation effect on regression rate. The numerical solution of the flowfield structure and condensed phase regression behavior are presented. Experimental data from the test firings were used for numerical model validation.
Backward assembly planning with DFA analysis
NASA Technical Reports Server (NTRS)
Lee, Sukhan (Inventor)
1995-01-01
An assembly planning system that operates based on a recursive decomposition of assembly into subassemblies, and analyzes assembly cost in terms of stability, directionality, and manipulability to guide the generation of preferred assembly plans is presented. The planning in this system incorporates the special processes, such as cleaning, testing, labeling, etc. that must occur during the assembly, and handles nonreversible as well as reversible assembly tasks through backward assembly planning. In order to increase the planning efficiency, the system avoids the analysis of decompositions that do not correspond to feasible assembly tasks. This is achieved by grouping and merging those parts that can not be decomposable at the current stage of backward assembly planning due to the requirement of special processes and the constraint of interconnection feasibility. The invention includes methods of evaluating assembly cost in terms of the number of fixtures (or holding devices) and reorientations required for assembly, through the analysis of stability, directionality, and manipulability. All these factors are used in defining cost and heuristic functions for an AO* search for an optimal plan.
Wang, Jinjia; Liu, Yuan
2015-04-01
This paper presents a feature extraction method based on multivariate empirical mode decomposition (MEMD) combining with the power spectrum feature, and the method aims at the non-stationary electroencephalogram (EEG) or magnetoencephalogram (MEG) signal in brain-computer interface (BCI) system. Firstly, we utilized MEMD algorithm to decompose multichannel brain signals into a series of multiple intrinsic mode function (IMF), which was proximate stationary and with multi-scale. Then we extracted and reduced the power characteristic from each IMF to a lower dimensions using principal component analysis (PCA). Finally, we classified the motor imagery tasks by linear discriminant analysis classifier. The experimental verification showed that the correct recognition rates of the two-class and four-class tasks of the BCI competition III and competition IV reached 92.0% and 46.2%, respectively, which were superior to the winner of the BCI competition. The experimental proved that the proposed method was reasonably effective and stable and it would provide a new way for feature extraction.
Studying the Effectiveness of Multi-User Immersive Environments for Collaborative Evaluation Tasks
ERIC Educational Resources Information Center
Lorenzo, Carlos-Miguel; Sicilia, Miguel Angel; Sanchez, Salvador
2012-01-01
Massively Multiuser On-line Learning (MMOL) Platforms, often called "virtual learning worlds", constitute a still unexplored context for communication-enhanced learning, where synchronous communication skills in an explicit social setting enhance the potential of effective collaboration. In this paper, we report on an experimental study of…
ERIC Educational Resources Information Center
McNeil, Levi
2017-01-01
This study examined intracultural peers using language as a cognitive tool (i.e. "languaging") to recognise, understand, and explain intercultural communication concepts. In pairs, 42 Korean public school teachers enrolled in an in-service program completed a describe-interpret-evaluate task through synchronous computer-mediated…
Investigating L2 Performance in Text Chat
ERIC Educational Resources Information Center
Sauro, Shannon; Smith, Bryan
2010-01-01
This study examines the linguistic complexity and lexical diversity of both overt and covert L2 output produced during synchronous written computer-mediated communication, also referred to as chat. Video enhanced chatscripts produced by university learners of German (N = 23) engaged in dyadic task-based chat interaction were coded and analyzed for…
L2 Performance in Text-Chat and Spoken Discourse
ERIC Educational Resources Information Center
Sauro, Shannon
2012-01-01
The present study builds upon research in the CAF (complexity, accuracy, fluency) framework for examining learner performance to compare the lexical and syntactic complexity of learner output in spoken discourse and synchronous computer-mediated communication (SCMC) during completion of narrative tasks. Data were generated from transcripts and…
Sanchez-Alavez, Manuel; Ehlers, Cindy L.
2015-01-01
The cholinergic system in the brain is involved in attentional processes that are engaged for the identification and selection of relevant information in the environment and the formation of new stimulus associations. In the present study we determined the effects of cholinergic lesions of nucleus basalis magnocellularis (NBM) on amplitude and phase characteristics of event related oscillations (EROs) generated in an auditory active discrimination task in rats. Rats were trained to press a lever to begin a series of 1K Hz tones and to release the lever upon hearing a 2 kHz tone. A time-frequency based representation was used to determine ERO energy and phase synchronization (phase lock index, PLI) across trials, recorded within frontal cortical structures. Lesions in NBM produced by an infusion of a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) resulted in (1) a reduction of the number of correct behavioral responses in the active discrimination task, (2) an increase in ERO energy in the delta frequency bands (3) an increase in theta, alpha and beta ERO energy in the N1, P3a and P3b regions of interest (ROI), and (4) an increase in PLI in the theta frequency band in the N1 ROIs. These studies suggest that the NBM cholinergic system is involved in maintaining the synchronization/phase resetting of oscillations in different frequencies in response to the presentation of the target stimuli in an active discrimination task. PMID:25660307
Queueing Network Models for Parallel Processing of Task Systems: an Operational Approach
NASA Technical Reports Server (NTRS)
Mak, Victor W. K.
1986-01-01
Computer performance modeling of possibly complex computations running on highly concurrent systems is considered. Earlier works in this area either dealt with a very simple program structure or resulted in methods with exponential complexity. An efficient procedure is developed to compute the performance measures for series-parallel-reducible task systems using queueing network models. The procedure is based on the concept of hierarchical decomposition and a new operational approach. Numerical results for three test cases are presented and compared to those of simulations.
Kokal, Idil; Engel, Annerose; Kirschner, Sebastian; Keysers, Christian
2011-01-01
Why does chanting, drumming or dancing together make people feel united? Here we investigate the neural mechanisms underlying interpersonal synchrony and its subsequent effects on prosocial behavior among synchronized individuals. We hypothesized that areas of the brain associated with the processing of reward would be active when individuals experience synchrony during drumming, and that these reward signals would increase prosocial behavior toward this synchronous drum partner. 18 female non-musicians were scanned with functional magnetic resonance imaging while they drummed a rhythm, in alternating blocks, with two different experimenters: one drumming in-synchrony and the other out-of-synchrony relative to the participant. In the last scanning part, which served as the experimental manipulation for the following prosocial behavioral test, one of the experimenters drummed with one half of the participants in-synchrony and with the other out-of-synchrony. After scanning, this experimenter “accidentally” dropped eight pencils, and the number of pencils collected by the participants was used as a measure of prosocial commitment. Results revealed that participants who mastered the novel rhythm easily before scanning showed increased activity in the caudate during synchronous drumming. The same area also responded to monetary reward in a localizer task with the same participants. The activity in the caudate during experiencing synchronous drumming also predicted the number of pencils the participants later collected to help the synchronous experimenter of the manipulation run. In addition, participants collected more pencils to help the experimenter when she had drummed in-synchrony than out-of-synchrony during the manipulation run. By showing an overlap in activated areas during synchronized drumming and monetary reward, our findings suggest that interpersonal synchrony is related to the brain's reward system. PMID:22110623
Uncertainty propagation in orbital mechanics via tensor decomposition
NASA Astrophysics Data System (ADS)
Sun, Yifei; Kumar, Mrinal
2016-03-01
Uncertainty forecasting in orbital mechanics is an essential but difficult task, primarily because the underlying Fokker-Planck equation (FPE) is defined on a relatively high dimensional (6-D) state-space and is driven by the nonlinear perturbed Keplerian dynamics. In addition, an enormously large solution domain is required for numerical solution of this FPE (e.g. encompassing the entire orbit in the x-y-z subspace), of which the state probability density function (pdf) occupies a tiny fraction at any given time. This coupling of large size, high dimensionality and nonlinearity makes for a formidable computational task, and has caused the FPE for orbital uncertainty propagation to remain an unsolved problem. To the best of the authors' knowledge, this paper presents the first successful direct solution of the FPE for perturbed Keplerian mechanics. To tackle the dimensionality issue, the time-varying state pdf is approximated in the CANDECOMP/PARAFAC decomposition tensor form where all the six spatial dimensions as well as the time dimension are separated from one other. The pdf approximation for all times is obtained simultaneously via the alternating least squares algorithm. Chebyshev spectral differentiation is employed for discretization on account of its spectral ("super-fast") convergence rate. To facilitate the tensor decomposition and control the solution domain size, system dynamics is expressed using spherical coordinates in a noninertial reference frame. Numerical results obtained on a regular personal computer are compared with Monte Carlo simulations.
A leakage-free resonance sparse decomposition technique for bearing fault detection in gearboxes
NASA Astrophysics Data System (ADS)
Osman, Shazali; Wang, Wilson
2018-03-01
Most of rotating machinery deficiencies are related to defects in rolling element bearings. Reliable bearing fault detection still remains a challenging task, especially for bearings in gearboxes as bearing-defect-related features are nonstationary and modulated by gear mesh vibration. A new leakage-free resonance sparse decomposition (LRSD) technique is proposed in this paper for early bearing fault detection of gearboxes. In the proposed LRSD technique, a leakage-free filter is suggested to remove strong gear mesh and shaft running signatures. A kurtosis and cosine distance measure is suggested to select appropriate redundancy r and quality factor Q. The signal residual is processed by signal sparse decomposition for highpass and lowpass resonance analysis to extract representative features for bearing fault detection. The effectiveness of the proposed technique is verified by a succession of experimental tests corresponding to different gearbox and bearing conditions.
Matching multiple rigid domain decompositions of proteins
Flynn, Emily; Streinu, Ileana
2017-01-01
We describe efficient methods for consistently coloring and visualizing collections of rigid cluster decompositions obtained from variations of a protein structure, and lay the foundation for more complex setups that may involve different computational and experimental methods. The focus here is on three biological applications: the conceptually simpler problems of visualizing results of dilution and mutation analyses, and the more complex task of matching decompositions of multiple NMR models of the same protein. Implemented into the KINARI web server application, the improved visualization techniques give useful information about protein folding cores, help examining the effect of mutations on protein flexibility and function, and provide insights into the structural motions of PDB proteins solved with solution NMR. These tools have been developed with the goal of improving and validating rigidity analysis as a credible coarse-grained model capturing essential information about a protein’s slow motions near the native state. PMID:28141528
Synchronization of Eukaryotic Flagella and the Evolution of Multicellularity
NASA Astrophysics Data System (ADS)
Goldstein, Raymond
2009-03-01
Flagella, among the most highly conserved structures in eukaryotes, are responsible for such tasks as fluid transport, motility and phototaxis, establishment of embryonic left-right asymmetry, and intercellular communication, and are thought to have played a key role in the development of multicellularity. These tasks are usually performed by the coordinated action of groups of flagella (from pairs to thousands), which display various types of spatio-temporal organization. The origin and quantitative characterization of flagellar synchronization has remained an important open problem, involving interplay between intracellular biochemistry and interflagellar mechanical/hydrodynamic coupling. The Volvocine green algae serve as useful model organisms for the study of these phenomena, as they form a lineage spanning from unicellular Chlamydomonas to germ-soma differentiated Volvox, having as many as 50,000 biflagellated surface somatic cells. In this talk I will describe extensive studies [1], using micromanipulation and high-speed imaging, of the flagellar synchronization of two key species - Chlamydomonas reinhardtii and Volvox carteri - over tens of thousands of cycles. With Chlamydomonas we find that the flagellar dynamics moves back and forth between a stochastic synchronized state consistent with a simple model of hydrodynamically coupled noisy oscillators, and a deterministic one driven by a large interflagellar frequency difference. These results reconcile previously contradictory studies, based on short observations, showing only one or the other of these two states, and, more importantly, show that the flagellar beat frequencies themselves are regulated by the cell. Moreover, high-resolution three-dimensional tracking of swimming cells provides strong evidence that these dynamical states are related to reorientation events in the trajectories, yielding a eukaryotic equivalent of the ``run and tumble'' motion of peritrichously flagellated bacteria. The degree of synchronization is found to depend upon the presence of external fluid flow, an important aspect of the dynamics in the context of evolutionary transitions to multicellularity. Comparison is made with dynamics of somatic cells of Volvox, which we have found can display metachronal waves, not previously reported in this organism. Implications of these findings for phototactic steering are also discussed. 0.2cm [1] M.Polin, I. Tuval, K. Drescher, J.P. Gollub, and R.E. Goldstein, submitted (2009).
Wang, Pengyun; Li, Rui; Yu, Jing; Huang, Zirui; Yan, Zhixiong; Zhao, Ke; Li, Juan
2017-01-01
Few studies to date have investigated the background network in the cognitive state relying on executive function in mild cognitive impairment (MCI) patients. Using the index of degree of centrality (DC), we explored distant synchronization of background network in MCI during a hybrid delayed-match-to-sample task (DMST), which mainly relies on the working memory component of executive function. We observed significant interactions between group and cognitive state in the bilateral posterior cingulate cortex (PCC) and the ventral subregion of precuneus. For normal control (NC) group, the long distance functional connectivity (FC) of the PCC/precuneus with the other regions of the brain was higher in rest state than that working memory state. For MCI patients, however, this pattern altered. There was no significant difference between rest and working memory state. The similar pattern was observed in the other cluster located in the right angular gyrus. To examine whether abnormal DC in PCC/precuneus and angular gyrus partially resulted from the deficit of FC between these regions and the other parts in the whole brain, we conducted a seed-based correlation analysis with these regions as seeds. The results indicated that the FC between bilateral PCC/precuneus and the right inferior parietal lobule (IPL) increased from rest to working memory state for NC participants. For MCI patients, however, there was no significant change between rest and working memory state. The similar pattern was observed for the FC between right angular gyrus and right anterior insula. However, there was no difference between MCI and NC groups in global efficiency and modularity. It may indicate a lack of efficient reorganization from rest state to a working memory state in the brain network of MCI patients. The present study demonstrates the altered distant synchronization of background network in MCI during a task relying on executive function. The results provide a new perspective regarding the neural mechanisms of executive function deficits in MCI patients, and extend our understanding of brain patterns in task-evoked cognitive states.
Bilingual Reading of Compound Words
ERIC Educational Resources Information Center
Ko, In Yeong; Wang, Min; Kim, Say Young
2011-01-01
The present study investigated whether bilingual readers activate constituents of compound words in one language while processing compound words in the other language via decomposition. Two experiments using a lexical decision task were conducted with adult Korean-English bilingual readers. In Experiment 1, the lexical decision of real English…
Mejía-Mejía, Elisa; Torres, Robinson; Restrepo, Diana
2018-06-01
Physiological coherence has been related with a general sense of well-being and improvements in health and physical, social, and cognitive performance. The aim of this study was to evaluate the relationship between acute stress, controlled breathing, and physiological coherence, and the degree of body systems synchronization during a coherence-generation exercise. Thirty-four university employees were evaluated during a 20-min test consisting of four stages of 5-min duration each, during which basal measurements were obtained (Stage 1), acute stress was induced using validated mental stressors (Stroop test and mental arithmetic task, during Stage 2 and 3, respectively), and coherence states were generated using a controlled breathing technique (Stage 4). Physiological coherence and cardiorespiratory synchronization were assessed during each stage from heart rate variability, pulse transit time, and respiration. Coherence measurements derived from the three analyzed variables increased during controlled respiration. Moreover, signals synchronized during the controlled breathing stage, implying a cardiorespiratory synchronization was achieved by most participants. Hence, physiological coherence and cardiopulmonary synchronization, which could lead to improvements in health and better life quality, can be achieved using slow, controlled breathing exercises. Meanwhile, coherence measured during basal state and stressful situations did not show relevant differences using heart rate variability and pulse transit time. More studies are needed to evaluate the ability of coherence ratio to reflect acute stress. © 2017 Society for Psychophysiological Research.
Measuring pilot workload in a moving-base simulator. I Asynchronous secondary choice-reaction task
NASA Technical Reports Server (NTRS)
Kantowitz, B. H.; Hart, S. G.; Bortolussi, M. R.
1983-01-01
The de facto method for measuring airplane pilot workload is based upon subjective ratings. While researchers agree that such subjective data should be bolstered by using objective behavioral measures, results to date have been mixed. No clear objective technique has surfaced as the metric of choice. It is believed that this difficulty is in part due to neglect of theoretical work in psychology that predicts some of the difficulties that are inherent in a futile search for 'the one and only' best secondary task to measure workload. An initial study that used both subjective ratings and an asynchronous choice-reaction secondary task was conducted to determine if such a secondary task could indeed meet the methodological constraints imposed by current theories of attention. Two variants of a flight scenario were combined with two levels of the secondary task. Appropriate single-task control conditions were also included. Results give grounds for cautious optimism but indicate that future research should use synchronous secondary tasks where possible.
Lui, Kelvin F H; Wong, Alan C-N
2012-08-01
Heavy media multitaskers have been found to perform poorly in certain cognitive tasks involving task switching, selective attention, and working memory. An account for this is that with a breadth-biased style of cognitive control, multitaskers tend to pay attention to various information available in the environment, without sufficient focus on the information most relevant to the task at hand. This cognitive style, however, may not cause a general deficit in all kinds of tasks. We tested the hypothesis that heavy media multitaskers would perform better in a multisensory integration task than would others, due to their extensive experience in integrating information from different modalities. Sixty-three participants filled out a questionnaire about their media usage and completed a visual search task with and without synchronous tones (pip-and-pop paradigm). It was found that a higher degree of media multitasking was correlated with better multisensory integration. The fact that heavy media multitaskers are not deficient in all kinds of cognitive tasks suggests that media multitasking does not always hurt.
Martínez Moreno, Edurne; Orengo Castellá, Virginia; Zornoza Abad, Ana
2012-02-01
This study was conducted to evaluate the moderating role of self-guided training in the relationship between task conflict and team innovation in synchronic computer-mediated communication (SCMC) teams. For this purpose, a laboratory study was carried out in which 26 teams were assigned to the training condition and 24 to the control condition. Results confirmed that SCMC teams develop a negative relationship between task conflict and innovation, but also revealed that self-guided training may slow these counterproductive effects down. Our study provides new evidence of the linear relationship between task conflict and team innovation in SCMC teams, extending previous research findings obtained in face-to-face teams to virtual context and suggest that self-guided training can be useful for virtual team innovation.
Tomasek, Milan; Misak, Anton; Grman, Marian; Tomaskova, Zuzana
2017-08-01
Recently, it has been discovered that isoforms of intracellular chloride channels (CLIC) are present in cardiac mitochondria. By reconstituting rat cardiac mitochondrial chloride channels into bilayer lipid membranes, we detected three equally separated subconductance states with conductance increment of 45 pS and < 2% occupancy. The observed rare events of channel decomposition into substates, accompanied by disrupted gating, provide an insight into channel quaternary structure. Our findings suggest that the observed channels work as four functionally coupled subunits with synchronized gating. We discuss the putative connection of channel activity from native mitochondria with the recombinant CLIC channels. However, conclusive evidence is needed to prove this connection. © 2017 Federation of European Biochemical Societies.
2014-12-17
less dependent on each other. Replay of existing events became necessary with the introduction of new SensePlace2 components that appear in pop -up...Report, P a g e | 15 SensePlace2 architecture that synchronizes pop -up windows with the main application in a transparent fashion that does not...a number of other trending retweets that look unfamiliar. Contract #: W912HZ-12-P-0334, Task 4 Report, P a g e | 19 Figure 13. Co-occurrence
Multitasking OS manages a team of processors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ripps, D.L.
1983-07-21
MTOS-68k is a real-time multitasking operating system designed for the popular MC68000 microprocessors. It aproaches task coordination and synchronization in a fashion that matches uniquely the structural simplicity and regularity of the 68000 instruction set. Since in many 68000 applications the speed and power of one CPU are not enough, MTOS-68k has been designed to support multiple processors, as well as multiple tasks. Typically, the devices are tightly coupled single-board computers, that is they share a backplane and parts of global memory.
Delayed reverberation through time windows as a key to cerebellar function.
Kistler, W M; Leo van Hemmen, J
1999-11-01
We present a functional model of the cerebellum comprising cerebellar cortex, inferior olive, deep cerebellar nuclei, and brain stem nuclei. The discerning feature of the model being time coding, we consistently describe the system in terms of postsynaptic potentials, synchronous action potentials, and propagation delays. We show by means of detailed single-neuron modeling that (i) Golgi cells can fulfill a gating task in that they form short and well-defined time windows within which granule cells can reach firing threshold, thus organizing neuronal activity in discrete 'time slices', and that (ii) rebound firing in cerebellar nuclei cells is a robust mechanism leading to a delayed reverberation of Purkinje cell activity through cerebellar-reticular projections back to the cerebellar cortex. Computer simulations of the whole cerebellar network consisting of several thousand neurons reveal that reverberation in conjunction with long-term plasticity at the parallel fiber-Purkinje cell synapses enables the system to learn, store, and recall spatio-temporal patterns of neuronal activity. Climbing fiber spikes act both as a synchronization and as a teacher signal, not as an error signal. They are due to intrinsic oscillatory properties of inferior olivary neurons and to delayed reverberation within the network. In addition to clear experimental predictions the present theory sheds new light on a number of experimental observation such as the synchronicity of climbing fiber spikes and provides a novel explanation of how the cerebellum solves timing tasks on a time scale of several hundreds of milliseconds.
SPIKY: a graphical user interface for monitoring spike train synchrony
Mulansky, Mario; Bozanic, Nebojsa
2015-01-01
Techniques for recording large-scale neuronal spiking activity are developing very fast. This leads to an increasing demand for algorithms capable of analyzing large amounts of experimental spike train data. One of the most crucial and demanding tasks is the identification of similarity patterns with a very high temporal resolution and across different spatial scales. To address this task, in recent years three time-resolved measures of spike train synchrony have been proposed, the ISI-distance, the SPIKE-distance, and event synchronization. The Matlab source codes for calculating and visualizing these measures have been made publicly available. However, due to the many different possible representations of the results the use of these codes is rather complicated and their application requires some basic knowledge of Matlab. Thus it became desirable to provide a more user-friendly and interactive interface. Here we address this need and present SPIKY, a graphical user interface that facilitates the application of time-resolved measures of spike train synchrony to both simulated and real data. SPIKY includes implementations of the ISI-distance, the SPIKE-distance, and the SPIKE-synchronization (an improved and simplified extension of event synchronization) that have been optimized with respect to computation speed and memory demand. It also comprises a spike train generator and an event detector that makes it capable of analyzing continuous data. Finally, the SPIKY package includes additional complementary programs aimed at the analysis of large numbers of datasets and the estimation of significance levels. PMID:25744888
SPIKY: a graphical user interface for monitoring spike train synchrony.
Kreuz, Thomas; Mulansky, Mario; Bozanic, Nebojsa
2015-05-01
Techniques for recording large-scale neuronal spiking activity are developing very fast. This leads to an increasing demand for algorithms capable of analyzing large amounts of experimental spike train data. One of the most crucial and demanding tasks is the identification of similarity patterns with a very high temporal resolution and across different spatial scales. To address this task, in recent years three time-resolved measures of spike train synchrony have been proposed, the ISI-distance, the SPIKE-distance, and event synchronization. The Matlab source codes for calculating and visualizing these measures have been made publicly available. However, due to the many different possible representations of the results the use of these codes is rather complicated and their application requires some basic knowledge of Matlab. Thus it became desirable to provide a more user-friendly and interactive interface. Here we address this need and present SPIKY, a graphical user interface that facilitates the application of time-resolved measures of spike train synchrony to both simulated and real data. SPIKY includes implementations of the ISI-distance, the SPIKE-distance, and the SPIKE-synchronization (an improved and simplified extension of event synchronization) that have been optimized with respect to computation speed and memory demand. It also comprises a spike train generator and an event detector that makes it capable of analyzing continuous data. Finally, the SPIKY package includes additional complementary programs aimed at the analysis of large numbers of datasets and the estimation of significance levels. Copyright © 2015 the American Physiological Society.
NASA Astrophysics Data System (ADS)
He, Zhi; Liu, Lin
2016-11-01
Empirical mode decomposition (EMD) and its variants have recently been applied for hyperspectral image (HSI) classification due to their ability to extract useful features from the original HSI. However, it remains a challenging task to effectively exploit the spectral-spatial information by the traditional vector or image-based methods. In this paper, a three-dimensional (3D) extension of EMD (3D-EMD) is proposed to naturally treat the HSI as a cube and decompose the HSI into varying oscillations (i.e. 3D intrinsic mode functions (3D-IMFs)). To achieve fast 3D-EMD implementation, 3D Delaunay triangulation (3D-DT) is utilized to determine the distances of extrema, while separable filters are adopted to generate the envelopes. Taking the extracted 3D-IMFs as features of different tasks, robust multitask learning (RMTL) is further proposed for HSI classification. In RMTL, pairs of low-rank and sparse structures are formulated by trace-norm and l1,2 -norm to capture task relatedness and specificity, respectively. Moreover, the optimization problems of RMTL can be efficiently solved by the inexact augmented Lagrangian method (IALM). Compared with several state-of-the-art feature extraction and classification methods, the experimental results conducted on three benchmark data sets demonstrate the superiority of the proposed methods.
Mind the gap: bridging economic and naturalistic risk-taking with cognitive neuroscience.
Schonberg, Tom; Fox, Craig R; Poldrack, Russell A
2011-01-01
Economists define risk in terms of the variability of possible outcomes, whereas clinicians and laypeople generally view risk as exposure to possible loss or harm. Neuroeconomic studies using relatively simple behavioral tasks have identified a network of brain regions that respond to economic risk, but these studies have had limited success predicting naturalistic risk-taking. By contrast, more complex behavioral tasks developed by clinicians (e.g. Balloon Analogue Risk Task and Iowa Gambling Task) correlate with naturalistic risk-taking but resist decomposition into distinct cognitive constructs. We propose here that to bridge this gap and better understand neural substrates of naturalistic risk-taking, new tasks are needed that: are decomposable into basic cognitive and/or economic constructs; predict naturalistic risk-taking; and engender dynamic, affective engagement. Copyright © 2010 Elsevier Ltd. All rights reserved.
Short desynchronization episodes prevail in synchronous dynamics of human brain rhythms.
Ahn, Sungwoo; Rubchinsky, Leonid L
2013-03-01
Neural synchronization is believed to be critical for many brain functions. It frequently exhibits temporal variability, but it is not known if this variability has a specific temporal patterning. This study explores these synchronization/desynchronization patterns. We employ recently developed techniques to analyze the fine temporal structure of phase-locking to study the temporal patterning of synchrony of the human brain rhythms. We study neural oscillations recorded by electroencephalograms in α and β frequency bands in healthy human subjects at rest and during the execution of a task. While the phase-locking strength depends on many factors, dynamics of synchrony has a very specific temporal pattern: synchronous states are interrupted by frequent, but short desynchronization episodes. The probability for a desynchronization episode to occur decreased with its duration. The transition matrix between synchronized and desynchronized states has eigenvalues close to 0 and 1 where eigenvalue 1 has multiplicity 1, and therefore if the stationary distribution between these states is perturbed, the system converges back to the stationary distribution very fast. The qualitative similarity of this patterning across different subjects, brain states and electrode locations suggests that this may be a general type of dynamics for the brain. Earlier studies indicate that not all oscillatory networks have this kind of patterning of synchronization/desynchronization dynamics. Thus, the observed prevalence of short (but potentially frequent) desynchronization events (length of one cycle of oscillations) may have important functional implications for the brain. Numerous short desynchronizations (as opposed to infrequent, but long desynchronizations) may allow for a quick and efficient formation and break-up of functionally significant neuronal assemblies.
Short desynchronization episodes prevail in synchronous dynamics of human brain rhythms
NASA Astrophysics Data System (ADS)
Ahn, Sungwoo; Rubchinsky, Leonid L.
2013-03-01
Neural synchronization is believed to be critical for many brain functions. It frequently exhibits temporal variability, but it is not known if this variability has a specific temporal patterning. This study explores these synchronization/desynchronization patterns. We employ recently developed techniques to analyze the fine temporal structure of phase-locking to study the temporal patterning of synchrony of the human brain rhythms. We study neural oscillations recorded by electroencephalograms in α and β frequency bands in healthy human subjects at rest and during the execution of a task. While the phase-locking strength depends on many factors, dynamics of synchrony has a very specific temporal pattern: synchronous states are interrupted by frequent, but short desynchronization episodes. The probability for a desynchronization episode to occur decreased with its duration. The transition matrix between synchronized and desynchronized states has eigenvalues close to 0 and 1 where eigenvalue 1 has multiplicity 1, and therefore if the stationary distribution between these states is perturbed, the system converges back to the stationary distribution very fast. The qualitative similarity of this patterning across different subjects, brain states and electrode locations suggests that this may be a general type of dynamics for the brain. Earlier studies indicate that not all oscillatory networks have this kind of patterning of synchronization/desynchronization dynamics. Thus, the observed prevalence of short (but potentially frequent) desynchronization events (length of one cycle of oscillations) may have important functional implications for the brain. Numerous short desynchronizations (as opposed to infrequent, but long desynchronizations) may allow for a quick and efficient formation and break-up of functionally significant neuronal assemblies.
Geetha, Chinnaraj; Tanniru, Kishore; Rajan, R Raja
2017-04-01
This study aimed to evaluate the use of directionality in hearing aids with wireless synchronization on localization and speech intelligibility in noise. This study included 25 individuals with bilateral mild to moderate flat sensorineural hearing loss. For the localization experiment, eight loudspeakers (Genelec 8020B) arranged in a circle covering a 0-360° angle and the Cubase 6 software were used for presenting the stimulus. A car horn of 260 ms was presented from these loudspeakers, one at a time, randomly. The listener was instructed to point to the direction of the source. The degree of the localization error was obtained with and without directionality and wireless synchronization options. For speech perception in a noise experiment, signal to noise ratio-50 (SNR-50) was obtained using sentences played through a speaker at a fixed angle of 0°. A calibrated eight-talker speech babble was used as noise and the babble was routed either through 0°, 90°, 270° (through one speaker at a time) or through both 90° and 270° speakers. The results revealed that the conditions where both the wireless synchronization and directionality were activated resulted in a significantly better performance in both localization and speech perception in noise tasks. It can be concluded that the directionality in the wireless synchronization hearing aids coordinates with each other binaurally for better preservation of binaural cues, thus reducing the localization errors and improving speech perception in noise. The results of this study could be used to counsel and justify the selection of the directional wireless synchronization hearing aids.
Task allocation among multiple intelligent robots
NASA Technical Reports Server (NTRS)
Gasser, L.; Bekey, G.
1987-01-01
Researchers describe the design of a decentralized mechanism for allocating assembly tasks in a multiple robot assembly workstation. Currently, the approach focuses on distributed allocation to explore its feasibility and its potential for adaptability to changing circumstances, rather than for optimizing throughput. Individual greedy robots make their own local allocation decisions using both dynamic allocation policies which propagate through a network of allocation goals, and local static and dynamic constraints describing which robots are elibible for which assembly tasks. Global coherence is achieved by proper weighting of allocation pressures propagating through the assembly plan. Deadlock avoidance and synchronization is achieved using periodic reassessments of local allocation decisions, ageing of allocation goals, and short-term allocation locks on goals.
NASA Astrophysics Data System (ADS)
Kassem Jebai, Al; Malrait, François; Martin, Philippe; Rouchon, Pierre
2016-03-01
Sensorless control of permanent-magnet synchronous motors at low velocity remains a challenging task. A now well-established method consists of injecting a high-frequency signal and using the rotor saliency, both geometric and magnetic-saturation induced. This paper proposes a clear and original analysis based on second-order averaging of how to recover the position information from signal injection; this analysis blends well with a general model of magnetic saturation. It also proposes a simple parametric model of the saturated motor, based on an energy function which simply encompasses saturation and cross-saturation effects. Experimental results on a surface-mounted motor and an interior magnet motor illustrate the relevance of the approach.
Software engineering aspects of real-time programming concepts
NASA Astrophysics Data System (ADS)
Schoitsch, Erwin
1986-08-01
Real-time programming is a discipline of great importance not only in process control, but also in fields like communication, office automation, interactive databases, interactive graphics and operating systems development. General concepts of concurrent programming and constructs for process-synchronization are discussed in detail. Tasking and synchronization concepts, methods of process communication, interrupt and timeout handling in systems based on semaphores, signals, conditional critical regions or on real-time languages like Concurrent PASCAL, MODULA, CHILL and ADA are explained and compared with each other. The second part deals with structuring and modularization of technical processes to build reliable and maintainable real time systems. Software-quality and software engineering aspects are considered throughout the paper.
A Structured Model for Software Documentation.
ERIC Educational Resources Information Center
Swigger, Keith
The concept of "structured programming" was developed to facilitate software production, but it has not carried over to documentation design. Two concepts of structure are relevant to user documentation for computer programs. The first is based on programming techniques that emphasize decomposition of tasks into discrete modules, while the second…
Compressed Continuous Computation v. 12/20/2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorodetsky, Alex
2017-02-17
A library for performing numerical computation with low-rank functions. The (C3) library enables performing continuous linear and multilinear algebra with multidimensional functions. Common tasks include taking "matrix" decompositions of vector- or matrix-valued functions, approximating multidimensional functions in low-rank format, adding or multiplying functions together, integrating multidimensional functions.
NASA Technical Reports Server (NTRS)
Guman, W. J. (Editor)
1971-01-01
Thermal vacuum design supporting thruster tests indicate no problems under the worst case conditions of sink temperature and spin rate. The reliability of the system was calculated to be 0.92 for a five-year mission. Minus the main energy storage capacitor it is 0.98.
Verbal Interaction in "Second Life": Towards a Pedagogic Framework for Task Design
ERIC Educational Resources Information Center
Jauregi, Kristi; Canto, Silvia; de Graaff, Rick; Koenraad, Ton; Moonen, Machteld
2011-01-01
Within a European project on Networked Interaction in Foreign Language Acquisition and Research (NIFLAR), "Second Life" was used as a 3D virtual world in which language students can communicate synchronously with native speakers in the target language, while undertaking action together. For this context, a set of design principles for…
Role Engagement and Anonymity in Synchronous Online Role Play
ERIC Educational Resources Information Center
Cornelius, Sarah; Gordon, Carole; Harris, Margaret
2011-01-01
Role play activities provide opportunities for learners to adopt unfamiliar roles, engage in interactions with others, and get involved in realistic tasks. They are often recommended to foster the development of soft skills and a wider perspective of the world. Such activities are widely used as an online teaching approach, with examples ranging…
ERIC Educational Resources Information Center
Kitade, Keiko
2006-01-01
Based on recent studies, computer-mediated communication (CMC) has been considered a tool to aid in language learning on account of its distinctive interactional features. However, most studies have referred to "synchronous" CMC and neglected to investigate how "asynchronous" CMC contributes to language learning. Asynchronous CMC possesses…
Pronunciation in Face-to-Face and Audio-Only Synchronous Computer-Mediated Learner Interactions
ERIC Educational Resources Information Center
Loewen, Shawn; Isbell, Daniel R.
2017-01-01
Studies of learner-learner interactions have reported varying degrees of pronunciation-focused discourse, ranging from 1% (Bowles, Toth, & Adams, 2014) to 40% (Bueno-Alastuey, 2013). Including first language (L1) background, modality, and task as variables, this study investigates the role of pronunciation in learner-learner interactions.…
Planning and Second Language Development in Task-Based Synchronous Computer-Mediated Communication
ERIC Educational Resources Information Center
Hsu, Hsiu-Chen
2012-01-01
This dissertation explored the effect of two planning conditions (the multiple planning condition with rehearsal and online planning time, and the single planning condition with online planning time only) on L2 production complexity and accuracy and the subsequent development of these two linguistic areas in the context of written synchronous…
Cruzat, Josephine; Deco, Gustavo; Tauste-Campo, Adrià; Principe, Alessandro; Costa, Albert; Kringelbach, Morten L; Rocamora, Rodrigo
2018-05-15
Cognitive processing requires the ability to flexibly integrate and process information across large brain networks. How do brain networks dynamically reorganize to allow broad communication between many different brain regions in order to integrate information? We record neural activity from 12 epileptic patients using intracranial EEG while performing three cognitive tasks. We assess how the functional connectivity between different brain areas changes to facilitate communication across them. At the topological level, this facilitation is characterized by measures of integration and segregation. Across all patients, we found significant increases in integration and decreases in segregation during cognitive processing, especially in the gamma band (50-90 Hz). We also found higher levels of global synchronization and functional connectivity during task execution, again particularly in the gamma band. More importantly, functional connectivity modulations were not caused by changes in the level of the underlying oscillations. Instead, these modulations were caused by a rearrangement of the mutual synchronization between the different nodes as proposed by the "Communication Through Coherence" Theory. Copyright © 2018 Elsevier Inc. All rights reserved.
Reflection enhances creativity: Beneficial effects of idea evaluation on idea generation.
Hao, Ning; Ku, Yixuan; Liu, Meigui; Hu, Yi; Bodner, Mark; Grabner, Roland H; Fink, Andreas
2016-03-01
The present study aimed to explore the neural correlates underlying the effects of idea evaluation on idea generation in creative thinking. Participants were required to generate original uses of conventional objects (alternative uses task) during EEG recording. A reflection task (mentally evaluating the generated ideas) or a distraction task (object characteristics task) was inserted into the course of idea generation. Behavioral results revealed that participants generated ideas with higher originality after evaluating the generated ideas than after performing the distraction task. The EEG results revealed that idea evaluation was accompanied with upper alpha (10-13 Hz) synchronization, most prominent at frontal cortical sites. Moreover, upper alpha activity in frontal cortices during idea generation was enhanced after idea evaluation. These findings indicate that idea evaluation may elicit a state of heightened internal attention or top-down activity that facilitates efficient retrieval and integration of internal memory representations. Copyright © 2016 Elsevier Inc. All rights reserved.
Neurocognitive Brain Response to Transient Impairment of Wernicke's Area
Mason, Robert A.; Prat, Chantel S.; Just, Marcel Adam
2014-01-01
This study examined how the brain system adapts and reconfigures its information processing capabilities to maintain cognitive performance after a key cortical center [left posterior superior temporal gyrus (LSTGp)] is temporarily impaired during the performance of a language comprehension task. By applying repetitive transcranial magnetic stimulation (rTMS) to LSTGp and concurrently assessing the brain response with functional magnetic resonance imaging, we found that adaptation consisted of 1) increased synchronization between compensating regions coupled with a decrease in synchronization within the primary language network and 2) a decrease in activation at the rTMS site as well as in distal regions, followed by their recovery. The compensatory synchronization included 3 centers: The contralateral homolog (RSTGp) of the area receiving rTMS, areas adjacent to the rTMS site, and a region involved in discourse monitoring (medial frontal gyrus). This approach reveals some principles of network-level adaptation to trauma with potential application to traumatic brain injury, stroke, and seizure. PMID:23322403
Neurocognitive brain response to transient impairment of Wernicke's area.
Mason, Robert A; Prat, Chantel S; Just, Marcel Adam
2014-06-01
This study examined how the brain system adapts and reconfigures its information processing capabilities to maintain cognitive performance after a key cortical center [left posterior superior temporal gyrus (LSTGp)] is temporarily impaired during the performance of a language comprehension task. By applying repetitive transcranial magnetic stimulation (rTMS) to LSTGp and concurrently assessing the brain response with functional magnetic resonance imaging, we found that adaptation consisted of 1) increased synchronization between compensating regions coupled with a decrease in synchronization within the primary language network and 2) a decrease in activation at the rTMS site as well as in distal regions, followed by their recovery. The compensatory synchronization included 3 centers: The contralateral homolog (RSTGp) of the area receiving rTMS, areas adjacent to the rTMS site, and a region involved in discourse monitoring (medial frontal gyrus). This approach reveals some principles of network-level adaptation to trauma with potential application to traumatic brain injury, stroke, and seizure.
Kuzmina, Margarita; Manykin, Eduard; Surina, Irina
2004-01-01
An oscillatory network of columnar architecture located in 3D spatial lattice was recently designed by the authors as oscillatory model of the brain visual cortex. Single network oscillator is a relaxational neural oscillator with internal dynamics tunable by visual image characteristics - local brightness and elementary bar orientation. It is able to demonstrate either activity state (stable undamped oscillations) or "silence" (quickly damped oscillations). Self-organized nonlocal dynamical connections of oscillators depend on oscillator activity levels and orientations of cortical receptive fields. Network performance consists in transfer into a state of clusterized synchronization. At current stage grey-level image segmentation tasks are carried out by 2D oscillatory network, obtained as a limit version of the source model. Due to supplemented network coupling strength control the 2D reduced network provides synchronization-based image segmentation. New results on segmentation of brightness and texture images presented in the paper demonstrate accurate network performance and informative visualization of segmentation results, inherent in the model.
Continued Data Acquisition Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwellenbach, David
This task focused on improving techniques for integrating data acquisition of secondary particles correlated in time with detected cosmic-ray muons. Scintillation detectors with Pulse Shape Discrimination (PSD) capability show the most promise as a detector technology based on work in FY13. Typically PSD parameters are determined prior to an experiment and the results are based on these parameters. By saving data in list mode, including the fully digitized waveform, any experiment can effectively be replayed to adjust PSD and other parameters for the best data capture. List mode requires time synchronization of two independent data acquisitions (DAQ) systems: the muonmore » tracker and the particle detector system. Techniques to synchronize these systems were studied. Two basic techniques were identified: real time mode and sequential mode. Real time mode is the preferred system but has proven to be a significant challenge since two FPGA systems with different clocking parameters must be synchronized. Sequential processing is expected to work with virtually any DAQ but requires more post processing to extract the data.« less
Combining EEG, MIDI, and motion capture techniques for investigating musical performance.
Maidhof, Clemens; Kästner, Torsten; Makkonen, Tommi
2014-03-01
This article describes a setup for the simultaneous recording of electrophysiological data (EEG), musical data (MIDI), and three-dimensional movement data. Previously, each of these three different kinds of measurements, conducted sequentially, has been proven to provide important information about different aspects of music performance as an example of a demanding multisensory motor skill. With the method described here, it is possible to record brain-related activity and movement data simultaneously, with accurate timing resolution and at relatively low costs. EEG and MIDI data were synchronized with a modified version of the FTAP software, sending synchronization signals to the EEG recording device simultaneously with keypress events. Similarly, a motion capture system sent synchronization signals simultaneously with each recorded frame. The setup can be used for studies investigating cognitive and motor processes during music performance and music-like tasks--for example, in the domains of motor control, learning, music therapy, or musical emotions. Thus, this setup offers a promising possibility of a more behaviorally driven analysis of brain activity.
The Impact of Competing Time Delays in Stochastic Coordination Problems
NASA Astrophysics Data System (ADS)
Korniss, G.; Hunt, D.; Szymanski, B. K.
2011-03-01
Coordinating, distributing, and balancing resources in coupled systems is a complex task as these operations are very sensitive to time delays. Delays are present in most real communication and information systems, including info-social and neuro-biological networks, and can be attributed to both non-zero transmission times between different units of the system and to non-zero times it takes to process the information and execute the desired action at the individual units. Here, we investigate the importance and impact of these two types of delays in a simple coordination (synchronization) problem in a noisy environment. We establish the scaling theory for the phase boundary of synchronization and for the steady-state fluctuations in the synchronizable regime. Further, we provide the asymptotic behavior near the boundary of the synchronizable regime. Our results also imply the potential for optimization and trade-offs in stochastic synchronization and coordination problems with time delays. Supported in part by DTRA, ARL, and ONR.
NASA Astrophysics Data System (ADS)
Soriano, Diogo C.; Santos, Odair V. dos; Suyama, Ricardo; Fazanaro, Filipe I.; Attux, Romis
2018-03-01
This work has a twofold aim: (a) to analyze an alternative approach for computing the conditional Lyapunov exponent (λcmax) aiming to evaluate the synchronization stability between nonlinear oscillators without solving the classical variational equations for the synchronization error dynamical system. In this first framework, an analytic reference value for λcmax is also provided in the context of Duffing master-slave scenario and precisely evaluated by the proposed numerical approach; (b) to apply this technique to the study of synchronization stability in chaotic Hindmarsh-Rose (HR) neuronal models under uni- and bi-directional resistive coupling and different excitation bias, which also considered the root mean square synchronization error, information theoretic measures and asymmetric transfer entropy in order to offer a better insight of the synchronization phenomenon. In particular, statistical and information theoretical measures were able to capture similarity increase between the neuronal oscillators just after a critical coupling value in accordance to the largest conditional Lyapunov exponent behavior. On the other hand, transfer entropy was able to detect neuronal emitter influence even in a weak coupling condition, i.e. under the increase of conditional Lyapunov exponent and apparently desynchronization tendency. In the performed set of numerical simulations, the synchronization measures were also evaluated for a two-dimensional parameter space defined by the neuronal coupling (emitter to a receiver neuron) and the (receiver) excitation current. Such analysis is repeated for different feedback couplings as well for different (emitter) excitation currents, revealing interesting characteristics of the attained synchronization region and conditions that facilitate the emergence of the synchronous behavior. These results provide a more detailed numerical insight of the underlying behavior of a HR in the excitation and coupling space, being in accordance with some general findings concerning HR coupling topologies. As a perspective, besides the synchronization overview from different standpoints, we hope that the proposed numerical approach for conditional Lyapunov exponent evaluation could outline a valuable strategy for studying neuronal stability, especially when realistic models are considered, in which analytical or even Jacobian evaluation could define a laborious or impracticable task.
Tu, Jia-Ying; Hsiao, Wei-De; Chen, Chih-Ying
2014-01-01
Testing techniques of dynamically substructured systems dissects an entire engineering system into parts. Components can be tested via numerical simulation or physical experiments and run synchronously. Additional actuator systems, which interface numerical and physical parts, are required within the physical substructure. A high-quality controller, which is designed to cancel unwanted dynamics introduced by the actuators, is important in order to synchronize the numerical and physical outputs and ensure successful tests. An adaptive forward prediction (AFP) algorithm based on delay compensation concepts has been proposed to deal with substructuring control issues. Although the settling performance and numerical conditions of the AFP controller are improved using new direct-compensation and singular value decomposition methods, the experimental results show that a linear dynamics-based controller still outperforms the AFP controller. Based on experimental observations, the least-squares fitting technique, effectiveness of the AFP compensation and differences between delay and ordinary differential equations are discussed herein, in order to reflect the fundamental issues of actuator modelling in relevant literature and, more specifically, to show that the actuator and numerical substructure are heterogeneous dynamic components and should not be collectively modelled as a homogeneous delay differential equation. PMID:25104902
Burnay, Eduardo; Cruz-Correia, Ricardo; Jacinto, Tiago; Sousa, Ana Sá; Fonseca, João
2013-01-01
Asthma and allergic rhinitis (ARA) are common inflammatory diseases of the airways. Enhancement of a patient's participation on clinical decisions is related to better results in control of diseases. To control ARA, patients should monitor their symptoms, avoid triggers, and follow their treatment plan. This study described the challenges of developing a mobile application, called m.Carat, that records the main events related to ARA. The mobile application m.Carat was developed for Android™ (Google, Mountain View, CA) and iPhone(®) (Apple, San Jose, CA) smartphones. It was developed using PhoneGap, which allows the development of applications for several mobile operating systems. To generate the user interface, jQuery Mobile, HTML, Javascript, and CSS were used. Despite the use of mobile development frameworks, some input and output elements had to be improved. To evaluate the interface, a pilot study was performed with eight users who performed 10 different tasks in the application. To synchronize m.Carat with an online database, an algorithm was developed from scratch. This feature represents a major challenge because all the changes must be reflected in all devices. Currently m.Carat is a mobile application where ARA patients fill out a questionnaire to assess the degree of control of ARA and record their exacerbations, triggers, symptoms, medications, lung function tests, and visits to the doctor or the hospital. They also can receive information and news about ARA, define medication and tasks notifications, and synchronize all records at caratnetwork.org with an online database. The evaluation showed some of the adopted solutions to improve interface usability did not work as expected. Of the 80 total tasks tested the users had no difficulty in 37(46%). Most of the problems observed were easily solved. m.Carat is a mobile application for ARA that may contribute to patient enablement. The development of m.Carat suggests that mobile applications may introduce specific challenges that need new solutions.
Performance Analysis of and Tool Support for Transactional Memory on BG/Q
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schindewolf, M
2011-12-08
Martin Schindewolf worked during his internship at the Lawrence Livermore National Laboratory (LLNL) under the guidance of Martin Schulz at the Computer Science Group of the Center for Applied Scientific Computing. We studied the performance of the TM subsystem of BG/Q as well as researched the possibilities for tool support for TM. To study the performance, we run CLOMP-TM. CLOMP-TM is a benchmark designed for the purpose to quantify the overhead of OpenMP and compare different synchronization primitives. To advance CLOMP-TM, we added Message Passing Interface (MPI) routines for a hybrid parallelization. This enables to run multiple MPI tasks, eachmore » running OpenMP, on one node. With these enhancements, a beneficial MPI task to OpenMP thread ratio is determined. Further, the synchronization primitives are ranked as a function of the application characteristics. To demonstrate the usefulness of these results, we investigate a real Monte Carlo simulation called Monte Carlo Benchmark (MCB). Applying the lessons learned yields the best task to thread ratio. Further, we were able to tune the synchronization by transactifying the MCB. Further, we develop tools that capture the performance of the TM run time system and present it to the application's developer. The performance of the TM run time system relies on the built-in statistics. These tools use the Blue Gene Performance Monitoring (BGPM) interface to correlate the statistics from the TM run time system with performance counter values. This combination provides detailed insights in the run time behavior of the application and enables to track down the cause of degraded performance. Further, one tool has been implemented that separates the performance counters in three categories: Successful Speculation, Unsuccessful Speculation and No Speculation. All of the tools are crafted around IBM's xlc compiler for C and C++ and have been run and tested on a Q32 early access system.« less
Decomposition-based transfer distance metric learning for image classification.
Luo, Yong; Liu, Tongliang; Tao, Dacheng; Xu, Chao
2014-09-01
Distance metric learning (DML) is a critical factor for image analysis and pattern recognition. To learn a robust distance metric for a target task, we need abundant side information (i.e., the similarity/dissimilarity pairwise constraints over the labeled data), which is usually unavailable in practice due to the high labeling cost. This paper considers the transfer learning setting by exploiting the large quantity of side information from certain related, but different source tasks to help with target metric learning (with only a little side information). The state-of-the-art metric learning algorithms usually fail in this setting because the data distributions of the source task and target task are often quite different. We address this problem by assuming that the target distance metric lies in the space spanned by the eigenvectors of the source metrics (or other randomly generated bases). The target metric is represented as a combination of the base metrics, which are computed using the decomposed components of the source metrics (or simply a set of random bases); we call the proposed method, decomposition-based transfer DML (DTDML). In particular, DTDML learns a sparse combination of the base metrics to construct the target metric by forcing the target metric to be close to an integration of the source metrics. The main advantage of the proposed method compared with existing transfer metric learning approaches is that we directly learn the base metric coefficients instead of the target metric. To this end, far fewer variables need to be learned. We therefore obtain more reliable solutions given the limited side information and the optimization tends to be faster. Experiments on the popular handwritten image (digit, letter) classification and challenge natural image annotation tasks demonstrate the effectiveness of the proposed method.
NASA Technical Reports Server (NTRS)
Juang, Hann-Ming Henry; Tao, Wei-Kuo; Zeng, Xi-Ping; Shie, Chung-Lin; Simpson, Joanne; Lang, Steve
2004-01-01
The capability for massively parallel programming (MPP) using a message passing interface (MPI) has been implemented into a three-dimensional version of the Goddard Cumulus Ensemble (GCE) model. The design for the MPP with MPI uses the concept of maintaining similar code structure between the whole domain as well as the portions after decomposition. Hence the model follows the same integration for single and multiple tasks (CPUs). Also, it provides for minimal changes to the original code, so it is easily modified and/or managed by the model developers and users who have little knowledge of MPP. The entire model domain could be sliced into one- or two-dimensional decomposition with a halo regime, which is overlaid on partial domains. The halo regime requires that no data be fetched across tasks during the computational stage, but it must be updated before the next computational stage through data exchange via MPI. For reproducible purposes, transposing data among tasks is required for spectral transform (Fast Fourier Transform, FFT), which is used in the anelastic version of the model for solving the pressure equation. The performance of the MPI-implemented codes (i.e., the compressible and anelastic versions) was tested on three different computing platforms. The major results are: 1) both versions have speedups of about 99% up to 256 tasks but not for 512 tasks; 2) the anelastic version has better speedup and efficiency because it requires more computations than that of the compressible version; 3) equal or approximately-equal numbers of slices between the x- and y- directions provide the fastest integration due to fewer data exchanges; and 4) one-dimensional slices in the x-direction result in the slowest integration due to the need for more memory relocation for computation.
Multitasking the three-dimensional transport code TORT on CRAY platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azmy, Y.Y.; Barnett, D.A.; Burre, C.A.
1996-04-01
The multitasking options in the three-dimensional neutral particle transport code TORT originally implemented for Cray`s CTSS operating system are revived and extended to run on Cray Y/MP and C90 computers using the UNICOS operating system. These include two coarse-grained domain decompositions; across octants, and across directions within an octant, termed Octant Parallel (OP), and Direction Parallel (DP), respectively. Parallel performance of the DP is significantly enhanced by increasing the task grain size and reducing load imbalance via dynamic scheduling of the discrete angles among the participating tasks. Substantial Wall Clock speedup factors, approaching 4.5 using 8 tasks, have been measuredmore » in a time-sharing environment, and generally depend on the test problem specifications, number of tasks, and machine loading during execution.« less
Gompf, Florian; Pflug, Anja; Laufs, Helmut; Kell, Christian A
2017-01-01
Functional imaging studies using BOLD contrasts have consistently reported activation of the supplementary motor area (SMA) both during motor and internal timing tasks. Opposing findings, however, have been shown for the modulation of beta oscillations in the SMA. While movement suppresses beta oscillations in the SMA, motor and non-motor tasks that rely on internal timing increase the amplitude of beta oscillations in the SMA. These independent observations suggest that the relationship between beta oscillations and BOLD activation is more complex than previously thought. Here we set out to investigate this rapport by examining beta oscillations in the SMA during movement with varying degrees of internal timing demands. In a simultaneous EEG-fMRI experiment, 20 healthy right-handed subjects performed an auditory-paced finger-tapping task. Internal timing was operationalized by including conditions with taps on every fourth auditory beat, which necessitates generation of a slow internal rhythm, while tapping to every auditory beat reflected simple auditory-motor synchronization. In the SMA, BOLD activity increased and power in both the low and the high beta band decreased expectedly during each condition compared to baseline. Internal timing was associated with a reduced desynchronization of low beta oscillations compared to conditions without internal timing demands. In parallel with this relative beta power increase, internal timing activated the SMA more strongly in terms of BOLD. This documents a task-dependent non-linear relationship between BOLD and beta-oscillations in the SMA. We discuss different roles of beta synchronization and desynchronization in active processing within the same cortical region.
Contreras-Hernández, E; Chávez, D; Rudomin, P
2015-01-01
Previous studies on the correlation between spontaneous cord dorsum potentials recorded in the lumbar spinal segments of anaesthetized cats suggested the operation of a population of dorsal horn neurones that modulates, in a differential manner, transmission along pathways mediating Ib non-reciprocal postsynaptic inhibition and pathways mediating primary afferent depolarization and presynaptic inhibition. In order to gain further insight into the possible neuronal mechanisms that underlie this process, we have measured changes in the correlation between the spontaneous activity of individual dorsal horn neurones and the cord dorsum potentials associated with intermittent activation of these inhibitory pathways. We found that high levels of neuronal synchronization within the dorsal horn are associated with states of incremented activity along the pathways mediating presynaptic inhibition relative to pathways mediating Ib postsynaptic inhibition. It is suggested that ongoing changes in the patterns of functional connectivity within a distributed ensemble of dorsal horn neurones play a relevant role in the state-dependent modulation of impulse transmission along inhibitory pathways, among them those involved in the central control of sensory information. This feature would allow the same neuronal network to be involved in different functional tasks. Key points We have examined, in the spinal cord of the anaesthetized cat, the relationship between ongoing correlated fluctuations of dorsal horn neuronal activity and state-dependent activation of inhibitory reflex pathways. We found that high levels of synchronization between the spontaneous activity of dorsal horn neurones occur in association with the preferential activation of spinal pathways leading to primary afferent depolarization and presynaptic inhibition relative to activation of pathways mediating Ib postsynaptic inhibition. It is suggested that changes in synchronization of ongoing activity within a distributed network of dorsal horn neurones play a relevant role in the configuration of structured (non-random) patterns of functional connectivity that shape the interaction of sensory inputs with spinal reflex pathways subserving different functional tasks. PMID:25653206
Buchweitz, Augusto; Keller, Timothy A.; Meyler, Ann; Just, Marcel Adam
2011-01-01
The study used fMRI to investigate brain activation in participants who were able to listen to and successfully comprehend two people speaking at the same time (dual-tasking). The study identified brain mechanisms associated with high-level, concurrent dual-tasking, as compared to comprehending a single message. Results showed an increase in the functional connectivity among areas of the language network in the dual task. The increase in synchronization of brain activation for dual-tasking was brought about primarily by a change in the timing of left inferior frontal gyrus (LIFG) activation relative to posterior temporal activation, bringing the LIFG activation into closer correspondence with temporal activation. The results show that the change in LIFG timing was greater in participants with lower working memory capacity, and that recruitment of additional activation in the dual-task occurred only in the areas adjacent to the language network that was activated in the single task. The shift in LIFG activation may be a brain marker of how the brain adapts to high-level dual-tasking. PMID:21618666
Approximation methods for stochastic petri nets
NASA Technical Reports Server (NTRS)
Jungnitz, Hauke Joerg
1992-01-01
Stochastic Marked Graphs are a concurrent decision free formalism provided with a powerful synchronization mechanism generalizing conventional Fork Join Queueing Networks. In some particular cases the analysis of the throughput can be done analytically. Otherwise the analysis suffers from the classical state explosion problem. Embedded in the divide and conquer paradigm, approximation techniques are introduced for the analysis of stochastic marked graphs and Macroplace/Macrotransition-nets (MPMT-nets), a new subclass introduced herein. MPMT-nets are a subclass of Petri nets that allow limited choice, concurrency and sharing of resources. The modeling power of MPMT is much larger than that of marked graphs, e.g., MPMT-nets can model manufacturing flow lines with unreliable machines and dataflow graphs where choice and synchronization occur. The basic idea leads to the notion of a cut to split the original net system into two subnets. The cuts lead to two aggregated net systems where one of the subnets is reduced to a single transition. A further reduction leads to a basic skeleton. The generalization of the idea leads to multiple cuts, where single cuts can be applied recursively leading to a hierarchical decomposition. Based on the decomposition, a response time approximation technique for the performance analysis is introduced. Also, delay equivalence, which has previously been introduced in the context of marked graphs by Woodside et al., Marie's method and flow equivalent aggregation are applied to the aggregated net systems. The experimental results show that response time approximation converges quickly and shows reasonable accuracy in most cases. The convergence of Marie's method and flow equivalent aggregation are applied to the aggregated net systems. The experimental results show that response time approximation converges quickly and shows reasonable accuracy in most cases. The convergence of Marie's is slower, but the accuracy is generally better. Delay equivalence often fails to converge, while flow equivalent aggregation can lead to potentially bad results if a strong dependence of the mean completion time on the interarrival process exists.
The formal verification of generic interpreters
NASA Technical Reports Server (NTRS)
Windley, P.; Levitt, K.; Cohen, G. C.
1991-01-01
The task assignment 3 of the design and validation of digital flight control systems suitable for fly-by-wire applications is studied. Task 3 is associated with formal verification of embedded systems. In particular, results are presented that provide a methodological approach to microprocessor verification. A hierarchical decomposition strategy for specifying microprocessors is also presented. A theory of generic interpreters is presented that can be used to model microprocessor behavior. The generic interpreter theory abstracts away the details of instruction functionality, leaving a general model of what an interpreter does.
Geometric subspace methods and time-delay embedding for EEG artifact removal and classification.
Anderson, Charles W; Knight, James N; O'Connor, Tim; Kirby, Michael J; Sokolov, Artem
2006-06-01
Generalized singular-value decomposition is used to separate multichannel electroencephalogram (EEG) into components found by optimizing a signal-to-noise quotient. These components are used to filter out artifacts. Short-time principal components analysis of time-delay embedded EEG is used to represent windowed EEG data to classify EEG according to which mental task is being performed. Examples are presented of the filtering of various artifacts and results are shown of classification of EEG from five mental tasks using committees of decision trees.
Video segmentation and camera motion characterization using compressed data
NASA Astrophysics Data System (ADS)
Milanese, Ruggero; Deguillaume, Frederic; Jacot-Descombes, Alain
1997-10-01
We address the problem of automatically extracting visual indexes from videos, in order to provide sophisticated access methods to the contents of a video server. We focus on tow tasks, namely the decomposition of a video clip into uniform segments, and the characterization of each shot by camera motion parameters. For the first task we use a Bayesian classification approach to detecting scene cuts by analyzing motion vectors. For the second task a least- squares fitting procedure determines the pan/tilt/zoom camera parameters. In order to guarantee the highest processing speed, all techniques process and analyze directly MPEG-1 motion vectors, without need for video decompression. Experimental results are reported for a database of news video clips.
Niederegger, Senta; Schermer, Julia; Höfig, Juliane; Mall, Gita
2015-01-01
Estimating time of death of buried human bodies is a very difficult task. Casper's rule from 1860 is still widely used which illustrates the lack of suitable methods. In this case study excavations in an arbor revealed the crouching body of a human being, dressed only in boxer shorts and socks. Witnesses were not able to generate a concise answer as to when the person in question was last seen alive; the pieces of information opened a window of 2-6 weeks for the possible time of death. To determine the post mortem interval (PMI) an experiment using a pig carcass was conducted to set up a decomposition matrix. Fitting the autopsy findings of the victim into the decomposition matrix yielded a time of death estimation of 2-3 weeks. This time frame was later confirmed by a new witness. The authors feel confident that a widespread conduction of decomposition matrices using pig carcasses can lead to a great increase of experience and knowledge in PMI estimation of buried bodies and will eventually lead to applicable new methods. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Caffo, Brian S.; Crainiceanu, Ciprian M.; Verduzco, Guillermo; Joel, Suresh; Mostofsky, Stewart H.; Bassett, Susan Spear; Pekar, James J.
2010-01-01
Functional connectivity is the study of correlations in measured neurophysiological signals. Altered functional connectivity has been shown to be associated with a variety of cognitive and memory impairments and dysfunction, including Alzheimer’s disease. In this manuscript we use a two-stage application of the singular value decomposition to obtain data driven population-level measures of functional connectivity in functional magnetic resonance imaging (fMRI). The method is computationally simple and amenable to high dimensional fMRI data with large numbers of subjects. Simulation studies suggest the ability of the decomposition methods to recover population brain networks and their associated loadings. We further demonstrate the utility of these decompositions in a functional logistic regression model. The method is applied to a novel fMRI study of Alzheimer’s disease risk under a verbal paired associates task. We found a indication of alternative connectivity in clinically asymptomatic at-risk subjects when compared to controls, that was not significant in the light of multiple comparisons adjustment. The relevant brain network loads primarily on the temporal lobe and overlaps significantly with the olfactory areas and temporal poles. PMID:20227508
Caffo, Brian S; Crainiceanu, Ciprian M; Verduzco, Guillermo; Joel, Suresh; Mostofsky, Stewart H; Bassett, Susan Spear; Pekar, James J
2010-07-01
Functional connectivity is the study of correlations in measured neurophysiological signals. Altered functional connectivity has been shown to be associated with a variety of cognitive and memory impairments and dysfunction, including Alzheimer's disease. In this manuscript we use a two-stage application of the singular value decomposition to obtain data driven population-level measures of functional connectivity in functional magnetic resonance imaging (fMRI). The method is computationally simple and amenable to high dimensional fMRI data with large numbers of subjects. Simulation studies suggest the ability of the decomposition methods to recover population brain networks and their associated loadings. We further demonstrate the utility of these decompositions in a functional logistic regression model. The method is applied to a novel fMRI study of Alzheimer's disease risk under a verbal paired associates task. We found an indication of alternative connectivity in clinically asymptomatic at-risk subjects when compared to controls, which was not significant in the light of multiple comparisons adjustment. The relevant brain network loads primarily on the temporal lobe and overlaps significantly with the olfactory areas and temporal poles. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Decomposition and extraction: a new framework for visual classification.
Fang, Yuqiang; Chen, Qiang; Sun, Lin; Dai, Bin; Yan, Shuicheng
2014-08-01
In this paper, we present a novel framework for visual classification based on hierarchical image decomposition and hybrid midlevel feature extraction. Unlike most midlevel feature learning methods, which focus on the process of coding or pooling, we emphasize that the mechanism of image composition also strongly influences the feature extraction. To effectively explore the image content for the feature extraction, we model a multiplicity feature representation mechanism through meaningful hierarchical image decomposition followed by a fusion step. In particularly, we first propose a new hierarchical image decomposition approach in which each image is decomposed into a series of hierarchical semantical components, i.e, the structure and texture images. Then, different feature extraction schemes can be adopted to match the decomposed structure and texture processes in a dissociative manner. Here, two schemes are explored to produce property related feature representations. One is based on a single-stage network over hand-crafted features and the other is based on a multistage network, which can learn features from raw pixels automatically. Finally, those multiple midlevel features are incorporated by solving a multiple kernel learning task. Extensive experiments are conducted on several challenging data sets for visual classification, and experimental results demonstrate the effectiveness of the proposed method.
1993-06-01
completes the functional decomposition of the detection and monitoring requirements of the Counterdrug JTF. David Marca in his text SADT, Structural...September 1992. 12. Marca , D. McGowan, C., SADT, Structured Analysis and Design Technique, Mc Graw-Hill , 1988. 13. United States Department of
Evidence for Early Morphological Decomposition in Visual Word Recognition
ERIC Educational Resources Information Center
Solomyak, Olla; Marantz, Alec
2010-01-01
We employ a single-trial correlational MEG analysis technique to investigate early processing in the visual recognition of morphologically complex words. Three classes of affixed words were presented in a lexical decision task: free stems (e.g., taxable), bound roots (e.g., tolerable), and unique root words (e.g., vulnerable, the root of which…
"Wh-on-Earth" in Chinese Speakers' L2 English: Evidence of Dormant Features
ERIC Educational Resources Information Center
Yuan, Boping
2014-01-01
Adopting a decompositional approach to items in the lexicon, this article reports on an empirical study investigating Chinese speakers' second language (L2) acquisition of English "wh-on-earth" questions (i.e. questions with phrases like what on earth or "who on earth"). An acceptability judgment task, a discourse-completion…
Doesburg, Sam M.; Green, Jessica J.; McDonald, John J.; Ward, Lawrence M.
2009-01-01
Consciousness has been proposed to emerge from functionally integrated large-scale ensembles of gamma-synchronous neural populations that form and dissolve at a frequency in the theta band. We propose that discrete moments of perceptual experience are implemented by transient gamma-band synchronization of relevant cortical regions, and that disintegration and reintegration of these assemblies is time-locked to ongoing theta oscillations. In support of this hypothesis we provide evidence that (1) perceptual switching during binocular rivalry is time-locked to gamma-band synchronizations which recur at a theta rate, indicating that the onset of new conscious percepts coincides with the emergence of a new gamma-synchronous assembly that is locked to an ongoing theta rhythm; (2) localization of the generators of these gamma rhythms reveals recurrent prefrontal and parietal sources; (3) theta modulation of gamma-band synchronization is observed between and within the activated brain regions. These results suggest that ongoing theta-modulated-gamma mechanisms periodically reintegrate a large-scale prefrontal-parietal network critical for perceptual experience. Moreover, activation and network inclusion of inferior temporal cortex and motor cortex uniquely occurs on the cycle immediately preceding responses signaling perceptual switching. This suggests that the essential prefrontal-parietal oscillatory network is expanded to include additional cortical regions relevant to tasks and perceptions furnishing consciousness at that moment, in this case image processing and response initiation, and that these activations occur within a time frame consistent with the notion that conscious processes directly affect behaviour. PMID:19582165
Backward assembly planning with DFA analysis
NASA Technical Reports Server (NTRS)
Lee, Sukhan (Inventor)
1992-01-01
An assembly planning system that operates based on a recursive decomposition of assembly into subassemblies is presented. The planning system analyzes assembly cost in terms of stability, directionality, and manipulability to guide the generation of preferred assembly plans. The planning in this system incorporates the special processes, such as cleaning, testing, labeling, etc., that must occur during the assembly. Additionally, the planning handles nonreversible, as well as reversible, assembly tasks through backward assembly planning. In order to decrease the planning efficiency, the system avoids the analysis of decompositions that do not correspond to feasible assembly tasks. This is achieved by grouping and merging those parts that can not be decomposable at the current stage of backward assembly planning due to the requirement of special processes and the constraint of interconnection feasibility. The invention includes methods of evaluating assembly cost in terms of the number of fixtures (or holding devices) and reorientations required for assembly, through the analysis of stability, directionality, and manipulability. All these factors are used in defining cost and heuristic functions for an AO* search for an optimal plan.
Co-Regulation and Knowledge Construction in an Online Synchronous Problem Based Learning Setting
ERIC Educational Resources Information Center
Lee, Lila; Lajoie, Susanne P.; Poitras, Eric G.; Nkangu, Miriam; Doleck, Tenzin
2017-01-01
Learning to monitor and regulate one's learning in an academic setting is a task that all students must engage in. Learning in "group" situations requires both self- and co-regulation. This research examines a case study of a small group of medical student interactions during an on-line problem based learning activity (PBL) where…
Toward a Psychophysics of Agency: Detecting Gain and Loss of Control over Auditory Action Effects
ERIC Educational Resources Information Center
Repp, Bruno H.; Knoblich, Gunther
2007-01-01
Theories of agency--the feeling of being in control of one's actions and their effects--emphasize either perceptual or cognitive aspects. This study addresses both aspects simultaneously in a finger-tapping paradigm. The tasks required participants to detect when synchronization of their taps with computer-controlled tones changed to…
Extending Talk on a Prescribed Discussion Topic in a Learner-Native Speaker eTandem Learning Task
ERIC Educational Resources Information Center
Black, Emily
2017-01-01
Opportunities for language learners to access authentic input and engage in consequential interactions with native speakers of their target language abound in this era of computer mediated communication. Synchronous audio/video calling software represents one opportunity to access such input and address the challenges of developing pragmatic and…
Top-Down Control of MEG Alpha-Band Activity in Children Performing Categorical N-Back Task
ERIC Educational Resources Information Center
Ciesielski, Kristina T.; Ahlfors, Seppo P.; Bedrick, Edward J.; Kerwin, Audra A.; Hamalainen, Matti S.
2010-01-01
Top-down cognitive control has been associated in adults with the prefrontal-parietal network. In children the brain mechanisms of top-down control have rarely been studied. We examined developmental differences in top-down cognitive control by monitoring event-related desynchronization (ERD) and event-related synchronization (ERS) of alpha-band…
Identification of Synchronous Machine Stability - Parameters: AN On-Line Time-Domain Approach.
NASA Astrophysics Data System (ADS)
Le, Loc Xuan
1987-09-01
A time-domain modeling approach is described which enables the stability-study parameters of the synchronous machine to be determined directly from input-output data measured at the terminals of the machine operating under normal conditions. The transient responses due to system perturbations are used to identify the parameters of the equivalent circuit models. The described models are verified by comparing their responses with the machine responses generated from the transient stability models of a small three-generator multi-bus power system and of a single -machine infinite-bus power network. The least-squares method is used for the solution of the model parameters. As a precaution against ill-conditioned problems, the singular value decomposition (SVD) is employed for its inherent numerical stability. In order to identify the equivalent-circuit parameters uniquely, the solution of a linear optimization problem with non-linear constraints is required. Here, the SVD appears to offer a simple solution to this otherwise difficult problem. Furthermore, the SVD yields solutions with small bias and, therefore, physically meaningful parameters even in the presence of noise in the data. The question concerning the need for a more advanced model of the synchronous machine which describes subtransient and even sub-subtransient behavior is dealt with sensibly by the concept of condition number. The concept provides a quantitative measure for determining whether such an advanced model is indeed necessary. Finally, the recursive SVD algorithm is described for real-time parameter identification and tracking of slowly time-variant parameters. The algorithm is applied to identify the dynamic equivalent power system model.
Clapping in time parallels literacy and calls upon overlapping neural mechanisms in early readers.
Bonacina, Silvia; Krizman, Jennifer; White-Schwoch, Travis; Kraus, Nina
2018-05-12
The auditory system is extremely precise in processing the temporal information of perceptual events and using these cues to coordinate action. Synchronizing movement to a steady beat relies on this bidirectional connection between sensory and motor systems, and activates many of the auditory and cognitive processes used when reading. Here, we use Interactive Metronome, a clinical intervention technology requiring an individual to clap her hands in time with a steady beat, to investigate whether the links between literacy and synchronization skills, previously established in older children, are also evident in children who are learning to read. We tested 64 typically developing children (ages 5-7 years) on their synchronization abilities, neurophysiological responses to speech in noise, and literacy skills. We found that children who have lower variability in synchronizing have higher phase consistency, higher stability, and more accurate envelope encoding-all neurophysiological response components linked to language skills. Moreover, performing the same task with visual feedback reveals links with literacy skills, notably processing speed, phonological processing, word reading, spelling, morphology, and syntax. These results suggest that rhythm skills and literacy call on overlapping neural mechanisms, supporting the idea that rhythm training may boost literacy in part by engaging sensory-motor systems. © 2018 New York Academy of Sciences.
Vatansever, Deniz; Bzdok, Danilo; Wang, Hao-Ting; Mollo, Giovanna; Sormaz, Mladen; Murphy, Charlotte; Karapanagiotidis, Theodoros; Smallwood, Jonathan; Jefferies, Elizabeth
2017-09-01
Contemporary theories assume that semantic cognition emerges from a neural architecture in which different component processes are combined to produce aspects of conceptual thought and behaviour. In addition to the state-level, momentary variation in brain connectivity, individuals may also differ in their propensity to generate particular configurations of such components, and these trait-level differences may relate to individual differences in semantic cognition. We tested this view by exploring how variation in intrinsic brain functional connectivity between semantic nodes in fMRI was related to performance on a battery of semantic tasks in 154 healthy participants. Through simultaneous decomposition of brain functional connectivity and semantic task performance, we identified distinct components of semantic cognition at rest. In a subsequent validation step, these data-driven components demonstrated explanatory power for neural responses in an fMRI-based semantic localiser task and variation in self-generated thoughts during the resting-state scan. Our findings showed that good performance on harder semantic tasks was associated with relative segregation at rest between frontal brain regions implicated in controlled semantic retrieval and the default mode network. Poor performance on easier tasks was linked to greater coupling between the same frontal regions and the anterior temporal lobe; a pattern associated with deliberate, verbal thematic thoughts at rest. We also identified components that related to qualities of semantic cognition: relatively good performance on pictorial semantic tasks was associated with greater separation of angular gyrus from frontal control sites and greater integration with posterior cingulate and anterior temporal cortex. In contrast, good speech production was linked to the separation of angular gyrus, posterior cingulate and temporal lobe regions. Together these data show that quantitative and qualitative variation in semantic cognition across individuals emerges from variations in the interaction of nodes within distinct functional brain networks. Copyright © 2017 Elsevier Inc. All rights reserved.
Matrix decomposition graphics processing unit solver for Poisson image editing
NASA Astrophysics Data System (ADS)
Lei, Zhao; Wei, Li
2012-10-01
In recent years, gradient-domain methods have been widely discussed in the image processing field, including seamless cloning and image stitching. These algorithms are commonly carried out by solving a large sparse linear system: the Poisson equation. However, solving the Poisson equation is a computational and memory intensive task which makes it not suitable for real-time image editing. A new matrix decomposition graphics processing unit (GPU) solver (MDGS) is proposed to settle the problem. A matrix decomposition method is used to distribute the work among GPU threads, so that MDGS will take full advantage of the computing power of current GPUs. Additionally, MDGS is a hybrid solver (combines both the direct and iterative techniques) and has two-level architecture. These enable MDGS to generate identical solutions with those of the common Poisson methods and achieve high convergence rate in most cases. This approach is advantageous in terms of parallelizability, enabling real-time image processing, low memory-taken and extensive applications.
Li, Chuan; Peng, Juan; Liang, Ming
2014-01-01
Oil debris sensors are effective tools to monitor wear particles in lubricants. For in situ applications, surrounding noise and vibration interferences often distort the oil debris signature of the sensor. Hence extracting oil debris signatures from sensor signals is a challenging task for wear particle monitoring. In this paper we employ the maximal overlap discrete wavelet transform (MODWT) with optimal decomposition depth to enhance the wear particle monitoring capability. The sensor signal is decomposed by the MODWT into different depths for detecting the wear particle existence. To extract the authentic particle signature with minimal distortion, the root mean square deviation of kurtosis value of the segmented signal residue is adopted as a criterion to obtain the optimal decomposition depth for the MODWT. The proposed approach is evaluated using both simulated and experimental wear particles. The results show that the present method can improve the oil debris monitoring capability without structural upgrade requirements. PMID:24686730
An intelligent decomposition approach for efficient design of non-hierarchic systems
NASA Technical Reports Server (NTRS)
Bloebaum, Christina L.
1992-01-01
The design process associated with large engineering systems requires an initial decomposition of the complex systems into subsystem modules which are coupled through transference of output data. The implementation of such a decomposition approach assumes the ability exists to determine what subsystems and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is quite often an extremely complex task which may be beyond human ability to efficiently achieve. Further, in optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the optimal solution. The ability to determine 'weak' versus 'strong' coupling strengths would aid the designer in deciding which couplings could be permanently removed from consideration or which could be temporarily suspended so as to achieve computational savings with minimal loss in solution accuracy. An approach that uses normalized sensitivities to quantify coupling strengths is presented. The approach is applied to a coupled system composed of analysis equations for verification purposes.
Li, Chuan; Peng, Juan; Liang, Ming
2014-03-28
Oil debris sensors are effective tools to monitor wear particles in lubricants. For in situ applications, surrounding noise and vibration interferences often distort the oil debris signature of the sensor. Hence extracting oil debris signatures from sensor signals is a challenging task for wear particle monitoring. In this paper we employ the maximal overlap discrete wavelet transform (MODWT) with optimal decomposition depth to enhance the wear particle monitoring capability. The sensor signal is decomposed by the MODWT into different depths for detecting the wear particle existence. To extract the authentic particle signature with minimal distortion, the root mean square deviation of kurtosis value of the segmented signal residue is adopted as a criterion to obtain the optimal decomposition depth for the MODWT. The proposed approach is evaluated using both simulated and experimental wear particles. The results show that the present method can improve the oil debris monitoring capability without structural upgrade requirements.
Roy, Dipanjan; Sigala, Rodrigo; Breakspear, Michael; McIntosh, Anthony Randal; Jirsa, Viktor K; Deco, Gustavo; Ritter, Petra
2014-12-01
Spontaneous brain activity, that is, activity in the absence of controlled stimulus input or an explicit active task, is topologically organized in multiple functional networks (FNs) maintaining a high degree of coherence. These "resting state networks" are constrained by the underlying anatomical connectivity between brain areas. They are also influenced by the history of task-related activation. The precise rules that link plastic changes and ongoing dynamics of resting-state functional connectivity (rs-FC) remain unclear. Using the framework of the open source neuroinformatics platform "The Virtual Brain," we identify potential computational mechanisms that alter the dynamical landscape, leading to reconfigurations of FNs. Using a spiking neuron model, we first demonstrate that network activity in the absence of plasticity is characterized by irregular oscillations between low-amplitude asynchronous states and high-amplitude synchronous states. We then demonstrate the capability of spike-timing-dependent plasticity (STDP) combined with intrinsic alpha (8-12 Hz) oscillations to efficiently influence learning. Further, we show how alpha-state-dependent STDP alters the local area dynamics from an irregular to a highly periodic alpha-like state. This is an important finding, as the cortical input from the thalamus is at the rate of alpha. We demonstrate how resulting rhythmic cortical output in this frequency range acts as a neuronal tuner and, hence, leads to synchronization or de-synchronization between brain areas. Finally, we demonstrate that locally restricted structural connectivity changes influence local as well as global dynamics and lead to altered rs-FC.
Investigating neural efficiency of elite karate athletes during a mental arithmetic task using EEG.
Duru, Adil Deniz; Assem, Moataz
2018-02-01
Neural efficiency is proposed as one of the neural mechanisms underlying elite athletic performances. Previous sports studies examined neural efficiency using tasks that involve motor functions. In this study we investigate the extent of neural efficiency beyond motor tasks by using a mental subtraction task. A group of elite karate athletes are compared to a matched group of non-athletes. Electroencephalogram is used to measure cognitive dynamics during resting and increased mental workload periods. Mainly posterior alpha band power of the karate players was found to be higher than control subjects under both tasks. Moreover, event related synchronization/desynchronization has been computed to investigate the neural efficiency hypothesis among subjects. Finally, this study is the first study to examine neural efficiency related to a cognitive task, not a motor task, in elite karate players using ERD/ERS analysis. The results suggest that the effect of neural efficiency in the brain is global rather than local and thus might be contributing to the elite athletic performances. Also the results are in line with the neural efficiency hypothesis tested for motor performance studies.
Framing matters: contextual influences on interracial interaction outcomes.
Babbitt, Laura G; Sommers, Samuel R
2011-09-01
Previous studies indicate that interracial interactions frequently have negative outcomes but have typically focused on social contexts. The current studies examined the effect of manipulating interaction context. In Study 1, Black and White participants worked together with instructions that created either a social focus or a task focus. With a task focus, interracial pairs were more consistently synchronized, Black participants showed less executive function depletion, and White participants generally showed reduced implicit bias. Follow-up studies suggested that prejudice concerns help explain these findings: White participants reported fewer concerns about appearing prejudiced when they imagined an interracial interaction with a task focus rather than a social focus (Study 2a), and Black participants reported less vigilance against prejudice in an imagined interracial interaction with a task focus rather than a social focus (Study 2b). Taken together, these studies illustrate the importance of interaction context for the experiences of both Blacks and Whites.
A novel method for quantifying arm motion similarity.
Zhi Li; Hauser, Kris; Roldan, Jay Ryan; Milutinovic, Dejan; Rosen, Jacob
2015-08-01
This paper proposes a novel task-independent method for quantifying arm motion similarity that can be applied to any kinematic/dynamic variable of interest. Given two arm motions for the same task, not necessarily with the same completion time, it plots the time-normalized curves against one another and generates four real-valued features. To validate these features we apply them to quantify the relationship between healthy and paretic arm motions of chronic stroke patients. Studying both unimanual and bimanual arm motions of eight chronic stroke patients, we find that inter-arm coupling that tends to synchronize the motions of both arms in bimanual motions, has a stronger effect at task-relevant joints than at task-irrelevant joints. It also revealed that the paretic arm suppresses the shoulder flexion of the non-paretic arm, while the latter encourages the shoulder rotation of the former.
Decomposition into Multiple Morphemes during Lexical Access: A Masked Priming Study of Russian Nouns
ERIC Educational Resources Information Center
Kazanina, Nina; Dukova-Zheleva, Galina; Geber, Dana; Kharlamov, Viktor; Tonciulescu, Keren
2008-01-01
The study reports the results of a masked priming experiment with morphologically complex Russian nouns. Participants performed a lexical decision task to a visual target that differed from its prime in one consonant. Three conditions were included: (1) "transparent," in which the prime was morphologically related to the target and contained the…
ERIC Educational Resources Information Center
Cheng, Chenxi; Wang, Min; Perfetti, Charles A.
2011-01-01
This study investigated compound processing and cross-language activation in a group of Chinese-English bilingual children, and they were divided into four groups based on the language proficiency levels in their two languages. A lexical decision task was designed using compound words in both languages. The compound words in one language contained…
ERIC Educational Resources Information Center
Calvin, Sarah; Milliex, Lorene; Coyle, Thelma; Temprado, Jean-Jacques
2004-01-01
The recruitment of an additional biomechanical degree of freedom in a unimanual rhythmic task was explored. Subjects were asked to synchronize adduction or abduction of their right index finger with a metronome, the frequency of which was increased systematically. In addition, haptic contact on or off the metronome beat was provided. Results…
Closing Intelligence Gaps: Synchronizing the Collection Management Process
information flow. The US military divides the world into six distinct geographic areas with corresponding commanders managing risk and weighing...analyzed information , creating a mismatch between supply and demand. The result is a burden on all facets of the intelligence process. However, if the target...system, or problem requiring analysis is not collected, intelligence fails. Executing collection management under the traditional tasking process
ERIC Educational Resources Information Center
Núñez, Juan Carlos Casañ
2017-01-01
Listening, watching, reading and writing simultaneously in a foreign language is very complex. This paper is part of wider research which explores the use of audiovisual comprehension questions imprinted in the video image in the form of subtitles and synchronized with the relevant fragments for the purpose of language learning and testing.…
ERIC Educational Resources Information Center
Weber, Patricia; Kozel, Nadja; Purgstaller, Christian; Kargl, Reinhard; Schwab, Daniela; Fink, Andreas
2013-01-01
This study explores oscillatory brain activity by means of event-related synchronization and desynchronization (%ERS/ERD) of EEG activity during the use of phonological and orthographic-morphological spelling strategies in L2 (English) and L1 (German) in native German speaking children. EEG was recorded while 33 children worked on a task requiring…
Cross-cultural influences on rhythm processing: reproduction, discrimination, and beat tapping
Cameron, Daniel J.; Bentley, Jocelyn; Grahn, Jessica A.
2015-01-01
The structures of musical rhythm differ between cultures, despite the fact that the ability to entrain movement to musical rhythm occurs in virtually all individuals across cultures. To measure the influence of culture on rhythm processing, we tested East African and North American adults on perception, production, and beat tapping for rhythms derived from East African and Western music. To assess rhythm perception, participants identified whether pairs of rhythms were the same or different. To assess rhythm production, participants reproduced rhythms after hearing them. To assess beat tapping, participants tapped the beat along with repeated rhythms. We expected that performance in all three tasks would be influenced by the culture of the participant and the culture of the rhythm. Specifically, we predicted that a participant’s ability to discriminate, reproduce, and accurately tap the beat would be better for rhythms from their own culture than for rhythms from another culture. In the rhythm discrimination task, there were no differences in discriminating culturally familiar and unfamiliar rhythms. In the rhythm reproduction task, both groups reproduced East African rhythms more accurately than Western rhythms, but East African participants also showed an effect of cultural familiarity, leading to a significant interaction. In the beat tapping task, participants in both groups tapped the beat more accurately for culturally familiar than for unfamiliar rhythms. Moreover, there were differences between the two participant groups, and between the two types of rhythms, in the metrical level selected for beat tapping. The results demonstrate that culture does influence the processing of musical rhythm. In terms of the function of musical rhythm, our results are consistent with theories that musical rhythm enables synchronization. Musical rhythm may foster musical cultural identity by enabling within-group synchronization to music, perhaps supporting social cohesion. PMID:26029122
Gompf, Florian; Pflug, Anja; Laufs, Helmut; Kell, Christian A.
2017-01-01
Functional imaging studies using BOLD contrasts have consistently reported activation of the supplementary motor area (SMA) both during motor and internal timing tasks. Opposing findings, however, have been shown for the modulation of beta oscillations in the SMA. While movement suppresses beta oscillations in the SMA, motor and non-motor tasks that rely on internal timing increase the amplitude of beta oscillations in the SMA. These independent observations suggest that the relationship between beta oscillations and BOLD activation is more complex than previously thought. Here we set out to investigate this rapport by examining beta oscillations in the SMA during movement with varying degrees of internal timing demands. In a simultaneous EEG-fMRI experiment, 20 healthy right-handed subjects performed an auditory-paced finger-tapping task. Internal timing was operationalized by including conditions with taps on every fourth auditory beat, which necessitates generation of a slow internal rhythm, while tapping to every auditory beat reflected simple auditory-motor synchronization. In the SMA, BOLD activity increased and power in both the low and the high beta band decreased expectedly during each condition compared to baseline. Internal timing was associated with a reduced desynchronization of low beta oscillations compared to conditions without internal timing demands. In parallel with this relative beta power increase, internal timing activated the SMA more strongly in terms of BOLD. This documents a task-dependent non-linear relationship between BOLD and beta-oscillations in the SMA. We discuss different roles of beta synchronization and desynchronization in active processing within the same cortical region. PMID:29249950
Cross-cultural influences on rhythm processing: reproduction, discrimination, and beat tapping.
Cameron, Daniel J; Bentley, Jocelyn; Grahn, Jessica A
2015-01-01
The structures of musical rhythm differ between cultures, despite the fact that the ability to entrain movement to musical rhythm occurs in virtually all individuals across cultures. To measure the influence of culture on rhythm processing, we tested East African and North American adults on perception, production, and beat tapping for rhythms derived from East African and Western music. To assess rhythm perception, participants identified whether pairs of rhythms were the same or different. To assess rhythm production, participants reproduced rhythms after hearing them. To assess beat tapping, participants tapped the beat along with repeated rhythms. We expected that performance in all three tasks would be influenced by the culture of the participant and the culture of the rhythm. Specifically, we predicted that a participant's ability to discriminate, reproduce, and accurately tap the beat would be better for rhythms from their own culture than for rhythms from another culture. In the rhythm discrimination task, there were no differences in discriminating culturally familiar and unfamiliar rhythms. In the rhythm reproduction task, both groups reproduced East African rhythms more accurately than Western rhythms, but East African participants also showed an effect of cultural familiarity, leading to a significant interaction. In the beat tapping task, participants in both groups tapped the beat more accurately for culturally familiar than for unfamiliar rhythms. Moreover, there were differences between the two participant groups, and between the two types of rhythms, in the metrical level selected for beat tapping. The results demonstrate that culture does influence the processing of musical rhythm. In terms of the function of musical rhythm, our results are consistent with theories that musical rhythm enables synchronization. Musical rhythm may foster musical cultural identity by enabling within-group synchronization to music, perhaps supporting social cohesion.
NASA Technical Reports Server (NTRS)
Nashman, Marilyn; Chaconas, Karen J.
1988-01-01
The sensory processing system for the NASA/NBS Standard Reference Model (NASREM) for telerobotic control is described. This control system architecture was adopted by NASA of the Flight Telerobotic Servicer. The control system is hierarchically designed and consists of three parallel systems: task decomposition, world modeling, and sensory processing. The Sensory Processing System is examined, and in particular the image processing hardware and software used to extract features at low levels of sensory processing for tasks representative of those envisioned for the Space Station such as assembly and maintenance are described.
Guastello, Stephen J; Gorin, Hillary; Huschen, Samuel; Peters, Natalie E; Fabisch, Megan; Poston, Kirsten
2012-10-01
It has become well established in laboratory experiments that switching tasks, perhaps due to interruptions at work, incur costs in response time to complete the next task. Conditions are also known that exaggerate or lessen the switching costs. Although switching costs can contribute to fatigue, task switching can also be an adaptive response to fatigue. The present study introduces a new research paradigm for studying the emergence of voluntary task switching regimes, self-organizing processes therein, and the possibly conflicting roles of switching costs and minimum entropy. Fifty-four undergraduates performed 7 different computer-based cognitive tasks producing sets of 49 responses under instructional conditions requiring task quotas or no quotas. The sequences of task choices were analyzed using orbital decomposition to extract pattern types and lengths, which were then classified and compared with regard to Shannon entropy, topological entropy, number of task switches involved, and overall performance. Results indicated that similar but different patterns were generated under the two instructional conditions, and better performance was associated with lower topological entropy. Both entropy metrics were associated with the amount of voluntary task switching. Future research should explore conditions affecting the trade-off between switching costs and entropy, levels of automaticity between task elements, and the role of voluntary switching regimes on fatigue.
Charland, Patrick; Léger, Pierre-Majorique; Sénécal, Sylvain; Courtemanche, François; Mercier, Julien; Skelling, Yannick; Labonté-Lemoyne, Elise
2015-01-01
In a recent theoretical synthesis on the concept of engagement, Fredricks, Blumenfeld and Paris1 defined engagement by its multiple dimensions: behavioral, emotional and cognitive. They observed that individual types of engagement had not been studied in conjunction, and little information was available about interactions or synergy between the dimensions; consequently, more studies would contribute to creating finely tuned teaching interventions. Benefiting from the recent technological advances in neurosciences, this paper presents a recently developed methodology to gather and synchronize data on multidimensional engagement during learning tasks. The technique involves the collection of (a) electroencephalography, (b) electrodermal, (c) eye-tracking, and (d) facial emotion recognition data on four different computers. This led to synchronization issues for data collected from multiple sources. Post synchronization in specialized integration software gives researchers a better understanding of the dynamics between the multiple dimensions of engagement. For curriculum developers, these data could provide informed guidelines for achieving better instruction/learning efficiency. This technique also opens up possibilities in the field of brain-computer interactions, where adaptive learning or assessment environments could be developed. PMID:26167712
Buchweitz, Augusto; Keller, Timothy A; Meyler, Ann; Just, Marcel Adam
2012-08-01
The study used fMRI to investigate brain activation in participants who were able to listen to and successfully comprehend two people speaking at the same time (dual-tasking). The study identified brain mechanisms associated with high-level, concurrent dual-tasking, as compared with comprehending a single message. Results showed an increase in the functional connectivity among areas of the language network in the dual task. The increase in synchronization of brain activation for dual-tasking was brought about primarily by a change in the timing of left inferior frontal gyrus (LIFG) activation relative to posterior temporal activation, bringing the LIFG activation into closer correspondence with temporal activation. The results show that the change in LIFG timing was greater in participants with lower working memory capacity, and that recruitment of additional activation in the dual-task occurred only in the areas adjacent to the language network that was activated in the single task. The shift in LIFG activation may be a brain marker of how the brain adapts to high-level dual-tasking. Copyright © 2011 Wiley Periodicals, Inc.
Automated Decomposition of Model-based Learning Problems
NASA Technical Reports Server (NTRS)
Williams, Brian C.; Millar, Bill
1996-01-01
A new generation of sensor rich, massively distributed autonomous systems is being developed that has the potential for unprecedented performance, such as smart buildings, reconfigurable factories, adaptive traffic systems and remote earth ecosystem monitoring. To achieve high performance these massive systems will need to accurately model themselves and their environment from sensor information. Accomplishing this on a grand scale requires automating the art of large-scale modeling. This paper presents a formalization of [\\em decompositional model-based learning (DML)], a method developed by observing a modeler's expertise at decomposing large scale model estimation tasks. The method exploits a striking analogy between learning and consistency-based diagnosis. Moriarty, an implementation of DML, has been applied to thermal modeling of a smart building, demonstrating a significant improvement in learning rate.
A data-driven method to enhance vibration signal decomposition for rolling bearing fault analysis
NASA Astrophysics Data System (ADS)
Grasso, M.; Chatterton, S.; Pennacchi, P.; Colosimo, B. M.
2016-12-01
Health condition analysis and diagnostics of rotating machinery requires the capability of properly characterizing the information content of sensor signals in order to detect and identify possible fault features. Time-frequency analysis plays a fundamental role, as it allows determining both the existence and the causes of a fault. The separation of components belonging to different time-frequency scales, either associated to healthy or faulty conditions, represents a challenge that motivates the development of effective methodologies for multi-scale signal decomposition. In this framework, the Empirical Mode Decomposition (EMD) is a flexible tool, thanks to its data-driven and adaptive nature. However, the EMD usually yields an over-decomposition of the original signals into a large number of intrinsic mode functions (IMFs). The selection of most relevant IMFs is a challenging task, and the reference literature lacks automated methods to achieve a synthetic decomposition into few physically meaningful modes by avoiding the generation of spurious or meaningless modes. The paper proposes a novel automated approach aimed at generating a decomposition into a minimal number of relevant modes, called Combined Mode Functions (CMFs), each consisting in a sum of adjacent IMFs that share similar properties. The final number of CMFs is selected in a fully data driven way, leading to an enhanced characterization of the signal content without any information loss. A novel criterion to assess the dissimilarity between adjacent CMFs is proposed, based on probability density functions of frequency spectra. The method is suitable to analyze vibration signals that may be periodically acquired within the operating life of rotating machineries. A rolling element bearing fault analysis based on experimental data is presented to demonstrate the performances of the method and the provided benefits.
Optogenetic conditioning of paradigm and pattern discrimination in the rat somatosensory system
Abe, Kenta
2017-01-01
The rodent whisker-barrel cortical system is a model for studying somatosensory discrimination at high spatiotemporal precision. Here, we applied optogenetics to produce somatosensory inputs in the whisker area using one of transgenic rat lines, W-TChR2V4, which expresses channelrhodopsin-2 (ChR2) in the mechanoreceptive nerve endings around whisker follicles. An awake W-TChR2V4 rat was head-fixed and irradiated by blue LED light on the whisker area with a paradigm conditioned with a reward. The Go task was designed so the rat is allowed to receive a reward, when it licked the nozzle within 5 s after photostimulation. The No-go task was designed so as the rat has to withhold licking for at least 5 s to obtain a reward after photostimulation. The Go-task conditioning was established within 1 hr of training with a reduction in the reaction time and increase of the success rate. To investigate the relationship between the spatiotemporal pattern of sensory inputs and the behavioral output, we designed a multi-optical fiber system that irradiates the whisker area at 9 spots in a 3×3 matrix. Although the Go-task conditioning was established using synchronous irradiation of 9 spots, the success rate was decreased with an increase of the reaction time for the asynchronous irradiation. After conditioning to the Go task, the rat responded to the blue LED flash irradiated on the barrel cortex, where many neurons also express ChR2, or photostimulation of the contralateral whisker area with a similar reaction time and success rate. Synchronous activation of the peripheral mechanoreceptive nerves is suggested to drive a neural circuit in the somatosensory cortex that efficiently couples with the decision. Our optogenetic system would enable the precise evaluation of the psychophysical values, such as the reaction time and success rate, to gain some insight into the brain mechanisms underlying conditioned behaviors. PMID:29267341
Laparoscopic resection of synchronous colorectal cancers in separate specimens.
Inada, Ryo; Yamamoto, Seiichiro; Takawa, Masashi; Fujita, Shin; Akasu, Takayuki
2014-08-01
Laparoscopic approaches are increasingly being used in patients with colorectal cancer, but the feasibility of laparoscopic resection of synchronous colorectal cancers in separate specimens remains unknown. In such cases, it is necessary to consider the site of port placement, sequence of dissection, choice of specimen extraction sites, specimen handling, and extracorporeal anastomosis sites. Moreover, the need for complete mesenteric dissection in two areas, removal of two separate specimens containing malignancies, and two anastomoses elicit unique questions related to technical considerations. The aim of this study was to determine the feasibility of laparoscopic resection of two separate specimens containing malignancies for multiple synchronous colorectal cancers. Between June 2001 and January 2013, 1341 patients with colorectal cancer underwent laparoscopic surgery at our institution. Of them, 11 patients underwent laparoscopy-assisted combined resection of two separate colorectal specimens for multiple synchronous primary colorectal cancers. We retrospectively reviewed their surgical outcomes. All procedures were completed laparoscopically without perioperative mortality. Patients underwent right-sided colon resection for right-sided cancer and left-sided or rectal resection for left-sided colon or rectal cancer. The median duration of surgery was 296 min, and the median blood loss was 65 mL. Median time to first postoperative liquid and solid intake was 1 day and 3 days, respectively. Most patients were discharged on postoperative day 8. With regard to postoperative complications, two patients had a surgical-site infection. Laparoscopic resection of two separate colorectal specimens for multiple synchronous primary colorectal cancers is a feasible and safe procedure. © 2014 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.
Bishop, Laura; Goebl, Werner
2017-07-21
Ensemble musicians often exchange visual cues in the form of body gestures (e.g., rhythmic head nods) to help coordinate piece entrances. These cues must communicate beats clearly, especially if the piece requires interperformer synchronization of the first chord. This study aimed to (1) replicate prior findings suggesting that points of peak acceleration in head gestures communicate beat position and (2) identify the kinematic features of head gestures that encourage successful synchronization. It was expected that increased precision of the alignment between leaders' head gestures and first note onsets, increased gesture smoothness, magnitude, and prototypicality, and increased leader ensemble/conducting experience would improve gesture synchronizability. Audio/MIDI and motion capture recordings were made of piano duos performing short musical passages under assigned leader/follower conditions. The leader of each trial listened to a particular tempo over headphones, then cued their partner in at the given tempo, without speaking. A subset of motion capture recordings were then presented as point-light videos with corresponding audio to a sample of musicians who tapped in synchrony with the beat. Musicians were found to align their first taps with the period of deceleration following acceleration peaks in leaders' head gestures, suggesting that acceleration patterns communicate beat position. Musicians' synchronization with leaders' first onsets improved as cueing gesture smoothness and magnitude increased and prototypicality decreased. Synchronization was also more successful with more experienced leaders' gestures. These results might be applied to interactive systems using gesture recognition or reproduction for music-making tasks (e.g., intelligent accompaniment systems).
Not That Heart-Stopping After All: Visuo-Cardiac Synchrony Does Not Boost Self-Face Attribution
Porciello, Giuseppina; Daum, Moritz M.; Menghini, Cristina; Brugger, Peter; Lenggenhager, Bigna
2016-01-01
Recent experimental evidence and theoretical models suggest that an integration of exteroceptive and interoceptive signals underlies several key aspects of the bodily self. While it has been shown that self-attribution of both the hand and the full-body are altered by conflicting extero-exteroceptive (e.g. visuo-tactile) and extero-interoceptive (e.g. visuo-cardiac) information, no study has thus far investigated whether self-attribution of the face might be altered by visuo-cardiac stimulation similarly to visuo-tactile stimulation. In three independent groups of participants we presented ambiguous (i.e. morphed with a stranger's face) self-faces flashing synchronously or asynchronously with the participants’ heartbeat. We then measured the subjective percentages of self-face attribution of morphed stimuli. To control for a potential effect of visuo-cardiac synchrony on familiarity, a task assessing the attribution of a familiar face was introduced. Moreover, different durations of visuo-cardiac flashing and different degrees of asynchronicity were used. Based on previous studies showing that synchronous visuo-cardiac stimulation generally increases self-attribution of the full-body and the hand, and that synchronous visuo-tactile stimulation increases self-face attribution, we predicted higher self-face attribution during the synchronous visuo-cardiac flashing of the morphed stimuli. In contrast to this hypothesis, the results showed no difference between synchronous and asynchronous stimulation on self-face attribution in any of the three studies. We thus conclude that visuo-cardiac synchrony does not boost self-attribution of the face as it does that of hand and full-body. PMID:27541587
Pattern recognition with "materials that compute".
Fang, Yan; Yashin, Victor V; Levitan, Steven P; Balazs, Anna C
2016-09-01
Driven by advances in materials and computer science, researchers are attempting to design systems where the computer and material are one and the same entity. Using theoretical and computational modeling, we design a hybrid material system that can autonomously transduce chemical, mechanical, and electrical energy to perform a computational task in a self-organized manner, without the need for external electrical power sources. Each unit in this system integrates a self-oscillating gel, which undergoes the Belousov-Zhabotinsky (BZ) reaction, with an overlaying piezoelectric (PZ) cantilever. The chemomechanical oscillations of the BZ gels deflect the PZ layer, which consequently generates a voltage across the material. When these BZ-PZ units are connected in series by electrical wires, the oscillations of these units become synchronized across the network, where the mode of synchronization depends on the polarity of the PZ. We show that the network of coupled, synchronizing BZ-PZ oscillators can perform pattern recognition. The "stored" patterns are set of polarities of the individual BZ-PZ units, and the "input" patterns are coded through the initial phase of the oscillations imposed on these units. The results of the modeling show that the input pattern closest to the stored pattern exhibits the fastest convergence time to stable synchronization behavior. In this way, networks of coupled BZ-PZ oscillators achieve pattern recognition. Further, we show that the convergence time to stable synchronization provides a robust measure of the degree of match between the input and stored patterns. Through these studies, we establish experimentally realizable design rules for creating "materials that compute."
Not That Heart-Stopping After All: Visuo-Cardiac Synchrony Does Not Boost Self-Face Attribution.
Porciello, Giuseppina; Daum, Moritz M; Menghini, Cristina; Brugger, Peter; Lenggenhager, Bigna
2016-01-01
Recent experimental evidence and theoretical models suggest that an integration of exteroceptive and interoceptive signals underlies several key aspects of the bodily self. While it has been shown that self-attribution of both the hand and the full-body are altered by conflicting extero-exteroceptive (e.g. visuo-tactile) and extero-interoceptive (e.g. visuo-cardiac) information, no study has thus far investigated whether self-attribution of the face might be altered by visuo-cardiac stimulation similarly to visuo-tactile stimulation. In three independent groups of participants we presented ambiguous (i.e. morphed with a stranger's face) self-faces flashing synchronously or asynchronously with the participants' heartbeat. We then measured the subjective percentages of self-face attribution of morphed stimuli. To control for a potential effect of visuo-cardiac synchrony on familiarity, a task assessing the attribution of a familiar face was introduced. Moreover, different durations of visuo-cardiac flashing and different degrees of asynchronicity were used. Based on previous studies showing that synchronous visuo-cardiac stimulation generally increases self-attribution of the full-body and the hand, and that synchronous visuo-tactile stimulation increases self-face attribution, we predicted higher self-face attribution during the synchronous visuo-cardiac flashing of the morphed stimuli. In contrast to this hypothesis, the results showed no difference between synchronous and asynchronous stimulation on self-face attribution in any of the three studies. We thus conclude that visuo-cardiac synchrony does not boost self-attribution of the face as it does that of hand and full-body.
Pattern recognition with “materials that compute”
Fang, Yan; Yashin, Victor V.; Levitan, Steven P.; Balazs, Anna C.
2016-01-01
Driven by advances in materials and computer science, researchers are attempting to design systems where the computer and material are one and the same entity. Using theoretical and computational modeling, we design a hybrid material system that can autonomously transduce chemical, mechanical, and electrical energy to perform a computational task in a self-organized manner, without the need for external electrical power sources. Each unit in this system integrates a self-oscillating gel, which undergoes the Belousov-Zhabotinsky (BZ) reaction, with an overlaying piezoelectric (PZ) cantilever. The chemomechanical oscillations of the BZ gels deflect the PZ layer, which consequently generates a voltage across the material. When these BZ-PZ units are connected in series by electrical wires, the oscillations of these units become synchronized across the network, where the mode of synchronization depends on the polarity of the PZ. We show that the network of coupled, synchronizing BZ-PZ oscillators can perform pattern recognition. The “stored” patterns are set of polarities of the individual BZ-PZ units, and the “input” patterns are coded through the initial phase of the oscillations imposed on these units. The results of the modeling show that the input pattern closest to the stored pattern exhibits the fastest convergence time to stable synchronization behavior. In this way, networks of coupled BZ-PZ oscillators achieve pattern recognition. Further, we show that the convergence time to stable synchronization provides a robust measure of the degree of match between the input and stored patterns. Through these studies, we establish experimentally realizable design rules for creating “materials that compute.” PMID:27617290
Scaling of movement is related to pallidal γ oscillations in patients with dystonia.
Brücke, Christof; Huebl, Julius; Schönecker, Thomas; Neumann, Wolf-Julian; Yarrow, Kielan; Kupsch, Andreas; Blahak, Christian; Lütjens, Goetz; Brown, Peter; Krauss, Joachim K; Schneider, Gerd-Helge; Kühn, Andrea A
2012-01-18
Neuronal synchronization in the gamma (γ) band is considered important for information processing through functional integration of neuronal assemblies across different brain areas. Movement-related γ synchronization occurs in the human basal ganglia where it is centered at ~70 Hz and more pronounced contralateral to the moved hand. However, its functional significance in motor performance is not yet well understood. Here, we assessed whether event-related γ synchronization (ERS) recorded from the globus pallidus internus in patients undergoing deep brain stimulation for medically intractable primary focal and segmental dystonia might code specific motor parameters. Pallidal local field potentials were recorded in 22 patients during performance of a choice-reaction-time task. Movement amplitude of the forearm pronation-supination movements was parametrically modulated with an angular degree of 30°, 60°, and 90°. Only patients with limbs not affected by dystonia were tested. A broad contralateral γ band (35-105 Hz) ERS occurred at movement onset with a maximum reached at peak velocity of the movement. The pallidal oscillatory γ activity correlated with movement parameters: the larger and faster the movement, the stronger was the synchronization in the γ band. In contrast, the event-related decrease in beta band activity was similar for all movements. Gamma band activity did not change with movement direction and did not occur during passive movements. The stepwise increase of γ activity with movement size and velocity suggests a role of neuronal synchronization in this frequency range in basal ganglia control of the scaling of ongoing movements.
FACETS: multi-faceted functional decomposition of protein interaction networks.
Seah, Boon-Siew; Bhowmick, Sourav S; Dewey, C Forbes
2012-10-15
The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein-protein interaction (PPI) network using graph theoretic analysis. Despite the recent progress, systems level analysis of high-throughput PPIs remains a daunting task because of the amount of data they present. In this article, we propose a novel PPI network decomposition algorithm called FACETS in order to make sense of the deluge of interaction data using Gene Ontology (GO) annotations. FACETS finds not just a single functional decomposition of the PPI network, but a multi-faceted atlas of functional decompositions that portray alternative perspectives of the functional landscape of the underlying PPI network. Each facet in the atlas represents a distinct interpretation of how the network can be functionally decomposed and organized. Our algorithm maximizes interpretative value of the atlas by optimizing inter-facet orthogonality and intra-facet cluster modularity. We tested our algorithm on the global networks from IntAct, and compared it with gold standard datasets from MIPS and KEGG. We demonstrated the performance of FACETS. We also performed a case study that illustrates the utility of our approach. Supplementary data are available at the Bioinformatics online. Our software is available freely for non-commercial purposes from: http://www.cais.ntu.edu.sg/~assourav/Facets/
Huang, Ting Miao; Wang, Zhao Hui; Hou, Yang Yi; Gu, Chi Ming; Li, Xiao; Zheng, Xian Feng
2017-07-18
With 15 N isotope labeled maize straw in nylon net bags and buried in the wheat field at two N rates of 0 and 200 kg N·hm -2 , the effects of nitrogen application on the decomposition of straw dry matter and the release dynamics of carbon, nitrogen, phosphorus and potassium (C, N, P and K) after maize straw retention were investigated in the winter wheat-summer maize rotation system in Guanzhong Plain, Shaanxi, China. Results showed that N application did not affect the decomposition of the returned straw C and dry matter, but promoted the release of P and inhibited the release of N and K from straw during sowing to wintering periods of winter wheat. From the grain filling to the harvest of winter wheat, the decomposition of the returned straw and the release of N, P and K were not affected, but the release of straw C was significantly enhanced by N application. The release dynamic of straw C was synchronized with the decomposition of the dry matter, and the C/N of straw declined gradually with the extension of wheat growing. Until the harvest of winter wheat, the accumulative decomposition rate of straw dry matter was less than 50%, and the total straw C release rate was around 47.9% to 51.1%. The C/N ratio of the returned straw was decreased from 32.2 to 20.2 and 17.9, respectively at N rates of 0 and 200 kg N·hm -2 . From sowing to harvest of winter wheat, the net release of N, P and K from the straw was observed. The N release was 7.2-9.4 kg·hm -2 and 12.7%-16.6% of the total straw N, and the P release was 1.29-1.44 kg·hm -2 and 29.0%-32.4% of the total straw P, while a great deal of K was released quickly, with approximately 80% of the straw K released before wintering, 51.8-52.5 kg·hm -2 and 90.5%-91.7% of the total straw K released at wheat harvest. It was suggested that the K fertilizer application should be decreased for the winter wheat due to the great amount K release from the returned maize straw, and an extra amount of N and P fertilizer should be applied under the straw retention cropping system.
Xu, Joanna Xiuzhu; Hu, Juan; Zhang, Dongmao
2018-05-25
Presented herein is the ratiometric bandwidth-varied polarized resonance synchronous spectroscopy (BVPRS2) method for quantification of material optical activity spectra. These include the sample light absorption and scattering cross-section spectrum, the scattering depolarization spectrum, and the fluorescence emission cross-section and depolarization spectrum in the wavelength region where the sample both absorbs and emits. This ratiometric BVPRS2 spectroscopic method is a self-contained technique capable of quantitatively decoupling material fluorescence and light scattering signal contribution to its ratiometric BVPRS2 spectra through the linear curve-fitting of the ratiometric BVPRS2 signal as a function of the wavelength bandwidth used in the PRS2 measurements. Example applications of this new spectroscopic method are demonstrated with materials that can be approximated as pure scatterers, simultaneous photon absorbers/emitters, simultaneous photon absorbers/scatterers, and finally simultaneous photon absorbers/scatterers/emitters. Because the only instruments needed for this ratiometric BVPRS2 technique are the conventional UV-vis spectrophotometer and spectrofluorometer, this work should open doors for routine decomposition of material UV-vis extinction spectrum into its absorption and scattering component spectra. The methodology and insights provided in this work should be of broad significance to all chemical research that involves photon/matter interactions.
Parallel performance of TORT on the CRAY J90: Model and measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, A.; Azmy, Y.Y.
1997-10-01
A limitation on the parallel performance of TORT on the CRAY J90 is the amount of extra work introduced by the multitasking algorithm itself. The extra work beyond that of the serial version of the code, called overhead, arises from the synchronization of the parallel tasks and the accumulation of results by the master task. The goal of recent updates to TORT was to reduce the time consumed by these activities. To help understand which components of the multitasking algorithm contribute significantly to the overhead, a parallel performance model was constructed and compared to measurements of actual timings of themore » code.« less
Synchronous brain activity across individuals underlies shared psychological perspectives
Lahnakoski, Juha M.; Glerean, Enrico; Jääskeläinen, Iiro P.; Hyönä, Jukka; Hari, Riitta; Sams, Mikko; Nummenmaa, Lauri
2014-01-01
For successful communication, we need to understand the external world consistently with others. This task requires sufficiently similar cognitive schemas or psychological perspectives that act as filters to guide the selection, interpretation and storage of sensory information, perceptual objects and events. Here we show that when individuals adopt a similar psychological perspective during natural viewing, their brain activity becomes synchronized in specific brain regions. We measured brain activity with functional magnetic resonance imaging (fMRI) from 33 healthy participants who viewed a 10-min movie twice, assuming once a ‘social’ (detective) and once a ‘non-social’ (interior decorator) perspective to the movie events. Pearson's correlation coefficient was used to derive multisubject voxelwise similarity measures (inter-subject correlations; ISCs) of functional MRI data. We used k-nearest-neighbor and support vector machine classifiers as well as a Mantel test on the ISC matrices to reveal brain areas wherein ISC predicted the participants' current perspective. ISC was stronger in several brain regions—most robustly in the parahippocampal gyrus, posterior parietal cortex and lateral occipital cortex—when the participants viewed the movie with similar rather than different perspectives. Synchronization was not explained by differences in visual sampling of the movies, as estimated by eye gaze. We propose that synchronous brain activity across individuals adopting similar psychological perspectives could be an important neural mechanism supporting shared understanding of the environment. PMID:24936687
Przybyszewski, Andrzej W; Linsay, Paul S; Gaudiano, Paolo; Wilson, Christopher M
2007-01-01
There exists a common view that the brain acts like a Turing machine: The machine reads information from an infinite tape (sensory data) and, on the basis of the machine's state and information from the tape, an action (decision) is made. The main problem with this model lies in how to synchronize a large number of tapes in an adaptive way so that the machine is able to accomplish tasks such as object classification. We propose that such mechanisms exist already in the eye. A popular view is that the retina, typically associated with high gain and adaptation for light processing, is actually performing local preprocessing by means of its center-surround receptive field. We would like to show another property of the retina: The ability to integrate many independent processes. We believe that this integration is implemented by synchronization of neuronal oscillations. In this paper, we present a model of the retina consisting of a series of coupled oscillators which can synchronize on several scales. Synchronization is an analog process which is converted into a digital spike train in the output of the retina. We have developed a hardware implementation of this model, which enables us to carry out rapid simulation of multineuron oscillatory dynamics. We show that the properties of the spike trains in our model are similar to those found in vivo in the cat retina.
Small Engine Technology (Set) Task 8 Aeroelastic Prediction Methods
NASA Technical Reports Server (NTRS)
Eick, Chris D.; Liu, Jong-Shang
1998-01-01
AlliedSignal Engines, in cooperation with NASA LeRC, completed an evaluation of recently developed aeroelastic computer codes using test cases from the AlliedSignal Engines fan blisk database. Test data for this task includes strain gage, light probe, performance, and steady-state pressure information obtained for conditions where synchronous or flutter vibratory conditions were found to occur. Aeroelastic codes evaluated include the quasi 3-D UNSFLO (developed at MIT and modified to include blade motion by AlliedSignal), the 2-D FREPS (developed by NASA LeRC), and the 3-D TURBO-AE (under development at NASA LeRC). Six test cases each where flutter and synchronous vibrations were found to occur were used for evaluation of UNSFLO and FREPS. In addition, one of the flutter cases was evaluated using TURBO-AE. The UNSFLO flutter evaluations were completed for 75 percent radial span and provided good agreement with the experimental test data. Synchronous evaluations were completed for UNSFLO but further enhancement needs to be added to the code before the unsteady pressures can be used to predict forced response vibratory stresses. The FREPS evaluations were hindered as the steady flow solver (SFLOW) was unable to converge to a solution for the transonic flow conditions in the fan blisk. This situation resulted in all FREPS test cases being attempted but no results were obtained during the present program. Currently, AlliedSignal is evaluating integrating FREPS with our existing steady flow solvers to bypass the SFLOW difficulties. ne TURBO-AE steady flow solution provided an excellent match with the AlliedSignal Engines calibrated DAWES 3-D viscous solver. Finally, the TURBO-AE unsteady analyses also matched experimental observations by predicting flutter for the single test case evaluated.
Cross-Villasana, Fernando; Finke, Kathrin; Hennig-Fast, Kristina; Kilian, Beate; Wiegand, Iris; Müller, Hermann Joseph; Möller, Hans-Jürgen; Töllner, Thomas
2015-07-15
Adults with attention-deficit/hyperactivity disorder (ADHD) exhibit slowed reaction times (RTs) in various attention tasks. The exact origins of this slowing, however, have not been established. Potential candidates are early sensory processes mediating the deployment of focal attention, stimulus response translation processes deciding upon the appropriate motor response, and motor processes generating the response. We combined mental chronometry (RT) measures of adult ADHD (n = 15) and healthy control (n = 15) participants with their lateralized event-related potentials during the performance of a visual search task to differentiate potential sources of slowing at separable levels of processing: the posterior contralateral negativity (PCN) was used to index focal-attentional selection times, while the lateralized readiness potentials synchronized to stimulus and response events were used to index the times taken for response selection and production, respectively. To assess the clinical relevance of event-related potentials, a correlation analysis between neural measures and subjective current and retrospective ADHD symptom ratings was performed. ADHD patients exhibited slower RTs than control participants, which were accompanied by prolonged PCN and lateralized readiness potentials synchronized to stimulus, but not lateralized readiness potentials synchronized to response events, latencies. Moreover, the PCN timing was positively correlated with ADHD symptom ratings. The behavioral RT slowing of adult ADHD patients was based on a summation of internal processing delays arising at perceptual and response selection stages; motor response production, by contrast, was not impaired. The correlation between PCN times and ADHD symptom ratings suggests that this brain signal may serve as a potential candidate for a neurocognitive endophenotype of ADHD. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Information Processing Research
1992-01-03
structure of instances. Opal provides special graphical objects called "Ag- greGadgets" which are used to hold a collection of other objects (either...available in classes of expert systems tasks, re- late this to the structure of parallel production systems, and incorporate parallel-decomposition...Anantharaman et al. 88]. We designed a new pawn structure algorithm and upgraded the king-safety pattern recog- nizers, which contributed significantly
ERIC Educational Resources Information Center
Al Dahhan, Noor Z.; Kirby, John R.; Brien, Donald C.; Munoz, Douglas P.
2017-01-01
Naming speed (NS) refers to how quickly and accurately participants name a set of familiar stimuli (e.g., letters). NS is an established predictor of reading ability, but controversy remains over why it is related to reading. We used three techniques (stimulus manipulations to emphasize phonological and/or visual aspects, decomposition of NS times…
The Work of Steering Instruction toward the Mathematical Point: A Decomposition of Teaching Practice
ERIC Educational Resources Information Center
Sleep, Laurie
2012-01-01
Despite its centrality in teaching, what it takes to identify the goals of instruction and use those goals to manage the work has yet to be articulated in ways that it can be adequately studied or taught. Using data from preservice teachers' mathematics lessons, this study identifies and illustrates seven central tasks of "steering…
Attribute And-Or Grammar for Joint Parsing of Human Pose, Parts and Attributes.
Park, Seyoung; Nie, Xiaohan; Zhu, Song-Chun
2017-07-25
This paper presents an attribute and-or grammar (A-AOG) model for jointly inferring human body pose and human attributes in a parse graph with attributes augmented to nodes in the hierarchical representation. In contrast to other popular methods in the current literature that train separate classifiers for poses and individual attributes, our method explicitly represents the decomposition and articulation of body parts, and account for the correlations between poses and attributes. The A-AOG model is an amalgamation of three traditional grammar formulations: (i)Phrase structure grammar representing the hierarchical decomposition of the human body from whole to parts; (ii)Dependency grammar modeling the geometric articulation by a kinematic graph of the body pose; and (iii)Attribute grammar accounting for the compatibility relations between different parts in the hierarchy so that their appearances follow a consistent style. The parse graph outputs human detection, pose estimation, and attribute prediction simultaneously, which are intuitive and interpretable. We conduct experiments on two tasks on two datasets, and experimental results demonstrate the advantage of joint modeling in comparison with computing poses and attributes independently. Furthermore, our model obtains better performance over existing methods for both pose estimation and attribute prediction tasks.
The Consequences of Subsequent Exposures of Mild and Moderate Hypoxia on the Flight Profile
2016-12-15
Environmental Medicine , 77, 857-863. Bortolussi, M., Hart, S., & Shively, R. (1989). Measuring moment-to-moment pilot workload using synchronous...presentations of secondary tasks in a motion-based trainer. Aviation, Space, and Environmental Medicine , 60, 124-129. Bortolussi, M., Kantowitz, B...Ed.). (1985). Fundamentals of aerospace medicine . Philadelphia, PA: Lea & Febiger. Fowler, B., Banner, J., & Pogue, J. (1993). The slowing of
Self organization of wireless sensor networks using ultra-wideband radios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowla, Farid U; Nekoogar, Franak; Spiridon, Alex
A novel UWB communications method and system that provides self-organization for wireless sensor networks is introduced. The self-organization is in terms of scalability, power conservation, channel estimation, and node synchronization in wireless sensor networks. The UWB receiver in the present invention adds two new tasks to conventional TR receivers. The two additional units are SNR enhancing unit and timing acquisition and tracking unit.
USSOCOM’s Role in Addressing Human Trafficking
2010-12-02
global issue runs parallel and at times intersects with the increasing prevalence of VEOs as a transnational threat. Already tasked to synchronize...There are 104 countries without laws, policies, or regulations to prevent victims’ deportation.8 These numbers indicate both the size of global HT...whole of government response through USSOCOM integration. HT exhibits the global connectivity of other transnational crimes, but is also
A new algorithm for epilepsy seizure onset detection and spread estimation from EEG signals
NASA Astrophysics Data System (ADS)
Quintero-Rincón, Antonio; Pereyra, Marcelo; D'Giano, Carlos; Batatia, Hadj; Risk, Marcelo
2016-04-01
Appropriate diagnosis and treatment of epilepsy is a main public health issue. Patients suffering from this disease often exhibit different physical characterizations, which result from the synchronous and excessive discharge of a group of neurons in the cerebral cortex. Extracting this information using EEG signals is an important problem in biomedical signal processing. In this work we propose a new algorithm for seizure onset detection and spread estimation in epilepsy patients. The algorithm is based on a multilevel 1-D wavelet decomposition that captures the physiological brain frequency signals coupled with a generalized gaussian model. Preliminary experiments with signals from 30 epilepsy crisis and 11 subjects, suggest that the proposed methodology is a powerful tool for detecting the onset of epilepsy seizures with his spread across the brain.
Task-Related Modulations of BOLD Low-Frequency Fluctuations within the Default Mode Network
Tommasin, Silvia; Mascali, Daniele; Gili, Tommaso; Assan, Ibrahim Eid; Moraschi, Marta; Fratini, Michela; Wise, Richard G.; Macaluso, Emiliano; Mangia, Silvia; Giove, Federico
2017-01-01
Spontaneous low-frequency Blood-Oxygenation Level-Dependent (BOLD) signals acquired during resting state are characterized by spatial patterns of synchronous fluctuations, ultimately leading to the identification of robust brain networks. The resting-state brain networks, including the Default Mode Network (DMN), are demonstrated to persist during sustained task execution, but the exact features of task-related changes of network properties are still not well characterized. In this work we sought to examine in a group of 20 healthy volunteers (age 33 ± 6 years, 8 F/12 M) the relationship between changes of spectral and spatiotemporal features of one prominent resting-state network, namely the DMN, during the continuous execution of a working memory n-back task. We found that task execution impacted on both functional connectivity and amplitude of BOLD fluctuations within large parts of the DMN, but these changes correlated between each other only in a small area of the posterior cingulate. We conclude that combined analysis of multiple parameters related to connectivity, and their changes during the transition from resting state to continuous task execution, can contribute to a better understanding of how brain networks rearrange themselves in response to a task. PMID:28845420
Jones, Tyler B; Bandettini, Peter A; Kenworthy, Lauren; Case, Laura K; Milleville, Shawn C; Martin, Alex; Birn, Rasmus M
2010-01-01
An increasing number of fMRI studies are using the correlation of low-frequency fluctuations between brain regions, believed to reflect synchronized variations in neuronal activity, to infer "functional connectivity". In studies of autism spectrum disorder (ASD), decreases in this measure of connectivity have been found by focusing on the response to task modulation, by using only the rest periods, or by analyzing purely resting-state data. This difference in connectivity, however, could result from a number of different mechanisms--differences in noise, task-related fluctuations, task performance, or spontaneous neuronal activity. In this study, we investigate the difference in functional connectivity between adolescents with high-functioning ASD and typically developing control subjects by examining the residual fluctuations occurring on top of the fMRI response to an overt verbal fluency task. We find decreased correlations of these residuals (a decreased "connectivity") in ASD subjects. Furthermore, we find that this decrease was not due to task-related effects, block-to-block variations in task performance, or increased noise, and the difference was greatest when primarily rest periods are considered. These findings suggest that the estimate of disrupted functional connectivity in ASD is likely driven by differences in task-unrelated neuronal fluctuations.
Caicedo, Alexander; Varon, Carolina; Hunyadi, Borbala; Papademetriou, Maria; Tachtsidis, Ilias; Van Huffel, Sabine
2016-01-01
Clinical data is comprised by a large number of synchronously collected biomedical signals that are measured at different locations. Deciphering the interrelationships of these signals can yield important information about their dependence providing some useful clinical diagnostic data. For instance, by computing the coupling between Near-Infrared Spectroscopy signals (NIRS) and systemic variables the status of the hemodynamic regulation mechanisms can be assessed. In this paper we introduce an algorithm for the decomposition of NIRS signals into additive components. The algorithm, SIgnal DEcomposition base on Obliques Subspace Projections (SIDE-ObSP), assumes that the measured NIRS signal is a linear combination of the systemic measurements, following the linear regression model y = Ax + ϵ . SIDE-ObSP decomposes the output such that, each component in the decomposition represents the sole linear influence of one corresponding regressor variable. This decomposition scheme aims at providing a better understanding of the relation between NIRS and systemic variables, and to provide a framework for the clinical interpretation of regression algorithms, thereby, facilitating their introduction into clinical practice. SIDE-ObSP combines oblique subspace projections (ObSP) with the structure of a mean average system in order to define adequate signal subspaces. To guarantee smoothness in the estimated regression parameters, as observed in normal physiological processes, we impose a Tikhonov regularization using a matrix differential operator. We evaluate the performance of SIDE-ObSP by using a synthetic dataset, and present two case studies in the field of cerebral hemodynamics monitoring using NIRS. In addition, we compare the performance of this method with other system identification techniques. In the first case study data from 20 neonates during the first 3 days of life was used, here SIDE-ObSP decoupled the influence of changes in arterial oxygen saturation from the NIRS measurements, facilitating the use of NIRS as a surrogate measure for cerebral blood flow (CBF). The second case study used data from a 3-years old infant under Extra Corporeal Membrane Oxygenation (ECMO), here SIDE-ObSP decomposed cerebral/peripheral tissue oxygenation, as a sum of the partial contributions from different systemic variables, facilitating the comparison between the effects of each systemic variable on the cerebral/peripheral hemodynamics.
Mohammed, Abdul-Wahid; Xu, Yang; Hu, Haixiao; Agyemang, Brighter
2016-09-21
In novel collaborative systems, cooperative entities collaborate services to achieve local and global objectives. With the growing pervasiveness of cyber-physical systems, however, such collaboration is hampered by differences in the operations of the cyber and physical objects, and the need for the dynamic formation of collaborative functionality given high-level system goals has become practical. In this paper, we propose a cross-layer automation and management model for cyber-physical systems. This models the dynamic formation of collaborative services pursuing laid-down system goals as an ontology-oriented hierarchical task network. Ontological intelligence provides the semantic technology of this model, and through semantic reasoning, primitive tasks can be dynamically composed from high-level system goals. In dealing with uncertainty, we further propose a novel bridge between hierarchical task networks and Markov logic networks, called the Markov task network. This leverages the efficient inference algorithms of Markov logic networks to reduce both computational and inferential loads in task decomposition. From the results of our experiments, high-precision service composition under uncertainty can be achieved using this approach.
Yang, Haixuan; Seoighe, Cathal
2016-01-01
Nonnegative Matrix Factorization (NMF) has proved to be an effective method for unsupervised clustering analysis of gene expression data. By the nonnegativity constraint, NMF provides a decomposition of the data matrix into two matrices that have been used for clustering analysis. However, the decomposition is not unique. This allows different clustering results to be obtained, resulting in different interpretations of the decomposition. To alleviate this problem, some existing methods directly enforce uniqueness to some extent by adding regularization terms in the NMF objective function. Alternatively, various normalization methods have been applied to the factor matrices; however, the effects of the choice of normalization have not been carefully investigated. Here we investigate the performance of NMF for the task of cancer class discovery, under a wide range of normalization choices. After extensive evaluations, we observe that the maximum norm showed the best performance, although the maximum norm has not previously been used for NMF. Matlab codes are freely available from: http://maths.nuigalway.ie/~haixuanyang/pNMF/pNMF.htm.
Using Apex To Construct CPM-GOMS Models
NASA Technical Reports Server (NTRS)
John, Bonnie; Vera, Alonso; Matessa, Michael; Freed, Michael; Remington, Roger
2006-01-01
process for automatically generating computational models of human/computer interactions as well as graphical and textual representations of the models has been built on the conceptual foundation of a method known in the art as CPM-GOMS. This method is so named because it combines (1) the task decomposition of analysis according to an underlying method known in the art as the goals, operators, methods, and selection (GOMS) method with (2) a model of human resource usage at the level of cognitive, perceptual, and motor (CPM) operations. CPM-GOMS models have made accurate predictions about behaviors of skilled computer users in routine tasks, but heretofore, such models have been generated in a tedious, error-prone manual process. In the present process, CPM-GOMS models are generated automatically from a hierarchical task decomposition expressed by use of a computer program, known as Apex, designed previously to be used to model human behavior in complex, dynamic tasks. An inherent capability of Apex for scheduling of resources automates the difficult task of interleaving the cognitive, perceptual, and motor resources that underlie common task operators (e.g., move and click mouse). The user interface of Apex automatically generates Program Evaluation Review Technique (PERT) charts, which enable modelers to visualize the complex parallel behavior represented by a model. Because interleaving and the generation of displays to aid visualization are automated, it is now feasible to construct arbitrarily long sequences of behaviors. The process was tested by using Apex to create a CPM-GOMS model of a relatively simple human/computer-interaction task and comparing the time predictions of the model and measurements of the times taken by human users in performing the various steps of the task. The task was to withdraw $80 in cash from an automated teller machine (ATM). For the test, a Visual Basic mockup of an ATM was created, with a provision for input from (and measurement of the performance of) the user via a mouse. The times predicted by the automatically generated model turned out to approximate the measured times fairly well (see figure). While these results are promising, there is need for further development of the process. Moreover, it will also be necessary to test other, more complex models: The actions required of the user in the ATM task are too sequential to involve substantial parallelism and interleaving and, hence, do not serve as an adequate test of the unique strength of CPM-GOMS models to accommodate parallelism and interleaving.
A Wavelet Polarization Decomposition Net Model for Polarimetric SAR Image Classification
NASA Astrophysics Data System (ADS)
He, Chu; Ou, Dan; Yang, Teng; Wu, Kun; Liao, Mingsheng; Chen, Erxue
2014-11-01
In this paper, a deep model based on wavelet texture has been proposed for Polarimetric Synthetic Aperture Radar (PolSAR) image classification inspired by recent successful deep learning method. Our model is supposed to learn powerful and informative representations to improve the generalization ability for the complex scene classification tasks. Given the influence of speckle noise in Polarimetric SAR image, wavelet polarization decomposition is applied first to obtain basic and discriminative texture features which are then embedded into a Deep Neural Network (DNN) in order to compose multi-layer higher representations. We demonstrate that the model can produce a powerful representation which can capture some untraceable information from Polarimetric SAR images and show a promising achievement in comparison with other traditional SAR image classification methods for the SAR image dataset.
Singular value decomposition utilizing parallel algorithms on graphical processors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotas, Charlotte W; Barhen, Jacob
2011-01-01
One of the current challenges in underwater acoustic array signal processing is the detection of quiet targets in the presence of noise. In order to enable robust detection, one of the key processing steps requires data and replica whitening. This, in turn, involves the eigen-decomposition of the sample spectral matrix, Cx = 1/K xKX(k)XH(k) where X(k) denotes a single frequency snapshot with an element for each element of the array. By employing the singular value decomposition (SVD) method, the eigenvectors and eigenvalues can be determined directly from the data without computing the sample covariance matrix, reducing the computational requirements formore » a given level of accuracy (van Trees, Optimum Array Processing). (Recall that the SVD of a complex matrix A involves determining V, , and U such that A = U VH where U and V are orthonormal and is a positive, real, diagonal matrix containing the singular values of A. U and V are the eigenvectors of AAH and AHA, respectively, while the singular values are the square roots of the eigenvalues of AAH.) Because it is desirable to be able to compute these quantities in real time, an efficient technique for computing the SVD is vital. In addition, emerging multicore processors like graphical processing units (GPUs) are bringing parallel processing capabilities to an ever increasing number of users. Since the computational tasks involved in array signal processing are well suited for parallelization, it is expected that these computations will be implemented using GPUs as soon as users have the necessary computational tools available to them. Thus, it is important to have an SVD algorithm that is suitable for these processors. This work explores the effectiveness of two different parallel SVD implementations on an NVIDIA Tesla C2050 GPU (14 multiprocessors, 32 cores per multiprocessor, 1.15 GHz clock - peed). The first algorithm is based on a two-step algorithm which bidiagonalizes the matrix using Householder transformations, and then diagonalizes the intermediate bidiagonal matrix through implicit QR shifts. This is similar to that implemented for real matrices by Lahabar and Narayanan ("Singular Value Decomposition on GPU using CUDA", IEEE International Parallel Distributed Processing Symposium 2009). The implementation is done in a hybrid manner, with the bidiagonalization stage done using the GPU while the diagonalization stage is done using the CPU, with the GPU used to update the U and V matrices. The second algorithm is based on a one-sided Jacobi scheme utilizing a sequence of pair-wise column orthogonalizations such that A is replaced by AV until the resulting matrix is sufficiently orthogonal (that is, equal to U ). V is obtained from the sequence of orthogonalizations, while can be found from the square root of the diagonal elements of AH A and, once is known, U can be found from column scaling the resulting matrix. These implementations utilize CUDA Fortran and NVIDIA's CUB LAS library. The primary goal of this study is to quantify the comparative performance of these two techniques against themselves and other standard implementations (for example, MATLAB). Considering that there is significant overhead associated with transferring data to the GPU and with synchronization between the GPU and the host CPU, it is also important to understand when it is worthwhile to use the GPU in terms of the matrix size and number of concurrent SVDs to be calculated.« less
NASA Astrophysics Data System (ADS)
Schoitsch, Erwin
1988-07-01
Our society is depending more and more on the reliability of embedded (real-time) computer systems even in every-day life. Considering the complexity of the real world, this might become a severe threat. Real-time programming is a discipline important not only in process control and data acquisition systems, but also in fields like communication, office automation, interactive databases, interactive graphics and operating systems development. General concepts of concurrent programming and constructs for process-synchronization are discussed in detail. Tasking and synchronization concepts, methods of process communication, interrupt- and timeout handling in systems based on semaphores, signals, conditional critical regions or on real-time languages like Concurrent PASCAL, MODULA, CHILL and ADA are explained and compared with each other and with respect to their potential to quality and safety.
Birkett, Emma E; Talcott, Joel B
2012-01-01
Motor timing tasks have been employed in studies of neurodevelopmental disorders such as developmental dyslexia and ADHD, where they provide an index of temporal processing ability. Investigations of these disorders have used different stimulus parameters within the motor timing tasks that are likely to affect performance measures. Here we assessed the effect of auditory and visual pacing stimuli on synchronised motor timing performance and its relationship with cognitive and behavioural predictors that are commonly used in the diagnosis of these highly prevalent developmental disorders. Twenty-one children (mean age 9.6 years) completed a finger tapping task in two stimulus conditions, together with additional psychometric measures. As anticipated, synchronisation to the beat (ISI 329 ms) was less accurate in the visually paced condition. Decomposition of timing variance indicated that this effect resulted from differences in the way that visual and auditory paced tasks are processed by central timekeeping and associated peripheral implementation systems. The ability to utilise an efficient processing strategy on the visual task correlated with both reading and sustained attention skills. Dissociations between these patterns of relationship across task modality suggest that not all timing tasks are equivalent.
A General-purpose Framework for Parallel Processing of Large-scale LiDAR Data
NASA Astrophysics Data System (ADS)
Li, Z.; Hodgson, M.; Li, W.
2016-12-01
Light detection and ranging (LiDAR) technologies have proven efficiency to quickly obtain very detailed Earth surface data for a large spatial extent. Such data is important for scientific discoveries such as Earth and ecological sciences and natural disasters and environmental applications. However, handling LiDAR data poses grand geoprocessing challenges due to data intensity and computational intensity. Previous studies received notable success on parallel processing of LiDAR data to these challenges. However, these studies either relied on high performance computers and specialized hardware (GPUs) or focused mostly on finding customized solutions for some specific algorithms. We developed a general-purpose scalable framework coupled with sophisticated data decomposition and parallelization strategy to efficiently handle big LiDAR data. Specifically, 1) a tile-based spatial index is proposed to manage big LiDAR data in the scalable and fault-tolerable Hadoop distributed file system, 2) two spatial decomposition techniques are developed to enable efficient parallelization of different types of LiDAR processing tasks, and 3) by coupling existing LiDAR processing tools with Hadoop, this framework is able to conduct a variety of LiDAR data processing tasks in parallel in a highly scalable distributed computing environment. The performance and scalability of the framework is evaluated with a series of experiments conducted on a real LiDAR dataset using a proof-of-concept prototype system. The results show that the proposed framework 1) is able to handle massive LiDAR data more efficiently than standalone tools; and 2) provides almost linear scalability in terms of either increased workload (data volume) or increased computing nodes with both spatial decomposition strategies. We believe that the proposed framework provides valuable references on developing a collaborative cyberinfrastructure for processing big earth science data in a highly scalable environment.
Lähteenmäki, P M; Krause, C M; Sillanmäki, L; Salmi, T T; Lang, A H
1999-12-01
Event-related desynchronization (ERD) and synchronization (ERS) of the 8-10 and 10-12 Hz frequency bands of the background EEG were studied in 19 adolescent survivors of childhood cancer (11 leukemias, 8 solid tumors) and in 10 healthy control subjects performing an auditory memory task. The stimuli were auditory Finnish words presented as a Sternberg-type memory-scanning paradigm. Each trial started with the presentation of a 4 word set for memorization whereafter a probe word was presented to be identified by the subject as belonging or not belonging to the memorized set. Encoding of the memory set elicited ERS and retrieval ERD at both frequency bands. However, in the survivors of leukemia, ERS was turned to ERD during encoding at the lower alpha frequency band. ERD was lasting longer at the lower frequency band than at the higher frequency band, in each study group. At both frequency bands, the maximum of ERD was achieved later in the cancer survivors than in the control group. The previously reported type of ERD/ERS during an auditory memory task was reproducible also in the survivors of childhood cancer, at different alpha frequency bands. However, the temporal deviance in ERD/ERS magnitudes, in the cancer survivors, was interpreted to indicate that both survivor groups had prolonged information processing time and/or they used ineffective cognitive strategies. This finding was more pronounced in the group of leukemia survivors, at the lower alpha frequency band, suggesting that the main problem of this patient group might be in the field of attention.
Donnet, Sophie; Bartolo, Ramon; Fernandes, José Maria; Cunha, João Paulo Silva; Prado, Luis; Merchant, Hugo
2014-05-01
A critical question in tapping behavior is to understand whether the temporal control is exerted on the duration and trajectory of the downward-upward hand movement or on the pause between hand movements. In the present study, we determined the duration of both the movement execution and pauses of monkeys performing a synchronization-continuation task (SCT), using the speed profile of their tapping behavior. We found a linear increase in the variance of pause-duration as a function of interval, while the variance of the motor implementation was relatively constant across intervals. In fact, 96% of the variability of the duration of a complete tapping cycle (pause + movement) was due to the variability of the pause duration. In addition, we performed a Bayesian model selection to determine the effect of interval duration (450-1,000 ms), serial-order (1-6 produced intervals), task phase (sensory cued or internally driven), and marker modality (auditory or visual) on the duration of the movement-pause and tapping movement. The results showed that the most important parameter used to successfully perform the SCT was the control of the pause duration. We also found that the kinematics of the tapping movements was concordant with a stereotyped ballistic control of the hand pressing the push-button. The present findings support the idea that monkeys used an explicit timing strategy to perform the SCT, where a dedicated timing mechanism controlled the duration of the pauses of movement, while also triggered the execution of fixed movements across each interval of the rhythmic sequence. Copyright © 2014 the American Physiological Society.
NASA Technical Reports Server (NTRS)
Ortega, J. M.
1986-01-01
Various graduate research activities in the field of computer science are reported. Among the topics discussed are: (1) failure probabilities in multi-version software; (2) Gaussian Elimination on parallel computers; (3) three dimensional Poisson solvers on parallel/vector computers; (4) automated task decomposition for multiple robot arms; (5) multi-color incomplete cholesky conjugate gradient methods on the Cyber 205; and (6) parallel implementation of iterative methods for solving linear equations.
ERIC Educational Resources Information Center
Teng, Xuan
2015-01-01
Despite the growing interest in examining the link between peer-peer collaborative dialogue and second language (L2) development in recent years (Swain, Brooks, & Tocalli-Beller, 2002), much of the empirical work in this regard focused on face-to-face communication, leaving the operationalization of collaborative dialogue in text-based…
Battle Staff Training and Synchronization in Light Infantry Battalions and Task Forces
1991-12-01
Institute for the Behavioral and Social Sciences Fort Benning Field Unit (ARI-Benning) joined the Training Research Laboratory’s Determinants of Effective ...and unforgiving. The effective management and manipulation of stressors in a continuous operations environment, along with an efficient and consistent...an organizational effectiveness model grounded in the General Systems Theory model. An extensive body of work was reviewed, but two authors stand out
Department of Defense Logistics Roadmap 2008. Volume 2
2008-07-01
endeavors to better synchronize field and depot maintenance data systems resulting in faster Programmed Depot Maintenance (PDM) completion. The...mechanic-centric”. This will put the mechanic actually on the aircraft more often, with the tools and resources to complete their tasks, resulting in...MAJCOM’s: 1. Status to target 2. Initiatives 3. Results FY07 Level: FY10 Target: Goal: The five desired effects of AFSO21 are to: 1. Increased
Battle Staff Operations: Synchronization of Planning at Battalion and Brigade Level
1989-06-02
tactical employment of the tank and mechanized infantry battalion task force. In consonance with Airland Battle doctrine, the document emphasizes ...letter entitled *Emphasis on Rapid Estimates and Decisions on the Atomic Battlefield.’ Emphasizing the increased tempo of the post war mechanized army...If so, a copy of the message is automatically canted to the user(s) identified in the distribution field. Queries are messages retrived records from
SimNEC: Research Platform for Studying Human Functioning in NCW
2006-06-01
provide a basis for self- synchronisation of effects, which means, synchronisation with other parties without being pre-planned and directed by higher...into the status and conditions of the other parties, a commander can synchronise the execution of his own tasks with those of the other commanders...self- synchronization : An exploration of the concept. Presentation at the ICCRTS, 2006, September, 2006, Cambridge, UK. [3] Christy, M., Macklin, C
Law Enforcement Methods for Counterinsurgency Operations
2005-05-26
Report to the Legislature 2003.” 52 David Starbuck , former Chief of Kansas City Gang Task Force, Interview by author, 9 November 2004, Kansas City...MO. 29 calculated violence against rival gangs, and synchronization with other Crip franchises , of which there are over 800 in the U.S. These are...54 J.D. Lloyd, Gangs, Contemporary Issues, 26. 55 David Starbuck , Interview by author. 31 leader, several lieutenants, a drug coordinator
2014-02-01
facilitate effective employment across all spectra and that an adequate ISR- specific C2 structure be established. Lastly, it addresses artificial seams...becomes too great. Thus, unless an individual is specifically tasked to perform a tactical controller role under the senior intelli - gence duty...into joint operations enabling rapid decisions based on actionable intelli - gence.൚ It also highlights the requirement of synchronizing all actions
Interpersonal synchrony enhanced through 20 Hz phase-coupled dual brain stimulation
Knoblich, Günther; Dunne, Laura; Keller, Peter E.
2017-01-01
Abstract Synchronous movement is a key component of social behavior in several species including humans. Recent theories have suggested a link between interpersonal synchrony of brain oscillations and interpersonal movement synchrony. The present study investigated this link. Using transcranial alternating current stimulation (tACS) applied over the left motor cortex, we induced beta band (20 Hz) oscillations in pairs of individuals who both performed a finger-tapping task with the right hand. In-phase or anti-phase oscillations were delivered during a preparatory period prior to movement and while the tapping task was performed. In-phase 20 Hz stimulation enhanced interpersonal movement synchrony, compared with anti-phase or sham stimulation, particularly for the initial taps following the preparatory period. This was confirmed in an analysis comparing real vs pseudo pair surrogate data. No enhancement was observed for stimulation frequencies of 2 Hz (matching the target movement frequency) or 10 Hz (alpha band). Thus, phase-coupling of beta band neural oscillations across two individuals’ (resting) motor cortices supports the interpersonal alignment of sensorimotor processes that regulate rhythmic action initiation, thereby facilitating the establishment of synchronous movement. Phase-locked dual brain stimulation provides a promising method to study causal effects of interpersonal brain synchrony on social, sensorimotor and cognitive processes. PMID:28119510
Losing the beat: deficits in temporal coordination.
Palmer, Caroline; Lidji, Pascale; Peretz, Isabelle
2014-12-19
Tapping or clapping to an auditory beat, an easy task for most individuals, reveals precise temporal synchronization with auditory patterns such as music, even in the presence of temporal fluctuations. Most models of beat-tracking rely on the theoretical concept of pulse: a perceived regular beat generated by an internal oscillation that forms the foundation of entrainment abilities. Although tapping to the beat is a natural sensorimotor activity for most individuals, not everyone can track an auditory beat. Recently, the case of Mathieu was documented (Phillips-Silver et al. 2011 Neuropsychologia 49, 961-969. (doi:10.1016/j.neuropsychologia.2011.02.002)). Mathieu presented himself as having difficulty following a beat and exhibited synchronization failures. We examined beat-tracking in normal control participants, Mathieu, and a second beat-deaf individual, who tapped with an auditory metronome in which unpredictable perturbations were introduced to disrupt entrainment. Both beat-deaf cases exhibited failures in error correction in response to the perturbation task while exhibiting normal spontaneous motor tempi (in the absence of an auditory stimulus), supporting a deficit specific to perception-action coupling. A damped harmonic oscillator model was applied to the temporal adaptation responses; the model's parameters of relaxation time and endogenous frequency accounted for differences between the beat-deaf cases as well as the control group individuals.
Boutin, Arnaud; Pinsard, Basile; Boré, Arnaud; Carrier, Julie; Fogel, Stuart M; Doyon, Julien
2018-04-01
Sleep benefits motor memory consolidation. This mnemonic process is thought to be mediated by thalamo-cortical spindle activity during NREM-stage2 sleep episodes as well as changes in striatal and hippocampal activity. However, direct experimental evidence supporting the contribution of such sleep-dependent physiological mechanisms to motor memory consolidation in humans is lacking. In the present study, we combined EEG and fMRI sleep recordings following practice of a motor sequence learning (MSL) task to determine whether spindle oscillations support sleep-dependent motor memory consolidation by transiently synchronizing and coordinating specialized cortical and subcortical networks. To that end, we conducted EEG source reconstruction on spindle epochs in both cortical and subcortical regions using novel deep-source localization techniques. Coherence-based metrics were adopted to estimate functional connectivity between cortical and subcortical structures over specific frequency bands. Our findings not only confirm the critical and functional role of NREM-stage2 sleep spindles in motor skill consolidation, but provide first-time evidence that spindle oscillations [11-17 Hz] may be involved in sleep-dependent motor memory consolidation by locally reactivating and functionally binding specific task-relevant cortical and subcortical regions within networks including the hippocampus, putamen, thalamus and motor-related cortical regions. Copyright © 2018 Elsevier Inc. All rights reserved.
Losing the beat: deficits in temporal coordination
Palmer, Caroline; Lidji, Pascale; Peretz, Isabelle
2014-01-01
Tapping or clapping to an auditory beat, an easy task for most individuals, reveals precise temporal synchronization with auditory patterns such as music, even in the presence of temporal fluctuations. Most models of beat-tracking rely on the theoretical concept of pulse: a perceived regular beat generated by an internal oscillation that forms the foundation of entrainment abilities. Although tapping to the beat is a natural sensorimotor activity for most individuals, not everyone can track an auditory beat. Recently, the case of Mathieu was documented (Phillips-Silver et al. 2011 Neuropsychologia 49, 961–969. (doi:10.1016/j.neuropsychologia.2011.02.002)). Mathieu presented himself as having difficulty following a beat and exhibited synchronization failures. We examined beat-tracking in normal control participants, Mathieu, and a second beat-deaf individual, who tapped with an auditory metronome in which unpredictable perturbations were introduced to disrupt entrainment. Both beat-deaf cases exhibited failures in error correction in response to the perturbation task while exhibiting normal spontaneous motor tempi (in the absence of an auditory stimulus), supporting a deficit specific to perception–action coupling. A damped harmonic oscillator model was applied to the temporal adaptation responses; the model's parameters of relaxation time and endogenous frequency accounted for differences between the beat-deaf cases as well as the control group individuals. PMID:25385783
Interpersonal synchrony enhanced through 20 Hz phase-coupled dual brain stimulation.
Novembre, Giacomo; Knoblich, Günther; Dunne, Laura; Keller, Peter E
2017-01-24
Synchronous movement is a key component of social behaviour in several species including humans. Recent theories have suggested a link between interpersonal synchrony of brain oscillations and interpersonal movement synchrony. The present study investigated this link. Using transcranial alternating current stimulation (tACS) applied over the left motor cortex, we induced beta band (20 Hz) oscillations in pairs of individuals who both performed a finger-tapping task with the right hand. In-phase or anti-phase oscillations were delivered during a preparatory period prior to movement and while the tapping task was performed. In-phase 20 Hz stimulation enhanced interpersonal movement synchrony, compared to anti-phase or sham stimulation, particularly for the initial taps following the preparatory period. This was confirmed in an analysis comparing real vs. pseudo pair surrogate data. No enhancement was observed for stimulation frequencies of 2 Hz (matching the target movement frequency) or 10 Hz (alpha band). Thus, phase-coupling of beta band neural oscillations across two individuals' (resting) motor cortices supports the interpersonal alignment of sensorimotor processes that regulate rhythmic action initiation, thereby facilitating the establishment of synchronous movement. Phase-locked dual brain stimulation provides a promising method to study causal effects of interpersonal brain synchrony on social, sensorimotor and cognitive processes. © The Author (2017). Published by Oxford University Press.
The speech focus position effect on jaw-finger coordination in a pointing task.
Rochet-Capellan, Amélie; Laboissière, Rafael; Galván, Arturo; Schwartz, Jean-Luc
2008-12-01
This article investigates jaw-finger coordination in a task involving pointing to a target while naming it with a CVCV (e.g., /papa/) versus CVCV (e.g., /papa/) word. According to the authors' working hypothesis, the pointing apex (gesture extremum) would be synchronized with the apex of the jaw-opening gesture corresponding to the stressed syllable. Jaw and finger motions were recorded using Optotrak (Northern Digital, Waterloo, Ontario, Canada). The effects of stress position on jaw-finger coordination were tested across different target positions (near vs. far) and different consonants in the target word (/t/ vs. /p/). Twenty native Portuguese Brazilian speakers participated in the experiment (all conditions). Jaw response starts earlier, and finger-target alignment period is longer for CVCV words than for CVCV ones. The apex of the jaw-opening gesture for the stressed syllable appears synchronized with the onset of the finger-target alignment period (corresponding to the pointing apex) for CVCV words and with the offset of that period for CVCV words. For both stress conditions, the stressed syllable occurs within the finger-target alignment period because of tight finger-jaw coordination. This result is interpreted as evidence for an anchoring of the speech deictic site (part of speech that shows) in the pointing gesture.
The Role of Temporal Disparity on Audiovisual Integration in Low-Vision Individuals.
Targher, Stefano; Micciolo, Rocco; Occelli, Valeria; Zampini, Massimiliano
2017-12-01
Recent findings have shown that sounds improve visual detection in low vision individuals when the audiovisual stimuli pairs of stimuli are presented simultaneously and from the same spatial position. The present study purports to investigate the temporal aspects of the audiovisual enhancement effect previously reported. Low vision participants were asked to detect the presence of a visual stimulus (yes/no task) presented either alone or together with an auditory stimulus at different stimulus onset asynchronies (SOAs). In the first experiment, the sound was presented either simultaneously or before the visual stimulus (i.e., SOAs 0, 100, 250, 400 ms). The results show that the presence of a task-irrelevant auditory stimulus produced a significant visual detection enhancement in all the conditions. In the second experiment, the sound was either synchronized with, or randomly preceded/lagged behind the visual stimulus (i.e., SOAs 0, ± 250, ± 400 ms). The visual detection enhancement was reduced in magnitude and limited only to the synchronous condition and to the condition in which the sound stimulus was presented 250 ms before the visual stimulus. Taken together, the evidence of the present study seems to suggest that audiovisual interaction in low vision individuals is highly modulated by top-down mechanisms.
NASA Astrophysics Data System (ADS)
Krumpe, Tanja; Walter, Carina; Rosenstiel, Wolfgang; Spüler, Martin
2016-08-01
Objective. In this study, the feasibility of detecting a P300 via an asynchronous classification mode in a reactive EEG-based brain-computer interface (BCI) was evaluated. The P300 is one of the most popular BCI control signals and therefore used in many applications, mostly for active communication purposes (e.g. P300 speller). As the majority of all systems work with a stimulus-locked mode of classification (synchronous), the field of applications is limited. A new approach needs to be applied in a setting in which a stimulus-locked classification cannot be used due to the fact that the presented stimuli cannot be controlled or predicted by the system. Approach. A continuous observation task requiring the detection of outliers was implemented to test such an approach. The study was divided into an offline and an online part. Main results. Both parts of the study revealed that an asynchronous detection of the P300 can successfully be used to detect single events with high specificity. It also revealed that no significant difference in performance was found between the synchronous and the asynchronous approach. Significance. The results encourage the use of an asynchronous classification approach in suitable applications without a potential loss in performance.
Okano, Masahiro; Shinya, Masahiro; Kudo, Kazutoshi
2017-01-01
In solo synchronization-continuation (SC) tasks, intertap intervals (ITI) are known to drift from the initial tempo. It has been demonstrated that people in paired and group contexts modulate their action timing unconsciously in various situations such as choice reaction tasks, rhythmic body sway, and hand clapping in concerts, which suggests the possibility that ITI drift is also affected by paired context. We conducted solo and paired SC tapping experiments with three tempos (75, 120, and 200 bpm) and examined whether tempo-keeping performance changed according to tempo and/or the number of players. Results indicated that those tapping in the paired conditions were faster, relative to those observed in the solo conditions, for all tempos. For the faster participants, the degree of ITI drift in the solo conditions was strongly correlated with that in the paired conditions. Regression analyses suggested that both faster and slower participants adapted their tap timing to that of their partners. A possible explanation for these results is that the participants reset the phase of their internal clocks according to the faster beat between their own tap and the partners’ tap. Our results indicated that paired context could bias the direction of ITI drift toward decreasing. PMID:28276461
Okano, Masahiro; Shinya, Masahiro; Kudo, Kazutoshi
2017-03-09
In solo synchronization-continuation (SC) tasks, intertap intervals (ITI) are known to drift from the initial tempo. It has been demonstrated that people in paired and group contexts modulate their action timing unconsciously in various situations such as choice reaction tasks, rhythmic body sway, and hand clapping in concerts, which suggests the possibility that ITI drift is also affected by paired context. We conducted solo and paired SC tapping experiments with three tempos (75, 120, and 200 bpm) and examined whether tempo-keeping performance changed according to tempo and/or the number of players. Results indicated that those tapping in the paired conditions were faster, relative to those observed in the solo conditions, for all tempos. For the faster participants, the degree of ITI drift in the solo conditions was strongly correlated with that in the paired conditions. Regression analyses suggested that both faster and slower participants adapted their tap timing to that of their partners. A possible explanation for these results is that the participants reset the phase of their internal clocks according to the faster beat between their own tap and the partners' tap. Our results indicated that paired context could bias the direction of ITI drift toward decreasing.
A developmental study of the effect of music training on timed movements.
Braun Janzen, Thenille; Thompson, William F; Ranvaud, Ronald
2014-01-01
When people clap to music, sing, play a musical instrument, or dance, they engage in temporal entrainment. We examined the effect of music training on the precision of temporal entrainment in 57 children aged 10-14 years (31 musicians, 26 non-musicians). Performance was examined for two tasks: self-paced finger tapping (discrete movements) and circle drawing (continuous movements). For each task, participants synchronized their movements with a steady pacing signal and then continued the movement at the same rate in the absence of the pacing signal. Analysis of movements during the continuation phase revealed that musicians were more accurate than non-musicians at finger tapping and, to a lesser extent, circle drawing. Performance on the finger-tapping task was positively associated with the number of years of formal music training, whereas performance on the circle-drawing task was positively associated with the age of participants. These results indicate that music training and maturation of the motor system reinforce distinct skills of timed movement.
Synchronization in scale-free networks: The role of finite-size effects
NASA Astrophysics Data System (ADS)
Torres, D.; Di Muro, M. A.; La Rocca, C. E.; Braunstein, L. A.
2015-06-01
Synchronization problems in complex networks are very often studied by researchers due to their many applications to various fields such as neurobiology, e-commerce and completion of tasks. In particular, scale-free networks with degree distribution P(k)∼ k-λ , are widely used in research since they are ubiquitous in Nature and other real systems. In this paper we focus on the surface relaxation growth model in scale-free networks with 2.5< λ <3 , and study the scaling behavior of the fluctuations, in the steady state, with the system size N. We find a novel behavior of the fluctuations characterized by a crossover between two regimes at a value of N=N* that depends on λ: a logarithmic regime, found in previous research, and a constant regime. We propose a function that describes this crossover, which is in very good agreement with the simulations. We also find that, for a system size above N* , the fluctuations decrease with λ, which means that the synchronization of the system improves as λ increases. We explain this crossover analyzing the role of the network's heterogeneity produced by the system size N and the exponent of the degree distribution.
NASA Technical Reports Server (NTRS)
Guman, W. J. (Editor)
1972-01-01
Design details are presented of the solid propellant pulsed plasma microthruster which was analyzed during the Task 1 effort. The design details presented show that the inherent functional simplicity underlying the flight proven LES-6 design can be maintained in the SMS systems design even with minimum weight constraints imposed. A 1293 hour uninterrupted vacuum test with the engineering thermal model, simulating an 18.8 to 33 g environment of the propellant, its feed system and electrode assembly, revealed that program thruster performance requirements could be met. This latter g environment is a more severe environment than will be ever encountered in the SMS spacecraft.
Functional Magnetic Resonance Imaging Methods
Chen, Jingyuan E.; Glover, Gary H.
2015-01-01
Since its inception in 1992, Functional Magnetic Resonance Imaging (fMRI) has become an indispensible tool for studying cognition in both the healthy and dysfunctional brain. FMRI monitors changes in the oxygenation of brain tissue resulting from altered metabolism consequent to a task-based evoked neural response or from spontaneous fluctuations in neural activity in the absence of conscious mentation (the “resting state”). Task-based studies have revealed neural correlates of a large number of important cognitive processes, while fMRI studies performed in the resting state have demonstrated brain-wide networks that result from brain regions with synchronized, apparently spontaneous activity. In this article, we review the methods used to acquire and analyze fMRI signals. PMID:26248581
Environmental concept for engineering software on MIMD computers
NASA Technical Reports Server (NTRS)
Lopez, L. A.; Valimohamed, K.
1989-01-01
The issues related to developing an environment in which engineering systems can be implemented on MIMD machines are discussed. The problem is presented in terms of implementing the finite element method under such an environment. However, neither the concepts nor the prototype implementation environment are limited to this application. The topics discussed include: the ability to schedule and synchronize tasks efficiently; granularity of tasks; load balancing; and the use of a high level language to specify parallel constructs, manage data, and achieve portability. The objective of developing a virtual machine concept which incorporates solutions to the above issues leads to a design that can be mapped onto loosely coupled, tightly coupled, and hybrid systems.