Sample records for synchronous digital reference

  1. Method and apparatus for a single channel digital communications system. [synchronization of received PCM signal by digital correlation with reference signal

    NASA Technical Reports Server (NTRS)

    Couvillon, L. A., Jr.; Carl, C.; Goldstein, R. M.; Posner, E. C.; Green, R. R. (Inventor)

    1973-01-01

    A method and apparatus are described for synchronizing a received PCM communications signal without requiring a separate synchronizing channel. The technique provides digital correlation of the received signal with a reference signal, first with its unmodulated subcarrier and then with a bit sync code modulated subcarrier, where the code sequence length is equal in duration to each data bit.

  2. Digital PCM bit synchronizer and detector

    NASA Astrophysics Data System (ADS)

    Moghazy, A. E.; Maral, G.; Blanchard, A.

    1980-08-01

    A theoretical analysis of a digital self-bit synchronizer and detector is presented and supported by the implementation of an experimental model that utilizes standard TTL logic circuits. This synchronizer is based on the generation of spectral line components by nonlinear filtering of the received bit stream, and extracting the line by a digital phase-locked loop (DPLL). The extracted reference signal instructs a digital matched filter (DMF) data detector. This realization features a short acquisition time and an all-digital structure.

  3. An Evaluation of optional timing/synchronization features to support selection of an optimum design for the DCS digital communication network

    NASA Technical Reports Server (NTRS)

    Bradley, D. B.; Cain, J. B., III; Williard, M. W.

    1978-01-01

    The task was to evaluate the ability of a set of timing/synchronization subsystem features to provide a set of desirable characteristics for the evolving Defense Communications System digital communications network. The set of features related to the approaches by which timing/synchronization information could be disseminated throughout the network and the manner in which this information could be utilized to provide a synchronized network. These features, which could be utilized in a large number of different combinations, included mutual control, directed control, double ended reference links, independence of clock error measurement and correction, phase reference combining, and self organizing.

  4. Synchronization trigger control system for flow visualization

    NASA Technical Reports Server (NTRS)

    Chun, K. S.

    1987-01-01

    The use of cinematography or holographic interferometry for dynamic flow visualization in an internal combustion engine requires a control device that globally synchronizes camera and light source timing at a predefined shaft encoder angle. The device is capable of 0.35 deg resolution for rotational speeds of up to 73 240 rpm. This was achieved by implementing the shaft encoder signal addressed look-up table (LUT) and appropriate latches. The developed digital signal processing technique achieves 25 nsec of high speed triggering angle detection by using direct parallel bit comparison of the shaft encoder digital code with a simulated angle reference code, instead of using angle value comparison which involves more complicated computation steps. In order to establish synchronization to an AC reference signal whose magnitude is variant with the rotating speed, a dynamic peak followup synchronization technique has been devised. This method scrutinizes the reference signal and provides the right timing within 40 nsec. Two application examples are described.

  5. Strategies for synchronisation in an evolving telecommunications network

    NASA Astrophysics Data System (ADS)

    Avery, Rob

    1992-06-01

    The achievement of precise synchronization in the telecommunications environment is addressed. Transmitting the timing from node to node has been the inherent problem for all digital networks. Traditional network equipment used to transfer synchronization, such as digital switching ststems, adds impairments to the once traceable signal. As the synchronization signals are passed from node to node, they lose stability by passing through intervening clocks. Timing would be an integrated part of all new network and service deployments. New transmission methods, such as the Synchronous Digital Hierarchy (SDH), survivable network topologies and the issues that arise from them, necessitate a review of current network synchronization strategies. Challenges that face the network are itemized. A demonstration of why localized Primary Reference Clocks (PRC) in key nodes and the Synchronization Supply Unit (SSU) clock architecture of transit and local node clocks is a technically and economically viable solution to the issues facing network planners today is given.

  6. Illumination-based synchronization of high-speed vision sensors.

    PubMed

    Hou, Lei; Kagami, Shingo; Hashimoto, Koichi

    2010-01-01

    To acquire images of dynamic scenes from multiple points of view simultaneously, the acquisition time of vision sensors should be synchronized. This paper describes an illumination-based synchronization method derived from the phase-locked loop (PLL) algorithm. Incident light to a vision sensor from an intensity-modulated illumination source serves as the reference signal for synchronization. Analog and digital computation within the vision sensor forms a PLL to regulate the output signal, which corresponds to the vision frame timing, to be synchronized with the reference. Simulated and experimental results show that a 1,000 Hz frame rate vision sensor was successfully synchronized with 32 μs jitters.

  7. Synchronization sampling method based on delta-sigma analog-digital converter for underwater towed array system.

    PubMed

    Jiang, Jia-Jia; Duan, Fa-Jie; Li, Yan-Chao; Hua, Xiang-Ning

    2014-03-01

    Synchronization sampling is very important in underwater towed array system where every acquisition node (AN) samples analog signals by its own analog-digital converter (ADC). In this paper, a simple and effective synchronization sampling method is proposed to ensure synchronized operation among different ANs of the underwater towed array system. We first present a master-slave synchronization sampling model, and then design a high accuracy phase-locked loop to synchronize all delta-sigma ADCs to a reference clock. However, when the master-slave synchronization sampling model is used, both the time-delay (TD) of messages traveling along the wired transmission medium and the jitter of the clocks will bring out synchronization sampling error (SSE). Therefore, a simple method is proposed to estimate and compensate the TD of the messages transmission, and then another effective method is presented to overcome the SSE caused by the jitter of the clocks. An experimental system with three ANs is set up, and the related experimental results verify the validity of the synchronization sampling method proposed in this paper.

  8. Synchronization sampling method based on delta-sigma analog-digital converter for underwater towed array system

    NASA Astrophysics Data System (ADS)

    Jiang, Jia-Jia; Duan, Fa-Jie; Li, Yan-Chao; Hua, Xiang-Ning

    2014-03-01

    Synchronization sampling is very important in underwater towed array system where every acquisition node (AN) samples analog signals by its own analog-digital converter (ADC). In this paper, a simple and effective synchronization sampling method is proposed to ensure synchronized operation among different ANs of the underwater towed array system. We first present a master-slave synchronization sampling model, and then design a high accuracy phase-locked loop to synchronize all delta-sigma ADCs to a reference clock. However, when the master-slave synchronization sampling model is used, both the time-delay (TD) of messages traveling along the wired transmission medium and the jitter of the clocks will bring out synchronization sampling error (SSE). Therefore, a simple method is proposed to estimate and compensate the TD of the messages transmission, and then another effective method is presented to overcome the SSE caused by the jitter of the clocks. An experimental system with three ANs is set up, and the related experimental results verify the validity of the synchronization sampling method proposed in this paper.

  9. Model reference adaptive control (MRAC)-based parameter identification applied to surface-mounted permanent magnet synchronous motor

    NASA Astrophysics Data System (ADS)

    Zhong, Chongquan; Lin, Yaoyao

    2017-11-01

    In this work, a model reference adaptive control-based estimated algorithm is proposed for online multi-parameter identification of surface-mounted permanent magnet synchronous machines. By taking the dq-axis equations of a practical motor as the reference model and the dq-axis estimation equations as the adjustable model, a standard model-reference-adaptive-system-based estimator was established. Additionally, the Popov hyperstability principle was used in the design of the adaptive law to guarantee accurate convergence. In order to reduce the oscillation of identification result, this work introduces a first-order low-pass digital filter to improve precision regarding the parameter estimation. The proposed scheme was then applied to an SPM synchronous motor control system without any additional circuits and implemented using a DSP TMS320LF2812. For analysis, the experimental results reveal the effectiveness of the proposed method.

  10. Digital communication system

    NASA Technical Reports Server (NTRS)

    Monford, L. G., Jr. (Inventor)

    1974-01-01

    A digital communication system is reported for parallel operation of 16 or more transceiver units with the use of only four interconnecting wires. A remote synchronization circuit produces unit address control words sequentially in data frames of 16 words. Means are provided in each transceiver unit to decode calling signals and to transmit calling and data signals. The transceivers communicate with each other over one data line. The synchronization unit communicates the address control information to the transceiver units over an address line and further provides the timing information over a clock line. A reference voltage level or ground line completes the interconnecting four wire hookup.

  11. Effect of various features on the life cycle cost of the timing/synchronization subsystem of the DCS digital communications network

    NASA Technical Reports Server (NTRS)

    Kimsey, D. B.

    1978-01-01

    The effect on the life cycle cost of the timing subsystem was examined, when these optional features were included in various combinations. The features included mutual control, directed control, double-ended reference links, independence of clock error measurement and correction, phase reference combining, self-organization, smoothing for link and nodal dropouts, unequal reference weightings, and a master in a mutual control network. An overall design of a microprocessor-based timing subsystem was formulated. The microprocessor (8080) implements the digital filter portion of a digital phase locked loop, as well as other control functions such as organization of the network through communication with processors at neighboring nodes.

  12. Self-organized synchronization of digital phase-locked loops with delayed coupling in theory and experiment

    PubMed Central

    Wetzel, Lucas; Jörg, David J.; Pollakis, Alexandros; Rave, Wolfgang; Fettweis, Gerhard; Jülicher, Frank

    2017-01-01

    Self-organized synchronization occurs in a variety of natural and technical systems but has so far only attracted limited attention as an engineering principle. In distributed electronic systems, such as antenna arrays and multi-core processors, a common time reference is key to coordinate signal transmission and processing. Here we show how the self-organized synchronization of mutually coupled digital phase-locked loops (DPLLs) can provide robust clocking in large-scale systems. We develop a nonlinear phase description of individual and coupled DPLLs that takes into account filter impulse responses and delayed signal transmission. Our phase model permits analytical expressions for the collective frequencies of synchronized states, the analysis of stability properties and the time scale of synchronization. In particular, we find that signal filtering introduces stability transitions that are not found in systems without filtering. To test our theoretical predictions, we designed and carried out experiments using networks of off-the-shelf DPLL integrated circuitry. We show that the phase model can quantitatively predict the existence, frequency, and stability of synchronized states. Our results demonstrate that mutually delay-coupled DPLLs can provide robust and self-organized synchronous clocking in electronic systems. PMID:28207779

  13. Synchronous radio-frequency FM signal generator using direct digital synthesizers

    NASA Astrophysics Data System (ADS)

    Arablu, Masoud; Kafashi, Sajad; Smith, Stuart T.

    2018-04-01

    A novel Radio-Frequency Frequency-Modulated (RF-FM) signal generation method is introduced and a prototype circuit developed to evaluate its functionality and performance. The RF-FM signal generator uses a modulated, voltage-controlled time delay to correspondingly modulate the phase of a 10 MHz sinusoidal reference signal. This modulated reference signal is, in turn, used to clock a Direct Digital Synthesizer (DDS) circuit resulting in an FM signal at its output. The modulating signal that is input to the voltage-controlled time delay circuit is generated by another DDS that is synchronously clocked by the same 10 MHz sine wave signal before modulation. As a consequence, all of the digital components are timed from a single sine wave oscillator that forms the basis of all timing. The resultant output signal comprises a center, or carrier, frequency plus a series of phase-synchronized sidebands having exact integer harmonic frequency separation. In this study, carrier frequencies ranging from 10 MHz to 70 MHz are generated with modulation frequencies ranging from 10 kHz to 300 kHz. The captured spectra show that the FM signal characteristics, amplitude and phase, of the sidebands and the modulation depth are consistent with the Jacobi-Anger expansion for modulated harmonic signals.

  14. Device for modular input high-speed multi-channel digitizing of electrical data

    DOEpatents

    VanDeusen, Alan L.; Crist, Charles E.

    1995-09-26

    A multi-channel high-speed digitizer module converts a plurality of analog signals to digital signals (digitizing) and stores the signals in a memory device. The analog input channels are digitized simultaneously at high speed with a relatively large number of on-board memory data points per channel. The module provides an automated calibration based upon a single voltage reference source. Low signal noise at such a high density and sample rate is accomplished by ensuring the A/D converters are clocked at the same point in the noise cycle each time so that synchronous noise sampling occurs. This sampling process, in conjunction with an automated calibration, yields signal noise levels well below the noise level present on the analog reference voltages.

  15. Device for modular input high-speed multi-channel digitizing of electrical data

    DOEpatents

    VanDeusen, A.L.; Crist, C.E.

    1995-09-26

    A multi-channel high-speed digitizer module converts a plurality of analog signals to digital signals (digitizing) and stores the signals in a memory device. The analog input channels are digitized simultaneously at high speed with a relatively large number of on-board memory data points per channel. The module provides an automated calibration based upon a single voltage reference source. Low signal noise at such a high density and sample rate is accomplished by ensuring the A/D converters are clocked at the same point in the noise cycle each time so that synchronous noise sampling occurs. This sampling process, in conjunction with an automated calibration, yields signal noise levels well below the noise level present on the analog reference voltages. 1 fig.

  16. Digital synchronization and communication techniques

    NASA Technical Reports Server (NTRS)

    Lindsey, William C.

    1992-01-01

    Information on digital synchronization and communication techniques is given in viewgraph form. Topics covered include phase shift keying, modems, characteristics of open loop digital synchronizers, an open loop phase and frequency estimator, and a digital receiver structure using an open loop estimator in a decision directed architecture.

  17. Overview of the CCITT Recommendations for Synchronous Digital Hierarchy

    DTIC Science & Technology

    1991-10-01

    Recommendations for8 Synchronous Digital Hierarchy DCK RAPPORTENCEN’TRiLEAD-A245 680 Frederikkazerne, Geb. 140EN 1111 iNTelefcron: 070-3166394/6395... Synchronous Digital Hierarchy author(s) P.P. Copeland institute TNO Physics and Electronics Laboratory date October 1991 NDRO no A90KLu635 no in pow...recent International Consultative Committee for Telephone and Telegraph (CCITT) Recommendations for the Synchronous Digital Hierarchy (SDH). The

  18. Method for traceable measurement of LTE signals

    NASA Astrophysics Data System (ADS)

    Sunder Dash, Soumya; Pythoud, Frederic; Leuchtmann, Pascal; Leuthold, Juerg

    2018-04-01

    This contribution presents a reference setup to measure the power of the cell-specific resource elements present in downlink long term evolution (LTE) signals in a way that the measurements are traceable to the international system of units. This setup can be used to calibrate the LTE code-selective field probes that are used to measure the radiation of base stations for mobile telephony. It can also be used to calibrate LTE signal generators and receivers. The method is based on traceable scope measurements performed directly at the output of a measuring antenna. It implements offline digital signal processing demodulation algorithms that consider the digital down-conversion, timing synchronization, frequency synchronization, phase synchronization and robust LTE cell identification to produce the downlink time-frequency LTE grid. Experimental results on conducted test scenarios, both single-input-single-output and multiple-input-multiple-output antenna configuration, show promising results confirming measurement uncertainties of the order of 0.05 dB with a coverage factor of 2.

  19. Systems and methods for self-synchronized digital sampling

    NASA Technical Reports Server (NTRS)

    Samson, Jr., John R. (Inventor)

    2008-01-01

    Systems and methods for self-synchronized data sampling are provided. In one embodiment, a system for capturing synchronous data samples is provided. The system includes an analog to digital converter adapted to capture signals from one or more sensors and convert the signals into a stream of digital data samples at a sampling frequency determined by a sampling control signal; and a synchronizer coupled to the analog to digital converter and adapted to receive a rotational frequency signal from a rotating machine, wherein the synchronizer is further adapted to generate the sampling control signal, and wherein the sampling control signal is based on the rotational frequency signal.

  20. Evolution of synchronization and desynchronization in digital organisms.

    PubMed

    Knoester, David B; McKinley, Philip K

    2011-01-01

    We present a study in the evolution of temporal behavior, specifically synchronization and desynchronization, through digital evolution and group selection. In digital evolution, a population of self-replicating computer programs exists in a user-defined computational environment and is subject to instruction-level mutations and natural selection. Group selection links the survival of the individual to the survival of its group, thus encouraging cooperation. Previous approaches to engineering synchronization and desynchronization algorithms have taken inspiration from nature: In the well-known firefly model, the only form of communication between agents is in the form of flash messages among neighbors. Here we demonstrate that populations of digital organisms, provided with a similar mechanism and minimal information about their environment, are capable of evolving algorithms for synchronization and desynchronization, and that the evolved behaviors are robust to message loss. We further describe how the evolved behavior for synchronization mimics that of the well-known Ermentrout model for firefly synchronization in biology. In addition to discovering self-organizing behaviors for distributed computing systems, this result indicates that digital evolution may be used to further our understanding of synchronization in biology.

  1. A new instantaneous torque control of PM synchronous motor for high-performance direct-drive applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, S.K.; Kim, H.S.; Kim, C.G.

    1998-05-01

    a new instantaneous torque-control strategy is presented for high-performance control of a permanent magnet (PM) synchronous motor. In order to deal with the torque pulsating problem of a PM synchronous motor in a low-speed region, new torque estimation and control techniques are proposed. The linkage flux of a PM synchronous motor is estimated using a model reference adaptive system technique, and the developed torque is instantaneously controlled by the proposed torque controller combining a variable structure control (VSC) with a space-vector pulse-width modulation (PWM). The proposed control provides the advantage of reducing the torque pulsation caused by the nonsinusoidal fluxmore » distribution. This control strategy is applied to the high-torque PM synchronous motor drive system for direct-drive applications and implemented by using a software of the digital signal processor (DSP) TMS320C30. The simulations and experiments are carried out for this system, and the results well demonstrate the effectiveness of the proposed control.« less

  2. Wireless GPS-based phase-locked synchronization system for outdoor environment.

    PubMed

    Meyer, Frédéric; Bahr, Alexander; Lochmatter, Thomas; Borrani, Fabio

    2012-01-03

    Synchronization of data coming from different sources is of high importance in biomechanics to ensure reliable analyses. This synchronization can either be performed through hardware to obtain perfect matching of data, or post-processed digitally. Hardware synchronization can be achieved using trigger cables connecting different devices in many situations; however, this is often impractical, and sometimes impossible in outdoors situations. The aim of this paper is to describe a wireless system for outdoor use, allowing synchronization of different types of - potentially embedded and moving - devices. In this system, each synchronization device is composed of: (i) a GPS receiver (used as time reference), (ii) a radio transmitter, and (iii) a microcontroller. These components are used to provide synchronized trigger signals at the desired frequency to the measurement device connected. The synchronization devices communicate wirelessly, are very lightweight, battery-operated and thus very easy to set up. They are adaptable to every measurement device equipped with either trigger input or recording channel. The accuracy of the system was validated using an oscilloscope. The mean synchronization error was found to be 0.39 μs and pulses are generated with an accuracy of <2 μs. The system provides synchronization accuracy about two orders of magnitude better than commonly used post-processing methods, and does not suffer from any drift in trigger generation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Digital phase shifter synchronizes local oscillators

    NASA Technical Reports Server (NTRS)

    Ali, S. M.

    1978-01-01

    Digital phase-shifting network is used as synchronous frequency multiplier for applications such as phase-locking two signals that may differ in frequency. Circuit has various phase-shift capability. Possible applications include data-communication systems and hybrid digital/analog phase-locked loops.

  4. RUN LENGTH SYNCHRONIZATION TECHNIQUES

    DTIC Science & Technology

    An important aspect of digital communications is the problem of determining efficient methods for acquiring block synchronization . In this paper we...utilizes an N-digit sync sequence as prefix to the data blocks. The results of this study show that this technique is a practical method for acquiring block synchronization .

  5. Is 9 louder than 1? Audiovisual cross-modal interactions between number magnitude and judged sound loudness.

    PubMed

    Alards-Tomalin, Doug; Walker, Alexander C; Shaw, Joshua D M; Leboe-McGowan, Launa C

    2015-09-01

    The cross-modal impact of number magnitude (i.e. Arabic digits) on perceived sound loudness was examined. Participants compared a target sound's intensity level against a previously heard reference sound (which they judged as quieter or louder). Paired with each target sound was a task irrelevant Arabic digit that varied in magnitude, being either small (1, 2, 3) or large (7, 8, 9). The degree to which the sound and the digit were synchronized was manipulated, with the digit and sound occurring simultaneously in Experiment 1, and the digit preceding the sound in Experiment 2. Firstly, when target sounds and digits occurred simultaneously, sounds paired with large digits were categorized as loud more frequently than sounds paired with small digits. Secondly, when the events were separated, number magnitude ceased to bias sound intensity judgments. In Experiment 3, the events were still separated, however the participants held the number in short-term memory. In this instance the bias returned. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. PPM Receiver Implemented in Software

    NASA Technical Reports Server (NTRS)

    Gray, Andrew; Kang, Edward; Lay, Norman; Vilnrotter, Victor; Srinivasan, Meera; Lee, Clement

    2010-01-01

    A computer program has been written as a tool for developing optical pulse-position- modulation (PPM) receivers in which photodetector outputs are fed to analog-to-digital converters (ADCs) and all subsequent signal processing is performed digitally. The program can be used, for example, to simulate an all-digital version of the PPM receiver described in Parallel Processing of Broad-Band PPM Signals (NPO-40711), which appears elsewhere in this issue of NASA Tech Briefs. The program can also be translated into a design for digital PPM receiver hardware. The most notable innovation embodied in the software and the underlying PPM-reception concept is a digital processing subsystem that performs synchronization of PPM time slots, even though the digital processing is, itself, asynchronous in the sense that no attempt is made to synchronize it with the incoming optical signal a priori and there is no feedback to analog signal processing subsystems or ADCs. Functions performed by the software receiver include time-slot synchronization, symbol synchronization, coding preprocessing, and diagnostic functions. The program is written in the MATLAB and Simulink software system. The software receiver is highly parameterized and, hence, programmable: for example, slot- and symbol-synchronization filters have programmable bandwidths.

  7. Sonic Boom.

    ERIC Educational Resources Information Center

    Hurtig, Brent

    1998-01-01

    Reviews and evaluates Pro Tools 4.1, a multitrack digital audio workstation (DAWs) that imports and synchronizes to QuickTime or AVI digital movies. Audio-for-picture editors lock their digital audio workstations to linear videotape recorders, using complex, expensive time code synchronizers. Highlights Macintosh and Windows based alternatives.…

  8. Multi-GHz Synchronous Waveform Acquisition With Real-Time Pattern-Matching Trigger Generation

    NASA Astrophysics Data System (ADS)

    Kleinfelder, Stuart A.; Chiang, Shiuh-hua Wood; Huang, Wei

    2013-10-01

    A transient waveform capture and digitization circuit with continuous synchronous 2-GHz sampling capability and real-time programmable windowed trigger generation has been fabricated and tested. Designed in 0.25 μm CMOS, the digitizer contains a circular array of 128 sample and hold circuits for continuous sample acquisition, and attains 2-GHz sample speeds with over 800-MHz analog bandwidth. Sample clock generation is synchronous, combining a phase-locked loop for high-speed clock generation and a high-speed fully-differential shift register for distributing clocks to all 128 sample circuits. Using two comparators per sample, the sampled voltage levels are compared against two reference levels, a high threshold and a low threshold, that are set via per-comparator digital to analog converters (DACs). The 256 per-comparator 5-bit DACs compensate for comparator offsets and allow for fine reference level adjustment. The comparator results are matched in 8-sample-wide windows against up to 72 programmable patterns in real time using an on-chip programmable logic array. Each 8-sample trigger window is equivalent to 4 ns of acquisition, overlapped sample by sample in a circular fashion through the entire 128-sample array. The 72 pattern-matching trigger criteria can be programmed to be any combination of High-above the high threshold, Low-below the low threshold, Middle-between the two thresholds, or “Don't Care”-any state is accepted. A trigger pattern of “HLHLHLHL,” for example, watches for a waveform that is oscillating at about 1 GHz given the 2-GHz sample rate. A trigger is flagged in under 20 ns if there is a match, after which sampling is stopped, and on-chip digitization can proceed via 128 parallel 10-bit converters, or off-chip conversion can proceed via an analog readout. The chip exceeds 11 bits of dynamic range, nets over 800-MHz -3-dB bandwidth in a realistic system, and jitter in the PLL-based sampling clock has been measured to be about 1 part per million, RMS.

  9. Analysis of an all-digital maximum likelihood carrier phase and clock timing synchronizer for eight phase-shift keying modulation

    NASA Astrophysics Data System (ADS)

    Degaudenzi, Riccardo; Vanghi, Vieri

    1994-02-01

    In all-digital Trellis-Coded 8PSK (TC-8PSK) demodulator well suited for VLSI implementation, including maximum likelihood estimation decision-directed (MLE-DD) carrier phase and clock timing recovery, is introduced and analyzed. By simply removing the trellis decoder the demodulator can efficiently cope with uncoded 8PSK signals. The proposed MLE-DD synchronization algorithm requires one sample for the phase and two samples per symbol for the timing loop. The joint phase and timing discriminator characteristics are analytically derived and numerical results checked by means of computer simulations. An approximated expression for steady-state carrier phase and clock timing mean square error has been derived and successfully checked with simulation findings. Synchronizer deviation from the Cramer Rao bound is also discussed. Mean acquisition time for the digital synchronizer has also been computed and checked, using the Monte Carlo simulation technique. Finally, TC-8PSK digital demodulator performance in terms of bit error rate and mean time to lose lock, including digital interpolators and synchronization loops, is presented.

  10. Digitized synchronous demodulator

    NASA Technical Reports Server (NTRS)

    Woodhouse, Christopher E. (Inventor)

    1990-01-01

    A digitized synchronous demodulator is constructed entirely of digital components including timing logic, an accumulator, and means to digitally filter the digital output signal. Indirectly, it accepts, at its input, periodic analog signals which are converted to digital signals by traditional analog-to-digital conversion techniques. Broadly, the input digital signals are summed to one of two registers within an accumulator, based on the phase of the input signal and medicated by timing logic. At the end of a predetermined number of cycles of the inputted periodic signals, the contents of the register that accumulated samples from the negative half cycle is subtracted from the accumulated samples from the positive half cycle. The resulting difference is an accurate measurement of the narrow band amplitude of the periodic input signal during the measurement period. This measurement will not include error sources encountered in prior art synchronous demodulators using analog techniques such as offsets, charge injection errors, temperature drift, switching transients, settling time, analog to digital converter missing code, and linearity errors.

  11. A precise time synchronization method for 5G based on radio-over-fiber network with SDN controller

    NASA Astrophysics Data System (ADS)

    He, Linkuan; Wei, Baoguo; Yang, Hui; Yu, Ao; Wang, Zhengyong; Zhang, Jie

    2018-02-01

    There is an increasing demand on accurate time synchronization with the growing bandwidth of network service for 5G. In 5G network, it's necessary for base station to achieve accurate time synchronization to guarantee the quality of communication. In order to keep accuracy time for 5G network, we propose a time synchronization system for satellite ground station based on radio-over-fiber network (RoFN) with software defined optical network (SDON) controller. The advantage of this method is to improve the accuracy of time synchronization of ground station. The IEEE 1588 time synchronization protocol can solve the problems of high cost and lack of precision. However, in the process of time synchronization, distortion exists during the transmission of digital time signal. RoF uses analog optical transmission links and therefore analog transmission can be implemented among ground stations instead of digital transmission, which means distortion and bandwidth waste in the process of digital synchronization can be avoided. Additionally, the thought of SDN, software defined network, can optimize RoFN with centralized control and simplifying base station. Related simulation had been carried out to prove its superiority.

  12. A new mathematical model and control of a three-phase AC-DC voltage source converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blasko, V.; Kaura, V.

    1997-01-01

    A new mathematical model of the power circuit of a three-phase voltage source converter (VSC) was developed in the stationary and synchronous reference frames. The mathematical model was then used to analyze and synthesize the voltage and current control loops for the VSC. Analytical expressions were derived for calculating the gains and time constants of the current and voltage regulators. The mathematical model was used to control a 140-kW regenerative VSC. The synchronous reference frame model was used to define feedforward signals in the current regulators to eliminate the cross coupling between the d and q phases. It allowed themore » reduction of the current control loop to first-order plants and improved their tracking capability. The bandwidths of the current and voltage-control loops were found to be approximately 20 and 60 times (respectively) smaller than the sampling frequency. All control algorithms were implemented in a digital-signal processor. All results of the analysis were experimentally verified.« less

  13. Digitally generated excitation and near-baseband quadrature detection of rapid scan EPR signals.

    PubMed

    Tseitlin, Mark; Yu, Zhelin; Quine, Richard W; Rinard, George A; Eaton, Sandra S; Eaton, Gareth R

    2014-12-01

    The use of multiple synchronized outputs from an arbitrary waveform generator (AWG) provides the opportunity to perform EPR experiments differently than by conventional EPR. We report a method for reconstructing the quadrature EPR spectrum from periodic signals that are generated with sinusoidal magnetic field modulation such as continuous wave (CW), multiharmonic, or rapid scan experiments. The signal is down-converted to an intermediate frequency (IF) that is less than the field scan or field modulation frequency and then digitized in a single channel. This method permits use of a high-pass analog filter before digitization to remove the strong non-EPR signal at the IF, that might otherwise overwhelm the digitizer. The IF is the difference between two synchronized X-band outputs from a Tektronix AWG 70002A, one of which is for excitation and the other is the reference for down-conversion. To permit signal averaging, timing was selected to give an exact integer number of full cycles for each frequency. In the experiments reported here the IF was 5kHz and the scan frequency was 40kHz. To produce sinusoidal rapid scans with a scan frequency eight times IF, a third synchronized output generated a square wave that was converted to a sine wave. The timing of the data acquisition with a Bruker SpecJet II was synchronized by an external clock signal from the AWG. The baseband quadrature signal in the frequency domain was reconstructed. This approach has the advantages that (i) the non-EPR response at the carrier frequency is eliminated, (ii) both real and imaginary EPR signals are reconstructed from a single physical channel to produce an ideal quadrature signal, and (iii) signal bandwidth does not increase relative to baseband detection. Spectra were obtained by deconvolution of the reconstructed signals for solid BDPA (1,3-bisdiphenylene-2-phenylallyl) in air, 0.2mM trityl OX63 in water, 15 N perdeuterated tempone, and a nitroxide with a 0.5G partially-resolved proton hyperfine splitting. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Digital-data receiver synchronization

    DOEpatents

    Smith, Stephen F.; Turner, Gary W.

    2005-08-02

    Digital-data receiver synchronization is provided with composite phase-frequency detectors, mutually cross-connected comparison feedback or both to provide robust reception of digital data signals. A single master clock can be used to provide frequency signals. Advantages can include fast lock-up time in moderately to severely noisy conditions, greater tolerance to noise and jitter when locked, and improved tolerance to clock asymmetries.

  15. Digital-data receiver synchronization method and apparatus

    DOEpatents

    Smith, Stephen F.; Turner, Gary W.

    2005-12-06

    Digital-data receiver synchronization is provided with composite phase-frequency detectors, mutually cross-connected comparison feedback or both to provide robust reception of digital data signals. A single master clock may be used to provide frequency signals. Advantages can include fast lock-up time in moderately to severely noisy conditions, greater tolerance to noise and jitter when locked, and improved tolerance to clock asymmetries.

  16. Digital-data receiver synchronization method and apparatus

    DOEpatents

    Smith, Stephen F [Loudon, TN; Turner, Gary W [Clinton, TN

    2009-09-08

    Digital data receiver synchronization is provided with composite phase-frequency detectors, mutually cross-connected comparison feedback or both to provide robust reception of digital data signals. A single master clock can be used to provide frequency signals. Advantages can include fast lock-up time in moderately to severely noisy conditions, greater tolerance to noise and jitter when locked, and improved tolerance to clock asymmetries.

  17. Wirelessly Networked Digital Phased Array: Analysis and Development of a Phase Synchronization Concept

    DTIC Science & Technology

    2007-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited WIRELESSLY NETWORKED...DIGITAL PHASED ARRAY: ANALYSIS AND DEVELOPMENT OF A PHASE SYNCHRONIZATION CONCEPT by Micael Grahn September 2007 Thesis Advisor...September 2007 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Wirelessly Networked Digital Phased Array: Analysis and

  18. Adaptive digital beamforming for a CDMA mobile communications payload

    NASA Technical Reports Server (NTRS)

    Munoz-Garcia, Samuel G.; Ruiz, Javier Benedicto

    1993-01-01

    In recent years, Spread-Spectrum Code Division Multiple Access (CDMA) has become a very popular access scheme for mobile communications due to a variety of reasons: excellent performance in multipath environments, high scope for frequency reuse, graceful degradation near saturation, etc. In this way, a CDMA system can support simultaneous digital communication among a large community of relatively uncoordinated users sharing a given frequency band. Nevertheless, there are also important problems associated with the use of CDMA. First, in a conventional CDMA scheme, the signature sequences of asynchronous users are not orthogonal and, as the number of active users increases, the self-noise generated by the mutual interference between users considerably degrades the performance, particularly in the return link. Furthermore, when there is a large disparity in received powers - due to differences in slant range or atmospheric attenuation - the non-zero cross-correlation between the signals gives rise to the so-called near-far problem. This leads to an inefficient utilization of the satellite resources and, consequently, to a drastic reduction in capacity. Several techniques were proposed to overcome this problem, such as Synchronized CDMA - in which the signature sequences of the different users are quasi-orthogonal - and power control. At the expense of increased network complexity and user coordination, these techniques enable the system capacity to be restored by equitably sharing the satellite resources among the users. An alternative solution is presented based upon the use of time-reference adaptive digital beamforming on board the satellite. This technique enables a high number of independently steered beams to be generated from a single phased array antenna, which automatically track the desired user signal and null the unwanted interference source. In order to use a time-reference adaptive antenna in a communications system, the main challenge is to obtain a reference signal highly correlated with the desired user signal and uncorrelated with the interferences. CDMA lends itself very easily to the generation of such a reference signal, thanks to the a priori knowledge of the user's signature sequence. First, the integration of an adaptive antenna in an asynchronous CDMA system is analyzed. The adaptive antenna system can provide increased interference rejection - much higher than that afforded by the code alone - and, since CDMA is mainly interference limited, any reduction in interference converts directly and linearly into an increase in capacity. Analyses and computer simulations are presented that show how an asynchronous CDMA system incorporating adaptive beamforming can provide at least as much capacity as a synchronous system. More importantly, the proposed concept allows the near-far effect to be mitigated without requiring a tight coordination of the users in terms of transmitted power control or network synchronization. The system is extremely robust to the near-far effect because the signals reaching the satellite from directions other than that of the desired user - which are likely to have different power levels - are adaptively canceled by the antenna. Finally, a payload architecture is presented that illustrates the practical implementation of this concept. This digital payload architecture demonstrates that with the advent of high performance CMOS digital processing, the on-board implementation of complex DSP techniques - in particular Digital Beamforming - has become possible, being most attractive for Mobile Satellite Communications.

  19. Adaptive digital beamforming for a CDMA mobile communications payload

    NASA Astrophysics Data System (ADS)

    Munoz-Garcia, Samuel G.; Ruiz, Javier Benedicto

    In recent years, Spread-Spectrum Code Division Multiple Access (CDMA) has become a very popular access scheme for mobile communications due to a variety of reasons: excellent performance in multipath environments, high scope for frequency reuse, graceful degradation near saturation, etc. In this way, a CDMA system can support simultaneous digital communication among a large community of relatively uncoordinated users sharing a given frequency band. Nevertheless, there are also important problems associated with the use of CDMA. First, in a conventional CDMA scheme, the signature sequences of asynchronous users are not orthogonal and, as the number of active users increases, the self-noise generated by the mutual interference between users considerably degrades the performance, particularly in the return link. Furthermore, when there is a large disparity in received powers - due to differences in slant range or atmospheric attenuation - the non-zero cross-correlation between the signals gives rise to the so-called near-far problem. This leads to an inefficient utilization of the satellite resources and, consequently, to a drastic reduction in capacity. Several techniques were proposed to overcome this problem, such as Synchronized CDMA - in which the signature sequences of the different users are quasi-orthogonal - and power control. At the expense of increased network complexity and user coordination, these techniques enable the system capacity to be restored by equitably sharing the satellite resources among the users. An alternative solution is presented based upon the use of time-reference adaptive digital beamforming on board the satellite. This technique enables a high number of independently steered beams to be generated from a single phased array antenna, which automatically track the desired user signal and null the unwanted interference source. In order to use a time-reference adaptive antenna in a communications system, the main challenge is to obtain a reference signal highly correlated with the desired user signal and uncorrelated with the interferences. CDMA lends itself very easily to the generation of such a reference signal, thanks to the a priori knowledge of the user's signature sequence. First, the integration of an adaptive antenna in an asynchronous CDMA system is analyzed. The adaptive antenna system can provide increased interference rejection - much higher than that afforded by the code alone - and, since CDMA is mainly interference limited, any reduction in interference converts directly and linearly into an increase in capacity. Analyses and computer simulations are presented that show how an asynchronous CDMA system incorporating adaptive beamforming can provide at least as much capacity as a synchronous system. More importantly, the proposed concept allows the near-far effect to be mitigated without requiring a tight coordination of the users in terms of transmitted power control or network synchronization. The system is extremely robust to the near-far effect because the signals reaching the satellite from directions other than that of the desired user - which are likely to have different power levels - are adaptively canceled by the antenna. Finally, a payload architecture is presented that illustrates the practical implementation of this concept.

  20. Pneumatic oscillator circuits for timing and control of integrated microfluidics.

    PubMed

    Duncan, Philip N; Nguyen, Transon V; Hui, Elliot E

    2013-11-05

    Frequency references are fundamental to most digital systems, providing the basis for process synchronization, timing of outputs, and waveform synthesis. Recently, there has been growing interest in digital logic systems that are constructed out of microfluidics rather than electronics, as a possible means toward fully integrated laboratory-on-a-chip systems that do not require any external control apparatus. However, the full realization of this goal has not been possible due to the lack of on-chip frequency references, thus requiring timing signals to be provided from off-chip. Although microfluidic oscillators have been demonstrated, there have been no reported efforts to characterize, model, or optimize timing accuracy, which is the fundamental metric of a clock. Here, we report pneumatic ring oscillator circuits built from microfluidic valves and channels. Further, we present a compressible-flow analysis that differs fundamentally from conventional circuit theory, and we show the utility of this physically based model for the optimization of oscillator stability. Finally, we leverage microfluidic clocks to demonstrate circuits for the generation of phase-shifted waveforms, self-driving peristaltic pumps, and frequency division. Thus, pneumatic oscillators can serve as on-chip frequency references for microfluidic digital logic circuits. On-chip clocks and pumps both constitute critical building blocks on the path toward achieving autonomous laboratory-on-a-chip devices.

  1. Time concurrency/phase-time synchronization in digital communications networks

    NASA Technical Reports Server (NTRS)

    Kihara, Masami; Imaoka, Atsushi

    1990-01-01

    Digital communications networks have the intrinsic capability of time synchronization which makes it possible for networks to supply time signals to some applications and services. A practical estimation method for the time concurrency on terrestrial networks is presented. By using this method, time concurrency capability of the Nippon Telegraph and Telephone Corporation (NTT) digital communications network is estimated to be better than 300 ns rms at an advanced level, and 20 ns rms at final level.

  2. Laser Digital Cinema

    NASA Astrophysics Data System (ADS)

    Takeuchi, Eric B.; Flint, Graham W.; Bergstedt, Robert; Solone, Paul J.; Lee, Dicky; Moulton, Peter F.

    2001-03-01

    Electronic cinema projectors are being developed that use a digital micromirror device (DMDTM) to produce the image. Photera Technologies has developed a new architecture that produces truly digital imagery using discrete pulse trains of red, green, and blue light in combination with a DMDTM where in the number of pulses that are delivered to the screen during a given frame can be defined in a purely digital fashion. To achieve this, a pulsed RGB laser technology pioneered by Q-Peak is combined with a novel projection architecture that we refer to as Laser Digital CameraTM. This architecture provides imagery wherein, during the time interval of each frame, individual pixels on the screen receive between zero and 255 discrete pulses of each color; a circumstance which yields 24-bit color. Greater color depth, or increased frame rate is achievable by increasing the pulse rate of the laser. Additionally, in the context of multi-screen theaters, a similar architecture permits our synchronously pulsed RGB source to simultaneously power three screens in a color sequential manner; thereby providing an efficient use of photons, together with the simplifications which derive from using a single DMDTM chip in each projector.

  3. Time signal distribution in communication networks based on synchronous digital hierarchy

    NASA Technical Reports Server (NTRS)

    Imaoka, Atsushi; Kihara, Masami

    1993-01-01

    A new method that uses round-trip paths to accurately measure transmission delay for time synchronization is proposed. The performance of the method in Synchronous Digital Hierarchy networks is discussed. The feature of this method is that it separately measures the initial round trip path delay and the variations in round-trip path delay. The delay generated in SDH equipment is determined by measuring the initial round-trip path delay. In an experiment with actual SDH equipment, the error of initial delay measurement was suppressed to 30ns.

  4. A Synchronous Digital Duplexing Technique for OFDMA-Based Indoor Communications

    NASA Astrophysics Data System (ADS)

    Park, Chang-Hwan; Ko, Yo-Han; Kim, Yeong-Jun; Park, Kyung-Won; Jeon, Won-Gi; Paik, Jong-Ho; Lee, Seok-Pil; Cho, Yong-Soo

    In this paper, we propose a new digital duplexing scheme, called synchronous digital duplexing (SDD), which can increase data efficiency and flexibility of resource by transmitting uplink signal and downlink signal simultaneously in wireless communication. In order to transmit uplink and downlink signals simultaneously, the proposed SDD obtains mutual information among subscriber stations (SSs) with a mutual ranging symbol. This information is used for selection of transmission time, decision on cyclic suffix (CS) insertion, determination of CS length, and re-establishment of FFT starting point.

  5. Self-referenced interferometer for cylindrical surfaces.

    PubMed

    Šarbort, Martin; Řeřucha, Šimon; Holá, Miroslava; Buchta, Zdeněk; Lazar, Josef

    2015-11-20

    We present a new interferometric method for shape measurement of hollow cylindrical tubes. We propose a simple and robust self-referenced interferometer where the reference and object waves are represented by the central and peripheral parts, respectively, of the conical wave generated by a single axicon lens. The interferogram detected by a digital camera is characterized by a closed-fringe pattern with a circular carrier. The interference phase is demodulated using spatial synchronous detection. The capabilities of the interferometer are experimentally tested for various hollow cylindrical tubes with lengths up to 600 mm.

  6. Optically-synchronized encoder and multiplexer scheme for interleaved photonics analog-to-digital conversion

    NASA Astrophysics Data System (ADS)

    Villa, Carlos; Kumavor, Patrick; Donkor, Eric

    2008-04-01

    Photonics Analog-to-Digital Converters (ADCs) utilize a train of optical pulses to sample an electrical input waveform applied to an electrooptic modulator or a reverse biased photodiode. In the former, the resulting train of amplitude-modulated optical pulses is detected (converter to electrical) and quantized using a conversional electronics ADC- as at present there are no practical, cost-effective optical quantizers available with performance that rival electronic quantizers. In the latter, the electrical samples are directly quantized by the electronics ADC. In both cases however, the sampling rate is limited by the speed with which the electronics ADC can quantize the electrical samples. One way to increase the sampling rate by a factor N is by using the time-interleaved technique which consists of a parallel array of N electrical ADC converters, which have the same sampling rate but different sampling phase. Each operating at a quantization rate of fs/N where fs is the aggregated sampling rate. In a system with no real-time operation, the N channels digital outputs are stored in memory, and then aggregated (multiplexed) to obtain the digital representation of the analog input waveform. Alternatively, for real-time operation systems the reduction of storing time in the multiplexing process is desired to improve the time response of the ADC. The complete elimination of memories come expenses of concurrent timing and synchronization in the aggregation of the digital signal that became critical for a good digital representation of the analog signal waveform. In this paper we propose and demonstrate a novel optically synchronized encoder and multiplexer scheme for interleaved photonics ADCs that utilize the N optical signals used to sample different phases of an analog input signal to synchronize the multiplexing of the resulting N digital output channels in a single digital output port. As a proof of concept, four 320 Megasamples/sec 12-bit of resolution digital signals were multiplexed to form an aggregated 1.28 Gigasamples/sec single digital output signal.

  7. How Do Personality, Synchronous Media, and Discussion Topic Affect Participation?

    ERIC Educational Resources Information Center

    Blau, Ina; Barak, Azy

    2012-01-01

    The development of digital technologies increases the use of distance synchronous (real-time) interactions among people. The study explores whether the "readiness to participate", the degree of "actual participation", and the "quality of contribution" to synchronous online group discussions is affected by participant…

  8. SONET Synchronization: What’s Happening

    DTIC Science & Technology

    1992-12-01

    SONET Synchronization : What’s Happening Robert W. Cubbage Alcatel Network Systems, Inc. Richardson, Texas Abstract Almost everyone that has...heard of SONETkwws that the acronym stands for Synchronous Opticd NETwork. There has been a host of manazine articles on SONET rinns. SONET features, ewn...SONET componmponbility w th digital radio. ~ jza t h& not been highlypnblicizedk the critical relationship between SONET. nehuork synchronization

  9. Experience with synchronous and asynchronous digital control systems

    NASA Technical Reports Server (NTRS)

    Regenie, V. A.; Chacon, C. V.; Lock, W. P.

    1986-01-01

    Flight control systems have undergone a revolution since the days of simple mechanical linkages; presently the most advanced systems are full-authority, full-time digital systems controlling unstable aircraft. With the use of advanced control systems, the aerodynamic design can incorporate features that allow greater performance and fuel savings, as can be seen on the new Airbus design and advanced tactical fighter concepts. These advanced aircraft will be and are relying on the flight control system to provide the stability and handling qualities required for safe flight and to allow the pilot to control the aircraft. Various design philosophies have been proposed and followed to investigate system architectures for these advanced flight control systems. One major area of discussion is whether a multichannel digital control system should be synchronous or asynchronous. This paper addressed the flight experience at the Dryden Flight Research Facility of NASA's Ames Research Center with both synchronous and asynchronous digital flight control systems. Four different flight control systems are evaluated against criteria such as software reliability, cost increases, and schedule delays.

  10. The Role of Synchronous Virtual Reference in Teaching and Learning: A Grounded Theory Analysis of Instant Messaging Transcripts

    ERIC Educational Resources Information Center

    Passonneau, Sarah; Coffey, Dan

    2011-01-01

    Electronic communication technologies continue to change the landscape of reference services. For many users, virtual communication is the preferred means of conversing. Synchronous virtual reference, similar to other synchronous means of communication, is an important method for reaching students and for providing teaching and learning…

  11. Shuttle bit rate synchronizer. [signal to noise ratios and error analysis

    NASA Technical Reports Server (NTRS)

    Huey, D. C.; Fultz, G. L.

    1974-01-01

    A shuttle bit rate synchronizer brassboard unit was designed, fabricated, and tested, which meets or exceeds the contractual specifications. The bit rate synchronizer operates at signal-to-noise ratios (in a bit rate bandwidth) down to -5 dB while exhibiting less than 0.6 dB bit error rate degradation. The mean acquisition time was measured to be less than 2 seconds. The synchronizer is designed around a digital data transition tracking loop whose phase and data detectors are integrate-and-dump filters matched to the Manchester encoded bits specified. It meets the reliability (no adjustments or tweaking) and versatility (multiple bit rates) of the shuttle S-band communication system through an implementation which is all digital after the initial stage of analog AGC and A/D conversion.

  12. Time and frequency for digital telecommunications

    NASA Technical Reports Server (NTRS)

    Folts, H. C.

    1972-01-01

    Time and frequency (T and F) are fundamental and pervasive parameters of telecommunication technology. Advancing development of digital communications using data modulation rates above 2400 baud and time-division multiplex in complex network configurations is now requiring more accurate and precise T and F reference information for efficient operation of telecommunication systems. A schematic diagram of a general communication system is shown. This diagram is very general and can depict any type of communication. The information source selects a specific message which is encoded and sent through a communication channel. Enroute, the signal is subjected to perturbations from environmental noise. The received signal is then decoded and delivered to its destination. Through the process, the message may undergo many spurious changes, resulting in a loss of information content in the delivered message as compared to the original selected message. In digital telecommunication systems, loss of information content of the signals can be attributed to noise, distortion of waveshape, and loss of synchronization.

  13. Designed cell consortia as fragrance-programmable analog-to-digital converters.

    PubMed

    Müller, Marius; Ausländer, Simon; Spinnler, Andrea; Ausländer, David; Sikorski, Julian; Folcher, Marc; Fussenegger, Martin

    2017-03-01

    Synthetic biology advances the rational engineering of mammalian cells to achieve cell-based therapy goals. Synthetic gene networks have nearly reached the complexity of digital electronic circuits and enable single cells to perform programmable arithmetic calculations or to provide dynamic remote control of transgenes through electromagnetic waves. We designed a synthetic multilayered gaseous-fragrance-programmable analog-to-digital converter (ADC) allowing for remote control of digital gene expression with 2-bit AND-, OR- and NOR-gate logic in synchronized cell consortia. The ADC consists of multiple sampling-and-quantization modules sensing analog gaseous fragrance inputs; a gas-to-liquid transducer converting fragrance intensity into diffusible cell-to-cell signaling compounds; a digitization unit with a genetic amplifier circuit to improve the signal-to-noise ratio; and recombinase-based digital expression switches enabling 2-bit processing of logic gates. Synthetic ADCs that can remotely control cellular activities with digital precision may enable the development of novel biosensors and may provide bioelectronic interfaces synchronizing analog metabolic pathways with digital electronics.

  14. Design and Development of the SMAP Microwave Radiometer Electronics

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Medeiros, James J.; Horgan, Kevin A.; Brambora, Clifford K.; Estep, Robert H.

    2014-01-01

    The SMAP microwave radiometer will measure land surface brightness temperature at L-band (1413 MHz) in the presence of radio frequency interference (RFI) for soil moisture remote sensing. The radiometer design was driven by the requirements to incorporate internal calibration, to operate synchronously with the SMAP radar, and to mitigate the deleterious effects of RFI. The system design includes a highly linear super-heterodyne microwave receiver with internal reference loads and noise sources for calibration and an innovative digital signal processor and detection system. The front-end comprises a coaxial cable-based feed network, with a pair of diplexers and a coupled noise source, and radiometer front-end (RFE) box. Internal calibration is provided by reference switches and a common noise source inside the RFE. The RF back-end (RBE) downconverts the 1413 MHz channel to an intermediate frequency (IF) of 120 MHz. The IF signals are then sampled and quantized by high-speed analog-to-digital converters in the radiometer digital electronics (RDE) box. The RBE local oscillator and RDE sampling clocks are phase-locked to a common reference to ensure coherency between the signals. The RDE performs additional filtering, sub-band channelization, cross-correlation for measuring third and fourth Stokes parameters, and detection and integration of the first four raw moments of the signals. These data are packetized and sent to the ground for calibration and further processing. Here we discuss the novel features of the radiometer hardware particularly those influenced by the need to mitigate RFI.

  15. Digital correlator with fewer IC's

    NASA Technical Reports Server (NTRS)

    Apple, G. G.; Rubin, L.

    1979-01-01

    Digital correlator requires only few integrated circuits to determine synchronization of two 24-bit digital words. Circuit is easily reduced or expanded to accommodate shorter or longer words and can be utilized in industrial and commercial data processing and telecommunications.

  16. Synchronization-insensitive video watermarking using structured noise pattern

    NASA Astrophysics Data System (ADS)

    Setyawan, Iwan; Kakes, Geerd; Lagendijk, Reginald L.

    2002-04-01

    For most watermarking methods, preserving the synchronization between the watermark embedded in a digital data (image, audio or video) and the watermark detector is critical to the success of the watermark detection process. Many digital watermarking attacks exploit this fact by disturbing the synchronization of the watermark and the watermark detector, and thus disabling proper watermark detection without having to actually remove the watermark from the data. Some techniques have been proposed in the literature to deal with this problem. Most of these techniques employ methods to reverse the distortion caused by the attack and then try to detect the watermark from the repaired data. In this paper, we propose a watermarking technique that is not sensitive to synchronization. This technique uses a structured noise pattern and embeds the watermark payload into the geometrical structure of the embedded pattern.

  17. Cover song identification by sequence alignment algorithms

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Li; Zhong, Qian; Wang, Szu-Ying; Roychowdhury, Vwani

    2011-10-01

    Content-based music analysis has drawn much attention due to the rapidly growing digital music market. This paper describes a method that can be used to effectively identify cover songs. A cover song is a song that preserves only the crucial melody of its reference song but different in some other acoustic properties. Hence, the beat/chroma-synchronous chromagram, which is insensitive to the variation of the timber or rhythm of songs but sensitive to the melody, is chosen. The key transposition is achieved by cyclically shifting the chromatic domain of the chromagram. By using the Hidden Markov Model (HMM) to obtain the time sequences of songs, the system is made even more robust. Similar structure or length between the cover songs and its reference are not necessary by the Smith-Waterman Alignment Algorithm.

  18. Novel Blind Recognition Algorithm of Frame Synchronization Words Based on Soft-Decision in Digital Communication Systems.

    PubMed

    Qin, Jiangyi; Huang, Zhiping; Liu, Chunwu; Su, Shaojing; Zhou, Jing

    2015-01-01

    A novel blind recognition algorithm of frame synchronization words is proposed to recognize the frame synchronization words parameters in digital communication systems. In this paper, a blind recognition method of frame synchronization words based on the hard-decision is deduced in detail. And the standards of parameter recognition are given. Comparing with the blind recognition based on the hard-decision, utilizing the soft-decision can improve the accuracy of blind recognition. Therefore, combining with the characteristics of Quadrature Phase Shift Keying (QPSK) signal, an improved blind recognition algorithm based on the soft-decision is proposed. Meanwhile, the improved algorithm can be extended to other signal modulation forms. Then, the complete blind recognition steps of the hard-decision algorithm and the soft-decision algorithm are given in detail. Finally, the simulation results show that both the hard-decision algorithm and the soft-decision algorithm can recognize the parameters of frame synchronization words blindly. What's more, the improved algorithm can enhance the accuracy of blind recognition obviously.

  19. Experience with synchronous and asynchronous digital control systems. [for flight

    NASA Technical Reports Server (NTRS)

    Regenie, Victoria A.; Chacon, Claude V.; Lock, Wilton P.

    1986-01-01

    Flight control systems have undergone a revolution since the days of simple mechanical linkages; presently the most advanced systems are full-authority, full-time digital systems controlling unstable aircraft. With the use of advanced control systems, the aerodynamic design can incorporate features that allow greater performance and fuel savings, as can be seen on the new Airbus design and advanced tactical fighter concepts. These advanced aircraft will be and are relying on the flight control system to provide the stability and handling qualities required for safe flight and to allow the pilot to control the aircraft. Various design philosophies have been proposed and followed to investigate system architectures for these advanced flight control systems. One major area of discussion is whether a multichannel digital control system should be synchronous or asynchronous. This paper addressed the flight experience at the Dryden Flight Research Facility of NASA's Ames Research Center with both synchronous and asynchronous digital flight control systems. Four different flight control systems are evaluated against criteria such as software reliability, cost increases, and schedule delays.

  20. Secure communications system

    NASA Technical Reports Server (NTRS)

    Doland, G. D.

    1977-01-01

    System employs electronically randomized variant of quadraphase modulation and demodulation between two synchronized transceivers. System uses off-the-shelf components. It may be used with digital data, command signals, delta-modulated voice signals, digital television signals, or other data converted to digital form.

  1. New design conception and development of the synchronizer/data buffer system in CDA station for China's GMS

    NASA Astrophysics Data System (ADS)

    Tong, Kai; Fan, Shiming; Gong, Derong; Lu, Zuming; Liu, Jian

    The synchronizer/data buffer (SDB) in the command and data acquisition station for China's future Geostationary Meteorological Satellite is described. Several computers and special microprocessors are used in tandem with minimized hardware to fulfill all of the functions. The high-accuracy digital phase locked loop is operated by computer and by controlling the count value of the 20-MHz clock to acquire and track such signals as sun pulse, scan synchronization detection pulse, and earth pulse. Sun pulse and VISSR data are recorded precisely and economically by digitizing the time relation. The VISSR scan timing and equiangular control timing, and equal time sampling on satellite are also discussed.

  2. Synchronous-digitization for Video Rate Polarization Modulated Beam Scanning Second Harmonic Generation Microscopy.

    PubMed

    Sullivan, Shane Z; DeWalt, Emma L; Schmitt, Paul D; Muir, Ryan M; Simpson, Garth J

    2015-03-09

    Fast beam-scanning non-linear optical microscopy, coupled with fast (8 MHz) polarization modulation and analytical modeling have enabled simultaneous nonlinear optical Stokes ellipsometry (NOSE) and linear Stokes ellipsometry imaging at video rate (15 Hz). NOSE enables recovery of the complex-valued Jones tensor that describes the polarization-dependent observables, in contrast to polarimetry, in which the polarization stated of the exciting beam is recorded. Each data acquisition consists of 30 images (10 for each detector, with three detectors operating in parallel), each of which corresponds to polarization-dependent results. Processing of this image set by linear fitting contracts down each set of 10 images to a set of 5 parameters for each detector in second harmonic generation (SHG) and three parameters for the transmittance of the fundamental laser beam. Using these parameters, it is possible to recover the Jones tensor elements of the sample at video rate. Video rate imaging is enabled by performing synchronous digitization (SD), in which a PCIe digital oscilloscope card is synchronized to the laser (the laser is the master clock.) Fast polarization modulation was achieved by modulating an electro-optic modulator synchronously with the laser and digitizer, with a simple sine-wave at 1/10th the period of the laser, producing a repeating pattern of 10 polarization states. This approach was validated using Z-cut quartz, and NOSE microscopy was performed for micro-crystals of naproxen.

  3. Synchronous-digitization for video rate polarization modulated beam scanning second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Sullivan, Shane Z.; DeWalt, Emma L.; Schmitt, Paul D.; Muir, Ryan D.; Simpson, Garth J.

    2015-03-01

    Fast beam-scanning non-linear optical microscopy, coupled with fast (8 MHz) polarization modulation and analytical modeling have enabled simultaneous nonlinear optical Stokes ellipsometry (NOSE) and linear Stokes ellipsometry imaging at video rate (15 Hz). NOSE enables recovery of the complex-valued Jones tensor that describes the polarization-dependent observables, in contrast to polarimetry, in which the polarization stated of the exciting beam is recorded. Each data acquisition consists of 30 images (10 for each detector, with three detectors operating in parallel), each of which corresponds to polarization-dependent results. Processing of this image set by linear fitting contracts down each set of 10 images to a set of 5 parameters for each detector in second harmonic generation (SHG) and three parameters for the transmittance of the fundamental laser beam. Using these parameters, it is possible to recover the Jones tensor elements of the sample at video rate. Video rate imaging is enabled by performing synchronous digitization (SD), in which a PCIe digital oscilloscope card is synchronized to the laser (the laser is the master clock.) Fast polarization modulation was achieved by modulating an electro-optic modulator synchronously with the laser and digitizer, with a simple sine-wave at 1/10th the period of the laser, producing a repeating pattern of 10 polarization states. This approach was validated using Z-cut quartz, and NOSE microscopy was performed for micro-crystals of naproxen.

  4. Digital Synchronizer without Metastability

    NASA Technical Reports Server (NTRS)

    Simle, Robert M.; Cavazos, Jose A.

    2009-01-01

    A proposed design for a digital synchronizing circuit would eliminate metastability that plagues flip-flop circuits in digital input/output interfaces. This metastability is associated with sampling, by use of flip-flops, of an external signal that is asynchronous with a clock signal that drives the flip-flops: it is a temporary flip-flop failure that can occur when a rising or falling edge of an asynchronous signal occurs during the setup and/or hold time of a flip-flop. The proposed design calls for (1) use of a clock frequency greater than the frequency of the asynchronous signal, (2) use of flip-flop asynchronous preset or clear signals for the asynchronous input, (3) use of a clock asynchronous recovery delay with pulse width discriminator, and (4) tying the data inputs to constant logic levels to obtain (5) two half-rate synchronous partial signals - one for the falling and one for the rising edge. Inasmuch as the flip-flop data inputs would be permanently tied to constant logic levels, setup and hold times would not be violated. The half-rate partial signals would be recombined to construct a signal that would replicate the original asynchronous signal at its original rate but would be synchronous with the clock signal.

  5. Guiding synchrotron X-ray diffraction by multimodal video-rate protein crystal imaging

    DOE PAGES

    Newman, Justin A.; Zhang, Shijie; Sullivan, Shane Z.; ...

    2016-05-16

    Synchronous digitization, in which an optical sensor is probed synchronously with the firing of an ultrafast laser, was integrated into an optical imaging station for macromolecular crystal positioning prior to synchrotron X-ray diffraction. Using the synchronous digitization instrument, second-harmonic generation, two-photon-excited fluorescence and bright field by laser transmittance were all acquired simultaneously with perfect image registry at up to video-rate (15 frames s –1). A simple change in the incident wavelength enabled simultaneous imaging by two-photon-excited ultraviolet fluorescence, one-photon-excited visible fluorescence and laser transmittance. Development of an analytical model for the signal-to-noise enhancement afforded by synchronous digitization suggests a 15.6-foldmore » improvement over previous photon-counting techniques. This improvement in turn allowed acquisition on nearly an order of magnitude more pixels than the preceding generation of instrumentation and reductions of well over an order of magnitude in image acquisition times. These improvements have allowed detection of protein crystals on the order of 1 µm in thickness under cryogenic conditions in the beamline. Lastly, these capabilities are well suited to support serial crystallography of crystals approaching 1 µm or less in dimension.« less

  6. Guiding synchrotron X-ray diffraction by multimodal video-rate protein crystal imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Justin A.; Zhang, Shijie; Sullivan, Shane Z.

    Synchronous digitization, in which an optical sensor is probed synchronously with the firing of an ultrafast laser, was integrated into an optical imaging station for macromolecular crystal positioning prior to synchrotron X-ray diffraction. Using the synchronous digitization instrument, second-harmonic generation, two-photon-excited fluorescence and bright field by laser transmittance were all acquired simultaneously with perfect image registry at up to video-rate (15 frames s –1). A simple change in the incident wavelength enabled simultaneous imaging by two-photon-excited ultraviolet fluorescence, one-photon-excited visible fluorescence and laser transmittance. Development of an analytical model for the signal-to-noise enhancement afforded by synchronous digitization suggests a 15.6-foldmore » improvement over previous photon-counting techniques. This improvement in turn allowed acquisition on nearly an order of magnitude more pixels than the preceding generation of instrumentation and reductions of well over an order of magnitude in image acquisition times. These improvements have allowed detection of protein crystals on the order of 1 µm in thickness under cryogenic conditions in the beamline. Lastly, these capabilities are well suited to support serial crystallography of crystals approaching 1 µm or less in dimension.« less

  7. Guiding synchrotron X-ray diffraction by multimodal video-rate protein crystal imaging

    PubMed Central

    Newman, Justin A.; Zhang, Shijie; Sullivan, Shane Z.; Dow, Ximeng Y.; Becker, Michael; Sheedlo, Michael J.; Stepanov, Sergey; Carlsen, Mark S.; Everly, R. Michael; Das, Chittaranjan; Fischetti, Robert F.; Simpson, Garth J.

    2016-01-01

    Synchronous digitization, in which an optical sensor is probed synchronously with the firing of an ultrafast laser, was integrated into an optical imaging station for macromolecular crystal positioning prior to synchrotron X-ray diffraction. Using the synchronous digitization instrument, second-harmonic generation, two-photon-excited fluorescence and bright field by laser transmittance were all acquired simultaneously with perfect image registry at up to video-rate (15 frames s−1). A simple change in the incident wavelength enabled simultaneous imaging by two-photon-excited ultraviolet fluorescence, one-photon-excited visible fluorescence and laser transmittance. Development of an analytical model for the signal-to-noise enhancement afforded by synchronous digitization suggests a 15.6-fold improvement over previous photon-counting techniques. This improvement in turn allowed acquisition on nearly an order of magnitude more pixels than the preceding generation of instrumentation and reductions of well over an order of magnitude in image acquisition times. These improvements have allowed detection of protein crystals on the order of 1 µm in thickness under cryogenic conditions in the beamline. These capabilities are well suited to support serial crystallography of crystals approaching 1 µm or less in dimension. PMID:27359145

  8. Study for incorporating time-synchronized approach control into the CH-47/VALT digital navigation system

    NASA Technical Reports Server (NTRS)

    Mcconnell, W. J., Jr.

    1979-01-01

    Techniques for obtaining time synchronized (4D) approach control in the VALT research helicopter is described. Various 4D concepts and their compatibility with the existing VALT digital computer navigation and guidance system hardware and software are examined. Modifications to various techniques were investigated in order to take advantage of the unique operating characteristics of the helicopter in the terminal area. A 4D system is proposed, combining the direct to maneuver with the existing VALT curved path generation capability.

  9. Overview of timing/synchronization for digital communications

    NASA Technical Reports Server (NTRS)

    Stover, H. A.

    1978-01-01

    Systems in general, and switched systems in particular, are explained. It pointed out some of the criteria that greatly influence timing/synchronization subsystem design for a military communications network but have little or no significance for civil systems. Timing techniques were evaluated in terms of fundamental features. Different combinations of these features covered most possibilities from which a synchronous timing system could be chosen.

  10. Comparative hybrid and digital simulation studies of the behaviour of a wind generator equipped with a static frequency converter

    NASA Astrophysics Data System (ADS)

    Dube, B.; Lefebvre, S.; Perocheau, A.; Nakra, H. L.

    1988-01-01

    This paper describes the comparative results obtained from digital and hybrid simulation studies on a variable speed wind generator interconnected to the utility grid. The wind generator is a vertical-axis Darrieus type coupled to a synchronous machine by a gear-box; the synchronous machine is connected to the AC utility grid through a static frequency converter. Digital simulation results have been obtained using CSMP software; these results are compared with those obtained from a real-time hybrid simulator that in turn uses a part of the IREQ HVDC simulator. The agreement between hybrid and digital simulation results is generally good. The results demonstrate that the digital simulation reproduces the dynamic behavior of the system in a satisfactory manner and thus constitutes a valid tool for the design of the control systems of the wind generator.

  11. Carrier-frequency synchronization system for improved amplitude modulation and television broadcast reception

    DOEpatents

    Smith, Stephen F.; Moore, James A.

    2003-05-13

    Systems and methods are described for carrier-frequency synchronization for improved AM and TV broadcast reception. A method includes synchronizing a carrier frequency of a broadcast signal with a remote reference frequency. An apparatus includes a reference signal receiver; a phase comparator coupled to the reference signal receiver; a voltage controlled oscillator coupled to the phase comparator; and a radio frequency output coupled to the voltage controlled oscillator.

  12. Noncoherent Symbol Synchronization Techniques

    NASA Technical Reports Server (NTRS)

    Simon, Marvin

    2005-01-01

    Traditional methods for establishing symbol synchronization (sync) in digital communication receivers assume that carrier sync has already been established, i.e., the problem is addressed at the baseband level assuming that a 'perfect' estimate of carrier phase is available. We refer to this approach as coherent symbol sync. Since, for NRZ signaling, a suppressed carrier sync loop such as an I-Q Costas loop includes integrate-and-dump (I and D) filters in its in-phase (1) and quadrature (Q) arms, the traditional approach is to first track the carrier in the absence of symbol sync information, then feed back the symbol sync estimate to these filters, and then iterate between the two to a desirable operating level In this paper, we revisit the symbol sync problem by examining methods for obtaining such sync in the absence of carrier phase information, i.e., so-called noncoherent symbol sync loops. We compare the performance of these loops with that of a well-known coherent symbol sync loop and examine the conditions under which one is preferable over the other.

  13. INSPECTION MEANS FOR INDUCTION MOTORS

    DOEpatents

    Williams, A.W.

    1959-03-10

    an appartus is descripbe for inspcting electric motors and more expecially an appartus for detecting falty end rings inn suqirrel cage inductio motors while the motor is running. In its broua aspects, the mer would around ce of reference tedtor means also itons in the phase ition of the An electronic circuit for conversion of excess-3 binary coded serial decimal numbers to straight binary coded serial decimal numbers is reported. The converter of the invention in its basic form generally coded pulse words of a type having an algebraic sign digit followed serially by a plurality of decimal digits in order of decreasing significance preceding a y algebraic sign digit followed serially by a plurality of decimal digits in order of decreasing significance. A switching martix is coupled to said input circuit and is internally connected to produce serial straight binary coded pulse groups indicative of the excess-3 coded input. A stepping circuit is coupled to the switching matrix and to a synchronous counter having a plurality of x decimal digit and plurality of y decimal digit indicator terminals. The stepping circuit steps the counter in synchornism with the serial binary pulse group output from the switching matrix to successively produce pulses at corresponding ones of the x and y decimal digit indicator terminals. The combinations of straight binary coded pulse groups and corresponding decimal digit indicator signals so produced comprise a basic output suitable for application to a variety of output apparatus.

  14. All-digital duty-cycle corrector with synchronous and high accuracy output for double date rate synchronous dynamic random-access memory application

    NASA Astrophysics Data System (ADS)

    Tsai, Chih-Wei; Lo, Yu-Lung; Chang, Chia-Chen; Liu, Han-Ying; Yang, Wei-Bin; Cheng, Kuo-Hsing

    2017-04-01

    A synchronous and highly accurate all-digital duty-cycle corrector (ADDCC), which uses simplified dual-loop architecture, is presented in this paper. To explain the operational principle, a detailed circuit description and formula derivation are provided. To verify the proposed design, a chip was fabricated through the 0.18-µm standard complementary metal oxide semiconductor process with a core area of 0.091 mm2. The measurement results indicate that the proposed ADDCC can operate between 300 and 600 MHz with an input duty-cycle range of 40-60%, and that the output duty-cycle error is less than 1% with a root-mean-square jitter of 3.86 ps.

  15. Global synchronization of complex dynamical networks through digital communication with limited data rate.

    PubMed

    Wang, Yan-Wu; Bian, Tao; Xiao, Jiang-Wen; Wen, Changyun

    2015-10-01

    This paper studies the global synchronization of complex dynamical network (CDN) under digital communication with limited bandwidth. To realize the digital communication, the so-called uniform-quantizer-sets are introduced to quantize the states of nodes, which are then encoded and decoded by newly designed encoders and decoders. To meet the requirement of the bandwidth constraint, a scaling function is utilized to guarantee the quantizers having bounded inputs and thus achieving bounded real-time quantization levels. Moreover, a new type of vector norm is introduced to simplify the expression of the bandwidth limit. Through mathematical induction, a sufficient condition is derived to ensure global synchronization of the CDNs. The lower bound on the sum of the real-time quantization levels is analyzed for different cases. Optimization method is employed to relax the requirements on the network topology and to determine the minimum of such lower bound for each case, respectively. Simulation examples are also presented to illustrate the established results.

  16. Synthesis and evaluation of phase detectors for active bit synchronizers

    NASA Technical Reports Server (NTRS)

    Mcbride, A. L.

    1974-01-01

    Self-synchronizing digital data communication systems usually use active or phase-locked loop (PLL) bit synchronizers. The three main elements of PLL synchronizers are the phase detector, loop filter, and the voltage controlled oscillator. Of these three elements, phase detector synthesis is the main source of difficulty, particularly when the received signals are demodulated square-wave signals. A phase detector synthesis technique is reviewed that provides a physically realizable design for bit synchronizer phase detectors. The development is based upon nonlinear recursive estimation methods. The phase detector portion of the algorithm is isolated and analyzed.

  17. Method for protecting an electric generator

    DOEpatents

    Kuehnle, Barry W.; Roberts, Jeffrey B.; Folkers, Ralph W.

    2008-11-18

    A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.

  18. Precision electronic speed controller for an alternating-current

    DOEpatents

    Bolie, Victor W.

    1988-01-01

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for and is particularly suitable for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. In the preferred embodiment, the motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of readonly memories, and a pair of digital-to-analog converters.

  19. Carrier phase synchronization system for improved amplitude modulation and television broadcast reception

    DOEpatents

    Smith, Stephen F [Loudon, TN; Moore, James A [Powell, TN

    2011-02-01

    Systems and methods are described for carrier phase synchronization for improved AM and TV broadcast reception. A method includes synchronizing the phase of a carrier frequency of a broadcast signal with the phase of a remote reference frequency. An apparatus includes a receiver to detect the phase of a reference signal; a phase comparator coupled to the reference signal-phase receiver; a voltage controlled oscillator coupled to the phase comparator; and a phase-controlled radio frequency output coupled to the voltage controlled oscillator.

  20. Synchronization techniques for all digital 16-ary QAM receivers operating over land mobile satellite links

    NASA Technical Reports Server (NTRS)

    Fines, P.; Aghvami, A. H.

    1990-01-01

    The performance of a low bit rate (64 Kb/s) all digital 16-ary Differentially Encoded Quadrature Amplitude Modulation (16-DEQAM) demodulator operating over a mobile satellite channel, is considered. The synchronization and detection techniques employed to overcome the Rician channel impairments, are described. The acquisition and steady state performance of this modem, are evaluated by computer simulation over AWGN and RICIAN channels. The results verify the suitability of the 16-DEQAM transmission over slowly faded and/or mildly faded channels.

  1. An intrinsic poperty of memory of the Cellular automaton infrastructure of Nature leading to the organization of the physical world as an Internet o things; TOE = IOT

    NASA Astrophysics Data System (ADS)

    Berkovich, Simon

    2015-04-01

    The undamental advantage of a Cellular automaton construction foris that it can be viewed as an undetectable absolute frame o reference, in accordance with Lorentz-Poincare's interpretation.. The cellular automaton model for physical poblems comes upon two basic hurdles: (1) How to find the Elemental Rule that, and how to get non-locality from local transformations. Both problems are resolved considering the transfomation rule of mutual distributed synchronization Actually any information proessing device starts with a clocking system. and it turns out that ``All physical phenomena are different aspects of the high-level description of distributed mutual synchronization in a network of digital clocks''. Non-locality comes from two hugely different time-scales of signaling.. The universe is acombinines information and matter processes, These fast spreading diffusion wave solutions create the mechanism of the Holographic Universe. And thirdly Disengaged from synchronization, circular counters can perform memory functions by retaining phases of their oscillations, an idea of Von Neumann'. Thus, the suggested model generates the necessary constructs for the physical world as an Internet of Things. Life emerges due to the specifics of macromolecules that serve as communication means, with the holographic memory...

  2. Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy

    PubMed Central

    Muir, Ryan D.; Sullivan, Shane Z.; Oglesbee, Robert A.; Simpson, Garth J.

    2014-01-01

    Digital lock-in amplification (LIA) with synchronous digitization (SD) is shown to provide significant signal to noise (S/N) and linear dynamic range advantages in beam-scanning microscopy measurements using pulsed laser sources. Direct comparisons between SD-LIA and conventional LIA in homodyne second harmonic generation measurements resulted in S/N enhancements consistent with theoretical models. SD-LIA provided notably larger S/N enhancements in the limit of low light intensities, through the smooth transition between photon counting and signal averaging developed in previous work. Rapid beam scanning instrumentation with up to video rate acquisition speeds minimized photo-induced sample damage. The corresponding increased allowance for higher laser power without sample damage is advantageous for increasing the observed signal content. PMID:24689588

  3. Electrohydraulic Synchronizing Servo Control of a Robotic Arm

    NASA Astrophysics Data System (ADS)

    Li, S.; Ruan, J.; Pei, X.; Yu, Z. Q.; Zhu, F. M.

    2006-10-01

    The large robotic arm is usually driven by the electrodraulic synchronizing control system. The electrodraulic synchronizing system is designed with the digital valve to eliminate the effect of the nonlinearities, such as hysteresis, saturation, definite resolution. The working principle of the electrodraulic synchronizing control system is introduced and the mathematical model is established through construction of flow rate equation, continuity equation, force equilibrium equation, etc. To obtain the high accuracy, the PID control is introduced in the system. Simulation analysis shows that the dynamic performance of the synchronizing system is good, and its steady state error is very small. To validate the results, the experimental set-up of the synchronizing system is built. The experiment makes it clear that the control system has high accuracy. The synchronizing system can be applied widely in practice.

  4. All-digital phase-lock loops for noise-free signals

    NASA Technical Reports Server (NTRS)

    Anderson, T. O.

    1973-01-01

    Bit-synchronizers utilize all-digital phase-lock loops that are referenced to a high frequency digital clock. Phase-lock loop of first design acquires frequency within nominal range and tracks phase; second design is modified for random binary data by addition of simple transition detector; and third design acquires frequency over wide dynamic range.

  5. IEEE 1588 Time Synchronization Board in MTCA.4 Form Factor

    NASA Astrophysics Data System (ADS)

    Jabłoński, G.; Makowski, D.; Mielczarek, A.; Orlikowski, M.; Perek, P.; Napieralski, A.; Makijarvi, P.; Simrock, S.

    2015-06-01

    Distributed data acquisition and control systems in large-scale scientific experiments, like e.g. ITER, require time synchronization with nanosecond precision. A protocol commonly used for that purpose is the Precise Timing Protocol (PTP), also known as IEEE 1588 standard. It uses the standard Ethernet signalling and protocols and allows obtaining timing accuracy of the order of tens of nanoseconds. The MTCA.4 is gradually becoming the platform of choice for building such systems. Currently there is no commercially available implementation of the PTP receiver on that platform. In this paper, we present a module in the MTCA.4 form factor supporting this standard. The module may be used as a timing receiver providing reference clocks in an MTCA.4 chassis, generating a Pulse Per Second (PPS) signal and allowing generation of triggers and timestamping of events on 8 configurable backplane lines and two front panel connectors. The module is based on the Xilinx Spartan 6 FPGA and thermally stabilized Voltage Controlled Oscillator controlled by the digital-to-analog converter. The board supports standalone operation, without the support from the host operating system, as the entire control algorithm is run on a Microblaze CPU implemented in the FPGA. The software support for the card includes the low-level API in the form of Linux driver, user-mode library, high-level API: ITER Nominal Device Support and EPICS IOC. The device has been tested in the ITER timing distribution network (TCN) with three cascaded PTP-enabled Hirschmann switches and a GPS reference clock source. An RMS synchronization accuracy, measured by direct comparison of the PPS signals, better than 20 ns has been obtained.

  6. An all digital phase locked loop for FM demodulation.

    NASA Technical Reports Server (NTRS)

    Greco, J.; Garodnick, J.; Schilling, D. L.

    1972-01-01

    A phase-locked loop designed with all-digital circuitry which avoids certain problems, and a digital voltage controlled oscillator algorithm are described. The system operates synchronously and performs all required digital calculations within one sampling period, thereby performing as a real-time special-purpose computer. The SNR ratio is computed for frequency offsets and sinusoidal modulation, and experimental results verify the theoretical calculations.

  7. Dual frequency optical carrier technique for transmission of reference frequencies in dispersive media

    NASA Technical Reports Server (NTRS)

    Maleki, Lutfollah (Inventor)

    1993-01-01

    Two different carrier frequencies modulated by a reference frequency are transmitted to each receiver to be synchronized therewith. Each receiver responds to local phase differences between the two received signals to correct the phase of one of them so as to maintain the corrected signal as a reliable synchronization reference.

  8. The Use of Questions in a Synchronous Intercultural Online Exchange Project

    ERIC Educational Resources Information Center

    Yang, Rong

    2018-01-01

    In this digital era, online intercultural exchange has gained increased popularity in language and culture education. However, concerns arise over its productiveness and efficacy in engaging participants cognitively. In addition, there is a paucity of research on out-of-classroom synchronous online exchange projects, let alone those involving…

  9. Design/cost tradeoff studies. Appendix A. Supporting analyses and tradeoffs, book 2. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Attitude reference systems for use with the Earth Observatory Satellite (EOS) are described. The systems considered are fixed and gimbaled star trackers, star mappers, and digital sun sensors. Covariance analyses were performed to determine performance for the most promising candidate in low altitude and synchronous orbits. The performance of attitude estimators that employ gyroscopes which are periodically updated by a star sensor is established by a single axis covariance analysis. The other systems considered are: (1) the propulsion system design, (2) electric power and electrical integration, (3) thermal control, (4) ground data processing, and (5) the test plan and cost reduction aspects of observatory integration and test.

  10. A Study of Synchronization Techniques for Optical Communication Systems

    NASA Technical Reports Server (NTRS)

    Gagliardi, R. M.

    1975-01-01

    The study of synchronization techniques and related topics in the design of high data rate, deep space, optical communication systems was reported. Data cover: (1) effects of timing errors in narrow pulsed digital optical systems, (2) accuracy of microwave timing systems operating in low powered optical systems, (3) development of improved tracking systems for the optical channel and determination of their tracking performance, (4) development of usable photodetector mathematical models for application to analysis and performance design in communication receivers, and (5) study application of multi-level block encoding to optical transmission of digital data.

  11. Data-derived symbol synchronization of MASK and QASK signals. [for multilevel digital communication systems

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1974-01-01

    Multilevel amplitude-shift-keying (MASK) and quadrature amplitude-shift-keying (QASK) as signaling techniques for multilevel digital communications systems, and the problem of providing symbol synchronization in the receivers of such systems are discussed. A technique is presented for extracting symbol sync from an MASK or QASK signal. The scheme is a generalization of the data transition tracking loop used in PSK systems. The performance of the loop was analyzed in terms of its mean-squared jitter and its effects on the data detection process in MASK and QASK systems.

  12. Development of high precision digital driver of acoustic-optical frequency shifter for ROG

    NASA Astrophysics Data System (ADS)

    Zhang, Rong; Kong, Mei; Xu, Yameng

    2016-10-01

    We develop a high precision digital driver of the acoustic-optical frequency shifter (AOFS) based on the parallel direct digital synthesizer (DDS) technology. We use an atomic clock as the phase-locked loop (PLL) reference clock, and the PLL is realized by a dual digital phase-locked loop. A DDS sampling clock up to 320 MHz with a frequency stability as low as 10-12 Hz is obtained. By constructing the RF signal measurement system, it is measured that the frequency output range of the AOFS-driver is 52-58 MHz, the center frequency of the band-pass filter is 55 MHz, the ripple in the band is less than 1 dB@3MHz, the single channel output power is up to 0.3 W, the frequency stability is 1 ppb (1 hour duration), and the frequency-shift precision is 0.1 Hz. The obtained frequency stability has two orders of improvement compared to that of the analog AOFS-drivers. For the designed binary frequency shift keying (2-FSK) and binary phase shift keying (2-PSK) modulation system, the demodulating frequency of the input TTL synchronous level signal is up to 10 kHz. The designed digital-bus coding/decoding system is compatible with many conventional digital bus protocols. It can interface with the ROG signal detecting software through the integrated drive electronics (IDE) and exchange data with the two DDS frequency-shift channels through the signal detecting software.

  13. Secure Heterogeneous Multicore Platform Through Diversity and Redundancy

    DTIC Science & Technology

    2012-03-31

    implementation detects synchronization in this way. If a programmer uses custom synchronization primitives , our approach assumes that such primitives ... synchronization primitives . Primitives such as barriers and spinlocks explicitly enforce a pre- determined ordering among threads. Therefore, the outcome of...these synchronization operations are deterministic. In the discussion, we will refer to these primitives as ordering synchronization operations. On the

  14. Unpredictability and the transmission of numbers

    NASA Astrophysics Data System (ADS)

    Myers, John M.; Madjid, F. Hadi

    2016-03-01

    Curiously overlooked in physics is its dependence on the transmission of numbers. For example, the transmission of numerical clock readings is implicit in the concept of a coordinate system. The transmission of numbers and other logical distinctions is often achieved over a computer-mediated communications network in the face of an unpredictable environment. By unpredictable we mean something stronger than the spread of probabilities over given possible outcomes, namely an opening to unforeseeable possibilities. Unpredictability, until now overlooked in theoretical physics, makes the transmission of numbers interesting. Based on recent proofs within quantum theory that provide a theoretical foundation to unpredictability, here we show how regularities in physics rest on a background of channels over which numbers are transmitted. As is known to engineers of digital communications, numerical transmissions depend on coordination reminiscent of the cycle of throwing and catching by players tossing a ball back and forth. In digital communications, the players are computers, and the required coordination involves unpredictably adjusting "live clocks" that step these computers through phases of a cycle. We show how this phasing, which we call logical synchronization, constrains number-carrying networks, and, if a spacetime manifold in invoked, put "stripes" on spacetime. Via its logically synchronized channels, a network of live clocks serves as a reference against which to locate events. Such a network in any case underpins a coordinate frame, and in some cases the direct use of a network can be tailored to investigate an unpredictable environment. Examples include explorations of gravitational variations near Earth.

  15. Development and evaluation of oral reporting system for PACS.

    PubMed

    Umeda, T; Inamura, K; Inamoto, K; Ikezoe, J; Kozuka, T; Kawase, I; Fujii, Y; Karasawa, H

    1994-05-01

    Experimental workstations for oral reporting and synchronized image filing have been developed and evaluated by radiologists and referring physicians. The file media is a 5.25-inch rewritable magneto-optical disk of 600-Mb capacity whose file format is in accordance with the IS&C specification. The results of evaluation tell that this system is superior to other existing methods of the same kind such as transcribing, dictating, handwriting, typewriting and key selections. The most significant advantage of the system is that images and their interpretation are never separated. The first practical application to the teaching file and the teaching conference is contemplated in the Osaka University Hospital. This system is a complete digital system in terms of images, voices and demographic data, so that on-line transmission, off-line communication or filing to any database will be easily realized in a PACS environment. We are developing an integrated system of a speech recognizer connected to this digitized oral system.

  16. A simulation analysis of phase processing circuitry in the Ohio University Omega receiver prototype

    NASA Technical Reports Server (NTRS)

    Palkovic, R. A.

    1975-01-01

    A FORTRAN IV simulation study of the all-digital phase-processing circuitry is described. A digital phase-lock loop (DPLL) forms the heart of the Omega navigation receiver prototype, and through the DPLL, the phase of the 10.2 KHz Omega signal was estimated when the true signal phase is contaminated with noise. The DPLL uses a frequency synthesizer as the reference oscillator. The synthesizer is composed of synchronous rate multipliers (SRM's) driven by a temperature-compensated crystal oscillator, and the use of the SRM's in this application introduces phase jitter which degrades system performance. Simulation of the frequency synthesizer discussed was to analyze the circuits on a bit-by-bit level in order to evaluate the overall design, to see easily the effects of proposed design changes prior to actual breadboarding, to determine the optimum integration time for the DPLL in an environment typical of general aviation conditions, and to quantify the phase error introduced by the SRM synthesizer and examine its effect on the system.

  17. MAP-Motivated Carrier Synchronization of GMSK Based on the Laurent AMP Representation

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1998-01-01

    Using the MAP estimation approach to carrier synchronization of digital modulations containing ISI together with a two pulse stream AMP representation of GMSK, it is possible to obtain an optimum closed loop configuration in the same manner as has been previously proposed for other conventional modulations with ISI.

  18. Memory-based frame synchronizer. [for digital communication systems

    NASA Technical Reports Server (NTRS)

    Stattel, R. J.; Niswander, J. K. (Inventor)

    1981-01-01

    A frame synchronizer for use in digital communications systems wherein data formats can be easily and dynamically changed is described. The use of memory array elements provide increased flexibility in format selection and sync word selection in addition to real time reconfiguration ability. The frame synchronizer comprises a serial-to-parallel converter which converts a serial input data stream to a constantly changing parallel data output. This parallel data output is supplied to programmable sync word recognizers each consisting of a multiplexer and a random access memory (RAM). The multiplexer is connected to both the parallel data output and an address bus which may be connected to a microprocessor or computer for purposes of programming the sync word recognizer. The RAM is used as an associative memory or decorder and is programmed to identify a specific sync word. Additional programmable RAMs are used as counter decoders to define word bit length, frame word length, and paragraph frame length.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Stephen F; Moore, James A

    Systems and methods are described for carrier-frequency synchronization for improved AM and TV broadcast reception. A method includes synchronizing a carrier frequency of a broadcast signal with a remote reference frequency. An apparatus includes a reference signal receiver; a phase comparator coupled to the reference signal receiver; a voltage controlled oscillator coupled to the phase comparator; and a radio frequency output coupled to the voltage controlled oscillator.

  20. An accurate system for onsite calibration of electronic transformers with digital output.

    PubMed

    Zhi, Zhang; Li, Hong-Bin

    2012-06-01

    Calibration systems with digital output are used to replace conventional calibration systems because of principle diversity and characteristics of digital output of electronic transformers. But precision and unpredictable stability limit their onsite application even development. So fully considering the factors influencing accuracy of calibration system and employing simple but reliable structure, an all-digital calibration system with digital output is proposed in this paper. In complicated calibration environments, precision and dynamic range are guaranteed by A/D converter with 24-bit resolution, synchronization error limit is nanosecond by using the novelty synchronization method. In addition, an error correction algorithm based on the differential method by using two-order Hanning convolution window has good inhibition of frequency fluctuation and inter-harmonics interference. To verify the effectiveness, error calibration was carried out in the State Grid Electric Power Research Institute of China and results show that the proposed system can reach the precision class up to 0.05. Actual onsite calibration shows that the system has high accuracy, and is easy to operate with satisfactory stability.

  1. An accurate system for onsite calibration of electronic transformers with digital output

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhi Zhang; Li Hongbin; State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Wuhan 430074

    Calibration systems with digital output are used to replace conventional calibration systems because of principle diversity and characteristics of digital output of electronic transformers. But precision and unpredictable stability limit their onsite application even development. So fully considering the factors influencing accuracy of calibration system and employing simple but reliable structure, an all-digital calibration system with digital output is proposed in this paper. In complicated calibration environments, precision and dynamic range are guaranteed by A/D converter with 24-bit resolution, synchronization error limit is nanosecond by using the novelty synchronization method. In addition, an error correction algorithm based on the differentialmore » method by using two-order Hanning convolution window has good inhibition of frequency fluctuation and inter-harmonics interference. To verify the effectiveness, error calibration was carried out in the State Grid Electric Power Research Institute of China and results show that the proposed system can reach the precision class up to 0.05. Actual onsite calibration shows that the system has high accuracy, and is easy to operate with satisfactory stability.« less

  2. An accurate system for onsite calibration of electronic transformers with digital output

    NASA Astrophysics Data System (ADS)

    Zhi, Zhang; Li, Hong-Bin

    2012-06-01

    Calibration systems with digital output are used to replace conventional calibration systems because of principle diversity and characteristics of digital output of electronic transformers. But precision and unpredictable stability limit their onsite application even development. So fully considering the factors influencing accuracy of calibration system and employing simple but reliable structure, an all-digital calibration system with digital output is proposed in this paper. In complicated calibration environments, precision and dynamic range are guaranteed by A/D converter with 24-bit resolution, synchronization error limit is nanosecond by using the novelty synchronization method. In addition, an error correction algorithm based on the differential method by using two-order Hanning convolution window has good inhibition of frequency fluctuation and inter-harmonics interference. To verify the effectiveness, error calibration was carried out in the State Grid Electric Power Research Institute of China and results show that the proposed system can reach the precision class up to 0.05. Actual onsite calibration shows that the system has high accuracy, and is easy to operate with satisfactory stability.

  3. Developing Oral Interaction Skills with a Digital Information Gap Activity Game

    ERIC Educational Resources Information Center

    Rueb, Avery; Cardoso, Walcir; Grimshaw, Jennica

    2016-01-01

    This study introduces the digital game Prêt à négocier, an information gap digital game, and investigates language learners' perceptions of its use in a French as a Second Language (FSL) context. In the game, students negotiate orally and synchronously with a partner for items like cars, houses, and even pirate ships. Inspired by Larsen-Freeman…

  4. Hybrid Analog/Digital Receiver

    NASA Technical Reports Server (NTRS)

    Brown, D. H.; Hurd, W. J.

    1989-01-01

    Advanced hybrid analog/digital receiver processes intermediate-frequency (IF) signals carrying digital data in form of phase modulation. Uses IF sampling and digital phase-locked loops to track carrier and subcarrier signals and to synchronize data symbols. Consists of three modules: IF assembly, signal-processing assembly, and test-signal assembly. Intended for use in Deep Space Network, but presumably basic design modified for such terrestrial uses as communications or laboratory instrumentation where signals weak and/or noise strong.

  5. An all digital phase locked loop for synchronization of a sinusoidal signal embedded in white Gaussian noise

    NASA Technical Reports Server (NTRS)

    Reddy, C. P.; Gupta, S. C.

    1973-01-01

    An all digital phase locked loop which tracks the phase of the incoming sinusoidal signal once per carrier cycle is proposed. The different elements and their functions and the phase lock operation are explained in detail. The nonlinear difference equations which govern the operation of the digital loop when the incoming signal is embedded in white Gaussian noise are derived, and a suitable model is specified. The performance of the digital loop is considered for the synchronization of a sinusoidal signal. For this, the noise term is suitably modelled which allows specification of the output probabilities for the two level quantizer in the loop at any given phase error. The loop filter considered increases the probability of proper phase correction. The phase error states in modulo two-pi forms a finite state Markov chain which enables the calculation of steady state probabilities, RMS phase error, transient response and mean time for cycle skipping.

  6. A synchronization technique for the on-board master clock of a regenerative TDMA satellite communications system

    NASA Astrophysics Data System (ADS)

    Pattini, F.; Porzio Giusto, P.

    The design criteria and performance of the master clock (MCK) generator and the unique word (UW) detector are examined. A narrow band phase lock loop is used for the onboard MCK generator and it is implemented with an all-digital scheme that employs a D-type flip flop as the phase detector. The performance of the MCK generator is analyzed with a computer program which considers phase offset of the digital phase comparator. The characteristics and capabilities of the UW detector which provides strobe signals for the MCK generator and synchronization signals for the onboard switching matrix are described.

  7. Development of an Effective Educational Computer Game Based on a Mission Synchronization-Based Peer-Assistance Approach

    ERIC Educational Resources Information Center

    Chang, Shao-Chen; Hwang, Gwo-Jen

    2017-01-01

    In this study, a mission synchronization-based peer-assistance approach is proposed to improve students' learning performance in digital game-based learning activities. To evaluate the effectiveness of the proposed approach, an experiment has been conducted in an elementary school natural science course to examine the participants' learning…

  8. Wireless spread-spectrum telesensor chip with synchronous digital architecture

    DOEpatents

    Smith, Stephen F.; Turner, Gary W.; Wintenberg, Alan L.; Emery, Michael Steven

    2005-03-08

    A fully integrated wireless spread-spectrum sensor incorporating all elements of an "intelligent" sensor on a single circuit chip is capable of telemetering data to a receiver. Synchronous control of all elements of the chip provides low-cost, low-noise, and highly robust data transmission, in turn enabling the use of low-cost monolithic receivers.

  9. Reviving a Digital Dinosaur: Text-Only Synchronous Online Chats and Peer Tutoring in Communication Centers

    ERIC Educational Resources Information Center

    Schwartzman, Roy

    2013-01-01

    A qualitative and quantitative content analysis was conducted of all text-based synchronous online chats at an oral communication peer tutoring center throughout a semester. As a comparative benchmark, chats at the same university's main library were analyzed over the same time period. The library's chats were much more heavily weighted toward…

  10. Synchronization of an optomechanical system to an external drive

    NASA Astrophysics Data System (ADS)

    Amitai, Ehud; Lörch, Niels; Nunnenkamp, Andreas; Walter, Stefan; Bruder, Christoph

    2017-05-01

    Optomechanical systems driven by an effective blue-detuned laser can exhibit self-sustained oscillations of the mechanical oscillator. These self-oscillations are a prerequisite for the observation of synchronization. Here, we study the synchronization of the mechanical oscillations to an external reference drive. We study two cases of reference drives: (1) an additional laser applied to the optical cavity; (2) a mechanical drive applied directly to the mechanical oscillator. Starting from a master equation description, we derive a microscopic Adler equation for both cases, valid in the classical regime in which the quantum shot noise of the mechanical self-oscillator does not play a role. Furthermore, we numerically show that, in both cases, synchronization arises also in the quantum regime. The optomechanical system is therefore a good candidate for the study of quantum synchronization.

  11. High Speed Turbo-Generator: Test Stand Simulator Including Turbine Engine Emulator

    DTIC Science & Technology

    2010-07-30

    15% Shaft Power 4% 8% Our model of the six-phase synchronous machine was based on work by Schiferl and Ong [1]. The six-phase synchronous machine is...develop and submit to ONR a follow-on proposal to address these open issues. 27 REFERENCES [1] R. F. Schiferl and C. M. Ong, "Six phase...at 32 References [Al] R. F. Schiferl and C. M. Ong, "Six phase synchronous machine with ac and dc stator connections, Part I: Equivalent Circuit

  12. Towards higher stability of resonant absorption measurements in pulsed plasmas.

    PubMed

    Britun, Nikolay; Michiels, Matthieu; Snyders, Rony

    2015-12-01

    Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called "dynamic source triggering," between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source.

  13. High frequency, high time resolution time-to-digital converter employing passive resonating circuits.

    PubMed

    Ripamonti, Giancarlo; Abba, Andrea; Geraci, Angelo

    2010-05-01

    A method for measuring time intervals accurate to the picosecond range is based on phase measurements of oscillating waveforms synchronous with their beginning and/or end. The oscillation is generated by triggering an LC resonant circuit, whose capacitance is precharged. By using high Q resonators and a final active quenching of the oscillation, it is possible to conjugate high time resolution and a small measurement time, which allows a high measurement rate. Methods for fast analysis of the data are considered and discussed with reference to computing resource requirements, speed, and accuracy. Experimental tests show the feasibility of the method and a time accuracy better than 4 ps rms. Methods aimed at further reducing hardware resources are finally discussed.

  14. Digital second-order phase-locked loop

    NASA Technical Reports Server (NTRS)

    Holmes, J. K.; Carl, C. C.; Tagnelia, C. R.

    1975-01-01

    Actual tests with second-order digital phase-locked loop at simulated relative Doppler shift of 1x0.0001 produced phase lock with timing error of 6.5 deg and no appreciable Doppler bias. Loop thus appears to achieve subcarrier synchronization and to remove bias due to Doppler shift in range of interest.

  15. The past, present and future of cyber-physical systems: a focus on models.

    PubMed

    Lee, Edward A

    2015-02-26

    This paper is about better engineering of cyber-physical systems (CPSs) through better models. Deterministic models have historically proven extremely useful and arguably form the kingpin of the industrial revolution and the digital and information technology revolutions. Key deterministic models that have proven successful include differential equations, synchronous digital logic and single-threaded imperative programs. Cyber-physical systems, however, combine these models in such a way that determinism is not preserved. Two projects show that deterministic CPS models with faithful physical realizations are possible and practical. The first project is PRET, which shows that the timing precision of synchronous digital logic can be practically made available at the software level of abstraction. The second project is Ptides (programming temporally-integrated distributed embedded systems), which shows that deterministic models for distributed cyber-physical systems have practical faithful realizations. These projects are existence proofs that deterministic CPS models are possible and practical.

  16. Digitized detection of gamma-ray signals concentrated in narrow time windows for transient positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Kinomura, A.; Suzuki, R.; Oshima, N.; O'Rourke, B. E.; Nishijima, T.; Ogawa, H.

    2014-12-01

    A pulsed slow-positron beam generated by an electron linear accelerator was directly used for positron annihilation lifetime spectroscopy without any positron storage devices. A waveform digitizer was introduced to simultaneously capture multiple gamma-ray signals originating from positron annihilation events during a single accelerator pulse. The positron pulse was chopped and bunched with the chopper signals also sent to the waveform digitizer. Time differences between the annihilation gamma-ray and chopper peaks were calculated and accumulated as lifetime spectra in a computer. The developed technique indicated that positron annihilation lifetime spectroscopy can be performed in a 20 μs time window at a pulse repetition rate synchronous with the linear accelerator. Lifetime spectra of a Kapton sheet and a thermally grown SiO2 layer on Si were successfully measured. Synchronization of positron lifetime measurements with pulsed ion irradiation was demonstrated by this technique.

  17. The Past, Present and Future of Cyber-Physical Systems: A Focus on Models

    PubMed Central

    Lee, Edward A.

    2015-01-01

    This paper is about better engineering of cyber-physical systems (CPSs) through better models. Deterministic models have historically proven extremely useful and arguably form the kingpin of the industrial revolution and the digital and information technology revolutions. Key deterministic models that have proven successful include differential equations, synchronous digital logic and single-threaded imperative programs. Cyber-physical systems, however, combine these models in such a way that determinism is not preserved. Two projects show that deterministic CPS models with faithful physical realizations are possible and practical. The first project is PRET, which shows that the timing precision of synchronous digital logic can be practically made available at the software level of abstraction. The second project is Ptides (programming temporally-integrated distributed embedded systems), which shows that deterministic models for distributed cyber-physical systems have practical faithful realizations. These projects are existence proofs that deterministic CPS models are possible and practical. PMID:25730486

  18. Rethinking Task Design for the Digital Age: A Framework for Language Teaching and Learning in a Synchronous Online Environment

    ERIC Educational Resources Information Center

    Hampel, Regina

    2006-01-01

    This article discusses a framework for the development of tasks in a synchronous online environment used for language learning and teaching. It shows how a theoretical approach based on second language acquisition (SLA) principles, sociocultural and constructivist theories, and concepts taken from research on multimodality and new literacies, can…

  19. Noise-Induced Synchronization among Sub-RF CMOS Analog Oscillators for Skew-Free Clock Distribution

    NASA Astrophysics Data System (ADS)

    Utagawa, Akira; Asai, Tetsuya; Hirose, Tetsuya; Amemiya, Yoshihito

    We present on-chip oscillator arrays synchronized by random noises, aiming at skew-free clock distribution on synchronous digital systems. Nakao et al. recently reported that independent neural oscillators can be synchronized by applying temporal random impulses to the oscillators [1], [2]. We regard neural oscillators as independent clock sources on LSIs; i. e., clock sources are distributed on LSIs, and they are forced to synchronize through the use of random noises. We designed neuron-based clock generators operating at sub-RF region (<1GHz) by modifying the original neuron model to a new model that is suitable for CMOS implementation with 0.25-μm CMOS parameters. Through circuit simulations, we demonstrate that i) the clock generators are certainly synchronized by pseudo-random noises and ii) clock generators exhibited phase-locked oscillations even if they had small device mismatches.

  20. Near-toll quality digital speech transmission in the mobile satellite service

    NASA Technical Reports Server (NTRS)

    Townes, S. A.; Divsalar, D.

    1986-01-01

    This paper discusses system considerations for near-toll quality digital speech transmission in a 5 kHz mobile satellite system channel. Tradeoffs are shown for power performance versus delay for a 4800 bps speech compression system in conjunction with a 16 state rate 2/3 trellis coded 8PSK modulation system. The suggested system has an additional 150 ms of delay beyond the propagation delay and requires an E(b)/N(0) of about 7 dB for a Ricean channel assumption with line-of-sight to diffuse component ratio of 10 assuming ideal synchronization. An additional loss of 2 to 3 dB is expected for synchronization in fading environment.

  1. Survey of timing/synchronization of operating wideband digital communications networks

    NASA Technical Reports Server (NTRS)

    Mitchell, R. L.

    1978-01-01

    In order to benefit from experience gained from the synchronization of operational wideband digital networks, a survey was made of three such systems: Data Transmission Company, Western Union Telegraph Company, and the Computer Communications Group of the Trans-Canada Telephone System. The focus of the survey was on deployment and operational experience from a practical (as opposed to theoretical) viewpoint. The objective was to provide a report on the results of deployment how the systems performed, and wherein the performance differed from that predicted or intended in the design. It also attempted to determine how the various system designers would use the benefit of hindsight if they could design those same systems today.

  2. Enhancing Soundtracks From Old Movies

    NASA Technical Reports Server (NTRS)

    Frazer, Robert E.

    1992-01-01

    Proposed system enhances soundtracks of old movies. Signal on optical soundtrack of film digitized and processed to reduce noise and improve quality; timing signals added, and signal recorded on compact disk. Digital comparator and voltage-controlled oscillator synchronizes speed of film-drive motor and compact disk motor. Frame-coded detector reads binary frame-identifying marks on film. Digital comparator generates error signal if marks on film do not match those on compact disk.

  3. Motor run-up system. [power lines

    NASA Technical Reports Server (NTRS)

    Daeges, J. J. (Inventor)

    1975-01-01

    A starting system is described for bringing a large synchronous motor up to speed to prevent large power line disturbances at the moment the motor is connected to the power line. The system includes (1) a digital counter which generates a count determined by the difference in frequency between the power line and a small current generated by the synchronous motor; (2) a latch which stores the count; and (3) a comparator which compares the stored count with a newly generated count to determine whether the synchronous motor is accelerating or decelerating. Signals generated by the counter and comparator control the current to a clutch that couples a starting motor to the large synchronous motor.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Stephen F; Moore, James A

    Systems and methods are described for carrier phase synchronization for improved AM and TV broadcast reception. A method includes synchronizing the phase of a carrier frequency of a broadcast signal with the phase of a remote reference frequency. An apparatus includes a receiver to detect the phase of a reference signal; a phase comparator coupled to the reference signal-phase receiver; a voltage controlled oscillator coupled to the phase comparator; and a phase-controlled radio frequency output coupled to the voltage controlled oscillator.

  5. Synchronization of generalized reaction-diffusion neural networks with time-varying delays based on general integral inequalities and sampled-data control approach.

    PubMed

    Dharani, S; Rakkiyappan, R; Cao, Jinde; Alsaedi, Ahmed

    2017-08-01

    This paper explores the problem of synchronization of a class of generalized reaction-diffusion neural networks with mixed time-varying delays. The mixed time-varying delays under consideration comprise of both discrete and distributed delays. Due to the development and merits of digital controllers, sampled-data control is a natural choice to establish synchronization in continuous-time systems. Using a newly introduced integral inequality, less conservative synchronization criteria that assure the global asymptotic synchronization of the considered generalized reaction-diffusion neural network and mixed delays are established in terms of linear matrix inequalities (LMIs). The obtained easy-to-test LMI-based synchronization criteria depends on the delay bounds in addition to the reaction-diffusion terms, which is more practicable. Upon solving these LMIs by using Matlab LMI control toolbox, a desired sampled-data controller gain can be acuqired without any difficulty. Finally, numerical examples are exploited to express the validity of the derived LMI-based synchronization criteria.

  6. Multichannel Phase and Power Detector

    NASA Technical Reports Server (NTRS)

    Li, Samuel; Lux, James; McMaster, Robert; Boas, Amy

    2006-01-01

    An electronic signal-processing system determines the phases of input signals arriving in multiple channels, relative to the phase of a reference signal with which the input signals are known to be coherent in both phase and frequency. The system also gives an estimate of the power levels of the input signals. A prototype of the system has four input channels that handle signals at a frequency of 9.5 MHz, but the basic principles of design and operation are extensible to other signal frequencies and greater numbers of channels. The prototype system consists mostly of three parts: An analog-to-digital-converter (ADC) board, which coherently digitizes the input signals in synchronism with the reference signal and performs some simple processing; A digital signal processor (DSP) in the form of a field-programmable gate array (FPGA) board, which performs most of the phase- and power-measurement computations on the digital samples generated by the ADC board; and A carrier board, which allows a personal computer to retrieve the phase and power data. The DSP contains four independent phase-only tracking loops, each of which tracks the phase of one of the preprocessed input signals relative to that of the reference signal (see figure). The phase values computed by these loops are averaged over intervals, the length of which is chosen to obtain output from the DSP at a desired rate. In addition, a simple sum of squares is computed for each channel as an estimate of the power of the signal in that channel. The relative phases and the power level estimates computed by the DSP could be used for diverse purposes in different settings. For example, if the input signals come from different elements of a phased-array antenna, the phases could be used as indications of the direction of arrival of a received signal and/or as feedback for electronic or mechanical beam steering. The power levels could be used as feedback for automatic gain control in preprocessing of incoming signals. For another example, the system could be used to measure the phases and power levels of outputs of multiple power amplifiers to enable adjustment of the amplifiers for optimal power combining.

  7. A Methodology to Teach Advanced A/D Converters, Combining Digital Signal Processing and Microelectronics Perspectives

    ERIC Educational Resources Information Center

    Quintans, C.; Colmenar, A.; Castro, M.; Moure, M. J.; Mandado, E.

    2010-01-01

    ADCs (analog-to-digital converters), especially Pipeline and Sigma-Delta converters, are designed using complex architectures in order to increase their sampling rate and/or resolution. Consequently, the learning of ADC devices also encompasses complex concepts such as multistage synchronization, latency, oversampling, modulation, noise shaping,…

  8. Learning Tools for Knowledge Nomads: Using Personal Digital Assistants (PDAs) in Web-based Learning Environments.

    ERIC Educational Resources Information Center

    Loh, Christian Sebastian

    2001-01-01

    Examines how mobile computers, or personal digital assistants (PDAs), can be used in a Web-based learning environment. Topics include wireless networks on college campuses; online learning; Web-based learning technologies; synchronous and asynchronous communication via the Web; content resources; Web connections; and collaborative learning. (LRW)

  9. Word-Synchronous Optical Sampling of Periodically Repeated OTDM Data Words for True Waveform Visualization

    NASA Astrophysics Data System (ADS)

    Benkler, Erik; Telle, Harald R.

    2007-06-01

    An improved phase-locked loop (PLL) for versatile synchronization of a sampling pulse train to an optical data stream is presented. It enables optical sampling of the true waveform of repetitive high bit-rate optical time division multiplexed (OTDM) data words such as pseudorandom bit sequences. Visualization of the true waveform can reveal details, which cause systematic bit errors. Such errors cannot be inferred from eye diagrams and require word-synchronous sampling. The programmable direct-digital-synthesis circuit used in our novel PLL approach allows flexible adaption of virtually any problem-specific synchronization scenario, including those required for waveform sampling, for jitter measurements by slope detection, and for classical eye-diagrams. Phase comparison of the PLL is performed at 10-GHz OTDM base clock rate, leading to a residual synchronization jitter of less than 70 fs.

  10. A Precision, Low-Cost GPS-Based Transmitter Synchronization Scheme for Improved AM Reception

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Stephen Fulton; Moore, Anthony

    2009-01-01

    This paper describes a highly accurate carrier-frequency synchronization scheme for actively, automatically locking multiple, remotely located AM broadcast transmitters to a common frequency/timing reference source such as GPS. The extremely tight frequency lock (to {approx}1 part in 10{sup 9} or better) permits the effective elimination of audible and even sub-audible beats between the local (desired) station's carrier signal and the distant stations carriers, usually received via skywave propagation during the evening and nighttime hours. These carrier-beat components cause annoying modulations of the desired station's audio at the receiver and concurrent distortion of the audio modulation from the distant station(s) andmore » often cause listeners to ldquotune outrdquo due to the low reception quality. Significant reduction or elimination of the beats and related effects will greatly enlarge the effective (interference-limited) listening area of the desired station (from 4 to 10 times as indicated in our tests) and simultaneously reduce the corresponding interference of the local transmitter to the distant stations as well. In addition, AM stereo (CQUAM) reception will be particularly improved by minimizing the phase shifts induced by co-channel interfering signals; hybrid digital (HD) signals will also benefit via reduction in beats from analog signals. The automatic frequency-control hardware described is inexpensive ($1000-$2000), requires no periodic recalibration, has essentially zero long-term drift, and could employ alternate wide-area frequency references of suitable accuracy, including broadcasts from WWVB, LORAN-C, and equivalent sources. The basic configuration of the GPS-disciplined oscillator which solves this problem is extremely simple. The main oscillator is a conventional high-stability quartz-crystal type. To counter long- term drifts, the oscillator is slightly adjusted to track a high-precision source of standard frequency obtained from a specialized GPS receiver (or other source), usually at 10.000 MHz. This very stable local reference frequency is then used as a clock for a standard digitally implemented frequency synthesizer, which is programmed to generate the specific carrier frequency desired. The stability of the disciplining source, typically {approx}1 part in 10{sup 9} to 10{sup 11}, is thus transferred to the final AM transmitter carrier output frequency.« less

  11. Digital receiver study and implementation

    NASA Technical Reports Server (NTRS)

    Fogle, D. A.; Lee, G. M.; Massey, J. C.

    1972-01-01

    Computer software was developed which makes it possible to use any general purpose computer with A/D conversion capability as a PSK receiver for low data rate telemetry processing. Carrier tracking, bit synchronization, and matched filter detection are all performed digitally. To aid in the implementation of optimum computer processors, a study of general digital processing techniques was performed which emphasized various techniques for digitizing general analog systems. In particular, the phase-locked loop was extensively analyzed as a typical non-linear communication element. Bayesian estimation techniques for PSK demodulation were studied. A hardware implementation of the digital Costas loop was developed.

  12. Precision electronic speed controller for an alternating-current motor

    DOEpatents

    Bolie, V.W.

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. The motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The speed error signal is generated by a novel vernier-logic circuit which is drift-free and highly sensitive to small speed changes. The phase error is also computed by digital logic, with adjustable sensitivity around a 0 mid-scale value. The drift error signal, generated by long-term counting of the phase error, is used to compensate for any slow changes in the average friction drag on the motor. An auxillary drift-byte status sensor prevents any disruptive overflow or underflow of the drift-error counter. An adjustable clocked-delay unit is inserted between the controller and the source of the reference pulse train to permit phase alignment of the rotor to any desired offset angle. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of read-only memories, and a pair of digital-to-analog converters.

  13. Dynamical noise filter and conditional entropy analysis in chaos synchronization.

    PubMed

    Wang, Jiao; Lai, C-H

    2006-06-01

    It is shown that, in a chaotic synchronization system whose driving signal is exposed to channel noise, the estimation of the drive system states can be greatly improved by applying the dynamical noise filtering to the response system states. If the noise is bounded in a certain range, the estimation errors, i.e., the difference between the filtered responding states and the driving states, can be made arbitrarily small. This property can be used in designing an alternative digital communication scheme. An analysis based on the conditional entropy justifies the application of dynamical noise filtering in generating quality synchronization.

  14. Landsat thematic mapper attitude data processing

    NASA Technical Reports Server (NTRS)

    Sehn, G. J.; Miller, S. F.

    1984-01-01

    The Landsat 4 and 5 satellites carry a new, high resolution, seven band thematic mapper imaging instrument. The spacecraft also carry two types of attitude sensors: a gyroscopic internal reference unit (IRU) which senses angular rate from dc to about 2 Hz, and an AC-coupled angular displacement sensor (ADS) measuring angular deviation above 2 Hz. A description of the derivation of the crossover network used to combine and equalize the IRU and ADS data is made. Also described are the digital data processing algorithms which produce the time history of the satellites' attitude motion including the finite impulse response (FIR) implementation of G and F filters; the resampling (interpolation/decimation) and synchronization of the IRU and ADS data; and the axis rotations required as a result of the on-board sensor locations on three orthogonal axes.

  15. Current Trend Towards Using Soft Computing Approaches to Phase Synchronization in Communication Systems

    NASA Technical Reports Server (NTRS)

    Drake, Jeffrey T.; Prasad, Nadipuram R.

    1999-01-01

    This paper surveys recent advances in communications that utilize soft computing approaches to phase synchronization. Soft computing, as opposed to hard computing, is a collection of complementary methodologies that act in producing the most desirable control, decision, or estimation strategies. Recently, the communications area has explored the use of the principal constituents of soft computing, namely, fuzzy logic, neural networks, and genetic algorithms, for modeling, control, and most recently for the estimation of phase in phase-coherent communications. If the receiver in a digital communications system is phase-coherent, as is often the case, phase synchronization is required. Synchronization thus requires estimation and/or control at the receiver of an unknown or random phase offset.

  16. Synchronization and information processing by an on-off coupling

    NASA Astrophysics Data System (ADS)

    Wei, G. W.; Zhao, Shan

    2002-05-01

    This paper proposes an on-off coupling process for chaos synchronization and information processing. An in depth analysis for the net effect of a conventional coupling is performed. The stability of the process is studied. We show that the proposed controlled coupling process can locally minimize the smoothness and the fidelity of dynamical data. A digital filter expression for the on-off coupling process is derived and a connection is made to the Hanning filter. The utility and robustness of the proposed approach is demonstrated by chaos synchronization in Duffing oscillators, the spatiotemporal synchronization of noisy nonlinear oscillators, the estimation of the trend of a time series, and restoration of the contaminated solution of the nonlinear Schrödinger equation.

  17. Digital data detection and synchronization

    NASA Technical Reports Server (NTRS)

    Noack, T. L.; Morris, J. F.

    1973-01-01

    The primary accomplishments have been in the analysis and simulation of receivers and bit synchronizers. It has been discovered that tracking rate effects play, a rather fundamental role in both receiver and synchronizer performance, but that data relating to recorder time-base-error, for the proper characterization of this phenomenon, is in rather short supply. It is possible to obtain operationally useful tape recorder time-base-error data from high signal-to-noise ratio tapes using synchronizers with relatively wideband tracking loops. Low signal-to-noise ratio tapes examined in the same way would not be synchronizable. Additional areas of interest covered are receiver false lock, cycle slipping, and other unusual phenomena, which have been described to some extent in this and earlier reports and simulated during the study.

  18. Random digital encryption secure communication system

    NASA Technical Reports Server (NTRS)

    Doland, G. D. (Inventor)

    1982-01-01

    The design of a secure communication system is described. A product code, formed from two pseudorandom sequences of digital bits, is used to encipher or scramble data prior to transmission. The two pseudorandom sequences are periodically changed at intervals before they have had time to repeat. One of the two sequences is transmitted continuously with the scrambled data for synchronization. In the receiver portion of the system, the incoming signal is compared with one of two locally generated pseudorandom sequences until correspondence between the sequences is obtained. At this time, the two locally generated sequences are formed into a product code which deciphers the data from the incoming signal. Provision is made to ensure synchronization of the transmitting and receiving portions of the system.

  19. Thomson Scattering Diagnostic Data Acquisition Systems for Modern Fusion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanenko, S.V.; Khilchenko, A.D.; Ovchar, V.K.

    2015-07-01

    Uniquely designed complex data acquisition system for Thomson scattering diagnostic was developed. It allows recording short duration (3-5 ns) scattered pulses with 2 GHz sampling rate and 10-bit total resolution in oscilloscope mode. The system consists up to 48 photo detector modules with 0- 200 MHz bandwidth, 1-48 simultaneously sampling ADC modules and synchronization subsystem. The photo detector modules are based on avalanche photodiodes (APD) and ultra-low noise trans-impedance amplifiers. ADC modules include fast analog to digital converters and digital units based on the FPGA (Field- Programmable Gate Array) for data processing and storage. The synchronization subsystem is used tomore » form triggering pulses and to organize the simultaneously mode of ADC modules operation. (authors)« less

  20. Inter-comb synchronization by mode-to-mode locking

    NASA Astrophysics Data System (ADS)

    Chun, Byung Jae; Kim, Young-Jin; Kim, Seung-Woo

    2016-08-01

    Two combs of fiber femtosecond lasers are synchronized through the optical frequency reference created by injection-locking of a diode laser to a single comb mode. Maintaining a mHz-level narrow linewidth, the optical frequency reference permits two combs to be stabilized by mode-to-mode locking with a relative stability of 1.52  ×  10-16 at 10 s with a frequency slip of 2.46 mHz. This inter-comb synchronization can be utilized for applications such as dual-comb spectroscopy or ultra-short pulse synthesis without extra narrow-linewidth lasers.

  1. Adaptive Digital Signature Design and Short-Data-Record Adaptive Filtering

    DTIC Science & Technology

    2008-04-01

    rate BPSK binary phase shift keying CA − CFAR cell averaging− constant false alarm rate CDMA code − division multiple − access CFAR constant false...Cotae, “Spreading sequence design for multiple cell synchronous DS-CDMA systems under total weighted squared correlation criterion,” EURASIP Journal...415-428, Mar. 2002. [6] P. Cotae, “Spreading sequence design for multiple cell synchronous DS-CDMA systems under total weighted squared correlation

  2. E-Books and Audiobooks: Extending the Digital Reading Experience

    ERIC Educational Resources Information Center

    Larson, Lotta C.

    2015-01-01

    This article examines how sixth-grade students navigated and perceived a combined e-book and audiobook reading experience using Kindle Fires. While audiobooks and e-books are not new, little is known about students' use and perceptions of the combination of these two media, as the ability to synchronize audio contents with digital texts is rather…

  3. Throughput analysis of the IEEE 802.4 token bus standard under heavy load

    NASA Technical Reports Server (NTRS)

    Pang, Joseph; Tobagi, Fouad

    1987-01-01

    It has become clear in the last few years that there is a trend towards integrated digital services. Parallel to the development of public Integrated Services Digital Network (ISDN) is service integration in the local area (e.g., a campus, a building, an aircraft). The types of services to be integrated depend very much on the specific local environment. However, applications tend to generate data traffic belonging to one of two classes. According to IEEE 802.4 terminology, the first major class of traffic is termed synchronous, such as packetized voice and data generated from other applications with real-time constraints, and the second class is called asynchronous which includes most computer data traffic such as file transfer or facsimile. The IEEE 802.4 token bus protocol which was designed to support both synchronous and asynchronous traffic is examined. The protocol is basically a timer-controlled token bus access scheme. By a suitable choice of the design parameters, it can be shown that access delay is bounded for synchronous traffic. As well, the bandwidth allocated to asynchronous traffic can be controlled. A throughput analysis of the protocol under heavy load with constant channel occupation of synchronous traffic and constant token-passing times is presented.

  4. AN/TAC-1 demultiplexer circuit card assembly

    NASA Astrophysics Data System (ADS)

    Krueger, Paul J.

    1989-01-01

    This report describes the design, operation, and testing of the AN/TAC-1 demultiplexer subassembly. It demultiplexes the 6144 kb/s digital data stream received over fiber optic cable or tropo satellite support radio, and converts it into 2 digital groups and 16 digital channels. Timing recovery is accomplished by generating a 18432 kHz master clock synchronized to the incoming data. This master clock is divided modulo two to generate the proper group and loop timing.

  5. High-definition video display based on the FPGA and THS8200

    NASA Astrophysics Data System (ADS)

    Qian, Jia; Sui, Xiubao

    2014-11-01

    This paper presents a high-definition video display solution based on the FPGA and THS8200. THS8200 is a video decoder chip launched by TI company, this chip has three 10-bit DAC channels which can capture video data in both 4:2:2 and 4:4:4 formats, and its data synchronization can be either through the dedicated synchronization signals HSYNC and VSYNC, or extracted from the embedded video stream synchronization information SAV / EAV code. In this paper, we will utilize the address and control signals generated by FPGA to access to the data-storage array, and then the FPGA generates the corresponding digital video signals YCbCr. These signals combined with the synchronization signals HSYNC and VSYNC that are also generated by the FPGA act as the input signals of THS8200. In order to meet the bandwidth requirements of the high-definition TV, we adopt video input in the 4:2:2 format over 2×10-bit interface. THS8200 is needed to be controlled by FPGA with I2C bus to set the internal registers, and as a result, it can generate the synchronous signal that is satisfied with the standard SMPTE and transfer the digital video signals YCbCr into analog video signals YPbPr. Hence, the composite analog output signals YPbPr are consist of image data signal and synchronous signal which are superimposed together inside the chip THS8200. The experimental research indicates that the method presented in this paper is a viable solution for high-definition video display, which conforms to the input requirements of the new high-definition display devices.

  6. The synchronous orbit magnetic field data set

    NASA Technical Reports Server (NTRS)

    Mcpherron, R. L.

    1979-01-01

    The magnetic field at synchronous orbit is the result of superposition of fields from many sources such as the earth, the magnetopause, the geomagnetic tail, the ring current and field-aligned currents. In addition, seasonal changes in the orientation of the earth's dipole axis causes significant changes in each of the external sources. Main reasons for which the synchronous orbit magnetic field data set is a potentially valuable resource are outlined. The primary reason why synchronous magnetic field data have not been used more extensively in magnetic field modeling is the presence of absolute errors in the measured fields. Nevertheless, there exists a reasonably large collection of synchronous orbit magnetic field data. Some of these data can be useful in quantitative modeling of the earth's magnetic field. A brief description is given of the spacecraft, the magnetometers, the standard graphical data displays, and the digital data files.

  7. Digitized detection of gamma-ray signals concentrated in narrow time windows for transient positron annihilation lifetime spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinomura, A., E-mail: a.kinomura@aist.go.jp; Suzuki, R.; Oshima, N.

    2014-12-15

    A pulsed slow-positron beam generated by an electron linear accelerator was directly used for positron annihilation lifetime spectroscopy without any positron storage devices. A waveform digitizer was introduced to simultaneously capture multiple gamma-ray signals originating from positron annihilation events during a single accelerator pulse. The positron pulse was chopped and bunched with the chopper signals also sent to the waveform digitizer. Time differences between the annihilation gamma-ray and chopper peaks were calculated and accumulated as lifetime spectra in a computer. The developed technique indicated that positron annihilation lifetime spectroscopy can be performed in a 20 μs time window at amore » pulse repetition rate synchronous with the linear accelerator. Lifetime spectra of a Kapton sheet and a thermally grown SiO{sub 2} layer on Si were successfully measured. Synchronization of positron lifetime measurements with pulsed ion irradiation was demonstrated by this technique.« less

  8. Optimal space communications techniques. [all digital phase locked loop for FM demodulation

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1973-01-01

    The design, development, and analysis are reported of a digital phase-locked loop (DPLL) for FM demodulation and threshold extension. One of the features of the developed DPLL is its synchronous, real time operation. The sampling frequency is constant and all the required arithmetic and logic operations are performed within one sampling period, generating an output sequence which is converted to analog form and filtered. An equation relating the sampling frequency to the carrier frequency must be satisfied to guarantee proper DPLL operation. The synchronous operation enables a time-shared operation of one DPLL to demodulate several FM signals simultaneously. In order to obtain information about the DPLL performance at low input signal-to-noise ratios, a model of an input noise spike was introduced, and the DPLL equation was solved using a digital computer. The spike model was successful in finding a second order DPLL which yielded a five db threshold extension beyond that of a first order DPLL.

  9. Synchronization error estimation and controller design for delayed Lur'e systems with parameter mismatches.

    PubMed

    He, Wangli; Qian, Feng; Han, Qing-Long; Cao, Jinde

    2012-10-01

    This paper investigates the problem of master-slave synchronization of two delayed Lur'e systems in the presence of parameter mismatches. First, by analyzing the corresponding synchronization error system, synchronization with an error level, which is referred to as quasi-synchronization, is established. Some delay-dependent quasi-synchronization criteria are derived. An estimation of the synchronization error bound is given, and an explicit expression of error levels is obtained. Second, sufficient conditions on the existence of feedback controllers under a predetermined error level are provided. The controller gains are obtained by solving a set of linear matrix inequalities. Finally, a delayed Chua's circuit is chosen to illustrate the effectiveness of the derived results.

  10. An autonomous receiver/digital signal processor applied to ground-based and rocket-borne wave experiments

    NASA Astrophysics Data System (ADS)

    Dombrowski, M. P.; LaBelle, J.; McGaw, D. G.; Broughton, M. C.

    2016-07-01

    The programmable combined receiver/digital signal processor platform presented in this article is designed for digital downsampling and processing of general waveform inputs with a 66 MHz initial sampling rate and multi-input synchronized sampling. Systems based on this platform are capable of fully autonomous low-power operation, can be programmed to preprocess and filter the data for preselection and reduction, and may output to a diverse array of transmission or telemetry media. We describe three versions of this system, one for deployment on sounding rockets and two for ground-based applications. The rocket system was flown on the Correlation of High-Frequency and Auroral Roar Measurements (CHARM)-II mission launched from Poker Flat Research Range, Alaska, in 2010. It measured auroral "roar" signals at 2.60 MHz. The ground-based systems have been deployed at Sondrestrom, Greenland, and South Pole Station, Antarctica. The Greenland system synchronously samples signals from three spaced antennas providing direction finding of 0-5 MHz waves. It has successfully measured auroral signals and man-made broadcast signals. The South Pole system synchronously samples signals from two crossed antennas, providing polarization information. It has successfully measured the polarization of auroral kilometric radiation-like signals as well as auroral hiss. Further systems are in development for future rocket missions and for installation in Antarctic Automatic Geophysical Observatories.

  11. Quasi-perfect FIFO: Synchronous or asynchronous with application in controller design for the UNICON laser memory. [digital memory and buffer storage

    NASA Technical Reports Server (NTRS)

    Lim, R. S.

    1974-01-01

    The first-in-first-out memory buffer (FIFO), is an elastic digital memory whose main application is in data buffering between devices operating at different rates. Data written into the top is moved autonomously down toward the bottom of the FIFO to the lowest unoccupied location, and data read from the bottom of the FIFO will cause data from the top to move autonomously down toward the bottom. The FIFO is available in MOS LSI asynchronous form with data rate in the 1 MHz region. The FIFO described yields a simple high-speed iterative implementation, either synchronous of asynchronous. Because of this simple iterative structure, the FIFO is expandable in both number of words and bits per word, and it is attractive from the viewpoint of integrated-circuit production. For the synchronous FIFO, a model was built and successfully used in the controller for the UNICON laser memory. For the asynchronous FIFO, a model was built and also successfully used in a high-performance magnetic tape controller.

  12. Spatiotemporal dynamics of auditory attention synchronize with speech

    PubMed Central

    Wöstmann, Malte; Herrmann, Björn; Maess, Burkhard

    2016-01-01

    Attention plays a fundamental role in selectively processing stimuli in our environment despite distraction. Spatial attention induces increasing and decreasing power of neural alpha oscillations (8–12 Hz) in brain regions ipsilateral and contralateral to the locus of attention, respectively. This study tested whether the hemispheric lateralization of alpha power codes not just the spatial location but also the temporal structure of the stimulus. Participants attended to spoken digits presented to one ear and ignored tightly synchronized distracting digits presented to the other ear. In the magnetoencephalogram, spatial attention induced lateralization of alpha power in parietal, but notably also in auditory cortical regions. This alpha power lateralization was not maintained steadily but fluctuated in synchrony with the speech rate and lagged the time course of low-frequency (1–5 Hz) sensory synchronization. Higher amplitude of alpha power modulation at the speech rate was predictive of a listener’s enhanced performance of stream-specific speech comprehension. Our findings demonstrate that alpha power lateralization is modulated in tune with the sensory input and acts as a spatiotemporal filter controlling the read-out of sensory content. PMID:27001861

  13. Formal Techniques for Synchronized Fault-Tolerant Systems

    NASA Technical Reports Server (NTRS)

    DiVito, Ben L.; Butler, Ricky W.

    1992-01-01

    We present the formal verification of synchronizing aspects of the Reliable Computing Platform (RCP), a fault-tolerant computing system for digital flight control applications. The RCP uses NMR-style redundancy to mask faults and internal majority voting to purge the effects of transient faults. The system design has been formally specified and verified using the EHDM verification system. Our formalization is based on an extended state machine model incorporating snapshots of local processors clocks.

  14. Turning Cyberpower into Idea Power: The Role of Social Media in US Strategic Communications

    DTIC Science & Technology

    2011-06-01

    Stephanie Jung , Chief of Operations Branch, IO Division of USAFRICOM provided extensive notes that provided insight on digital outreach efforts in...Twitter: The Whole Foods Story," 7 ———, "Reaching Millions With Twitter: The Whole Foods Story," 3 synchronization between sender and receiver...Press, 2008), 157. Shirky describes how phone conversations have a higher transaction cost because the sender and the receiver must be synchronized

  15. Application of Soft Computing in Coherent Communications Phase Synchronization

    NASA Technical Reports Server (NTRS)

    Drake, Jeffrey T.; Prasad, Nadipuram R.

    2000-01-01

    The use of soft computing techniques in coherent communications phase synchronization provides an alternative to analytical or hard computing methods. This paper discusses a novel use of Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for phase synchronization in coherent communications systems utilizing Multiple Phase Shift Keying (MPSK) modulation. A brief overview of the M-PSK digital communications bandpass modulation technique is presented and it's requisite need for phase synchronization is discussed. We briefly describe the hybrid platform developed by Jang that incorporates fuzzy/neural structures namely the, Adaptive Neuro-Fuzzy Interference Systems (ANFIS). We then discuss application of ANFIS to phase estimation for M-PSK. The modeling of both explicit, and implicit phase estimation schemes for M-PSK symbols with unknown structure are discussed. Performance results from simulation of the above scheme is presented.

  16. More About the Phase-Synchronized Enhancement Method

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    2004-01-01

    A report presents further details regarding the subject matter of "Phase-Synchronized Enhancement Method for Engine Diagnostics" (MFS-26435), NASA Tech Briefs, Vol. 22, No. 1 (January 1998), page 54. To recapitulate: The phase-synchronized enhancement method (PSEM) involves the digital resampling of a quasi-periodic signal in synchronism with the instantaneous phase of one of its spectral components. This resampling transforms the quasi-periodic signal into a periodic one more amenable to analysis. It is particularly useful for diagnosis of a rotating machine through analysis of vibration spectra that include components at the fundamental and harmonics of a slightly fluctuating rotation frequency. The report discusses the machinery-signal-analysis problem, outlines the PSEM algorithms, presents the mathematical basis of the PSEM, and presents examples of application of the PSEM in some computational simulations.

  17. Analysis of synchronous digital-modulation schemes for satellite communication

    NASA Technical Reports Server (NTRS)

    Takhar, G. S.; Gupta, S. C.

    1975-01-01

    The multipath communication channel for space communications is modeled as a multiplicative channel. This paper discusses the effects of multiplicative channel processes on the symbol error rate for quadrature modulation (QM) digital modulation schemes. An expression for the upper bound on the probability of error is derived and numerically evaluated. The results are compared with those obtained for additive channels.

  18. EEG Alpha Synchronization Is Related to Top-Down Processing in Convergent and Divergent Thinking

    ERIC Educational Resources Information Center

    Benedek, Mathias; Bergner, Sabine; Konen, Tanja; Fink, Andreas; Neubauer, Aljoscha C.

    2011-01-01

    Synchronization of EEG alpha activity has been referred to as being indicative of cortical idling, but according to more recent evidence it has also been associated with active internal processing and creative thinking. The main objective of this study was to investigate to what extent EEG alpha synchronization is related to internal processing…

  19. Design of digital load torque observer in hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Sun, Yukun; Zhang, Haoming; Wang, Yinghai

    2008-12-01

    In hybrid electric vehicle, engine begain to work only when motor was in high speed in order to decrease tail gas emission. However, permanent magnet motor was sensitive to its load, adding engine to the system always made its speed drop sharply, which caused engine to work in low efficiency again and produced much more environment pollution. Dynamic load torque model of permanent magnet synchronous motor is established on the basic of motor mechanical equation and permanent magnet synchronous motor vector control theory, Full- digital load torque observer and compensation control system is made based on TMS320F2407A. Experiment results prove load torque observer and compensation control system can detect and compensate torque disturbing effectively, which can solve load torque disturbing and decrease gas pollution of hybrid electric vehicle.

  20. A tone-aided dual vestigial sideband system for digital communications on fading channels

    NASA Technical Reports Server (NTRS)

    Hladik, Stephen M.; Saulnier, Gary J.; Rafferty, William

    1989-01-01

    A spectrally efficient tone-aided dual vestigial sideband (TA/DVSB) system for digital data communications on fading channels is presented and described analytically. This PSK (phase-shift-keying) system incorporates a feed-forward, tone-aided demodulation technique to compensate for Doppler frequency shift and channel- induced, multipath fading. In contrast to other tone-in-band-type systems, receiver synchronization is derived from the complete data VSBs. Simulation results for the Rician fading channel are presented. These results demonstrate the receiver's ability to mitigate performance degradation due to fading and to obtain proper data carrier synchronization, suggesting that the proposed TA/DVSB system has promise for this application. Simulated BER (bit-error rate) data indicate that the TA/DVSB system effectively alleviates the channel distortions of the land mobile satellite application.

  1. Techtalk: Synchronous Distance Developmental Education.

    ERIC Educational Resources Information Center

    MacDonald, Lucy; Caverly, David C.

    2000-01-01

    Discusses the third generation (G3) model of online education named synchronous online education. Reviews terminology, hardware, different stages of G3, software, and implications of G3 for the future. Contains 15 references. (VWC)

  2. Development of sub-100 femtosecond timing and synchronization system

    NASA Astrophysics Data System (ADS)

    Lin, Zhenyang; Du, Yingchao; Yang, Jin; Xu, Yilun; Yan, Lixin; Huang, Wenhui; Tang, Chuanxiang; Huang, Gang; Du, Qiang; Doolittle, Lawrence; Wilcox, Russell; Byrd, John

    2018-01-01

    The precise timing and synchronization system is an essential part for the ultra-fast electron and X-ray sources based on the photocathode injector where strict synchronization among RF, laser, and beams are required. In this paper, we present an integrated sub-100 femtosecond timing and synchronization system developed and demonstrated recently in Tsinghua University based on the collaboration with Lawrence Berkeley National Lab. The timing and synchronization system includes the fiber-based CW carrier phase reference distribution system for delivering stabilized RF phase reference to multiple receiver clients, the Low Level RF (LLRF) control system to monitor and generate the phase and amplitude controllable pulse RF signal, and the laser-RF synchronization system for high precision synchronization between optical and RF signals. Each subsystem is characterized by its blocking structure and is also expansible. A novel asymmetric calibration sideband signal method was proposed for eliminating the non-linear distortion in the optical synchronization process. According to offline and online tests, the system can deliver a stable signal to each client and suppress the drift and jitter of the RF signal for the accelerator and the laser oscillator to less than 100 fs RMS (˜0.1° in 2856 MHz frequency). Moreover, a demo system with a LLRF client and a laser-RF synchronization client is deployed and operated successfully at the Tsinghua Thomson scattering X-ray source. The beam-based jitter measurement experiments have been conducted to evaluate the overall performance of the system, and the jitter sources are discussed.

  3. Development of sub-100 femtosecond timing and synchronization system.

    PubMed

    Lin, Zhenyang; Du, Yingchao; Yang, Jin; Xu, Yilun; Yan, Lixin; Huang, Wenhui; Tang, Chuanxiang; Huang, Gang; Du, Qiang; Doolittle, Lawrence; Wilcox, Russell; Byrd, John

    2018-01-01

    The precise timing and synchronization system is an essential part for the ultra-fast electron and X-ray sources based on the photocathode injector where strict synchronization among RF, laser, and beams are required. In this paper, we present an integrated sub-100 femtosecond timing and synchronization system developed and demonstrated recently in Tsinghua University based on the collaboration with Lawrence Berkeley National Lab. The timing and synchronization system includes the fiber-based CW carrier phase reference distribution system for delivering stabilized RF phase reference to multiple receiver clients, the Low Level RF (LLRF) control system to monitor and generate the phase and amplitude controllable pulse RF signal, and the laser-RF synchronization system for high precision synchronization between optical and RF signals. Each subsystem is characterized by its blocking structure and is also expansible. A novel asymmetric calibration sideband signal method was proposed for eliminating the non-linear distortion in the optical synchronization process. According to offline and online tests, the system can deliver a stable signal to each client and suppress the drift and jitter of the RF signal for the accelerator and the laser oscillator to less than 100 fs RMS (∼0.1° in 2856 MHz frequency). Moreover, a demo system with a LLRF client and a laser-RF synchronization client is deployed and operated successfully at the Tsinghua Thomson scattering X-ray source. The beam-based jitter measurement experiments have been conducted to evaluate the overall performance of the system, and the jitter sources are discussed.

  4. ML Frame Synchronization for OFDM Systems Using a Known Pilot and Cyclic Prefixes

    NASA Astrophysics Data System (ADS)

    Huh, Heon

    Orthogonal frequency-division multiplexing (OFDM) is a popular air interface technology that is adopted as a standard modulation scheme for 4G communication systems owing to its excellent spectral efficiency. For OFDM systems, synchronization problems have received much attention along with peak-to-average power ratio (PAPR) reduction. In addition to frequency offset estimation, frame synchronization is a challenging problem that must be solved to achieve optimal system performance. In this paper, we present a maximum likelihood (ML) frame synchronizer for OFDM systems. The synchronizer exploits a synchronization word and cyclic prefixes together to improve the synchronization performance. Numerical results show that the performance of the proposed frame synchronizer is better than that of conventional schemes. The proposed synchronizer can be used as a reference for evaluating the performance of other suboptimal frame synchronizers. We also modify the proposed frame synchronizer to reduce the implementation complexity and propose a near-ML synchronizer for time-varying fading channels.

  5. Calibration methods and tools for KM3NeT

    NASA Astrophysics Data System (ADS)

    Kulikovskiy, Vladimir

    2016-04-01

    The KM3NeT detectors, ARCA and ORCA, composed of several thousands digital optical modules, are in the process of their realization in the Mediterranean Sea. Each optical module contains 31 3-inch photomultipliers. Readout of the optical modules and other detector components is synchronized at the level of sub-nanoseconds. The position of the module is measured by acoustic piezo detectors inside the module and external acoustic emitters installed on the bottom of the sea. The orientation of the module is obtained with an internal attitude and heading reference system chip. Detector calibration, i.e. timing, positioning and sea-water properties, is overviewed in this talk and discussed in detail in this conference. Results of the procedure applied to the first detector unit ready for installation in the deep sea will be shown.

  6. Free space optics: a viable last-mile alternative

    NASA Astrophysics Data System (ADS)

    Willebrand, Heinz A.; Clark, Gerald R.

    2001-10-01

    This paper explores Free Space Optics (FSO) as an access technology in the last mile of metropolitan area networks (MANs). These networks are based in part on fiber-optic telecommunications infrastructure, including network architectures of Synchronous Optical Network (commonly referred to as SONET), the North American standard for synchronous data transmission; and Synchronous Digital Hierarchy (commonly referred to as SDH), the international standard and equivalent of SONET. Several converging forces have moved FSO beyond a niche technology for use only in local area networks (LANs) as a bridge connecting two facilities. FSO now allows service providers to cost effectively provide optical bandwidth for access networks and accelerate the extension of metro optical networks bridging what has been termed by industry experts as the optical dead zone. The optical dead zone refers to both the slowdown in capital investment in the short-term future and the actual connectivity gap that exists today between core metro optical networks and the access optical networks. Service providers have built extensive core and minimal metro networks but have not yet provided optical bandwidth to the access market largely due to the non-compelling economics to bridge the dead zone with fiber. Historically, such infrastructure build-out slowdowns have been blamed on a combination of economics, time-to-market constraints and limited technology options. However, new technology developments and market acceptance of FSO give service providers a new cost-effective alternative to provide high-bandwidth services with optical bandwidth in the access networks. Merrill Lynch predicts FSO will grow into a $2 billion market by 2005. The drivers for this market are a mere 5%- 6% penetration of fiber to business buildings; cost effective solution versus RF or fiber; and significant capacity which can only be matched by a physical fiber link, Merrill Lynch reports. This paper will describe FSO technology, its capabilities and its limitations. The paper will investigate how FSO technology has evolved to its current stage for deployment in MANs, LANs, wireless backhaul and metropolitan network extensions - applications that fall within the category of last mile. The paper will address the market, drivers and the adoption of FSO, plus provide a projection of future FSO technology, based on today's product roadmaps. The paper concludes with a summary of findings and recommendations.

  7. Multiple Time Series Node Synchronization Utilizing Ambient Reference

    DTIC Science & Technology

    2014-12-31

    assessment, is the need for fine scale synchronization among communicating nodes and across multiple domains. The severe requirements that Special...processing targeted to performance assessment, is the need for fine scale synchronization among communicating nodes and across multiple domains. The...research community and it is well documented and characterized. The datasets considered from this project (listed below) were used to derive the

  8. Non-Synchronous Vibration of Turbomachinery Airfoils

    DTIC Science & Technology

    2006-03-01

    study and prevention of non-synchronous vibrations. Non-synchronous vibrations in turbine engine blades are the result of the interaction of an...was a modern fan vane blade known as the H2 case. This blade encountered NSV in experimental rig testing. An analysis was performed with TURBO ...design stage for flow over turbine engine blades . REFERENCES Anagnostopoulos, P., ed. Flow-Induced Vibrations in Engineering

  9. Accelerating a MPEG-4 video decoder through custom software/hardware co-design

    NASA Astrophysics Data System (ADS)

    Díaz, Jorge L.; Barreto, Dacil; García, Luz; Marrero, Gustavo; Carballo, Pedro P.; Núñez, Antonio

    2007-05-01

    In this paper we present a novel methodology to accelerate an MPEG-4 video decoder using software/hardware co-design for wireless DAB/DMB networks. Software support includes the services provided by the embedded kernel μC/OS-II, and the application tasks mapped to software. Hardware support includes several custom co-processors and a communication architecture with bridges to the main system bus and with a dual port SRAM. Synchronization among tasks is achieved at two levels, by a hardware protocol and by kernel level scheduling services. Our reference application is an MPEG-4 video decoder composed of several software functions and written using a special C++ library named CASSE. Profiling and space exploration techniques were used previously over the Advanced Simple Profile (ASP) MPEG-4 decoder to determinate the best HW/SW partition developed here. This research is part of the ARTEMI project and its main goal is the establishment of methodologies for the design of real-time complex digital systems using Programmable Logic Devices with embedded microprocessors as target technology and the design of multimedia systems for broadcasting networks as reference application.

  10. A Comparative Study of Average, Linked Mastoid, and REST References for ERP Components Acquired during fMRI

    PubMed Central

    Yang, Ping; Fan, Chenggui; Wang, Min; Li, Ling

    2017-01-01

    In simultaneous electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) studies, average reference (AR), and digitally linked mastoid (LM) are popular re-referencing techniques in event-related potential (ERP) analyses. However, they may introduce their own physiological signals and alter the EEG/ERP outcome. A reference electrode standardization technique (REST) that calculated a reference point at infinity was proposed to solve this problem. To confirm the advantage of REST in ERP analyses of synchronous EEG-fMRI studies, we compared the reference effect of AR, LM, and REST on task-related ERP results of a working memory task during an fMRI scan. As we hypothesized, we found that the adopted reference did not change the topography map of ERP components (N1 and P300 in the present study), but it did alter the task-related effect on ERP components. LM decreased or eliminated the visual working memory (VWM) load effect on P300, and the AR distorted the distribution of VWM location-related effect at left posterior electrodes as shown in the statistical parametric scalp mapping (SPSM) of N1. ERP cortical source estimates, which are independent of the EEG reference choice, were used as the golden standard to infer the relative utility of different references on the ERP task-related effect. By comparison, REST reference provided a more integrated and reasonable result. These results were further confirmed by the results of fMRI activations and a corresponding EEG-only study. Thus, we recommend the REST, especially with a realistic head model, as the optimal reference method for ERP data analysis in simultaneous EEG-fMRI studies. PMID:28529472

  11. A Comparative Study of Average, Linked Mastoid, and REST References for ERP Components Acquired during fMRI.

    PubMed

    Yang, Ping; Fan, Chenggui; Wang, Min; Li, Ling

    2017-01-01

    In simultaneous electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) studies, average reference (AR), and digitally linked mastoid (LM) are popular re-referencing techniques in event-related potential (ERP) analyses. However, they may introduce their own physiological signals and alter the EEG/ERP outcome. A reference electrode standardization technique (REST) that calculated a reference point at infinity was proposed to solve this problem. To confirm the advantage of REST in ERP analyses of synchronous EEG-fMRI studies, we compared the reference effect of AR, LM, and REST on task-related ERP results of a working memory task during an fMRI scan. As we hypothesized, we found that the adopted reference did not change the topography map of ERP components (N1 and P300 in the present study), but it did alter the task-related effect on ERP components. LM decreased or eliminated the visual working memory (VWM) load effect on P300, and the AR distorted the distribution of VWM location-related effect at left posterior electrodes as shown in the statistical parametric scalp mapping (SPSM) of N1. ERP cortical source estimates, which are independent of the EEG reference choice, were used as the golden standard to infer the relative utility of different references on the ERP task-related effect. By comparison, REST reference provided a more integrated and reasonable result. These results were further confirmed by the results of fMRI activations and a corresponding EEG-only study. Thus, we recommend the REST, especially with a realistic head model, as the optimal reference method for ERP data analysis in simultaneous EEG-fMRI studies.

  12. Clock jitter generator with picoseconds resolution

    NASA Astrophysics Data System (ADS)

    Jovanović, Goran; Stojčev, Mile; Nikolić, Tatjana

    2013-06-01

    The clock is one of the most critical signals in any synchronous system. As CMOS technology has scaled, supply voltages have dropped chip power consumption has increased and the effects of jitter due to clock frequency increase have become critical and jitter budget has become tighter. This article describes design and development of low-cost mixed-signal programmable jitter generator with high resolution. The digital technique is used for coarse-grain and an analogue technique for fine-grain clock phase shifting. Its structure allows injection of various random and deterministic jitter components in a controllable and programmable fashion. Each jitter component can be switched on or off. The jitter generator can be used in jitter tolerance test and jitter transfer function measurement of high-speed synchronous digital circuits. At operating system clock frequency of 220 MHz, a jitter with 4 ps resolution can be injected.

  13. MULTI-CHANNEL ELECTRIC PULSE HEIGHT ANALYZER

    DOEpatents

    Gallagher, J.D. et al.

    1960-11-22

    An apparatus is given for converting binary information into coded decimal form comprising means, in combination with a binary adder, a live memory and a source of bigit pulses, for synchronizing the bigit pulses and the adder output pulses; a source of digit pulses synchronized with every fourth bigit pulse; means for generating a conversion pulse in response to the time coincidence of the adder output pulse and a digit pulse: means having a delay equal to two bigit pulse periods coupling the adder output with the memory; means for promptly impressing said conversion pulse on the input of said memory: and means having a delay equal to one bigit pulse period for again impressing the conversion pulse on the input of the memory whereby a fourth bigit adder pulse results in the insertion into the memory of second, third and fourth bigits.

  14. A scheme for synchronizing clocks connected by a packet communication network

    NASA Astrophysics Data System (ADS)

    dos Santos, R. V.; Monteiro, L. H. A.

    2012-07-01

    Consider a communication system in which a transmitter equipment sends fixed-size packets of data at a uniform rate to a receiver equipment. Consider also that these equipments are connected by a packet-switched network, which introduces a random delay to each packet. Here we propose an adaptive clock recovery scheme able of synchronizing the frequencies and the phases of these devices, within specified limits of precision. This scheme for achieving frequency and phase synchronization is based on measurements of the packet arrival times at the receiver, which are used to control the dynamics of a digital phase-locked loop. The scheme performance is evaluated via numerical simulations performed by using realistic parameter values.

  15. Research of optical coherence tomography microscope based on CCD detector

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Xu, Zhongbao; Zhang, Shuomo

    2008-12-01

    The reference wave phase was modulated with a sinusoidal vibrating mirror attached to a Piezoelectric Transducer (PZT), the integration was performed by a CCD, and the charge storage period of the CCD image sensor was one-quarter period of the sinusoidal phase modulation. With the frequency- synchronous detection technique, four images (four frames of interference pattern) were recorded during one period of the phase modulation. In order to obtain the optimum modulation parameter, the values of amplitude and phase of the sinusoidal phase modulation were determined by considering the measurement error caused by the additive noise contained in the detected values. The PZT oscillation was controlled by a closed loop control system based on PID controller. An ideal discrete digital sine function at 50Hz with adjustable amplitude was used to adjust the vibrating of PZT, and a digital phase shift techniques was used to adjust vibrating phase of PZT so that the phase of the modulation could reach their optimum values. The CCD detector was triggered with software at 200Hz. Based on work above a small coherent signal masked by the preponderant incoherent background with a CCD detector was obtained.

  16. Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision.

    PubMed

    Ender, Andreas; Mehl, Albert

    2013-02-01

    A new approach to both 3-dimensional (3D) trueness and precision is necessary to assess the accuracy of intraoral digital impressions and compare them to conventionally acquired impressions. The purpose of this in vitro study was to evaluate whether a new reference scanner is capable of measuring conventional and digital intraoral complete-arch impressions for 3D accuracy. A steel reference dentate model was fabricated and measured with a reference scanner (digital reference model). Conventional impressions were made from the reference model, poured with Type IV dental stone, scanned with the reference scanner, and exported as digital models. Additionally, digital impressions of the reference model were made and the digital models were exported. Precision was measured by superimposing the digital models within each group. Superimposing the digital models on the digital reference model assessed the trueness of each impression method. Statistical significance was assessed with an independent sample t test (α=.05). The reference scanner delivered high accuracy over the entire dental arch with a precision of 1.6 ±0.6 µm and a trueness of 5.3 ±1.1 µm. Conventional impressions showed significantly higher precision (12.5 ±2.5 µm) and trueness values (20.4 ±2.2 µm) with small deviations in the second molar region (P<.001). Digital impressions were significantly less accurate with a precision of 32.4 ±9.6 µm and a trueness of 58.6 ±15.8µm (P<.001). More systematic deviations of the digital models were visible across the entire dental arch. The new reference scanner is capable of measuring the precision and trueness of both digital and conventional complete-arch impressions. The digital impression is less accurate and shows a different pattern of deviation than the conventional impression. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  17. Parallel pulse processing and data acquisition for high speed, low error flow cytometry

    DOEpatents

    van den Engh, Gerrit J.; Stokdijk, Willem

    1992-01-01

    A digitally synchronized parallel pulse processing and data acquisition system for a flow cytometer has multiple parallel input channels with independent pulse digitization and FIFO storage buffer. A trigger circuit controls the pulse digitization on all channels. After an event has been stored in each FIFO, a bus controller moves the oldest entry from each FIFO buffer onto a common data bus. The trigger circuit generates an ID number for each FIFO entry, which is checked by an error detection circuit. The system has high speed and low error rate.

  18. Discrete-Time Demodulator Architectures for Free-Space Broadband Optical Pulse-Position Modulation

    NASA Technical Reports Server (NTRS)

    Gray, A. A.; Lee, C.

    2004-01-01

    The objective of this work is to develop discrete-time demodulator architectures for broadband optical pulse-position modulation (PPM) that are capable of processing Nyquist or near-Nyquist data rates. These architectures are motivated by the numerous advantages of realizing communications demodulators in digital very large scale integrated (VLSI) circuits. The architectures are developed within a framework that encompasses a large body of work in optical communications, synchronization, and multirate discrete-time signal processing and are constrained by the limitations of the state of the art in digital hardware. This work attempts to create a bridge between theoretical communication algorithms and analysis for deep-space optical PPM and modern digital VLSI. The primary focus of this work is on the synthesis of discrete-time processing architectures for accomplishing the most fundamental functions required in PPM demodulators, post-detection filtering, synchronization, and decision processing. The architectures derived are capable of closely approximating the theoretical performance of the continuous-time algorithms from which they are derived. The work concludes with an outline of the development path that leads to hardware.

  19. Fort Monmouth Technical Disclosure Bulletin. Volume 1, Number 1.

    DTIC Science & Technology

    1982-12-01

    laser A may be placed between two plates in an evacuated area, and a space charge cloud caused by a multipactor i:.y be r.iade to niove between the...Radiation Detection Uodem Multipactor FuIP Ct] 1 AfTRACT (CAeM ree e, dl N nmeW -V md identl by block numbe) The Technical Disclosure Bulletin is...can be used with any digital signal containing regularly spaced synchronization bits or characters or else additional synchronization bits can be added

  20. A Digital Phase Lock Loop for an External Cavity Diode Laser

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Long; Tao, Tian-Jiong; Cheng, Bing; Wu, Bin; Xu, Yun-Fei; Wang, Zhao-Ying; Lin, Qiang

    2011-08-01

    A digital optical phase lock loop (OPLL) is implemented to synchronize the frequency and phase between two external cavity diode lasers (ECDL), generating Raman pulses for atom interferometry. The setup involves all-digital phase detection and a programmable digital proportional-integral-derivative (PID) loop in locking. The lock generates a narrow beat-note linewidth below 1 Hz and low phase-noise of 0.03rad2 between the master and slave ECDLs. The lock proves to be stable and robust, and all the locking parameters can be set and optimized on a computer interface with convenience, making the lock adaptable to various setups of laser systems.

  1. Digital system upset. The effects of simulated lightning-induced transients on a general-purpose microprocessor

    NASA Technical Reports Server (NTRS)

    Belcastro, C. M.

    1983-01-01

    Flight critical computer based control systems designed for advanced aircraft must exhibit ultrareliable performance in lightning charged environments. Digital system upset can occur as a result of lightning induced electrical transients, and a methodology was developed to test specific digital systems for upset susceptibility. Initial upset data indicates that there are several distinct upset modes and that the occurrence of upset is related to the relative synchronization of the transient input with the processing sate of the digital system. A large upset test data base will aid in the formulation and verification of analytical upset reliability modeling techniques which are being developed.

  2. Exploiting elastic anharmonicity in aluminum nitride matrix for phase-synchronous frequency reference generation

    NASA Astrophysics Data System (ADS)

    Ghatge, Mayur; Tabrizian, Roozbeh

    2018-03-01

    A matrix of aluminum-nitride (AlN) waveguides is acoustically engineered to realize electrically isolated phase-synchronous frequency references through nonlinear wave-mixing. AlN rectangular waveguides are cross-coupled through a periodically perforated plate that is engineered to have a wide acoustic bandgap around a desirable frequency ( f1≈509 MHz). While the coupling plate isolates the matrix from resonant vibrations of individual waveguide constituents at f1, it is transparent to the third-order harmonic waves (3f1) that are generated through nonlinear wave-mixing. Therefore, large-signal excitation of the f1 mode in a constituent waveguide generates acoustic waves at 3f1 with an efficiency defined by elastic anharmonicity of the AlN film. The phase-synchronous propagation of the third harmonic through the matrix is amplified by a high quality-factor resonance mode at f2≈1529 MHz, which is sufficiently close to 3f1 (f2 ≅ 3f1). Such an architecture enables realization of frequency-multiplied and phase-synchronous, yet electrically and spectrally isolated, references for multi-band/carrier and spread-spectrum wireless communication systems.

  3. High-Performance Satellite/Terrestrial-Network Gateway

    NASA Technical Reports Server (NTRS)

    Beering, David R.

    2005-01-01

    A gateway has been developed to enable digital communication between (1) the high-rate receiving equipment at NASA's White Sands complex and (2) a standard terrestrial digital communication network at data rates up to 622 Mb/s. The design of this gateway can also be adapted for use in commercial Earth/satellite and digital communication networks, and in terrestrial digital communication networks that include wireless subnetworks. Gateway as used here signifies an electronic circuit that serves as an interface between two electronic communication networks so that a computer (or other terminal) on one network can communicate with a terminal on the other network. The connection between this gateway and the high-rate receiving equipment is made via a synchronous serial data interface at the emitter-coupled-logic (ECL) level. The connection between this gateway and a standard asynchronous transfer mode (ATM) terrestrial communication network is made via a standard user network interface with a synchronous optical network (SONET) connector. The gateway contains circuitry that performs the conversion between the ECL and SONET interfaces. The data rate of the SONET interface can be either 155.52 or 622.08 Mb/s. The gateway derives its clock signal from a satellite modem in the high-rate receiving equipment and, hence, is agile in the sense that it adapts to the data rate of the serial interface.

  4. Inferring Functional Neural Connectivity with Phase Synchronization Analysis: A Review of Methodology

    PubMed Central

    Sun, Junfeng; Li, Zhijun; Tong, Shanbao

    2012-01-01

    Functional neural connectivity is drawing increasing attention in neuroscience research. To infer functional connectivity from observed neural signals, various methods have been proposed. Among them, phase synchronization analysis is an important and effective one which examines the relationship of instantaneous phase between neural signals but neglecting the influence of their amplitudes. In this paper, we review the advances in methodologies of phase synchronization analysis. In particular, we discuss the definitions of instantaneous phase, the indexes of phase synchronization and their significance test, the issues that may affect the detection of phase synchronization and the extensions of phase synchronization analysis. In practice, phase synchronization analysis may be affected by observational noise, insufficient samples of the signals, volume conduction, and reference in recording neural signals. We make comments and suggestions on these issues so as to better apply phase synchronization analysis to inferring functional connectivity from neural signals. PMID:22577470

  5. High resolution distributed time-to-digital converter (TDC) in a White Rabbit network

    NASA Astrophysics Data System (ADS)

    Pan, Weibin; Gong, Guanghua; Du, Qiang; Li, Hongming; Li, Jianmin

    2014-02-01

    The Large High Altitude Air Shower Observatory (LHAASO) project consists of a complex detector array with over 6000 detector nodes spreading over 1.2 km2 areas. The arrival times of shower particles are captured by time-to-digital converters (TDCs) in the detectors' frontend electronics, the arrival direction of the high energy cosmic ray are then to be reconstructed from the space-time information of all detector nodes. To guarantee the angular resolution of 0.5°, a time synchronization of 500 ps (RMS) accuracy and 100 ps precision must be achieved among all TDC nodes. A technology enhancing Gigabit Ethernet, called the White Rabbit (WR), has shown the capability of delivering sub-nanosecond accuracy and picoseconds precision of synchronization over the standard data packet transfer. In this paper we demonstrate a distributed TDC prototype system combining the FPGA based TDC and the WR technology. With the time synchronization and data transfer services from a compact WR node, separate FPGA-TDC nodes can be combined to provide uniform time measurement information for correlated events. The design detail and test performance will be described in the paper.

  6. Circuit increases capability of hysteresis synchronous motor

    NASA Technical Reports Server (NTRS)

    Markowitz, I. N.

    1967-01-01

    Frequency and phase detector circuit enables a hysteresis synchronous motor to drive a load of given torque value at a precise speed determined by a stable reference. This technique permits driving larger torque loads with smaller motors and lower power drain.

  7. Improved convolutional coding

    NASA Technical Reports Server (NTRS)

    Doland, G. D.

    1970-01-01

    Convolutional coding, used to upgrade digital data transmission under adverse signal conditions, has been improved by a method which ensures data transitions, permitting bit synchronizer operation at lower signal levels. Method also increases decoding ability by removing ambiguous condition.

  8. Digital Reference Service in the New Millennium: Planning, Management, and Evaluation. The New Library Series, Number 6.

    ERIC Educational Resources Information Center

    Lankes, R. David, Ed.; Collins, John W., III, Ed.; Kasowitz, Abby S., Ed.

    This book on digital reference services begins with an introduction entitled "The Foundations of Digital Reference" (R. David Lankes). Part 1, "The New Reference Culture: Traits and Trends," includes the following papers: "Why Reference Is about To Change Forever (but Not Completely)" (Joseph Janes);…

  9. Bypassing Races in Live Applications with Execution Filters

    DTIC Science & Technology

    2010-01-01

    LOOM creates the needed locks and semaphores on demand. The first time a lock or semaphore is refer- enced by one of the inserted synchronization ...runtime. LOOM provides a flexible and safe language for develop- ers to write execution filters that explicitly synchronize code. It then uses an...first compile their application with LOOM. At runtime, to workaround a race, an application developer writes an execution filter that synchronizes the

  10. Note: optical receiver system for 152-channel magnetoencephalography.

    PubMed

    Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong

    2014-11-01

    An optical receiver system composing 13 serial data restore/synchronizer modules and a single module combiner converted optical 32-bit serial data into 32-bit synchronous parallel data for a computer to acquire 152-channel magnetoencephalography (MEG) signals. A serial data restore/synchronizer module identified 32-bit channel-voltage bits from 48-bit streaming serial data, and then consecutively reproduced 13 times of 32-bit serial data, acting in a synchronous clock. After selecting a single among 13 reproduced data in each module, a module combiner converted it into 32-bit parallel data, which were carried to 32-port digital input board in a computer. When the receiver system together with optical transmitters were applied to 152-channel superconducting quantum interference device sensors, this MEG system maintained a field noise level of 3 fT/√Hz @ 100 Hz at a sample rate of 1 kSample/s per channel.

  11. Digital reference service: trends in academic health science libraries.

    PubMed

    Dee, Cheryl R

    2005-01-01

    Two years after the initial 2002 study, a greater number of academic health science libraries are offering digital reference chat services, and this number appears poised to grow in the coming years. This 2004 follow-up study found that 36 (27%) of the academic health science libraries examined provide digital chat reference services; this was an approximately 6% increase over the 25 libraries (21%) located in 2002. Trends in digital reference services in academic health science libraries were derived from the exploration of academic health science library Web sites and from digital correspondence with academic health science library personnel using e-mail and chat. This article presents an overview of the current state of digital reference service in academic health science libraries.

  12. MULTIPLE INPUT BINARY ADDER EMPLOYING MAGNETIC DRUM DIGITAL COMPUTING APPARATUS

    DOEpatents

    Cooke-Yarborough, E.H.

    1960-12-01

    A digital computing apparatus is described for adding a plurality of multi-digit binary numbers. The apparatus comprises a rotating magnetic drum, a recording head, first and second reading heads disposed adjacent to the first and second recording tracks, and a series of timing signals recorded on the first track. A series of N groups of digit-representing signals is delivered to the recording head at time intervals corresponding to the timing signals, each group consisting of digits of the same significance in the numbers, and the signal series is recorded on the second track of the drum in synchronism with the timing signals on the first track. The multistage registers are stepped cyclically through all positions, and each of the multistage registers is coupled to the control lead of a separate gate circuit to open the corresponding gate at only one selected position in each cycle. One of the gates has its input coupled to the bistable element to receive the sum digit, and the output lead of this gate is coupled to the recording device. The inputs of the other gates receive the digits to be added from the second reading head, and the outputs of these gates are coupled to the adding register. A phase-setting pulse source is connected to each of the multistage registers individually to step the multistage registers to different initial positions in the cycle, and the phase-setting pulse source is actuated each N time interval to shift a sum digit to the bistable element, where the multistage register coupled to bistable element is operated by the phase- setting pulse source to that position in its cycle N steps before opening the first gate, so that this gate opens in synchronism with each of the shifts to pass the sum digits to the recording head.

  13. 14 CFR 1215.105 - Delivery of user data.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SATELLITE SYSTEM (TDRSS) Use and Reimbursement Policy for Non-U.S. Government Users § 1215.105 Delivery of... determined by NASA in the form of one or more digital or analog bit streams synchronized to associated clock...

  14. Optical fiber repeatered transmission systems utilizing SAW filters

    NASA Astrophysics Data System (ADS)

    Rosenberg, R. L.; Ross, D. G.; Trischitta, P. R.; Fishman, D. A.; Armitage, C. B.

    1983-05-01

    Baseband digital transmission-line systems capable of signaling rates of several hundred to several thousand Mbit/s are presently being developed around the world. The pulse regeneration process is gated by a timing wave which is synchronous with the symbol rate of the arriving pulse stream. Synchronization is achieved by extracting a timing wave from the arriving pulse stream, itself. To date, surface acoustic-wave (SAW) filters have been widely adopted for timing recovery in the in-line regenerators of high-bit-rate systems. The present investigation has the objective to acquaint the SAW community in general, and SAW filter suppliers in particular, with the requirements for timing recovery filters in repeatered digital transmission systems. Attention is given to the system structure, the timing loop function, the system requirements affecting the timing-recovery filter, the decision process, timing jitter accumulation, the filter 'ringing' requirement, and aspects of reliability.

  15. The electronics readout and data acquisition system of the KM3NeT neutrino telescope node

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Real, Diego; Collaboration: KM3NeT Collaboration

    2014-11-18

    The KM3NeT neutrino telescope will be composed by tens of thousands of glass spheres, called Digital Optical Module (DOM), each of them containing 31 PMTs of small photocathode area (3'). The readout and data acquisition system of KM3NeT have to collect, treat and send to shore, in an economic way, the enormous amount of data produced by the photomultipliers and at the same time to provide time synchronization between each DOM at the level of 1 ns. It is described in the present article the Central Logic Board, that integrates the Time to Digital Converters and the White Rabbit protocolmore » used for the DOM synchronization in a transparent way, the Power Board used in the DOM, the PMT base to readout the photomultipliers and the respective collecting boards, the so called Octopus Board.« less

  16. Low power sensor network for wireless condition monitoring

    NASA Astrophysics Data System (ADS)

    Richter, Ch.; Frankenstein, B.; Schubert, L.; Weihnacht, B.; Friedmann, H.; Ebert, C.

    2009-03-01

    For comprehensive fatigue tests and surveillance of large scale structures, a vibration monitoring system working in the Hz and sub Hz frequency range was realized and tested. The system is based on a wireless sensor network and focuses especially on the realization of a low power measurement, signal processing and communication. Regarding the development, we met the challenge of synchronizing the wireless connected sensor nodes with sufficient accuracy. The sensor nodes ware realized by compact, sensor near signal processing structures containing components for analog preprocessing of acoustic signals, their digitization, algorithms for data reduction and network communication. The core component is a digital micro controller which performs the basic algorithms necessary for the data acquisition synchronization and the filtering. As a first application, the system was installed in a rotor blade of a wind power turbine in order to monitor the Eigen modes over a longer period of time. Currently the sensor nodes are battery powered.

  17. Signal detection by means of orthogonal decomposition

    NASA Astrophysics Data System (ADS)

    Hajdu, C. F.; Dabóczi, T.; Péceli, G.; Zamantzas, C.

    2018-03-01

    Matched filtering is a well-known method frequently used in digital signal processing to detect the presence of a pattern in a signal. In this paper, we suggest a time variant matched filter, which, unlike a regular matched filter, maintains a given alignment between the input signal and the template carrying the pattern, and can be realized recursively. We introduce a method to synchronize the two signals for presence detection, usable in case direct synchronization between the signal generator and the receiver is not possible or not practical. We then propose a way of realizing and extending the same filter by modifying a recursive spectral observer, which gives rise to orthogonal filter channels and also leads to another way to synchronize the two signals.

  18. A second-order all-digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Holmes, J. K.; Tegnelia, C. R.

    1974-01-01

    A simple second-order digital phase-locked loop has been designed to synchronize itself to a square-wave subcarrier. Analysis and experimental performance are given for both acquisition behavior and steady-state phase error performance. In addition, the damping factor and the noise bandwidth are derived analytically. Although all the data are given for the square-wave subcarrier case, the results are applicable to arbitrary subcarriers that are odd symmetric about their transition region.

  19. Marginality and Variability in Esperanto.

    ERIC Educational Resources Information Center

    Brent, Edmund

    This paper discusses Esperanto as a planned language and refutes three myths connected to it, namely, that Esperanto is achronical, atopical, and apragmatic. The focus here is on a synchronic analysis. Synchronic variability is studied with reference to the structuralist determination of "marginality" and the dynamic linguistic…

  20. Wireless Synchronization of a Multi-Pinhole Small Animal SPECT Collimation Device With a Clinical Scanner

    NASA Astrophysics Data System (ADS)

    DiFilippo, Frank P.; Patel, Sagar

    2009-06-01

    A multi-pinhole collimation device for small animal single photon emission computed tomography (SPECT) uses the gamma camera detectors of a standard clinical SPECT scanner. The collimator and animal bed move independently of the detectors, and therefore their motions must be synchronized. One approach is manual triggering of the SPECT acquisition simultaneously with a programmed motion sequence for the device. However, some data blurring and loss of image quality result, and true electronic synchronization is preferred. An off-the-shelf digital gyroscope with integrated Bluetooth interface provides a wireless solution to device synchronization. The sensor attaches to the SPECT gantry and reports its rotational speed to a notebook computer controlling the device. Software processes the rotation data in real-time, averaging the signal and issuing triggers while compensating for baseline drift. Motion commands are sent to the collimation device with minimal delay, within approximately 0.5 second of the start of SPECT gantry rotation. Test scans of a point source demonstrate an increase in true counts and a reduction in background counts compared to manual synchronization. The wireless rotation sensor provides robust synchronization of the collimation device with the clinical SPECT scanner and enhances image quality.

  1. Instrument to synchronize Thomson scattering diagnostic measurements with MHD acitivity in a tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wintenberg, A.L.

    1985-04-01

    An instrument to synchronize the firing of a ruby laser for a Thomson scattering diagnostic with plasma oscillations was designed, developed, and evaluated. The instrument will fire the laser at a user-selected phase of an input sine or sawtooth wave with an accuracy of +-15/sup 0/. Allowable frequencies range from 20 to 500 Hz for a sawtooth and from 1 to 30 kHz for a sine wave. The instrument also allows synchronization with a sine wave to be enabled by a preselected sawtooth phase. The instrument uses analog signal processing circuits to separate the signal components, remove unwanted components, andmore » produce zero-phase synchronization pulses. The instrument measures the period between zero-phase pulses in order to produce phase synchronization pulses delayed a fraction of the period from the zero-phase pulses. The laser is fired by the phase synchronization pulse. Unwanted signal components are attenuated by bandpass filters. A digitally controlled self-adjusting bandpass filter for sine processing. The instrument was used to investigate the variation of the electron temperature profile with the phase of the x-ray signal from an Impurity Studies Experiment (ISX-B) plasma exhibiting magnetohydrodynamic (MHD) activity.« less

  2. Deterministic Execution of Ptides Programs

    DTIC Science & Technology

    2013-05-15

    at a time no later than 30+1+5 = 36. Assume the maximum clock synchronization error is . Therefore, the AddSubtract adder must delay processing the...the synchronization of the platform real- time clock to its peers in other system platforms. The portions of PtidyOS code that implement access to the...interesting opportunities for future research. References [1] Y. Zhao, E. A. Lee, and J. Liu, “A programming model for time - synchronized distributed real

  3. Programmable Pulser

    NASA Technical Reports Server (NTRS)

    Baumann, Eric; Merolla, Anthony

    1988-01-01

    User controls number of clock pulses to prevent burnout. New digital programmable pulser circuit in three formats; freely running, counted, and single pulse. Operates at frequencies up to 5 MHz, with no special consideration given to layout of components or to terminations. Pulser based on sequential circuit with four states and binary counter with appropriate decoding logic. Number of programmable pulses increased beyond 127 by addition of another counter and decoding logic. For very large pulse counts and/or very high frequencies, use synchronous counters to avoid errors caused by propagation delays. Invaluable tool for initial verification or diagnosis of digital or digitally controlled circuity.

  4. Mark 3 wideband digital recorder in perspective

    NASA Technical Reports Server (NTRS)

    Hinteregger, H. F.

    1980-01-01

    The tape recorder used for the Mark 3 data acquisition and processing system is compared with earlier very long baseline interferometry recorders. Wideband 33-1/3 kbpi digital channel characteristics of instrumentation recorders and of a modern video cassette recorder are illustrated. Factors which influenced selection of the three major commercial components (transport, heads, and tape) are discussed. A brief functional description and the reasons for development of efficient signal electronics and necessary auxiliary control electronics are given. The design and operation of a digital bit synchronizer is illustrated as an example of the high degree of simplicity achieved.

  5. Parallel pulse processing and data acquisition for high speed, low error flow cytometry

    DOEpatents

    Engh, G.J. van den; Stokdijk, W.

    1992-09-22

    A digitally synchronized parallel pulse processing and data acquisition system for a flow cytometer has multiple parallel input channels with independent pulse digitization and FIFO storage buffer. A trigger circuit controls the pulse digitization on all channels. After an event has been stored in each FIFO, a bus controller moves the oldest entry from each FIFO buffer onto a common data bus. The trigger circuit generates an ID number for each FIFO entry, which is checked by an error detection circuit. The system has high speed and low error rate. 17 figs.

  6. 100 Gbps Wireless System and Circuit Design Using Parallel Spread-Spectrum Sequencing

    NASA Astrophysics Data System (ADS)

    Scheytt, J. Christoph; Javed, Abdul Rehman; Bammidi, Eswara Rao; KrishneGowda, Karthik; Kallfass, Ingmar; Kraemer, Rolf

    2017-09-01

    In this article mixed analog/digital signal processing techniques based on parallel spread-spectrum sequencing (PSSS) and radio frequency (RF) carrier synchronization for ultra-broadband wireless communication are investigated on system and circuit level.

  7. Use of precision time and time interval (PTTI)

    NASA Technical Reports Server (NTRS)

    Taylor, J. D.

    1974-01-01

    A review of range time synchronization methods are discussed as an important aspect of range operations. The overall capabilities of various missile ranges to determine precise time of day by synchronizing to available references and applying this time point to instrumentation for time interval measurements are described.

  8. Digital Library and Digital Reference Service: Integration and Mutual Complementarity

    ERIC Educational Resources Information Center

    Liu, Jia

    2008-01-01

    Both the digital library and the digital reference service were invented and have been developed under the networked environment. Among their intersections, the fundamental thing is their symbiotic interest--serving the user in a more efficient way. The article starts by discussing the digital library and its service and the digital reference…

  9. Real-time time-division color electroholography using a single GPU and a USB module for synchronizing reference light.

    PubMed

    Araki, Hiromitsu; Takada, Naoki; Niwase, Hiroaki; Ikawa, Shohei; Fujiwara, Masato; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2015-12-01

    We propose real-time time-division color electroholography using a single graphics processing unit (GPU) and a simple synchronization system of reference light. To facilitate real-time time-division color electroholography, we developed a light emitting diode (LED) controller with a universal serial bus (USB) module and the drive circuit for reference light. A one-chip RGB LED connected to a personal computer via an LED controller was used as the reference light. A single GPU calculates three computer-generated holograms (CGHs) suitable for red, green, and blue colors in each frame of a three-dimensional (3D) movie. After CGH calculation using a single GPU, the CPU can synchronize the CGH display with the color switching of the one-chip RGB LED via the LED controller. Consequently, we succeeded in real-time time-division color electroholography for a 3D object consisting of around 1000 points per color when an NVIDIA GeForce GTX TITAN was used as the GPU. Furthermore, we implemented the proposed method in various GPUs. The experimental results showed that the proposed method was effective for various GPUs.

  10. Experiment on Synchronous Timing Signal Detection from ISDB-T Terrestrial Digital TV Signal with Application to Autonomous Distributed ITS-IVC Network

    NASA Astrophysics Data System (ADS)

    Karasawa, Yoshio; Kumagai, Taichi; Takemoto, Atsushi; Fujii, Takeo; Ito, Kenji; Suzuki, Noriyoshi

    A novel timing synchronizing scheme is proposed for use in inter-vehicle communication (IVC) with an autonomous distributed intelligent transport system (ITS). The scheme determines the timing of packet signal transmission in the IVC network and employs the guard interval (GI) timing in the orthogonal frequency divisional multiplexing (OFDM) signal currently used for terrestrial broadcasts in the Japanese digital television system (ISDB-T). This signal is used because it is expected that the automotive market will demand the capability for cars to receive terrestrial digital TV broadcasts in the near future. The use of broadcasts by automobiles presupposes that the on-board receivers are capable of accurately detecting the GI timing data in an extremely low carrier-to-noise ratio (CNR) condition regardless of a severe multipath environment which will introduce broad scatter in signal arrival times. Therefore, we analyzed actual broadcast signals received in a moving vehicle in a field experiment and showed that the GI timing signal is detected with the desired accuracy even in the case of extremely low-CNR environments. Some considerations were also given about how to use these findings.

  11. Scalable Multiprocessor for High-Speed Computing in Space

    NASA Technical Reports Server (NTRS)

    Lux, James; Lang, Minh; Nishimoto, Kouji; Clark, Douglas; Stosic, Dorothy; Bachmann, Alex; Wilkinson, William; Steffke, Richard

    2004-01-01

    A report discusses the continuing development of a scalable multiprocessor computing system for hard real-time applications aboard a spacecraft. "Hard realtime applications" signifies applications, like real-time radar signal processing, in which the data to be processed are generated at "hundreds" of pulses per second, each pulse "requiring" millions of arithmetic operations. In these applications, the digital processors must be tightly integrated with analog instrumentation (e.g., radar equipment), and data input/output must be synchronized with analog instrumentation, controlled to within fractions of a microsecond. The scalable multiprocessor is a cluster of identical commercial-off-the-shelf generic DSP (digital-signal-processing) computers plus generic interface circuits, including analog-to-digital converters, all controlled by software. The processors are computers interconnected by high-speed serial links. Performance can be increased by adding hardware modules and correspondingly modifying the software. Work is distributed among the processors in a parallel or pipeline fashion by means of a flexible master/slave control and timing scheme. Each processor operates under its own local clock; synchronization is achieved by broadcasting master time signals to all the processors, which compute offsets between the master clock and their local clocks.

  12. An Automatic System for Global Monitoring of ELF and VLF Radio Noise Phenomena.

    DTIC Science & Technology

    1985-06-01

    second low-jitter synchronization signal is also provided for precise triggering of analog-to- digital conversion samples. Both the clock and the...building in 1985 are two riometers (30 MHz and 51.4 MHz), a 3-axis fluxgate magnetometer , a 3-axis micropulsation magnetometer , an all-sky camera, and...of these filters 1s continuously sampled by a computerized recording system, and statistical averages are computed on-site and recorded on digital tape

  13. Listen to the Natives

    ERIC Educational Resources Information Center

    Prensky, Marc

    2006-01-01

    "Digital natives" refer to today's students because they are native speakers of technology, fluent in the digital language of computers, video games, and the Internet. Those who were not born into the digital world are referred to as digital immigrants. Educators, considered digital immigrants, have slid into the 21st century--and into the digital…

  14. Reconstruction of color images via Haar wavelet based on digital micromirror device

    NASA Astrophysics Data System (ADS)

    Liu, Xingjiong; He, Weiji; Gu, Guohua

    2015-10-01

    A digital micro mirror device( DMD) is introduced to form Haar wavelet basis , projecting on the color target image by making use of structured illumination, including red, green and blue light. The light intensity signals reflected from the target image are received synchronously by the bucket detector which has no spatial resolution, converted into voltage signals and then transferred into PC[1] .To reach the aim of synchronization, several synchronization processes are added during data acquisition. In the data collection process, according to the wavelet tree structure, the locations of significant coefficients at the finer scale are predicted by comparing the coefficients sampled at the coarsest scale with the threshold. The monochrome grayscale images are obtained under red , green and blue structured illumination by using Haar wavelet inverse transform algorithm, respectively. The color fusion algorithm is carried on the three monochrome grayscale images to obtain the final color image. According to the imaging principle, the experimental demonstration device is assembled. The letter "K" and the X-rite Color Checker Passport are projected and reconstructed as target images, and the final reconstructed color images have good qualities. This article makes use of the method of Haar wavelet reconstruction, reducing the sampling rate considerably. It provides color information without compromising the resolution of the final image.

  15. A wide-range programmable frequency synthesizer based on a finite state machine filter

    NASA Astrophysics Data System (ADS)

    Alser, Mohammed H.; Assaad, Maher M.; Hussin, Fawnizu A.

    2013-11-01

    In this article, an FPGA-based design and implementation of a fully digital wide-range programmable frequency synthesizer based on a finite state machine filter is presented. The advantages of the proposed architecture are that, it simultaneously generates a high frequency signal from a low frequency reference signal (i.e. synthesising), and synchronising the two signals (signals have the same phase, or a constant difference) without jitter accumulation issue. The architecture is portable and can be easily implemented for various platforms, such as FPGAs and integrated circuits. The frequency synthesizer circuit can be used as a part of SERDES devices in intra/inter chip communication in system-on-chip (SoC). The proposed circuit is designed using Verilog language and synthesized for the Altera DE2-70 development board, with the Cyclone II (EP2C35F672C6) device on board. Simulation and experimental results are included; they prove the synthesizing and tracking features of the proposed architecture. The generated clock signal frequency of a range from 19.8 MHz to 440 MHz is synchronized to the input reference clock with a frequency step of 0.12 MHz.

  16. An all-digital receiver for satellite audio broadcasting signals using trellis coded quasi-orthogonal code-division multiplexing

    NASA Astrophysics Data System (ADS)

    Braun, Walter; Eglin, Peter; Abello, Ricard

    1993-02-01

    Spread Spectrum Code Division Multiplex is an attractive scheme for the transmission of multiple signals over a satellite transponder. By using orthogonal or quasi-orthogonal spreading codes the interference between the users can be virtually eliminated. However, the acquisition and tracking of the spreading code phase can not take advantage of the code orthogonality since sequential acquisition and Delay-Locked loop tracking depend on correlation with code phases other than the optimal despreading phase. Hence, synchronization is a critical issue in such a system. A demonstration hardware for the verification of the orthogonal CDM synchronization and data transmission concept is being designed and implemented. The system concept, the synchronization scheme, and the implementation are described. The performance of the system is discussed based on computer simulations.

  17. An Integrated Programmable Wide-range PLL for Switching Synchronization in Isolated DC-DC Converters

    NASA Astrophysics Data System (ADS)

    Fard, Miad

    In this thesis, two Phase-Locked-Loop (PLL) based synchronization schemes are introduced and applied to a bi-directional Dual-Active-Bridge (DAB) dc-dc converter with an input voltage up to 80 V switching in the range of 250 kHz to 1 MHz. The two schemes synchronize gating signals across an isolated boundary without the need for an isolator per transistor. The Power Transformer Sensing (PTS) method utilizes the DAB power transformer to indirectly sense switching on the secondary side of the boundary, while the Digital Isolator Sensing (DIS) method utilizes a miniature transformer for synchronization and communication at up to 100 MHz. The PLL is implemented on-chip, and is used to control an external DAB power-stage. This work will lead to lower cost, high-frequency isolated dc-dc converters needed for a wide variety of emerging low power applications where isolator cost is relatively high and there is a demand for the reduction of parts.

  18. The Necessity of Real-Time: Fact and Fiction in Digital Reference Systems.

    ERIC Educational Resources Information Center

    Lankes, R. David; Shostack, Pauline

    2002-01-01

    Discussion of digital reference services and the use of real-time versus asynchronous services such as email focuses on data from the AskERIC digital reference service to demonstrate that asynchronous services are not only useful but may have greater utility than real-time systems. (Author/LRW)

  19. Pedagogic Strategies Supporting the Use of Synchronous Audiographic Conferencing: A Review of the Literature

    ERIC Educational Resources Information Center

    de Freitas, Sara; Neumann, Tim

    2009-01-01

    Synchronous audiographic conferencing (SAC) refers to a combination of technologies for real-time communication and interaction using multiple media and modes. With an increasing institutional uptake of SAC, users require an understanding of the complex interrelations of multiple media in learning scenarios in order to support pedagogic-driven…

  20. An Attempt To Design Synchronous Collaborative Learning Environments for Peer Dyads on the World Wide Web.

    ERIC Educational Resources Information Center

    Lee, Fong-Lok; Liang, Steven; Chan, Tak-Wai

    1999-01-01

    Describes the design, implementation, and preliminary evaluation of three synchronous distributed learning prototype systems: Co-Working System, Working Along System, and Hybrid System. Each supports a particular style of interaction, referred to a socio-activity learning model, between members of student dyads (pairs). All systems were…

  1. Digital phase-locked loop speed control for a brushless dc motor

    NASA Astrophysics Data System (ADS)

    Wise, M. G.

    1985-06-01

    Speed control of d.c. motors by phase-locked loops (PLL) is becoming increasingly popular. Primary interest has been in employing PLL for constant speed control. This thesis investigates the theory and techniques of digital PLL to speed control of a brushless d.c. motor with a variable speed of operation. Addition of logic controlled count enable/disable to a synchronous up/down counter, used as a phase-frequency detector, is shown to improve the performance of previously proposed PLL control schemes.

  2. A gallium-arsenide digital phase shifter for clock and control signal distribution in high-speed digital systems

    NASA Technical Reports Server (NTRS)

    Fouts, Douglas J.

    1992-01-01

    The design, implementation, testing, and applications of a gallium-arsenide digital phase shifter and fan-out buffer are described. The integrated circuit provides a method for adjusting the phase of high-speed clock and control signals in digital systems, without the need for pruning cables, multiplexing between cables of different lengths, delay lines, or similar techniques. The phase of signals distributed with the described chip can be dynamically adjusted in eight different steps of approximately 60 ps per step. The IC also serves as a fan-out buffer and provides 12 in-phase outputs. The chip is useful for distributing high-speed clock and control signals in synchronous digital systems, especially if components are distributed over a large physical area or if there is a large number of components.

  3. Assessing team performance in the operating room: development and use of a "black-box" recorder and other tools for the intraoperative environment.

    PubMed

    Guerlain, Stephanie; Adams, Reid B; Turrentine, F Beth; Shin, Thomas; Guo, Hui; Collins, Stephen R; Calland, J Forrest

    2005-01-01

    The objective of this research was to develop a digital system to archive the complete operative environment along with the assessment tools for analysis of this data, allowing prospective studies of operative performance, intraoperative errors, team performance, and communication. Ability to study this environment will yield new insights, allowing design of systems to avoid preventable errors that contribute to perioperative complications. A multitrack, synchronized, digital audio-visual recording system (RATE tool) was developed to monitor intraoperative performance, including software to synchronize data and allow assignment of independent observational scores. Cases were scored for technical performance, participants' situational awareness (knowledge of critical information), and their comfort and satisfaction with the conduct of the procedure. Laparoscopic cholecystectomy (n = 10) was studied. Technical performance of the RATE tool was excellent. The RATE tool allowed real time, multitrack data collection of all aspects of the operative environment, while permitting digital recording of the objective assessment data in a time synchronized and annotated fashion during the procedure. The mean technical performance score was 73% +/- 28% of maximum (perfect) performance. Situational awareness varied widely among team members, with the attending surgeon typically the only team member having comprehensive knowledge of critical case information. The RATE tool allows prospective analysis of performance measures such as technical judgments, team performance, and communication patterns, offers the opportunity to conduct prospective intraoperative studies of human performance, and allows for postoperative discussion, review, and teaching. This study also suggests that gaps in situational awareness might be an underappreciated source of operative adverse events. Future uses of this system will aid teaching, failure or adverse event analysis, and intervention research.

  4. Formal development of a clock synchronization circuit

    NASA Technical Reports Server (NTRS)

    Miner, Paul S.

    1995-01-01

    This talk presents the latest stage in formal development of a fault-tolerant clock synchronization circuit. The development spans from a high level specification of the required properties to a circuit realizing the core function of the system. An abstract description of an algorithm has been verified to satisfy the high-level properties using the mechanical verification system EHDM. This abstract description is recast as a behavioral specification input to the Digital Design Derivation system (DDD) developed at Indiana University. DDD provides a formal design algebra for developing correct digital hardware. Using DDD as the principle design environment, a core circuit implementing the clock synchronization algorithm was developed. The design process consisted of standard DDD transformations augmented with an ad hoc refinement justified using the Prototype Verification System (PVS) from SRI International. Subsequent to the above development, Wilfredo Torres-Pomales discovered an area-efficient realization of the same function. Establishing correctness of this optimization requires reasoning in arithmetic, so a general verification is outside the domain of both DDD transformations and model-checking techniques. DDD represents digital hardware by systems of mutually recursive stream equations. A collection of PVS theories was developed to aid in reasoning about DDD-style streams. These theories include a combinator for defining streams that satisfy stream equations, and a means for proving stream equivalence by exhibiting a stream bisimulation. DDD was used to isolate the sub-system involved in Torres-Pomales' optimization. The equivalence between the original design and the optimized verified was verified in PVS by exhibiting a suitable bisimulation. The verification depended upon type constraints on the input streams and made extensive use of the PVS type system. The dependent types in PVS provided a useful mechanism for defining an appropriate bisimulation.

  5. Radio frequency phototube

    DOEpatents

    Margaryan, Amur [Yerevan, AM; Gynashyan, Karlen [Yerevan, AM; Hashimoto, Osamu [Sendai, JP; Majewski, Stanislaw [Morgantown, WV; Tang, Linguang [Yorktown, VA; Marikyan, Gagik [Yerevan, AM; Marikyan, legal representative, Lia

    2012-03-20

    A method and apparatus of obtaining a record of repetitive optical or other phenomena having durations in the picosecond range, comprising a circular scan electron tube to receive light pulses and convert them to electron images consisting with fast nanosecond electronic signals, a continuous wave light or other particle pulses, e.g. electron picosecond pulses, and a synchronizing mechanism arranged to synchronize the deflection of the electron image (images) in the tube (tubes) with the repetition rate of the incident pulse train. There is also provided a method and apparatus for digitization of a repetitive and random optical waveform with a bandwidth higher than 10 GHz.

  6. Use and Perceived Benefits of Handheld Computer-based Clinical References

    PubMed Central

    Rothschild, Jeffrey M.; Fang, Edward; Liu, Vincent; Litvak, Irina; Yoon, Cathy; Bates, David W.

    2006-01-01

    Objective Clinicians are increasingly using handheld computers (HC) during patient care. We sought to assess the role of HC-based clinical reference software in medical practice by conducting a survey and assessing actual usage behavior. Design During a 2-week period in February 2005, 3600 users of a HC-based clinical reference application were asked by e-mail to complete a survey and permit analysis of their usage patterns. The software includes a pharmacopeia, an infectious disease reference, a medical diagnostic and therapeutic reference and transmits medical alerts and other notifications during HC synchronizations. Software usage data were captured during HC synchronization for the 4 weeks prior to survey completion. Measurements Survey responses and software usage data. Results The survey response rate was 42% (n = 1501). Physicians reported using the clinical reference software for a mean of 4 years and 39% reported using the software during more than half of patient encounters. Physicians who synchronized their HC during the data collection period (n = 1249; 83%) used the pharmacopeia for unique drug lookups a mean of 6.3 times per day (SD 12.4). The majority of users (61%) believed that in the prior 4 weeks, use of the clinical reference prevented adverse drug events or medication errors 3 or more times. Physicians also believed that alerts and other notifications improved patient care if they were public health warnings (e.g. about influenza), new immunization guidelines or drug alert warnings (e.g. rofecoxib withdrawal). Conclusion Current adopters of HC-based medical references use these tools frequently, and found them to improve patient care and be valuable in learning of recent alerts and warnings. PMID:16929041

  7. Flexible lock-in detection system based on synchronized computer plug-in boards applied in sensitive gas spectroscopy

    NASA Astrophysics Data System (ADS)

    Andersson, Mats; Persson, Linda; Svensson, Tomas; Svanberg, Sune

    2007-11-01

    We present a flexible and compact, digital, lock-in detection system and its use in high-resolution tunable diode laser spectroscopy. The system involves coherent sampling, and is based on the synchronization of two data acquisition cards running on a single standard computer. A software-controlled arbitrary waveform generator is used for laser modulation, and a four-channel analog/digital board records detector signals. Gas spectroscopy is performed in the wavelength modulation regime. The coherently detected signal is averaged a selected number of times before it is stored or analyzed by software-based, lock-in techniques. Multiple harmonics of the modulation signal (1f, 2f, 3f, 4f, etc.) are available in each single data set. The sensitivity is of the order of 10-5, being limited by interference fringes in the measurement setup. The capabilities of the system are demonstrated by measurements of molecular oxygen in ambient air, as well as dispersed gas in scattering materials, such as plants and human tissue.

  8. Flexible lock-in detection system based on synchronized computer plug-in boards applied in sensitive gas spectroscopy.

    PubMed

    Andersson, Mats; Persson, Linda; Svensson, Tomas; Svanberg, Sune

    2007-11-01

    We present a flexible and compact, digital, lock-in detection system and its use in high-resolution tunable diode laser spectroscopy. The system involves coherent sampling, and is based on the synchronization of two data acquisition cards running on a single standard computer. A software-controlled arbitrary waveform generator is used for laser modulation, and a four-channel analog/digital board records detector signals. Gas spectroscopy is performed in the wavelength modulation regime. The coherently detected signal is averaged a selected number of times before it is stored or analyzed by software-based, lock-in techniques. Multiple harmonics of the modulation signal (1f, 2f, 3f, 4f, etc.) are available in each single data set. The sensitivity is of the order of 10(-5), being limited by interference fringes in the measurement setup. The capabilities of the system are demonstrated by measurements of molecular oxygen in ambient air, as well as dispersed gas in scattering materials, such as plants and human tissue.

  9. Bringing text display digital radio to consumers with hearing loss.

    PubMed

    Sheffield, Ellyn G; Starling, Michael; Schwab, Daniel

    2011-01-01

    Radio is migrating to digital transmission, expanding its offerings to include captioning for individuals with hearing loss. Text display radio requires a large amount of word throughput with minimal screen display area, making good user interface design crucial to its success. In two experiments, we presented hearing, hard-of-hearing, and deaf consumers with National Public Radio stories converted to text and examined their preferences for and reactions to midsized and small radio text displays. We focused on physical display attributes such as text color, font style, line length, and scrolling type as well as emergency alert messages and emergency prompts for drivers, announcer identification schemes, and synchronization of audio and text. Results suggest that midsized, Global Positioning System (GPS)-style displays were well liked, synchronization of audio and text was important to comprehension and retrieval of story details, identification of announcers was served best with a combination of name change in parenthesis and color change, and a mixture of color and flashing symbols was preferred for emergency alerting.

  10. "Glitch Logic" and Applications to Computing and Information Security

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian; Katkoori, Srinivas

    2009-01-01

    This paper introduces a new method of information processing in digital systems, and discusses its potential benefits to computing and information security. The new method exploits glitches caused by delays in logic circuits for carrying and processing information. Glitch processing is hidden to conventional logic analyses and undetectable by traditional reverse engineering techniques. It enables the creation of new logic design methods that allow for an additional controllable "glitch logic" processing layer embedded into a conventional synchronous digital circuits as a hidden/covert information flow channel. The combination of synchronous logic with specific glitch logic design acting as an additional computing channel reduces the number of equivalent logic designs resulting from synthesis, thus implicitly reducing the possibility of modification and/or tampering with the design. The hidden information channel produced by the glitch logic can be used: 1) for covert computing/communication, 2) to prevent reverse engineering, tampering, and alteration of design, and 3) to act as a channel for information infiltration/exfiltration and propagation of viruses/spyware/Trojan horses.

  11. Cascaded clocks measurement and simulation findings

    NASA Technical Reports Server (NTRS)

    Chislow, Don; Zampetti, George

    1994-01-01

    This paper will examine aspects related to network synchronization distribution and the cascading of timing elements. Methods of timing distribution have become a much debated topic in standards forums and among network service providers (both domestically and internationally). Essentially these concerns focus on the need to migrate their existing network synchronization plans (and capabilities) to those required for the next generation of transport technologies (namely, the Synchronous Digital Hierarchy (SDH), Synchronous Optical Networks (SONET), and Asynchronous Transfer Mode (ATM). The particular choices for synchronization distribution network architectures are now being evaluated and are demonstrating that they can indeed have a profound effect on the overall service performance levels that will be delivered to the customer. The salient aspects of these concerns reduce to the following: (1) identifying that the devil is in the details of the timing element specifications and the distribution of timing information (i.e., small design choices can have a large performance impact); (2) developing a standardized method of performance verification that will yield unambiguous results; and (3) presentation of those results. Specifically, this will be done for two general cases: an ideal input, and a noisy input to a cascaded chain of slave clocks.

  12. Direct-to-digital holography and holovision

    DOEpatents

    Thomas, Clarence E.; Baylor, Larry R.; Hanson, Gregory R.; Rasmussen, David A.; Voelkl, Edgar; Castracane, James; Simkulet, Michelle; Clow, Lawrence

    2000-01-01

    Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made.

  13. Virtual mask digital electron beam lithography

    DOEpatents

    Baylor, L.R.; Thomas, C.E.; Voelkl, E.; Moore, J.A.; Simpson, M.L.; Paulus, M.J.

    1999-04-06

    Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made. 5 figs.

  14. Virtual mask digital electron beam lithography

    DOEpatents

    Baylor, Larry R.; Thomas, Clarence E.; Voelkl, Edgar; Moore, James A.; Simpson, Michael L.; Paulus, Michael J.

    1999-01-01

    Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made.

  15. Recording multiple spatially-heterodyned direct to digital holograms in one digital image

    DOEpatents

    Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN

    2008-03-25

    Systems and methods are described for recording multiple spatially-heterodyned direct to digital holograms in one digital image. A method includes digitally recording, at a first reference beam-object beam angle, a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram to sit on top of a first spatial-heterodyne carrier frequency defined by the first reference beam-object beam angle; digitally recording, at a second reference beam-object beam angle, a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram to sit on top of a second spatial-heterodyne carrier frequency defined by the second reference beam-object beam angle; applying a first digital filter to cut off signals around the first original origin and define a first result; performing a first inverse Fourier transform on the first result; applying a second digital filter to cut off signals around the second original origin and define a second result; and performing a second inverse Fourier transform on the second result, wherein the first reference beam-object beam angle is not equal to the second reference beam-object beam angle and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.

  16. Stability of the phase motion in race-track microtrons

    NASA Astrophysics Data System (ADS)

    Kubyshin, Yu. A.; Larreal, O.; Ramírez-Ros, R.; Seara, T. M.

    2017-06-01

    We model the phase oscillations of electrons in race-track microtrons by means of an area preserving map with a fixed point at the origin, which represents the synchronous trajectory of a reference particle in the beam. We study the nonlinear stability of the origin in terms of the synchronous phase -the phase of the synchronous particle at the injection. We estimate the size and shape of the stability domain around the origin, whose main connected component is enclosed by an invariant curve. We describe the evolution of the stability domain as the synchronous phase varies. We also clarify the role of the stable and unstable invariant curves of some hyperbolic (fixed or periodic) points.

  17. A synchronization method for wireless acquisition systems, application to brain computer interfaces.

    PubMed

    Foerster, M; Bonnet, S; van Langhenhove, A; Porcherot, J; Charvet, G

    2013-01-01

    A synchronization method for wireless acquisition systems has been developed and implemented on a wireless ECoG recording implant and on a wireless EEG recording helmet. The presented algorithm and hardware implementation allow the precise synchronization of several data streams from several sensor nodes for applications where timing is critical like in event-related potential (ERP) studies. The proposed method has been successfully applied to obtain visual evoked potentials and compared with a reference biosignal amplifier. The control over the exact sampling frequency allows reducing synchronization errors that will otherwise accumulate during a recording. The method is scalable to several sensor nodes communicating with a shared base station.

  18. The two-way time synchronization system via a satellite voice channel

    NASA Technical Reports Server (NTRS)

    Heng-Qiu, Zheng; Ren-Huan, Zhang; Yong-Hui, HU

    1994-01-01

    A newly developed two-way time synchronization system is described in this paper. The system uses one voice channel at a SCPC satellite digital communication earth station, whose bandwidth is only 45 kHz, thus saving satellite resources greatly. The system is composed of one master station and one or several, up to sixty-two, secondary stations. The master and secondary stations are equipped with the same equipment, including a set of timing equipment, a synthetic data terminal for time synchronizing, and a interface unit between the data terminal and the satellite earth station. The synthetic data terminal for time synchronization also has an IRIG-B code generator and a translator. The data terminal of master station is the key part of whole system. The system synchronization process is full automatic, which is controlled by the master station. Employing an autoscanning technique and conversational mode, the system accomplishes the following tasks: linking up liaison with each secondary station in turn, establishing a coarse time synchronization, calibrating date (years, months, days) and time of day (hours, minutes, seconds), precisely measuring the time difference between local station and the opposite station, exchanging measurement data, statistically processing the data, rejecting error terms, printing the data, calculating the clock difference and correcting the phase, thus realizing real-time synchronization from one point to multiple points. We also designed an adaptive phase circuit to eliminate the phase ambiguity of the PSK demodulator. The experiments have shown that the time synchronization accuracy is better than 2 mu S. The system has been put into regular operation.

  19. A Survey of the Usability of Digital Reference Services on Academic Health Science Library Web Sites

    ERIC Educational Resources Information Center

    Dee, Cheryl; Allen, Maryellen

    2006-01-01

    Reference interactions with patrons in a digital library environment using digital reference services (DRS) has become widespread. However, such services in many libraries appear to be underutilized. A study surveying the ease and convenience of such services for patrons in over 100 academic health science library Web sites suggests that…

  20. An Ideological Analysis of Digital Reference Service Models.

    ERIC Educational Resources Information Center

    Dilevko, Juris

    2001-01-01

    Looks at some of the new paradigms for reference service, in particular the ideological implications of the digital reference call-center model, demonstrates how they lead to a "deprofessionalization" of reference work, and provides examples of how extensive reading can help reference librarians provide better service and become an…

  1. Integrating Asynchronous Digital Design Into the Computer Engineering Curriculum

    ERIC Educational Resources Information Center

    Smith, S. C.; Al-Assadi, W. K.; Di, J.

    2010-01-01

    As demand increases for circuits with higher performance, higher complexity, and decreased feature size, asynchronous (clockless) paradigms will become more widely used in the semiconductor industry, as evidenced by the International Technology Roadmap for Semiconductors' (ITRS) prediction of a likely shift from synchronous to asynchronous design…

  2. Fast Clock Recovery for Digital Communications

    NASA Technical Reports Server (NTRS)

    Tell, R. G.

    1985-01-01

    Circuit extracts clock signal from random non-return-to-zero data stream, locking onto clock within one bit period at 1-gigabitper-second data rate. Circuit used for synchronization in opticalfiber communications. Derives speed from very short response time of gallium arsenide metal/semiconductor field-effect transistors (MESFET's).

  3. A Precision, Low-Cost GPS-Based Synchronization Scheme for Improved AM Reception.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Stephen Fulton; Moore, Anthony

    2009-01-01

    This paper describes a highly accurate carrier-frequency synchronization scheme for actively, automatically locking multiple, remotely located AM broadcast transmitters to a common frequency/timing reference source such as GPS. The extremely tight frequency lock (to ~1 part in 109 or better) permits the effective elimination of audible and even sub-audible beats between the local (desired) station s carrier signal and the distant stations carriers, usually received via skywave propagation during the evening and nighttime hours. These carrier-beat components cause annoying modulations of the desired station s audio at the receiver and concurrent distortion of the audio modulation from the distant station(s)more » and often cause listeners to tune out due to the poor reception quality. Significant reduction or elimination of the beats and related effects will greatly enlarge the effective (interference-limited) listening area of the desired station (from 4 to 10 times as indicated in our tests) and simultaneously reduce the corresponding interference of the local transmitter to the distant stations as well. In addition, AM stereo (CQUAM) reception will be particularly improved by minimizing the phase shifts induced by co-channel interfering signals; HD will also benefit via reduction in beats from analog signals. The automatic frequency-control hardware described is inexpensive ($1-2K), requires no periodic recalibration, has essentially zero long-term drift, and could employ alternate wide-area frequency references of suitable accuracy, including broadcasts from WWVB, LORAN-C, and equivalent sources. The basic configuration of the GPS-disciplined oscillator which solves this problem is extremely simple. The main oscillator is a conventional high-stability quartz-crystal type. To counter long-term drifts, the oscillator is slightly adjusted to track a high-precision source of standard frequency obtained from a specialized GPS receiver (or other source), usually at 10.000 MHz. This very stable local reference frequency is then used as a clock for a standard digitally implemented frequency synthesizer, which is programmed to generate the specific (AM broadcast) transmitter carrier frequency desired. The stability of the disciplining source, typically ~ 1 part in 109 to 1011, is thus transferred to the final AM transmitter carrier output frequency. Generally, an AM radio listener during the evening and nighttime hours, and to a lesser extent in the early morning, receives undesired skywave signals from several distant stations as well as the desired local (groundwave) signal. If all of these signals are within about 0.01-0.001 Hz of each other, any resulting carrier beats will be of such long periods that the beats will be effectively suppressed by the action of the receiver s AGC circuitry and thus be unnoticeable to the listener. Many modern, synthesizer-based transmitters can directly lock to the precision disciplined 10-MHz source, while older units usually require references at either1 e, 2 e, or 4 e the final frequency. In these latter cases, the existing transmitter crystal can usually be satisfactorily pulled via injection locking. The effectiveness of the synchronization concept to reduce interference effects was demonstrated in a laboratory test setup. Many hours of careful subjective listening were conducted, with the two interfering units both precisely on-frequency with the main unit (synchronous operation) and with the two interferers at various frequency offsets, from below 1 Hz to above 10 Hz.« less

  4. Video Guidance Sensors Using Remotely Activated Targets

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas C.; Howard, Richard T.; Book, Michael L.

    2004-01-01

    Four updated video guidance sensor (VGS) systems have been proposed. As described in a previous NASA Tech Briefs article, a VGS system is an optoelectronic system that provides guidance for automated docking of two vehicles. The VGS provides relative position and attitude (6-DOF) information between the VGS and its target. In the original intended application, the two vehicles would be spacecraft, but the basic principles of design and operation of the system are applicable to aircraft, robots, objects maneuvered by cranes, or other objects that may be required to be aligned and brought together automatically or under remote control. In the first two of the four VGS systems as now proposed, the tracked vehicle would include active targets that would light up on command from the tracking vehicle, and a video camera on the tracking vehicle would be synchronized with, and would acquire images of, the active targets. The video camera would also acquire background images during the periods between target illuminations. The images would be digitized and the background images would be subtracted from the illuminated-target images. Then the position and orientation of the tracked vehicle relative to the tracking vehicle would be computed from the known geometric relationships among the positions of the targets in the image, the positions of the targets relative to each other and to the rest of the tracked vehicle, and the position and orientation of the video camera relative to the rest of the tracking vehicle. The major difference between the first two proposed systems and prior active-target VGS systems lies in the techniques for synchronizing the flashing of the active targets with the digitization and processing of image data. In the prior active-target VGS systems, synchronization was effected, variously, by use of either a wire connection or the Global Positioning System (GPS). In three of the proposed VGS systems, the synchronizing signal would be generated on, and transmitted from, the tracking vehicle. In the first proposed VGS system, the tracking vehicle would transmit a pulse of light. Upon reception of the pulse, circuitry on the tracked vehicle would activate the target lights. During the pulse, the target image acquired by the camera would be digitized. When the pulse was turned off, the target lights would be turned off and the background video image would be digitized. The second proposed system would function similarly to the first proposed system, except that the transmitted synchronizing signal would be a radio pulse instead of a light pulse. In this system, the signal receptor would be a rectifying antenna. If the signal contained sufficient power, the output of the rectifying antenna could be used to activate the target lights, making it unnecessary to include a battery or other power supply for the targets on the tracked vehicle.

  5. Very High-Speed Digital Video Capability for In-Flight Use

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Tseng, Ting; Reaves, Matthew; Mauldin, Kendall; Whiteman, Donald

    2006-01-01

    digital video camera system has been qualified for use in flight on the NASA supersonic F-15B Research Testbed aircraft. This system is capable of very-high-speed color digital imaging at flight speeds up to Mach 2. The components of this system have been ruggedized and shock-mounted in the aircraft to survive the severe pressure, temperature, and vibration of the flight environment. The system includes two synchronized camera subsystems installed in fuselage-mounted camera pods (see Figure 1). Each camera subsystem comprises a camera controller/recorder unit and a camera head. The two camera subsystems are synchronized by use of an MHub(TradeMark) synchronization unit. Each camera subsystem is capable of recording at a rate up to 10,000 pictures per second (pps). A state-of-the-art complementary metal oxide/semiconductor (CMOS) sensor in the camera head has a maximum resolution of 1,280 1,024 pixels at 1,000 pps. Exposure times of the electronic shutter of the camera range from 1/200,000 of a second to full open. The recorded images are captured in a dynamic random-access memory (DRAM) and can be downloaded directly to a personal computer or saved on a compact flash memory card. In addition to the high-rate recording of images, the system can display images in real time at 30 pps. Inter Range Instrumentation Group (IRIG) time code can be inserted into the individual camera controllers or into the M-Hub unit. The video data could also be used to obtain quantitative, three-dimensional trajectory information. The first use of this system was in support of the Space Shuttle Return to Flight effort. Data were needed to help in understanding how thermally insulating foam is shed from a space shuttle external fuel tank during launch. The cameras captured images of simulated external tank debris ejected from a fixture mounted under the centerline of the F-15B aircraft. Digital video was obtained at subsonic and supersonic flight conditions, including speeds up to Mach 2 and altitudes up to 50,000 ft (15.24 km). The digital video was used to determine the structural survivability of the debris in a real flight environment and quantify the aerodynamic trajectories of the debris.

  6. Interpersonal synergies: static prehension tasks performed by two actors.

    PubMed

    Solnik, Stanislaw; Reschechtko, Sasha; Wu, Yen-Hsun; Zatsiorsky, Vladimir M; Latash, Mark L

    2016-08-01

    We investigated multidigit synergies stabilizing components of the resultant force vector during joint performance of a static prehension task by two persons as compared to similar tasks performed by a single person using both hands. Subjects transferred the instrumented handle from the right hand to the left hand (one-person condition) or passed that handle to another person (two-person condition) while keeping the handle's position and orientation stationary. Only three digits were involved per hand, the thumb, the index finger, and the middle finger; the forces and moments produced by the digits were measured by six-component sensors. We estimated the performance-stabilizing synergies within the uncontrolled manifold framework by quantifying the intertrial variance structure of digit forces and moments. The analysis was performed at three levels: between hands, between virtual finger and virtual thumb (imagined digits producing the same mechanical variables as the corresponding actual digits combined) produced by the two hands (in both interpersonal and intrapersonal conditions), and between the thumb and virtual finger for one hand only. Additionally, we performed correlation and phase synchronization analyses of resultant tangential forces and internal normal forces. Overall, the one-person conditions were characterized by higher amount of intertrial variance that did not affect resultant normal force components, higher internal components of normal forces, and stronger synchronization of the normal forces generated by the hands. Our observations suggest that in two-person tasks, when participants try to achieve a common mechanical outcome, the performance-stabilizing synergies depend on non-visual information exchange, possibly via the haptic and proprioceptive systems. Therefore, synergies quantified in tasks using visual feedback only may not be generalizable to more natural tasks.

  7. Power Quality Improvement by Unified Power Quality Conditioner Based on CSC Topology Using Synchronous Reference Frame Theory

    PubMed Central

    Dharmalingam, Rajasekaran; Dash, Subhransu Sekhar; Senthilnathan, Karthikrajan; Mayilvaganan, Arun Bhaskar; Chinnamuthu, Subramani

    2014-01-01

    This paper deals with the performance of unified power quality conditioner (UPQC) based on current source converter (CSC) topology. UPQC is used to mitigate the power quality problems like harmonics and sag. The shunt and series active filter performs the simultaneous elimination of current and voltage problems. The power fed is linked through common DC link and maintains constant real power exchange. The DC link is connected through the reactor. The real power supply is given by the photovoltaic system for the compensation of power quality problems. The reference current and voltage generation for shunt and series converter is based on phase locked loop and synchronous reference frame theory. The proposed UPQC-CSC design has superior performance for mitigating the power quality problems. PMID:25013854

  8. Power quality improvement by unified power quality conditioner based on CSC topology using synchronous reference frame theory.

    PubMed

    Dharmalingam, Rajasekaran; Dash, Subhransu Sekhar; Senthilnathan, Karthikrajan; Mayilvaganan, Arun Bhaskar; Chinnamuthu, Subramani

    2014-01-01

    This paper deals with the performance of unified power quality conditioner (UPQC) based on current source converter (CSC) topology. UPQC is used to mitigate the power quality problems like harmonics and sag. The shunt and series active filter performs the simultaneous elimination of current and voltage problems. The power fed is linked through common DC link and maintains constant real power exchange. The DC link is connected through the reactor. The real power supply is given by the photovoltaic system for the compensation of power quality problems. The reference current and voltage generation for shunt and series converter is based on phase locked loop and synchronous reference frame theory. The proposed UPQC-CSC design has superior performance for mitigating the power quality problems.

  9. Confocal retinal imaging using a digital light projector with a near infrared VCSEL source

    NASA Astrophysics Data System (ADS)

    Muller, Matthew S.; Elsner, Ann E.

    2018-02-01

    A custom near infrared VCSEL source has been implemented in a confocal non-mydriatic retinal camera, the Digital Light Ophthalmoscope (DLO). The use of near infrared light improves patient comfort, avoids pupil constriction, penetrates the deeper retina, and does not mask visual stimuli. The DLO performs confocal imaging by synchronizing a sequence of lines displayed with a digital micromirror device to the rolling shutter exposure of a 2D CMOS camera. Real-time software adjustments enable multiply scattered light imaging, which rapidly and cost-effectively emphasizes drusen and other scattering disruptions in the deeper retina. A separate 5.1" LCD display provides customizable visible stimuli for vision experiments with simultaneous near infrared imaging.

  10. A digitally implemented preambleless demodulator for maritime and mobile data communications

    NASA Astrophysics Data System (ADS)

    Chalmers, Harvey; Shenoy, Ajit; Verahrami, Farhad B.

    The hardware design and software algorithms for a low-bit-rate, low-cost, all-digital preambleless demodulator are described. The demodulator operates under severe high-noise conditions, fast Doppler frequency shifts, large frequency offsets, and multipath fading. Sophisticated algorithms, including a fast Fourier transform (FFT)-based burst acquisition algorithm, a cycle-slip resistant carrier phase tracker, an innovative Doppler tracker, and a fast acquisition symbol synchronizer, were developed and extensively simulated for reliable burst reception. The compact digital signal processor (DSP)-based demodulator hardware uses a unique personal computer test interface for downloading test data files. The demodulator test results demonstrate a near-ideal performance within 0.2 dB of theory.

  11. Evaluation of Speech Intelligibility and Sound Localization Abilities with Hearing Aids Using Binaural Wireless Technology.

    PubMed

    Ibrahim, Iman; Parsa, Vijay; Macpherson, Ewan; Cheesman, Margaret

    2013-01-02

    Wireless synchronization of the digital signal processing (DSP) features between two hearing aids in a bilateral hearing aid fitting is a fairly new technology. This technology is expected to preserve the differences in time and intensity between the two ears by co-ordinating the bilateral DSP features such as multichannel compression, noise reduction, and adaptive directionality. The purpose of this study was to evaluate the benefits of wireless communication as implemented in two commercially available hearing aids. More specifically, this study measured speech intelligibility and sound localization abilities of normal hearing and hearing impaired listeners using bilateral hearing aids with wireless synchronization of multichannel Wide Dynamic Range Compression (WDRC). Twenty subjects participated; 8 had normal hearing and 12 had bilaterally symmetrical sensorineural hearing loss. Each individual completed the Hearing in Noise Test (HINT) and a sound localization test with two types of stimuli. No specific benefit from wireless WDRC synchronization was observed for the HINT; however, hearing impaired listeners had better localization with the wireless synchronization. Binaural wireless technology in hearing aids may improve localization abilities although the possible effect appears to be small at the initial fitting. With adaptation, the hearing aids with synchronized signal processing may lead to an improvement in localization and speech intelligibility. Further research is required to demonstrate the effect of adaptation to the hearing aids with synchronized signal processing on different aspects of auditory performance.

  12. Phase-locked-loop interferometry applied to aspheric testing with a computer-stored compensator.

    PubMed

    Servin, M; Malacara, D; Rodriguez-Vera, R

    1994-05-01

    A recently developed technique for continuous-phase determination of interferograms with a digital phase-locked loop (PLL) is applied to the null testing of aspheres. Although this PLL demodulating scheme is also a synchronous or direct interferometric technique, the separate unwrapping process is not explicitly required. The unwrapping and the phase-detection processes are achieved simultaneously within the PLL. The proposed method uses a computer-generated holographic compensator. The holographic compensator does not need to be printed out by any means; it is calculated and used from the computer. This computer-stored compensator is used as the reference signal to phase demodulate a sample interferogram obtained from the asphere being tested. Consequently the demodulated phase contains information about the wave-front departures from the ideal computer-stored aspheric interferogram. Wave-front differences of ~ 1 λ are handled easily by the proposed PLL scheme. The maximum recorded frequency in the template's interferogram as well as in the sampled interferogram are assumed to be below the Nyquist frequency.

  13. Accurate Time/Frequency Transfer Method Using Bi-Directional WDM Transmission

    NASA Technical Reports Server (NTRS)

    Imaoka, Atsushi; Kihara, Masami

    1996-01-01

    An accurate time transfer method is proposed using b-directional wavelength division multiplexing (WDM) signal transmission along a single optical fiber. This method will be used in digital telecommunication networks and yield a time synchronization accuracy of better than 1 ns for long transmission lines over several tens of kilometers. The method can accurately measure the difference in delay between two wavelength signals caused by the chromatic dispersion of the fiber in conventional simple bi-directional dual-wavelength frequency transfer methods. We describe the characteristics of this difference in delay and then show that the accuracy of the delay measurements can be obtained below 0.1 ns by transmitting 156 Mb/s times reference signals of 1.31 micrometer and 1.55 micrometers along a 50 km fiber using the proposed method. The sub-nanosecond delay measurement using the simple bi-directional dual-wavelength transmission along a 100 km fiber with a wavelength spacing of 1 nm in the 1.55 micrometer range is also shown.

  14. Development of a Distributed Digital Array Radar (DDAR)

    DTIC Science & Technology

    2008-09-01

    likely HF or VHF). The availability of COTS hardware and the fact that no license is needed for operating in the 2.4 GHz and 5 GHz bands is the reason for...synchronization, geolocation and wireless communication in a shipboard opportunistic array,” Master’s thesis, Naval Postgraduate School, Monterey, California

  15. Montage: Improvising in the Land of Action Research

    ERIC Educational Resources Information Center

    Windle, Sheila; Sefton, Terry

    2011-01-01

    This paper and its appended multi-media production describe the rationale and process of creating and presenting a "digitally saturated" (Lankshear & Knobel, 2003), multi-layered, synchronous "montage" (Denzin & Lincoln, 2003) of educational Action Research findings. The authors contend that this type of presentation, arising from the fusion of…

  16. Vertical Hegelianism and Beyond: Digital Cinema Editing.

    ERIC Educational Resources Information Center

    Wyatt, Roger B.

    Cinema as an art and communication form is entering its second century of development. Sergei Eisenstein conceived of editing in horizontal and vertical terms. He saw vertical editing patterns primarily as the synchronization of simultaneous image and sound elements, particularly music, no create cinematic meaning by means of the relationship…

  17. A Novel Technology to Investigate Students' Understandings of Enzyme Representations

    ERIC Educational Resources Information Center

    Linenberger, Kimberly J.; Bretz, Stacey Lowery

    2012-01-01

    Digital pen-and-paper technology, although marketed commercially as a bridge between old and new note-taking capabilities, synchronizes the collection of both written and audio data. This manuscript describes how this technology was used to improve data collection in research regarding students' learning, specifically their understanding of…

  18. Amplitude Frequency Response Measurement: A Simple Technique

    ERIC Educational Resources Information Center

    Satish, L.; Vora, S. C.

    2010-01-01

    A simple method is described to combine a modern function generator and a digital oscilloscope to configure a setup that can directly measure the amplitude frequency response of a system. This is achieved by synchronously triggering both instruments, with the function generator operated in the "Linear-Sweep" frequency mode, while the oscilloscope…

  19. Advances in Online Developmental Education: An Accelerated, Synchronous Approach at Rasmussen College

    ERIC Educational Resources Information Center

    Doherty, Brooks

    2016-01-01

    Driven by faculty-based action research, redesigned residential and online courses, and changes to placement testing, Rasmussen College increased its developmental education pass rates by double digits while decreasing the number and percentage of students who require remedial coursework. Like many institutions of higher education, Rasmussen…

  20. DESDynI Quad First Stage Processor - A Four Channel Digitizer and Digital Beam Forming Processor

    NASA Technical Reports Server (NTRS)

    Chuang, Chung-Lun; Shaffer, Scott; Smythe, Robert; Niamsuwan, Noppasin; Li, Samuel; Liao, Eric; Lim, Chester; Morfopolous, Arin; Veilleux, Louise

    2013-01-01

    The proposed Deformation, Eco-Systems, and Dynamics of Ice Radar (DESDynI-R) L-band SAR instrument employs multiple digital channels to optimize resolution while keeping a large swath on a single pass. High-speed digitization with very fine synchronization and digital beam forming are necessary in order to facilitate this new technique. The Quad First Stage Processor (qFSP) was developed to achieve both the processing performance as well as the digitizing fidelity in order to accomplish this sweeping SAR technique. The qFSP utilizes high precision and high-speed analog to digital converters (ADCs), each with a finely adjustable clock distribution network to digitize the channels at the fidelity necessary to allow for digital beam forming. The Xilinx produced FX130T Virtex 5 part handles the processing to digitally calibrate each channel as well as filter and beam form the receive signals. Demonstrating the digital processing required for digital beam forming and digital calibration is instrumental to the viability of the proposed DESDynI instrument. The qFSP development brings this implementation to Technology Readiness Level (TRL) 6. This paper will detail the design and development of the prototype qFSP as well as the preliminary results from hardware tests.

  1. Gait-Event-Based Synchronization Method for Gait Rehabilitation Robots via a Bioinspired Adaptive Oscillator.

    PubMed

    Chen, Gong; Qi, Peng; Guo, Zhao; Yu, Haoyong

    2017-06-01

    In the field of gait rehabilitation robotics, achieving human-robot synchronization is very important. In this paper, a novel human-robot synchronization method using gait event information is proposed. This method includes two steps. First, seven gait events in one gait cycle are detected in real time with a hidden Markov model; second, an adaptive oscillator is utilized to estimate the stride percentage of human gait using any one of the gait events. Synchronous reference trajectories for the robot are then generated with the estimated stride percentage. This method is based on a bioinspired adaptive oscillator, which is a mathematical tool, first proposed to explain the phenomenon of synchronous flashing among fireflies. The proposed synchronization method is implemented in a portable knee-ankle-foot robot and tested in 15 healthy subjects. This method has the advantages of simple structure, flexible selection of gait events, and fast adaptation. Gait event is the only information needed, and hence the performance of synchronization holds when an abnormal gait pattern is involved. The results of the experiments reveal that our approach is efficient in achieving human-robot synchronization and feasible for rehabilitation robotics application.

  2. Electric field measuring and display system. [for cloud formations

    NASA Technical Reports Server (NTRS)

    Wojtasinski, R. J.; Lovall, D. D. (Inventor)

    1974-01-01

    An apparatus is described for monitoring the electric fields of cloud formations within a particular area. It utilizes capacitor plates that are alternately shielded from the clouds for generating an alternating signal corresponding to the intensity of the electric field of the clouds. A synchronizing signal is produced for controlling sampling of the alternating signal. Such samplings are fed through a filter and converted by an analogue to digital converter into digital form and subsequently fed to a transmitter for transmission to the control station for recording.

  3. Television animation store: Recording pictures on a parallel transfer magnetic disc

    NASA Astrophysics Data System (ADS)

    Durey, A. J.

    1984-12-01

    The recording and replaying of digital video signals using a computer-type magnetic disc-drive as part of an electronic rostrum camera animation system is described. The system was developed to enable picture sequences to be generated directly as television signals, instead of using cine film. The characteristics of the disc-drive are described together with data processing, error protection and signal synchronization systems, which enable digital television YUV component signals, sampled at 12 MHz, 4 MHz and 4 MHz respectively, to be recorded and replayed in real time.

  4. 47 CFR 52.7 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Administration § 52.7 Definitions. As used in this subpart: (a) Area code or numbering plan area (NPA). The term “area code or numbering plan area” refers to the first three digits (NXX) of a ten-digit telephone... “central office code” refers to the second three digits (NXX) of a ten-digit telephone number in the form...

  5. 47 CFR 52.7 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Administration § 52.7 Definitions. As used in this subpart: (a) Area code or numbering plan area (NPA). The term “area code or numbering plan area” refers to the first three digits (NXX) of a ten-digit telephone... “central office code” refers to the second three digits (NXX) of a ten-digit telephone number in the form...

  6. 47 CFR 52.7 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Administration § 52.7 Definitions. As used in this subpart: (a) Area code or numbering plan area (NPA). The term “area code or numbering plan area” refers to the first three digits (NXX) of a ten-digit telephone... “central office code” refers to the second three digits (NXX) of a ten-digit telephone number in the form...

  7. 47 CFR 52.7 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Administration § 52.7 Definitions. As used in this subpart: (a) Area code or numbering plan area (NPA). The term “area code or numbering plan area” refers to the first three digits (NXX) of a ten-digit telephone... “central office code” refers to the second three digits (NXX) of a ten-digit telephone number in the form...

  8. Synchronous response modelling and control of an annular momentum control device

    NASA Astrophysics Data System (ADS)

    Hockney, Richard; Johnson, Bruce G.; Misovec, Kathleen

    1988-08-01

    Research on the synchronous response modelling and control of an advanced Annular Momentun Control Device (AMCD) used to control the attitude of a spacecraft is described. For the flexible rotor AMCD, two sources of synchronous vibrations were identified. One source, which corresponds to the mass unbalance problem of rigid rotors suspended in conventional bearings, is caused by measurement errors of the rotor center of mass position. The other sources of synchronous vibrations is misalignment between the hub and flywheel masses of the AMCD. Four different control algorithms were examined. These were lead-lag compensators that mimic conventional bearing dynamics, tracking notch filters used in the feedback loop, tracking differential-notch filters, and model-based compensators. The tracking differential-notch filters were shown to have a number of advantages over more conventional approaches for both rigid-body rotor applications and flexible rotor applications such as the AMCD. Hardware implementation schemes for the tracking differential-notch filter were investigated. A simple design was developed that can be implemented with analog multipliers and low bandwidth, digital hardware.

  9. Synchronous response modelling and control of an annular momentum control device

    NASA Technical Reports Server (NTRS)

    Hockney, Richard; Johnson, Bruce G.; Misovec, Kathleen

    1988-01-01

    Research on the synchronous response modelling and control of an advanced Annular Momentun Control Device (AMCD) used to control the attitude of a spacecraft is described. For the flexible rotor AMCD, two sources of synchronous vibrations were identified. One source, which corresponds to the mass unbalance problem of rigid rotors suspended in conventional bearings, is caused by measurement errors of the rotor center of mass position. The other sources of synchronous vibrations is misalignment between the hub and flywheel masses of the AMCD. Four different control algorithms were examined. These were lead-lag compensators that mimic conventional bearing dynamics, tracking notch filters used in the feedback loop, tracking differential-notch filters, and model-based compensators. The tracking differential-notch filters were shown to have a number of advantages over more conventional approaches for both rigid-body rotor applications and flexible rotor applications such as the AMCD. Hardware implementation schemes for the tracking differential-notch filter were investigated. A simple design was developed that can be implemented with analog multipliers and low bandwidth, digital hardware.

  10. A 20fs synchronization system for lasers and cavities in accelerators and FELs

    NASA Astrophysics Data System (ADS)

    Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Huang, G.; Staples, J. W.

    2010-02-01

    A fiber-optic RF distribution system has been developed for synchronizing lasers and RF plants in short pulse FELs. Typical requirements are 50-100fs rms over time periods from 1ms to several hours. Our system amplitude modulates a CW laser signal, senses fiber length using an interferometer, and feed-forward corrects the RF phase digitally at the receiver. We demonstrate less than 15fs rms error over 12 hours, between two independent channels with a fiber path length difference of 200m and transmitting S-band RF. The system is constructed using standard telecommunications components, and uses regular telecom fiber.

  11. Receptors as a master key for synchronization of rhythms

    NASA Astrophysics Data System (ADS)

    Nagano, Seido

    2004-03-01

    A simple, but general scheme to achieve synchronization of rhythms was derived. The scheme has been inductively generalized from the modelling study of cellular slime mold. It was clarified that biological receptors work as apparatuses that can convert external stimulus to the form of nonlinear interaction within individual oscillators. Namely, the mathematical model receptor works as a nonlinear coupling apparatus between nonlinear oscillators. Thus, synchronization is achieved as a result of competition between two kinds of non-linearities, and to achieve synchronization, even a small external stimulation via model receptors can change the characteristics of individual oscillators significantly. The derived scheme is very simple mathematically, but it is a very powerful scheme as numerically demonstrated. The biological receptor scheme should significantly help understanding of synchronization phenomena in biology since groups of limit cycle oscillators and receptors are ubiquitous in biological systems. Reference: S. Nagano, Phys Rev. E67, 056215(2003)

  12. Tree seed traits' response to monsoon climate and altitude in Indian subcontinent with particular reference to the Himalayas.

    PubMed

    Singh, Surendra P; Phartyal, Shyam S; Rosbakh, Sergey

    2017-09-01

    Seed traits are related to several ecological attributes of a plant species, including its distribution. While the storage physiology of desiccation-sensitive seeds has drawn considerable attention, their ecology has remained sidelined, particularly how the strong seasonality of precipitation in monsoonal climate affects their temporal and spatial distribution. We compiled data on seed mass, seed desiccation behavior, seed shedding, and germination periodicity in relation to monsoon and altitude for 198 native tree species of Indian Himalayas and adjoining plains to find out (1) the adaptive significance of seed mass and seed desiccation behavior in relation to monsoon and (2) the pattern of change in seed mass in relation to altitude, habitat moisture, and succession. The tree species fall into three categories with respect to seed shedding and germination periodicities: (1) species in which both seed shedding and germination are synchronized with monsoon, referred to as monsoon-synchronized (MS, 46 species); (2) species in which seed germination is synchronized with monsoon, but seeds are shed several months before monsoon, referred to as partially monsoon-synchronized (PMS, 112 species); and (3) species in which both shedding and germination occur outside of monsoon months, referred to as monsoon-desynchronized (MD, 39 species). The seed mass of MS species (1,718 mg/seed) was greater than that of PMS (627 mg/seed) and MD (1,144 mg/seed). Of the 40 species with desiccation-sensitive seeds, 45% belong to the MS category, almost similar (approx. 47%) to woody plants with desiccation-sensitive seeds in evergreen rain forests. Seed mass differed significantly as per seed desiccation behavior and successional stage. No relationship of seed mass was found with altitude alone and on the basis of seed desiccation behavior. However, seed mass trend along the altitude differed among monsoon synchronization strategies. Based on our findings, we conclude that in the predicted climate change (warming and uncertain precipitation pattern) scenario, a delay or prolonged break-spell of monsoon may adversely affect the regeneration ecology of desiccation-sensitive seed-bearing species dominant over large forest areas of monsoonal climate.

  13. Simultaneously precise frequency transfer and time synchronization using feed-forward compensation technique via 120 km fiber link.

    PubMed

    Chen, Xing; Lu, Jinlong; Cui, Yifan; Zhang, Jian; Lu, Xing; Tian, Xusheng; Ci, Cheng; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang

    2015-12-22

    Precision time synchronization between two remote sites is desired in many applications such as global positioning satellite systems, long-baseline interferometry, coherent radar detection and fundamental physics constant measurements. The recently developed frequency dissemination technologies based on optical fiber link have improved the transfer instability to the level of 10(-19)/day at remote location. Therefore it is possible to keep clock oscillation at remote locations continuously corrected, or to reproduce a "virtual" clock on the remote location. However the initial alignment and the correction of 1 pps timing signal from time to time are still required, besides the highly stabilized clock frequency transfer between distant locations. Here we demonstrate a time synchronization based on an ultra-stable frequency transfer system via 120-km commercial fiber link by transferring an optical frequency comb. Both the phase noise compensation in frequency dissemination and temporal basis alignment in time synchronization were implemented by a feed-forward digital compensation (FFDC) technique. The fractional frequency instability was measured to be 6.18 × 10(-20) at 2000 s. The timing deviation of time synchronization was measured to be 0.6 ps in 1500 s. This technique also can be applied in multi-node fiber network topology.

  14. Simultaneously precise frequency transfer and time synchronization using feed-forward compensation technique via 120 km fiber link

    PubMed Central

    Chen, Xing; Lu, Jinlong; Cui, Yifan; Zhang, Jian; Lu, Xing; Tian, Xusheng; Ci, Cheng; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang

    2015-01-01

    Precision time synchronization between two remote sites is desired in many applications such as global positioning satellite systems, long-baseline interferometry, coherent radar detection and fundamental physics constant measurements. The recently developed frequency dissemination technologies based on optical fiber link have improved the transfer instability to the level of 10−19/day at remote location. Therefore it is possible to keep clock oscillation at remote locations continuously corrected, or to reproduce a “virtual” clock on the remote location. However the initial alignment and the correction of 1 pps timing signal from time to time are still required, besides the highly stabilized clock frequency transfer between distant locations. Here we demonstrate a time synchronization based on an ultra-stable frequency transfer system via 120-km commercial fiber link by transferring an optical frequency comb. Both the phase noise compensation in frequency dissemination and temporal basis alignment in time synchronization were implemented by a feed-forward digital compensation (FFDC) technique. The fractional frequency instability was measured to be 6.18 × 10−20 at 2000 s. The timing deviation of time synchronization was measured to be 0.6 ps in 1500 s. This technique also can be applied in multi-node fiber network topology. PMID:26691731

  15. Shedding light on some possible remedies against watermark desynchronization: a case study

    NASA Astrophysics Data System (ADS)

    Barni, Mauro

    2005-03-01

    Watermark de-synchronization is perhaps the most dangerous attack against the great majority of watermarking systems proposed so far. Exhaustive search and template matching are two of the most popular solution against it, however several doubts exist about their effectiveness. As a matter of fact, a controversial point in digital watermarking is whether these techniques are of any help to cope with watermark de-synchronization introduced by geometric attacks. On one side, watermark synchronization through exhaustive search dramatically increases the false detection probability. On the other side, for the template matching approach the probability of a synchronization error must be taken into account, thus deteriorating significantly the performance of the system. It is the scope of this paper to shed some light on the above points. To do so we focus on a very simple case study, whereby we show that as long as the size of the search space (the cardinality of the geometric attack) increases polynomially with the length of the to-be-marked host feature sequence, both methods provide an effective solution to the de-synchronization problem. Interestingly, and rather surprisingly, we also show that Exhaustive Search Detection (ESD) always outperforms Template Matching Detection (TMD), though the general behavior of the two schemes is rather similar.

  16. Performance study for a set of BLUE based Filters applied to amplitude estimation using as a reference the single photoelectron signal of the ν-Angra Experiment

    NASA Astrophysics Data System (ADS)

    Souza, D. M.; Costa, I. A.; Nóbrega, R. A.

    2017-10-01

    This document presents a detailed study of the performance of a set of digital filters whose implementations are based on the best linear unbiased estimator theory interpreted as a constrained optimization problem that could be relaxed depending on the input signal characteristics. This approach has been employed by a number of recent particle physics experiments for measuring the energy of particle events interacting with their detectors. The considered filters have been designed to measure the peak amplitude of signals produced by their detectors based on the digitized version of such signals. This study provides a clear understanding of the characteristics of those filters in the context of particle physics and, additionally, it proposes a phase related constraint based on the second derivative of the Taylor expansion in order to make the estimator less sensitive to phase variation (phase between the analog signal shaping and its sampled version), which is stronger in asynchronous experiments. The asynchronous detector developed by the ν-Angra Collaboration is used as the basis for this work. Nevertheless, the proposed analysis goes beyond, considering a wide range of conditions related to signal parameters such as pedestal, phase, sampling rate, amplitude resolution, noise and pile-up; therefore crossing the bounds of the ν-Angra Experiment to make it interesting and useful for different asynchronous and even synchronous experiments.

  17. Photogrammetry and ballistic analysis of a high-flying projectile in the STS-124 space shuttle launch

    NASA Astrophysics Data System (ADS)

    Metzger, Philip T.; Lane, John E.; Carilli, Robert A.; Long, Jason M.; Shawn, Kathy L.

    2010-07-01

    A method combining photogrammetry with ballistic analysis is demonstrated to identify flying debris in a rocket launch environment. Debris traveling near the STS-124 Space Shuttle was captured on cameras viewing the launch pad within the first few seconds after launch. One particular piece of debris caught the attention of investigators studying the release of flame trench fire bricks because its high trajectory could indicate a flight risk to the Space Shuttle. Digitized images from two pad perimeter high-speed 16-mm film cameras were processed using photogrammetry software based on a multi-parameter optimization technique. Reference points in the image were found from 3D CAD models of the launch pad and from surveyed points on the pad. The three-dimensional reference points were matched to the equivalent two-dimensional camera projections by optimizing the camera model parameters using a gradient search optimization technique. Using this method of solving the triangulation problem, the xyz position of the object's path relative to the reference point coordinate system was found for every set of synchronized images. This trajectory was then compared to a predicted trajectory while performing regression analysis on the ballistic coefficient and other parameters. This identified, with a high degree of confidence, the object's material density and thus its probable origin within the launch pad environment. Future extensions of this methodology may make it possible to diagnose the underlying causes of debris-releasing events in near-real time, thus improving flight safety.

  18. Use of Web 2.0 Technologies to Enhance Learning Experiences in Alternative School Settings

    ERIC Educational Resources Information Center

    Karahan, Engin; Roehrig, Gillian

    2016-01-01

    As the learning paradigms are shifting to include various forms of digital technologies such as synchronous, asynchronous, and interactive methods, social networking technologies have been introduced to the educational settings in order to increase the quality of learning environments. The literature suggests that effective application of these…

  19. Confocal Retinal Imaging Using a Digital Light Projector with a Near Infrared VCSEL Source

    PubMed Central

    Muller, Matthew S.; Elsner, Ann E.

    2018-01-01

    A custom near infrared VCSEL source has been implemented in a confocal non-mydriatic retinal camera, the Digital Light Ophthalmoscope (DLO). The use of near infrared light improves patient comfort, avoids pupil constriction, penetrates the deeper retina, and does not mask visual stimuli. The DLO performs confocal imaging by synchronizing a sequence of lines displayed with a digital micromirror device to the rolling shutter exposure of a 2D CMOS camera. Real-time software adjustments enable multiply scattered light imaging, which rapidly and cost-effectively emphasizes drusen and other scattering disruptions in the deeper retina. A separate 5.1″ LCD display provides customizable visible stimuli for vision experiments with simultaneous near infrared imaging. PMID:29899586

  20. Robust Timing Synchronization in Aeronautical Mobile Communication Systems

    NASA Technical Reports Server (NTRS)

    Xiong, Fu-Qin; Pinchak, Stanley

    2004-01-01

    This work details a study of robust synchronization schemes suitable for satellite to mobile aeronautical applications. A new scheme, the Modified Sliding Window Synchronizer (MSWS), is devised and compared with existing schemes, including the traditional Early-Late Gate Synchronizer (ELGS), the Gardner Zero-Crossing Detector (GZCD), and the Sliding Window Synchronizer (SWS). Performance of the synchronization schemes is evaluated by a set of metrics that indicate performance in digital communications systems. The metrics are convergence time, mean square phase error (or root mean-square phase error), lowest SNR for locking, initial frequency offset performance, midstream frequency offset performance, and system complexity. The performance of the synchronizers is evaluated by means of Matlab simulation models. A simulation platform is devised to model the satellite to mobile aeronautical channel, consisting of a Quadrature Phase Shift Keying modulator, an additive white Gaussian noise channel, and a demodulator front end. Simulation results show that the MSWS provides the most robust performance at the cost of system complexity. The GZCD provides a good tradeoff between robustness and system complexity for communication systems that require high symbol rates or low overall system costs. The ELGS has a high system complexity despite its average performance. Overall, the SWS, originally designed for multi-carrier systems, performs very poorly in single-carrier communications systems. Table 5.1 in Section 5 provides a ranking of each of the synchronization schemes in terms of the metrics set forth in Section 4.1. Details of comparison are given in Section 5. Based on the results presented in Table 5, it is safe to say that the most robust synchronization scheme examined in this work is the high-sample-rate Modified Sliding Window Synchronizer. A close second is its low-sample-rate cousin. The tradeoff between complexity and lowest mean-square phase error determines the rankings of the Gardner Zero-Crossing Detector and both versions of the Early-Late Gate Synchronizer. The least robust models are the high and low-sample-rate Sliding Window Synchronizers. Consequently, the recommended replacement synchronizer for NASA's Advanced Air Transportation Technologies mobile aeronautical communications system is the high-sample-rate Modified Sliding Window Synchronizer. By incorporating this synchronizer into their system, NASA can be assured that their system will be operational in extremely adverse conditions. The quick convergence time of the MSWS should allow the use of high-level protocols. However, if NASA feels that reduced system complexity is the most important aspect of their replacement synchronizer, the Gardner Zero-Crossing Detector would be the best choice.

  1. Microprocessor-based integration of microfluidic control for the implementation of automated sensor monitoring and multithreaded optimization algorithms.

    PubMed

    Ezra, Elishai; Maor, Idan; Bavli, Danny; Shalom, Itai; Levy, Gahl; Prill, Sebastian; Jaeger, Magnus S; Nahmias, Yaakov

    2015-08-01

    Microfluidic applications range from combinatorial synthesis to high throughput screening, with platforms integrating analog perfusion components, digitally controlled micro-valves and a range of sensors that demand a variety of communication protocols. Currently, discrete control units are used to regulate and monitor each component, resulting in scattered control interfaces that limit data integration and synchronization. Here, we present a microprocessor-based control unit, utilizing the MS Gadgeteer open framework that integrates all aspects of microfluidics through a high-current electronic circuit that supports and synchronizes digital and analog signals for perfusion components, pressure elements, and arbitrary sensor communication protocols using a plug-and-play interface. The control unit supports an integrated touch screen and TCP/IP interface that provides local and remote control of flow and data acquisition. To establish the ability of our control unit to integrate and synchronize complex microfluidic circuits we developed an equi-pressure combinatorial mixer. We demonstrate the generation of complex perfusion sequences, allowing the automated sampling, washing, and calibrating of an electrochemical lactate sensor continuously monitoring hepatocyte viability following exposure to the pesticide rotenone. Importantly, integration of an optical sensor allowed us to implement automated optimization protocols that require different computational challenges including: prioritized data structures in a genetic algorithm, distributed computational efforts in multiple-hill climbing searches and real-time realization of probabilistic models in simulated annealing. Our system offers a comprehensive solution for establishing optimization protocols and perfusion sequences in complex microfluidic circuits.

  2. Digital Collections, Digital Libraries & the Digitization of Cultural Heritage Information.

    ERIC Educational Resources Information Center

    Lynch, Clifford

    2002-01-01

    Discusses digital collections and digital libraries. Topics include broadband availability; digital rights protection; content, both non-profit and commercial; digitization of cultural content; sustainability; metadata harvesting protocol; infrastructure; authorship; linking multiple resources; data mining; digitization of reference works;…

  3. A device for synchronizing biomechanical data with cine film.

    PubMed

    Rome, L C

    1995-03-01

    Biomechanists are faced with two problems in synchronizing continuous physiological data to discrete, frame-based kinematic data from films. First, the accuracy of most synchronization techniques is good only to one frame and hence depends on framing rate. Second, even if perfectly correlated at the beginning of a 'take', the film and physiological data may become progressively desynchronized as the 'take' proceeds. A system is described, which provides synchronization between cine film and continuous physiological data with an accuracy of +/- 0.2 ms, independent of framing rate and the duration of the film 'take'. Shutter pulses from the camera were output to a computer recording system where they were recorded and counted, and to a digital device which counted the pulses and illuminated the count on the bank of LEDs which was filmed with the subject. Synchronization was performed by using the rising edge of the shutter pulse and by comparing the frame number imprinted on the film to the frame number recorded by the computer system. In addition to providing highly accurate synchronization over long film 'takes', this system provides several other advantages. First, having frame numbers imprinted both on the film and computer record greatly facilitates analysis. Second, the LEDs were designed to show the 'take number' while the camera is coming up to speed, thereby avoiding the use of cue cards which disturb the animal. Finally, use of this device results in considerable savings in film.

  4. Evaluation of Speech Intelligibility and Sound Localization Abilities with Hearing Aids Using Binaural Wireless Technology

    PubMed Central

    Ibrahim, Iman; Parsa, Vijay; Macpherson, Ewan; Cheesman, Margaret

    2012-01-01

    Wireless synchronization of the digital signal processing (DSP) features between two hearing aids in a bilateral hearing aid fitting is a fairly new technology. This technology is expected to preserve the differences in time and intensity between the two ears by co-ordinating the bilateral DSP features such as multichannel compression, noise reduction, and adaptive directionality. The purpose of this study was to evaluate the benefits of wireless communication as implemented in two commercially available hearing aids. More specifically, this study measured speech intelligibility and sound localization abilities of normal hearing and hearing impaired listeners using bilateral hearing aids with wireless synchronization of multichannel Wide Dynamic Range Compression (WDRC). Twenty subjects participated; 8 had normal hearing and 12 had bilaterally symmetrical sensorineural hearing loss. Each individual completed the Hearing in Noise Test (HINT) and a sound localization test with two types of stimuli. No specific benefit from wireless WDRC synchronization was observed for the HINT; however, hearing impaired listeners had better localization with the wireless synchronization. Binaural wireless technology in hearing aids may improve localization abilities although the possible effect appears to be small at the initial fitting. With adaptation, the hearing aids with synchronized signal processing may lead to an improvement in localization and speech intelligibility. Further research is required to demonstrate the effect of adaptation to the hearing aids with synchronized signal processing on different aspects of auditory performance. PMID:26557339

  5. Task-Dependent Intermuscular Motor Unit Synchronization between Medial and Lateral Vastii Muscles during Dynamic and Isometric Squats.

    PubMed

    Mohr, Maurice; Nann, Marius; von Tscharner, Vinzenz; Eskofier, Bjoern; Nigg, Benno Maurus

    2015-01-01

    Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity-the synchronized discharge of individual motor units across muscles within time intervals of 5ms-for the Vastus Medialis (VM) and Lateralis (VL). Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role. Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG) was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum. For all tasks, except for singe-leg balance, coherence between 15-80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30-60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat. There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement task at hand.

  6. Task-Dependent Intermuscular Motor Unit Synchronization between Medial and Lateral Vastii Muscles during Dynamic and Isometric Squats

    PubMed Central

    Mohr, Maurice; Nann, Marius; von Tscharner, Vinzenz; Eskofier, Bjoern; Nigg, Benno Maurus

    2015-01-01

    Purpose Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity–the synchronized discharge of individual motor units across muscles within time intervals of 5ms–for the Vastus Medialis (VM) and Lateralis (VL). Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role. Methods Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG) was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum. Results For all tasks, except for singe-leg balance, coherence between 15–80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30–60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat. Conclusion There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement task at hand. PMID:26529604

  7. 14 CFR Appendix F to Part 135 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Heading (Primary flight crew reference) 0−360° and Discrete “true” or “mag” ±2° 1 0.5° When true or magnetic heading can be selected as the primary heading reference, a discrete indicating selection must be... synchronization reference On-Off (Discrete)None 1 Preferably each crew member but one discrete acceptable for all...

  8. Current control of PMSM based on maximum torque control reference frame

    NASA Astrophysics Data System (ADS)

    Ohnuma, Takumi

    2017-07-01

    This study presents a new method of current controls of PMSMs (Permanent Magnet Synchronous Motors) based on a maximum torque control reference frame, which is suitable for high-performance controls of the PMSMs. As the issues of environment and energy increase seriously, PMSMs, one of the AC motors, are becoming popular because of their high-efficiency and high-torque density in various applications, such as electric vehicles, trains, industrial machines, and home appliances. To use the PMSMs efficiently, a proper current control of the PMSMs is necessary. In general, a rotational coordinate system synchronizing with the rotor is used for the current control of PMSMs. In the rotating reference frame, the current control is easier because the currents on the rotating reference frame can be expressed as a direct current in the controller. On the other hand, the torque characteristics of PMSMs are non-linear and complex; the PMSMs are efficient and high-density though. Therefore, a complicated control system is required to involve the relation between the torque and the current, even though the rotating reference frame is adopted. The maximum torque control reference frame provides a simpler way to control efficiently the currents taking the torque characteristics of the PMSMs into consideration.

  9. Accuracy of Digital vs. Conventional Implant Impressions

    PubMed Central

    Lee, Sang J.; Betensky, Rebecca A.; Gianneschi, Grace E.; Gallucci, German O.

    2015-01-01

    The accuracy of digital impressions greatly influences the clinical viability in implant restorations. The aim of this study is to compare the accuracy of gypsum models acquired from the conventional implant impression to digitally milled models created from direct digitalization by three-dimensional analysis. Thirty gypsum and 30 digitally milled models impressed directly from a reference model were prepared. The models were scanned by a laboratory scanner and 30 STL datasets from each group were imported to an inspection software. The datasets were aligned to the reference dataset by a repeated best fit algorithm and 10 specified contact locations of interest were measured in mean volumetric deviations. The areas were pooled by cusps, fossae, interproximal contacts, horizontal and vertical axes of implant position and angulation. The pooled areas were statistically analysed by comparing each group to the reference model to investigate the mean volumetric deviations accounting for accuracy and standard deviations for precision. Milled models from digital impressions had comparable accuracy to gypsum models from conventional impressions. However, differences in fossae and vertical displacement of the implant position from the gypsum and digitally milled models compared to the reference model, exhibited statistical significance (p<0.001, p=0.020 respectively). PMID:24720423

  10. A molecular beam/quadrupole mass spectrometer system with synchronized beam modulation and digital waveform analysis

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Adams, B. R.

    1983-01-01

    A performance evaluation is conducted for a molecular beam/mass spectrometer (MB/MS) system, as applied to a 1-30 torr microwave-discharge flow reactor (MWFR) used in the formation of the methylperoxy radical and a study of its subsequent destruction in the presence or absence of NO(x). The modulated MB/MS system is four-staged and differentially pumped. The results obtained by the MWFR study is illustrative of overall system performance, including digital waveform analysis; significant improvements over previous designs are noted in attainable S/N ratio, detection limit, and accuracy.

  11. TRSkit: A Simple Digital Library Toolkit

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.; Esler, Sandra L.

    1997-01-01

    This paper introduces TRSkit, a simple and effective toolkit for building digital libraries on the World Wide Web. The toolkit was developed for the creation of the Langley Technical Report Server and the NASA Technical Report Server, but is applicable to most simple distribution paradigms. TRSkit contains a handful of freely available software components designed to be run under the UNIX operating system and served via the World Wide Web. The intended customer is the person that must continuously and synchronously distribute anywhere from 100 - 100,000's of information units and does not have extensive resources to devote to the problem.

  12. Synchronous high speed multi-point velocity profile measurement by heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Hou, Xueqin; Xiao, Wen; Chen, Zonghui; Qin, Xiaodong; Pan, Feng

    2017-02-01

    This paper presents a synchronous multipoint velocity profile measurement system, which acquires the vibration velocities as well as images of vibrating objects by combining optical heterodyne interferometry and a high-speed CMOS-DVR camera. The high-speed CMOS-DVR camera records a sequence of images of the vibrating object. Then, by extracting and processing multiple pixels at the same time, a digital demodulation technique is implemented to simultaneously acquire the vibrating velocity of the target from the recorded sequences of images. This method is validated with an experiment. A piezoelectric ceramic plate with standard vibration characteristics is used as the vibrating target, which is driven by a standard sinusoidal signal.

  13. Non-synchronous control of self-oscillating resonant converters

    DOEpatents

    Glaser, John Stanley; Zane, Regan Andrew

    2002-01-01

    A self-oscillating switching power converter has a controllable reactance including an active device connected to a reactive element, wherein the effective reactance of the reactance and the active device is controlled such that the control waveform for the active device is binary digital and is not synchronized with the switching converter output frequency. The active device is turned completely on and off at a frequency that is substantially greater than the maximum frequency imposed on the output terminals of the active device. The effect is to vary the average resistance across the active device output terminals, and thus the effective output reactance, thereby providing converter output control, while maintaining the response speed of the converter.

  14. Image encryption using a synchronous permutation-diffusion technique

    NASA Astrophysics Data System (ADS)

    Enayatifar, Rasul; Abdullah, Abdul Hanan; Isnin, Ismail Fauzi; Altameem, Ayman; Lee, Malrey

    2017-03-01

    In the past decade, the interest on digital images security has been increased among scientists. A synchronous permutation and diffusion technique is designed in order to protect gray-level image content while sending it through internet. To implement the proposed method, two-dimensional plain-image is converted to one dimension. Afterward, in order to reduce the sending process time, permutation and diffusion steps for any pixel are performed in the same time. The permutation step uses chaotic map and deoxyribonucleic acid (DNA) to permute a pixel, while diffusion employs DNA sequence and DNA operator to encrypt the pixel. Experimental results and extensive security analyses have been conducted to demonstrate the feasibility and validity of this proposed image encryption method.

  15. NULL Convention Floating Point Multiplier

    PubMed Central

    Ramachandran, Seshasayanan

    2015-01-01

    Floating point multiplication is a critical part in high dynamic range and computational intensive digital signal processing applications which require high precision and low power. This paper presents the design of an IEEE 754 single precision floating point multiplier using asynchronous NULL convention logic paradigm. Rounding has not been implemented to suit high precision applications. The novelty of the research is that it is the first ever NULL convention logic multiplier, designed to perform floating point multiplication. The proposed multiplier offers substantial decrease in power consumption when compared with its synchronous version. Performance attributes of the NULL convention logic floating point multiplier, obtained from Xilinx simulation and Cadence, are compared with its equivalent synchronous implementation. PMID:25879069

  16. NULL convention floating point multiplier.

    PubMed

    Albert, Anitha Juliette; Ramachandran, Seshasayanan

    2015-01-01

    Floating point multiplication is a critical part in high dynamic range and computational intensive digital signal processing applications which require high precision and low power. This paper presents the design of an IEEE 754 single precision floating point multiplier using asynchronous NULL convention logic paradigm. Rounding has not been implemented to suit high precision applications. The novelty of the research is that it is the first ever NULL convention logic multiplier, designed to perform floating point multiplication. The proposed multiplier offers substantial decrease in power consumption when compared with its synchronous version. Performance attributes of the NULL convention logic floating point multiplier, obtained from Xilinx simulation and Cadence, are compared with its equivalent synchronous implementation.

  17. Parallel implementation of all-digital timing recovery for high-speed and real-time optical coherent receivers.

    PubMed

    Zhou, Xian; Chen, Xue

    2011-05-09

    The digital coherent receivers combine coherent detection with digital signal processing (DSP) to compensate for transmission impairments, and therefore are a promising candidate for future high-speed optical transmission system. However, the maximum symbol rate supported by such real-time receivers is limited by the processing rate of hardware. In order to cope with this difficulty, the parallel processing algorithms is imperative. In this paper, we propose a novel parallel digital timing recovery loop (PDTRL) based on our previous work. Furthermore, for increasing the dynamic dispersion tolerance range of receivers, we embed a parallel adaptive equalizer in the PDTRL. This parallel joint scheme (PJS) can be used to complete synchronization, equalization and polarization de-multiplexing simultaneously. Finally, we demonstrate that PDTRL and PJS allow the hardware to process 112 Gbit/s POLMUX-DQPSK signal at the hundreds MHz range. © 2011 Optical Society of America

  18. A 45 ps time digitizer with a two-phase clock and dual-edge two-stage interpolation in a field programmable gate array device

    NASA Astrophysics Data System (ADS)

    Szplet, R.; Kalisz, J.; Jachna, Z.

    2009-02-01

    We present a time digitizer having 45 ps resolution, integrated in a field programmable gate array (FPGA) device. The time interval measurement is based on the two-stage interpolation method. A dual-edge two-phase interpolator is driven by the on-chip synthesized 250 MHz clock with precise phase adjustment. An improved dual-edge double synchronizer was developed to control the main counter. The nonlinearity of the digitizer's transfer characteristic is identified and utilized by the dedicated hardware code processor for the on-the-fly correction of the output data. Application of presented ideas has resulted in the measurement uncertainty of the digitizer below 70 ps RMS over the time interval ranging from 0 to 1 s. The use of the two-stage interpolation and a fast FIFO memory has allowed us to obtain the maximum measurement rate of five million measurements per second.

  19. ICC '86; Proceedings of the International Conference on Communications, Toronto, Canada, June 22-25, 1986, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    Papers are presented on ISDN, mobile radio systems and techniques for digital connectivity, centralized and distributed algorithms in computer networks, communications networks, quality assurance and impact on cost, adaptive filters in communications, the spread spectrum, signal processing, video communication techniques, and digital satellite services. Topics discussed include performance evaluation issues for integrated protocols, packet network operations, the computer network theory and multiple-access, microwave single sideband systems, switching architectures, fiber optic systems, wireless local communications, modulation, coding, and synchronization, remote switching, software quality, transmission, and expert systems in network operations. Consideration is given to wide area networks, image and speech processing, office communications application protocols, multimedia systems, customer-controlled network operations, digital radio systems, channel modeling and signal processing in digital communications, earth station/on-board modems, computer communications system performance evaluation, source encoding, compression, and quantization, and adaptive communications systems.

  20. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor); Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor)

    2007-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is converted into digital signals and transmitted to the controller. In some embodiments, network device interfaces associated with different data channels coordinate communications with the other interfaces based on either a transition in a command message sent by the bus controller or a synchronous clock signal.

  1. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Winkelmann, Joseph P. (Inventor); Konz, Daniel W. (Inventor)

    2009-01-01

    A communications system and method are provided for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is converted into digital signals and transmitted to the controller. Network device interfaces associated with different data channels can coordinate communications with the other interfaces based on either a transition in a command message sent by the bus controller or a synchronous clock signal.

  2. Joint Carrier-Phase Synchronization and LDPC Decoding

    NASA Technical Reports Server (NTRS)

    Simon, Marvin; Valles, Esteban

    2009-01-01

    A method has been proposed to increase the degree of synchronization of a radio receiver with the phase of a suppressed carrier signal modulated with a binary- phase-shift-keying (BPSK) or quaternary- phase-shift-keying (QPSK) signal representing a low-density parity-check (LDPC) code. This method is an extended version of the method described in Using LDPC Code Constraints to Aid Recovery of Symbol Timing (NPO-43112), NASA Tech Briefs, Vol. 32, No. 10 (October 2008), page 54. Both methods and the receiver architectures in which they would be implemented belong to a class of timing- recovery methods and corresponding receiver architectures characterized as pilotless in that they do not require transmission and reception of pilot signals. The proposed method calls for the use of what is known in the art as soft decision feedback to remove the modulation from a replica of the incoming signal prior to feeding this replica to a phase-locked loop (PLL) or other carrier-tracking stage in the receiver. Soft decision feedback refers to suitably processed versions of intermediate results of iterative computations involved in the LDPC decoding process. Unlike a related prior method in which hard decision feedback (the final sequence of decoded symbols) is used to remove the modulation, the proposed method does not require estimation of the decoder error probability. In a basic digital implementation of the proposed method, the incoming signal (having carrier phase theta theta (sub c) plus noise would first be converted to inphase (I) and quadrature (Q) baseband signals by mixing it with I and Q signals at the carrier frequency [wc/(2 pi)] generated by a local oscillator. The resulting demodulated signals would be processed through one-symbol-period integrate and- dump filters, the outputs of which would be sampled and held, then multiplied by a soft-decision version of the baseband modulated signal. The resulting I and Q products consist of terms proportional to the cosine and sine of the carrier phase cc as well as correlated noise components. These products would be fed as inputs to a digital PLL that would include a number-controlled oscillator (NCO), which provides an estimate of the carrier phase, theta(sub c).

  3. Building Bridges for Collaborative Digital Reference between Libraries and Museums through an Examination of Reference in Special Collections

    ERIC Educational Resources Information Center

    Lavender, Kenneth; Nicholson, Scott; Pomerantz, Jeffrey

    2005-01-01

    While a growing number of the digital reference services in libraries have become part of collaborative reference networks, other entities that serve similar information-seeking needs such as special collections and museums have not joined these networks, even though they are answering an increasing number of questions from off-site patrons via…

  4. A self-synchronized high speed computational ghost imaging system: A leap towards dynamic capturing

    NASA Astrophysics Data System (ADS)

    Suo, Jinli; Bian, Liheng; Xiao, Yudong; Wang, Yongjin; Zhang, Lei; Dai, Qionghai

    2015-11-01

    High quality computational ghost imaging needs to acquire a large number of correlated measurements between the to-be-imaged scene and different reference patterns, thus ultra-high speed data acquisition is of crucial importance in real applications. To raise the acquisition efficiency, this paper reports a high speed computational ghost imaging system using a 20 kHz spatial light modulator together with a 2 MHz photodiode. Technically, the synchronization between such high frequency illumination and bucket detector needs nanosecond trigger precision, so the development of synchronization module is quite challenging. To handle this problem, we propose a simple and effective computational self-synchronization scheme by building a general mathematical model and introducing a high precision synchronization technique. The resulted efficiency is around 14 times faster than state-of-the-arts, and takes an important step towards ghost imaging of dynamic scenes. Besides, the proposed scheme is a general approach with high flexibility for readily incorporating other illuminators and detectors.

  5. Virtual Conferencing in Global Design Education: Dreams and Realities

    ERIC Educational Resources Information Center

    Moldenhauer, Judith A.

    2010-01-01

    The concept and use of the synchronous and asynchronous forms of virtual conferencing is central to the experience of global design education. Easy and ready access to people and information worldwide is at the heart of a paradigm shift in design practice and education, defined by collaboration and digital technology. The dream of smooth, global…

  6. Design of a modular digital computer system, DRL 4. [for meeting future requirements of spaceborne computers

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design is reported of an advanced modular computer system designated the Automatically Reconfigurable Modular Multiprocessor System, which anticipates requirements for higher computing capacity and reliability for future spaceborne computers. Subjects discussed include: an overview of the architecture, mission analysis, synchronous and nonsynchronous scheduling control, reliability, and data transmission.

  7. Investigation of coherent receiver designs in high-speed optical inter-satellite links using digital signal processing

    NASA Astrophysics Data System (ADS)

    Schaefer, S.; Gregory, M.; Rosenkranz, W.

    2017-09-01

    Due to higher data rates, better data security and unlicensed spectral usage optical inter-satellite links (OISL) offer an attractive alternative to conventional RF-communication. However, the very high transmission distances necessitate an optical receiver design enabling high receiver sensitivity which requires careful carrier synchronization and a quasi-coherent detection scheme.

  8. Oh! Web 2.0, Virtual Reference Service 2.0, Tools & Techniques (II)

    ERIC Educational Resources Information Center

    Arya, Harsh Bardhan; Mishra, J. K.

    2012-01-01

    The paper describes the theory and definition of the practice of librarianship, specifically addressing how Web 2.0 technologies (tools) such as synchronous messaging, collaborative reference service and streaming media, blogs, wikis, social networks, social bookmarking tools, tagging, RSS feeds, and mashups might intimate changes and how…

  9. Fast angular synchronization for phase retrieval via incomplete information

    NASA Astrophysics Data System (ADS)

    Viswanathan, Aditya; Iwen, Mark

    2015-08-01

    We consider the problem of recovering the phase of an unknown vector, x ∈ ℂd, given (normalized) phase difference measurements of the form xjxk*/|xjxk*|, j,k ∈ {1,...,d}, and where xj* denotes the complex conjugate of xj. This problem is sometimes referred to as the angular synchronization problem. This paper analyzes a linear-time-in-d eigenvector-based angular synchronization algorithm and studies its theoretical and numerical performance when applied to a particular class of highly incomplete and possibly noisy phase difference measurements. Theoretical results are provided for perfect (noiseless) measurements, while numerical simulations demonstrate the robustness of the method to measurement noise. Finally, we show that this angular synchronization problem and the specific form of incomplete phase difference measurements considered arise in the phase retrieval problem - where we recover an unknown complex vector from phaseless (or magnitude) measurements.

  10. A Distributed Synchronization and Timing System on the EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Luo, Jiarong; Wu, Yichun; Shu, Yantai

    2008-08-01

    A key requirement for the EAST distributed control system (EASTDCS) is time synchronization to an accuracy of <1 mus. In 2006 a Distributed Synchronization and Timing System (DSTS) was set up, which is based on the ATmega128 AVR microcontroller and the Nut/OS embedded Real Time Operating System (RTOS). The DSTS provides the control and the data acquisition systems with reference clocks (0.01 Hz 10 MHz) and delayed trigger times ( 1 mus 4294 s). These are produced by a Core Module Unit (CMU) connected by optical fibres to many Local Synchronized Node Units (LSNU). The fibres provide immunity from electrical noise and are of equal length to match clock and trigger delays between systems. This paper describes the architecture of the DSTS on the EAST tokamak and provides an overview of the characteristics of the main and local units.

  11. Solutions to Challenges Facing a University Digital Library and Press

    PubMed Central

    D'Alessandro, Michael P.; Galvin, Jeffrey R.; Colbert, Stephana I.; D'Alessandro, Donna M.; Choi, Teresa A.; Aker, Brian D.; Carlson, William S.; Pelzer, Gay D.

    2000-01-01

    During the creation of a university digital library and press intended to serve as a medical reference and education tool for health care providers and their patients, six distinct and complex digital publishing challenges were encountered. Over nine years, through a multidisciplinary approach, solutions were devised to the challenges of digital content ownership, management, mirroring, translation, interactions with users, and archiving. The result is a unique, author-owned, internationally mirrored, university digital library and press that serves as an authoritative medical reference and education tool for users around the world. The purpose of this paper is to share the valuable digital publishing lessons learned and outline the challenges facing university digital libraries and presses. PMID:10833161

  12. Electro-cutaneous stimulation on the palm elicits referred sensations on intact but not on amputated digits

    NASA Astrophysics Data System (ADS)

    D'Alonzo, M.; Engels, L. F.; Controzzi, M.; Cipriani, C.

    2018-02-01

    Objective. Grasping and manipulation control critically depends on tactile feedback. Without this feedback, the ability for fine control of a prosthesis is limited in upper limb amputees. Early studies have shown that non-invasive electro-cutaneous stimulation (ES) can induce referred sensations that are spread to a wider and/or more distant area, with respect to the electrodes. Building on this, we sought to exploit this effect to provide somatotopically matched sensory feedback to people with partial hand (digital) amputations. Approach. For the first time, this work investigated the possibility of inducing referred sensations in the digits by activating the palmar nerves. Specifically, we electrically stimulated 18 sites on the palm of non-amputees to evaluate the effects of sites and stimulation parameters on modality, magnitude, and location of the evoked sensations. We performed similar tests with partial hand amputees by testing those sites that had most consistently elicited referred sensations in non-amputees. Main results. We demonstrated referred sensations in non-amputees from all stimulation sites in one form or another. Specifically, the stimulation of 16 of the 18 sites gave rise to reliable referred sensations. Amputees experienced referred sensations to unimpaired digits, just like non-amputees, but we were unable to evoke referred sensations in their missing digits: none of them reported sensations that extended beyond the tip of the stump. Significance. The possibility of eliciting referred sensations on the digits may be exploited in haptic systems for providing touch sensations without obstructing the fingertips or their movements. The study also suggests that the phenomenon of referred sensations through ES may not be exploited for partial hand prostheses, and it invites researchers to explore alternative approaches. Finally, the results seem to confirm previous studies suggesting that the stumps in partial hand amputees partially acquire the role of the missing fingertips, physiologically and cognitively.

  13. Some in-field experiences of non-synchronous vibrations in large rotating machinery

    NASA Technical Reports Server (NTRS)

    Colnago, Giuseppe; Frigeri, Claudio; Vallini, Andrea; Zanetta, Gian Antonio

    1989-01-01

    Some problems associated with non-synchronous vibrations are analyzed by describing three cases experienced with fairly large rotating machines in operating conditions. In each case, a brief description is first given of the machine and of the instrumentation used. The experimental results are then presented, with reference to time or frequency domain recordings. The lines followed in diagnosis are then discussed and, lastly, the corrective action undertaken is presented.

  14. NASA's next generation all-digital deep space network breadboard receiver

    NASA Technical Reports Server (NTRS)

    Hinedi, Sami

    1993-01-01

    This paper describes the breadboard advanced receiver (ARX) that is currently being built for future use in NASA's deep space network (DSN). This receiver has unique requirements in having to operate with very weak signals from deep space probes and provide high quality telemetry and tracking data. The hybrid analog/digital receiver performs multiple functions including carrier, subcarrier and symbol synchronization. Tracking can be achieved for either residual, suppressed or hybrid carriers and for both sinusoidal and square wave subcarriers. System requirements are specified and a functional description of the ARX is presented. The various digital signal processing algorithms used are also discussed and illustrated with block diagrams. Other functions such as time tagged Doppler extraction and monitor/control are also discussed including acquisition algorithms and lock detection schemes.

  15. Arbitrary digital pulse sequence generator with delay-loop timing

    NASA Astrophysics Data System (ADS)

    Hošák, Radim; Ježek, Miroslav

    2018-04-01

    We propose an idea of an electronic multi-channel arbitrary digital sequence generator with temporal granularity equal to two clock cycles. We implement the generator with 32 channels using a low-cost ARM microcontroller and demonstrate its capability to produce temporal delays ranging from tens of nanoseconds to hundreds of seconds, with 24 ns timing granularity and linear scaling of delay with respect to the number of delay loop iterations. The generator is optionally synchronized with an external clock source to provide 100 ps jitter and overall sequence repeatability within the whole temporal range. The generator is fully programmable and able to produce digital sequences of high complexity. The concept of the generator can be implemented using different microcontrollers and applied for controlling of various optical, atomic, and nuclear physics measurement setups.

  16. Diagnostic layer integration in FPGA-based pipeline measurement systems for HEP experiments

    NASA Astrophysics Data System (ADS)

    Pozniak, Krzysztof T.

    2007-08-01

    Integrated triggering and data acquisition systems for high energy physics experiments may be considered as fast, multichannel, synchronous, distributed, pipeline measurement systems. A considerable extension of functional, technological and monitoring demands, which has recently been imposed on them, forced a common usage of large field-programmable gate array (FPGA), digital signal processing-enhanced matrices and fast optical transmission for their realization. This paper discusses modelling, design, realization and testing of pipeline measurement systems. A distribution of synchronous data stream flows is considered in the network. A general functional structure of a single network node is presented. A suggested, novel block structure of the node model facilitates full implementation in the FPGA chip, circuit standardization and parametrization, as well as integration of functional and diagnostic layers. A general method for pipeline system design was derived. This method is based on a unified model of the synchronous data network node. A few examples of practically realized, FPGA-based, pipeline measurement systems were presented. The described systems were applied in ZEUS and CMS.

  17. Continued Data Acquisition Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwellenbach, David

    This task focused on improving techniques for integrating data acquisition of secondary particles correlated in time with detected cosmic-ray muons. Scintillation detectors with Pulse Shape Discrimination (PSD) capability show the most promise as a detector technology based on work in FY13. Typically PSD parameters are determined prior to an experiment and the results are based on these parameters. By saving data in list mode, including the fully digitized waveform, any experiment can effectively be replayed to adjust PSD and other parameters for the best data capture. List mode requires time synchronization of two independent data acquisitions (DAQ) systems: the muonmore » tracker and the particle detector system. Techniques to synchronize these systems were studied. Two basic techniques were identified: real time mode and sequential mode. Real time mode is the preferred system but has proven to be a significant challenge since two FPGA systems with different clocking parameters must be synchronized. Sequential processing is expected to work with virtually any DAQ but requires more post processing to extract the data.« less

  18. Academic portfolio in the digital era: organizing and maintaining a portfolio using reference managers.

    PubMed

    Bhargava, Puneet; Patel, Vatsal B; Iyer, Ramesh S; Moshiri, Mariam; Robinson, Tracy J; Lall, Chandana; Heller, Matthew T

    2015-02-01

    The academic portfolio has become an integral part of the promotions process. Creating and maintaining an academic portfolio in paper-based or web-based formats can be a cumbersome and time-consuming task. In this article, we describe an alternative way to efficiently organize an academic portfolio using a reference manager software, and discuss some of the afforded advantages. The reference manager software Papers (Mekentosj, Amsterdam, The Netherlands) was used to create an academic portfolio. The article outlines the key steps in creating and maintaining a digital academic portfolio. Using reference manager software (Papers), we created an academic portfolio that allows the user to digitally organize clinical, teaching, and research accomplishments in an indexed library enabling efficient updating, rapid retrieval, and easy sharing. To our knowledge, this is the first digital portfolio of its kind.

  19. Digital chat reference in health science libraries: challenges in initiating a new service.

    PubMed

    Dee, Cheryl R; Newhouse, Joshua D

    2005-01-01

    Digital reference service adds a valuable new dimension to health science reference services, but the road to implementation can present questions that require carefully considered decisions. This article incorporates suggestions from the published literature, provides tips from interviews with practicing academic health science librarians, and reports on data from students' exploration of academic health science library Web sites' digital reference services. The goal of this study is to provide guidelines to plan new services, assess user needs, and select software, and to showcase potential benefits of collaboration and proactive and user-friendly marketing. In addition, tips for successful operation and evaluation of services are discussed.

  20. Symbol Synchronization for Diffusion-Based Molecular Communications.

    PubMed

    Jamali, Vahid; Ahmadzadeh, Arman; Schober, Robert

    2017-12-01

    Symbol synchronization refers to the estimation of the start of a symbol interval and is needed for reliable detection. In this paper, we develop several symbol synchronization schemes for molecular communication (MC) systems where we consider some practical challenges, which have not been addressed in the literature yet. In particular, we take into account that in MC systems, the transmitter may not be equipped with an internal clock and may not be able to emit molecules with a fixed release frequency. Such restrictions hold for practical nanotransmitters, e.g., modified cells, where the lengths of the symbol intervals may vary due to the inherent randomness in the availability of food and energy for molecule generation, the process for molecule production, and the release process. To address this issue, we develop two synchronization-detection frameworks which both employ two types of molecule. In the first framework, one type of molecule is used for symbol synchronization and the other one is used for data detection, whereas in the second framework, both types of molecule are used for joint symbol synchronization and data detection. For both frameworks, we first derive the optimal maximum likelihood (ML) symbol synchronization schemes as performance upper bounds. Since ML synchronization entails high complexity, for each framework, we also propose three low-complexity suboptimal schemes, namely a linear filter-based scheme, a peak observation-based scheme, and a threshold-trigger scheme, which are suitable for MC systems with limited computational capabilities. Furthermore, we study the relative complexity and the constraints associated with the proposed schemes and the impact of the insertion and deletion errors that arise due to imperfect synchronization. Our simulation results reveal the effectiveness of the proposed synchronization schemes and suggest that the end-to-end performance of MC systems significantly depends on the accuracy of the symbol synchronization.

  1. GTSO: Global Trace Synchronization and Ordering Mechanism for Wireless Sensor Network Monitoring Platforms

    PubMed Central

    Bonastre, Alberto; Ors, Rafael

    2017-01-01

    Monitoring is one of the best ways to evaluate the behavior of computer systems. When the monitored system is a distributed system—such as a wireless sensor network (WSN)—the monitoring operation must also be distributed, providing a distributed trace for further analysis. The temporal sequence of occurrence of the events registered by the distributed monitoring platform (DMP) must be correctly established to provide cause-effect relationships between them, so the logs obtained in different monitor nodes must be synchronized. Many of synchronization mechanisms applied to DMPs consist in adjusting the internal clocks of the nodes to the same value as a reference time. However, these mechanisms can create an incoherent event sequence. This article presents a new method to achieve global synchronization of the traces obtained in a DMP. It is based on periodic synchronization signals that are received by the monitor nodes and logged along with the recorded events. This mechanism processes all traces and generates a global post-synchronized trace by scaling all times registered proportionally according with the synchronization signals. It is intended to be a simple but efficient offline mechanism. Its application in a WSN-DMP demonstrates that it guarantees a correct ordering of the events, avoiding the aforementioned issues. PMID:29295494

  2. Achieving second order advantage with multi-way partial least squares and residual bi-linearization with total synchronous fluorescence data of monohydroxy-polycyclic aromatic hydrocarbons in urine samples.

    PubMed

    Calimag-Williams, Korina; Knobel, Gaston; Goicoechea, H C; Campiglia, A D

    2014-02-06

    An attractive approach to handle matrix interference in samples of unknown composition is to generate second- or higher-order data formats and process them with appropriate chemometric algorithms. Several strategies exist to generate high-order data in fluorescence spectroscopy, including wavelength time matrices, excitation-emission matrices and time-resolved excitation-emission matrices. This article tackles a different aspect of generating high-order fluorescence data as it focuses on total synchronous fluorescence spectroscopy. This approach refers to recording synchronous fluorescence spectra at various wavelength offsets. Analogous to the concept of an excitation-emission data format, total synchronous data arrays fit into the category of second-order data. The main difference between them is the non-bilinear behavior of synchronous fluorescence data. Synchronous spectral profiles change with the wavelength offset used for sample excitation. The work presented here reports the first application of total synchronous fluorescence spectroscopy to the analysis of monohydroxy-polycyclic aromatic hydrocarbons in urine samples of unknown composition. Matrix interference is appropriately handled by processing the data either with unfolded-partial least squares and multi-way partial least squares, both followed by residual bi-linearization. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. GTSO: Global Trace Synchronization and Ordering Mechanism for Wireless Sensor Network Monitoring Platforms.

    PubMed

    Navia, Marlon; Campelo, José Carlos; Bonastre, Alberto; Ors, Rafael

    2017-12-23

    Monitoring is one of the best ways to evaluate the behavior of computer systems. When the monitored system is a distributed system-such as a wireless sensor network (WSN)-the monitoring operation must also be distributed, providing a distributed trace for further analysis. The temporal sequence of occurrence of the events registered by the distributed monitoring platform (DMP) must be correctly established to provide cause-effect relationships between them, so the logs obtained in different monitor nodes must be synchronized. Many of synchronization mechanisms applied to DMPs consist in adjusting the internal clocks of the nodes to the same value as a reference time. However, these mechanisms can create an incoherent event sequence. This article presents a new method to achieve global synchronization of the traces obtained in a DMP. It is based on periodic synchronization signals that are received by the monitor nodes and logged along with the recorded events. This mechanism processes all traces and generates a global post-synchronized trace by scaling all times registered proportionally according with the synchronization signals. It is intended to be a simple but efficient offline mechanism. Its application in a WSN-DMP demonstrates that it guarantees a correct ordering of the events, avoiding the aforementioned issues.

  4. An Investigation of Digital Reference Interviews: A Dialogue Act Approach

    ERIC Educational Resources Information Center

    Inoue, Keisuke

    2013-01-01

    The rapid increase of computer-mediated communications (CMCs) in various forms such as micro-blogging (e.g. Twitter), online chatting (e.g. digital reference) and community-based question-answering services (e.g. Yahoo! Answers) characterizes a recent trend in web technologies, often referred to as the "social web". This trend highlights…

  5. Physical layer one-time-pad data encryption through synchronized semiconductor laser networks

    NASA Astrophysics Data System (ADS)

    Argyris, Apostolos; Pikasis, Evangelos; Syvridis, Dimitris

    2016-02-01

    Semiconductor lasers (SL) have been proven to be a key device in the generation of ultrafast true random bit streams. Their potential to emit chaotic signals under conditions with desirable statistics, establish them as a low cost solution to cover various needs, from large volume key generation to real-time encrypted communications. Usually, only undemanding post-processing is needed to convert the acquired analog timeseries to digital sequences that pass all established tests of randomness. A novel architecture that can generate and exploit these true random sequences is through a fiber network in which the nodes are semiconductor lasers that are coupled and synchronized to central hub laser. In this work we show experimentally that laser nodes in such a star network topology can synchronize with each other through complex broadband signals that are the seed to true random bit sequences (TRBS) generated at several Gb/s. The potential for each node to access real-time generated and synchronized with the rest of the nodes random bit streams, through the fiber optic network, allows to implement an one-time-pad encryption protocol that mixes the synchronized true random bit sequence with real data at Gb/s rates. Forward-error correction methods are used to reduce the errors in the TRBS and the final error rate at the data decoding level. An appropriate selection in the sampling methodology and properties, as well as in the physical properties of the chaotic seed signal through which network locks in synchronization, allows an error free performance.

  6. Broadband set-top box using MAP-CA processor

    NASA Astrophysics Data System (ADS)

    Bush, John E.; Lee, Woobin; Basoglu, Chris

    2001-12-01

    Advances in broadband access are expected to exert a profound impact in our everyday life. It will be the key to the digital convergence of communication, computer and consumer equipment. A common thread that facilitates this convergence comprises digital media and Internet. To address this market, Equator Technologies, Inc., is developing the Dolphin broadband set-top box reference platform using its MAP-CA Broadband Signal ProcessorT chip. The Dolphin reference platform is a universal media platform for display and presentation of digital contents on end-user entertainment systems. The objective of the Dolphin reference platform is to provide a complete set-top box system based on the MAP-CA processor. It includes all the necessary hardware and software components for the emerging broadcast and the broadband digital media market based on IP protocols. Such reference design requires a broadband Internet access and high-performance digital signal processing. By using the MAP-CA processor, the Dolphin reference platform is completely programmable, allowing various codecs to be implemented in software, such as MPEG-2, MPEG-4, H.263 and proprietary codecs. The software implementation also enables field upgrades to keep pace with evolving technology and industry demands.

  7. Dual motor drive vehicle speed synchronization and coordination control strategy

    NASA Astrophysics Data System (ADS)

    Huang, Hao; Tu, Qunzhang; Jiang, Chenming; Ma, Limin; Li, Pei; Zhang, Hongxing

    2018-04-01

    Multi-motor driven systems are more and more widely used in the field of electric engineering vehicles, as a result of the road conditions and the variable load of engineering vehicles, makes multi-motors synchronization coordinated control system as a key point of the development of the electric vehicle drive system. This paper based on electrical machinery transmission speed in the process of engineering vehicles headed for coordinated control problem, summarized control strategies at home and abroad in recent years, made analysis and comparison of the characteristics, finally discussed the trend of development of the multi-motor coordination control, provided a reference for synchronized control system research of electric drive engineering vehicles.

  8. FREQUENCY STABILIZING SYSTEM

    DOEpatents

    Kerns, Q.A.; Anderson, O.A.

    1960-05-01

    An electronic control circuit is described in which a first signal frequency is held in synchronization with a second varying reference signal. The circuit receives the first and second signals as inputs and produces an output signal having an amplitude dependent upon rate of phase change between the two signals and a polarity dependent on direction of the phase change. The output may thus serve as a correction signal for maintaining the desired synchronization. The response of the system is not dependent on relative phase angle between the two compared signals. By having practically no capacitance in the circuit, there is minimum delay between occurrence of a phase shift and a response in the output signal and therefore very fast synchronization is effected.

  9. Adopting Digital Technologies in the Classroom: 10 Assessment Questions

    ERIC Educational Resources Information Center

    Staley, David J.

    2004-01-01

    Technology has long been a part of the classroom space. Sometime in the 1990s, the word technology was co-opted to refer only to digital tools. "Technology in the classroom" or "technology stocks" or "the dangers posed by technology" came to refer only to digital technology rather than to technology as a whole. As such, much of the discussion…

  10. EPA Office of Water (OW): 12-digit Hydrologic Unit Boundaries of the United States

    EPA Pesticide Factsheets

    The Watershed Boundary Dataset (WBD) is a complete digital hydrologic unit national boundary layer that is at the Subwatershed (12-digit) level. It is composed of the watershed boundaries delineated by state agencies at the 1:24,000 scale. Please refer to the individual state metadata as the primary reference source. To access state specific metadata, go to the following link to view documentation created by agencies that performed the watershed delineation. This data set is a complete digital hydrologic unit boundary layer to the Subwatershed (12-digit) 6th level. This data set consists of geo-referenced digital data and associated attributes created in accordance with the FGDC Proposal, Version 1.0 - Federal Standards For Delineation of Hydrologic Unit Boundaries 3/01/02. Polygons are attributed with hydrologic unit codes for 4th level sub-basins, 5th level watersheds, 6th level subwatersheds, name, size, downstream hydrologic unit, type of watershed, non-contributing areas and flow modification. Arcs are attributed with the highest hydrologic unit code for each watershed, linesource and a metadata reference file.Please refer to the Metadata contact if you want access to the WBD national data set.

  11. Sample-Clock Phase-Control Feedback

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Gin, Jonathan W.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    To demodulate a communication signal, a receiver must recover and synchronize to the symbol timing of a received waveform. In a system that utilizes digital sampling, the fidelity of synchronization is limited by the time between the symbol boundary and closest sample time location. To reduce this error, one typically uses a sample clock in excess of the symbol rate in order to provide multiple samples per symbol, thereby lowering the error limit to a fraction of a symbol time. For systems with a large modulation bandwidth, the required sample clock rate is prohibitive due to current technological barriers and processing complexity. With precise control of the phase of the sample clock, one can sample the received signal at times arbitrarily close to the symbol boundary, thus obviating the need, from a synchronization perspective, for multiple samples per symbol. Sample-clock phase-control feedback was developed for use in the demodulation of an optical communication signal, where multi-GHz modulation bandwidths would require prohibitively large sample clock frequencies for rates in excess of the symbol rate. A custom mixedsignal (RF/digital) offset phase-locked loop circuit was developed to control the phase of the 6.4-GHz clock that samples the photon-counting detector output. The offset phase-locked loop is driven by a feedback mechanism that continuously corrects for variation in the symbol time due to motion between the transmitter and receiver as well as oscillator instability. This innovation will allow significant improvements in receiver throughput; for example, the throughput of a pulse-position modulation (PPM) with 16 slots can increase from 188 Mb/s to 1.5 Gb/s.

  12. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, Charles L.

    1997-01-01

    A method and apparatus for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential dement is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits.

  13. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, Charles L.

    1996-01-01

    A method and apparatus for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential element is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits.

  14. Ask Here PA: Large-Scale Synchronous Virtual Reference for Pennsylvania

    ERIC Educational Resources Information Center

    Mariner, Vince

    2008-01-01

    Ask Here PA is Pennsylvania's new statewide live chat reference and information service. This article discusses the key strategies utilized by Ask Here PA administrators to recruit participating libraries to contribute staff time to the service, the importance of centralized staff training, the main aspects of staff training, and activating the…

  15. Three-dimensional kinematics of the lower limbs during forward ice hockey skating.

    PubMed

    Upjohn, Tegan; Turcotte, René; Pearsall, David J; Loh, Jonathan

    2008-05-01

    The objectives of the study were to describe lower limb kinematics in three dimensions during the forward skating stride in hockey players and to contrast skating techniques between low- and high-calibre skaters. Participant motions were recorded with four synchronized digital video cameras while wearing reflective marker triads on the thighs, shanks, and skates. Participants skated on a specialized treadmill with a polyethylene slat bed at a self-selected speed for 1 min. Each participant completed three 1-min skating trials separated by 5 min of rest. Joint and limb segment angles were calculated within the local (anatomical) and global reference planes. Similar gross movement patterns and stride rates were observed; however, high-calibre participants showed a greater range and rate of joint motion in both the sagittal and frontal planes, contributing to greater stride length for high-calibre players. Furthermore, consequent postural differences led to greater lateral excursion during the power stroke in high-calibre skaters. In conclusion, specific kinematic differences in both joint and limb segment angle movement patterns were observed between low- and high-calibre skaters.

  16. ISDN at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Bakes, Catherine Murphy; Goldberg, Fredric; Eubanks, Steven W.

    1992-01-01

    An expository investigation of the potential impact of the Integrated Services Digital Network (ISDN) at NASA Lewis Research Center is described. To properly frame the subject, the paper contains a detailed survey of the components of Narrowband ISDN. The principles and objectives are presented as decreed by the Consultative Committee for International Telephone and Telegraph (CCITT). The various channel types are delineated and their associated service combinations are described. The subscriber-access network functions are explained pictorially via the ISDN reference configuration. A section on switching techniques is presented to enable the reader to understand the emergence of the concept of fast packet switching. This new technology is designed to operate over the high bandwidth, low error rate transmission media that characterizes the LeRC environment. A brief introduction to the next generation of networks is covered with sections on Broadband ISDM (B-ISDN), Asynchronous Transfer Mode (ATM), and Synchronous Optical Networks (SONET). Applications at LeRC are presented, first in terms of targets of opportunity, then in light of compatibility constraints. In-place pilot projects and testing are described that demonstrate actual usage at LeRC.

  17. Method and infrastructure for cycle-reproducible simulation on large scale digital circuits on a coordinated set of field-programmable gate arrays (FPGAs)

    DOEpatents

    Asaad, Sameh W; Bellofatto, Ralph E; Brezzo, Bernard; Haymes, Charles L; Kapur, Mohit; Parker, Benjamin D; Roewer, Thomas; Tierno, Jose A

    2014-01-28

    A plurality of target field programmable gate arrays are interconnected in accordance with a connection topology and map portions of a target system. A control module is coupled to the plurality of target field programmable gate arrays. A balanced clock distribution network is configured to distribute a reference clock signal, and a balanced reset distribution network is coupled to the control module and configured to distribute a reset signal to the plurality of target field programmable gate arrays. The control module and the balanced reset distribution network are cooperatively configured to initiate and control a simulation of the target system with the plurality of target field programmable gate arrays. A plurality of local clock control state machines reside in the target field programmable gate arrays. The local clock state machines are configured to generate a set of synchronized free-running and stoppable clocks to maintain cycle-accurate and cycle-reproducible execution of the simulation of the target system. A method is also provided.

  18. Dynamic Synchronous Capture Algorithm for an Electromagnetic Flowmeter.

    PubMed

    Fanjiang, Yong-Yi; Lu, Shih-Wei

    2017-04-10

    This paper proposes a dynamic synchronous capture (DSC) algorithm to calculate the flow rate for an electromagnetic flowmeter. The characteristics of the DSC algorithm can accurately calculate the flow rate signal and efficiently convert an analog signal to upgrade the execution performance of a microcontroller unit (MCU). Furthermore, it can reduce interference from abnormal noise. It is extremely steady and independent of fluctuations in the flow measurement. Moreover, it can calculate the current flow rate signal immediately (m/s). The DSC algorithm can be applied to the current general MCU firmware platform without using DSP (Digital Signal Processing) or a high-speed and high-end MCU platform, and signal amplification by hardware reduces the demand for ADC accuracy, which reduces the cost.

  19. Asynchronous error-correcting secure communication scheme based on fractional-order shifting chaotic system

    NASA Astrophysics Data System (ADS)

    Chao, Luo

    2015-11-01

    In this paper, a novel digital secure communication scheme is firstly proposed. Different from the usual secure communication schemes based on chaotic synchronization, the proposed scheme employs asynchronous communication which avoids the weakness of synchronous systems and is susceptible to environmental interference. Moreover, as to the transmission errors and data loss in the process of communication, the proposed scheme has the ability to be error-checking and error-correcting in real time. In order to guarantee security, the fractional-order complex chaotic system with the shifting of order is utilized to modulate the transmitted signal, which has high nonlinearity and complexity in both frequency and time domains. The corresponding numerical simulations demonstrate the effectiveness and feasibility of the scheme.

  20. Dynamic Synchronous Capture Algorithm for an Electromagnetic Flowmeter

    PubMed Central

    Fanjiang, Yong-Yi; Lu, Shih-Wei

    2017-01-01

    This paper proposes a dynamic synchronous capture (DSC) algorithm to calculate the flow rate for an electromagnetic flowmeter. The characteristics of the DSC algorithm can accurately calculate the flow rate signal and efficiently convert an analog signal to upgrade the execution performance of a microcontroller unit (MCU). Furthermore, it can reduce interference from abnormal noise. It is extremely steady and independent of fluctuations in the flow measurement. Moreover, it can calculate the current flow rate signal immediately (m/s). The DSC algorithm can be applied to the current general MCU firmware platform without using DSP (Digital Signal Processing) or a high-speed and high-end MCU platform, and signal amplification by hardware reduces the demand for ADC accuracy, which reduces the cost. PMID:28394306

  1. Broadband Time Division Multiple Access (TDMA) Solution (Tech Insertion - C4 Enhancement for the U.S. Army in Transformation)

    DTIC Science & Technology

    2005-06-01

    synchronization , timing and frequency to all of the traffic terminals through the reference burst. The MRT also periodically synchronizes all of the traffic...1 2005 Command and Control Research and Technology Symposium The Future of C2 Broadband Time Division Multiple Access (TDMA) Solution...UK Army) Dale White Barry Kruse Shawn White LTC Edward Eidson Thomas Mims COL Charles Dunn III Charlie Pangle Battle Command Battle

  2. Giant amplification in degenerate band edge slow-wave structures interacting with an electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Othman, Mohamed A. K.; Veysi, Mehdi; Capolino, Filippo

    2016-03-15

    We propose a new amplification regime based on a synchronous operation of four degenerate electromagnetic (EM) modes in a slow-wave structure and the electron beam, referred to as super synchronization. These four EM modes arise in a Fabry-Pérot cavity when degenerate band edge (DBE) condition is satisfied. The modes interact constructively with the electron beam resulting in superior amplification. In particular, much larger gains are achieved for smaller beam currents compared to conventional structures based on synchronization with only a single EM mode. We demonstrate giant gain scaling with respect to the length of the slow-wave structure compared to conventionalmore » Pierce type single mode traveling wave tube amplifiers. We construct a coupled transmission line model for a loaded waveguide slow-wave structure exhibiting a DBE, and investigate the phenomenon of giant gain via super synchronization using the Pierce model generalized to multimode interaction.« less

  3. Time Usage during Face-to-Face and Synchronous Distance Music Lessons

    ERIC Educational Resources Information Center

    Orman, Evelyn K.; Whitaker, Jennifer A.

    2010-01-01

    This study compared face-to-face and videoconference private music lessons of one saxophone and two tuba students. One value of this study is the magnitude of the data analysis. More than 28,800 frames of digital video and verbatim scripts of all lessons were analyzed for time spent engaged in sequential patterns of instruction, performance, focus…

  4. Advanced Avionic Systems for Multimission Applications. Volume I.

    DTIC Science & Technology

    1982-10-01

    technical report are theoretical and in no way reflect Air Fortp-nwnpid qnftwRrp png ramc 19. KEY WORDS (Continue on reveree aide It neceeary and Identify...addressed (1) the Development & Evaluation of Advanced Digital Avionics System Architectures and (2) the Development of a Single Processor Synchronous...29 4.3.2 Memory Technologies . . . . . . . . . . . . . . . . . 30 4.3.3 BIU Technology . . . . . . . . . . . . . . . . . . . 33

  5. Formative Use of Select-and-Fill-In Concept Maps in Online Instruction: Implications for Students of Different Learning Styles.

    ERIC Educational Resources Information Center

    Kaminski, Charles W.

    With the establishment of the Internet and World Wide Web as part of the digital revolution, there has been a trend in which synchronous and asynchronous distance education opportunities have been made available to a greater variety of learners. However, students are indiscriminately pursuing online learning opportunities for the sake of…

  6. The usefulness of videomanometry for studying pediatric esophageal motor disease.

    PubMed

    Kawahara, Hisayoshi; Kubota, Akio; Okuyama, Hiroomi; Oue, Takaharu; Tazuke, Yuko; Okada, Akira

    2004-12-01

    Abnormalities in esophageal motor function underlie various symptoms in the pediatric population. Manometry remains an important tool for studying esophageal motor function, whereas its analyses have been conducted with considerable subjective interpretation. The usefulness of videomanometry with topographic analysis was examined in the current study. Videomanometry was conducted in 5 patients with primary gastroesophageal reflux disease (GERD), 4 with postoperative esophageal atresia (EA), 1 with congenital esophageal stenosis (CES), and 1 with diffuse esophageal spasms (DES). Digitized videofluoroscopic images were recorded synchronously with manometric digital data in a personal computer. Manometric analysis was conducted with a view of concurrent esophageal contour and bolus transit. Primary GERD patients showed esophageal flow proceeding into the stomach during peristaltic contractions recorded manometrically, whereas patients with EA/CES frequently showed impaired esophageal transit during defective esophageal peristaltic contractions. A characteristic corkscrew appearance and esophageal flow in a to-and-fro fashion were seen with high-amplitude synchronous esophageal contractions in a DES patient. The topographic analysis showed distinctive images characteristic of each pathological condition. Videomanometry is helpful in interpreting manometric data by analyzing concurrent fluoroscopic images. Topographic analyses provide characteristic images reflecting motor abnormalities in pediatric esophageal disease.

  7. Flight experience with a fail-operational digital fly-by-wire control system

    NASA Technical Reports Server (NTRS)

    Brown, S. R.; Szalai, K. J.

    1977-01-01

    The NASA Dryden Flight Research Center is flight testing a triply redundant digital fly-by-wire (DFBW) control system installed in an F-8 aircraft. The full-time, full-authority system performs three-axis flight control computations, including stability and command augmentation, autopilot functions, failure detection and isolation, and self-test functions. Advanced control law experiments include an active flap mode for ride smoothing and maneuver drag reduction. This paper discusses research being conducted on computer synchronization, fault detection, fault isolation, and recovery from transient faults. The F-8 DFBW system has demonstrated immunity from nuisance fault declarations while quickly identifying truly faulty components.

  8. Implementing Audio Digital Feedback Loop Using the National Instruments RIO System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, G.; Byrd, J. M.

    2006-11-20

    Development of system for high precision RF distribution and laser synchronization at Berkeley Lab has been ongoing for several years. Successful operation of these systems requires multiple audio bandwidth feedback loops running at relatively high gains. Stable operation of the feedback loops requires careful design of the feedback transfer function. To allow for flexible and compact implementation, we have developed digital feedback loops on the National Instruments Reconfigurable Input/Output (RIO) platform. This platform uses an FPGA and multiple I/Os that can provide eight parallel channels running different filters. We present the design and preliminary experimental results of this system.

  9. The Personal Motion Platform

    NASA Technical Reports Server (NTRS)

    Park, Brian Vandellyn

    1993-01-01

    The Neutral Body Posture experienced in microgravity creates a biomechanical equilibrium by enabling the internal forces within the body to find their own balance. A patented reclining chair based on this posture provides a minimal stress environment for interfacing with computer systems for extended periods. When the chair is mounted on a 3 or 6 axis motion platform, a generic motion simulator for simulated digital environments is created. The Personal Motion Platform provides motional feedback to the occupant in synchronization with their movements inside the digital world which enhances the simulation experience. Existing HMD based simulation systems can be integrated to the turnkey system. Future developments are discussed.

  10. Passive ultrasonics using sub-Nyquist sampling of high-frequency thermal-mechanical noise.

    PubMed

    Sabra, Karim G; Romberg, Justin; Lani, Shane; Degertekin, F Levent

    2014-06-01

    Monolithic integration of capacitive micromachined ultrasonic transducer arrays with low noise complementary metal oxide semiconductor electronics minimizes interconnect parasitics thus allowing the measurement of thermal-mechanical (TM) noise. This enables passive ultrasonics based on cross-correlations of diffuse TM noise to extract coherent ultrasonic waves propagating between receivers. However, synchronous recording of high-frequency TM noise puts stringent requirements on the analog to digital converter's sampling rate. To alleviate this restriction, high-frequency TM noise cross-correlations (12-25 MHz) were estimated instead using compressed measurements of TM noise which could be digitized at a sampling frequency lower than the Nyquist frequency.

  11. Effect of digital scrambling on satellite communication links

    NASA Technical Reports Server (NTRS)

    Dessouky, K.

    1985-01-01

    Digital data scrambling has been considered for communication systems using NRZ symbol formats. The purpose is to increase the number of transitions in the data to improve the performance of the symbol synchronizer. This is accomplished without expanding the bandwidth but at the expense of increasing the data bit error rate (BER). Models for the scramblers/descramblers of practical interest are presented together with the appropriate link model. The effects of scrambling on the performance of coded and uncoded links are studied. The results are illustrated by application to the Tracking and Data Relay Satellite System (TDRSS) links. Conclusions regarding the usefulness of scrambling are also given.

  12. Noncoherent DTTLs for Symbol Synchronization

    NASA Technical Reports Server (NTRS)

    Simon, Marvin; Tkacenko, Andre

    2007-01-01

    Noncoherent data-transition tracking loops (DTTLs) have been proposed for use as symbol synchronizers in digital communication receivers. [Communication- receiver subsystems that can perform their assigned functions in the absence of synchronization with the phases of their carrier signals ( carrier synchronization ) are denoted by the term noncoherent, while receiver subsystems that cannot function without carrier synchronization are said to be coherent. ] The proposal applies, more specifically, to receivers of binary phase-shift-keying (BPSK) signals generated by directly phase-modulating binary non-return-to-zero (NRZ) data streams onto carrier signals having known frequencies but unknown phases. The proposed noncoherent DTTLs would be modified versions of traditional DTTLs, which are coherent. The symbol-synchronization problem is essentially the problem of recovering symbol timing from a received signal. In the traditional, coherent approach to symbol synchronization, it is necessary to establish carrier synchronization in order to recover symbol timing. A traditional DTTL effects an iterative process in which it first generates an estimate of the carrier phase in the absence of symbol-synchronization information, then uses the carrier-phase estimate to obtain an estimate of the symbol-synchronization information, then feeds the symbol-synchronization estimate back to the carrier-phase-estimation subprocess. In a noncoherent symbol-synchronization process, there is no need for carrier synchronization and, hence, no need for iteration between carrier-synchronization and symbol- synchronization subprocesses. The proposed noncoherent symbolsynchronization process is justified theoretically by a mathematical derivation that starts from a maximum a posteriori (MAP) method of estimation of symbol timing utilized in traditional, coherent DTTLs. In that MAP method, one chooses the value of a variable of interest (in this case, the offset in the estimated symbol timing) that causes a likelihood function of symbol estimates over some number of symbol periods to assume a maximum value. In terms that are necessarily oversimplified to fit within the space available for this article, it can be said that the mathematical derivation involves a modified interpretation of the likelihood function that lends itself to noncoherent DTTLs. The proposal encompasses both linear and nonlinear noncoherent DTTLs. The performances of both have been computationally simulated; for comparison, the performances of linear and nonlinear coherent DTTLs have also been computationally simulated. The results of these simulations show that, among other things, the expected mean-square timing errors of coherent and noncoherent DTTLs are relatively insensitive to window width. The results also show that at high signal-to-noise ratios (SNRs), the performances of the noncoherent DTTLs approach those of their coherent counterparts at, while at low SNRs, the noncoherent DTTLs incur penalties of the order of 1.5 to 2 dB.

  13. Flexible programmable logic module

    DOEpatents

    Robertson, Perry J.; Hutchinson, Robert L.; Pierson, Lyndon G.

    2001-01-01

    The circuit module of this invention is a VME board containing a plurality of programmable logic devices (PLDs), a controlled impedance clock tree, and interconnecting buses. The PLDs are arranged to permit systolic processing of a problem by offering wide data buses and a plurality of processing nodes. The board contains a clock reference and clock distribution tree that can drive each of the PLDs with two critically timed clock references. External clock references can be used to drive additional circuit modules all operating from the same synchronous clock reference.

  14. A Rapid Segmentation-Insensitive "Digital Biopsy" Method for Radiomic Feature Extraction: Method and Pilot Study Using CT Images of Non-Small Cell Lung Cancer.

    PubMed

    Echegaray, Sebastian; Nair, Viswam; Kadoch, Michael; Leung, Ann; Rubin, Daniel; Gevaert, Olivier; Napel, Sandy

    2016-12-01

    Quantitative imaging approaches compute features within images' regions of interest. Segmentation is rarely completely automatic, requiring time-consuming editing by experts. We propose a new paradigm, called "digital biopsy," that allows for the collection of intensity- and texture-based features from these regions at least 1 order of magnitude faster than the current manual or semiautomated methods. A radiologist reviewed automated segmentations of lung nodules from 100 preoperative volume computed tomography scans of patients with non-small cell lung cancer, and manually adjusted the nodule boundaries in each section, to be used as a reference standard, requiring up to 45 minutes per nodule. We also asked a different expert to generate a digital biopsy for each patient using a paintbrush tool to paint a contiguous region of each tumor over multiple cross-sections, a procedure that required an average of <3 minutes per nodule. We simulated additional digital biopsies using morphological procedures. Finally, we compared the features extracted from these digital biopsies with our reference standard using intraclass correlation coefficient (ICC) to characterize robustness. Comparing the reference standard segmentations to our digital biopsies, we found that 84/94 features had an ICC >0.7; comparing erosions and dilations, using a sphere of 1.5-mm radius, of our digital biopsies to the reference standard segmentations resulted in 41/94 and 53/94 features, respectively, with ICCs >0.7. We conclude that many intensity- and texture-based features remain consistent between the reference standard and our method while substantially reducing the amount of operator time required.

  15. Precision digital pulse phase generator

    DOEpatents

    McEwan, T.E.

    1996-10-08

    A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code. 2 figs.

  16. Precision digital pulse phase generator

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code.

  17. Use of personal digital assistants in diagnostic radiology resident education.

    PubMed

    Nishino, Mizuki; Busch, James M; Wei, Jesse; Barbaras, Larry; Yam, Chun-Shan; Hatabu, Hiroto

    2004-10-01

    Personal digital assistants (PDAs) are gaining widespread use in the medical community. We introduced a PDA-based mobile system that provides departmental and educational information with a seamless connection to the intranet. The objective of this study is to determine the impact a PDA has on educational resources (learning or data reference) brought to work and used at home by a radiology resident based on user surveys. Survey was performed on 32 radiology residents in our department before and 6 months after the release of the PDA-based system. We assessed the changes in (1) sources of learning at home and at work, and in (2) data reference. The second survey also evaluated the usefulness of each component of the system. After the release of the PDA-based mobile system, the use of "digital books and references" as data references and educational resources that were brought to work every day significantly increased (P = .016, P < .0001, respectively). "Traditional books and references" remained the "most useful source in learning radiology"; however, "digital books and references" increased as the residents' first choice from 0% to 16% within 6 months of introducing the package (P = .125). The introduction of a PDA-based system consisting of educational and departmental information had a statistically significant impact in increasing the use of digitized information in radiology resident education.

  18. Optical/digital identification/verification system based on digital watermarking technology

    NASA Astrophysics Data System (ADS)

    Herrigel, Alexander; Voloshynovskiy, Sviatoslav V.; Hrytskiv, Zenon D.

    2000-06-01

    This paper presents a new approach for the secure integrity verification of driver licenses, passports or other analogue identification documents. The system embeds (detects) the reference number of the identification document with the DCT watermark technology in (from) the owner photo of the identification document holder. During verification the reference number is extracted and compared with the reference number printed in the identification document. The approach combines optical and digital image processing techniques. The detection system must be able to scan an analogue driver license or passport, convert the image of this document into a digital representation and then apply the watermark verification algorithm to check the payload of the embedded watermark. If the payload of the watermark is identical with the printed visual reference number of the issuer, the verification was successful and the passport or driver license has not been modified. This approach constitutes a new class of application for the watermark technology, which was originally targeted for the copyright protection of digital multimedia data. The presented approach substantially increases the security of the analogue identification documents applied in many European countries.

  19. Off-axis illumination direct-to-digital holography

    DOEpatents

    Thomas, Clarence E.; Price, Jeffery R.; Voelkl, Edgar; Hanson, Gregory R.

    2004-06-08

    Systems and methods are described for off-axis illumination direct-to-digital holography. A method of recording an off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis, includes: reflecting a reference beam from a reference mirror at a non-normal angle; reflecting an object beam from an object at an angle with respect to an optical axis defined by a focusing lens; focusing the reference beam and the object beam at a focal plane of a digital recorder to form the off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digitally recording the off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; Fourier analyzing the recorded off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes by transforming axes of the recorded off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined as an angle between the reference beam and the object beam; applying a digital filter to cut off signals around an original origin; and then performing an inverse Fourier transform.

  20. Global system data bus using the Digital Autonomous Terminal Access Communication protocol

    NASA Technical Reports Server (NTRS)

    Holmes, David C. E.

    1986-01-01

    Modern digital avionic systems with distributed processing require networking to connect the many elements. Digital Autonomous Terminal Access Communication (DATAC) is one of many such networks. DATAC has been implemented on the Transport Systems Research Vehicle (TSRV), a Boeing 737 aircraft operated by the National Aeronautics and Space Administration's Advanced Transport Operating Systems Program Office (ATOPS). This paper presents the TSRV implementation of the DATAC bus, a description of the DATAC system, a synchronization mechanism, details of data flow throughout the system, and a discussion of the modes available with DATAC. Numerous flight tests have been conducted using DATAC as the only means of communication between systems with outstanding results. DATAC is now an integral part of the TSRV and is expected to satisfy near term as well as future requirements for growth and flexibility.

  1. Performance results of a digital test signal generator

    NASA Technical Reports Server (NTRS)

    Gutierrez-Luaces, B. O.; Marina, M.; Parham, B.

    1993-01-01

    Performance results of a digital test signal-generator hardware-demonstration unit are reported. Capabilities available include baseband and intermediate frequency (IF) spectrum generation, for which test results are provided. Repeatability in the setting of a given signal-to-noise ratio (SNR) when a baseband or an IF spectrum is being generated ranges from 0.01 dB at high SNR's or high data rates to 0.3 dB at low data rates or low SNR's. Baseband symbol SNR and carrier SNR (Pc/No) accuracies of 0.1 dB were verified with the built-in statistics circuitry. At low SNR's that accuracy remains to be fully verified. These results were confirmed with measurements from a demodulator synchronizer assembly for the baseband spectrum generation, and with a digital receiver (Pioneer 10 receiver) for the IF spectrum generation.

  2. Digital phased array beamforming using single-bit delta-sigma conversion with non-uniform oversampling.

    PubMed

    Kozak, M; Karaman, M

    2001-07-01

    Digital beamforming based on oversampled delta-sigma (delta sigma) analog-to-digital (A/D) conversion can reduce the overall cost, size, and power consumption of phased array front-end processing. The signal resampling involved in dynamic delta sigma beamforming, however, disrupts synchronization between the modulators and demodulator, causing significant degradation in the signal-to-noise ratio. As a solution to this, we have explored a new digital beamforming approach based on non-uniform oversampling delta sigma A/D conversion. Using this approach, the echo signals received by the transducer array are sampled at time instants determined by the beamforming timing and then digitized by single-bit delta sigma A/D conversion prior to the coherent beam summation. The timing information involves a non-uniform sampling scheme employing different clocks at each array channel. The delta sigma coded beamsums obtained by adding the delayed 1-bit coded RF echo signals are then processed through a decimation filter to produce final beamforming outputs. The performance and validity of the proposed beamforming approach are assessed by means of emulations using experimental raw RF data.

  3. Application of normal fluorescence and stability-indicating derivative synchronous fluorescence spectroscopy for the determination of gliquidone in presence of its fluorescent alkaline degradation product

    NASA Astrophysics Data System (ADS)

    El-ghobashy, Mohamed R.; Yehia, Ali M.; Helmy, Aya H.; Youssef, Nadia F.

    2018-01-01

    Simple, smart and sensitive normal fluorescence and stability-indicating derivative synchronous spectrofluorimetric methods have been developed and validated for the determination of gliquidone in the drug substance and drug product. Normal spectrofluorimetric method of gliquidone was established in methanol at λ excitation 225 nm and λ emission 400 nm in concentration range 0.2-3 μg/ml with LOD equal 0.028. The fluorescence quantum yield of gliquidone was calculated using quinine sulfate as a reference and found to be 0.542. Stability-indicating first and third derivative synchronous fluorescence spectroscopy were successfully utilized to overcome the overlapped spectra in normal fluorescence of gliquidone and its alkaline degradation product. Derivative synchronous methods are based on using the synchronous fluorescence of gliquidone and its degradation product in methanol at Δ λ50 nm. Peak amplitude in the first derivative of synchronous fluorescence spectra was measured at 309 nm where degradation product showed zero-crossing without interference. The peak amplitudes in the third derivative of synchronous fluorescence spectra, peak to trough were measured at 316,329 nm where degradation product showed zero-crossing. The different experimental parameters affecting the normal and synchronous fluorescence intensity of gliquidone were studied and optimized. Moreover, the cited methods have been validated as per ICH guidelines. The peak amplitude-concentration plots of the derivative synchronous fluorescence were linear over the concentration range 0.05-2 μg/ml for gliquidone. Limits of detection were 0.020 and 0.022 in first and third derivative synchronous spectra, respectively. The adopted methods were successfully applied to commercial tablets and the results demonstrated that the derivative synchronous fluorescence spectroscopy is a powerful stability-indicating method, suitable for routine use with a short analysis time. Statistical comparison between the results obtained by normal fluorescence and derivative synchronous methods and the official one using student's t-test and F-ratio showed no significant difference regarding accuracy and precision.

  4. Synchronous bilateral carcinoma of the breasts occurring in a young woman with a history of Langerhans' cell histiocytosis in infancy.

    PubMed

    Churn, M; Davies, C; Slater, A

    1999-01-01

    We report the case history of a 28-year-old woman who developed synchronous bilateral carcinoma of the breasts, having been diagnosed with multisystem Langerhans' cell histiocytosis in infancy. She had been treated with vinblastine and corticosteroids for 3 years and made a full recovery without late sequelae. We review the association of Langerhans' cell histiocytosis and its treatment with subsequent malignancy, with particular reference to carcinoma of the breast, and discuss the possible causes.

  5. Synchronization Control for a Class of Discrete-Time Dynamical Networks With Packet Dropouts: A Coding-Decoding-Based Approach.

    PubMed

    Wang, Licheng; Wang, Zidong; Han, Qing-Long; Wei, Guoliang

    2017-09-06

    The synchronization control problem is investigated for a class of discrete-time dynamical networks with packet dropouts via a coding-decoding-based approach. The data is transmitted through digital communication channels and only the sequence of finite coded signals is sent to the controller. A series of mutually independent Bernoulli distributed random variables is utilized to model the packet dropout phenomenon occurring in the transmissions of coded signals. The purpose of the addressed synchronization control problem is to design a suitable coding-decoding procedure for each node, based on which an efficient decoder-based control protocol is developed to guarantee that the closed-loop network achieves the desired synchronization performance. By applying a modified uniform quantization approach and the Kronecker product technique, criteria for ensuring the detectability of the dynamical network are established by means of the size of the coding alphabet, the coding period and the probability information of packet dropouts. Subsequently, by resorting to the input-to-state stability theory, the desired controller parameter is obtained in terms of the solutions to a certain set of inequality constraints which can be solved effectively via available software packages. Finally, two simulation examples are provided to demonstrate the effectiveness of the obtained results.

  6. Chirped pulse digital holography for measuring the sequence of ultrafast optical wavefronts

    NASA Astrophysics Data System (ADS)

    Karasawa, Naoki

    2018-04-01

    Optical setups for measuring the sequence of ultrafast optical wavefronts using a chirped pulse as a reference wave in digital holography are proposed and analyzed. In this method, multiple ultrafast object pulses are used to probe the temporal evolution of ultrafast phenomena and they are interfered with a chirped reference wave to record a digital hologram. Wavefronts at different times can be reconstructed separately from the recorded hologram when the reference pulse can be treated as a quasi-monochromatic wave during the pulse width of each object pulse. The feasibility of this method is demonstrated by numerical simulation.

  7. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, C.L.

    1997-09-23

    A method and apparatus are disclosed for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential dement is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits. 4 figs.

  8. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, C.L.

    1996-12-31

    A method and apparatus are disclosed for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential element is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits. 4 figs.

  9. "Nous" versus "on": Pronouns with First-Person Plural Reference in Synchronous French Chat

    ERIC Educational Resources Information Center

    van Compernolle, Remi A.

    2008-01-01

    This article explores variation in the use of the pronouns "nous" and "on" for first-person plural reference in a substantial corpus of French-language Internet chat discourse. The results indicate that "on" is nearly categorically preferred to "nous," which is in line with previous research on informal spoken French. A qualitative analysis of…

  10. New Roles for New Times: Digital Curation for Preservation

    ERIC Educational Resources Information Center

    Walters, Tyler; Skinner, Katherine

    2011-01-01

    Digital curation refers to the actions people take to maintain and add value to digital information over its lifecycle, including the processes used when creating digital content. Digital preservation focuses on the "series of managed activities necessary to ensure continued access to digital materials for as long as necessary." In this…

  11. High-Speed Optical Wide-Area Data-Communication Network

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P.

    1994-01-01

    Proposed fiber-optic wide-area network (WAN) for digital communication balances input and output flows of data with its internal capacity by routing traffic via dynamically interconnected routing planes. Data transmitted optically through network by wavelength-division multiplexing in synchronous or asynchronous packets. WAN implemented with currently available technology. Network is multiple-ring cyclic shuffle exchange network ensuring traffic reaches its destination with minimum number of hops.

  12. Gated high speed optical detector

    NASA Technical Reports Server (NTRS)

    Green, S. I.; Carson, L. M.; Neal, G. W.

    1973-01-01

    The design, fabrication, and test of two gated, high speed optical detectors for use in high speed digital laser communication links are discussed. The optical detectors used a dynamic crossed field photomultiplier and electronics including dc bias and RF drive circuits, automatic remote synchronization circuits, automatic gain control circuits, and threshold detection circuits. The equipment is used to detect binary encoded signals from a mode locked neodynium laser.

  13. Key Skills for Co-Learning and Co-Inquiry in Two Open Platforms: A Massive Portal (EDUCARED) and a Personal Environment (weSPOT)

    ERIC Educational Resources Information Center

    Okada, Alexandra; Serra, Antonio Roberto Coelho; Ribeiro, Silvar Ferreira; da Conceição Pinto, Sônia Maria

    2015-01-01

    This paper presents a qualitative investigation on key skills for co-learning and co-inquiry in the digital age. The method applied was cyber-ethnography with asynchronous observation (forum and wiki) and synchronous discussions (webconference) for analysing skills developed by a co-learning community. This study focuses on participants from…

  14. Content-based fused off-axis object illumination direct-to-digital holography

    DOEpatents

    Price, Jeffery R.

    2006-05-02

    Systems and methods are described for content-based fused off-axis illumination direct-to-digital holography. A method includes calculating an illumination angle with respect to an optical axis defined by a focusing lens as a function of data representing a Fourier analyzed spatially heterodyne hologram; reflecting a reference beam from a reference mirror at a non-normal angle; reflecting an object beam from an object the object beam incident upon the object at the illumination angle; focusing the reference beam and the object beam at a focal plane of a digital recorder to from the content-based off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; and digitally recording the content based off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis.

  15. Fast sparsely synchronized brain rhythms in a scale-free neural network

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Yoon; Lim, Woochang

    2015-08-01

    We consider a directed version of the Barabási-Albert scale-free network model with symmetric preferential attachment with the same in- and out-degrees and study the emergence of sparsely synchronized rhythms for a fixed attachment degree in an inhibitory population of fast-spiking Izhikevich interneurons. Fast sparsely synchronized rhythms with stochastic and intermittent neuronal discharges are found to appear for large values of J (synaptic inhibition strength) and D (noise intensity). For an intensive study we fix J at a sufficiently large value and investigate the population states by increasing D . For small D , full synchronization with the same population-rhythm frequency fp and mean firing rate (MFR) fi of individual neurons occurs, while for large D partial synchronization with fp> ( : ensemble-averaged MFR) appears due to intermittent discharge of individual neurons; in particular, the case of fp>4 is referred to as sparse synchronization. For the case of partial and sparse synchronization, MFRs of individual neurons vary depending on their degrees. As D passes a critical value D* (which is determined by employing an order parameter), a transition to unsynchronization occurs due to the destructive role of noise to spoil the pacing between sparse spikes. For D

  16. Digital signal processor and processing method for GPS receivers

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess B. (Inventor)

    1989-01-01

    A digital signal processor and processing method therefor for use in receivers of the NAVSTAR/GLOBAL POSITIONING SYSTEM (GPS) employs a digital carrier down-converter, digital code correlator and digital tracking processor. The digital carrier down-converter and code correlator consists of an all-digital, minimum bit implementation that utilizes digital chip and phase advancers, providing exceptional control and accuracy in feedback phase and in feedback delay. Roundoff and commensurability errors can be reduced to extremely small values (e.g., less than 100 nanochips and 100 nanocycles roundoff errors and 0.1 millichip and 1 millicycle commensurability errors). The digital tracking processor bases the fast feedback for phase and for group delay in the C/A, P.sub.1, and P.sub.2 channels on the L.sub.1 C/A carrier phase thereby maintaining lock at lower signal-to-noise ratios, reducing errors in feedback delays, reducing the frequency of cycle slips and in some cases obviating the need for quadrature processing in the P channels. Simple and reliable methods are employed for data bit synchronization, data bit removal and cycle counting. Improved precision in averaged output delay values is provided by carrier-aided data-compression techniques. The signal processor employs purely digital operations in the sense that exactly the same carrier phase and group delay measurements are obtained, to the last decimal place, every time the same sampled data (i.e., exactly the same bits) are processed.

  17. Reference to Self and Other in the Digital Public Sphere: The Case of Political Blogs

    ERIC Educational Resources Information Center

    De Cock, Barbara; González Arias, Cristian

    2018-01-01

    In this paper, we analyze how a political blog author (Spanish Alejo Vidal-Quadras) establishes the reference to self and other in his blog entries. We furthermore look into how the commentators to this blog react and establish reference to self and other in the digital public sphere. More concretely, we show that they not only take up the…

  18. The CARIBU EBIS control and synchronization system

    NASA Astrophysics Data System (ADS)

    Dickerson, Clayton; Peters, Christopher

    2015-01-01

    The Californium Rare Isotope Breeder Upgrade (CARIBU) Electron Beam Ion Source (EBIS) charge breeder has been built and tested. The bases of the CARIBU EBIS electrical system are four voltage platforms on which both DC and pulsed high voltage outputs are controlled. The high voltage output pulses are created with either a combination of a function generator and a high voltage amplifier, or two high voltage DC power supplies and a high voltage solid state switch. Proper synchronization of the pulsed voltages, fundamental to optimizing the charge breeding performance, is achieved with triggering from a digital delay pulse generator. The control system is based on National Instruments realtime controllers and LabVIEW software implementing Functional Global Variables (FGV) to store and access instrument parameters. Fiber optic converters enable network communication and triggering across the platforms.

  19. Self-synchronization for spread spectrum audio watermarks after time scale modification

    NASA Astrophysics Data System (ADS)

    Nadeau, Andrew; Sharma, Gaurav

    2014-02-01

    De-synchronizing operations such as insertion, deletion, and warping pose significant challenges for watermarking. Because these operations are not typical for classical communications, watermarking techniques such as spread spectrum can perform poorly. Conversely, specialized synchronization solutions can be challenging to analyze/ optimize. This paper addresses desynchronization for blind spread spectrum watermarks, detected without reference to any unmodified signal, using the robustness properties of short blocks. Synchronization relies on dynamic time warping to search over block alignments to find a sequence with maximum correlation to the watermark. This differs from synchronization schemes that must first locate invariant features of the original signal, or estimate and reverse desynchronization before detection. Without these extra synchronization steps, analysis for the proposed scheme builds on classical SS concepts and allows characterizes the relationship between the size of search space (number of detection alignment tests) and intrinsic robustness (continuous search space region covered by each individual detection test). The critical metrics that determine the search space, robustness, and performance are: time-frequency resolution of the watermarking transform, and blocklength resolution of the alignment. Simultaneous robustness to (a) MP3 compression, (b) insertion/deletion, and (c) time-scale modification is also demonstrated for a practical audio watermarking scheme developed in the proposed framework.

  20. EEG alpha synchronization is related to top-down processing in convergent and divergent thinking

    PubMed Central

    Benedek, Mathias; Bergner, Sabine; Könen, Tanja; Fink, Andreas; Neubauer, Aljoscha C.

    2011-01-01

    Synchronization of EEG alpha activity has been referred to as being indicative of cortical idling, but according to more recent evidence it has also been associated with active internal processing and creative thinking. The main objective of this study was to investigate to what extent EEG alpha synchronization is related to internal processing demands and to specific cognitive process involved in creative thinking. To this end, EEG was measured during a convergent and a divergent thinking task (i.e., creativity-related task) which once were processed involving low and once involving high internal processing demands. High internal processing demands were established by masking the stimulus (after encoding) and thus preventing further bottom-up processing. Frontal alpha synchronization was observed during convergent and divergent thinking only under exclusive top-down control (high internal processing demands), but not when bottom-up processing was allowed (low internal processing demands). We conclude that frontal alpha synchronization is related to top-down control rather than to specific creativity-related cognitive processes. Frontal alpha synchronization, which has been observed in a variety of different creativity tasks, thus may not reflect a brain state that is specific for creative cognition but can probably be attributed to high internal processing demands which are typically involved in creative thinking. PMID:21925520

  1. Refinement of ground reference data with segmented image data

    NASA Technical Reports Server (NTRS)

    Robinson, Jon W.; Tilton, James C.

    1991-01-01

    One of the ways to determine ground reference data (GRD) for satellite remote sensing data is to photo-interpret low altitude aerial photographs and then digitize the cover types on a digitized tablet and register them to 7.5 minute U.S.G.S. maps (that were themselves digitized). The resulting GRD can be registered to the satellite image or, vice versa. Unfortunately, there are many opportunities for error when using digitizing tablet and the resolution of the edges for the GRD depends on the spacing of the points selected on the digitizing tablet. One of the consequences of this is that when overlaid on the image, errors and missed detail in the GRD become evident. An approach is discussed for correcting these errors and adding detail to the GRD through the use of a highly interactive, visually oriented process. This process involves the use of overlaid visual displays of the satellite image data, the GRD, and a segmentation of the satellite image data. Several prototype programs were implemented which provide means of taking a segmented image and using the edges from the reference data to mask out these segment edges that are beyond a certain distance from the reference data edges. Then using the reference data edges as a guide, those segment edges that remain and that are judged not to be image versions of the reference edges are manually marked and removed. The prototype programs that were developed and the algorithmic refinements that facilitate execution of this task are described.

  2. Digital Preservation and Access of Natural Resources Documents

    ERIC Educational Resources Information Center

    Kulhavy, David L.; Reynolds, R. Philip; Unger, Daniel R.; Bullard, Steven H.; McBroom, Matthew W.

    2017-01-01

    Digitization and preservation of natural resource documents were reviewed and the current status of digitization presented for a North American university. It is important to present the status of the digitation process for natural resources and to advocate for increased collections of digital material for ease of reference and exchange of…

  3. A Timer for Synchronous Digital Systems

    NASA Technical Reports Server (NTRS)

    McKenney, Elizabeth; Irwin, Philip

    2003-01-01

    The Real-Time Interferometer Control Systems Testbed (RICST) timing board is a VersaModule Eurocard (VME)-based board that can generate up to 16 simultaneous, phase-locked timing signals at a rate defined by the user. It can also generate all seven VME interrupt requests (IRQs). The RICST timing board is suitable mainly for robotic, aerospace, and real-time applications. Several circuit boards on the market are capable of generating periodic IRQs. Most are associated with Global Positioning System (GPS) receivers and Inter Range Instrumentation Group (IRIG) time-code generators, whereas this board uses either an internal VME clock or an externally generated clock signal to synchronize multiple components of the system. The primary advantage of this board is that there is no discernible jitter in the output clock waveforms because the signals are divided down from a high-frequency clock signal instead of being phase-locked from a lower frequency. The primary disadvantage to this board, relative to other periodic-IRQ-generating boards, is that it is more difficult to synchronize the system to wall clock time.

  4. Timing performance of phased-locked loops in optical pulse position modulation communication systems

    NASA Technical Reports Server (NTRS)

    Lafaw, D. A.; Gardner, C. S.

    1984-01-01

    An optical digital communication system requires that an accurate clock signal be available at the receiver for proper synchronization with the transmitted signal. Phase synchronization is especially critical in M-ary pulse position modulation (PPM) systems where the optimum decision scheme is an energy detector which compares the energy in each of M time slots to decide which of M possible words was sent. Timing errors cause energy spillover into adjacent time slots (a form of intersymbol interference) so that only a portion of the signal energy may be attributed to the correct time slot. This effect decreases the effective signal, increases the effective noise, and increases the probability of error. A timing subsystem for a satellite-to-satellite optical PPM communication link is simulated. The receiver employs direct photodetection, preprocessing of the detected signal, and a phase-locked loop for timing synchronization. The variance of the relative phase error is examined under varying signal strength conditions as an indication of loop performance, and simulation results are compared to theoretical calculations.

  5. Timing performance of phased-locked loops in optical pulse position modulation communication systems

    NASA Astrophysics Data System (ADS)

    Lafaw, D. A.; Gardner, C. S.

    1984-08-01

    An optical digital communication system requires that an accurate clock signal be available at the receiver for proper synchronization with the transmitted signal. Phase synchronization is especially critical in M-ary pulse position modulation (PPM) systems where the optimum decision scheme is an energy detector which compares the energy in each of M time slots to decide which of M possible words was sent. Timing errors cause energy spillover into adjacent time slots (a form of intersymbol interference) so that only a portion of the signal energy may be attributed to the correct time slot. This effect decreases the effective signal, increases the effective noise, and increases the probability of error. A timing subsystem for a satellite-to-satellite optical PPM communication link is simulated. The receiver employs direct photodetection, preprocessing of the detected signal, and a phase-locked loop for timing synchronization. The variance of the relative phase error is examined under varying signal strength conditions as an indication of loop performance, and simulation results are compared to theoretical calculations.

  6. Detecting double compressed MPEG videos with the same quantization matrix and synchronized group of pictures structure

    NASA Astrophysics Data System (ADS)

    Aghamaleki, Javad Abbasi; Behrad, Alireza

    2018-01-01

    Double compression detection is a crucial stage in digital image and video forensics. However, the detection of double compressed videos is challenging when the video forger uses the same quantization matrix and synchronized group of pictures (GOP) structure during the recompression history to conceal tampering effects. A passive approach is proposed for detecting double compressed MPEG videos with the same quantization matrix and synchronized GOP structure. To devise the proposed algorithm, the effects of recompression on P frames are mathematically studied. Then, based on the obtained guidelines, a feature vector is proposed to detect double compressed frames on the GOP level. Subsequently, sparse representations of the feature vectors are used for dimensionality reduction and enrich the traces of recompression. Finally, a support vector machine classifier is employed to detect and localize double compression in temporal domain. The experimental results show that the proposed algorithm achieves the accuracy of more than 95%. In addition, the comparisons of the results of the proposed method with those of other methods reveal the efficiency of the proposed algorithm.

  7. Random noise can help to improve synchronization of excimer laser pulses.

    PubMed

    Mingesz, Róbert; Barna, Angéla; Gingl, Zoltán; Mellár, János

    2016-02-01

    Recently, we have reported on a compact microcontroller-based unit developed to accurately synchronize excimer laser pulses (Mingesz et al. 2012 Fluct. Noise Lett. 11, 1240007 (doi:10.1142/S021947751240007X)). We have shown that dithering based on random jitter noise plus pseudorandom numbers can be used in the digital control system to radically reduce the long-term drift of the laser pulse from the trigger and to improve the accuracy of the synchronization. In this update paper, we present our new experimental results obtained by the use of the delay-controller unit to tune the timing of a KrF excimer laser as an addition to our previous numerical simulation results. The hardware was interfaced to the laser using optical signal paths in order to reduce sensitivity to electromagnetic interference and the control algorithm tested by simulations was applied in the experiments. We have found that the system is able to reduce the delay uncertainty very close to the theoretical limit and performs well in real applications. The simple, compact and flexible system is universal enough to also be used in various multidisciplinary applications.

  8. Medusa: A Scalable MR Console Using USB

    PubMed Central

    Stang, Pascal P.; Conolly, Steven M.; Santos, Juan M.; Pauly, John M.; Scott, Greig C.

    2012-01-01

    MRI pulse sequence consoles typically employ closed proprietary hardware, software, and interfaces, making difficult any adaptation for innovative experimental technology. Yet MRI systems research is trending to higher channel count receivers, transmitters, gradient/shims, and unique interfaces for interventional applications. Customized console designs are now feasible for researchers with modern electronic components, but high data rates, synchronization, scalability, and cost present important challenges. Implementing large multi-channel MR systems with efficiency and flexibility requires a scalable modular architecture. With Medusa, we propose an open system architecture using the Universal Serial Bus (USB) for scalability, combined with distributed processing and buffering to address the high data rates and strict synchronization required by multi-channel MRI. Medusa uses a modular design concept based on digital synthesizer, receiver, and gradient blocks, in conjunction with fast programmable logic for sampling and synchronization. Medusa is a form of synthetic instrument, being reconfigurable for a variety of medical/scientific instrumentation needs. The Medusa distributed architecture, scalability, and data bandwidth limits are presented, and its flexibility is demonstrated in a variety of novel MRI applications. PMID:21954200

  9. Control strategy based on SPWM switching patterns for grid connected photovoltaic inverter

    NASA Astrophysics Data System (ADS)

    Hassaine, L.; Mraoui, A.

    2017-02-01

    Generally, for lower installation of photovoltaic systems connected to the grid, pulse width modulation (PWM) is a widely used technique for controlling the voltage source inverters injects currents into the grid. The current injected must be sinusoidal with reduced harmonic distortion. In this paper, a digital implementation of a control strategy based on PWM switching patterns for an inverter for photovoltaic system connected to the grid is presented. This strategy synchronize a sinusoidal inverter output current with a grid voltage The digital implementation of the proposed PWM switching pattern when is compared with the conventional one exhibit the advantage: Simplicity, reduction of the memory requirements and power calculation for the control

  10. Digital scrambling for shuttle communication links: Do drawbacks outweigh advantages?

    NASA Technical Reports Server (NTRS)

    Dessouky, K.

    1985-01-01

    Digital data scrambling has been considered for communication systems using NRZ (non-return to zero) symbol formats. The purpose is to increase the number of transitions in the data to improve the performance of the symbol synchronizer. This is accomplished without expanding the bandwidth but at the expense of increasing the data bit error rate (BER). Models for the scramblers/descramblers of practical interest are presented together with the appropriate link model. The effects of scrambling on the performance of coded and uncoded links are studied. The results are illustrated by application to the Tracking and Data Relay Satellite System links. Conclusions regarding the usefulness of scrambling are also given.

  11. GET: A generic electronics system for TPCs and nuclear physics instrumentation

    NASA Astrophysics Data System (ADS)

    Pollacco, E. C.; Grinyer, G. F.; Abu-Nimeh, F.; Ahn, T.; Anvar, S.; Arokiaraj, A.; Ayyad, Y.; Baba, H.; Babo, M.; Baron, P.; Bazin, D.; Beceiro-Novo, S.; Belkhiria, C.; Blaizot, M.; Blank, B.; Bradt, J.; Cardella, G.; Carpenter, L.; Ceruti, S.; De Filippo, E.; Delagnes, E.; De Luca, S.; De Witte, H.; Druillole, F.; Duclos, B.; Favela, F.; Fritsch, A.; Giovinazzo, J.; Gueye, C.; Isobe, T.; Hellmuth, P.; Huss, C.; Lachacinski, B.; Laffoley, A. T.; Lebertre, G.; Legeard, L.; Lynch, W. G.; Marchi, T.; Martina, L.; Maugeais, C.; Mittig, W.; Nalpas, L.; Pagano, E. V.; Pancin, J.; Poleshchuk, O.; Pedroza, J. L.; Pibernat, J.; Primault, S.; Raabe, R.; Raine, B.; Rebii, A.; Renaud, M.; Roger, T.; Roussel-Chomaz, P.; Russotto, P.; Saccà, G.; Saillant, F.; Sizun, P.; Suzuki, D.; Swartz, J. A.; Tizon, A.; Usher, N.; Wittwer, G.; Yang, J. C.

    2018-04-01

    General Electronics for TPCs (GET) is a generic, reconfigurable and comprehensive electronics and data-acquisition system for nuclear physics instrumentation of up to 33792 channels. The system consists of a custom-designed ASIC for signal processing, front-end cards that each house 4 ASIC chips and digitize the data in parallel through 12-bit ADCs, concentration boards to read and process the digital data from up to 16 ASICs, a 3-level trigger and master clock module to trigger the system and synchronize the data, as well as all of the associated firmware, communication and data-acquisition software. An overview of the system including its specifications and measured performances are presented.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muir, Ryan D.; Sullivan, Shane Z.; Oglesbee, Robert A.

    Digital lock-in amplification (LIA) with synchronous digitization (SD) is shown to provide significant signal to noise (S/N) and linear dynamic range advantages in beam-scanning microscopy measurements using pulsed laser sources. Direct comparisons between SD-LIA and conventional LIA in homodyne second harmonic generation measurements resulted in S/N enhancements consistent with theoretical models. SD-LIA provided notably larger S/N enhancements in the limit of low light intensities, through the smooth transition between photon counting and signal averaging developed in previous work. Rapid beam scanning instrumentation with up to video rate acquisition speeds minimized photo-induced sample damage. The corresponding increased allowance for higher lasermore » power without sample damage is advantageous for increasing the observed signal content.« less

  13. Clock distribution for BaF2 readout electronics at CSNS-WNS

    NASA Astrophysics Data System (ADS)

    He, Bing; Cao, Ping; Zhang, De-Liang; Wang, Qi; Zhang, Ya-Xi; Qi, Xin-Cheng; An, Qi

    2017-01-01

    A BaF2 (Barium Fluoride) detector array is designed to precisely measure the (n, γ) cross section at the CSNS-WNS (white neutron source at China Spallation Neutron Source). It is a 4π solid angle-shaped detector array consisting of 92 BaF2 crystal elements. To discriminate signals from the BaF2 detector, a pulse shape discrimination method is used, supported by a waveform digitization technique. There are 92 channels for digitizing. The precision and synchronization of clock distribution restricts the performance of waveform digitizing. In this paper, a clock prototype for the BaF2 readout electronics at CSNS-WNS is introduced. It is based on the PXIe platform and has a twin-stage tree topology. In the first stage, clock is synchronously distributed from the tree root to each PXIe crate through a coaxial cable over a long distance, while in the second stage, the clock is further distributed to each electronic module through a PXIe dedicated differential star bus. With the help of this topology, each tree node can fan out up to 20 clocks with 3U size. Test results show the clock jitter is less than 20 ps, which meets the requirements of the BaF2 readout electronics. Besides, this clock system has the advantages of high density, simplicity, scalability and cost saving, so it can be useful for other clock distribution applications. Supported by National Research and Development plan (2016 YFA0401602) NSAF (U1530111) and National Natural Science Foundation of China (11005107)

  14. A novel device for the study of somatosensory information processing

    PubMed Central

    Holden, Jameson K.; Nguyen, Richard H.; Francisco, Eric M.; Zhang, Zheng; Dennis, Robert G.; Tommerdahl, Mark

    2012-01-01

    Current methods for applying multi-site vibratory stimuli to the skin typically involve the use of multiple, individual vibrotactile stimulators. Limitations of such an arrangement include difficulty with both positioning the stimuli as well as ensuring that stimuli are delivered in a synchronized and deliberate manner. Previously, we reported a two-site tactile stimulator that was developed in order to solve these problems (Tannan et al., 2007a). Due to both the success of that novel stimulator and the limitations that were inherent in that device, we designed and fabricated a four-site stimulator that provides a number of advantages over the previous version. First, the device can stimulate four independent skin sites and is primarily designed for stimulating the digit tips. Second, the positioning of the probe tips has been re-designed to provide better ergonomic hand placement. Third, the device is much more portable than the previously-reported stimulator. Fourth, the stimulator head has a much smaller footprint on the table or surface where it resides. To demonstrate the capacity of the device for delivering tactile stimulation at four independent sites, a finger agnosia protocol, in the presence and absence of conditioning stimuli, was conducted on seventeen healthy control subjects. The study demonstrated that with increasing amplitudes of vibrotactile conditioning stimuli concurrent with the agnosia test, inaccuracies of digit identification increased, particularly at digits D3 and D4. The results are consistent with prior studies that implicated synchronization of adjacent and near-adjacent cortical ensembles with conditioning stimuli in impacting TOJ performance (Tommerdahl et al., 2007). PMID:22155443

  15. A digital reference collection for aquatic macroinvertebrates of North America

    USGS Publications Warehouse

    Walters, David; Ford, Morgan A; Zuellig, Robert E.

    2017-01-01

    Aquatic invertebrates are a key component of freshwater ecosystems, and understanding aquatic invertebrate taxonomy is a cornerstone of freshwater science. Physical reference collections of expertly identified voucher specimens are the ‘gold-standard’ used to confirm specimen identifications. However, most biologists lack access to such collections, which themselves tend to be highly regionalized and somewhat limited in terms of taxonomic scope. The North American Aquatic Macroinvertebrate Digital Reference Collection (NAAMDRC; https://sciencebase.usgs.gov/naamdrc) was developed by the US Geological Survey (USGS) to overcome these limitations of physical collections. NAAMDRC provides users with public-domain, high-quality digital photographs to help verify specimen identifications.

  16. Advanced distributed simulation technology: Digital Voice Gateway Reference Guide

    NASA Astrophysics Data System (ADS)

    Vanhook, Dan; Stadler, Ed

    1994-01-01

    The Digital Voice Gateway (referred to as the 'DVG' in this document) transmits and receives four full duplex encoded speech channels over the Ethernet. The information in this document applies only to DVG's running firmware of the version listed on the title page. This document, previously named Digital Voice Gateway Reference Guide, BBN Systems and Technologies Corporation, Cambridge, MA 02138, was revised for revision 2.00. This new revision changes the network protocol used by the DVG, to comply with the SINCGARS radio simulation (For SIMNET 6.6.1). Because of the extensive changes to revision 2.00 a separate document was created rather than supplying change pages.

  17. 14 CFR Appendix M to Part 121 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Discrete “true” or “mag” ±2° 1 0.5° When true or magnetic heading can be selected as the primary heading reference, a discrete indicating selection must be recorded. 5. Normal acceleration (vertical) 9 −3g to +6g.... Manual Radio Transmitter Keying or CVR/DFDR synchronization reference On-Off (Discrete)None 1 Preferably...

  18. Sensorless H∞ speed-tracking synthesis for surface-mount permanent magnet synchronous motor.

    PubMed

    Ramírez-Villalobos, Ramón; Aguilar, Luis T; Coria, Luis N

    2017-03-01

    In this paper, a sensorless speed tracking control is proposed for a surface-mount permanent magnet synchronous motor by using a nonlinear H ∞ -controller via stator currents measurements for feedback. An output feedback nonlinear H ∞ -controller was designed such that the undisturbed system is uniformly asymptotically stable around the desired speed reference, while also the effects of external vanishing and non-vanishing disturbances, noise, and input backlash were attenuated locally. The rotor position was calculated from the causal dynamic output feedback compensator and from the desired speed reference. The existence of the proper solutions of the perturbed differential Riccati equations ensures stabilizability and detectability of the control system. The efficiency of the proposed sensorless controller was supported by numerical simulations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Steady-state probability density function of the phase error for a DPLL with an integrate-and-dump device

    NASA Technical Reports Server (NTRS)

    Simon, M.; Mileant, A.

    1986-01-01

    The steady-state behavior of a particular type of digital phase-locked loop (DPLL) with an integrate-and-dump circuit following the phase detector is characterized in terms of the probability density function (pdf) of the phase error in the loop. Although the loop is entirely digital from an implementation standpoint, it operates at two extremely different sampling rates. In particular, the combination of a phase detector and an integrate-and-dump circuit operates at a very high rate whereas the loop update rate is very slow by comparison. Because of this dichotomy, the loop can be analyzed by hybrid analog/digital (s/z domain) techniques. The loop is modeled in such a general fashion that previous analyses of the Real-Time Combiner (RTC), Subcarrier Demodulator Assembly (SDA), and Symbol Synchronization Assembly (SSA) fall out as special cases.

  20. Distributed Timing and Localization (DiGiTaL)

    NASA Technical Reports Server (NTRS)

    D'Amico, Simone; Hunter, Roger C.; Baker, Christopher

    2017-01-01

    The Distributed Timing and Localization (DiGiTaL) system provides nano satellite formations with unprecedented,centimeter-level navigation accuracy in real time and nanosecond-level time synchronization. This is achieved through the integration of a multi-constellation Global Navigation Satellite System (GNSS) receiver, a Chip-Scale Atomic Clock (CSAC), and a dedicated Inter-Satellite Link (ISL). In comparison, traditional single spacecraft GNSS navigation solutions are accurate only to the meter-level due to the sole usage of coarse pseudo-range measurements. To meet the strict requirements of future miniaturized distributed space systems, DiGiTaL uses powerful error-cancelling combinations of raw carrier-phase measurements which are exchanged between the swarming nano satellites through a decentralized network. A reduced-dynamics estimation architecture on board each individual nano satellite processes the resulting millimeter-level noise measurements to reconstruct the fullformation state with high accuracy.

  1. Performance of Trellis Coded 256 QAM super-multicarrier modem VLSI's for SDH interface outage-free digital microwave radio

    NASA Astrophysics Data System (ADS)

    Aikawa, Satoru; Nakamura, Yasuhisa; Takanashi, Hitoshi

    1994-02-01

    This paper describes the performance of an outage free SXH (Synchronous Digital Hierarchy) interface 256 QAM modem. An outage free DMR (Digital Microwave Radio) is achieved by a high coding gain trellis coded SPORT QAM and Super Multicarrier modem. A new frame format and its associated circuits connect the outage free modem to the SDH interface. The newly designed VLSI's are key devices for developing the modem. As an overall modem performance, BER (bit error rate) characteristics and equipment signatures are presented. A coding gain of 4.7 dB (at a BER of 10(exp -4)) is obtained using SPORT 256 QAM and Viterbi decoding. This coding gain is realized by trellis coding as well as by increasing of transmission rate. Roll-off factor is decreased to maintain the same frequency occupation and modulation level as ordinary SDH 256 QAM modern.

  2. A digital receiver module with direct data acquisition for magnetic resonance imaging systems.

    PubMed

    Tang, Weinan; Sun, Hongyu; Wang, Weimin

    2012-10-01

    A digital receiver module for magnetic resonance imaging (MRI) with detailed hardware implementations is presented. The module is based on a direct sampling scheme using the latest mixed-signal circuit design techniques. A single field-programmable gate array chip is employed to perform software-based digital down conversion for radio frequency signals. The modular architecture of the receiver allows multiple acquisition channels to be implemented on a highly integrated printed circuit board. To maintain the phase coherence of the receiver and the exciter in the context of direct sampling, an effective phase synchronization method was proposed to achieve a phase deviation as small as 0.09°. The performance of the described receiver module was verified in the experiments for both low- and high-field (0.5 T and 1.5 T) MRI scanners and was compared to a modern commercial MRI receiver system.

  3. Photogrammetry of a 5m Inflatable Space Antenna With Consumer Digital Cameras

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Giersch, Louis R.; Quagliaroli, Jessica M.

    2000-01-01

    This paper discusses photogrammetric measurements of a 5m-diameter inflatable space antenna using four Kodak DC290 (2.1 megapixel) digital cameras. The study had two objectives: 1) Determine the photogrammetric measurement precision obtained using multiple consumer-grade digital cameras and 2) Gain experience with new commercial photogrammetry software packages, specifically PhotoModeler Pro from Eos Systems, Inc. The paper covers the eight steps required using this hardware/software combination. The baseline data set contained four images of the structure taken from various viewing directions. Each image came from a separate camera. This approach simulated the situation of using multiple time-synchronized cameras, which will be required in future tests of vibrating or deploying ultra-lightweight space structures. With four images, the average measurement precision for more than 500 points on the antenna surface was less than 0.020 inches in-plane and approximately 0.050 inches out-of-plane.

  4. High resolution data acquisition

    DOEpatents

    Thornton, G.W.; Fuller, K.R.

    1993-04-06

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  5. High resolution data acquisition

    DOEpatents

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  6. Chaos synchronization and Nelder-Mead search for parameter estimation in nonlinear pharmacological systems: Estimating tumor antigenicity in a model of immunotherapy.

    PubMed

    Pillai, Nikhil; Craig, Morgan; Dokoumetzidis, Aristeidis; Schwartz, Sorell L; Bies, Robert; Freedman, Immanuel

    2018-06-19

    In mathematical pharmacology, models are constructed to confer a robust method for optimizing treatment. The predictive capability of pharmacological models depends heavily on the ability to track the system and to accurately determine parameters with reference to the sensitivity in projected outcomes. To closely track chaotic systems, one may choose to apply chaos synchronization. An advantageous byproduct of this methodology is the ability to quantify model parameters. In this paper, we illustrate the use of chaos synchronization combined with Nelder-Mead search to estimate parameters of the well-known Kirschner-Panetta model of IL-2 immunotherapy from noisy data. Chaos synchronization with Nelder-Mead search is shown to provide more accurate and reliable estimates than Nelder-Mead search based on an extended least squares (ELS) objective function. Our results underline the strength of this approach to parameter estimation and provide a broader framework of parameter identification for nonlinear models in pharmacology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Mental Fatigue and Spatial References Impair Soccer Players' Physical and Tactical Performances

    PubMed Central

    Coutinho, Diogo; Gonçalves, Bruno; Travassos, Bruno; Wong, Del P.; Coutts, Aaron J.; Sampaio, Jaime E

    2017-01-01

    This study examined the effects of mental fatigue and additional corridor and pitch sector lines on players' physical and tactical performances during soccer small-sided games. Twelve youth players performed four Gk+6vs6+Gk small-sided games. Prior to the game, one team performed a motor coordination task to induce mental fatigue, while the other one performed a control task. A repeated measures design allowed to compare players' performances across four conditions: (a) with mental fatigue against opponents without mental fatigue in a normal pitch (MEN), (b) with mental fatigue on a pitch with additional reference lines (#MEN); (c) without mental fatigue against mentally fatigued opponents on a normal pitch (CTR); and (d) without mental fatigue on a pitch with reference lines (#CTR). Player's physical performance was assessed by the distance covered per minute and the number of accelerations and decelerations (0.5–3.0 m/s2; > −3.0 m/s2). Positional data was used to determine individual (spatial exploration index, time synchronized in longitudinal and lateral directions) and team-related variables (length, width, speed of dispersion and contraction). Unclear effects were found for the physical activity measures in most of the conditions. There was a small decrease in time spent laterally synchronized and a moderate decrease in the contraction speed when MEN compared to the CTR. Also, there was a small decrease in the time spent longitudinally synchronized during the #MEN condition compared to MEN. The results showed that mental fatigue affects the ability to use environmental information and players' positioning, while the additional reference lines may have enhanced the use of less relevant information to guide their actions during the #MEN condition. Overall, coaches could manipulate the mental fatigue and reference lines to induce variability and adaptation in young soccer players' behavior. PMID:28983273

  8. Three-Dimensional Imaging by Self-Reference Single-Channel Digital Incoherent Holography

    PubMed Central

    Rosen, Joseph; Kelner, Roy

    2016-01-01

    Digital holography offers a reliable and fast method to image a three-dimensional scene from a single perspective. This article reviews recent developments of self-reference single-channel incoherent hologram recorders. Hologram recorders in which both interfering beams, commonly referred to as the signal and the reference beams, originate from the same observed objects are considered as self-reference systems. Moreover, the hologram recorders reviewed herein are configured in a setup of a single channel interferometer. This unique configuration is achieved through the use of one or more spatial light modulators. PMID:28757811

  9. Exponential synchronization of chaotic systems with time-varying delays and parameter mismatches via intermittent control.

    PubMed

    Cai, Shuiming; Hao, Junjun; Liu, Zengrong

    2011-06-01

    This paper studies the synchronization of coupled chaotic systems with time-varying delays in the presence of parameter mismatches by means of periodically intermittent control. Some novel and useful quasisynchronization criteria are obtained by using the methods which are different from the techniques employed in the existing works, and the derived results are less conservative. Especially, a strong constraint on the control width that the control width should be larger than the time delay imposed by the current references is released in this paper. Moreover, our results show that the synchronization criteria depend on the ratio of control width to control period, but not the control width or the control period. Finally, some numerical simulations are given to show the effectiveness of the theoretical results.

  10. Frequency control circuit for all-digital phase-lock loops

    NASA Technical Reports Server (NTRS)

    Anderson, T. O.

    1973-01-01

    Phase-lock loop references all its operations to fixed high-frequency service clock operating at highest speed which digital circuits permit. Wide-range control circuit provides linear control of frequency of reference signal. It requires only two counters in combination with control circuit consisting only of flip-flop and gate.

  11. Realistic thermodynamic and statistical-mechanical measures for neural synchronization.

    PubMed

    Kim, Sang-Yoon; Lim, Woochang

    2014-04-15

    Synchronized brain rhythms, associated with diverse cognitive functions, have been observed in electrical recordings of brain activity. Neural synchronization may be well described by using the population-averaged global potential VG in computational neuroscience. The time-averaged fluctuation of VG plays the role of a "thermodynamic" order parameter O used for describing the synchrony-asynchrony transition in neural systems. Population spike synchronization may be well visualized in the raster plot of neural spikes. The degree of neural synchronization seen in the raster plot is well measured in terms of a "statistical-mechanical" spike-based measure Ms introduced by considering the occupation and the pacing patterns of spikes. The global potential VG is also used to give a reference global cycle for the calculation of Ms. Hence, VG becomes an important collective quantity because it is associated with calculation of both O and Ms. However, it is practically difficult to directly get VG in real experiments. To overcome this difficulty, instead of VG, we employ the instantaneous population spike rate (IPSR) which can be obtained in experiments, and develop realistic thermodynamic and statistical-mechanical measures, based on IPSR, to make practical characterization of the neural synchronization in both computational and experimental neuroscience. Particularly, more accurate characterization of weak sparse spike synchronization can be achieved in terms of realistic statistical-mechanical IPSR-based measure, in comparison with the conventional measure based on VG. Copyright © 2014. Published by Elsevier B.V.

  12. How Can Online Observation Support the Assessment and Feedback, on Classroom Performance, to Trainee Teachers at a Distance and in Real Time?

    ERIC Educational Resources Information Center

    Dyke, Martin; Harding, Alan; Liddon, Sue

    2008-01-01

    This article reports the key findings of a project commissioned in 2005 by the UK Department for Education and Skills to consider the use of synchronous digital video for observation, feedback and assessment of teaching practice in post-compulsory education and training. A protocol for the remote observation of teaching is presented that was…

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giraldo, L. Ocampo; Bolotnikov, A. E.; Camarda, G. S.

    For this study, we evaluated the X-Y position resolution achievable in 3D pixelated detectors by processing the signal waveforms readout from neighboring pixels. In these measurements we used a focused light beam, down to 10 μm, generated by a ~1 mW pulsed laser (650 nm) to carry out raster scans over selected 3×3 pixel areas, while recording the charge signals from the 9 pixels and the cathode using two synchronized digital oscilloscopes.

  14. Computer Programs for Plotting Spot-Beam Coverages from an Earth-Synchronous Satellite and Earth-Station Antenna Elevation Angle Contours. Memorandum Number 72/4.

    ERIC Educational Resources Information Center

    Stagl, Thomas W.; Singh, Jai P.

    Computer programs prepared in connection with a project on Application of Communication Satellites to Educational Development (see EM 010 449) are described and listed in this memorandum. First, the data tape containing a digitized map of the world which was used for the programs is described. Then the first program, WORLDMAP, which plots the tape…

  15. Non-Invasive Monitoring of Intra-Abdominal Bleeding Rate Using Electrical Impedance Tomography

    DTIC Science & Technology

    2009-09-01

    labeled ‘Measurement Index’, represents each of the 40 transimpedance measurements. The measurement index variable corresponds to the 40 measurements...system are amplified , and digitized by a 14-bit ADC (AD9240, Analog Devices). Waveforms are then sampled synchronous with the source, at 32 samples per...voltage changes (decreases in transimpedance ) during this phase were in measurements between the two outermost electrodes. We believe the apparent

  16. Synchronisation Technique of Data Recorded on a Multichannel Tape Recorder,

    DTIC Science & Technology

    1984-01-01

    retrieval Synchronizers I 16. Abstract A portable, self-contained, electronic digital unit, termed Data Synchroniser was designed and developed by EDE...AD A139 570 SYNCHRONISATION TECHNIQUE OF DATA RECORDED ON A / OULl ICHANNEL TAPE RECORDER (U) ENGINEERING DEVELOPMENT ESTA B LISHMENT MARIBYRNONO...BGINEERING DEVELOPMEWIT ESTABUSHIMENT S[ SYNCHRONISATION TECHNIQUE OF DATA - i RECORDED ON A MULTICHANNEL TAPE RECORDER BY J.D. DICKENS .t T)TCi j.D. ~c .s

  17. System Design Plan for a DCS (Defense Communications System) Data Transmission Network.

    DTIC Science & Technology

    1981-07-01

    modems , FDO group modems , and Voice Frequency Carrier Telegraph (VFCT) networks. The DTN will be a synchronous network and its implementation must coincide...Frequency (VF) modems and Voice Frequency Carrier Telegraph (VFCT) networks. Further, data circuits can be extended over present analog FDM facilities using...VF or group data modems . In addition to the availability of terrestrial and satellite digital transmission facilities, the implementation of the DTN

  18. Spatiotemporal dynamics of a digital phase-locked loop based coupled map lattice system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Tanmoy, E-mail: tbanerjee@phys.buruniv.ac.in; Paul, Bishwajit; Sarkar, B. C.

    2014-03-15

    We explore the spatiotemporal dynamics of a coupled map lattice (CML) system, which is realized with a one dimensional array of locally coupled digital phase-locked loops (DPLLs). DPLL is a nonlinear feedback-controlled system widely used as an important building block of electronic communication systems. We derive the phase-error equation of the spatially extended system of coupled DPLLs, which resembles a form of the equation of a CML system. We carry out stability analysis for the synchronized homogeneous solutions using the circulant matrix formalism. It is shown through extensive numerical simulations that with the variation of nonlinearity parameter and coupling strengthmore » the system shows transitions among several generic features of spatiotemporal dynamics, viz., synchronized fixed point solution, frozen random pattern, pattern selection, spatiotemporal intermittency, and fully developed spatiotemporal chaos. We quantify the spatiotemporal dynamics using quantitative measures like average quadratic deviation and spatial correlation function. We emphasize that instead of using an idealized model of CML, which is usually employed to observe the spatiotemporal behaviors, we consider a real world physical system and establish the existence of spatiotemporal chaos and other patterns in this system. We also discuss the importance of the present study in engineering application like removal of clock-skew in parallel processors.« less

  19. Spatiotemporal dynamics of a digital phase-locked loop based coupled map lattice system.

    PubMed

    Banerjee, Tanmoy; Paul, Bishwajit; Sarkar, B C

    2014-03-01

    We explore the spatiotemporal dynamics of a coupled map lattice (CML) system, which is realized with a one dimensional array of locally coupled digital phase-locked loops (DPLLs). DPLL is a nonlinear feedback-controlled system widely used as an important building block of electronic communication systems. We derive the phase-error equation of the spatially extended system of coupled DPLLs, which resembles a form of the equation of a CML system. We carry out stability analysis for the synchronized homogeneous solutions using the circulant matrix formalism. It is shown through extensive numerical simulations that with the variation of nonlinearity parameter and coupling strength the system shows transitions among several generic features of spatiotemporal dynamics, viz., synchronized fixed point solution, frozen random pattern, pattern selection, spatiotemporal intermittency, and fully developed spatiotemporal chaos. We quantify the spatiotemporal dynamics using quantitative measures like average quadratic deviation and spatial correlation function. We emphasize that instead of using an idealized model of CML, which is usually employed to observe the spatiotemporal behaviors, we consider a real world physical system and establish the existence of spatiotemporal chaos and other patterns in this system. We also discuss the importance of the present study in engineering application like removal of clock-skew in parallel processors.

  20. Spatiotemporal dynamics of a digital phase-locked loop based coupled map lattice system

    NASA Astrophysics Data System (ADS)

    Banerjee, Tanmoy; Paul, Bishwajit; Sarkar, B. C.

    2014-03-01

    We explore the spatiotemporal dynamics of a coupled map lattice (CML) system, which is realized with a one dimensional array of locally coupled digital phase-locked loops (DPLLs). DPLL is a nonlinear feedback-controlled system widely used as an important building block of electronic communication systems. We derive the phase-error equation of the spatially extended system of coupled DPLLs, which resembles a form of the equation of a CML system. We carry out stability analysis for the synchronized homogeneous solutions using the circulant matrix formalism. It is shown through extensive numerical simulations that with the variation of nonlinearity parameter and coupling strength the system shows transitions among several generic features of spatiotemporal dynamics, viz., synchronized fixed point solution, frozen random pattern, pattern selection, spatiotemporal intermittency, and fully developed spatiotemporal chaos. We quantify the spatiotemporal dynamics using quantitative measures like average quadratic deviation and spatial correlation function. We emphasize that instead of using an idealized model of CML, which is usually employed to observe the spatiotemporal behaviors, we consider a real world physical system and establish the existence of spatiotemporal chaos and other patterns in this system. We also discuss the importance of the present study in engineering application like removal of clock-skew in parallel processors.

  1. Real-time dynamic range and signal to noise enhancement in beam-scanning microscopy by integration of sensor characteristics, data acquisition hardware, and statistical methods

    NASA Astrophysics Data System (ADS)

    Kissick, David J.; Muir, Ryan D.; Sullivan, Shane Z.; Oglesbee, Robert A.; Simpson, Garth J.

    2013-02-01

    Despite the ubiquitous use of multi-photon and confocal microscopy measurements in biology, the core techniques typically suffer from fundamental compromises between signal to noise (S/N) and linear dynamic range (LDR). In this study, direct synchronous digitization of voltage transients coupled with statistical analysis is shown to allow S/N approaching the theoretical maximum throughout an LDR spanning more than 8 decades, limited only by the dark counts of the detector on the low end and by the intrinsic nonlinearities of the photomultiplier tube (PMT) detector on the high end. Synchronous digitization of each voltage transient represents a fundamental departure from established methods in confocal/multi-photon imaging, which are currently based on either photon counting or signal averaging. High information-density data acquisition (up to 3.2 GB/s of raw data) enables the smooth transition between the two modalities on a pixel-by-pixel basis and the ultimate writing of much smaller files (few kB/s). Modeling of the PMT response allows extraction of key sensor parameters from the histogram of voltage peak-heights. Applications in second harmonic generation (SHG) microscopy are described demonstrating S/N approaching the shot-noise limit of the detector over large dynamic ranges.

  2. Simplified signal processing for impedance spectroscopy with spectrally sparse sequences

    NASA Astrophysics Data System (ADS)

    Annus, P.; Land, R.; Reidla, M.; Ojarand, J.; Mughal, Y.; Min, M.

    2013-04-01

    Classical method for measurement of the electrical bio-impedance involves excitation with sinusoidal waveform. Sinusoidal excitation at fixed frequency points enables wide variety of signal processing options, most general of them being Fourier transform. Multiplication with two quadrature waveforms at desired frequency could be easily accomplished both in analogue and in digital domains, even simplest quadrature square waves can be considered, which reduces signal processing task in analogue domain to synchronous switching followed by low pass filter, and in digital domain requires only additions. So called spectrally sparse excitation sequences (SSS), which have been recently introduced into bio-impedance measurement domain, are very reasonable choice when simultaneous multifrequency excitation is required. They have many good properties, such as ease of generation and good crest factor compared to similar multisinusoids. Typically, the usage of discrete or fast Fourier transform in signal processing step is considered so far. Usage of simplified methods nevertheless would reduce computational burden, and enable simpler, less costly and less energy hungry signal processing platforms. Accuracy of the measurement with SSS excitation when using different waveforms for quadrature demodulation will be compared in order to evaluate the feasibility of the simplified signal processing. Sigma delta modulated sinusoid (binary signal) is considered to be a good alternative for a synchronous demodulation.

  3. Application of selection techniques to electric-propulsion options on an advanced synchronous satellite

    NASA Technical Reports Server (NTRS)

    Holcomb, L. B.; Degrey, S. P.

    1973-01-01

    This paper addresses the comparison of several candidate auxiliary-propulsion systems and system combinations for an advanced synchronous satellite. Economic selection techniques, evolved at the Jet Propulsion Laboratory, are used as a basis for system option comparisons. Electric auxiliary-propulsion types considered include pulsed plasma and ion bombardment, with hydrazine systems used as a state-of-the-art reference. Current as well as projected electric-propulsion system performance data are used, as well as projected hydrazine system costs resulting from NASA standardization program projections.

  4. Digital tracking loops for a programmable digital modem

    NASA Technical Reports Server (NTRS)

    Poklemba, John J.

    1992-01-01

    In this paper, an analysis and hardware emulation of the tracking loops for a very flexible programmable digital modem (PDM) will be presented. The modem is capable of being programmed for 2, 4, 8, 16-PSK, 16-QAM, MSK, and Offset-QPSK modulation schemes over a range of data rates from 2.34 to 300 Mbps with programmable spectral occupancy from 1.2 to 1.8 times the symbol rate; these operational parameters are executable in burst or continuous mode. All of the critical processing in both the modulator and demodulator is done at baseband with very high-speed digital hardware and memory. Quadrature analog front-ends are used for translation between baseband and the IF center frequency. The modulator is based on a table lookup approach, where precomputed samples are stored in memory and clocked out according to the incoming data pattern. The sample values are predistorted to counteract the effects of the other filtering functions in the link as well as any transmission impairments. The demodulator architecture was adapted from a joint estimator-detector (JED) mathematical analysis. Its structure is applicable to most signalling formats that can be represented in a two-dimensional space. The JED realization uses interdependent, mutually aiding tracking loops with post-detection data feedback. To expedite and provide for more reliable synchronization, initial estimates for these loops are computed in a parallel acquisition processor. The cornerstone of the demodulator realization is the pre-averager received data filter which allows operation over a broad range of data rates without any hardware changes and greatly simplifies the implementation complexity. The emulation results confirmed tracking loop operation over the entire range of operational parameters listed above, as well as the capability of achieving and maintaining synchronization at BER's in excess of 10(exp -1). The emulation results also showed very close agreement with the tracking loop analysis, and validated the resolution apportionment of the various hardware elements in the tracking loops.

  5. Accuracy of Answers Provided by Digital/Face-to-Face Reference Services in Japanese Public Libraries and Q & A Sites

    ERIC Educational Resources Information Center

    Tsuji, Keita; To, Haruna; Hara, Atsuyuki

    2011-01-01

    We asked the same 60 questions using DRS (digital reference services) in Japanese public libraries, face-to-face reference services and Q & A (question and answer) sites. It was found that: (1) The correct answer ratio of DRS is higher than that of Q & A sites; (2) DRS takes longer to provide answers as compared to Q & A sites; and (3)…

  6. An Implantable Neural Sensing Microsystem with Fiber-Optic Data Transmission and Power Delivery

    PubMed Central

    Park, Sunmee; Borton, David A.; Kang, Mingyu; Nurmikko, Arto V.; Song, Yoon-Kyu

    2013-01-01

    We have developed a prototype cortical neural sensing microsystem for brain implantable neuroengineering applications. Its key feature is that both the transmission of broadband, multichannel neural data and power required for the embedded microelectronics are provided by optical fiber access. The fiber-optic system is aimed at enabling neural recording from rodents and primates by converting cortical signals to a digital stream of infrared light pulses. In the full microsystem whose performance is summarized in this paper, an analog-to-digital converter and a low power digital controller IC have been integrated with a low threshold, semiconductor laser to extract the digitized neural signals optically from the implantable unit. The microsystem also acquires electrical power and synchronization clocks via optical fibers from an external laser by using a highly efficient photovoltaic cell on board. The implantable unit employs a flexible polymer substrate to integrate analog and digital microelectronics and on-chip optoelectronic components, while adapting to the anatomical and physiological constraints of the environment. A low power analog CMOS chip, which includes preamplifier and multiplexing circuitry, is directly flip-chip bonded to the microelectrode array to form the cortical neurosensor device. PMID:23666130

  7. Digital Plasma Control System for Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Ferrara, M.; Wolfe, S.; Stillerman, J.; Fredian, T.; Hutchinson, I.

    2004-11-01

    A digital plasma control system (DPCS) has been designed to replace the present C-Mod system, which is based on hybrid analog-digital computer. The initial implementation of DPCS comprises two 64 channel, 16 bit, low-latency cPCI digitizers, each with 16 analog outputs, controlled by a rack-mounted single-processor Linux server, which also serves as the compute engine. A prototype system employing three older 32 channel digitizers was tested during the 2003-04 campaign. The hybrid's linear PID feedback system was emulated by IDL code executing a synchronous loop, using the same target waveforms and control parameters. Reliable real-time operation was accomplished under a standard Linux OS (RH9) by locking memory and disabling interrupts during the plasma pulse. The DPCS-computed outputs agreed to within a few percent with those produced by the hybrid system, except for discrepancies due to offsets and non-ideal behavior of the hybrid circuitry. The system operated reliably, with no sample loss, at more than twice the 10kHz design specification, providing extra time for implementing more advanced control algorithms. The code is fault-tolerant and produces consistent output waveforms even with 10% sample loss.

  8. Issues in implementing services for a wireless web-enabled digital camera

    NASA Astrophysics Data System (ADS)

    Venkataraman, Shyam; Sampat, Nitin; Fisher, Yoram; Canosa, John; Noel, Nicholas

    2001-05-01

    The competition in the exploding digital photography market has caused vendors to explore new ways to increase their return on investment. A common view among industry analysts is that increasingly it will be services provided by these cameras, and not the cameras themselves, that will provide the revenue stream. These services will be coupled to e- Appliance based Communities. In addition, the rapidly increasing need to upload images to the Internet for photo- finishing services as well as the need to download software upgrades to the camera is driving many camera OEMs to evaluate the benefits of using the wireless web to extend their enterprise systems. Currently, creating a viable e- appliance such as a digital camera coupled with a wireless web service requires more than just a competency in product development. This paper will evaluate the system implications in the deployment of recurring revenue services and enterprise connectivity of a wireless, web-enabled digital camera. These include, among other things, an architectural design approach for services such as device management, synchronization, billing, connectivity, security, etc. Such an evaluation will assist, we hope, anyone designing or connecting a digital camera to the enterprise systems.

  9. Basic difference between brain and computer: integration of asynchronous processes implemented as hardware model of the retina.

    PubMed

    Przybyszewski, Andrzej W; Linsay, Paul S; Gaudiano, Paolo; Wilson, Christopher M

    2007-01-01

    There exists a common view that the brain acts like a Turing machine: The machine reads information from an infinite tape (sensory data) and, on the basis of the machine's state and information from the tape, an action (decision) is made. The main problem with this model lies in how to synchronize a large number of tapes in an adaptive way so that the machine is able to accomplish tasks such as object classification. We propose that such mechanisms exist already in the eye. A popular view is that the retina, typically associated with high gain and adaptation for light processing, is actually performing local preprocessing by means of its center-surround receptive field. We would like to show another property of the retina: The ability to integrate many independent processes. We believe that this integration is implemented by synchronization of neuronal oscillations. In this paper, we present a model of the retina consisting of a series of coupled oscillators which can synchronize on several scales. Synchronization is an analog process which is converted into a digital spike train in the output of the retina. We have developed a hardware implementation of this model, which enables us to carry out rapid simulation of multineuron oscillatory dynamics. We show that the properties of the spike trains in our model are similar to those found in vivo in the cat retina.

  10. MBAT: a scalable informatics system for unifying digital atlasing workflows.

    PubMed

    Lee, Daren; Ruffins, Seth; Ng, Queenie; Sane, Nikhil; Anderson, Steve; Toga, Arthur

    2010-12-22

    Digital atlases provide a common semantic and spatial coordinate system that can be leveraged to compare, contrast, and correlate data from disparate sources. As the quality and amount of biological data continues to advance and grow, searching, referencing, and comparing this data with a researcher's own data is essential. However, the integration process is cumbersome and time-consuming due to misaligned data, implicitly defined associations, and incompatible data sources. This work addressing these challenges by providing a unified and adaptable environment to accelerate the workflow to gather, align, and analyze the data. The MouseBIRN Atlasing Toolkit (MBAT) project was developed as a cross-platform, free open-source application that unifies and accelerates the digital atlas workflow. A tiered, plug-in architecture was designed for the neuroinformatics and genomics goals of the project to provide a modular and extensible design. MBAT provides the ability to use a single query to search and retrieve data from multiple data sources, align image data using the user's preferred registration method, composite data from multiple sources in a common space, and link relevant informatics information to the current view of the data or atlas. The workspaces leverage tool plug-ins to extend and allow future extensions of the basic workspace functionality. A wide variety of tool plug-ins were developed that integrate pre-existing as well as newly created technology into each workspace. Novel atlasing features were also developed, such as supporting multiple label sets, dynamic selection and grouping of labels, and synchronized, context-driven display of ontological data. MBAT empowers researchers to discover correlations among disparate data by providing a unified environment for bringing together distributed reference resources, a user's image data, and biological atlases into the same spatial or semantic context. Through its extensible tiered plug-in architecture, MBAT allows researchers to customize all platform components to quickly achieve personalized workflows.

  11. Fast sparsely synchronized brain rhythms in a scale-free neural network.

    PubMed

    Kim, Sang-Yoon; Lim, Woochang

    2015-08-01

    We consider a directed version of the Barabási-Albert scale-free network model with symmetric preferential attachment with the same in- and out-degrees and study the emergence of sparsely synchronized rhythms for a fixed attachment degree in an inhibitory population of fast-spiking Izhikevich interneurons. Fast sparsely synchronized rhythms with stochastic and intermittent neuronal discharges are found to appear for large values of J (synaptic inhibition strength) and D (noise intensity). For an intensive study we fix J at a sufficiently large value and investigate the population states by increasing D. For small D, full synchronization with the same population-rhythm frequency fp and mean firing rate (MFR) fi of individual neurons occurs, while for large D partial synchronization with fp>〈fi〉 (〈fi〉: ensemble-averaged MFR) appears due to intermittent discharge of individual neurons; in particular, the case of fp>4〈fi〉 is referred to as sparse synchronization. For the case of partial and sparse synchronization, MFRs of individual neurons vary depending on their degrees. As D passes a critical value D* (which is determined by employing an order parameter), a transition to unsynchronization occurs due to the destructive role of noise to spoil the pacing between sparse spikes. For D

  12. Endoscopic pulsed digital holography for 3D measurements

    NASA Astrophysics Data System (ADS)

    Saucedo, A. Tonatiuh; Mendoza Santoyo, Fernando; de La Torre-Ibarra, Manuel; Pedrini, Giancarlo; Osten, Wolfgang

    2006-02-01

    A rigid endoscope and three different object illumination source positions are used in pulsed digital holography to measure the three orthogonal displacement components from hidden areas of a harmonically vibrating metallic cylinder. In order to obtain simultaneous 3D information from the optical set up, it is necessary to match the optical paths of each of the reference object beam pairs, but to incoherently mismatch the three reference object beam pairs, such that three pulsed digital holograms are incoherently recorded within a single frame of the CCD sensor. The phase difference is obtained using the Fourier method and by subtracting two digital holograms captured for two different object positions.

  13. 3D endoscopic pulsed digital holography

    NASA Astrophysics Data System (ADS)

    Saucedo Anaya, T.; Mendoza Santoyo, F.; Pedrini, G.; Osten, W.

    2006-06-01

    A rigid endoscope is used in pulsed digital holography to simultaneously evaluate the three orthogonal displacement components from hidden areas of a harmonically vibrating metallic cylinder. The cylinder is illuminated from three different illuminating directions. The optical path for each illumination direction is matched to its corresponding reference beam, but also in such a way that each object-reference beam pair optical path is mismatched such that they are incoherent and can be stored in a single CCD frame. As is typical in these types of interferometric arrangements, two digital holograms are needed in order to compare two different states of the cylinder. Each hologram is Fourier transformed and due to the incoherence introduced three separate spectra are readily identified, each belonging to a object-reference beam pair. On comparing by subtraction the phase obtained from the two pulsed digital holograms it is possible to gather quantitative 3D results from harmonic displacements.

  14. The First Geodetic VLBI Field Test of LIFT: A 550-km-long Optical Fiber Link for Remote Antenna Synchronization

    NASA Astrophysics Data System (ADS)

    Perini, Federico; Bortolotti, Claudio; Roma, Mauro; Ambrosini, Roberto; Negusini, Monia; Maccaferri, Giuseppe; Stagni, Matteo; Nanni, Mauro; Clivati, Cecilia; Frittelli, Matteo; Mura, Alberto; Levi, Filippo; Zucco, Massimo; Calonico, Davide; Bertarini, Alessandra; Artz, Thomas

    2016-12-01

    We present the first field test of the implementation of a coherent optical fiber link for remote antenna synchronization realized in Italy between the Italian Metrological Institute (INRIM) and the Medicina radio observatory of the National Institute for Astrophysics (INAF). The Medicina VLBI antenna participated in the EUR137 experiment carried out in September 2015 using, as reference systems, both the local H-maser and a remote H-maser hosted at the INRIM labs in Turin, separated by about 550 km. In order to assess the quality of the remote clock, the observed radio sources were split into two sets, using either the local or the remote H-maser. A system to switch automatically between the two references was integrated into the antenna field system. The observations were correlated in Bonn and preliminary results are encouraging since fringes were detected with both time references along the full 24 hours of the session. The experimental set-up, the results, and the perspectives for future radio astronomical and geodetic experiments are presented.

  15. Design Architecture and Initial Results from an FPGA Based Digital Receiver for Multistatic Meteor Measurements

    NASA Astrophysics Data System (ADS)

    Palo, Scott; Vaudrin, Cody

    Defined by a minimal RF front-end followed by an analog-to-digital converter (ADC) and con-trolled by a reconfigurable logic device (FPGA), the digital receiver will replace conventional heterodyning analog receivers currently in use by the COBRA meteor radar. A basic hardware overview touches on the major digital receiver components, theory of operation and data han-dling strategies. We address concerns within the community regarding the implementation of digital receivers in small-scale scientific radars, and outline the numerous benefits with a focus on reconfigurability. From a remote sensing viewpoint, having complete visibility into a band of the EM spectrum allows an experiment designer to focus on parameter estimation rather than hardware limitations. Finally, we show some basic multistatic receiver configurations enabled through GPS time synchronization. Currently, the digital receiver is configured to facilitate range and radial velocity determination of meteors in the MLT region for use with the COBRA meteor radar. Initial measurements from data acquired at Platteville, Colorado and Tierra Del Fuego in Argentina will be presented. We show an improvement in detection rates compared to conventional analog systems. Scientific justification for a digital receiver is clearly made by the presentation of RTI plots created using data acquired from the receiver. These plots reveal an interesting phenomenon concerning vacillating power structures in a select number of meteor trails.

  16. The CARIBU EBIS control and synchronization system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickerson, Clayton, E-mail: cdickerson@anl.gov; Peters, Christopher, E-mail: cdickerson@anl.gov

    2015-01-09

    The Californium Rare Isotope Breeder Upgrade (CARIBU) Electron Beam Ion Source (EBIS) charge breeder has been built and tested. The bases of the CARIBU EBIS electrical system are four voltage platforms on which both DC and pulsed high voltage outputs are controlled. The high voltage output pulses are created with either a combination of a function generator and a high voltage amplifier, or two high voltage DC power supplies and a high voltage solid state switch. Proper synchronization of the pulsed voltages, fundamental to optimizing the charge breeding performance, is achieved with triggering from a digital delay pulse generator. Themore » control system is based on National Instruments realtime controllers and LabVIEW software implementing Functional Global Variables (FGV) to store and access instrument parameters. Fiber optic converters enable network communication and triggering across the platforms.« less

  17. Wide field of view common-path lateral-shearing digital holographic interference microscope

    NASA Astrophysics Data System (ADS)

    Vora, Priyanka; Trivedi, Vismay; Mahajan, Swapnil; Patel, Nimit; Joglekar, Mugdha; Chhaniwal, Vani; Moradi, Ali-Reza; Javidi, Bahram; Anand, Arun

    2017-12-01

    Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability. Common-path digital holographic geometries, in which the reference beam is derived from the object beam, provide higher temporal stability along with high-quality 3-D images. Self-referencing geometry is the simplest of the common-path techniques, in which a portion of the object beam itself acts as the reference, leading to compact setups using fewer optical elements. However, it has reduced field of view, and the reference may contain object information. Here, we describe the development of a common-path digital holographic microscope, employing a shearing plate and converting one of the beams into a separate reference by employing a pin-hole. The setup is as compact as self-referencing geometry, while providing field of view as wide as that of a two-beam microscope. The microscope is tested by imaging and quantifying the morphology and dynamics of human erythrocytes.

  18. Wide field of view common-path lateral-shearing digital holographic interference microscope.

    PubMed

    Vora, Priyanka; Trivedi, Vismay; Mahajan, Swapnil; Patel, Nimit; Joglekar, Mugdha; Chhaniwal, Vani; Moradi, Ali-Reza; Javidi, Bahram; Anand, Arun

    2017-12-01

    Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability. Common-path digital holographic geometries, in which the reference beam is derived from the object beam, provide higher temporal stability along with high-quality 3-D images. Self-referencing geometry is the simplest of the common-path techniques, in which a portion of the object beam itself acts as the reference, leading to compact setups using fewer optical elements. However, it has reduced field of view, and the reference may contain object information. Here, we describe the development of a common-path digital holographic microscope, employing a shearing plate and converting one of the beams into a separate reference by employing a pin-hole. The setup is as compact as self-referencing geometry, while providing field of view as wide as that of a two-beam microscope. The microscope is tested by imaging and quantifying the morphology and dynamics of human erythrocytes. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  19. Practical Measurement and Productive Persistence: Strategies for Using Digital Learning System Data to Drive Improvement

    ERIC Educational Resources Information Center

    Krumm, Andrew E.; Beattie, Rachel; Takahashi, Sola; D'Angelo, Cynthia; Feng, Mingyu; Cheng, Britte

    2016-01-01

    This paper outlines the development of practical measures of productive persistence using digital learning system data. Practical measurement refers to data collection and analysis approaches originating from improvement science; productive persistence refers to the combination of academic and social mindsets as well as learning behaviours that…

  20. 47 CFR 76.602 - Incorporation by reference.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.602 Incorporation by reference. (a... System,” 2003, IBR approved for § 76.640. (4) ANSI/SCTE 54 2003 (formerly DVS 241), “Digital Video... Protection System,” 2003, IBR approved for § 76.640. (5) ANSI/SCTE 54 2003 (formerly DVS 241), “Digital Video...

  1. Acquisition and replay systems for direct-to-digital holography and holovision

    DOEpatents

    Thomas, Clarence E.; Hanson, Gregory R.

    2003-02-25

    Improvements to the acquisition and replay systems for direct-to-digital holography and holovision are described. A method of recording an off-axis hologram includes: splitting a laser beam into an object beam and a reference beam; reflecting the reference beam from a reference beam mirror; reflecting the object beam from an illumination beamsplitter; passing the object beam through an objective lens; reflecting the object beam from an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form an off-axis hologram; digitally recording the off-axis hologram; and transforming the off-axis hologram in accordance with a Fourier transform to obtain a set of results. A method of writing an off-axis hologram includes: passing a laser beam through a spatial light modulator; and focusing the laser beam at a focal plane of a photorefractive crystal to impose a holographic diffraction grating pattern on the photorefractive crystal. A method of replaying an off-axis hologram includes: illuminating a photorefractive crystal having a holographic diffraction grating with a replay beam.

  2. Development of wide band digital receiver for atmospheric radars using COTS board based SDR

    NASA Astrophysics Data System (ADS)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    Digital receiver extracts the received echo signal information, and is a potential subsystem for atmospheric radar, also referred to as wind profiling radar (WPR), which provides the vertical profiles of 3-dimensional wind vector in the atmosphere. This paper presents the development of digital receiver using COTS board based Software Defined Radio technique, which can be used for atmospheric radars. The developmental work is being carried out at National Atmospheric Research Laboratory (NARL), Gadanki. The digital receiver consists of a commercially available software defined radio (SDR) board called as universal software radio peripheral B210 (USRP B210) and a personal computer. USRP B210 operates over a wider frequency range from 70 MHz to 6 GHz and hence can be used for variety of radars like Doppler weather radars operating in S/C bands, in addition to wind profiling radars operating in VHF, UHF and L bands. Due to the flexibility and re-configurability of SDR, where the component functionalities are implemented in software, it is easy to modify the software to receive the echoes and process them as per the requirement suitable for the type of the radar intended. Hence, USRP B210 board along with the computer forms a versatile digital receiver from 70 MHz to 6 GHz. It has an inbuilt direct conversion transceiver with two transmit and two receive channels, which can be operated in fully coherent 2x2 MIMO fashion and thus it can be used as a two channel receiver. Multiple USRP B210 boards can be synchronized using the pulse per second (PPS) input provided on the board, to configure multi-channel digital receiver system. RF gain of the transceiver can be varied from 0 to 70 dB. The board can be controlled from the computer via USB 3.0 interface through USRP hardware driver (UHD), which is an open source cross platform driver. The USRP B210 board is connected to the personal computer through USB 3.0. Reference (10 MHz) clock signal from the radar master oscillator is used to lock the board, which is essential for deriving Doppler information. Input from the radar analog receiver is given to one channel of USRP B210, which is down converted to baseband. 12-bit ADC present on the board digitizes the signal and produces I (in-phase) and Q (quadrature-phase) data. The maximum sampling rate possible is about 61 MSPS. The I and Q (time series) data is sent to PC via USB 3.0, where the signal processing is carried out. The online processing steps include decimation, range gating, decoding, coherent integration and FFT computation (optional). The processed data is then stored in the hard disk. C++ programming language is used for developing the real time signal processing. Shared memory along with multi threading is used to collect and process data simultaneously. Before implementing the real time operation, stand alone test of the board was carried out through GNU radio software and the base band output data obtained is found satisfactory. Later the board is integrated with the existing Lower Atmospheric Wind Profiling radar at NARL. The radar receive IF output at 70 MHz is given to the board and the real-time radar data is collected. The data is processed off-line and the range-doppler spectrum is obtained. Online processing software is under progress.

  3. Improved fault ride through capability of DFIG based wind turbines using synchronous reference frame control based dynamic voltage restorer.

    PubMed

    Rini Ann Jerin, A; Kaliannan, Palanisamy; Subramaniam, Umashankar

    2017-09-01

    Fault ride through (FRT) capability in wind turbines to maintain the grid stability during faults has become mandatory with the increasing grid penetration of wind energy. Doubly fed induction generator based wind turbine (DFIG-WT) is the most popularly utilized type of generator but highly susceptible to the voltage disturbances in grid. Dynamic voltage restorer (DVR) based external FRT capability improvement is considered. Since DVR is capable of providing fast voltage sag mitigation during faults and can maintain the nominal operating conditions for DFIG-WT. The effectiveness of the DVR using Synchronous reference frame (SRF) control is investigated for FRT capability in DFIG-WT during both balanced and unbalanced fault conditions. The operation of DVR is confirmed using time-domain simulation in MATLAB/Simulink using 1.5MW DFIG-WT. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Stable radio-frequency transfer over optical fiber by phase-conjugate frequency mixing.

    PubMed

    He, Yabai; Orr, Brian J; Baldwin, Kenneth G H; Wouters, Michael J; Luiten, Andre N; Aben, Guido; Warrington, R Bruce

    2013-08-12

    We demonstrate long-distance (≥100-km) synchronization of the phase of a radio-frequency reference over an optical-fiber network without needing to actively stabilize the optical path length. Frequency mixing is used to achieve passive phase-conjugate cancellation of fiber-length fluctuations, ensuring that the phase difference between the reference and synchronized oscillators is independent of the link length. The fractional radio-frequency-transfer stability through a 100-km "real-world" urban optical-fiber network is 6 × 10(-17) with an averaging time of 10(4) s. Our compensation technique is robust, providing long-term stability superior to that of a hydrogen maser. By combining our technique with the short-term stability provided by a remote, high-quality quartz oscillator, this system is potentially applicable to transcontinental optical-fiber time and frequency dissemination where the optical round-trip propagation time is significant.

  5. Digital Citizenship

    ERIC Educational Resources Information Center

    Isman, Aytekin; Canan Gungoren, Ozlem

    2014-01-01

    Era in which we live is known and referred as digital age.In this age technology is rapidly changed and developed. In light of these technological advances in 21st century, schools have the responsibility of training "digital citizen" as well as a good citizen. Digital citizens must have extensive skills, knowledge, Internet and …

  6. Cyberkids

    ERIC Educational Resources Information Center

    Clifford, Pat

    2005-01-01

    While critics draw important attention to worrisome aspects of digital cultures, they may be missing a much larger point about how young people live in a digital world, how they create and re-create themselves and their identities in ways that are remarkably foreign to others "digital immigrants". In this article, "digital immigrants" refers to…

  7. Digital Transformation of Words in Learning Processes: A Critical View.

    ERIC Educational Resources Information Center

    Saga, Hiroo

    1999-01-01

    Presents some negative aspects of society's dependence on digital transformation of words by referring to works by Walter Ong and Martin Heidegger. Discusses orality, literacy and digital literacy and describes three aspects of the digital transformation of words. Compares/contrasts art with technology and discusses implications for education.…

  8. Characterization of the reference wave in a compact digital holographic camera.

    PubMed

    Park, I S; Middleton, R J C; Coggrave, C R; Ruiz, P D; Coupland, J M

    2018-01-01

    A hologram is a recording of the interference between an unknown object wave and a coherent reference wave. Providing the object and reference waves are sufficiently separated in some region of space and the reference beam is known, a high-fidelity reconstruction of the object wave is possible. In traditional optical holography, high-quality reconstruction is achieved by careful reillumination of the holographic plate with the exact same reference wave that was used at the recording stage. To reconstruct high-quality digital holograms the exact parameters of the reference wave must be known mathematically. This paper discusses a technique that obtains the mathematical parameters that characterize a strongly divergent reference wave that originates from a fiber source in a new compact digital holographic camera. This is a lensless design that is similar in principle to a Fourier hologram, but because of the large numerical aperture, the usual paraxial approximations cannot be applied and the Fourier relationship is inexact. To characterize the reference wave, recordings of quasi-planar object waves are made at various angles of incidence using a Dammann grating. An optimization process is then used to find the reference wave that reconstructs a stigmatic image of the object wave regardless of the angle of incidence.

  9. Digital PIV Measurements in the Diffuser of a High Speed Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1998-01-01

    Particle Imaging Velocimetry (PIV) is a powerful measurement technique which can be used as an alternative or complementary approach to Laser Doppler Velocimetry (LDV) in a wide range of research applications. PIV data are measured simultaneously at multiple points in space, which enables the investigation of the non-stationary spatial structures typically encountered in turbomachinery. Obtaining ample optical access, sufficiently high seed particle concentrations and accurate synchronization of image acquisition relative to impeller position are the most formidable tasks in the successful implementation of PIV in turbomachinery. Preliminary results from the successful application of the standard 2-D digital PIV technique in the diffuser of a high speed centrifugal compressor are presented. Instantaneous flow. measurements were also obtained during compressor surge.

  10. A 41 ps ASIC time-to-digital converter for physics experiments

    NASA Astrophysics Data System (ADS)

    Russo, Stefano; Petra, Nicola; De Caro, Davide; Barbarino, Giancarlo; Strollo, Antonio G. M.

    2011-12-01

    We present a novel Time-to-Digital (TDC) converter for physics experiments. Proposed TDC is based on a synchronous counter and an asynchronous fine interpolator. The fine part of the measurement is obtained using NORA inverters that provide improved resolution. A prototype IC was fabricated in 180 nm CMOS technology. Experimental measurements show that proposed TDC features 41 ps resolution associated with 0.35LSB differential non-linearity, 0.77LSB integral non-linearity and a negligible single shot precision. The whole dynamic range is equal to 18 μs. The proposed TDC is designed using a flash architecture that reduces dead time. Data reported in the paper show that our design is well suited for present and future particle physics experiments.

  11. The effect of timing errors in optical digital systems.

    NASA Technical Reports Server (NTRS)

    Gagliardi, R. M.

    1972-01-01

    The use of digital transmission with narrow light pulses appears attractive for data communications, but carries with it a stringent requirement on system bit timing. The effects of imperfect timing in direct-detection (noncoherent) optical binary systems are investigated using both pulse-position modulation and on-off keying for bit transmission. Particular emphasis is placed on specification of timing accuracy and an examination of system degradation when this accuracy is not attained. Bit error probabilities are shown as a function of timing errors from which average error probabilities can be computed for specific synchronization methods. Of significance is the presence of a residual or irreducible error probability in both systems, due entirely to the timing system, which cannot be overcome by the data channel.

  12. Encounter risk analysis of rainfall and reference crop evapotranspiration in the irrigation district

    NASA Astrophysics Data System (ADS)

    Zhang, Jinping; Lin, Xiaomin; Zhao, Yong; Hong, Yang

    2017-09-01

    Rainfall and reference crop evapotranspiration are random but mutually affected variables in the irrigation district, and their encounter situation can determine water shortage risks under the contexts of natural water supply and demand. However, in reality, the rainfall and reference crop evapotranspiration may have different marginal distributions and their relations are nonlinear. In this study, based on the annual rainfall and reference crop evapotranspiration data series from 1970 to 2013 in the Luhun irrigation district of China, the joint probability distribution of rainfall and reference crop evapotranspiration are developed with the Frank copula function. Using the joint probability distribution, the synchronous-asynchronous encounter risk, conditional joint probability, and conditional return period of different combinations of rainfall and reference crop evapotranspiration are analyzed. The results show that the copula-based joint probability distributions of rainfall and reference crop evapotranspiration are reasonable. The asynchronous encounter probability of rainfall and reference crop evapotranspiration is greater than their synchronous encounter probability, and the water shortage risk associated with meteorological drought (i.e. rainfall variability) is more prone to appear. Compared with other states, there are higher conditional joint probability and lower conditional return period in either low rainfall or high reference crop evapotranspiration. For a specifically high reference crop evapotranspiration with a certain frequency, the encounter risk of low rainfall and high reference crop evapotranspiration is increased with the decrease in frequency. For a specifically low rainfall with a certain frequency, the encounter risk of low rainfall and high reference crop evapotranspiration is decreased with the decrease in frequency. When either the high reference crop evapotranspiration exceeds a certain frequency or low rainfall does not exceed a certain frequency, the higher conditional joint probability and lower conditional return period of various combinations likely cause a water shortage, but the water shortage is not severe.

  13. Spatial-Heterodyne Interferometry For Reflection And Transm Ission (Shirt) Measurements

    DOEpatents

    Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN; Tobin, Ken W [Harriman, TN

    2006-02-14

    Systems and methods are described for spatial-heterodyne interferometry for reflection and transmission (SHIRT) measurements. A method includes digitally recording a first spatially-heterodyned hologram using a first reference beam and a first object beam; digitally recording a second spatially-heterodyned hologram using a second reference beam and a second object beam; Fourier analyzing the digitally recorded first spatially-heterodyned hologram to define a first analyzed image; Fourier analyzing the digitally recorded second spatially-heterodyned hologram to define a second analyzed image; digitally filtering the first analyzed image to define a first result; and digitally filtering the second analyzed image to define a second result; performing a first inverse Fourier transform on the first result, and performing a second inverse Fourier transform on the second result. The first object beam is transmitted through an object that is at least partially translucent, and the second object beam is reflected from the object.

  14. Data mining and visualization of average images in a digital hand atlas

    NASA Astrophysics Data System (ADS)

    Zhang, Aifeng; Gertych, Arkadiusz; Liu, Brent J.; Huang, H. K.

    2005-04-01

    We have collected a digital hand atlas containing digitized left hand radiographs of normally developed children grouped accordingly by age, sex, and race. A set of features stored in a database reflecting patient's stage of skeletal development has been calculated by automatic image processing procedures. This paper addresses a new concept, "average" image in the digital hand atlas. The "average" reference image in the digital atlas is selected for each of the groups of normal developed children with the best representative skeletal maturity based on bony features. A data mining procedure was designed and applied to find the average image through average feature vector matching. It also provides a temporary solution for the missing feature problem through polynomial regression. As more cases are added to the digital hand atlas, it can grow to provide clinicians accurate reference images to aid the bone age assessment process.

  15. VAXELN Experimentation: Programming a Real-Time Periodic Task Dispatcher Using VAXELN Ada 1.1

    DTIC Science & Technology

    1987-11-01

    synchronization to the SQM and VAXELN semaphores. Based on real-time scheduling theory, the optimal rate-monotonic scheduling algorithm [Lui 73...schedulability test based on the rate-monotonic algorithm , namely task-lumping [Sha 871, was necessary to cal- culate the theoretically expected schedulability...8217 Guide Digital Equipment Corporation, Maynard, MA, 1986. [Lui 73] Liu, C.L., Layland, J.W. Scheduling Algorithms for Multi-programming in a Hard-Real-Time

  16. Direct Digital Control of HVAC (Heating, Ventilating, and Air Conditioning).

    DTIC Science & Technology

    1985-01-01

    controller func- tions such as time-of-day, economizer cycles, reset, load shedding, chiller optimization , VAV fan synchronization, and optimum start/stop...control system such as that illustrated in Fig- urc 4. Data on setpoints , reset schedules, and event timing, such as that presented in Figure 6, are...program code (Figure 7). In addition to the control logic, setpoint and other data are readily available. Program logi:, setpoint and schedule data, and

  17. Transportable Manned and Robotic Digital Geophysical Mapping Tow Vehicle, Phase 1

    DTIC Science & Technology

    2007-08-01

    by using the UX PROCESS QC/QA tools to evaluate quality. Areas evaluated included induced noise, position and track accuracy, synchronization/latency... tools . To gain additional data on productivity and the effect of alternate direction of travel we mapped an unobstructed subset of the Grid 1-4 area...independently evaluated by using the UX PROCESS QC/QA tools to evaluate quality. Areas evaluated included induced noise, position and track

  18. Measurement Invariance of the Digital Natives Assessment Scale across Gender in a Sample of Turkish University Students

    ERIC Educational Resources Information Center

    Ursavas, Ömer Faruk; Kabakçi Yurdakul, Isil; Türk, Mesut; Mcilroy, David

    2016-01-01

    With reference to the digital natives' debate, there is a gap on digital natives' characteristics. To fill this gap, the Digital Natives Assessment Scale was developed to measure students' assessment of the degree to which they perceived themselves to possess the attributes of digital natives. The scale was developed within the Turkish language…

  19. Sensitivity to synchronicity of biological motion in normal and amblyopic vision

    PubMed Central

    Luu, Jennifer Y.; Levi, Dennis M.

    2017-01-01

    Amblyopia is a developmental disorder of spatial vision that results from abnormal early visual experience usually due to the presence of strabismus, anisometropia, or both strabismus and anisometropia. Amblyopia results in a range of visual deficits that cannot be corrected by optics because the deficits reflect neural abnormalities. Biological motion refers to the motion patterns of living organisms, and is normally displayed as points of lights positioned at the major joints of the body. In this experiment, our goal was twofold. We wished to examine whether the human visual system in people with amblyopia retained the higher-level processing capabilities to extract visual information from the synchronized actions of others, therefore retaining the ability to detect biological motion. Specifically, we wanted to determine if the synchronized interaction of two agents performing a dancing routine allowed the amblyopic observer to use the actions of one agent to predict the expected actions of a second agent. We also wished to establish whether synchronicity sensitivity (detection of synchronized versus desynchronized interactions) is impaired in amblyopic observers relative to normal observers. The two aims are differentiated in that the first aim looks at whether synchronized actions result in improved expected action predictions while the second aim quantitatively compares synchronicity sensitivity, or the ratio of desynchronized to synchronized detection sensitivities, to determine if there is a difference between normal and amblyopic observers. Our results show that the ability to detect biological motion requires more samples in both eyes of amblyopes than in normal control observers. The increased sample threshold is not the result of low-level losses but may reflect losses in feature integration due to undersampling in the amblyopic visual system. However, like normal observers, amblyopes are more sensitive to synchronized versus desynchronized interactions, indicating that higher-level processing of biological motion remains intact. We also found no impairment in synchronicity sensitivity in the amblyopic visual system relative to the normal visual system. Since there is no impairment in synchronicity sensitivity in either the nonamblyopic or amblyopic eye of amblyopes, our results suggest that the higher order processing of biological motion is intact. PMID:23474301

  20. Automatic control and detector for three-terminal resistance measurement

    DOEpatents

    Fasching, George E.

    1976-10-26

    A device is provided for automatic control and detection in a three-terminal resistance measuring instrument. The invention is useful for the rapid measurement of the resistivity of various bulk material with a three-terminal electrode system. The device maintains the current through the sample at a fixed level while measuring the voltage across the sample to detect the sample resistance. The three-electrode system contacts the bulk material and the current through the sample is held constant by means of a control circuit connected to a first of the three electrodes and works in conjunction with a feedback controlled amplifier to null the voltage between the first electrode and a second electrode connected to the controlled amplifier output. An A.C. oscillator provides a source of sinusoidal reference voltage of the frequency at which the measurement is to be executed. Synchronous reference pulses for synchronous detectors in the control circuit and an output detector circuit are provided by a synchronous pulse generator. The output of the controlled amplifier circuit is sampled by an output detector circuit to develop at an output terminal thereof a D.C. voltage which is proportional to the sample resistance R. The sample resistance is that segment of the sample between the area of the first electrode and the third electrode, which is connected to ground potential.

  1. Direct-to-digital holography reduction of reference hologram noise and fourier space smearing

    DOEpatents

    Voelkl, Edgar

    2006-06-27

    Systems and methods are described for reduction of reference hologram noise and reduction of Fourier space smearing, especially in the context of direct-to-digital holography (off-axis interferometry). A method of reducing reference hologram noise includes: recording a plurality of reference holograms; processing the plurality of reference holograms into a corresponding plurality of reference image waves; and transforming the corresponding plurality of reference image waves into a reduced noise reference image wave. A method of reducing smearing in Fourier space includes: recording a plurality of reference holograms; processing the plurality of reference holograms into a corresponding plurality of reference complex image waves; transforming the corresponding plurality of reference image waves into a reduced noise reference complex image wave; recording a hologram of an object; processing the hologram of the object into an object complex image wave; and dividing the complex image wave of the object by the reduced noise reference complex image wave to obtain a reduced smearing object complex image wave.

  2. THOR Field and Wave Processor - FWP

    NASA Astrophysics Data System (ADS)

    Soucek, Jan; Rothkaehl, Hanna; Balikhin, Michael; Zaslavsky, Arnaud; Nakamura, Rumi; Khotyaintsev, Yuri; Uhlir, Ludek; Lan, Radek; Yearby, Keith; Morawski, Marek; Winkler, Marek

    2016-04-01

    If selected, Turbulence Heating ObserveR (THOR) will become the first mission ever flown in space dedicated to plasma turbulence. The Fields and Waves Processor (FWP) is an integrated electronics unit for all electromagnetic field measurements performed by THOR. FWP will interface with all fields sensors: electric field antennas of the EFI instrument, the MAG fluxgate magnetometer and search-coil magnetometer (SCM) and perform data digitization and on-board processing. FWP box will house multiple data acquisition sub-units and signal analyzers all sharing a common power supply and data processing unit and thus a single data and power interface to the spacecraft. Integrating all the electromagnetic field measurements in a single unit will improve the consistency of field measurement and accuracy of time synchronization. The feasibility of making highly sensitive electric and magnetic field measurements in space has been demonstrated by Cluster (among other spacecraft) and THOR instrumentation complemented by a thorough electromagnetic cleanliness program will further improve on this heritage. Taking advantage of the capabilities of modern electronics, FWP will provide simultaneous synchronized waveform and spectral data products at high time resolution from the numerous THOR sensors, taking advantage of the large telemetry bandwidth of THOR. FWP will also implement a plasma a resonance sounder and a digital plasma quasi-thermal noise analyzer designed to provide high cadence measurements of plasma density and temperature complementary to data from particle instruments. FWP will be interfaced with the particle instrument data processing unit (PPU) via a dedicated digital link which will enable performing on board correlation between waves and particles, quantifying the transfer of energy between waves and particles. The FWP instrument shall be designed and built by an international consortium of scientific institutes from Czech Republic, Poland, France, UK, Sweden and Austria.

  3. 40 CFR 75.6 - Incorporation by reference.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., phone: 610-832-9585, http://www.astm.org/DIGITAL_LIBRARY/index.shtml. (1) ASTM D129-00, Standard Test... Information Reference Unit of the U.S. EPA, 401 M St., SW., Washington, DC and at the Library (MD-35), U.S... D4052-96 (Reapproved 2002), Standard Test Method for Density and Relative Density of Liquids by Digital...

  4. 40 CFR 75.6 - Incorporation by reference.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., phone: 610-832-9585, http://www.astm.org/DIGITAL_LIBRARY/index.shtml. (1) ASTM D129-00, Standard Test... Information Reference Unit of the U.S. EPA, 401 M St., SW., Washington, DC and at the Library (MD-35), U.S... D4052-96 (Reapproved 2002), Standard Test Method for Density and Relative Density of Liquids by Digital...

  5. 40 CFR 75.6 - Incorporation by reference.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., phone: 610-832-9585, http://www.astm.org/DIGITAL_LIBRARY/index.shtml. (1) ASTM D129-00, Standard Test... Information Reference Unit of the U.S. EPA, 401 M St., SW., Washington, DC and at the Library (MD-35), U.S... D4052-96 (Reapproved 2002), Standard Test Method for Density and Relative Density of Liquids by Digital...

  6. 40 CFR 75.6 - Incorporation by reference.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., phone: 610-832-9585, http://www.astm.org/DIGITAL_LIBRARY/index.shtml. (1) ASTM D129-00, Standard Test... Information Reference Unit of the U.S. EPA, 401 M St., SW., Washington, DC and at the Library (MD-35), U.S... D4052-96 (Reapproved 2002), Standard Test Method for Density and Relative Density of Liquids by Digital...

  7. Digital Tools: Enhancing Painting Skills among Malaysian Secondary School Students

    ERIC Educational Resources Information Center

    Samah, Azimah A.; Putih, Abu Talib; Hussin, Zaharah

    2016-01-01

    Digital tools refer to software applications in the production of artworks particularly in painting. Digital art work is materialized by using computers, software and a combination of computer peripherals such as tablet support. With the aid of electronic equipment, digital artists manipulate pixels or coloring with light to compose the work and…

  8. A Digital View of History: Drawing and Discussing Models of Historical Concepts

    ERIC Educational Resources Information Center

    Manfra, Meghan McGlinn; Coven, Robert M.

    2011-01-01

    Digital history refers to "the study of the past using a variety of electronically reproduced primary source texts, images, and artifacts as well as the constructed narratives, accounts, or presentations that result from digital historical inquiry." Access to digitized primary sources can promote active instruction in historical thinking. A…

  9. Timing performance of phase-locked loops in optical pulse position modulation communication systems

    NASA Astrophysics Data System (ADS)

    Lafaw, D. A.

    In an optical digital communication system, an accurate clock signal must be available at the receiver to provide proper synchronization with the transmitted signal. Phase synchronization is especially critical in M-ary pulse position modulation (PPM) systems where the optimum decision scheme is an energy detector which compares the energy in each of M time slots to decide which of M possible words was sent. A timing error causes energy spillover into adjacent time slots (a form of intersymbol interference) so that only a portion of the signal energy may be attributed to the correct time slot. This effect decreases the effective signal, increases the effective noise, and increases the probability of error. This report simulates a timing subsystem for a satellite-to-satellite optical PPM communication link. The receiver employs direct photodetection, preprocessing of the optical signal, and a phase-locked loop for timing synchronization. The photodetector output is modeled as a filtered, doubly stochastic Poisson shot noise process. The variance of the relative phase error is examined under varying signal strength conditions as an indication of loop performance, and simulation results are compared to theoretical relations.

  10. Distributed Continuous Event-Based Data Acquisition Using the IEEE 1588 Synchronization and FlexRIO FPGA

    NASA Astrophysics Data System (ADS)

    Taliercio, C.; Luchetta, A.; Manduchi, G.; Rigoni, A.

    2017-07-01

    High-speed event driven acquisition is normally performed by analog-to-digital converter (ADC) boards with a given number of pretrigger sample and posttrigger sample that are recorded upon the occurrence of a hardware trigger. A direct physical connection is, therefore, required between the source of event (trigger) and the ADC, because any other software-based communication method would introduce a delay in triggering that would turn out to be not acceptable in many cases. This paper proposes a solution for the relaxation of the event communication time that can be, in this case, carried out by software messaging (e.g., via an LAN), provided that the system components are synchronized in time using the IEEE 1588 synchronization mechanism. The information about the exact event occurrence time is contained in the software packet that is sent to communicate the event and is used by the ADC FPGA to identify the exact sample in the ADC sample queue. The length of the ADC sample queue will depend on the maximum delay in software event message communication time. A prototype implementation using a National FlexRIO FPGA board connected with an ADC device is presented as the proof of concept.

  11. General Solution for Theoretical Packet Data Loss Rate

    NASA Technical Reports Server (NTRS)

    Lansdowne, Chatwin; Schlesinger, Adam

    2006-01-01

    Communications systems which transfer blocks ("frames") of data must use a marker ("frame synchronization pattern") for identifying where a block begins. A technique ("frame synchronization strategy") is used to locate the start of each frame and maintain synchronization as additional blocks are processed. A device which strips out the frame synchronization pattern [FSP] and provides an "end of frame" pulse is called a frame synchronizer. As clock and data errors are introduced into the system, the start-of-block marker becomes displaced and/or corrupted. The capability of the frame synchronizer to stay locked to the pattern under these conditions is a figure of merit for the frame synchronization strategy. It is important to select a strategy which will stay locked nearly all the time at bit error rates where the data is usable. ("Bit error rate" [BER] is the fraction of binary bits which are inverted by passage through a communication system.) The fraction of frames that are discarded because the frame synchronizer is not locked is called "Percent Data Loss" or "Packet Data Loss rate" [PDL]. A general approach for accurately predicting PDL given BER was developed in Theoretical Percent Data Loss Calculation and Measurement Accuracy, T. P. Kelly, LESC-30554, December 1992. Kelly gave a solution in terms of matrix equations, and only addressed "level" channel encoding. This paper goes on to give a closed-form polynomial solution for the most common class of frame synchronizer strategies, and will also address "mark" and "space" (differential) channel encoding, and burst error environments. The paper is divided into four sections and follows a logically ordered presentation, with results developed before they are evaluated. However, most readers will derive the greatest benefit from this paper by treating the results as reference material. The result developed for differential encoding can be extended to other applications (like block codes) where the probability is needed that a block contains only a certain number of errors.

  12. Simulating GPS radio signal to synchronize network--a new technique for redundant timing.

    PubMed

    Shan, Qingxiao; Jun, Yang; Le Floch, Jean-Michel; Fan, Yaohui; Ivanov, Eugene N; Tobar, Michael E

    2014-07-01

    Currently, many distributed systems such as 3G mobile communications and power systems are time synchronized with a Global Positioning System (GPS) signal. If there is a GPS failure, it is difficult to realize redundant timing, and thus time-synchronized devices may fail. In this work, we develop time transfer by simulating GPS signals, which promises no extra modification to original GPS-synchronized devices. This is achieved by applying a simplified GPS simulator for synchronization purposes only. Navigation data are calculated based on a pre-assigned time at a fixed position. Pseudo-range data which describes the distance change between the space vehicle (SV) and users are calculated. Because real-time simulation requires heavy-duty computations, we use self-developed software optimized on a PC to generate data, and save the data onto memory disks while the simulator is operating. The radio signal generation is similar to the SV at an initial position, and the frequency synthesis of the simulator is locked to a pre-assigned time. A filtering group technique is used to simulate the signal transmission delay corresponding to the SV displacement. Each SV generates a digital baseband signal, where a unique identifying code is added to the signal and up-converted to generate the output radio signal at the centered frequency of 1575.42 MHz (L1 band). A prototype with a field-programmable gate array (FPGA) has been built and experiments have been conducted to prove that we can realize time transfer. The prototype has been applied to the CDMA network for a three-month long experiment. Its precision has been verified and can meet the requirements of most telecommunication systems.

  13. Demonstration of quantum synchronization based on second-order quantum coherence of entangled photons

    PubMed Central

    Quan, Runai; Zhai, Yiwei; Wang, Mengmeng; Hou, Feiyan; Wang, Shaofeng; Xiang, Xiao; Liu, Tao; Zhang, Shougang; Dong, Ruifang

    2016-01-01

    Based on the second-order quantum interference between frequency entangled photons that are generated by parametric down conversion, a quantum strategic algorithm for synchronizing two spatially separated clocks has been recently presented. In the reference frame of a Hong-Ou-Mandel (HOM) interferometer, photon correlations are used to define simultaneous events. Once the HOM interferometer is balanced by use of an adjustable optical delay in one arm, arrival times of simulta- neously generated photons are recorded by each clock. The clock offset is determined by correlation measurement of the recorded arrival times. Utilizing this algorithm, we demonstrate a proof-of-principle experiment for synchronizing two clocks separated by 4 km fiber link. A minimum timing stability of 0.44 ps at averaging time of 16000 s is achieved with an absolute time accuracy of 73.2 ps. The timing stability is verified to be limited by the correlation measurement device and ideally can be better than 10 fs. Such results shine a light to the application of quantum clock synchronization in the real high-accuracy timing system. PMID:27452276

  14. Digital flight control research

    NASA Technical Reports Server (NTRS)

    Potter, J. E.; Stern, R. G.; Smith, T. B.; Sinha, P.

    1974-01-01

    The results of studies which were undertaken to contribute to the design of digital flight control systems, particularly for transport aircraft are presented. In addition to the overall design considerations for a digital flight control system, the following topics are discussed in detail: (1) aircraft attitude reference system design, (2) the digital computer configuration, (3) the design of a typical digital autopilot for transport aircraft, and (4) a hybrid flight simulator.

  15. Performance of unbalanced QPSK in the presence of noisy reference and crosstalk

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Yuen, J. H.

    1979-01-01

    The problem of transmitting two telemetry data streams having different rates and different powers using unbalanced quadriphase shift keying (UQPSK) signaling is considered. It is noted that the presence of a noisy carrier phase reference causes a degradation in detection performance in coherent communications systems and that imperfect carrier synchronization not only attenuates the main demodulated signal voltage in UQPSK but also produces interchannel interference (crosstalk) which degrades the performance still further. Exact analytical expressions for symbol error probability of UQPSK in the presence of noise phase reference are derived.

  16. National Vulnerability Database (NVD)

    National Institute of Standards and Technology Data Gateway

    National Vulnerability Database (NVD) (Web, free access)   NVD is a comprehensive cyber security vulnerability database that integrates all publicly available U.S. Government vulnerability resources and provides references to industry resources. It is based on and synchronized with the CVE vulnerability naming standard.

  17. Memristive Mixed-Signal Neuromorphic Systems: Energy-Efficient Learning at the Circuit-Level

    DOE PAGES

    Chakma, Gangotree; Adnan, Md Musabbir; Wyer, Austin R.; ...

    2017-11-23

    Neuromorphic computing is non-von Neumann computer architecture for the post Moore’s law era of computing. Since a main focus of the post Moore’s law era is energy-efficient computing with fewer resources and less area, neuromorphic computing contributes effectively in this research. Here in this paper, we present a memristive neuromorphic system for improved power and area efficiency. Our particular mixed-signal approach implements neural networks with spiking events in a synchronous way. Moreover, the use of nano-scale memristive devices saves both area and power in the system. We also provide device-level considerations that make the system more energy-efficient. The proposed systemmore » additionally includes synchronous digital long term plasticity, an online learning methodology that helps the system train the neural networks during the operation phase and improves the efficiency in learning considering the power consumption and area overhead.« less

  18. The Statistical Loop Analyzer (SLA)

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.

    1985-01-01

    The statistical loop analyzer (SLA) is designed to automatically measure the acquisition, tracking and frequency stability performance characteristics of symbol synchronizers, code synchronizers, carrier tracking loops, and coherent transponders. Automated phase lock and system level tests can also be made using the SLA. Standard baseband, carrier and spread spectrum modulation techniques can be accomodated. Through the SLA's phase error jitter and cycle slip measurements the acquisition and tracking thresholds of the unit under test are determined; any false phase and frequency lock events are statistically analyzed and reported in the SLA output in probabilistic terms. Automated signal drop out tests can be performed in order to trouble shoot algorithms and evaluate the reacquisition statistics of the unit under test. Cycle slip rates and cycle slip probabilities can be measured using the SLA. These measurements, combined with bit error probability measurements, are all that are needed to fully characterize the acquisition and tracking performance of a digital communication system.

  19. Note: An improved calibration system with phase correction for electronic transformers with digital output.

    PubMed

    Cheng, Han-miao; Li, Hong-bin

    2015-08-01

    The existing electronic transformer calibration systems employing data acquisition cards cannot satisfy some practical applications, because the calibration systems have phase measurement errors when they work in the mode of receiving external synchronization signals. This paper proposes an improved calibration system scheme with phase correction to improve the phase measurement accuracy. We employ NI PCI-4474 to design a calibration system, and the system has the potential to receive external synchronization signals and reach extremely high accuracy classes. Accuracy verification has been carried out in the China Electric Power Research Institute, and results demonstrate that the system surpasses the accuracy class 0.05. Furthermore, this system has been used to test the harmonics measurement accuracy of all-fiber optical current transformers. In the same process, we have used an existing calibration system, and a comparison of the test results is presented. The system after improvement is suitable for the intended applications.

  20. Memristive Mixed-Signal Neuromorphic Systems: Energy-Efficient Learning at the Circuit-Level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakma, Gangotree; Adnan, Md Musabbir; Wyer, Austin R.

    Neuromorphic computing is non-von Neumann computer architecture for the post Moore’s law era of computing. Since a main focus of the post Moore’s law era is energy-efficient computing with fewer resources and less area, neuromorphic computing contributes effectively in this research. Here in this paper, we present a memristive neuromorphic system for improved power and area efficiency. Our particular mixed-signal approach implements neural networks with spiking events in a synchronous way. Moreover, the use of nano-scale memristive devices saves both area and power in the system. We also provide device-level considerations that make the system more energy-efficient. The proposed systemmore » additionally includes synchronous digital long term plasticity, an online learning methodology that helps the system train the neural networks during the operation phase and improves the efficiency in learning considering the power consumption and area overhead.« less

  1. In-vitro evaluation of the accuracy of conventional and digital methods of obtaining full-arch dental impressions.

    PubMed

    Ender, Andreas; Mehl, Albert

    2015-01-01

    To investigate the accuracy of conventional and digital impression methods used to obtain full-arch impressions by using an in-vitro reference model. Eight different conventional (polyether, POE; vinylsiloxanether, VSE; direct scannable vinylsiloxanether, VSES; and irreversible hydrocolloid, ALG) and digital (CEREC Bluecam, CER; CEREC Omnicam, OC; Cadent iTero, ITE; and Lava COS, LAV) full-arch impressions were obtained from a reference model with a known morphology, using a highly accurate reference scanner. The impressions obtained were then compared with the original geometry of the reference model and within each test group. A point-to-point measurement of the surface of the model using the signed nearest neighbour method resulted in a mean (10%-90%)/2 percentile value for the difference between the impression and original model (trueness) as well as the difference between impressions within a test group (precision). Trueness values ranged from 11.5 μm (VSE) to 60.2 μm (POE), and precision ranged from 12.3 μm (VSE) to 66.7 μm (POE). Among the test groups, VSE, VSES, and CER showed the highest trueness and precision. The deviation pattern varied with the impression method. Conventional impressions showed high accuracy across the full dental arch in all groups, except POE and ALG. Conventional and digital impression methods show differences regarding full-arch accuracy. Digital impression systems reveal higher local deviations of the full-arch model. Digital intraoral impression systems do not show superior accuracy compared to highly accurate conventional impression techniques. However, they provide excellent clinical results within their indications applying the correct scanning technique.

  2. New approaches to digital transformation of petrochemical production

    NASA Astrophysics Data System (ADS)

    Andieva, E. Y.; Kapelyuhovskaya, A. A.

    2017-08-01

    The newest concepts of the reference architecture of digital industrial transformation are considered, the problems of their application for the enterprises having in their life cycle oil products processing and marketing are revealed. The concept of the reference architecture, providing a systematic representation of the fundamental changes in the approaches to production management based on the automation of production process control is proposed.

  3. Extensions to Traditional Spatial Data Infrastructures: Integration of Social Media, Synchronization of Datasets, and Data on the Go in GeoPackages

    NASA Astrophysics Data System (ADS)

    Simonis, Ingo

    2015-04-01

    Traditional Spatial Data Infrastructures focus on aspects such as description and discovery of geospatial data, integration of these data into processing workflows, and representation of fusion or other data analysis results. Though lots of interoperability agreements still need to be worked out to achieve a satisfying level of interoperability within large scale initiatives such as INSPIRE, new technologies, use cases and requirements are constantly emerging from the user community. This paper focuses on three aspects that came up recently: The integration of social media data into SDIs, synchronization aspects between datasets used by field workers in shared resources environments, and the generation and maintenance of data for mixed mode online/offline situations that can be easily packed, delivered, modified, and synchronized with reference data sets. The work described in this paper results from the latest testbed executed by the Open Geospatial Consortium, OGC. The testbed is part of the interoperability program (IP), which constitutes a significant part of the OGC standards development process. The IP has a number of instruments to enhance geospatial standards and technologies, such as Testbeds, Pilot Projects, Interoperability Experiments, and Interoperability Expert Services. These activities are designed to encourage rapid development, testing, validation, demonstration and adoption of open, consensus based standards and best practices. The latest global activity, testbed-11, aims at exploring new technologies and architectural approaches to enrich and extend traditional spatial data infrastructures with data from Social Media, improved data synchronization, and the capability to take data to the field in new synchronized data containers called GeoPackages. Social media sources are a valuable supplement to providing up to date information in distributed environments. Following an uncoordinated crowdsourcing approach, social media data can be both overwhelming in volume and questionable in its accuracy and legitimacy. Testbed-11 explores how best to make use of such sources of information and how to deal with immanent issues with data from platforms such as OpenStreetMap, Twitter, tumblr, flickr, Snapchat, Facebook, Instagram, YouTube, Vimeo, Panoramio, Pinterest, Picasa or storyful. Further important aspects highlighted here are the synchronization of data and the capability to take complex data sets of any size on mobile devices to the field - and keeping them in sync with reference data stores. In particular in emergency management situations, it is crucial to ensure properly synchronized data sets across different types of data stores and applications. Often data is taken to the field on mobile devices, where it gets updated or annotated. Though bandwidth permanently improves, requirements on data quality and complexity grow in parallel. Intermitted connectivity is paired with high security requirements that have to be fulfilled. This paper discusses the latest approaches using synchronization services and synchronized GeoPackages, the new container format for geospatial data.

  4. A decision directed detector for the phase incoherent Gaussian channel

    NASA Technical Reports Server (NTRS)

    Kazakos, D.

    1975-01-01

    A vector digital signalling scheme is proposed for simultaneous adaptive data transmission and phase estimation. The use of maximum likelihood estimation methods predicts a better performance than the phase-locked loop. The phase estimate is shown to converge to the true value, so that the adaptive nature of the detector effectively achieves phase acquisition and improvement in performance. No separate synchronization interval is required and phase fluctuations can be tracked simultaneously with the transmission of information.

  5. Users Guide to Direct Digital Control of Heating, Ventilating, and Air Conditioning Equipment,

    DTIC Science & Technology

    1985-01-01

    cycles, reset, load shedding, chiller optimization , VAV fan synchronization, and optimum start/stop. The prospective buyer of a DDC system should...in Fig- ure 4. Data on setpoints , reset schedules, and event timing, such as that presented in Figure 6, are often even more difficult to find. In con...control logic, setpoint and other data are readily available. Program logic, setpoint and schedule data, and other information stored in a DDC unit

  6. Direct Digital Control of HVAC (Heating, Ventilating, and Air Conditioning Equipment (User’s Guide)

    DTIC Science & Technology

    1985-01-01

    reset, load shedding, chiller optimization , VAV fan synchronization, and optimum start/stop. The prospective buyer of a DDC system should investigate...current and accurate drawings for a conventional, built-up control system such as that illustrated in Fig- ure 4. Data on setpoints , reset schedules, and...are always available in the form of the computer program code (Figure 7). In addition to the control logic, setpoint and other data are readily

  7. Evaluation of hardware costs of implementing PSK signal detection circuit based on "system on chip"

    NASA Astrophysics Data System (ADS)

    Sokolovskiy, A. V.; Dmitriev, D. D.; Veisov, E. A.; Gladyshev, A. B.

    2018-05-01

    The article deals with the choice of the architecture of digital signal processing units for implementing the PSK signal detection scheme. As an assessment of the effectiveness of architectures, the required number of shift registers and computational processes are used when implementing the "system on a chip" on the chip. A statistical estimation of the normalized code sequence offset in the signal synchronization scheme for various hardware block architectures is used.

  8. Chaos M-ary modulation and demodulation method based on Hamilton oscillator and its application in communication.

    PubMed

    Fu, Yongqing; Li, Xingyuan; Li, Yanan; Yang, Wei; Song, Hailiang

    2013-03-01

    Chaotic communication has aroused general interests in recent years, but its communication effect is not ideal with the restriction of chaos synchronization. In this paper a new chaos M-ary digital modulation and demodulation method is proposed. By using region controllable characteristics of spatiotemporal chaos Hamilton map in phase plane and chaos unique characteristic, which is sensitive to initial value, zone mapping method is proposed. It establishes the map relationship between M-ary digital information and the region of Hamilton map phase plane, thus the M-ary information chaos modulation is realized. In addition, zone partition demodulation method is proposed based on the structure characteristic of Hamilton modulated information, which separates M-ary information from phase trajectory of chaotic Hamilton map, and the theory analysis of zone partition demodulator's boundary range is given. Finally, the communication system based on the two methods is constructed on the personal computer. The simulation shows that in high speed transmission communications and with no chaos synchronization circumstance, the proposed chaotic M-ary modulation and demodulation method has outperformed some conventional M-ary modulation methods, such as quadrature phase shift keying and M-ary pulse amplitude modulation in bit error rate. Besides, it has performance improvement in bandwidth efficiency, transmission efficiency and anti-noise performance, and the system complexity is low and chaos signal is easy to generate.

  9. Direct-coupled microcomputer-based building emulator for building energy management and control systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, H.N.

    1999-07-01

    In this paper, the development and implementation of a direct-coupled building emulator for a building energy management and control system (EMCS) is presented. The building emulator consists of a microcomputer and a computer model of an air-conditioning system implemented in a modular dynamic simulation software package for direct-coupling to an EMCS, without using analog-to-digital and digital-to-analog converters. The building emulator can be used to simulate in real time the behavior of the air-conditioning system under a given operating environment and subject to a given usage pattern. Software modules for data communication, graphical display, dynamic data exchange, and synchronization of simulationmore » outputs with real time have been developed to achieve direct digital data transfer between the building emulator and a commercial EMCS. Based on the tests conducted, the validity of the building emulator has been established and the proportional-plus-integral control function of the EMCS assessed.« less

  10. Real-time phase correlation based integrated system for seizure detection

    NASA Astrophysics Data System (ADS)

    Romaine, James B.; Delgado-Restituto, Manuel; Leñero-Bardallo, Juan A.; Rodríguez-Vázquez, Ángel

    2017-05-01

    This paper reports a low area, low power, integer-based digital processor for the calculation of phase synchronization between two neural signals. The processor calculates the phase-frequency content of a signal by identifying the specific time periods associated with two consecutive minima. The simplicity of this phase-frequency content identifier allows for the digital processor to utilize only basic digital blocks, such as registers, counters, adders and subtractors, without incorporating any complex multiplication and or division algorithms. In fact, the processor, fabricated in a 0.18μm CMOS process, only occupies an area of 0.0625μm2 and consumes 12.5nW from a 1.2V supply voltage when operated at 128kHz. These low-area, low-power features make the proposed processor a valuable computing element in closed loop neural prosthesis for the treatment of neural diseases, such as epilepsy, or for extracting functional connectivity maps between different recording sites in the brain.

  11. The IceCube data acquisition system: Signal capture, digitization, and timestamping

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Ackermann, M.; Adams, J.; Ahlers, M.; Ahrens, J.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Becka, T.; Becker, J. K.; Becker, K.-H.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bingham, B.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Böser, S.; Botner, O.; Braun, J.; Breeder, D.; Burgess, T.; Carithers, W.; Castermans, T.; Chen, H.; Chirkin, D.; Christy, B.; Clem, J.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davour, A.; Day, C. T.; Depaepe, O.; De Clercq, C.; Demirörs, L.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Diaz-Velez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Gerhardt, L.; Gladstone, L.; Glowacki, D.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hardtke, R.; Hasegawa, Y.; Haugen, J.; Hays, D.; Heise, J.; Helbing, K.; Hellwig, M.; Herquet, P.; Hickford, S.; Hill, G. C.; Hodges, J.; Hoffman, K. D.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hughey, B.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Inaba, M.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Jones, A.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kawai, H.; Kelley, J. L.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Kleinfelder, S.; Klepser, S.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kuehn, K.; Kujawski, E.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Lauer, R.; Laundrie, A.; Leich, H.; Leier, D.; Lewis, C.; Lucke, A.; Ludvig, J.; Lundberg, J.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McParland, C. P.; Meagher, K.; Meli, A.; Merck, M.; Messarius, T.; Mészáros, P.; Minor, R. H.; Miyamoto, H.; Mohr, A.; Mokhtarani, A.; Montaruli, T.; Morse, R.; Movit, S. M.; Münich, K.; Muratas, A.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Patton, S.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Potthoff, N.; Pretz, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Razzaque, S.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Robbins, W. J.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Rutledge, D.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Satalecka, K.; Sandstrom, P.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schulz, O.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Smith, A. J.; Song, C.; Sopher, J. E.; Spiczak, G. M.; Spiering, C.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Tluczykont, M.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; Viscomi, V.; Vogt, C.; Voigt, B.; Vu, C. Q.; Wahl, D.; Walck, C.; Waldenmaier, T.; Waldmann, H.; Walter, M.; Wendt, C.; Westerhof, S.; Whitehorn, N.; Wharton, D.; Wiebusch, C. H.; Wiedemann, C.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.; IceCube Collaboration

    2009-04-01

    IceCube is a km-scale neutrino observatory under construction at the South Pole with sensors both in the deep ice (InIce) and on the surface (IceTop). The sensors, called Digital Optical Modules (DOMs), detect, digitize and timestamp the signals from optical Cherenkov-radiation photons. The DOM Main Board (MB) data acquisition subsystem is connected to the central DAQ in the IceCube Laboratory (ICL) by a single twisted copper wire-pair and transmits packetized data on demand. Time calibration is maintained throughout the array by regular transmission to the DOMs of precisely timed analog signals, synchronized to a central GPS-disciplined clock. The design goals and consequent features, functional capabilities, and initial performance of the DOM MB, and the operation of a combined array of DOMs as a system, are described here. Experience with the first InIce strings and the IceTop stations indicates that the system design and performance goals have been achieved.

  12. A 32-channel fully implantable wireless neurosensor for simultaneous recording from two cortical regions.

    PubMed

    Aceros, Juan; Yin, Ming; Borton, David A; Patterson, William R; Nurmikko, Arto V

    2011-01-01

    We present a fully implantable, wireless, neurosensor for multiple-location neural interface applications. The device integrates two independent 16-channel intracortical microelectrode arrays and can simultaneously acquire 32 channels of broadband neural data from two separate cortical areas. The system-on-chip implantable sensor is built on a flexible Kapton polymer substrate and incorporates three very low power subunits: two cortical subunits connected to a common subcutaneous subunit. Each cortical subunit has an ultra-low power 16-channel preamplifier and multiplexer integrated onto a cortical microelectrode array. The subcutaneous epicranial unit has an inductively coupled power supply, two analog-to-digital converters, a low power digital controller chip, and microlaser-based infrared telemetry. The entire system is soft encapsulated with biocompatible flexible materials for in vivo applications. Broadband neural data is conditioned, amplified, and analog multiplexed by each of the cortical subunits and passed to the subcutaneous component, where it is digitized and combined with synchronization data and wirelessly transmitted transcutaneously using high speed infrared telemetry.

  13. A clocking discipline for two-phase digital integrated circuits

    NASA Astrophysics Data System (ADS)

    Noice, D. C.

    1983-09-01

    Sooner or later a designer of digital circuits must face the problem of timing verification so he can avoid errors caused by clock skew, critical races, and hazards. Unlike previous verification methods, such as timing simulation and timing analysis, the approach presented here guarantees correct operation despite uncertainty about delays in the circuit. The result is a clocking discipline that deals with timing abstractions only. It is not based on delay calculations; it is only concerned with the correct, synchronous operation at some clock rate. Accordingly, it may be used earlier in the design cycle, which is particularly important to integrated circuit designs. The clocking discipline consists of a notation of clocking types, and composition rules for using the types. Together, the notation and rules define a formal theory of two phase clocking. The notation defines the names and exact characteristics for different signals that are used in a two phase digital system. The notation makes it possible to develop rules for propagating the clocking types through particular circuits.

  14. A precise clock distribution network for MRPC-based experiments

    NASA Astrophysics Data System (ADS)

    Wang, S.; Cao, P.; Shang, L.; An, Q.

    2016-06-01

    In high energy physics experiments, the MRPC (Multi-Gap Resistive Plate Chamber) detectors are widely used recently which can provide higher-resolution measurement for particle identification. However, the application of MRPC detectors leads to a series of challenges in electronics design with large number of front-end electronic channels, especially for distributing clock precisely. To deal with these challenges, this paper presents a universal scheme of clock transmission network for MRPC-based experiments with advantages of both precise clock distribution and global command synchronization. For precise clock distributing, the clock network is designed into a tree architecture with two stages: the first one has a point-to-multipoint long range bidirectional distribution with optical channels and the second one has a fan-out structure with copper link inside readout crates. To guarantee the precision of clock frequency or phase, the r-PTP (reduced Precision Time Protocol) and the DDMTD (digital Dual Mixer Time Difference) methods are used for frequency synthesis, phase measurement and adjustment, which is implemented by FPGA (Field Programmable Gate Array) in real-time. In addition, to synchronize global command execution, based upon this clock distribution network, synchronous signals are coded with clock for transmission. With technique of encoding/decoding and clock data recovery, signals such as global triggers or system control commands, can be distributed to all front-end channels synchronously, which greatly simplifies the system design. The experimental results show that both the clock jitter (RMS) and the clock skew can be less than 100 ps.

  15. Optical synchronization system for femtosecond X-ray sources

    DOEpatents

    Wilcox, Russell B [El Cerrito, CA; Holzwarth, Ronald [Munich, DE

    2011-12-13

    Femtosecond pump/probe experiments using short X-Ray and optical pulses require precise synchronization between 100 meter-10 km separated lasers in a various experiments. For stabilization in the hundred femtosecond range a CW laser is amplitude modulated at 1-10 GHz, the signal retroreflected from the far end, and the relative phase used to correct the transit time with various implementations. For the sub-10 fsec range the laser frequency itself is upshifted 55 MHz with an acousto-optical modulator, retroreflected, upshifted again and phase compared at the sending end to a 110 MHz reference. Initial experiments indicate less than 1 fsec timing jitter. To lock lasers in the sub-10 fs range two single-frequency lasers separated by several teraHertz will be lock to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes.

  16. Method and means for measurement and control of pulsed charged beams

    DOEpatents

    Lewis, R.N.

    A beam of bunches of charged particles is controlled by generating a signal in response to the passage of a bunch and adding to that signal a phase-flipped reference signal. The sum is amplified, detected, and applied to a synchronous detector to obtain a comparison of the phase of the reference signal with the phase of the signal responsive to the bunch. The comparison provides an error signal to control bunching.

  17. Implementing system simulation of C3 systems using autonomous objects

    NASA Technical Reports Server (NTRS)

    Rogers, Ralph V.

    1987-01-01

    The basis of all conflict recognition in simulation is a common frame of reference. Synchronous discrete-event simulation relies on the fixed points in time as the basic frame of reference. Asynchronous discrete-event simulation relies on fixed-points in the model space as the basic frame of reference. Neither approach provides sufficient support for autonomous objects. The use of a spatial template as a frame of reference is proposed to address these insufficiencies. The concept of a spatial template is defined and an implementation approach offered. Discussed are the uses of this approach to analyze the integration of sensor data associated with Command, Control, and Communication systems.

  18. Developing daisy chain receivers for light-emitting diode illumination adopting the digital multiplex-512 protocol.

    PubMed

    Um, Keehong; Yoo, Sooyeup

    2013-10-01

    Protocol for digital multiplex with 512 pieces of information is increasingly adopted in the design of illumination systems. In conventional light-emitting diode systems, the receivers are connected in parallel and each of the receiving units receives all the data from the master dimmer console, but each receiving unit operates by recognizing as its own data that which corresponds to the assigned number of the receiver. Because the serial numbers of illumination devices are transmitted in binary code, synchronization is too complicated to be used properly. In order to improve the protocol of illumination control systems, we propose an algorithm of protocol reception to install and manage the system in a simpler and more convenient way. We propose the systems for controlling the light-emitting diode illumination of simplified receiver slaves adopting the digital multiplex-512 protocol where master console and multiple receiver slaves are connected in a daisy chain fashion. The digital multiplex-512 data packet is received according to the sequence order of their locations from the console, without assigning the sequence number of each channel at the receiving device. The purpose of this paper is to design a simple and small-sized controller for the control systems of lamps and lighting adopting the digital multiplex-512 network.

  19. Real-time transmission of digital video using variable-length coding

    NASA Technical Reports Server (NTRS)

    Bizon, Thomas P.; Shalkhauser, Mary JO; Whyte, Wayne A., Jr.

    1993-01-01

    Huffman coding is a variable-length lossless compression technique where data with a high probability of occurrence is represented with short codewords, while 'not-so-likely' data is assigned longer codewords. Compression is achieved when the high-probability levels occur so frequently that their benefit outweighs any penalty paid when a less likely input occurs. One instance where Huffman coding is extremely effective occurs when data is highly predictable and differential coding can be applied (as with a digital video signal). For that reason, it is desirable to apply this compression technique to digital video transmission; however, special care must be taken in order to implement a communication protocol utilizing Huffman coding. This paper addresses several of the issues relating to the real-time transmission of Huffman-coded digital video over a constant-rate serial channel. Topics discussed include data rate conversion (from variable to a fixed rate), efficient data buffering, channel coding, recovery from communication errors, decoder synchronization, and decoder architectures. A description of the hardware developed to execute Huffman coding and serial transmission is also included. Although this paper focuses on matters relating to Huffman-coded digital video, the techniques discussed can easily be generalized for a variety of applications which require transmission of variable-length data.

  20. Accuracy of five intraoral scanners compared to indirect digitalization.

    PubMed

    Güth, Jan-Frederik; Runkel, Cornelius; Beuer, Florian; Stimmelmayr, Michael; Edelhoff, Daniel; Keul, Christine

    2017-06-01

    Direct and indirect digitalization offer two options for computer-aided design (CAD)/ computer-aided manufacturing (CAM)-generated restorations. The aim of this study was to evaluate the accuracy of different intraoral scanners and compare them to the process of indirect digitalization. A titanium testing model was directly digitized 12 times with each intraoral scanner: (1) CS 3500 (CS), (2) Zfx Intrascan (ZFX), (3) CEREC AC Bluecam (BLU), (4) CEREC AC Omnicam (OC) and (5) True Definition (TD). As control, 12 polyether impressions were taken and the referring plaster casts were digitized indirectly with the D-810 laboratory scanner (CON). The accuracy (trueness/precision) of the datasets was evaluated by an analysing software (Geomagic Qualify 12.1) using a "best fit alignment" of the datasets with a highly accurate reference dataset of the testing model, received from industrial computed tomography. Direct digitalization using the TD showed the significant highest overall "trueness", followed by CS. Both performed better than CON. BLU, ZFX and OC showed higher differences from the reference dataset than CON. Regarding the overall "precision", the CS 3500 intraoral scanner and the True Definition showed the best performance. CON, BLU and OC resulted in significantly higher precision than ZFX did. Within the limitations of this in vitro study, the accuracy of the ascertained datasets was dependent on the scanning system. The direct digitalization was not superior to indirect digitalization for all tested systems. Regarding the accuracy, all tested intraoral scanning technologies seem to be able to reproduce a single quadrant within clinical acceptable accuracy. However, differences were detected between the tested systems.

Top