Sample records for synchrotron radiation diffraction

  1. Dynamical diffraction imaging (topography) with X-ray synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Kuriyama, M.; Steiner, B. W.; Dobbyn, R. C.

    1989-01-01

    By contrast to electron microscopy, which yields information on the location of features in small regions of materials, X-ray diffraction imaging can portray minute deviations from perfect crystalline order over larger areas. Synchrotron radiation-based X-ray optics technology uses a highly parallel incident beam to eliminate ambiguities in the interpretation of image details; scattering phenomena previously unobserved are now readily detected. Synchrotron diffraction imaging renders high-resolution, real-time, in situ observations of materials under pertinent environmental conditions possible.

  2. Applications of synchrotron radiation to materials science: Diffraction imaging (topography) and microradiography

    NASA Technical Reports Server (NTRS)

    Kuriyama, Masao

    1988-01-01

    Synchrotron radiation sources are now available throughout the world. The use of hard X-ray radiation from these sources for materials science is described with emphasis on diffraction imaging for material characterization. With the availability of synchrotron radiation, real-time in situ measurements of dynamic microstructural phenomena have been started. This is a new area where traditional application of X-rays has been superseded. Examples are chosen from limited areas and are by no means exhaustive. The new emerging information will, no doubt, have great impact on materials science and engineering.

  3. Synchrotron Radiation X-ray Diffraction Techniques Applied to Insect Flight Muscle.

    PubMed

    Iwamoto, Hiroyuki

    2018-06-13

    X-ray fiber diffraction is a powerful tool used for investigating the molecular structure of muscle and its dynamics during contraction. This technique has been successfully applied not only to skeletal and cardiac muscles of vertebrates but also to insect flight muscle. Generally, insect flight muscle has a highly ordered structure and is often capable of high-frequency oscillations. The X-ray diffraction studies on muscle have been accelerated by the advent of 3rd-generation synchrotron radiation facilities, which can generate brilliant and highly oriented X-ray beams. This review focuses on some of the novel experiments done on insect flight muscle by using synchrotron radiation X-rays. These include diffraction recordings from single myofibrils within a flight muscle fiber by using X-ray microbeams and high-speed diffraction recordings from the flight muscle during the wing-beat of live insects. These experiments have provided information about the molecular structure and dynamic function of flight muscle in unprecedented detail. Future directions of X-ray diffraction studies on muscle are also discussed.

  4. Structural anomalies in undoped Gallium Arsenide observed in high resolution diffraction imaging with monochromatic synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Steiner, B.; Kuriyama, M.; Dobbyn, R. C.; Laor, U.; Larson, D.; Brown, M.

    1988-01-01

    Novel, streak-like disruption features restricted to the plane of diffraction have recently been observed in images obtained by synchrotron radiation diffraction from undoped, semi-insulating gallium arsenide crystals. These features were identified as ensembles of very thin platelets or interfaces lying in (110) planes, and a structural model consisting of antiphase domain boundaries was proposed. We report here the other principal features observed in high resolution monochromatic synchrotron radiation diffraction images: (quasi) cellular structure; linear, very low-angle subgrain boundaries in (110) directions, and surface stripes in a (110) direction. In addition, we report systematic differences in the acceptance angle for images involving various diffraction vectors. When these observations are considered together, a unifying picture emerges. The presence of ensembles of thin (110) antiphase platelet regions or boundaries is generally consistent not only with the streak-like diffraction features but with the other features reported here as well. For the formation of such regions we propose two mechanisms, operating in parallel, that appear to be consistent with the various defect features observed by a variety of techniques.

  5. Structural anomalies in undoped gallium arsenide observed in high-resolution diffraction imaging with monochromatic synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Steiner, B.; Kuriyama, M.; Dobbyn, R. C.; Laor, U.; Larson, D.

    1989-01-01

    Novel, streak-like disruption features restricted to the plane of diffraction have recently been observed in images obtained by synchrotron radiation diffraction from undoped, semi-insulating gallium arsenide crystals. These features were identified as ensembles of very thin platelets or interfaces lying in (110) planes, and a structural model consisting of antiphase domain boundaries was proposed. We report here the other principal features observed in high resolution monochromatic synchrotron radiation diffraction images: (quasi) cellular structure; linear, very low-angle subgrain boundaries in (110) directions, and surface stripes in a (110) direction. In addition, we report systematic differences in the acceptance angle for images involving various diffraction vectors. When these observations are considered together, a unifying picture emerges. The presence of ensembles of thin (110) antiphase platelet regions or boundaries is generally consistent not only with the streak-like diffraction features but with the other features reported here as well. For the formation of such regions we propose two mechanisms, operating in parallel, that appear to be consistent with the various defect features observed by a variety of techniques.

  6. Impact of synchrotron radiation on macromolecular crystallography: a personal view

    PubMed Central

    Dauter, Zbigniew; Jaskolski, Mariusz; Wlodawer, Alexander

    2010-01-01

    The introduction of synchrotron radiation sources almost four decades ago has led to a revolutionary change in the way that diffraction data from macromolecular crystals are being collected. Here a brief history of the development of methodologies that took advantage of the availability of synchrotron sources are presented, and some personal experiences with the utilization of synchrotrons in the early days are recalled. PMID:20567074

  7. Local reconstruction in computed tomography of diffraction enhanced imaging

    NASA Astrophysics Data System (ADS)

    Huang, Zhi-Feng; Zhang, Li; Kang, Ke-Jun; Chen, Zhi-Qiang; Zhu, Pei-Ping; Yuan, Qing-Xi; Huang, Wan-Xia

    2007-07-01

    Computed tomography of diffraction enhanced imaging (DEI-CT) based on synchrotron radiation source has extremely high sensitivity of weakly absorbing low-Z samples in medical and biological fields. The authors propose a modified backprojection filtration(BPF)-type algorithm based on PI-line segments to reconstruct region of interest from truncated refraction-angle projection data in DEI-CT. The distribution of refractive index decrement in the sample can be directly estimated from its reconstruction images, which has been proved by experiments at the Beijing Synchrotron Radiation Facility. The algorithm paves the way for local reconstruction of large-size samples by the use of DEI-CT with small field of view based on synchrotron radiation source.

  8. The structure study of thin semiconductor and dielectric films by diffraction of synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Yurjev, G. S.; Fainer, N. I.; Maximovskiy, E. A.; Kosinova, M. L.; Sheromov, M. A.; Rumyantsev, Yu. M.

    1998-02-01

    The structure of semiconductor and dielectric thin (100-300 nm) films was studied by diffraction of synchrotron radiation. The diffraction experiments were performed at both the station "Anomalous scattering" of the storage ring synchrotron facility VEPP-3 and DRON-4 diffractometer. The structure of CdS thin films grown on fused silica, single Si(100) and InP(100) substrates was investigated. The structure of Cu 2S thin films grown on fused silica, single Si(100) substrates and CdS/Si(100)-heterostructure was studied. The structure study was performed on Si 3N 4 films grown on GaAs(100) substrates. The structure of thin BN layers grown on single Si(100) substrates was studied. It was established that structural parameters of above-mentioned thin films coincide on the parameters of JCPDS International Centre for Diffraction Data.

  9. Observation of divergent-beam X-ray diffraction from a crystal of diamond using synchrotron radiation.

    PubMed

    Glazer, A M; Collins, S P; Zekria, D; Liu, J; Golshan, M

    2004-03-01

    In 1947 Kathleen Lonsdale conducted a series of experiments on X-ray diffraction using a divergent beam external to a crystal sample. Unlike the Kossel technique, where divergent X-rays are excited by the presence of fluorescing atoms within the crystal, the use of an external divergent source made it possible to study non-fluorescing crystals. The resulting photographs not only illustrated the complexity of X-ray diffraction from crystals in a truly beautiful way, but also demonstrated unprecedented experimental precision. This long-forgotten work is repeated here using a synchrotron radiation source and, once again, considerable merit is found in Lonsdale's technique. The results of this experiment suggest that, through the use of modern 'third-generation' synchrotron sources, divergent-beam diffraction could soon enjoy a renaissance for high-precision lattice-parameter determination and the study of crystal perfection.

  10. Spherical quartz crystals investigated with synchrotron radiation

    DOE PAGES

    Pereira, N. R.; Macrander, A. T.; Hill, K. W.; ...

    2015-10-27

    The quality of x-ray spectra and images obtained from plasmas with spherically bent crystals depends in part on the crystal's x-ray diffraction across the entire crystal surface. We employ the energy selectivity and high intensity of synchrotron radiation to examine typical spherical crystals from alpha-quartz for their diffraction quality, in a perpendicular geometry that is particularly convenient to examine sagittal focusing. The crystal's local diffraction is not ideal: the most noticeable problems come from isolated regions that so far have failed to correlate with visible imperfections. In conclusion, excluding diffraction from such problem spots has little effect on the focusmore » beyond a decrease in background.« less

  11. X-ray diffraction imaging (topography) of electroopticcrystals by synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Steiner, Bruce; Kuriyama, Masao; Dobbyn, Ronald C.; Laor, Uri

    1988-01-01

    Information of special interest to crystal growers and device physicists now available from monochromatic synchrotron diffraction imaging (topography) is reviewed. Illustrations are taken from a variety of electro-optic crystals. Aspects of the detailed understanding of crystal growth processes obtainable from carefully selected samples are described. Finally, new experimental opportunities now available for exploitation are indicated.

  12. Synchrotron X-ray powder diffraction data of LASSBio-1515: A new N-acylhydrazone derivative compound

    NASA Astrophysics Data System (ADS)

    Costa, F. N.; Braz, D.; Ferreira, F. F.; da Silva, T. F.; Barreiro, E. J.; Lima, L. M.; Colaço, M. V.; Kuplich, L.; Barroso, R. C.

    2014-02-01

    In this work, synchrotron X-ray powder diffraction data allowed for a successful indexing of LASSBio-1515 compound, candidate to analgesic and anti-inflammatory activity. X-ray powder diffraction data collected in transmission and high-throughput geometries were used to analyze this compound. The X-ray wavelength of the synchrotron radiation used in this study was determined to be λ=1.55054 Å. LASSBio-1515 was found to be monoclinic with space group P21/c and unit cell parameters a=11.26255(16) Å, b=12.59785(16) Å, c=8.8540(1) Å, β=90.5972(7)° and V=1256.17(3) Å3.

  13. Polarized vacuum ultraviolet and X-radiation

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.

    1978-01-01

    The most intense source of polarized vacuum UV and X radiation is synchrotron radiation, which exhibits a degree of partially polarized light between about 80-100%. However, the radiation transmitted by vacuum UV monochromators can also be highly polarized. The Seya-Namioka type of monochromator can produce partially polarized radiation between 50-80%. For certain experiments it is necessary to know the degree of polarization of the radiation being used. Also, when synchrotron radiation and a monochromator are combined the polarization characteristic of both should be known in order to make full use of these polarization properties. The polarizing effect of monochromators (i.e., diffraction gratings) have been measured at the Seya angle and at grazing angles for various spectral orders. Experimental evidence is presented which shows that the reciprocity law holds for polarization by reflection where the angle of incidence and diffraction are unequal. These results are reviewed along with the techniques for measuring the degree of polarization.

  14. Bragg coherent diffraction imaging and metrics for radiation damage in protein micro-crystallography.

    PubMed

    Coughlan, H D; Darmanin, C; Kirkwood, H J; Phillips, N W; Hoxley, D; Clark, J N; Vine, D J; Hofmann, F; Harder, R J; Maxey, E; Abbey, B

    2017-01-01

    The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals (Helliwell, 1984). Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to the diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. A possible mechanism to account for these observations is proposed.

  15. Bragg coherent diffraction imaging and metrics for radiation damage in protein micro-crystallography

    DOE PAGES

    Coughlan, H. D.; Darmanin, C.; Kirkwood, H. J.; ...

    2017-01-01

    The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals. Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to themore » diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. As a result, a possible mechanism to account for these observations is proposed.« less

  16. Bragg coherent diffraction imaging and metrics for radiation damage in protein micro-crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coughlan, H. D.; Darmanin, C.; Kirkwood, H. J.

    The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals. Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to themore » diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. As a result, a possible mechanism to account for these observations is proposed.« less

  17. New synchrotron powder diffraction facility for long-duration experiments

    PubMed Central

    Murray, Claire A.; Potter, Jonathan; Day, Sarah J.; Baker, Annabelle R.; Thompson, Stephen P.; Kelly, Jon; Morris, Christopher G.; Tang, Chiu C.

    2017-01-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world’s first dedicated facility for long-term studies (weeks to years) using synchrotron radiation. PMID:28190992

  18. Invited Article: Refined analysis of synchrotron radiation for NIST's SURF III facility

    NASA Astrophysics Data System (ADS)

    Shirley, Eric L.; Furst, Mitchell; Arp, Uwe

    2018-04-01

    We have developed a new method for the exact calculation of synchrotron radiation for the National Institute of Standards and Technology Synchrotron Ultraviolet Radiation Facility, SURF III. Instead of using the Schwinger formula, which is only an approximation, we develop formulae based on Graf's addition theorem for Bessel functions and accurate asymptotic expansions for Hankel functions and Bessel functions. By measuring the radiation intensity profile at two distances from the storage ring, we also confirm an apparent vertical emittance that is consistent with the vertical betatron oscillations that are intentionally introduced to extend beam lifetime by spreading the electron beam spatially. Finally, we determine how much diffraction by beamline apertures enhances the spectral irradiance at an integrating sphere entrance port at the end station. This should eliminate small but treatable components of the uncertainty budget that one should consider when using SURF III or similar synchrotrons as standard, calculable sources of ultraviolet and other radiation.

  19. Diffraction-limited storage-ring vacuum technology

    PubMed Central

    Al-Dmour, Eshraq; Ahlback, Jonny; Einfeld, Dieter; Tavares, Pedro Fernandes; Grabski, Marek

    2014-01-01

    Some of the characteristics of recent ultralow-emittance storage-ring designs and possibly future diffraction-limited storage rings are a compact lattice combined with small magnet apertures. Such requirements present a challenge for the design and performance of the vacuum system. The vacuum system should provide the required vacuum pressure for machine operation and be able to handle the heat load from synchrotron radiation. Small magnet apertures result in the conductance of the chamber being low, and lumped pumps are ineffective. One way to provide the required vacuum level is by distributed pumping, which can be realised by the use of a non-evaporable getter (NEG) coating of the chamber walls. It may not be possible to use crotch absorbers to absorb the heat from the synchrotron radiation because an antechamber is difficult to realise with such a compact lattice. To solve this, the chamber walls can work as distributed absorbers if they are made of a material with good thermal conductivity, and distributed cooling is used at the location where the synchrotron radiation hits the wall. The vacuum system of the 3 GeV storage ring of MAX IV is used as an example of possible solutions for vacuum technologies for diffraction-limited storage rings. PMID:25177979

  20. High Resolution X-Ray Diffraction of Macromolecules with Synchrotron Radiation

    NASA Technical Reports Server (NTRS)

    Stojanoff, Vivian; Boggon, Titus; Helliwell, John R.; Judge, Russell; Olczak, Alex; Snell, Edward H.; Siddons, D. Peter; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We recently combined synchrotron-based monochromatic X-ray diffraction topography methods with triple axis diffractometry and rocking curve measurements: high resolution X-ray diffraction imaging techniques, to better understand the quality of protein crystals. We discuss these methods in the light of results obtained on crystals grown under different conditions. These non destructive techniques are powerful tools in the characterization of the protein crystals and ultimately will allow to improve, develop, and understand protein crystal growth. High resolution X-ray diffraction imaging methods will be discussed in detail in light of recent results obtained on Hen Egg White Lysozyme crystals and other proteins.

  1. Valence fluctuating compound α-YbAlB4 studied by 174Yb Mössbauer spectroscopy and X-ray diffraction using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Oura, Momoko; Ikeda, Shugo; Masuda, Ryo; Kobayashi, Yasuhiro; Seto, Makoto; Yoda, Yoshitaka; Hirao, Naohisa; Kawaguchi, Saori I.; Ohishi, Yasuo; Suzuki, Shintaro; Kuga, Kentaro; Nakatsuji, Satoru; Kobayashi, Hisao

    2018-05-01

    The structural properties and the Yb 4 f electronic state of the valence fluctuating α-YbAlB4 have been investigated by powder X-ray diffraction under pressure and 174Yb Mössbauer spectroscopy with magnetic fields at low temperature, respectively, using synchrotron radiation. Powder X-ray diffraction patterns showed that the crystal structure does not change up to p ∼ 18 GPa at 8 K and the volume decreases smoothly. However, the pressure dependence of the difference in the structure factor between the (060) and (061) diffraction lines changes at ∼ 3.4 GPa, indicating the change of atomic coordination parameters. The 174Yb Mössbauer spectroscopy measurements at 2 K with 10 and 50 kOe suggest that the electrical quadrupole interaction changes by applied magnetic fields.

  2. Synchrotron radiation microbeam X-ray diffraction for nondestructive assessments of local structural properties of faceted InGaN/GaN quantum wells

    NASA Astrophysics Data System (ADS)

    Sakaki, Atsushi; Funato, Mitsuru; Kawamura, Tomoaki; Araki, Jun; Kawakami, Yoichi

    2018-03-01

    Synchrotron radiation (SR) X-ray diffraction with a sub-µm spatial resolution is used to nondestructively evaluate the local thickness and alloy composition of three-dimensionally faceted InGaN/GaN quantum wells (QWs). The (0001) facet QW on a trapezoidal structure composed of (0001), \\{ 11\\bar{2}2\\} , and \\{ 11\\bar{2}0\\} facets is nonuniform, most likely owing to the migration of adatoms between facets. The thickness and composition markedly vary within a short distance for the \\{ 11\\bar{2}2\\} facet QW of another pyramidal structure. The QW parameters acquired by SR microbeam X-ray diffraction reproduce the local emission property assessed by cathodoluminescence, thereby indicating the high reliability of this method.

  3. A new XUV optical end-station to characterize compact and flexible photonic devices using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Marcelli, A.; Mazuritskiy, M. I.; Dabagov, S. B.; Hampai, D.; Lerer, A. M.; Izotova, E. A.; D'Elia, A.; Turchini, S.; Zema, N.; Zuccaro, F.; de Simone, M.; Javad Rezvani, S.; Coreno, M.

    2018-03-01

    In this contribution we present the new experimental end-station to characterize XUV diffractive optics, such as Micro Channel Plates (MCPs) and other polycapillary optics, presently under commission at the Elettra synchrotron radiation laboratory (Trieste, Italy). To show the opportunities offered by these new optical devices for 3rd and 4th generation radiation sources, in this work we present also some patterns collected at different energies of the primary XUV radiation transmitted by MCP optical devices working in the normal incidence geometry.

  4. Magnetic x-ray scattering studies of holmium using synchro- tron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, D.; Moncton, D.E.; D'Amico, K.L.

    1985-07-08

    We present the results of magnetic x-ray scattering experiments on the rare-earth metal holmium using synchrotron radiation. Direct high-resolution measurements of the nominally incommensurate magnetic satellite reflections reveal new lock-in behavior which we explain within a simple spin-discommensuration model. As a result of magnetoelastic coupling, the spin-discommensuration array produces additional x-ray diffraction satellites. Their observation further substantiates the model and demonstrates additional advantages of synchrotron radiation for magnetic-structure studies.

  5. Synchrotron FTIR Imaging For The Identification Of Cell Types Within Human Tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, Michael J.; Pounder, F. Nell; Nasse, Michael J.

    2010-02-03

    The use of synchrotron Fourier Transform Infrared spectroscopy (S-FTIR) has been shown to be a very promising tool for biomedical research. S-FTIR spectroscopy allows for the fast acquisition of infrared (IR) spectra at a spatial resolution approaching the IR diffraction limit. The development of the Infrared Environmental Imaging (IRENI) beamline at the Synchrotron Radiation Center (SRC) at the University of Wisconsin-Madison has allowed for diffraction limited imaging measurements of cells in human prostate and breast tissues. This has allowed for the identification of cell types within tissues that would otherwise not have been resolvable using conventional FTIR sources.

  6. Diffraction-Enhanced Computed Tomographic Imaging of Growing Piglet Joints by Using a Synchrotron Light Source

    PubMed Central

    Rhoades, Glendon W; Belev, George S; Chapman, L Dean; Wiebe, Sheldon P; Cooper, David M; Wong, Adelaine TF; Rosenberg, Alan M

    2015-01-01

    The objective of this project was to develop and test a new technology for imaging growing joints by means of diffraction-enhanced imaging (DEI) combined with CT and using a synchrotron radiation source. DEI–CT images of an explanted 4-wk-old piglet stifle joint were acquired by using a 40-keV beam. The series of scanned slices was later ‘stitched’ together, forming a 3D dataset. High-resolution DEI-CT images demonstrated fine detail within all joint structures and tissues. Striking detail of vasculature traversing between bone and cartilage, a characteristic of growing but not mature joints, was demonstrated. This report documents for the first time that DEI combined with CT and a synchrotron radiation source can generate more detailed images of intact, growing joints than can currently available conventional imaging modalities. PMID:26310464

  7. Aladdin: Transforming science at SRC

    NASA Astrophysics Data System (ADS)

    Bisognano, J.; Bissen, M.; Green, M.; Jacobs, K.; Moore, C.; Olson, E.; Severson, M.; Wehlitz, R.

    2011-09-01

    The Synchrotron Radiation Center (SRC) is dedicated to enabling of innovative research using IR, ultraviolet, and soft X-ray synchrotron radiation. It delivers beam time with high reliability (99%) and continues to improve the Aladdin storage ring complex. A lower emittance tuning has been commissioned to support a microfocus capability. SRC successfully installed an APPLE II undulator providing elliptically polarized light with lattice compensation for flexible scanning. Installation of a new IR beamline at SRC is providing synchrotron chemical imaging with unprecedented structural and chemical information, simultaneously. In addition, SRC has established a strong education and outreach program to bring the knowledge and power of light source science to a wider national community. It is moving forward into the future by developing a new micro focus beamline producing a diffraction-limited focus of about 500 nm at 22 eV, proposing an additional diffraction-limited chemical imaging beamline, and advancing the Wisconsin Free Electron Laser (WiFEL) concept.

  8. Diffraction imaging (topography) with monochromatic synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Steiner, Bruce; Kuriyama, Masao; Dobbyn, Ronald C.; Laor, Uri

    1988-01-01

    Structural information of special interest to crystal growers and device physicists is now available from high resolution monochromatic synchrotron diffraction imaging (topography). In the review, the importance of superior resolution in momentum transfer and in space is described, and illustrations are taken from a variety of crystals: gallium arsenide, cadmium telluride, mercuric iodide, bismuth silicon oxide, and lithium niobate. The identification and understanding of local variations in crystal growth processes are shown. Finally, new experimental opportunities now available for exploitation are indicated.

  9. Characterization of polycrystalline materials using synchrotron X-ray imaging and diffraction techniques

    NASA Astrophysics Data System (ADS)

    Ludwig, W.; King, A.; Herbig, M.; Reischig, P.; Marrow, J.; Babout, L.; Lauridsen, E. M.; Proudhon, H.; Buffière, J. Y.

    2010-12-01

    The combination of synchrotron radiation x-ray imaging and diffraction techniques offers new possibilities for in-situ observation of deformation and damage mechanisms in the bulk of polycrystalline materials. Minute changes in electron density (i.e., cracks, porosities) can be detected using propagation based phase contrast imaging, a 3-D imaging mode exploiting the coherence properties of third generation synchrotron beams. Furthermore, for some classes of polycrystalline materials, one may use a 3-D variant of x-ray diffraction imaging, termed x-ray diffraction contrast tomography. X-ray diffraction contrast tomography provides access to the 3-D shape, orientation, and elastic strain state of the individual grains from polycrystalline sample volumes containing up to thousand grains. Combining both imaging modalities, one obtains a comprehensive description of the materials microstructure at the micrometer length scale. Repeated observation during (interrupted) mechanical tests provide unprecedented insight into crystallographic and grain microstructure related aspects of polycrystalline deformation and degradation mechanisms.

  10. Synchrotron-radiation X-ray diffraction evidence of the emergence of ferroelectricity in LiTaO3 by ordering of a disordered Li ion in the polar direction

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Gang; Abe, Tomohiro; Moriyoshi, Chikako; Tanaka, Hiroshi; Kuroiwa, Yoshihiro

    2018-07-01

    Synchrotron-radiation X-ray diffraction studies as a function of temperature reveal the structural origin of the spontaneous polarization and related lattice strains in stoichiometric LiTaO3. Electron charge density distribution maps visualized by the maximum entropy method clearly demonstrate that ordering of the disordered Li ion in the polar direction accompanied by deformation of the oxygen octahedra lead to the ferroelectric phase transition. The ionic polarization attributed to the ionic displacements is dominant in the polar structure. The structural change occurs continuously at the phase transition temperature, which suggests a second-order phase transition.

  11. Partially coherent X-ray wavefront propagation simulations including grazing-incidence focusing optics.

    PubMed

    Canestrari, Niccolo; Chubar, Oleg; Reininger, Ruben

    2014-09-01

    X-ray beamlines in modern synchrotron radiation sources make extensive use of grazing-incidence reflective optics, in particular Kirkpatrick-Baez elliptical mirror systems. These systems can focus the incoming X-rays down to nanometer-scale spot sizes while maintaining relatively large acceptance apertures and high flux in the focused radiation spots. In low-emittance storage rings and in free-electron lasers such systems are used with partially or even nearly fully coherent X-ray beams and often target diffraction-limited resolution. Therefore, their accurate simulation and modeling has to be performed within the framework of wave optics. Here the implementation and benchmarking of a wave-optics method for the simulation of grazing-incidence mirrors based on the local stationary-phase approximation or, in other words, the local propagation of the radiation electric field along geometrical rays, is described. The proposed method is CPU-efficient and fully compatible with the numerical methods of Fourier optics. It has been implemented in the Synchrotron Radiation Workshop (SRW) computer code and extensively tested against the geometrical ray-tracing code SHADOW. The test simulations have been performed for cases without and with diffraction at mirror apertures, including cases where the grazing-incidence mirrors can be hardly approximated by ideal lenses. Good agreement between the SRW and SHADOW simulation results is observed in the cases without diffraction. The differences between the simulation results obtained by the two codes in diffraction-dominated cases for illumination with fully or partially coherent radiation are analyzed and interpreted. The application of the new method for the simulation of wavefront propagation through a high-resolution X-ray microspectroscopy beamline at the National Synchrotron Light Source II (Brookhaven National Laboratory, USA) is demonstrated.

  12. Idealized powder diffraction patterns for cellulose polymorphs

    USDA-ARS?s Scientific Manuscript database

    Cellulose samples are routinely analyzed by X-ray diffraction to determine their crystal type (polymorph) and crystallinity. However, the connection is seldom made between those efforts and the crystal structures of cellulose that have been determined with synchrotron X-radiation and neutron diffrac...

  13. High-energy-resolution monochromator for nuclear resonant scattering of synchrotron radiation by Te-125 at 35.49 keV

    NASA Astrophysics Data System (ADS)

    Imai, Yasuhiko; Yoda, Yoshitaka; Kitao, Shinji; Masuda, Ryo; Higashitaniguchi, Satoshi; Inaba, Chika; Seto, Makoto

    2007-09-01

    We have developed a high-resolution monochromator (HRM) for the measurement of nuclear resonant scattering (NRS) of synchrotron radiation by Te-125 at 35.49 keV using the backscattering of sapphire (9 1 -10 68). HRMs for nuclei with excitation energies less than 30 keV have been successfully developed using high angle diffractions by silicon crystals. Nearly perfect silicon crystal, however, is not suitable for high efficient HRMs at higher energy regions because the symmetry of the crystal structure is high and the Debye-temperature is low. Therefore, we used high quality synthetic sapphire crystal, which has low symmetry of crystal structure and high Debye-temperature. The temperature of the crystal was precisely controlled around 218 K to diffract synchrotron radiation with a Bragg angle of π/2 - 0.52 mrad. Energy was tuned by changing the crystal temperature under the condition of constant diffraction angle. Energy resolution was measured by detecting nuclear forward scattering by Te-125 in enriched TeO II. The relative energy resolution of 2.1×10 -7 is achieved, that is 7.5 meV in energy bandwidth. This HRM opens studies on element-specific dynamics and electronic state of substances containing Te-125.

  14. Chemical applications of synchrotron radiation: Workshop report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the fieldmore » of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.« less

  15. New high- and low-temperature apparatus for synchrotron polycrystalline X-ray diffraction.

    PubMed

    Tang, C C; Bushnell-Wye, G; Cernik, R J

    1998-05-01

    A high-temperature furnace with an induction heater coil and a cryogenic system based on closed-cycle refrigeration have been assembled to enhance the non-ambient powder diffraction facilities at the Synchrotron Radiation Source, Daresbury Laboratory. The commissioning of the high- and low-temperature devices on the high-resolution powder diffractometer of Station 2.3 is described. The combined temperature range provided by the furnace/cryostat is 10-1500 K. Results from Fe and NH(4)Br powder samples are presented to demonstrate the operation of the apparatus. The developments presented in this paper are applicable to a wide range of other experiments and diffraction geometries.

  16. Pink-beam serial crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meents, A.; Wiedorn, M. O.; Srajer, V.

    Serial X-ray crystallography allows macromolecular structure determination at both X-ray free electron lasers (XFELs) and, more recently, synchrotron sources. The time resolution for serial synchrotron crystallography experiments has been limited to millisecond timescales with monochromatic beams. The polychromatic, “pink”, beam provides a more than two orders of magnitude increased photon flux and hence allows accessing much shorter timescales in diffraction experiments at synchrotron sources. Here we report the structure determination of two different protein samples by merging pink-beam diffraction patterns from many crystals, each collected with a single 100 ps X-ray pulse exposure per crystal using a setup optimized formore » very low scattering background. In contrast to experiments with monochromatic radiation, data from only 50 crystals were required to obtain complete datasets. The high quality of the diffraction data highlights the potential of this method for studying irreversible reactions at sub-microsecond timescales using high-brightness X-ray facilities.« less

  17. Pink-beam serial crystallography

    DOE PAGES

    Meents, A.; Wiedorn, M. O.; Srajer, V.; ...

    2017-11-03

    Serial X-ray crystallography allows macromolecular structure determination at both X-ray free electron lasers (XFELs) and, more recently, synchrotron sources. The time resolution for serial synchrotron crystallography experiments has been limited to millisecond timescales with monochromatic beams. The polychromatic, “pink”, beam provides a more than two orders of magnitude increased photon flux and hence allows accessing much shorter timescales in diffraction experiments at synchrotron sources. Here we report the structure determination of two different protein samples by merging pink-beam diffraction patterns from many crystals, each collected with a single 100 ps X-ray pulse exposure per crystal using a setup optimized formore » very low scattering background. In contrast to experiments with monochromatic radiation, data from only 50 crystals were required to obtain complete datasets. The high quality of the diffraction data highlights the potential of this method for studying irreversible reactions at sub-microsecond timescales using high-brightness X-ray facilities.« less

  18. Monochromator for continuous spectrum x-ray radiation

    DOEpatents

    Staudenmann, J.L.; Liedl, G.L.

    1983-12-02

    A monochromator for use with synchrotron x-ray radiation comprises two diffraction means which can be rotated independently and independent means for translationally moving one diffraction means with respect to the other. The independence of the rotational and translational motions allows Bragg angles from 3.5/sup 0/ to 86.5/sup 0/, and facilitates precise and high-resolution monochromatization over a wide energy range. The diffraction means are removably mounted so as to be readily interchangeable, which allows the monochromator to be used for both non-dispersive and low dispersive.

  19. Monochromator for continuous spectrum x-ray radiation

    DOEpatents

    Staudenmann, Jean-Louis; Liedl, Gerald L.

    1987-07-07

    A monochromator for use with synchrotron x-ray radiation comprises two diffraction means which can be rotated independently and independent means for translationally moving one diffraction means with respect to the other. The independence of the rotational and translational motions allows Bragg angles from 3.5.degree. to 86.5.degree., and facilitates precise and high-resolution monochromatization over a wide energy range. The diffraction means are removably mounted so as to be readily interchangeable, which allows the monochromator to be used for both non-dispersive and low dispersive work.

  20. Radiation-induced melting in coherent X-ray diffractive imaging at the nanoscale

    PubMed Central

    Ponomarenko, O.; Nikulin, A. Y.; Moser, H. O.; Yang, P.; Sakata, O.

    2011-01-01

    Coherent X-ray diffraction techniques play an increasingly significant role in the imaging of nanoscale structures, ranging from metallic and semiconductor to biological objects. In material science, X-rays are usually considered to be of a low-destructive nature, but under certain conditions they can cause significant radiation damage and heat loading on the samples. The qualitative literature data concerning the tolerance of nanostructured samples to synchrotron radiation in coherent diffraction imaging experiments are scarce. In this work the experimental evidence of a complete destruction of polymer and gold nanosamples by the synchrotron beam is reported in the case of imaging at 1–10 nm spatial resolution. Numerical simulations based on a heat-transfer model demonstrate the high sensitivity of temperature distribution in samples to macroscopic experimental parameters such as the conduction properties of materials, radiation heat transfer and convection. However, for realistic experimental conditions the calculated rates of temperature rise alone cannot explain the melting transitions observed in the nanosamples. Comparison of these results with the literature data allows a specific scenario of the sample destruction in each particular case to be presented, and a strategy for damage reduction to be proposed. PMID:21685675

  1. Crystallographic Study of Itokawa Particle, RA-QD02-0127 by Using Energy-Scanning X-Ray Diffraction Method with Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Hagiya, K.; Ohsumi, K.; Komatsu, M.; Mikouchi, T.; Zolensky, M. E.; Hirata, A.; Yamaguchi, S.; Kurokawa, A.

    2016-08-01

    Crystallographic study of Itokawa particle, RA-QD02-0127 by using new X-ray diffraction method was performed. The purpose of this study is to understand better the metamorphic and impact shock history of asteroid Itokawa, and other S-class asteroids.

  2. Streaking images that appear only in the plane of diffraction in undoped GaAs single crystals: Diffraction imaging (topography) by monochromatic synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Kuriyama, Masao; Steiner, Bruce; Dobbyn, Ronald C.; Laor, Uri; Larson, David; Brown, Margaret

    1988-01-01

    Streaking images restricted to the direction of the diffraction (scattering) vector have been observed on transmission through undoped GaAs. These disruption images (caused by the reduction of diffraction in the direction of observation) appear both in the forward and in Bragg diffracted directions in monochromatic synchrontron radiation diffraction imaging. This previously unobserved phenomenon can be explained in terms of planar defects (interfaces) or platelets which affects the absorption coefficient in anomalous transmission. Such regions of the crystal look perfect despite the presence of imperfections when the scattering vector is not perpendicular to the normal of the platelets. The observed crystallographic orientation of these interfaces strongly indicates that they are antiphase boundaries.

  3. Main functions, recent updates, and applications of Synchrotron Radiation Workshop code

    NASA Astrophysics Data System (ADS)

    Chubar, Oleg; Rakitin, Maksim; Chen-Wiegart, Yu-Chen Karen; Chu, Yong S.; Fluerasu, Andrei; Hidas, Dean; Wiegart, Lutz

    2017-08-01

    The paper presents an overview of the main functions and new application examples of the "Synchrotron Radiation Workshop" (SRW) code. SRW supports high-accuracy calculations of different types of synchrotron radiation, and simulations of propagation of fully-coherent radiation wavefronts, partially-coherent radiation from a finite-emittance electron beam of a storage ring source, and time-/frequency-dependent radiation pulses of a free-electron laser, through X-ray optical elements of a beamline. An extended library of physical-optics "propagators" for different types of reflective, refractive and diffractive X-ray optics with its typical imperfections, implemented in SRW, enable simulation of practically any X-ray beamline in a modern light source facility. The high accuracy of calculation methods used in SRW allows for multiple applications of this code, not only in the area of development of instruments and beamlines for new light source facilities, but also in areas such as electron beam diagnostics, commissioning and performance benchmarking of insertion devices and individual X-ray optical elements of beamlines. Applications of SRW in these areas, facilitating development and advanced commissioning of beamlines at the National Synchrotron Light Source II (NSLS-II), are described.

  4. Industry-relevant magnetron sputtering and cathodic arc ultra-high vacuum deposition system for in situ x-ray diffraction studies of thin film growth using high energy synchrotron radiation.

    PubMed

    Schroeder, J L; Thomson, W; Howard, B; Schell, N; Näslund, L-Å; Rogström, L; Johansson-Jõesaar, M P; Ghafoor, N; Odén, M; Nothnagel, E; Shepard, A; Greer, J; Birch, J

    2015-09-01

    We present an industry-relevant, large-scale, ultra-high vacuum (UHV) magnetron sputtering and cathodic arc deposition system purposefully designed for time-resolved in situ thin film deposition/annealing studies using high-energy (>50 keV), high photon flux (>10(12) ph/s) synchrotron radiation. The high photon flux, combined with a fast-acquisition-time (<1 s) two-dimensional (2D) detector, permits time-resolved in situ structural analysis of thin film formation processes. The high-energy synchrotron-radiation based x-rays result in small scattering angles (<11°), allowing large areas of reciprocal space to be imaged with a 2D detector. The system has been designed for use on the 1-tonne, ultra-high load, high-resolution hexapod at the P07 High Energy Materials Science beamline at PETRA III at the Deutsches Elektronen-Synchrotron in Hamburg, Germany. The deposition system includes standard features of a typical UHV deposition system plus a range of special features suited for synchrotron radiation studies and industry-relevant processes. We openly encourage the materials research community to contact us for collaborative opportunities using this unique and versatile scientific instrument.

  5. Research Associate | Center for Cancer Research

    Cancer.gov

    PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES - Research Associate III Dr. Zbigniew Dauter is the head investigator of the Synchrotron Radiation Research Section (SRRS) of CCR’s Macromolecular Crystallography Laboratory. The Synchrotron Radiation Research Section is located at Argonne National Laboratory, Argonne, Illinois; this is the site of the largest U.S. synchrotron facility. The SRRS uses X-ray diffraction technique to solve crystal structures of various proteins and nucleic acids of biological and medical relevance. The section is also specializing in analyzing crystal structures at extremely high resolution and accuracy and in developing methods of effective diffraction data collection and in using weak anomalous dispersion effects to solve structures of macromolecules. The areas of expertise are: Structural and molecular biology Macromolecular crystallography Diffraction data collection Dr. Dauter requires research support in these areas, and the individual will engage in the purification and preparation of samples, crystallize proteins using various techniques, and derivatize them with heavy atoms/anomalous scatterers, and establish conditions for cryogenic freezing. Individual will also participate in diffraction data collection at the Advanced Photon Source. In addition, the candidate will perform spectroscopic and chromatographic analyses of protein and nucleic acid samples in the context of their purity, oligomeric state and photophysical properties.

  6. Identification of ancient textile fibres from Khirbet Qumran caves using synchrotron radiation microbeam diffraction

    NASA Astrophysics Data System (ADS)

    Müller, Martin; Murphy, Bridget; Burghammer, Manfred; Riekel, Christian; Roberts, Mark; Papiz, Miroslav; Clarke, David; Gunneweg, Jan; Pantos, Emmanuel

    2004-10-01

    Archaeological textiles fragments from the caves of Qumran in the Dead Sea region were investigated by means of X-ray microbeam diffraction on single fibres. This non-destructive technique made the identification of the used plant textile fibres possible. Apart from bast fibres (mainly flax), cotton was identified which was most unexpected in the archaeological context.

  7. Crystallization and preliminary X-ray diffraction analysis of a novel Arg49 phospholipase A{sub 2} homologue from Zhaoermia mangshanensis venom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, Mário T.; Center for Applied Toxinology, CAT-CEPID, São Paulo, SP; Advanced Center for Genomics and Proteomics, UNESP-State University of São Paulo, São José do Rio Preto 15054-000

    2007-07-01

    A single crystal of zhaoermiatoxin with maximum dimensions of 0.2 × 0.2 × 0.5 mm was used for X-ray diffraction data collection to a resolution of 2.05 Å using synchrotron radiation and the diffraction pattern was indexed in the hexagonal space group P6{sub 4}, with unit-cell parameters a = 72.9, b = 72.9, c = 93.9 Å. Zhaoermiatoxin, an Arg49 phospholipase A{sub 2} homologue from Zhaoermia mangshanensis (formerly Trimeresurus mangshanensis, Ermia mangshanensis) venom is a novel member of the PLA{sub 2}-homologue family that possesses an arginine residue at position 49, probably arising from a secondary Lys49→Arg substitution that does notmore » alter the catalytic inactivity towards phospholipids. Like other Lys49 PLA{sub 2} homologues, zhaoermiatoxin induces oedema and strong myonecrosis without detectable PLA{sub 2} catalytic activity. A single crystal with maximum dimensions of 0.2 × 0.2 × 0.5 mm was used for X-ray diffraction data collection to a resolution of 2.05 Å using synchrotron radiation and the diffraction pattern was indexed in the hexagonal space group P6{sub 4}, with unit-cell parameters a = 72.9, b = 72.9, c = 93.9 Å.« less

  8. In situ analysis of phase transformation in sol-gel cogelified nanopowder mixture of Al 2O 3 and TiO 2 using synchrotron X-ray radiation diffraction experiments

    NASA Astrophysics Data System (ADS)

    Jianu, A.; Stanciu, L.; Groza, J. R.; Lathe, Ch.; Burkel, E.

    2003-01-01

    Aluminium titanate (Al 2TiO 5) has been selected for study due to its high melting point and thermal shock resistance. In situ analysis of phase transformation and of transformation kinetics of sol-gel powder mixture of alumina and titania cogelified samples was performed using high-temperature synchrotron radiation X-ray diffraction experiments. The high reactivity and molecular mixing of sol-gel cogelified precursor powders contributed to the evolution of the reaction. The stability of the TiO 2-tetragonal structure (anatase) increases due to Al 2O 3 presence. The temperature of the aluminium titanate endothermic reaction decreases when heating rate increases. The results obtained by in situ analysis have been used to establish the sintering parameters in order to obtain fully transformed, dense aluminium titanate bulk ceramics.

  9. Diffraction of real and virtual photons in a pyrolytic graphite crystal as source of intensive quasimonochromatic X-ray beam

    NASA Astrophysics Data System (ADS)

    Bogomazova, E. A.; Kalinin, B. N.; Naumenko, G. A.; Padalko, D. V.; Potylitsyn, A. P.; Sharafutdinov, A. F.; Vnukov, I. E.

    2003-01-01

    A series of experiments on the parametric X-rays radiation (PXR) generation and radiation soft component diffraction of relativistic electrons in pyrolytic graphite (PG) crystals have been carried out at the Tomsk synchrotron. It is shown that the experimental results with PG crystals are explained by the kinematic PXR theory if we take into account a contribution of the real photons diffraction (transition radiation, bremsstrahlung and PXR photons as well). The measurements of the emission spectrum of channeled electrons in the photon energy range much smaller than the characteristic energy of channeling radiation have been performed with a crystal-diffraction spectrometer. For electrons incident along the <1 1 0> axis of a silicon crystal, the radiation intensity in the energy range 30⩽ ω⩽360 keV exceeds the bremsstrahlung one almost by an order of magnitude. Different possibilities to create an effective source of the monochromatic X-ray beam based on the real and virtual photons diffraction in the PG crystals have been considered.

  10. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes

    NASA Astrophysics Data System (ADS)

    Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.; Martin, Aiden A.; Depond, Philip J.; Guss, Gabriel M.; Thampy, Vivek; Fong, Anthony Y.; Weker, Johanna Nelson; Stone, Kevin H.; Tassone, Christopher J.; Kramer, Matthew J.; Toney, Michael F.; Van Buuren, Anthony; Matthews, Manyalibo J.

    2018-05-01

    In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at the Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ˜1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ˜50 × 100 μm area. We also discuss the utility of these measurements for model validation and process improvement.

  11. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes.

    PubMed

    Calta, Nicholas P; Wang, Jenny; Kiss, Andrew M; Martin, Aiden A; Depond, Philip J; Guss, Gabriel M; Thampy, Vivek; Fong, Anthony Y; Weker, Johanna Nelson; Stone, Kevin H; Tassone, Christopher J; Kramer, Matthew J; Toney, Michael F; Van Buuren, Anthony; Matthews, Manyalibo J

    2018-05-01

    In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at the Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ∼1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ∼50 × 100 μm area. We also discuss the utility of these measurements for model validation and process improvement.

  12. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.

    In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at themore » Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ~1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ~50 × 100 μm area. In conclusion, we also discuss the utility of these measurements for model validation and process improvement.« less

  13. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes

    DOE PAGES

    Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.; ...

    2018-05-01

    In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at themore » Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ~1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ~50 × 100 μm area. In conclusion, we also discuss the utility of these measurements for model validation and process improvement.« less

  14. Clay pigment structure characterisation as a guide for provenance determination--a comparison between laboratory powder micro-XRD and synchrotron radiation XRD.

    PubMed

    Švarcová, Silvie; Bezdička, Petr; Hradil, David; Hradilová, Janka; Žižak, Ivo

    2011-01-01

    Application of X-ray diffraction (XRD)-based techniques in the analysis of painted artworks is not only beneficial for indisputable identification of crystal constituents in colour layers, but it can also bring insight in material crystal structure, which can be affected by their geological formation, manufacturing procedure or secondary changes. This knowledge might be helpful for art historic evaluation of an artwork as well as for its conservation. By way of example of kaolinite, we show that classification of its crystal structure order based on XRD data is useful for estimation of its provenance. We found kaolinite in the preparation layer of a Gothic wall painting in a Czech church situated near Karlovy Vary, where there are important kaolin deposits. Comparing reference kaolin materials from eight various Czech deposits, we found that these can be differentiated just according to the kaolinite crystallinity. Within this study, we compared laboratory powder X-ray micro-diffraction (micro-XRD) with synchrotron radiation X-ray diffraction analysing the same real sample. We found that both techniques led to the same results.

  15. Structural changes induced by lattice-electron interactions: SiO2 stishovite and FeTiO3 ilmenite.

    PubMed

    Yamanaka, Takamitsu

    2005-09-01

    The bright source and highly collimated beam of synchrotron radiation offers many advantages for single-crystal structure analysis under non-ambient conditions. The structure changes induced by the lattice-electron interaction under high pressure have been investigated using a diamond anvil pressure cell. The pressure dependence of electron density distributions around atoms is elucidated by a single-crystal diffraction study using deformation electron density analysis and the maximum entropy method. In order to understand the bonding electrons under pressure, diffraction intensity measurements of FeTiO3 ilmenite and gamma-SiO2 stishovite single crystals at high pressures were made using synchrotron radiation. Both diffraction studies describe the electron density distribution including bonding electrons and provide the effective charge of the cations. In both cases the valence electrons are more localized around the cations with increasing pressure. This is consistent with molecular orbital calculations, proving that the bonding electron density becomes smaller with pressure. The thermal displacement parameters of both samples are reduced with increasing pressure.

  16. Rapid time-resolved diffraction studies of protein structures using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Bartunik, Hans D.; Bartunik, Lesley J.

    1992-07-01

    The crystal structure of intermediate states in biological reactions of proteins of multi-protein complexes may be studied by time-resolved X-ray diffraction techniques which make use of the high spectral brilliance, continuous wavelength distribution and pulsed time structure of synchrotron radiation. Laue diffraction methods provide a means of investigating intermediate structures with lifetimes in the millisecond time range at presently operational facilities. Third-generation storage rings which are under construction may permit one to reach a time resolution of one microsecond for non-cyclic and one nanosecond for cyclic reactions. The number of individual exposures required for exploring reciprocal space and hence the total time scale strongly depend on the lattice order that may be affected, e.g., by conformational changes. Time-resolved experiments require high population of a specific intermediate which has to be homogeneous over the crystal volume. A number of external excitation techniques have been developed including in situ liberation of active metabolites by laser pulse photolysis of photolabile inactive precursors. First applications to crystal structure analysis of catalytic intermediates of enzymes demonstrate the potential of time-resolved protein crystallography.

  17. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy

    PubMed Central

    Withers, P. J.

    2015-01-01

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored. PMID:25624521

  18. High-pressure Irreversible Amorphization of La1/3NbO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    I Halevy; A Hen; A Broide

    2011-12-31

    The crystallographic structure of La{sub 1/3}NbO{sub 3} perovskite was studied at high pressures using a diamond-anvil cell and synchrotron radiation. High-pressure energy dispersive (EDS) x-ray diffraction and high-pressure angle dispersive (ADS) x-ray diffraction revealed an irreversible amorphization at {approx}10 GPa. A large change in the bulk modulus accompanied the high-pressure amorphization.

  19. A novel high-temperature furnace for combined in situ synchrotron X-ray diffraction and infrared thermal imaging to investigate the effects of thermal gradients upon the structure of ceramic materials

    PubMed Central

    Robinson, James B.; Brown, Leon D.; Jervis, Rhodri; Taiwo, Oluwadamilola O.; Millichamp, Jason; Mason, Thomas J.; Neville, Tobias P.; Eastwood, David S.; Reinhard, Christina; Lee, Peter D.; Brett, Daniel J. L.; Shearing, Paul R.

    2014-01-01

    A new technique combining in situ X-ray diffraction using synchrotron radiation and infrared thermal imaging is reported. The technique enables the application, generation and measurement of significant thermal gradients, and furthermore allows the direct spatial correlation of thermal and crystallographic measurements. The design and implementation of a novel furnace enabling the simultaneous thermal and X-ray measurements is described. The technique is expected to have wide applicability in material science and engineering; here it has been applied to the study of solid oxide fuel cells at high temperature. PMID:25178003

  20. Radiation damage in a micron-sized protein crystal studied via reciprocal space mapping and Bragg coherent diffractive imaging.

    PubMed

    Coughlan, H D; Darmanin, C; Phillips, N W; Hofmann, F; Clark, J N; Harder, R J; Vine, D J; Abbey, B

    2015-07-01

    For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources.

  1. Radiation damage in a micron-sized protein crystal studied via reciprocal space mapping and Bragg coherent diffractive imaging

    PubMed Central

    Coughlan, H. D.; Darmanin, C.; Phillips, N. W.; Hofmann, F.; Clark, J. N.; Harder, R. J.; Vine, D. J.; Abbey, B.

    2015-01-01

    For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources. PMID:26798804

  2. Radiation damage in a micron-sized protein crystal studied via reciprocal space mapping and Bragg coherent diffractive imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coughlan, H. D.; Darmanin, C.; Phillips, N. W.

    For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources.

  3. Radiation damage in a micron-sized protein crystal studied via reciprocal space mapping and Bragg coherent diffractive imaging

    DOE PAGES

    Coughlan, H. D.; Darmanin, C.; Phillips, N. W.; ...

    2015-04-29

    For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources.

  4. Comparison of diffraction-enhanced computed tomography and monochromatic synchrotron radiation computed tomography of human trabecular bone.

    PubMed

    Connor, D M; Hallen, H D; Lalush, D S; Sumner, D R; Zhong, Z

    2009-10-21

    Diffraction-enhanced imaging (DEI) is an x-ray-based medical imaging modality that, when used in tomography mode (DECT), can generate a three-dimensional map of both the apparent absorption coefficient and the out-of-plane gradient of the index of refraction of the sample. DECT is known to have contrast gains over monochromatic synchrotron radiation CT (SRCT) for soft tissue structures. The goal of this experiment was to compare contrast-to-noise ratio (CNR) and resolution in images of human trabecular bone acquired using SRCT with images acquired using DECT. All images were acquired at the National Synchrotron Light Source (Upton, NY, USA) at beamline X15 A at an x-ray energy of 40 keV and the silicon [3 3 3] reflection. SRCT, apparent absorption DECT and refraction DECT slice images of the trabecular bone were created. The apparent absorption DECT images have significantly higher spatial resolution and CNR than the corresponding SRCT images. Thus, DECT will prove to be a useful tool for imaging applications in which high contrast and high spatial resolution are required for both soft tissue features and bone.

  5. Characterization of biogenic ferrihydrite nanoparticles by means of SAXS, SRD and IBA methods

    NASA Astrophysics Data System (ADS)

    Balasoiu, M.; Kichanov, S.; Pantelica, A.; Pantelica, D.; Stolyar, S.; Iskhakov, R.; Aranghel, D.; Ionescu, P.; Badita, C. R.; Kurkin, S.; Orelovich, O.; Tiutiunikov, S.

    2018-03-01

    Investigations of biogenic ferrihydrite nanoparticles produced by bacteria Klebsiella oxytoca by applying small angle X-ray scattering, synchrotron radiation diffraction and ion beam analysis methods are reviewed. Different experimental data processing methods are used and analyzed.

  6. Protein nanocrystallography: growth mechanism and atomic structure of crystals induced by nanotemplates.

    PubMed

    Pechkova, E; Vasile, F; Spera, R; Fiordoro, S; Nicolini, C

    2005-11-01

    Protein nanocrystallography, a new technology for crystal growth based on protein nanotemplates, has recently been shown to produce diffracting, stable and radiation-resistant lysozyme crystals. This article, by computing these lysozyme crystals' atomic structures, obtained by the diffraction patterns of microfocused synchrotron radiation, provides a possible mechanism for this increased stability, namely a significant decrease in water content accompanied by a minor but significant alpha-helix increase. These data are shown to be compatible with the circular dichroism and two-dimensional Fourier transform spectra of high-resolution H NMR of proteins dissolved from the same nanotemplate-based crystal versus those from a classical crystal. Finally, evidence for protein direct transfer from the nanotemplate to the drop and the participation of the template proteins in crystal nucleation and growth is provided by high-resolution NMR spectrometry and mass spectrometry. Furthermore, the lysozyme nanotemplate appears stable up to 523 K, as confirmed by a thermal denaturation study using spectropolarimetry. The overall data suggest that heat-proof lysozyme presence in the crystal provides a possible explanation of the crystal's resistance to synchrotron radiation.

  7. Size–strain separation in diffraction line profile analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scardi, P.; Ermrich, M.; Fitch, A.

    Separation of size and strain effects on diffraction line profiles has been studied in a round robin involving laboratory instruments and synchrotron radiation beamlines operating with different radiation, optics, detectors and experimental configurations. The studied sample, an extensively ball milled iron alloy powder, provides an ideal test case, as domain size broadening and strain broadening are of comparable size. The high energy available at some synchrotron radiation beamlines provides the best conditions for an accurate analysis of the line profiles, as the size–strain separation clearly benefits from a large number of Bragg peaks in the pattern; high counts, reliable intensitymore » values in low-absorption conditions, smooth background and data collection at different temperatures also support the possibility to include diffuse scattering in the analysis, for the most reliable assessment of the line broadening effect. However, results of the round robin show that good quality information on domain size distribution and microstrain can also be obtained using standard laboratory equipment, even when patterns include relatively few Bragg peaks, provided that the data are of good quality in terms of high counts and low and smooth background.« less

  8. Size–strain separation in diffraction line profile analysis

    DOE PAGES

    Scardi, P.; Ermrich, M.; Fitch, A.; ...

    2018-05-29

    Separation of size and strain effects on diffraction line profiles has been studied in a round robin involving laboratory instruments and synchrotron radiation beamlines operating with different radiation, optics, detectors and experimental configurations. The studied sample, an extensively ball milled iron alloy powder, provides an ideal test case, as domain size broadening and strain broadening are of comparable size. The high energy available at some synchrotron radiation beamlines provides the best conditions for an accurate analysis of the line profiles, as the size–strain separation clearly benefits from a large number of Bragg peaks in the pattern; high counts, reliable intensitymore » values in low-absorption conditions, smooth background and data collection at different temperatures also support the possibility to include diffuse scattering in the analysis, for the most reliable assessment of the line broadening effect. However, results of the round robin show that good quality information on domain size distribution and microstrain can also be obtained using standard laboratory equipment, even when patterns include relatively few Bragg peaks, provided that the data are of good quality in terms of high counts and low and smooth background.« less

  9. Accuracy in Rietveld quantitative phase analysis: a comparative study of strictly monochromatic Mo and Cu radiations.

    PubMed

    León-Reina, L; García-Maté, M; Álvarez-Pinazo, G; Santacruz, I; Vallcorba, O; De la Torre, A G; Aranda, M A G

    2016-06-01

    This study reports 78 Rietveld quantitative phase analyses using Cu  K α 1 , Mo  K α 1 and synchrotron radiations. Synchrotron powder diffraction has been used to validate the most challenging analyses. From the results for three series with increasing contents of an analyte (an inorganic crystalline phase, an organic crystalline phase and a glass), it is inferred that Rietveld analyses from high-energy Mo  K α 1 radiation have slightly better accuracies than those obtained from Cu  K α 1 radiation. This behaviour has been established from the results of the calibration graphics obtained through the spiking method and also from Kullback-Leibler distance statistic studies. This outcome is explained, in spite of the lower diffraction power for Mo radiation when compared to Cu radiation, as arising because of the larger volume tested with Mo and also because higher energy allows one to record patterns with fewer systematic errors. The limit of detection (LoD) and limit of quantification (LoQ) have also been established for the studied series. For similar recording times, the LoDs in Cu patterns, ∼0.2 wt%, are slightly lower than those derived from Mo patterns, ∼0.3 wt%. The LoQ for a well crystallized inorganic phase using laboratory powder diffraction was established to be close to 0.10 wt% in stable fits with good precision. However, the accuracy of these analyses was poor with relative errors near to 100%. Only contents higher than 1.0 wt% yielded analyses with relative errors lower than 20%.

  10. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources.

    PubMed

    Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E

    2016-05-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).

  11. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    PubMed Central

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G.; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E.

    2016-01-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits). PMID:27140147

  12. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.

    PubMed

    Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S

    2016-01-01

    This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.

  13. Investigation of high-energy ion-irradiated MA957 using synchrotron radiation under in-situ tension

    DOE PAGES

    Mo, Kun; Yun, Di; Miao, Yinbin; ...

    2016-01-02

    In this paper, an MA957 oxide dispersion-strengthened (ODS) alloy was irradiated with high-energy ions in the Argonne Tandem Linac Accelerator System. Fe ions at an energy of 84 MeV bombarded MA957 tensile specimens, creating a damage region similar to 7.5 μm in depth; the peak damage (similar to 40 dpa) was estimated to be at similar to 7 μm from the surface. Following the irradiation, in-situ high-energy X-ray diffraction measurements were performed at the Advanced Photon Source in order to study the dynamic deformation behavior of the specimens after ion irradiation damage. In-situ X-ray measurements taken during tensile testing ofmore » the ion-irradiated MA957 revealed a difference in loading behavior between the irradiated and un-irradiated regions of the specimen. At equivalent applied stresses, lower lattice strains were found in the radiation-damaged region than those in the un-irradiated region. This might be associated with a higher level of Type II stresses as a result of radiation hardening. The study has demonstrated the feasibility of combining high-energy ion radiation and high-energy synchrotron X-ray diffraction to study materials' radiation damage in a dynamic manner.« less

  14. High resolution diffraction imaging of crystals grown in microgravity and closely related terrestrial crystals

    NASA Technical Reports Server (NTRS)

    Steiner, B.; Dobbyn, R.; Black, D.; Burdette, H.; Kuriyama, M.; Spal, R.; Vandenberg, L.; Fripp, A.; Simchick, R.; Lal, R.

    1991-01-01

    Irregularities found in three crystals grown in space, in four crystals grown entirely on the ground were examined and compared. Irregularities were observed in mercuric iodide, lead tin telluride, triglycine sulfate, and gallium arsenide by high resolution synchrotron x radiation diffraction imaging. Radiation detectors made from mercuric iodide crystals grown in microgravity were reported to perform far better than conventional detectors grown from the same material under full gravity. Effort is now underway to reproduce these 'space' crystals, optimize their properties, and extend comparable superiority to other types of materials.

  15. Dynamic full-field infrared imaging with multiple synchrotron beams

    PubMed Central

    Stavitski, Eli; Smith, Randy J.; Bourassa, Megan W.; Acerbo, Alvin S.; Carr, G. L.; Miller, Lisa M.

    2013-01-01

    Microspectroscopic imaging in the infrared (IR) spectral region allows for the examination of spatially resolved chemical composition on the microscale. More than a decade ago, it was demonstrated that diffraction limited spatial resolution can be achieved when an apertured, single pixel IR microscope is coupled to the high brightness of a synchrotron light source. Nowadays, many IR microscopes are equipped with multi-pixel Focal Plane Array (FPA) detectors, which dramatically improve data acquisition times for imaging large areas. Recently, progress been made toward efficiently coupling synchrotron IR beamlines to multi-pixel detectors, but they utilize expensive and highly customized optical schemes. Here we demonstrate the development and application of a simple optical configuration that can be implemented on most existing synchrotron IR beamlines in order to achieve full-field IR imaging with diffraction-limited spatial resolution. Specifically, the synchrotron radiation fan is extracted from the bending magnet and split into four beams that are combined on the sample, allowing it to fill a large section of the FPA. With this optical configuration, we are able to oversample an image by more than a factor of two, even at the shortest wavelengths, making image restoration through deconvolution algorithms possible. High chemical sensitivity, rapid acquisition times, and superior signal-to-noise characteristics of the instrument are demonstrated. The unique characteristics of this setup enabled the real time study of heterogeneous chemical dynamics with diffraction-limited spatial resolution for the first time. PMID:23458231

  16. Diffraction-limited IR Microspectroscopy with IRENI

    Treesearch

    J. Sedlmair; B. Illman; M. Unger; C. Hirschmugl

    2012-01-01

    In a unique way, IRENI (Infrared environmental Imaging), operated at the Synchrotron Radiation Center in Madison, combines IR spectroscopy and IR imaging, revealing the chemical morphology of a sample. Most storage ring based IR confocal microscopes have to overcome a trade-off between spatial resolution versus...

  17. X ray reflection masks: Manufacturing, characterization and first tests

    NASA Astrophysics Data System (ADS)

    Rahn, Stephen

    1992-09-01

    SXPL (Soft X-ray Projection Lithography) multilayer mirrors are characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors with a 2d in the region of 14 nm were characterized by Cu-k(alpha) grazing incidence as well as soft X-ray normal incidence reflectivity measurements. The multilayer mirrors were patterned by reactive ion etching with CF4 using a photoresist as etch mask, thus producing X-ray reflection masks. The masks were tested at the synchrotron radiation laboratory of the electron accelerator ELSA. A double crystal X-ray monochromator was modified so as to allow about 0.5 sq cm of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto a resist and structure sizes down to 8 micrometers were nicely reproduced. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marçal, D.; Rego, A. T.; Fogg, M. J.

    1,3-Propanediol dehydrogenase from K. pneumoniae has been overexpressed in E. coli, purified and crystallized. Diffraction data have been collected to 2.7 Å resolution. 1,3-Propanediol dehydrogenase (1,3-PD-DH), encoded by the dhaT gene, is a key enzyme in the dissimilation process for converting glycerol to 1,3-propanediol in the human pathogen Klebsiella pneumoniae. Single colourless crystals were obtained from a recombinant preparation of 1,3-propanediol dehydrogenase overexpressed in Escherichia coli. The crystals belong to space group P2{sub 1}, with unit-cell parameters a = 91.9, b = 226.6, c = 232.6 Å, β = 92.9°. The crystals probably contain two decamers in the asymmetric unit,more » with a V{sub M} value of 3.07 Å{sup 3} Da{sup −1} and an estimated solvent content of 59%. Diffraction data were collected to 2.7 Å resolution using synchrotron radiation at the ID14-4 beamline of the European Synchrotron Radiation Facility.« less

  19. Crystal regularity with high-resolution synchrotron X-radiation diffraction imaging

    NASA Technical Reports Server (NTRS)

    Steiner, Bruce; Dobbyn, Ronald C.

    1991-01-01

    New, high-resolution sources of X-radiation such as monochromatic synchrotron radiation beams with subarcsec divergence allow observation of regularities in a range of crystals with sufficient clarity for comprehensive analyses, whose results can deepen understanding of the nature of various crystal irregularities, their sources, and their effects on device performance. An account is presented of the results thus achievable with irregularities encountered in lattice orientation and strain, grain and subgrain boundaries, dislocations, domain boundaries, additional phases, and surface scratches. Significant achievements to date encompass the observation of critical anomalies in lead tin telluride, the reconciliation of disparate observations of GaAs, the determination of the performance effects of irregularities in mercuric iodide, and the characterization of the origins of crystal growth in bismuth silicon oxide.

  20. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter (in Chinese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chuyu

    2012-12-31

    Beam diagnostics is an essential constituent of any accelerator, so that it is named as "organs of sense" or "eyes of the accelerator." Beam diagnostics is a rich field. A great variety of physical effects or physical principles are made use of in this field. Some devices are based on electro-magnetic influence by moving charges, such as faraday cups, beam transformers, pick-ups; Some are related to Coulomb interaction of charged particles with matter, such as scintillators, viewing screens, ionization chambers; Nuclear or elementary particle physics interactions happen in some other devices, like beam loss monitors, polarimeters, luminosity monitors; Some measuremore » photons emitted by moving charges, such as transition radiation, synchrotron radiation monitors and diffraction radiation-which is the topic of the first part of this thesis; Also, some make use of interaction of particles with photons, such as laser wire and Compton polarimeters-which is the second part of my thesis. Diagnostics let us perceive what properties a beam has and how it behaves in a machine, give us guideline for commissioning, controlling the machine and indispensable parameters vital to physics experiments. In the next two decades, the research highlight will be colliders (TESLA, CLIC, JLC) and fourth-generation light sources (TESLA FEL, LCLS, Spring 8 FEL) based on linear accelerator. These machines require a new generation of accelerator with smaller beam, better stability and greater efficiency. Compared with those existing linear accelerators, the performance of next generation linear accelerator will be doubled in all aspects, such as 10 times smaller horizontal beam size, more than 10 times smaller vertical beam size and a few or more times higher peak power. Furthermore, some special positions in the accelerator have even more stringent requirements, such as the interaction point of colliders and wigglor of free electron lasers. Higher performance of these accelerators increases the difficulty of diagnostics. For most cases, intercepting measurements are no longer acceptable, and nonintercepting method like synchrotron radiation monitor can not be applied to linear accelerators. The development of accelerator technology asks for simutanous diagnostics innovations, to expand the performance of diagnostic tools to meet the requirements of the next generation accelerators. Diffraction radiation and inverse Compton scattering are two of the most promising techniques, their nonintercepting nature avoids perturbance to the beam and damage to the instrumentation. This thesis is divided into two parts, beam size measurement by optical diffraction radiation and Laser system for Compton polarimeter. Diffraction radiation, produced by the interaction between the electric field of charged particles and the target, is related to transition radiation. Even though the theory of diffraction radiation has been discussed since 1960s, there are only a few experimental studies in recent years. The successful beam size measurement by optical diffraction radiation at CEBAF machine is a milestone: First of all, we have successfully demonstrated diffraction radiation as an effective nonintercepting diagnostics; Secondly, the simple linear relationship between the diffraction radiation image size and the actual beam size improves the reliability of ODR measurements; And, we measured the polarized components of diffraction radiation for the first time and I analyzed the contribution from edge radiation to diffraction radiation.« less

  1. Crystal structure and density of helium to 232 kbar

    NASA Technical Reports Server (NTRS)

    Mao, H. K.; Wu, Y.; Jephcoat, A. P.; Hemley, R. J.; Bell, P. M.; Bassett, W. A.

    1988-01-01

    The properties of helium and hydrogen at high pressure are topics of great interest to the understanding of planetary interiors. These materials constitute 95 percent of the entire solar system. A technique was presented for the measurement of X-ray diffraction from single-crystals of low-Z condenses gases in a diamond-anvil cell at high pressure. The first such single-crystal X-ray diffraction measurements on solid hydrogen to 26.5 GPa were presented. The application of this technique to the problem of the crystal structure, equation of state, and phase diagram of solid helium is reported. Crucial for X-ray diffraction studies of these materials is the use of a synchrotron radiation source which provides high brillance, narrow collimation of the incident and diffracted X-ray beams to reduce the background noise, and energy-dispersive diffraction techniques with polychromatic (white) radiation, which provides high detection efficiency.

  2. Deformation Behavior of Cementite in Deformed High Carbon Steel Observed by X-ray Diffraction with Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Taniyama, Akira; Takayama, Toru; Arai, Masahiro; Hamada, Takanari

    2017-10-01

    The deformation behavior of cementite in drawn pearlitic steel and spheroidal cementite steel, which have hypereutectoid composition, was investigated by X-ray diffraction using synchrotron radiation. A detailed analysis of diffraction peak profiles reveals that the deformation behavior strongly depends on the shape of cementite in steel. The unit cell volume of the cementite in the drawn pearlitic steel compressively and elastically deforms by 1.5 to 2 pct of the initial volume at the early stage of drawing, whereas that in the drawn spheroidal cementite steel is compressed by 1 pct of the initial volume even at a large true strain. The cementite in the drawn pearlitic steel fragments into small pieces with increasing the true strain, and these pieces change to amorphous cementite. The dislocation densities of the cementite in the drawn pearlitic steel and in the drawn spheroidal cementite steel are estimated to be 1013/m2 before drawing and 1014/m2 after drawing. Although the large strain is induced in the cementite by drawing, the maximum strain energy in the cementite is too small to contribute to the dissolution of the cementite.

  3. Characterization of ion-induced radiation effects in nuclear materials using synchrotron x-ray techniques

    DOE PAGES

    Lang, Maik; Tracy, Cameron L.; Palomares, Raul I.; ...

    2015-05-01

    Recent efforts to characterize the nanoscale structural and chemical modifications induced by energetic ion irradiation in nuclear materials have greatly benefited from the application of synchrotron-based x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques. Key to the study of actinide-bearing materials has been the use of small sample volumes, which are particularly advantageous, as the small quantities minimize the level of radiation exposure at the ion-beam and synchrotron user facility. This approach utilizes energetic heavy ions (energy range: 100 MeV–3 GeV) that pass completely through the sample thickness and deposit an almost constant energy per unit length along theirmore » trajectory. High energy x-rays (25–65 keV) from intense synchrotron light sources are then used in transmission geometry to analyze ion-induced structural and chemical modifications throughout the ion tracks. We describe in detail the experimental approach for utilizing synchrotron radiation (SR) to study the radiation response of a range of nuclear materials (e.g., ThO 2 and Gd 2Ti xZr 2–xO 7). Also addressed is the use of high-pressure techniques, such as the heatable diamond anvil cell, as a new means to expose irradiated materials to well-controlled high-temperature (up to 1000 °C) and/or high-pressure (up to 50 GPa) conditions. Furthermore, this is particularly useful for characterizing the annealing kinetics of irradiation-induced material modifications.« less

  4. Structure determination of an integral membrane protein at room temperature from crystals in situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Axford, Danny; Foadi, James; Imperial College London, London SW7 2AZ

    2015-05-14

    The X-ray structure determination of an integral membrane protein using synchrotron diffraction data measured in situ at room temperature is demonstrated. The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samplesmore » and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines.« less

  5. First indication of the coherent unipolar diffraction radiation generated by relativistic electrons

    NASA Astrophysics Data System (ADS)

    Naumenko, G.; Shevelev, M.

    2018-05-01

    As is generally known, the integral of the electric field strength over all time for usual (bipolar) radiation is zero. The first demonstration of the possibility of unipolar radiation generation has been considered theoretically by Bessonov in 1981 [E.G. Bessonov, Zh. Eksp. Teor. Fiz. 80 (1981) 852]. According to this work, the unipolar radiation (or strange electromagnetic waves) is radiation for which the integral of the electric field strength over the entire duration of a pulse differs significantly from zero. Later, several theoretical papers devoted to this phenomenon have appeared in the literature, where authors investigated mainly synchrotron radiation. However, despite the critical interest, the experimental investigations ignored this effect. In this paper we present results of the first experimental investigation of the unipolar radiation generated by a relativistic electron beam. To detect the unipolar radiation the detector that is sensitive to the selected direction of the electric field strength has been elaborated and tested. We used a designed detector to observe the coherent backward diffraction radiation appearing when a bunched electron beam travels in the vicinity of a flat conductive target. The asymmetry of the electric field strength of the coherent backward diffraction radiation has been demonstrated.

  6. Synchrotron radiation calibration of the EUVE variable line-spaced diffraction gratings at the NBS SURF II facility

    NASA Technical Reports Server (NTRS)

    Jelinsky, P.; Jelinsky, S. R.; Miller, A.; Vallerga, J.; Malina, R. F.

    1988-01-01

    The Extreme Ultraviolet Explorer (EUVE) has a spectrometer which utilizes variable line-spaced, plane diffraction gratings in the converging beam of a Wolter-Schwarzschild type II mirror. The gratings, microchannel plate detector, and thin film filters have been calibrated with continuum radiation provided by the NBS SURF II facility. These were calibrated in a continuum beam to find edges or other sharp spectral features in the transmission of the filters, quantum efficiency of the microchannel plate detector, and efficiency of the gratings. The details of the calibration procedure and the results of the calibration are presented.

  7. MICROANALYSIS OF MATERIALS USING SYNCHROTRON RADIATION.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JONES,K.W.; FENG,H.

    2000-12-01

    High intensity synchrotron radiation produces photons with wavelengths that extend from the infrared to hard x rays with energies of hundreds of keV with uniquely high photon intensities that can be used to determine the composition and properties of materials using a variety of techniques. Most of these techniques represent extensions of earlier work performed with ordinary tube-type x-ray sources. The properties of the synchrotron source such as the continuous range of energy, high degree of photon polarization, pulsed beams, and photon flux many orders of magnitude higher than from x-ray tubes have made possible major advances in the possiblemore » chemical applications. We describe here ways that materials analyses can be made using the high intensity beams for measurements with small beam sizes and/or high detection sensitivity. The relevant characteristics of synchrotron x-ray sources are briefly summarized to give an idea of the x-ray parameters to be exploited. The experimental techniques considered include x-ray fluorescence, absorption, and diffraction. Examples of typical experimental apparatus used in these experiments are considered together with descriptions of actual applications.« less

  8. Investigation on corrosion behavior of Ni-based alloys in molten fluoride salt using synchrotron radiation techniques

    NASA Astrophysics Data System (ADS)

    Liu, Min; Zheng, Junyi; Lu, Yanling; Li, Zhijun; Zou, Yang; Yu, Xiaohan; Zhou, Xingtai

    2013-09-01

    Ni-based alloys have been selected as the structural materials in molten-salt reactors due to their high corrosion resistance and excellent mechanical properties. In this paper, the corrosion behavior of some Ni-based superalloys including Inconel 600, Hastelloy X and Hastelloy C-276 were investigated in molten fluoride salts at 750 °C. Morphology and microstructure of corroded samples were analyzed using scanning electron microscope (SEM), synchrotron radiation X-ray microbeam fluorescence (μ-XRF) and synchrotron radiation X-ray diffraction (SR-XRD) techniques. Results from μ-XRF and SR-XRD show that the main depleted alloying element of Ni-based alloys in molten fluoride salt is Cr. In addition, the results indicate that Mo can enhance the corrosion resistance in molten FLiNaK salts. Among the above three Ni-based alloys, Hastelloy C-276 exhibits the best corrosion resistance in molten fluoride salts 750 °C. Higher-content Mo and lower-content Cr in Hastelloy C-276 alloy were responsible for the better anti-corrosive performance, compared to the other two alloys.

  9. Exploring actinide materials through synchrotron radiation techniques.

    PubMed

    Shi, Wei-Qun; Yuan, Li-Yong; Wang, Cong-Zhi; Wang, Lin; Mei, Lei; Xiao, Cheng-Liang; Zhang, Li; Li, Zi-Jie; Zhao, Yu-Liang; Chai, Zhi-Fang

    2014-12-10

    Synchrotron radiation (SR) based techniques have been utilized with increasing frequency in the past decade to explore the brilliant and challenging sciences of actinide-based materials. This trend is partially driven by the basic needs for multi-scale actinide speciation and bonding information and also the realistic needs for nuclear energy research. In this review, recent research progresses on actinide related materials by means of various SR techniques were selectively highlighted and summarized, with the emphasis on X-ray absorption spectroscopy, X-ray diffraction and scattering spectroscopy, which are powerful tools to characterize actinide materials. In addition, advanced SR techniques for exploring future advanced nuclear fuel cycles dealing with actinides are illustrated as well. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A multi-dataset data-collection strategy produces better diffraction data

    PubMed Central

    Liu, Zhi-Jie; Chen, Lirong; Wu, Dong; Ding, Wei; Zhang, Hua; Zhou, Weihong; Fu, Zheng-Qing; Wang, Bi-Cheng

    2011-01-01

    A multi-dataset (MDS) data-collection strategy is proposed and analyzed for macromolecular crystal diffraction data acquisition. The theoretical analysis indicated that the MDS strategy can reduce the standard deviation (background noise) of diffraction data compared with the commonly used single-dataset strategy for a fixed X-ray dose. In order to validate the hypothesis experimentally, a data-quality evaluation process, termed a readiness test of the X-ray data-collection system, was developed. The anomalous signals of sulfur atoms in zinc-free insulin crystals were used as the probe to differentiate the quality of data collected using different data-collection strategies. The data-collection results using home-laboratory-based rotating-anode X-ray and synchrotron X-ray systems indicate that the diffraction data collected with the MDS strategy contain more accurate anomalous signals from sulfur atoms than the data collected with a regular data-collection strategy. In addition, the MDS strategy offered more advantages with respect to radiation-damage-sensitive crystals and better usage of rotating-anode as well as synchrotron X-rays. PMID:22011470

  11. Diffraction studies of the high pressure phases of GaAs and GaP

    NASA Technical Reports Server (NTRS)

    Baublitz, M., Jr.; Ruoff, A. L.

    1982-01-01

    High pressure structural phase transitions of GaAs and GaP have been studied by energy dispersive X-ray diffraction with the radiation from the Cornell High Energy Synchrotron Source. GaAs began to transform at 172 + or - 7 kbar to an orthorhombic structure possibly belonging to space group Fmmm. GaP transformed to a tetragonal beta-Sn type phase at 215 + or - 8 kbar. Although pressure transmitting media were used to minimize shear stresses in the specimens, the high pressure diffraction results were interpreted as showing evidence for planar defects in the specimens.

  12. Rietveld Refinement on X-Ray Diffraction Patterns of Bioapatite in Human Fetal Bones

    PubMed Central

    Meneghini, Carlo; Dalconi, Maria Chiara; Nuzzo, Stefania; Mobilio, Settimio; Wenk, Rudy H.

    2003-01-01

    Bioapatite, the main constituent of mineralized tissue in mammalian bones, is a calcium-phosphate-based mineral that is similar in structure and composition to hydroxyapatite. In this work, the crystallographic structure of bioapatite in human fetuses was investigated by synchrotron radiation x-ray diffraction (XRD) and microdiffraction (μ-XRD) techniques. Rietveld refinement analyses of XRD and μ-XRD data allow for quantitative probing of the structural modifications of bioapatite as functions of the mineralization process and gestational age. PMID:12609904

  13. Advanced Structural Analyses by Third Generation Synchrotron Radiation Powder Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakata, M.; Aoyagi, S.; Ogura, T.

    2007-01-19

    Since the advent of the 3rd generation Synchrotron Radiation (SR) sources, such as SPring-8, the capabilities of SR powder diffraction increased greatly not only in an accurate structure refinement but also ab initio structure determination. In this study, advanced structural analyses by 3rd generation SR powder diffraction based on the Large Debye-Scherrer camera installed at BL02B2, SPring-8 is described. Because of high angular resolution and high counting statistics powder data collected at BL02B2, SPring-8, ab initio structure determination can cope with a molecular crystals with 65 atoms including H atoms. For the structure refinements, it is found that a kindmore » of Maximum Entropy Method in which several atoms are omitted in phase calculation become very important to refine structural details of fairy large molecule in a crystal. It should be emphasized that until the unknown structure is refined very precisely, the obtained structure by Genetic Algorithm (GA) or some other ab initio structure determination method using real space structural knowledge, it is not possible to tell whether the structure obtained by the method is correct or not. In order to determine and/or refine crystal structure of rather complicated molecules, we cannot overemphasize the importance of the 3rd generation SR sources.« less

  14. Single-crystal diffraction at megabar conditions by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Merlini, Marco; Hanfland, Michael

    2013-08-01

    Crystal structure determination at extreme pressures is currently possible at synchrotron beamlines optimized for such a purpose. We report the description of the experimental setup available at European Synchrotron Radiation Facility ID09 beamline (Grenoble, France) and, with two examples, we illustrate the state-of-the-art experiments currently performed at third-generation synchrotrons. The first example concerns the determination of the equation of state and the structural behavior of low-spin Fe-bearing siderite in the megabar pressure range. Siderite, in fact, undergoes a first-order isosymmetric transition at 45 GPa, and, above this pressure, it features Fe2+ in electronic low-spin configuration. The local configuration of Fe coordination polyhedra, determined by structural refinements, significantly deviates from a regular octahedron. Nevertheless, no further structural transition is detected up to the maximum pressure reached in our experiments, 135 GPa. The analysis of the Fe-O bond length extrapolated to ambient pressure, which indicates that the difference in ionic radii between the high- and the low-spin state of Fe2+ is 0.172 Å, in excellent agreement with the tabulated data by Shannon and Prewitt [Effective ionic radii in oxides and fluorides. Acta Crystallogr. 1969;B25:925-946]. The second example concerns the determination and refinement of the oP8 structure adopted by sodium in the pressure interval 118-125 GPa, using an experimental dataset collected at 118 GPa. The orthorhombic [a=4.7687(15) Å, b=3.0150(6) Å, c=5.2423(7) Å, V=75.4(3) Å3] oP8 structure is topologically related to the MnP structure, with two non-equivalent atoms in the unit cell. Despite the weak scattering factor of Na atoms, the quality of the data also allows meaningful displacement parameters refinements (R1=4.6%, 14 parameters, 190 diffractions, and 105 unique) demonstrating that the current accuracy of diffraction data at extreme pressures can be comparable with ambient condition measurements.

  15. Crystallographic Study of Itokawa Particle, RA-QD02-0127 by Using Energy-Scanning X-Ray Diffraction Method with Synchrotron Radiation

    NASA Technical Reports Server (NTRS)

    Hagiya, K.; Ohsumi, K.; Komatsu, M.; Mikouchi, T.; Zolensky, M. E.; Hirata, A.; Yamaguchi, S.; Kurokawa, A.

    2016-01-01

    The petrographic study of Itokawa particle, RA-QD02-0127 has been performed by SEM-EDS and optical microscope observations. The purpose of this study is to understand better the metamorphic and impact shock history of asteroid Itokawa, and other S-class asteroids.

  16. Human insulin polymorphism upon ligand binding and pH variation: the case of 4-ethylresorcinol.

    PubMed

    Fili, S; Valmas, A; Norrman, M; Schluckebier, G; Beckers, D; Degen, T; Wright, J; Fitch, A; Gozzo, F; Giannopoulou, A E; Karavassili, F; Margiolaki, I

    2015-09-01

    This study focuses on the effects of the organic ligand 4-ethylresorcinol on the crystal structure of human insulin using powder X-ray crystallography. For this purpose, systematic crystallization experiments have been conducted in the presence of the organic ligand and zinc ions within the pH range 4.50-8.20, while observing crystallization behaviour around the isoelectric point of insulin. High-throughput crystal screening was performed using a laboratory X-ray diffraction system. The most representative samples were selected for synchrotron X-ray diffraction measurements, which took place at the European Synchrotron Radiation Facility (ESRF) and the Swiss Light Source (SLS). Four different crystalline polymorphs have been identified. Among these, two new phases with monoclinic symmetry have been found, which are targets for the future development of microcrystalline insulin drugs.

  17. Human insulin polymorphism upon ligand binding and pH variation: the case of 4-ethylresorcinol

    PubMed Central

    Fili, S.; Valmas, A.; Norrman, M.; Schluckebier, G.; Beckers, D.; Degen, T.; Wright, J.; Fitch, A.; Gozzo, F.; Giannopoulou, A. E.; Karavassili, F.; Margiolaki, I.

    2015-01-01

    This study focuses on the effects of the organic ligand 4-ethylresorcinol on the crystal structure of human insulin using powder X-ray crystallography. For this purpose, systematic crystallization experiments have been conducted in the presence of the organic ligand and zinc ions within the pH range 4.50–8.20, while observing crystallization behaviour around the isoelectric point of insulin. High-throughput crystal screening was performed using a laboratory X-ray diffraction system. The most representative samples were selected for synchrotron X-ray diffraction measurements, which took place at the European Synchrotron Radiation Facility (ESRF) and the Swiss Light Source (SLS). Four different crystalline polymorphs have been identified. Among these, two new phases with monoclinic symmetry have been found, which are targets for the future development of microcrystalline insulin drugs. PMID:26306195

  18. Observation of sagittal X-ray diffraction by surface acoustic waves in Bragg geometry.

    PubMed

    Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Evgenii, Emelin; Petsiuk, Andrei; Leitenberger, Wolfram; Erko, Alexei

    2017-04-01

    X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (La 3 Ga 5 SiO 14 ) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice. Experimental results are compared with the corresponding theoretical model that exploits the kinematical diffraction theory. This experiment shows that the propagation of the surface acoustic waves creates a dynamical diffraction grating on the crystal surface, and this can be used for space-time modulation of an X-ray beam.

  19. Observation of sagittal X-ray diffraction by surface acoustic waves in Bragg geometry1

    PubMed Central

    Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Evgenii, Emelin; Petsiuk, Andrei; Leitenberger, Wolfram; Erko, Alexei

    2017-01-01

    X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (La3Ga5SiO14) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice. Experimental results are compared with the corresponding theoretical model that exploits the kinematical diffraction theory. This experiment shows that the propagation of the surface acoustic waves creates a dynamical diffraction grating on the crystal surface, and this can be used for space–time modulation of an X-ray beam. PMID:28381976

  20. Variable Magnification With Kirkpatrick-Baez Optics for Synchrotron X-Ray Microscopy

    PubMed Central

    Jach, Terrence; Bakulin, Alex S.; Durbin, Stephen M.; Pedulla, Joseph; Macrander, Albert

    2006-01-01

    We describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Köhler illumination). We demonstrate the distinction with a Kirkpatrick-Baez microscope consisting of short focal length multilayer mirrors operating at an energy of 8 keV. In addition to realizing improvements in the resolution of the optics, the synchrotron radiation microscope is not limited to the usual single magnification at a fixed image plane. Higher magnification images are produced by projection in the limit of geometrical optics with a collimated beam. However, in distinction to the common method of placing the sample behind the optical source of a diverging beam, we describe the situation in which the sample is located in the collimated beam before the optical element. The ultimate limits of this magnification result from diffraction by the specimen and are determined by the sample position relative to the focal point of the optic. We present criteria by which the diffraction is minimized. PMID:27274930

  1. Facilities for small-molecule crystallography at synchrotron sources.

    PubMed

    Barnett, Sarah A; Nowell, Harriott; Warren, Mark R; Wilcox, Andrian; Allan, David R

    2016-01-01

    Although macromolecular crystallography is a widely supported technique at synchrotron radiation facilities throughout the world, there are, in comparison, only very few beamlines dedicated to small-molecule crystallography. This limited provision is despite the increasing demand for beamtime from the chemical crystallography community and the ever greater overlap between systems that can be classed as either small macromolecules or large small molecules. In this article, a very brief overview of beamlines that support small-molecule single-crystal diffraction techniques will be given along with a more detailed description of beamline I19, a dedicated facility for small-molecule crystallography at Diamond Light Source.

  2. In-situ Diffraction Study of Magnetite at Simultaneous High Pressure and High Temperature Using Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Wang, L.; Zhang, J.; Wang, S.; Chen, H.; Zhao, Y.

    2014-12-01

    Magnetite intertwined with the evolution of human civilizations, and remains so today. It is technologically and scientifically important by virtue of its unique magnetic and electrical properties. Magnetite is a common mineral found in a variety of geologic environments, and plays an important role in deciphering the oxygen evolution in the Earth's atmosphere and its deep interiors. The latter application asks for the knowledge of the thermal and elastic properties of magnetite at high pressures and temperatures, which is currently not available in literature. We have carried out a few in-situ diffraction experiments on magnetite using white synchrotron radiation at beamline X17B2 of National Synchrotron Light Source (NSLS). A DIA module in an 1100-ton press and WC anvils were employed for compression, and diffraction spectra were collected at simultaneous high pressures (P) and temperatures (T) (up to 9 GPa and 900 oC). Mixture of amorphous boron and epoxy resin was used as pressure medium, and NaCl as pressure marker. Temperature was recorded by W-Re thermocouples. Commercially purchased magnetite powder and a mixture of the said powder and NaCl (1:1) were used as starting material in separate experiments. Preliminary data analyses have yielded following observations: (1) Charge disordering seen at ambient pressure remains active in current experiments, especially at lower pressures (< 6 GPa); (2) Though at each condition potentially complicated by charge disordering process, isothermal compression curves remains simple and reproducible; (3) During cooling, the reversibility and degree of cation disordering depend on the starting material and/or experimental P-T path; and (4) cation disordering notably reduces the apparent bulk moduli of magnetite.

  3. Protein crystal structure from non-oriented, single-axis sparse X-ray data

    DOE PAGES

    Wierman, Jennifer L.; Lan, Ti-Yen; Tate, Mark W.; ...

    2016-01-01

    X-ray free-electron lasers (XFELs) have inspired the development of serial femtosecond crystallography (SFX) as a method to solve the structure of proteins. SFX datasets are collected from a sequence of protein microcrystals injected across ultrashort X-ray pulses. The idea behind SFX is that diffraction from the intense, ultrashort X-ray pulses leaves the crystal before the crystal is obliterated by the effects of the X-ray pulse. The success of SFX at XFELs has catalyzed interest in analogous experiments at synchrotron-radiation (SR) sources, where data are collected from many small crystals and the ultrashort pulses are replaced by exposure times that aremore » kept short enough to avoid significant crystal damage. The diffraction signal from each short exposure is so `sparse' in recorded photons that the process of recording the crystal intensity is itself a reconstruction problem. Using theEMCalgorithm, a successful reconstruction is demonstrated here in a sparsity regime where there are no Bragg peaks that conventionally would serve to determine the orientation of the crystal in each exposure. In this proof-of-principle experiment, a hen egg-white lysozyme (HEWL) crystal rotating about a single axis was illuminated by an X-ray beam from an X-ray generator to simulate the diffraction patterns of microcrystals from synchrotron radiation. Millions of these sparse frames, typically containing only ~200 photons per frame, were recorded using a fast-framing detector. It is shown that reconstruction of three-dimensional diffraction intensity is possible using theEMCalgorithm, even with these extremely sparse frames and without knowledge of the rotation angle. Further, the reconstructed intensity can be phased and refined to solve the protein structure using traditional crystallographic software. In conclusion, this suggests that synchrotron-based serial crystallography of micrometre-sized crystals can be practical with the aid of theEMCalgorithm even in cases where the data are sparse.« less

  4. Protein crystal structure from non-oriented, single-axis sparse X-ray data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wierman, Jennifer L.; Lan, Ti-Yen; Tate, Mark W.

    X-ray free-electron lasers (XFELs) have inspired the development of serial femtosecond crystallography (SFX) as a method to solve the structure of proteins. SFX datasets are collected from a sequence of protein microcrystals injected across ultrashort X-ray pulses. The idea behind SFX is that diffraction from the intense, ultrashort X-ray pulses leaves the crystal before the crystal is obliterated by the effects of the X-ray pulse. The success of SFX at XFELs has catalyzed interest in analogous experiments at synchrotron-radiation (SR) sources, where data are collected from many small crystals and the ultrashort pulses are replaced by exposure times that aremore » kept short enough to avoid significant crystal damage. The diffraction signal from each short exposure is so `sparse' in recorded photons that the process of recording the crystal intensity is itself a reconstruction problem. Using theEMCalgorithm, a successful reconstruction is demonstrated here in a sparsity regime where there are no Bragg peaks that conventionally would serve to determine the orientation of the crystal in each exposure. In this proof-of-principle experiment, a hen egg-white lysozyme (HEWL) crystal rotating about a single axis was illuminated by an X-ray beam from an X-ray generator to simulate the diffraction patterns of microcrystals from synchrotron radiation. Millions of these sparse frames, typically containing only ~200 photons per frame, were recorded using a fast-framing detector. It is shown that reconstruction of three-dimensional diffraction intensity is possible using theEMCalgorithm, even with these extremely sparse frames and without knowledge of the rotation angle. Further, the reconstructed intensity can be phased and refined to solve the protein structure using traditional crystallographic software. In conclusion, this suggests that synchrotron-based serial crystallography of micrometre-sized crystals can be practical with the aid of theEMCalgorithm even in cases where the data are sparse.« less

  5. Goniometer-based femtosecond crystallography with X-ray free electron lasers

    DOE PAGES

    Cohen, Aina E.; Soltis, S. Michael; González, Ana; ...

    2014-10-31

    The emerging method of femtosecond crystallography (FX) may extend the diffraction resolution accessible from small radiation-sensitive crystals and provides a means to determine catalytically accurate structures of acutely radiation-sensitive metalloenzymes. Automated goniometer-based instrumentation developed for use at the Linac Coherent Light Source enabled efficient and flexible FX experiments to be performed on a variety of sample types. In the case of rod-shaped Cpl hydrogenase crystals, only five crystals and about 30 min of beam time were used to obtain the 125 still diffraction patterns used to produce a 1.6-Å resolution electron density map. With smaller crystals, high-density grids were usedmore » to increase sample throughput; 930 myoglobin crystals mounted at random orientation inside 32 grids were exposed, demonstrating the utility of this approach. Screening results from cryocooled crystals of β 2-adrenoreceptor and an RNA polymerase II complex indicate the potential to extend the diffraction resolution obtainable from very radiation-sensitive samples beyond that possible with undulator-based synchrotron sources.« less

  6. Goniometer-based femtosecond crystallography with X-ray free electron lasers

    PubMed Central

    Cohen, Aina E.; Soltis, S. Michael; González, Ana; Aguila, Laura; Alonso-Mori, Roberto; Barnes, Christopher O.; Baxter, Elizabeth L.; Brehmer, Winnie; Brewster, Aaron S.; Brunger, Axel T.; Calero, Guillermo; Chang, Joseph F.; Chollet, Matthieu; Ehrensberger, Paul; Eriksson, Thomas L.; Feng, Yiping; Hattne, Johan; Hedman, Britt; Hollenbeck, Michael; Holton, James M.; Keable, Stephen; Kobilka, Brian K.; Kovaleva, Elena G.; Kruse, Andrew C.; Lemke, Henrik T.; Lin, Guowu; Lyubimov, Artem Y.; Manglik, Aashish; Mathews, Irimpan I.; McPhillips, Scott E.; Nelson, Silke; Peters, John W.; Sauter, Nicholas K.; Smith, Clyde A.; Song, Jinhu; Stevenson, Hilary P.; Tsai, Yingssu; Uervirojnangkoorn, Monarin; Vinetsky, Vladimir; Wakatsuki, Soichi; Weis, William I.; Zadvornyy, Oleg A.; Zeldin, Oliver B.; Zhu, Diling; Hodgson, Keith O.

    2014-01-01

    The emerging method of femtosecond crystallography (FX) may extend the diffraction resolution accessible from small radiation-sensitive crystals and provides a means to determine catalytically accurate structures of acutely radiation-sensitive metalloenzymes. Automated goniometer-based instrumentation developed for use at the Linac Coherent Light Source enabled efficient and flexible FX experiments to be performed on a variety of sample types. In the case of rod-shaped Cpl hydrogenase crystals, only five crystals and about 30 min of beam time were used to obtain the 125 still diffraction patterns used to produce a 1.6-Å resolution electron density map. For smaller crystals, high-density grids were used to increase sample throughput; 930 myoglobin crystals mounted at random orientation inside 32 grids were exposed, demonstrating the utility of this approach. Screening results from cryocooled crystals of β2-adrenoreceptor and an RNA polymerase II complex indicate the potential to extend the diffraction resolution obtainable from very radiation-sensitive samples beyond that possible with undulator-based synchrotron sources. PMID:25362050

  7. The crystal structure of paramagnetic copper(II) oxalate (CuC₂O₄): formation and thermal decomposition of randomly stacked anisotropic nano-sized crystallites.

    PubMed

    Christensen, Axel Nørlund; Lebech, Bente; Andersen, Niels Hessel; Grivel, Jean-Claude

    2014-11-28

    Synthetic copper(II) oxalate, CuC2O4, was obtained in a precipitation reaction between a copper(II) solution and an aqueous solution of oxalic acid. The product was identified from its conventional X-ray powder patterns which match that of the copper mineral Moolooite reported to have the composition CuC2O4·0.44H2O. Time resolved in situ investigations of the thermal decomposition of copper(II) oxalate using synchrotron X-ray powder diffraction showed that in air the compound converts to Cu2O at 215 °C and oxidizes to CuO at 345 °C. Thermo gravimetric analysis performed in an inert Ar-gas reveals that the material contains no crystal water and reduces to pure Cu at 295 °C. Magnetic susceptibility measurements in the temperature range from 2 K to 300 K show intriguing paramagnetic behaviour with no sign of magnetic order down to 2 K. A crystal structure investigation is made based on powder diffraction data using one neutron diffraction pattern obtained at 5 K (λ = 1.5949(1) Å) combined with one conventional and two synchrotron X-ray diffraction patterns obtained at ambient temperature using λ = 1.54056, 1.0981 and λ = 0.50483(1) Å, respectively. Based on the X-ray synchrotron data the resulting crystal structure is described in the monoclinic space group P2₁/c (#14) in the P12₁/n1 setting with unit cell parameters a = 5.9598(1) Å, b = 5.6089(1) Å, c = 5.1138 (1) Å, β = 115.320(1)°. The composition is CuC2O4 with atomic coordinates determined by FullProf refinement of the neutron diffraction data. The crystal structure consists of a random stacking of CuC2O4 micro-crystallites where half the Cu-atoms are placed at (2a) and the other half at (2b) positions with the corresponding oxalate molecules centred around the corresponding (2b) and (2a) site positions, respectively. The diffraction patterns obtained for both kinds of radiation show considerable broadening of several Bragg peaks caused by highly anisotropic microstructural size and strain effects. In contrast to the water reported to be present in Moolooite, neither thermogravimetric nor the in situ thermal decomposition investigations and crystal structure analysis of the neutron diffraction data revealed any trace of water. An appendix contains details about the profile parameters for the diffractometers used at the European Synchrotron Radiation Facility and the Institute Max von Laue-Paul Langevin.

  8. In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells

    DOE PAGES

    Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kevin; ...

    2016-03-01

    The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. Furthermore, the observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined.

  9. In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kevin

    The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. Furthermore, the observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined.

  10. In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells

    PubMed Central

    Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kèvin; Stellato, Francesco; Liang, Mengning; White, Thomas A.; Seine, Thomas; Messerschmidt, Marc; Chapman, Henry N.; Wilmanns, Matthias

    2016-01-01

    The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. The observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined. PMID:27006771

  11. Simulation of emission and propagation of coherent synchrotron radiation wave fronts using the methods of wave optics

    NASA Astrophysics Data System (ADS)

    Chubar, O.

    2006-09-01

    The paper describes methods of efficient calculation of spontaneous synchrotron radiation (SR) by relativistic electrons in storage rings, and propagation of this radiation through optical elements and drift spaces of beamlines, using the principles of wave optics. In addition to the SR from one electron, incoherent and coherent synchrotron radiation (CSR) emitted by electron bunches is treated. CPU-efficient CSR calculation method taking into account 6D phase space distribution of electrons in a bunch is proposed. The properties of CSR emitted by electron bunches with small longitudinal and large transverse size are studied numerically (such situation can be realized in storage rings e.g. by transverse deflection of the electron bunches in special RF cavities). It is shown that if the transverse size of a bunch is much larger than the diffraction limit for single-electron SR at a given wavelength - it affects the angular distribution of the CSR at this wavelength and reduces the coherent flux. Nevertheless, for transverse bunch dimensions up to several millimeters and the longitudinal bunch size smaller than hundred micrometers, the resulting CSR flux in the far infrared spectral range is still many orders of magnitude higher than the flux of incoherent SR.

  12. In situ synchrotron X-ray diffraction study of hydrides in Zircaloy-4 during thermomechanical cycling

    DOE PAGES

    Cinbiz, Mahmut N.; Koss, Donald A.; Motta, Arthur T.; ...

    2017-02-20

    The d-spacing evolution of both in-plane and out-of-plane hydrides has been studied using in situ synchrotron radiation X-ray diffraction during thermo-mechanical cycling of cold-worked stress-relieved Zircaloy-4. The structure of the hydride precipitates is such that the δ{111} d-spacing of the planes aligned with the hydride platelet face is greater than the d-spacing of the 111 planes aligned with the platelet edges. Upon heating from room temperature, the δ{111} planes aligned with hydride plate edges exhibit bi-linear thermally-induced expansion. In contrast, the d-spacing of the (111) plane aligned with the hydride plate face initially contracts upon heating. Furthermore, these experimental resultsmore » can be understood in terms of a reversal of stress state associated with precipitating or dissolving hydride platelets within the α-zirconium matrix.« less

  13. Validating a Model for Welding Induced Residual Stress Using High-Energy X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Mach, J. C.; Budrow, C. J.; Pagan, D. C.; Ruff, J. P. C.; Park, J.-S.; Okasinski, J.; Beaudoin, A. J.; Miller, M. P.

    2017-05-01

    Integrated computational materials engineering (ICME) provides a pathway to advance performance in structures through the use of physically-based models to better understand how manufacturing processes influence product performance. As one particular challenge, consider that residual stresses induced in fabrication are pervasive and directly impact the life of structures. For ICME to be an effective strategy, it is essential that predictive capability be developed in conjunction with critical experiments. In the present work, simulation results from a multi-physics model for gas metal arc welding are evaluated through x-ray diffraction using synchrotron radiation. A test component was designed with intent to develop significant gradients in residual stress, be representative of real-world engineering application, yet remain tractable for finely spaced strain measurements with positioning equipment available at synchrotron facilities. The experimental validation lends confidence to model predictions, facilitating the explicit consideration of residual stress distribution in prediction of fatigue life.

  14. Synchrotron X-Ray Diffraction Studies of Olivine from Comet Wild 2

    NASA Technical Reports Server (NTRS)

    2008-01-01

    We have analyzed a collection of the Comet Wild 2 coma grains returned by the NASA Stardust Mission, using micro-area Laue diffraction equipment. The purpose of the diffraction experiment is to permit the structure refinement of olivine including site occupancies. In addition to the intrinsic importance of the olivine structures for revealing the thermal history of Wild 2 materials, we wish to test reports that olivine recovered after hypervelocity capture in silica aerogel has undergone a basic structural change due to capture heating [1]. The diffraction equipment placed at beam line BL- 4B1 of PF, KEK was developed with a micropinhole and an imaging plate (Fuji Co. Ltd.) using the Laue method combined with polychromatic X-ray of synchrotron radiation operated at energy of 2.5 GeV. The incident beam is limited to 1.6 m in diameter by a micropinhole set just upstream of the sample [2, 3]. It is essential to apply a microbeam to obtain diffracted intensities with high signal to noise ratios. This equipment has been successfully applied to various extraterrestrial materials, including meteorites and interplanetary dust particles [4]. The Laue pattern of the sample C2067,1,111,4 (Fig. 1) was successfully taken on an imaging plate after a 120 minute exposure (Fig. 2).

  15. Resonance energy shifts during nuclear Bragg diffraction of x rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arthur, J.; Brown, G.S.; Brown, D.E.

    1989-10-09

    We have observed dramatic changes in the time distribution of synchrotron x rays resonantly scattered from {sup 57}Fe nuclei in a crystal of yttrium iron garnet, which depend on the deviation angle of the incident radiation from the Bragg angle. These changes are caused by small shifts in the effective energies of the hyperfine-split nuclear resonances, an effect of dynamical diffraction for the coherently excited nuclei in the crystal. The very high brightness of the synchro- tron x-ray source allows this effect to be observed in a 15-min measurement.

  16. Synchrotron X-Ray Diffraction Analysis of Meteorites in Thin Section: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.; Lanzirotti, A.; Xirouchakis, D.

    2004-01-01

    X-ray diffraction is the pre-eminent technique for mineral identification and structure determination, but is difficult to apply to grains in thin section, the standard meteorite preparation. Bright focused X-ray beams from synchrotrons have been used extensively in mineralogy and have been applied to extraterrestrial particles. The intensity and small spot size achievable in synchrotron X-ray beams makes them useful for study of materials in thin sections. Here, we describe Synchrotron X-ray Diffraction (SXRD) in thin section as done at the National Synchrotron Light Source, and cite examples of its value for studies of meteorites in thin section.

  17. Expression, purification, crystallization and preliminary X-ray diffraction analysis of the DDX3 RNA helicase domain

    PubMed Central

    Rodamilans, Bernardo; Montoya, Guillermo

    2007-01-01

    DDX3 is a human RNA helicase that is involved in RNA processing and important human diseases. This enzyme belongs to the DEAD-box protein family, the members of which are characterized by the presence of nine conserved motifs including the Asp-Glu-Ala-Asp motif that defines the family. DDX3 has two distinct domains: an ATP-binding domain in the central region of the protein and a helicase domain in the carboxy-terminal region. The helicase domain of DDX3 was cloned and overexpressed in Escherichia coli. Crystallization experiments yielded crystals that were suitable for X-ray diffraction analysis. The final crystallization conditions were a reservoir solution consisting of 2 M ammonium sulfate, 0.1 M imidazole pH 6.4 plus 5 mM spermine tetrahydrochloride and a protein solution containing 10 mM HEPES, 500 mM ammonium sulfate pH 8.0. The crystals of the helicase domain belong to the monoclinic space group P21, with unit-cell parameters a = 43.85, b = 60.72, c = 88.39 Å, α = γ = 90, β = 101.02°, and contained three molecules per asymmetric unit. These crystals diffracted to a resolution limit of 2.2 Å using synchrotron radiation at the European Synchrotron Radiation Facility (ESRF) and the Swiss Light Source (SLS). PMID:17401195

  18. Expression, purification, crystallization and preliminary X-ray diffraction analysis of the DDX3 RNA helicase domain.

    PubMed

    Rodamilans, Bernardo; Montoya, Guillermo

    2007-04-01

    DDX3 is a human RNA helicase that is involved in RNA processing and important human diseases. This enzyme belongs to the DEAD-box protein family, the members of which are characterized by the presence of nine conserved motifs including the Asp-Glu-Ala-Asp motif that defines the family. DDX3 has two distinct domains: an ATP-binding domain in the central region of the protein and a helicase domain in the carboxy-terminal region. The helicase domain of DDX3 was cloned and overexpressed in Escherichia coli. Crystallization experiments yielded crystals that were suitable for X-ray diffraction analysis. The final crystallization conditions were a reservoir solution consisting of 2 M ammonium sulfate, 0.1 M imidazole pH 6.4 plus 5 mM spermine tetrahydrochloride and a protein solution containing 10 mM HEPES, 500 mM ammonium sulfate pH 8.0. The crystals of the helicase domain belong to the monoclinic space group P2(1), with unit-cell parameters a = 43.85, b = 60.72, c = 88.39 A, alpha = gamma = 90, beta = 101.02 degrees , and contained three molecules per asymmetric unit. These crystals diffracted to a resolution limit of 2.2 A using synchrotron radiation at the European Synchrotron Radiation Facility (ESRF) and the Swiss Light Source (SLS).

  19. Photoelectron diffraction and holography: Some new directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fadley, C.S.

    1993-08-01

    Photoelectron diffraction has by now become a versatile and powerful technique for studying surface structures, with special capabilities for resolving chemical and magnetic states of atoms and deriving direct structural information from both forward scattering along bond directions and back-scattering path length differences. Further fitting experiment to theory can lead to structural accuracies in the {plus_minus}0.03 ){Angstrom} range. Holographic inversions of such diffraction data also show considerable promise for deriving local three-dimensional structures around a given emitter with accuracies of {plus_minus}0.2--0.3 {Angstrom}. Resolving the photoelectron spin in some way and using circularly polarized radiation for excitation provide added dimensions formore » the study of magnetic systems and chiral experimental geometries. Synchrotron radiation with the highest brightness and energy resolution, as well as variable polarization, is crucial to the full exploitation of these techniques.« less

  20. Micron Scale Mineralogy

    NASA Astrophysics Data System (ADS)

    Caldwell, W. A.; Tamura, N.; Celestre, R. S.; Padmore, H. A.; Patel, J. R.

    2002-12-01

    Although x-ray diffraction has been used for nearly a century as the mineralogist's definitive tool in determining crystalline structures, it has proved impossible to use this technique to spatially resolve the highly heterogeneous nature of many minerals at the mesoscopic level. Due to recent revolutions in the brightness of x-ray sources and in our ability to focus x-rays, we can now carry out conventional monochromatic rotation crystallography as well as Laue diffraction with sub-micron spatial resolution and produce maps of orientation, strain, mineral type, and even chemical speciation over tens of microns in a short amount of time. We have pioneered the development of these techniques at the 3rd generation synchrotron radiation source (Advanced Light Source) in Berkeley, and will describe their application to understanding the structure of a quartz-geode. Our results show the manner in which grain structure and texture change as a function of distance from the cavity wall and are compared with models of crystal growth in such systems. This example highlights the great utility of a synchrotron based x-ray micro-diffraction beamline and the possibilities it opens to the mineralogist.

  1. Crystallization and preliminary crystallographic analysis of orotidine 5′-monophosphate decarboxylase from the human malaria parasite Plasmodium falciparum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krungkrai, Sudaratana R.; Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871; Tokuoka, Keiji

    Orotidine 5′-monophosphate decarboxylase of human malaria parasite P. falciparum was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation. Orotidine 5′-monophosphate (OMP) decarboxylase (OMPDC; EC 4.1.1.23) catalyzes the final step in the de novo synthesis of uridine 5′-monophosphate (UMP) and defects in the enzyme are lethal in the malaria parasite Plasmodium falciparum. Active recombinant P. falciparum OMPDC (PfOMPDC) was crystallized by the seeding method in a hanging drop using PEG 3000 asmore » a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation at the Swiss Light Source. The crystal exhibits trigonal symmetry (space group R3), with hexagonal unit-cell parameters a = b = 201.81, c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% (V{sub M} = 2.3 Å{sup 3} Da{sup −1})« less

  2. Concept of quasi-periodic undulator - control of radiation spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Shigemi

    1995-02-01

    A new type of undulator, the quasi-periodic undulator (QPU) is considered which generates the irrational harmonics in the radiation spectrum. This undulator consists of the arrays of magnet blocks aligned in a quasi-periodic order, and consequentially lead to a quasi-periodic motion of electron. A combination of the QPU and a conventional crystal/grating monochromator provides pure monochromatic photon beam for synchrotron radiation users because the irrational harmonics do not be diffracted in the same direction by a monochromator. The radiation power and width of each radiation peak emitted from this undulator are expected to be comparable with those of the conventionalmore » periodic undulator.« less

  3. Purification, crystallization and preliminary X-ray diffraction studies of N-acetylglucosamine-phosphate mutase from Candida albicans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishitani, Yuichi; Maruyama, Daisuke; Nonaka, Tsuyoshi

    2006-04-01

    Preliminary X-ray diffraction studies on N-acetylglucosamine-phosphate mutase from C. albicans are reported. N-acetylglucosamine-phosphate mutase (AGM1) is an essential enzyme in the synthesis of UDP-N-acetylglucosamine (UDP-GlcNAc) in eukaryotes and belongs to the α-d-phosphohexomutase superfamily. AGM1 from Candida albicans (CaAGM1) was purified and crystallized by the sitting-drop vapour-diffusion method. The crystals obtained belong to the primitive monoclinic space group P2{sub 1}, with unit-cell parameters a = 60.2, b = 130.2, c = 78.0 Å, β = 106.7°. The crystals diffract X-rays to beyond 1.8 Å resolution using synchrotron radiation.

  4. Crystallization and preliminary X-ray diffraction analysis of West Nile virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufmann, Barbel; Plevka, Pavel; Kuhn, Richard J.

    2010-05-25

    West Nile virus, a human pathogen, is closely related to other medically important flaviviruses of global impact such as dengue virus. The infectious virus was purified from cell culture using polyethylene glycol (PEG) precipitation and density-gradient centrifugation. Thin amorphously shaped crystals of the lipid-enveloped virus were grown in quartz capillaries equilibrated by vapor diffusion. Crystal diffraction extended at best to a resolution of about 25 {angstrom} using synchrotron radiation. A preliminary analysis of the diffraction images indicated that the crystals had unit-cell parameters a {approx_equal} b {approx_equal} 480 {angstrom}, {gamma} = 120{sup o}, suggesting a tight hexagonal packing of onemore » virus particle per unit cell.« less

  5. On limitations of Schwinger formulae for coherent synchrotron radiation produced by an electron bunch moving along an arc of a circle

    NASA Astrophysics Data System (ADS)

    Geloni, G.; Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    2004-08-01

    Re-examination of dogmatic "truths" can sometimes yield surprises. For years we were led to believe that famous Schwinger's formulas are directly applicable to describe synchrotron radiation from dipole magnet and even now no attention is usually paid to the region of applicability of these expressions. While such formulas are valid in order to describe radiation from a dipole in the X-ray range, their long-wavelength asymptote are not valid, in general. In the long-wavelength region, Schwinger's formulas must be analyzed from a critical viewpoint, and corrections must be discussed when one is looking for an application to CSR-based diagnostics. In this paper, we perform such a task by means of a consistent use of similarity techniques, discussing the limits of validity of Schwinger's formulas which arise from a finite magnet length, from a finite distance of the detector to the sources and from diffraction effects (due to the presence of vacuum pipe and aperture limitations).

  6. In situ defect annealing of swift heavy ion irradiated CeO 2 and ThO 2 using synchrotron X-ray diffraction and a hydrothermal diamond anvil cell

    DOE PAGES

    Palomares, Raul I.; Tracy, Cameron L.; Zhang, Fuxiang; ...

    2015-04-16

    Hydrothermal diamond anvil cells (HDACs) provide facile means for coupling synchrotron Xray techniques with pressure up to 10 GPa and temperature up to 1300 K. This manuscript reports on an application of the HDAC as an ambient-pressure sample environment for performing in situ defect annealing and thermal expansion studies of swift heavy ion irradiated CeO 2 and ThO 2 using synchrotron X-ray diffraction. The advantages of the in situ HDAC technique over conventional annealing methods include: rapid temperature ramping and quench times, high-resolution measurement capability, simultaneous annealing of multiple samples, and prolonged temperature- and apparatus stability at high temperatures. Isochronalmore » annealing between 300 K and 1100 K revealed 2-stage and 1-stage defect recovery processes for irradiated CeO 2 and ThO 2, respectively; indicating that the morphology of the defects produced by swift heavy ion irradiation of these two materials differs significantly. These results suggest that electronic configuration plays a major role in both the radiation-induced defect production and high temperature defect recovery mechanisms of CeO 2 and ThO 2.« less

  7. Inclined monochromator for high heat-load synchrotron x-ray radiation

    DOEpatents

    Khounsary, A.M.

    1994-02-15

    A double crystal monochromator is described including two identical, parallel crystals, each of which is cut such that the normal to the diffraction planes of interest makes an angle less than 90 degrees with the surface normal. Diffraction is symmetric, regardless of whether the crystals are symmetrically or asymmetrically cut, enabling operation of the monochromator with a fixed plane of diffraction. As a result of the inclination of the crystal surface, an incident beam has a footprint area which is elongated both vertically and horizontally when compared to that of the conventional monochromator, reducing the heat flux of the incident beam and enabling more efficient surface cooling. Because after inclination of the crystal only a fraction of thermal distortion lies in the diffraction plane, slope errors and the resultant misorientation of the diffracted beam are reduced. 11 figures.

  8. Inclined monochromator for high heat-load synchrotron x-ray radiation

    DOEpatents

    Khounsary, Ali M.

    1994-01-01

    A double crystal monochromator including two identical, parallel crystals, each of which is cut such that the normal to the diffraction planes of interest makes an angle less than 90 degrees with the surface normal. Diffraction is symmetric, regardless of whether the crystals are symmetrically or asymmetrically cut, enabling operation of the monochromator with a fixed plane of diffraction. As a result of the inclination of the crystal surface, an incident beam has a footprint area which is elongated both vertically and horizontally when compared to that of the conventional monochromator, reducing the heat flux of the incident beam and enabling more efficient surface cooling. Because after inclination of the crystal only a fraction of thermal distortion lies in the diffraction plane, slope errors and the resultant misorientation of the diffracted beam are reduced.

  9. Femtosecond X-ray coherent diffraction of aligned amyloid fibrils on low background graphene.

    PubMed

    Seuring, Carolin; Ayyer, Kartik; Filippaki, Eleftheria; Barthelmess, Miriam; Longchamp, Jean-Nicolas; Ringler, Philippe; Pardini, Tommaso; Wojtas, David H; Coleman, Matthew A; Dörner, Katerina; Fuglerud, Silje; Hammarin, Greger; Habenstein, Birgit; Langkilde, Annette E; Loquet, Antoine; Meents, Alke; Riek, Roland; Stahlberg, Henning; Boutet, Sébastien; Hunter, Mark S; Koglin, Jason; Liang, Mengning; Ginn, Helen M; Millane, Rick P; Frank, Matthias; Barty, Anton; Chapman, Henry N

    2018-05-09

    Here we present a new approach to diffraction imaging of amyloid fibrils, combining a free-standing graphene support and single nanofocused X-ray pulses of femtosecond duration from an X-ray free-electron laser. Due to the very low background scattering from the graphene support and mutual alignment of filaments, diffraction from tobacco mosaic virus (TMV) filaments and amyloid protofibrils is obtained to 2.7 Å and 2.4 Å resolution in single diffraction patterns, respectively. Some TMV diffraction patterns exhibit asymmetry that indicates the presence of a limited number of axial rotations in the XFEL focus. Signal-to-noise levels from individual diffraction patterns are enhanced using computational alignment and merging, giving patterns that are superior to those obtainable from synchrotron radiation sources. We anticipate that our approach will be a starting point for further investigations into unsolved structures of filaments and other weakly scattering objects.

  10. Terahertz and Optical Measurement Apparatus for the Fermilab ASTA Injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurman-Keup, R.; Lumpkin, A. H.; Thangaraj, J.

    2014-01-01

    ASTA is a facility at Fermilab that, once completed, will consist of a photoinjector with two superconducting capture cavities, at least one superconducting ILC-style cryomodule, and a small ring for studying non-linear, integrable beam optics. This paper discusses the layout for the optical transport system that will provide THz radiation to a Martin-Puplett interferometer for bunch length measurements as well as optical radiation to an externally located streak camera, also for bunch length measurements. It will be able to accept radiation from two synchrotron radiation ports in the bunch compressor, a diffraction/transition radiation screen downstream of the compressor, and amore » transition radiation screen after the spectrometer magnet for measurements of energy-time correlations.« less

  11. Stanford Synchrotron Radiation Laboratory activity report for 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantwell, K.

    1987-12-31

    1986 was another year of major advances for SSRL as the ultimate capabilities of PEP as a synchrotron radiation source became more apparent and a second PEP beam line was initiated, while effective development and utilization of SPEAR proceeded. Given these various PEP developments, SSRL abandoned its plans for a separate diffraction limited ring, as they abandoned their plans for a 6--7 GeV ring of the APS type last year. It has become increasingly apparent that SSRL should concentrate on developing SPEAR and PEP as synchrotron radiation sources. Consequently, initial planning for a 3 GeV booster synchrotron injector for SPEARmore » was performed in 1986, with a proposal to the Department of Energy resulting. As described in Chapter 2, the New Rings Group and the Machine Physics Group were combined into one Accelerator Physics Group. This group is focusing mainly on the improvement of SPEAR`s operating conditions and on planning for the conversion of PEP into a fourth generation x-ray source. Considerable emphasis is also being given to the training of accelerator physics graduate students. At the same time, several improvements of SSRL`s existing facilities were made. These are described in Chapter 3. Chapter 4 describes new SSRL beam lines being commissioned. Chapter 5 discusses SSRL`s present construction projects. Chapter 6 discusses a number of projects presently underway in the engineering division. Chapter 7 describes SSRL`s advisory panels while Chapter 8 discusses SSRL`s overall organization. Chapter 9 describes the experimental progress reports.« less

  12. Synchrotron Radiation Research--An Overview.

    ERIC Educational Resources Information Center

    Bienenstock, Arthur; Winick, Herman

    1983-01-01

    Discusses expanding user community seeking access to synchrotron radiation sources, properties/sources of synchrotron radiation, permanent-magnet technology and its impact on synchrotron radiation research, factors limiting power, the density of synchrotron radiation, and research results illustrating benefit of higher flux and brightness. Also…

  13. Purification, crystallization and preliminary crystallographic analysis of biotin protein ligase from Staphylococcus aureus.

    PubMed

    Pendini, Nicole R; Polyak, Steve W; Booker, Grant W; Wallace, John C; Wilce, Matthew C J

    2008-06-01

    Biotin protein ligase from Staphylococcus aureus catalyses the biotinylation of acetyl-CoA carboxylase and pyruvate carboxylase. Recombinant biotin protein ligase from S. aureus has been cloned, expressed and purified. Crystals were grown using the hanging-drop vapour-diffusion method using PEG 8000 as the precipitant at 295 K. X-ray diffraction data were collected to 2.3 A resolution from crystals using synchrotron X-ray radiation at 100 K. The diffraction was consistent with the tetragonal space group P4(2)2(1)2, with unit-cell parameters a = b = 93.665, c = 131.95.

  14. OSA (Optical Society of America) Proceedings on Short Wavelength Coherent Radiation: Generation and Applications Held in North Falmouth, Massachusetts on 26-29 September 1988. Volume 2

    DTIC Science & Technology

    1988-09-01

    obtained using CVI 6d-2p line 142 Axial as a reference line[5]. The maximum en- hancement factor of 4.2 and corresponding cv1 gain length product of...C. Solem, and C. K. Rhodes ..... .............. 220 Multiphoton Ionization for the Production of X-Ray Laser Plasmas by P. B. Corkum and N. H...Diffraction Using Synchrotron Radiation by Rudolf Ruffer ......... ............................... 400 The Production of Long Coherence-Length Hard X

  15. Synchrotron-radiation phase-contrast imaging of human stomach and gastric cancer: in vitro studies.

    PubMed

    Tang, Lei; Li, Gang; Sun, Ying-Shi; Li, Jie; Zhang, Xiao-Peng

    2012-05-01

    The electron density resolution of synchrotron-radiation phase-contrast imaging (SR-PCI) is 1000 times higher than that of conventional X-ray absorption imaging in light elements, through which high-resolution X-ray imaging of biological soft tissue can be achieved. For biological soft tissue, SR-PCI can give better imaging contrast than conventional X-ray absorption imaging. In this study, human resected stomach and gastric cancer were investigated using in-line holography and diffraction enhanced imaging at beamline 4W1A of the Beijing Synchrotron Radiation Facility. It was possible to depict gastric pits, measuring 50-70 µm, gastric grooves and tiny blood vessels in the submucosa layer by SR-PCI. The fine structure of a cancerous ulcer was displayed clearly on imaging the mucosa. The delamination of the gastric wall and infiltration of cancer in the submucosa layer were also demonstrated on cross-sectional imaging. In conclusion, SR-PCI can demonstrate the subtle structures of stomach and gastric cancer that cannot be detected by conventional X-ray absorption imaging, which prompt the X-ray diagnosis of gastric disease to the level of the gastric pit, and has the potential to provide new methods for the imageology of gastric cancer.

  16. Synchrotron Radiation XRD Analysis of Indialite in Y-82094 Ungrouped Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; Hagiya, K.; Sawa, N.; Kimura, M.; Ohsumi, K.; Komatsu, M.; Zolensky, M.

    2016-01-01

    Y-82094 is an ungrouped type 3.2 carbonaceous chondrite, with abundant chondrules making 78 vol.% of the rock. Among these chondrules, an unusual porphyritic Al-rich magnesian chondrule is reported that consists of a cordierite-like phase, Al-rich orthopyroxene, cristobalite, and spinel surrounded by an anorthitic mesostasis. The reported chemical formula of the cordierite-like phase is Na(0.19)Mg(1.95)Fe(0.02)Al(3.66)Si(5.19)O18, which is close to stoichiometric cordierite (Mg2Al3[AlSi5O18]). Although cordierite can be present in Al-rich chondrules, it has a high temperature polymorph (indialite) and it is therefore necessary to determine whether it is cordierite or indialite in order to better constrain its formation conditions. In this abstract we report on our synchrotron radiation X-ray diffraction (SR-XRD) study of the cordierite-like phase in Y-82094.

  17. Residual strain gradient determination in metal matrix composites by synchrotron X-ray energy dispersive diffraction

    NASA Technical Reports Server (NTRS)

    Kuntz, Todd A.; Wadley, Haydn N. G.; Black, David R.

    1993-01-01

    An X-ray technique for the measurement of internal residual strain gradients near the continuous reinforcements of metal matrix composites has been investigated. The technique utilizes high intensity white X-ray radiation from a synchrotron radiation source to obtain energy spectra from small (0.001 cu mm) volumes deep within composite samples. The viability of the technique was tested using a model system with 800 micron Al203 fibers and a commercial purity titanium matrix. Good agreement was observed between the measured residual radial and hoop strain gradients and those estimated from a simple elastic concentric cylinders model. The technique was then used to assess the strains near (SCS-6) silicon carbide fibers in a Ti-14Al-21Nb matrix after consolidation processing. Reasonable agreement between measured and calculated strains was seen provided the probe volume was located 50 microns or more from the fiber/matrix interface.

  18. Synchrotron radiation-based x-ray analysis of bronze artifacts from an Iron Age site in the Judean hills.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, E. S.; Brody, A. J.; Young, M. L.

    Seven bronze bangles from Tell en-Nasbeh, northern Judah, were investigated to understand the phase composition and manufacturing process of the artifacts, and possibly suggest a provenance for their origin. Synchrotron x-ray radiation diffraction (XRD) and fluorescence (XRF) were used in the analysis to avoid any destructive sampling and at the same time penetrate through the surface into the core metal. These techniques enabled us to determine that the bangles were not just tin bronze, but leaded tin bronze. Based on excavation reports, it is unlikely that the metal objects were manufactured locally at Tell en-Nasbeh; rather, preliminary XRD and XRFmore » data point towards the neighboring region of Edom as their origin. Despite their political enmity during the Iron Age II, the data suggest that Judahite social demands for bronze may have fostered a strong economic relationship between these two polities.« less

  19. a Study of the Synchrotron Laue Method for Quantitative Crystal Structure Analysis.

    NASA Astrophysics Data System (ADS)

    Gomez de Anderez, Dora M.

    1990-01-01

    Available from UMI in association with The British Library. Quantitative crystal structure analyses have been carried out on small molecule crystals using synchrotron radiation and the Laue method. A variety of single crystal structure determinations and associated refinements are used and compared with the monochromatic analyses. The new molecular structure of 7-amino-5-bromo -4-methyl-2-oxo-1,2,3,4-tetrahidro-1, 6 -naphthyridine-8-carbonitrile (C_{10 }H_9ON_4 Br.H_2O) has been determined, first using monochromatic Mo Kalpha radiation and a four-circle diffractometer, then using synchrotron Laue diffraction photography. The structure refinements showed a R-factor of 4.97 and 14.0% for the Mo Kalpha and Laue data respectively. The molecular structure of (S)-2-chloro-2-fluoro-N-((S)-1-phenylethyl) ethanamide, (C_{10}H _{11}ClFNO), has been determined using the same crystal throughout for X-ray monochromatic analyses (Mo Kalpha and Cu K alpha) followed by synchrotron Laue data collection. The Laue and monochromatic data compare favourably. The R -factors (on F) were 6.23, 6.45 and 8.19% for the Mo K alpha, Cu Kalpha and Laue data sets respectively. The molecular structure of 3-(5-hydroxy-3-methyl-1-phenylpyrazol-4-yl)-1,3-diphenyl -prop- 2-en-1-one, (C_{25 }H_{20}N _2O_2) has been determined using the synchrotron Laue method. The results compare very well with Mo Kalpha monochromatic data. The R-factors (on F) were 4.60 and 5.29% for Mo Kalpha and Laue analysis respectively. The Laue method is assessed in locating the 20 hydrogen atoms in this structure. The structure analysis of the benzil compound ((C_6H_5 O.CO_2)) is carried out using the synchrotron Laue method firstly at room temperature and secondly at low temperature -114 ^circC. The structure shows an R-factor (on F) of 13.06% and 6.85% for each data set respectively. The synchrotron Laue method was used to collect data for ergocalciferol (Vitamin D_2). The same crystal was also used to record oscillation data with the synchrotron radiation monochromatic beam. A new molecular structure of (Dinitrato-(N,N ^'-dimethylethylene-diamine)copper(II)) has been determined using Mo Kalpha radiation on a four circle diffractometer. The refinement resulted in an R-factor (on F) of 4.06%.

  20. A Study of the Synchrotron Laue Method for Quantitative Crystal Structure Analysis

    NASA Astrophysics Data System (ADS)

    Gomez de Anderez, Dora M.

    1990-01-01

    Quantitative crystal structure analyses have been carried out on small molecule crystals using synchrotron radiation and the Laue method. A variety of single crystal structure determinations and associated refinements are used and compared with the monochromatic analyses. The new molecular structure of 7-amino-5-bromo -4-methyl-2-oxo-1,2,3,4 -tetrahidro-1,6 -naphthyridine-8-carbonitrile (C_{10 }H_9ON_4 BrcdotH_2O) has been determined, first using monochromatic Mo K alpha radiation and a four-circle diffractometer, then using synchrotron Laue diffraction photography. The structure refinements showed an R-factor of 4.97 and 14.0% for the Mo Kalpha and Laue data respectively. The molecular structure of (S)-2-chloro-2-fluoro-N-((S)-1-phenylethyl) ethanamide, (C_{10}H _{11}ClFNO), has been determined using the same crystal throughout for X-ray monochromatic analyses (Mo Kalpha and Cu K alpha) followed by synchrotron Laue data collection. The Laue and monochromatic data compare favourably. The R -factors (on F) were 6.23, 6.45 and 8.19% for the Mo K alpha, Cu Kalpha and Laue data sets respectively. The molecular structure of 3-(5-hydroxy-3-methyl-1-phenylpyrazol-4-yl)-1,3-diphenyl -prop-2-en-1-one, (C_{25}H _{20}N_2 O_2) has been determined using the synchrotron Laue method. The results compare very well with Mo Kalpha monochromatic data. The R-factors (on F) were 4.60 and 5.29% for Mo Kalpha and Laue analyses respectively. The Laue method is assessed in locating the 20 hydrogen atoms in this structure. The structure analyses of the benzil compound ((C_6H_5 OcdotCO_2)) is carried out using the synchrotron Laue method firstly at room temperature and secondly at low temperature. The structure shows an R-factor (on F) of 13.06% and 6.85% for each data set respectively. The synchrotron Laue method was used to collect data for ergocalciferol (Vitamin D_2). The same crystal was also used to record oscillation data with the synchrotron radiation monochromatic beam. A new molecular structure of (Dinitrato-(N,N ^'-dimethylethylene-diamine)copper(II)) has been determined using Mo Kalpha radiation on a four circle diffractometer. The refinement resulted in an R-factor (on F) of 4.06%.

  1. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: A new cell for X-ray absorption spectroscopy study under high pressure

    NASA Astrophysics Data System (ADS)

    Zheng, Li-Rong; Che, Rong-Zheng; Liu, Jing; Du, Yong-Hua; Zhou, Ying-Li; Hu, Tian-Dou

    2009-08-01

    X-ray absorption fine structure (XAFS) spectroscopy is a powerful technique for the investigation of the local environment around selected atoms in condensed matter. XAFS under pressure is an important method for the synchrotron source. We design a cell for a high pressure XAFS experiment. Sintered boron carbide is used as the anvils of this high pressure cell in order to obtain a full XAFS spectrum free from diffraction peaks. In addition, a hydraulic pump was adopted to make in-suit pressure modulation. High quality XAFS spectra of ZrH2 under high pressure (up to 13 GPa) were obtained by this cell.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fei; Wu, Yuan; Lou, Hongbo

    Polymorphism, which describes the occurrence of different lattice structures in a crystalline material, is a critical phenomenon in materials science and condensed matter physics. Recently, configuration disorder was compositionally engineered into single lattices, leading to the discovery of high-entropy alloys and high-entropy oxides. For these novel entropy-stabilized forms of crystalline matter with extremely high structural stability, is polymorphism still possible? Here by employing in situ high-pressure synchrotron radiation X-ray diffraction, we reveal a polymorphic transition from face-centred-cubic (fcc) structure to hexagonal-close-packing (hcp) structure in the prototype CoCrFeMnNi high-entropy alloy. The transition is irreversible, and our in situ high-temperature synchrotron radiationmore » X-ray diffraction experiments at different pressures of the retained hcp high-entropy alloy reveal that the fcc phase is a stable polymorph at high temperatures, while the hcp structure is more thermodynamically favourable at lower temperatures. Lastly, as pressure is increased, the critical temperature for the hcp-to-fcc transformation also rises.« less

  3. Role of deformation temperature on the evolution and heterogeneity of texture during equal channel angular pressing of magnesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Somjeet, E-mail: somjeetbiswas@gmail.com; Department of Materials Engineering, Indian Institute of Science, Bangalore 560012; Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures

    Investigations on texture evolution and through-thickness texture heterogeneity during equal channel angular pressing (ECAP) of pure magnesium at 200 °C, 150 °C and room temperature (RT) was carried out by neutron, high energy synchrotron X-ray and electron back-scatter diffraction. Irrespective of the ECAP temperature, a distinctive basal (B) and pyramidal (C{sub 2}) II type of fibers forms. The texture differs in the bottom 1 mm portion, where the B-fiber is shifted ~ 55° due to negative shear attributed to friction. - Highlights: • ECAP of magnesium was carried out at 200 °C, 150 °C and room temperature. • Microstructure andmore » micro-texture evolution was examined using EBSD in FEG–SEM. • Bulk-texture was studied using neutron diffraction and compared with micro-texture. • Through thickness texture heterogeneity was observed by synchrotron radiation. • Changes in these parameters with respect to deformation temperature are discussed.« less

  4. Validating a Model for Welding Induced Residual Stress Using High-Energy X-ray Diffraction

    DOE PAGES

    Mach, J. C.; Budrow, C. J.; Pagan, D. C.; ...

    2017-03-15

    Integrated computational materials engineering (ICME) provides a pathway to advance performance in structures through the use of physically-based models to better understand how manufacturing processes influence product performance. As one particular challenge, consider that residual stresses induced in fabrication are pervasive and directly impact the life of structures. For ICME to be an effective strategy, it is essential that predictive capability be developed in conjunction with critical experiments. In the present paper, simulation results from a multi-physics model for gas metal arc welding are evaluated through x-ray diffraction using synchrotron radiation. A test component was designed with intent to developmore » significant gradients in residual stress, be representative of real-world engineering application, yet remain tractable for finely spaced strain measurements with positioning equipment available at synchrotron facilities. Finally, the experimental validation lends confidence to model predictions, facilitating the explicit consideration of residual stress distribution in prediction of fatigue life.« less

  5. An electrochemical cell with sapphire windows for operando synchrotron X-ray powder diffraction and spectroscopy studies of high-power and high-voltage electrodes for metal-ion batteries.

    PubMed

    Drozhzhin, Oleg A; Tereshchenko, Ivan V; Emerich, Hermann; Antipov, Evgeny V; Abakumov, Artem M; Chernyshov, Dmitry

    2018-03-01

    A new multi-purpose operando electrochemical cell was designed, constructed and tested on the Swiss-Norwegian Beamlines BM01 and BM31 at the European Synchrotron Radiation Facility. Single-crystal sapphire X-ray windows provide a good signal-to-noise ratio, excellent electrochemical contact because of the constant pressure between the electrodes, and perfect electrochemical stability at high potentials due to the inert and non-conductive nature of sapphire. Examination of the phase transformations in the Li 1-x Fe 0.5 Mn 0.5 PO 4 positive electrode (cathode) material at C/2 and 10C charge and discharge rates, and a study of the valence state of the Ni cations in the Li 1-x Ni 0.5 Mn 1.5 O 4 cathode material for Li-ion batteries, revealed the applicability of this novel cell design to diffraction and spectroscopic investigations of high-power/high-voltage electrodes for metal-ion batteries.

  6. Validating a Model for Welding Induced Residual Stress Using High-Energy X-ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mach, J. C.; Budrow, C. J.; Pagan, D. C.

    Integrated computational materials engineering (ICME) provides a pathway to advance performance in structures through the use of physically-based models to better understand how manufacturing processes influence product performance. As one particular challenge, consider that residual stresses induced in fabrication are pervasive and directly impact the life of structures. For ICME to be an effective strategy, it is essential that predictive capability be developed in conjunction with critical experiments. In the present paper, simulation results from a multi-physics model for gas metal arc welding are evaluated through x-ray diffraction using synchrotron radiation. A test component was designed with intent to developmore » significant gradients in residual stress, be representative of real-world engineering application, yet remain tractable for finely spaced strain measurements with positioning equipment available at synchrotron facilities. Finally, the experimental validation lends confidence to model predictions, facilitating the explicit consideration of residual stress distribution in prediction of fatigue life.« less

  7. Grazing incidence synchrotron X-ray diffraction of marbles consolidated with diammonium hydrogen phosphate treatments: non-destructive probing of buried minerals

    NASA Astrophysics Data System (ADS)

    Possenti, Elena; Colombo, Chiara; Conti, Claudia; Gigli, Lara; Merlini, Marco; Plaisier, Jasper Rikkert; Realini, Marco; Gatta, G. Diego

    2018-05-01

    Diammonium hydrogen phosphate (DAP)-based consolidating treatments react with carbonatic stones and form calcium phosphates phases, whose composition depends on the availability of free calcium ions. In this work, an innovative non-destructive approach based on grazing incidence X-ray diffraction (GIXRD) with synchrotron radiation (SR) is used to investigate DAP-treated Carrara marble specimens and to study the influence of the substrate composition on the crystallization of calcium phosphate phases. The outcomes indicate that the presence of compositional micro-heterogeneity of Carrara marble favours the formation of specific phases. Dicalcium phosphate dihydrate, a calcium phosphate with a low Ca/P molar ratio, is formed on carbonatic phases with a low Ca amount, such as dolomite grains and Mg-containing veins. Furthermore, this study highlights the potentialities of SR-GIXRD as a powerful non-destructive tool for the diagnostic of Cultural Heritage objects since it allows investigating the conservation history of stone materials and their interaction with the environment.

  8. Polymorphism in a high-entropy alloy

    DOE PAGES

    Zhang, Fei; Wu, Yuan; Lou, Hongbo; ...

    2017-06-01

    Polymorphism, which describes the occurrence of different lattice structures in a crystalline material, is a critical phenomenon in materials science and condensed matter physics. Recently, configuration disorder was compositionally engineered into single lattices, leading to the discovery of high-entropy alloys and high-entropy oxides. For these novel entropy-stabilized forms of crystalline matter with extremely high structural stability, is polymorphism still possible? Here by employing in situ high-pressure synchrotron radiation X-ray diffraction, we reveal a polymorphic transition from face-centred-cubic (fcc) structure to hexagonal-close-packing (hcp) structure in the prototype CoCrFeMnNi high-entropy alloy. The transition is irreversible, and our in situ high-temperature synchrotron radiationmore » X-ray diffraction experiments at different pressures of the retained hcp high-entropy alloy reveal that the fcc phase is a stable polymorph at high temperatures, while the hcp structure is more thermodynamically favourable at lower temperatures. Lastly, as pressure is increased, the critical temperature for the hcp-to-fcc transformation also rises.« less

  9. Hard alpha-keratin degradation inside a tissue under high flux X-ray synchrotron micro-beam: a multi-scale time-resolved study.

    PubMed

    Leccia, Emilie; Gourrier, Aurélien; Doucet, Jean; Briki, Fatma

    2010-04-01

    X-rays interact strongly with biological organisms. Synchrotron radiation sources deliver very intense X-ray photon fluxes within micro- or submicro cross-section beams, resulting in doses larger than the MGy. The relevance of synchrotron radiation analyses of biological materials is therefore questionable since such doses, million times higher than the ones used in radiotherapy, can cause huge damages in tissues, with regard to not only DNA, but also proteic and lipid organizations. Very few data concerning the effect of very high X-ray doses in tissues are available in the literature. We present here an analysis of the structural phenomena which occur when the model tissue of human hair is irradiated by a synchrotron X-ray micro-beam. The choice of hair is supported by its hierarchical and partially ordered keratin structure which can be analysed inside the tissue by X-ray diffraction. To assess the damages caused by hard X-ray micro-beams (1 microm(2) cross-section), short exposure time scattering SAXS/WAXS patterns have been recorded at beamline ID13 (ESRF) after various irradiation times. Various modifications of the scattering patterns are observed, they provide fine insight of the radiation damages at various hierarchical levels and also unexpectedly provide information about the stability of the various hierarchical structural levels. It appears that the molecular level, i.e. the alpha helices which are stabilized by hydrogen bonds and the alpha-helical coiled coils which are stabilized by hydrophobic interactions, is more sensitive to radiation than the supramolecular architecture of the keratin filament and the filament packing within the keratin associated proteins matrix, which is stabilized by disulphide bonds. (c) 2009 Elsevier Inc. All rights reserved.

  10. Extremely asymmetric diffraction as a method of determining magneto-optical constants for X-rays near absorption edges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreeva, M. A., E-mail: Mandreeva1@yandex.ru; Repchenko, Yu. L., E-mail: kent160@mail.ru; Smekhova, A. G.

    2015-06-15

    The spectral dependence of the Bragg peak position under conditions of extremely asymmetric diffraction has been analyzed in the kinematical and dynamical approximations of the diffraction theory. Simulations have been performed for the L{sub 3} absorption edge of yttrium in a single-crystal YFe{sub 2} film; they have shown that the magneto-optical constants (or, equivalently, the dispersion corrections to the atomic scattering factor) for hard X-rays can be determined from this dependence. Comparison with the experimental data obtained for a Nb(4 nm)/YFe{sub 2}(40 nm〈110〉)/Fe(1.5 nm)/Nb(50 nm)/sapphire sample at the European Synchrotron Radiation Facility has been made.

  11. Application of MEMS-based x-ray optics as tuneable nanosecond choppers

    NASA Astrophysics Data System (ADS)

    Chen, Pice; Walko, Donald A.; Jung, Il Woong; Li, Zhilong; Gao, Ya; Shenoy, Gopal K.; Lopez, Daniel; Wang, Jin

    2017-08-01

    Time-resolved synchrotron x-ray measurements often rely on using a mechanical chopper to isolate a set of x-ray pulses. We have started the development of micro electromechanical systems (MEMS)-based x-ray optics, as an alternate method to manipulate x-ray beams. In the application of x-ray pulse isolation, we recently achieved a pulse-picking time window of half a nanosecond, which is more than 100 times faster than mechanical choppers can achieve. The MEMS device consists of a comb-drive silicon micromirror, designed for efficiently diffracting an x-ray beam during oscillation. The MEMS devices were operated in Bragg geometry and their oscillation was synchronized to x-ray pulses, with a frequency matching subharmonics of the cycling frequency of x-ray pulses. The microscale structure of the silicon mirror in terms of the curvature and the quality of crystallinity ensures a narrow angular spread of the Bragg reflection. With the discussion of factors determining the diffractive time window, this report showed our approaches to narrow down the time window to half a nanosecond. The short diffractive time window will allow us to select single x-ray pulse out of a train of pulses from synchrotron radiation facilities.

  12. A synchrotron X-ray diffraction deconvolution method for the measurement of residual stress in thermal barrier coatings as a function of depth.

    PubMed

    Li, C; Jacques, S D M; Chen, Y; Daisenberger, D; Xiao, P; Markocsan, N; Nylen, P; Cernik, R J

    2016-12-01

    The average residual stress distribution as a function of depth in an air plasma-sprayed yttria stabilized zirconia top coat used in thermal barrier coating (TBC) systems was measured using synchrotron radiation X-ray diffraction in reflection geometry on station I15 at Diamond Light Source, UK, employing a series of incidence angles. The stress values were calculated from data deconvoluted from diffraction patterns collected at increasing depths. The stress was found to be compressive through the thickness of the TBC and a fluctuation in the trend of the stress profile was indicated in some samples. Typically this fluctuation was observed to increase from the surface to the middle of the coating, decrease a little and then increase again towards the interface. The stress at the interface region was observed to be around 300 MPa, which agrees well with the reported values. The trend of the observed residual stress was found to be related to the crack distribution in the samples, in particular a large crack propagating from the middle of the coating. The method shows promise for the development of a nondestructive test for as-manufactured samples.

  13. Synchrotron X-ray topography of electronic materials.

    PubMed

    Tuomi, T

    2002-05-01

    Large-area transmission, transmission section, large-area back-reflection, back-reflection section and grazing-incidence topography are the geometries used when recording high-resolution X-ray diffraction images with synchrotron radiation from a bending magnet, a wiggler or an undulator of an electron or a positron storage ring. Defect contrast can be kinematical, dynamical or orientational even in the topographs recorded on the same film at the same time. In this review article limited to static topography experiments, examples of defect studies on electronic materials cover the range from voids and precipitates in almost perfect float-zone and Czochralski silicon, dislocations in gallium arsenide grown by the liquid-encapsulated Czochralski technique, the vapour-pressure controlled Czochralski technique and the vertical-gradient freeze technique, stacking faults and micropipes in silicon carbide to misfit dislocations in epitaxic heterostructures. It is shown how synchrotron X-ray topographs of epitaxic laterally overgrown gallium arsenide layer structures are successfully explained by orientational contrast.

  14. Identification of Crystalline Material in Two Interstellar Dust Candidates from the Stardust Mission

    NASA Technical Reports Server (NTRS)

    Gainsforth, Zack; Simionovici, Alexandra; Brenker, Frank E.; Schmitz, Sylvia; Burghammer, Manfred; Cloetens, Peter; Lemelle, Laurence; San Tresseras, Juan-Angel; Schoonjans, Tom; Silversmit, Geert; hide

    2012-01-01

    NASA's interstellar collector from the Stardust mission captured several particles that are now thought to be of interstellar origin. We analyzed two of these via nanodiffraction at the European Synchrotron Radiation Facility (ESRF) and found them to contain crystalline components. The unit cell of the crystalline material is determined from the diffraction patterns and the most likely mineral components are identified as olivine and spinel.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czerwinski, Andrzej; Basava, Channa; Dauter, Miroslawa

    The title compound, C 20H 37N 3O 4, also known by the acronym ALLN, is a tripeptidic inhibitor of the proteolytic activity of the proteasomes, enzyme complexes implicated in several neurodegenerative diseases and other disorders, including cancer. Thus, the crystal structure of ALLN, solved from synchrotron radiation diffraction data, revealed the molecules in extended conformation of the backbone and engaging all peptide N and O atoms in intermolecular hydrogen bonds forming an infinite antiparallel β-sheet.

  16. Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser

    DOE PAGES

    Hunter, Mark S.; Yoon, Chun Hong; DeMirci, Hasan; ...

    2016-11-04

    Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X-ray FELs) have enabled collection of diffraction information before the onset of radiation damage, yet the majority of structures solved at X-ray FELs have been phased using external information via molecular replacement. De novo phasing at X-ray FELs has proven challenging due in part to per-pulse variations in intensity andmore » wavelength. Here we report the solution of a selenobiotinyl-streptavidin structure using phases obtained by the anomalous diffraction of selenium measured at a single wavelength (Se-SAD) at the Linac Coherent Light Source. Finally, our results demonstrate Se-SAD, routinely employed at synchrotrons for novel structure determination, is now possible at X-ray FELs.« less

  17. Crystallization and preliminary X-ray diffraction analysis of the peripheral light-harvesting complex LH2 from Marichromatium purpuratum.

    PubMed

    Cranston, Laura J; Roszak, Aleksander W; Cogdell, Richard J

    2014-06-01

    LH2 from the purple photosynthetic bacterium Marichromatium (formerly known as Chromatium) purpuratum is an integral membrane pigment-protein complex that is involved in harvesting light energy and transferring it to the LH1-RC `core' complex. The purified LH2 complex was crystallized using the sitting-drop vapour-diffusion method at 294 K. The crystals diffracted to a resolution of 6 Å using synchrotron radiation and belonged to the tetragonal space group I4, with unit-cell parameters a=b=109.36, c=80.45 Å. The data appeared to be twinned, producing apparent diffraction symmetry I422. The tetragonal symmetry of the unit cell and diffraction for the crystals of the LH2 complex from this species reveal that this complex is an octamer.

  18. Crystallization and preliminary X-ray diffraction analysis of the peripheral light-harvesting complex LH2 from Marichromatium purpuratum

    PubMed Central

    Cranston, Laura J.; Roszak, Aleksander W.; Cogdell, Richard J.

    2014-01-01

    LH2 from the purple photosynthetic bacterium Marichromatium (formerly known as Chromatium) purpuratum is an integral membrane pigment–protein complex that is involved in harvesting light energy and transferring it to the LH1–RC ‘core’ complex. The purified LH2 complex was crystallized using the sitting-drop vapour-diffusion method at 294 K. The crystals diffracted to a resolution of 6 Å using synchrotron radiation and belonged to the tetragonal space group I4, with unit-cell parameters a = b = 109.36, c = 80.45 Å. The data appeared to be twinned, producing apparent diffraction symmetry I422. The tetragonal symmetry of the unit cell and diffraction for the crystals of the LH2 complex from this species reveal that this complex is an octamer. PMID:24915099

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurman-Keup, R.; Lumpkin, A. H.; Thangaraj, J.

    FAST is a facility at Fermilab that consists of a photoinjector, two superconducting capture cavities, one superconducting ILC-style cryomodule, and a small ring for studying non-linear, integrable beam optics called IOTA. This paper discusses the layout for the optical transport system that provides optical radiation to an externally located streak camera for bunch length measurements, and THz radiation to a Martin-Puplett interferometer, also for bunch length measurements. It accepts radiation from two synchrotron radiation ports in a chicane bunch compressor and a diffraction/transition radiation screen downstream of the compressor. It also has the potential to access signal from a transitionmore » radiation screen or YAG screen after the spectrometer magnet for measurements of energy-time correlations. Initial results from both the streak camera and Martin-Puplett will be presented.« less

  20. Low-dose, high-resolution and high-efficiency ptychography at STXM beamline of SSRF

    NASA Astrophysics Data System (ADS)

    Xu, Zijian; Wang, Chunpeng; Liu, Haigang; Tao, Xulei; Tai, Renzhong

    2017-06-01

    Ptychography is a diffraction-based X-ray microscopy method that can image extended samples quantitatively while remove the resolution limit imposed by image-forming optical elements. As a natural extension of scanning transmission X-ray microscopy (STXM) imaging method, we developed soft X-ray ptychographic coherent diffraction imaging (PCDI) method at the STXM endstation of BL08U beamline of Shanghai Synchrotron Radiation Facility. Compared to the traditional STXM imaging, the new PCDI method has resulted in significantly lower dose, higher resolution and higher efficiency imaging in our platform. In the demonstration experiments shown here, a spatial resolution of sub-10 nm was obtained for a gold nanowires sample, which is much better than the limit resolution 30 nm of the STXM method, while the radiation dose is only 1/12 of STXM.

  1. In-situ synchrotron wide-angle X-ray diffraction as a rapid method for cocrystal/salt screening.

    PubMed

    Dong, Pin; Lin, Ling; Li, Yongcheng; Huang, Zhengwei; Lang, Tianqun; Wu, Chuanbin; Lu, Ming

    2015-12-30

    The purpose of this work was to explore in-situ synchrotron wide-angle X-ray diffraction (WAXD) as a rapid and accurate tool to screen and monitor the formation of cocrystal/salts during heating. The active pharmaceutical ingredients (caffeine, carbamazepine and lamotrigine) were respectively mixed with the coformer (saccharin), and then heated by the hot stage. Real-time process monitoring was performed using synchrotron WAXD to assess cocrystal formation and subsequently compared to differential scanning calorimetry (DSC) measurements. The effect of heating rates and cocrystal growth behavior were investigated. Synchrotron WAXD was fast and sensitive to detect cocrystal formation with the appearance of characteristic diffraction rings, even at the heating rate of 30°C/min, while DSC curves showed overlapped peaks. Unlike the indirect characterization of DSC on endo/exothermic peaks, synchrotron WAXD can directly and qualitatively determine cocrystal by diffraction peaks. The diffraction intensity-temperature curves and the corresponding first-derivative curves clearly exhibited the growth behavior of cocrystal upon heating, providing useful information to optimize the process temperature of hot melt extrusion to continuously manufacture cocrystal. The study suggests that in-situ synchrotron WAXD could provide a one-step process to screen cocrystal at high efficiency and reveal the details of cocrystal/salts growth behavior. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The protein crystallography beamline at LNLS, the Brazilian National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Polikarpov, I.; Oliva, G.; Castellano, E. E.; Garratt, R. C.; Arruda, P.; Leite, A.; Craievich, A.

    1998-02-01

    The Brazilian National Synchrotron Light Laboratory - LNLS, will have a dedicated protein crystallography beamline. The beamline under construction includes cylindrical mirror and bent crystal monochromator focusing the high flux of synchrotron radiation in the horizontal plane at the position of the sample. The monochromatic radiation will be tuneable between 2.0 and 1.0 Å with the optimum wavelength at 1.3-1.6 Å, chosen with the aim of maximizing the photon flux from the bending magnets of the storage ring (1.37 GeV). Diffraction images will be recorded on a commercial image plate detector system with on-line readout. The beamline set-up will include cooler/chiller for the samples and biochemical lab for crystallization, heavy-metal soaks, crystal storage and mounting at 22°C and 4°C, will also be available. The facility, intended to serve the national and international community, is planned to be brought into operation in the second half of 1997. It is foreseen that the commissioning of the first protein crystallography beamline in Latin America will boost the number of protein structures determined locally and will increase the general interest of the molecular biology and biochemical research community of Brazil in this area.

  3. Experiments with phase transitions at very high pressure

    NASA Technical Reports Server (NTRS)

    Spain, I. L.

    1984-01-01

    A diamond anvil cell is described which was developed for studying hydrogen and other materials to pressure above 100 PGa, including measurements at low temperature. The benefits of X-ray diffraction using synchrotron radiation and using a fixed anode source are examined as well as the optimization of X-ray diffraction at low temperature. A Ge diode detector was incorporated into apparatus for measuring optical absorption, reflectance, and fluorescence in order to enable luminescence studies and Raman spectra were obtained. Results of experiments on Si, Ge, GaP, InAs, hydrogen, benzene, nitrogen, graphite, and the superconductor CeCu2Si2 are given.

  4. Purification, crystallization and preliminary crystallographic analysis of biotin protein ligase from Staphylococcus aureus

    PubMed Central

    Pendini, Nicole R.; Polyak, Steve W.; Booker, Grant W.; Wallace, John C.; Wilce, Matthew C. J.

    2008-01-01

    Biotin protein ligase from Staphylococcus aureus catalyses the biotinylation of acetyl-CoA carboxylase and pyruvate carboxylase. Recombinant biotin protein ligase from S. aureus has been cloned, expressed and purified. Crystals were grown using the hanging-drop vapour-diffusion method using PEG 8000 as the precipitant at 295 K. X-ray diffraction data were collected to 2.3 Å resolution from crystals using synchrotron X-ray radiation at 100 K. The diffraction was consistent with the tetragonal space group P42212, with unit-cell parameters a = b = 93.665, c = 131.95. PMID:18540065

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graceffa, R.; Burghammer, M.; Davies, R. J.

    Using stroboscopic techniques, diffraction patterns of ballistic paraffin wax microdrops have been observed. The microdrops, generated by a high-temperature ink-jet system, travel through the 1 {mu}m synchrotron radiation beam with a speed of about 1.4 m/s. Diffraction patterns were recorded in flight by a charge couple device with a microchannel plate image intensifier stage, which was activated with the microdrop generation frequency of 1000 Hz during 2 {mu}s. The data show liquid microdrops with a constant temperature up to 8 mm from the ink-jet system capillary exit. The general technique could be adapted for studying fast structural processes, such asmore » protein conformational changes in aqueous microdrops.« less

  6. Metrology of variable-line-spacing x-ray gratings using the APS Long Trace Profiler

    NASA Astrophysics Data System (ADS)

    Sheung, Janet; Qian, Jun; Sullivan, Joseph; Thomasset, Muriel; Manton, Jonathan; Bean, Sunil; Takacs, Peter; Dvorak, Joseph; Assoufid, Lahsen

    2017-09-01

    As resolving power targets have increased with each generation of beamlines commissioned in synchrotron radiation facilities worldwide, diffraction gratings are quickly becoming crucial optical components for meeting performance targets. However, the metrology of variable-line-spacing (VLS) gratings for high resolution beamlines is not widespread; in particular, no metrology facility at any US DOE facility is currently equipped to fully characterize such gratings. To begin to address this issue, the Optics Group at the Advanced Photon Source at Argonne, in collaboration with SOLEIL and with support from Brookhaven National Laboratory (BNL), has developed an alternative beam path addition to the Long Trace Profiler (LTP) at Argonne's Advanced Photon Source. This significantly expands the functionality of the LTP not only to measure mirrors surface slope profile at normal incidence, but also to characterize the groove density of VLS diffraction gratings in the Littrow incidence up to 79°, which covers virtually all diffraction gratings used at synchrotrons in the first order. The LTP light source is a 20mW HeNe laser, which yields enough signal for diffraction measurements to be performed on low angle blazed gratings optimized for soft X-ray wavelengths. We will present the design of the beam path, technical requirements for the optomechanics, and our data analysis procedure. Finally, we discuss challenges still to be overcome and potential limitations with use of the LTP to perform metrology on diffraction gratings.

  7. Microstructural evolution of neutron irradiated 3C-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric

    The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.

  8. Microstructural evolution of neutron irradiated 3C-SiC

    DOE PAGES

    Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric; ...

    2017-03-18

    The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.

  9. Basic design of a multi wire proportional counter using Garfield++ for ILSF

    NASA Astrophysics Data System (ADS)

    Ghahremani Gol, M.; Ashrafi, S.; Rahighi, J.

    2016-12-01

    The Iranian Light Source Facility (ILSF) is a new 3 GeV third generation synchrotron radiation facility in Middle East, which at the time being is in its design stage. An important aspect for the scientific success of this new source will be the availability of well adapted detectors. Position-sensitive X-ray detectors have played an important role in synchrotron radiation X-ray experiments for many years and are still in use. An operational one-dimensional multiwire position sensitive detector with delay line readout produced by ILSF showed a position resolution of 230 μm. In this paper, we introduce a 2-D position sensitive gas detector based on a multiwire proportional chamber which will be used in small/wide angle scattering and diffraction experiments with synchrotron radiation at the ILSF. The parameters of its components, including the gas filling, gas pressure, temperature, the geometry of anode and cathodes planes as well as the expected performance of the designed system will be described in the following. For the design and the simulation of MWPC the Elmer and Garfield++ codes have been employed. We have built and tested a MWPC as a prototype at ILSF. The results obtained so far show a good position sensing. After primary test the detector has been optimized and is now ready for test at Elettra.

  10. THz near-field imaging of biological tissues employing synchrotron radiation (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Schade, Ulrich; Holldack, Karsten; Martin, Michael C.; Fried, Daniel

    2005-04-01

    Terahertz scanning near-field infrared microscopy (SNIM) below 1 THz is demonstrated. The near-field technique benefits from the broadband and highly brilliant coherent synchrotron radiation (CSR) from an electron storage ring and from a detection method based on locking on to the intrinsic time structure of the synchrotron radiation. The scanning microscope utilizes conical waveguides as near-field probes with apertures smaller than the wavelength. Different cone approaches have been investigated to obtain maximum transmittance. Together with a Martin-Puplett spectrometer the set-up enables spectroscopic mapping of the transmittance of samples well below the diffraction limit. Spatial resolution down to about λ/40 at 2 wavenumbers (0.06 THz) is derived from the transmittance spectra of the near-field probes. The potential of the technique is exemplified by imaging biological samples. Strongly absorbing living leaves have been imaged in transmittance with a spatial resolution of 130 μm at about 12 wavenumbers (0.36 THz). The THz near-field images reveal distinct structural differences of leaves from different plants investigated. The technique presented also allows spectral imaging of bulky organic tissues. Human teeth samples of various thicknesses have been imaged between 2 and 20 wavenumbers (between 0.06 and 0.6 THz). Regions of enamel and dentin within tooth samples are spatially and spectrally resolved, and buried caries lesions are imaged through both the outer enamel and into the underlying dentin.

  11. A vidicon camera for real time X-ray diffraction studies on polymers using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Prieske, W.; Riekel, C.; Koch, M. H. J.; Zachmann, H. G.

    1983-04-01

    A Westinghouse Vidicon camera with a ZnS(Ag) or Gd 2S 2O: Tb covered fiber optics plate has been used to study the change in the structure of oriented polyethylene terephthalate during heat treament. The data were stored on videotape. Once completed, the system will allow to read out the pictures via an analogue/digital converter into a PDP11/24 computer.

  12. Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warkentin, Matthew A.; Atakisi, Hakan; Hopkins, Jesse B.

    Serial synchrotron-based crystallography using intense microfocused X-ray beams, fast-framing detectors and protein microcrystals held at 300 K promises to expand the range of accessible structural targets and to increase overall structure-pipeline throughputs. To explore the nature and consequences of X-ray radiation damage under microbeam illumination, the time-, dose- and temperature-dependent evolution of crystal diffraction have been measured with maximum dose rates of 50 MGy s −1 . At all temperatures and dose rates, the integrated diffraction intensity for a fixed crystal orientation shows non-exponential decays with dose. Non-exponential decays are a consequence of non-uniform illumination and the resulting spatial evolution of diffracted intensitymore » within the illuminated crystal volume. To quantify radiation-damage lifetimes and the damage state of diffracting crystal regions, a revised diffraction-weighted dose (DWD) is defined and it is shown that for Gaussian beams the DWD becomes nearly independent of actual dose at large doses. An apparent delayed onset of radiation damage seen in some intensity–dose curves is in fact a consequence of damage. Intensity fluctuations at high dose rates may arise from the impulsive release of gaseous damage products. Accounting for these effects, data collection at the highest dose rates increases crystal radiation lifetimes near 300 K (but not at 100 K) by a factor of ∼1.5–2 compared with those observed at conventional dose rates. Improved quantification and modeling of the complex spatio-temporal evolution of protein microcrystal diffraction in intense microbeams will enable more efficient data collection, and will be essential in improving the accuracy of structure factors and structural models.« less

  13. Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warkentin, Matthew A.; Atakisi, Hakan; Hopkins, Jesse B.

    Serial synchrotron-based crystallography using intense microfocused X-ray beams, fast-framing detectors and protein microcrystals held at 300 K promises to expand the range of accessible structural targets and to increase overall structure-pipeline throughputs. To explore the nature and consequences of X-ray radiation damage under microbeam illumination, the time-, dose- and temperature-dependent evolution of crystal diffraction have been measured with maximum dose rates of 50 MGy s –1. At all temperatures and dose rates, the integrated diffraction intensity for a fixed crystal orientation shows non-exponential decays with dose. Non-exponential decays are a consequence of non-uniform illumination and the resulting spatial evolution ofmore » diffracted intensity within the illuminated crystal volume. To quantify radiation-damage lifetimes and the damage state of diffracting crystal regions, a revised diffraction-weighted dose (DWD) is defined and it is shown that for Gaussian beams the DWD becomes nearly independent of actual dose at large doses. An apparent delayed onset of radiation damage seen in some intensity–dose curves is in fact a consequence of damage. Intensity fluctuations at high dose rates may arise from the impulsive release of gaseous damage products. Accounting for these effects, data collection at the highest dose rates increases crystal radiation lifetimes near 300 K (but not at 100 K) by a factor of ~1.5–2 compared with those observed at conventional dose rates. As a result, improved quantification and modeling of the complex spatio-temporal evolution of protein microcrystal diffraction in intense microbeams will enable more efficient data collection, and will be essential in improving the accuracy of structure factors and structural models.« less

  14. Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams

    DOE PAGES

    Warkentin, Matthew A.; Atakisi, Hakan; Hopkins, Jesse B.; ...

    2017-10-13

    Serial synchrotron-based crystallography using intense microfocused X-ray beams, fast-framing detectors and protein microcrystals held at 300 K promises to expand the range of accessible structural targets and to increase overall structure-pipeline throughputs. To explore the nature and consequences of X-ray radiation damage under microbeam illumination, the time-, dose- and temperature-dependent evolution of crystal diffraction have been measured with maximum dose rates of 50 MGy s –1. At all temperatures and dose rates, the integrated diffraction intensity for a fixed crystal orientation shows non-exponential decays with dose. Non-exponential decays are a consequence of non-uniform illumination and the resulting spatial evolution ofmore » diffracted intensity within the illuminated crystal volume. To quantify radiation-damage lifetimes and the damage state of diffracting crystal regions, a revised diffraction-weighted dose (DWD) is defined and it is shown that for Gaussian beams the DWD becomes nearly independent of actual dose at large doses. An apparent delayed onset of radiation damage seen in some intensity–dose curves is in fact a consequence of damage. Intensity fluctuations at high dose rates may arise from the impulsive release of gaseous damage products. Accounting for these effects, data collection at the highest dose rates increases crystal radiation lifetimes near 300 K (but not at 100 K) by a factor of ~1.5–2 compared with those observed at conventional dose rates. As a result, improved quantification and modeling of the complex spatio-temporal evolution of protein microcrystal diffraction in intense microbeams will enable more efficient data collection, and will be essential in improving the accuracy of structure factors and structural models.« less

  15. Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams

    DOE PAGES

    Warkentin, Matthew A.; Atakisi, Hakan; Hopkins, Jesse B.; ...

    2017-10-13

    Serial synchrotron-based crystallography using intense microfocused X-ray beams, fast-framing detectors and protein microcrystals held at 300 K promises to expand the range of accessible structural targets and to increase overall structure-pipeline throughputs. To explore the nature and consequences of X-ray radiation damage under microbeam illumination, the time-, dose- and temperature-dependent evolution of crystal diffraction have been measured with maximum dose rates of 50 MGy s −1 . At all temperatures and dose rates, the integrated diffraction intensity for a fixed crystal orientation shows non-exponential decays with dose. Non-exponential decays are a consequence of non-uniform illumination and the resulting spatial evolution of diffracted intensitymore » within the illuminated crystal volume. To quantify radiation-damage lifetimes and the damage state of diffracting crystal regions, a revised diffraction-weighted dose (DWD) is defined and it is shown that for Gaussian beams the DWD becomes nearly independent of actual dose at large doses. An apparent delayed onset of radiation damage seen in some intensity–dose curves is in fact a consequence of damage. Intensity fluctuations at high dose rates may arise from the impulsive release of gaseous damage products. Accounting for these effects, data collection at the highest dose rates increases crystal radiation lifetimes near 300 K (but not at 100 K) by a factor of ∼1.5–2 compared with those observed at conventional dose rates. Improved quantification and modeling of the complex spatio-temporal evolution of protein microcrystal diffraction in intense microbeams will enable more efficient data collection, and will be essential in improving the accuracy of structure factors and structural models.« less

  16. High-energy synchrotron x-ray techniques for studying irradiated materials

    DOE PAGES

    Park, Jun-Sang; Zhang, Xuan; Sharma, Hemant; ...

    2015-03-20

    High performance materials that can withstand radiation, heat, multiaxial stresses, and corrosive environment are necessary for the deployment of advanced nuclear energy systems. Nondestructive in situ experimental techniques utilizing high energy x-rays from synchrotron sources can be an attractive set of tools for engineers and scientists to investigate the structure–processing–property relationship systematically at smaller length scales and help build better material models. In this paper, two unique and interconnected experimental techniques, namely, simultaneous small-angle/wide-angle x-ray scattering (SAXS/WAXS) and far-field high-energy diffraction microscopy (FF-HEDM) are presented. Finally, the changes in material state as Fe-based alloys are heated to high temperatures ormore » subject to irradiation are examined using these techniques.« less

  17. Diffraction and Transmission Synchrotron Imaging at the German Light Source ANKA--Potential Industrial Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rack, Alexander; Weitkamp, Timm; European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex

    2009-03-10

    Diffraction and transmission synchrotron imaging methods have proven to be highly suitable for investigations in materials research and non-destructive evaluation. The high flux and spatial coherence of X-rays from modern synchrotron light sources allows one to work using high resolution and different contrast modalities. This article gives a short overview of different transmission and diffraction imaging methods with high potential for industrial applications, now available for commercial access via the German light source ANKA (Forschungszentrum Karlsruhe) and its new department ANKA Commercial Service (ANKA COS, http://www.anka-cos.de)

  18. Puzzling Intergrowth in Cerium Nitridophosphate Unraveled by Joint Venture of Aberration-Corrected Scanning Transmission Electron Microscopy and Synchrotron Diffraction.

    PubMed

    Kloß, Simon D; Neudert, Lukas; Döblinger, Markus; Nentwig, Markus; Oeckler, Oliver; Schnick, Wolfgang

    2017-09-13

    Thorough investigation of nitridophosphates has rapidly accelerated through development of new synthesis strategies. Here we used the recently developed high-pressure metathesis to prepare the first rare-earth metal nitridophosphate, Ce 4 Li 3 P 18 N 35 , with a high degree of condensation >1/2. Ce 4 Li 3 P 18 N 35 consists of an unprecedented hexagonal framework of PN 4 tetrahedra and exhibits blue luminescence peaking at 455 nm. Transmission electron microscopy (TEM) revealed two intergrown domains with slight structural and compositional variations. One domain type shows extremely weak superstructure phenomena revealed by atomic-resolution scanning TEM (STEM) and single-crystal diffraction using synchrotron radiation. The corresponding superstructure involves a modulated displacement of Ce atoms in channels of tetrahedra 6-rings. The displacement model was refined in a supercell as well as in an equivalent commensurate (3 + 2)-dimensional description in superspace group P6 3 (α, β, 0)0(-α - β, α, 0)0. In the second domain type, STEM revealed disordered vacancies of the same Ce atoms that were modulated in the first domain type, leading to sum formula Ce 4-0.5x Li 3 P 18 N 35-1.5x O 1.5x (x ≈ 0.72) of the average structure. The examination of these structural intricacies may indicate the detection limit of synchrotron diffraction and TEM. We discuss the occurrence of either Ce displacements or Ce vacancies that induce the incorporation of O as necessary stabilization of the crystal structure.

  19. Where is crystallography going?

    PubMed Central

    Ashton, Alun W.; Sorensen, Thomas

    2018-01-01

    Macromolecular crystallography (MX) has been a motor for biology for over half a century and this continues apace. A series of revolutions, including the production of recombinant proteins and cryo-crystallography, have meant that MX has repeatedly reinvented itself to dramatically increase its reach. Over the last 30 years synchrotron radiation has nucleated a succession of advances, ranging from detectors to optics and automation. These advances, in turn, open up opportunities. For instance, a further order of magnitude could perhaps be gained in signal to noise for general synchrotron experiments. In addition, X-ray free-electron lasers offer to capture fragments of reciprocal space without radiation damage, and open up the subpicosecond regime of protein dynamics and activity. But electrons have recently stolen the limelight: so is X-ray crystallography in rude health, or will imaging methods, especially single-particle electron microscopy, render it obsolete for the most interesting biology, whilst electron diffraction enables structure determination from even the smallest crystals? We will lay out some information to help you decide. PMID:29533241

  20. A comparative study on the experimentally derived electron densities of three protease inhibitor model compounds.

    PubMed

    Grabowsky, Simon; Pfeuffer, Thomas; Morgenroth, Wolfgang; Paulmann, Carsten; Schirmeister, Tanja; Luger, Peter

    2008-07-07

    In order to contribute to a rational design of optimised protease inhibitors which can covalently block the nucleophilic amino acids of the proteases' active sites, we have chosen three model compounds (aziridine , oxirane and acceptor-substituted olefin ) for the examination of their electron-density distribution. Therefore, high-resolution low temperature (9, 27 and 100 K) X-ray diffraction experiments on single-crystals were carried out with synchrotron and conventional X-radiation. It could be shown by the analysis of the electron density using mainly Bader's Theory of Atoms in Molecules, Volkov's EPMM method for interaction energies, electrostatic potentials and Gatti's Source Function that aziridine is most suitable for drug design in this field. A regioselective nucleophilic attack at carbon atom C1 could be predicted and even hints about the reaction's stereoselectivity could be obtained. Moreover, the comparison between two data sets of aziridine (conventional X-ray source vs. synchrotron radiation) gave an estimate concerning the reproducibility of the quantitative results.

  1. Application of white beam synchrotron radiation topography to the analysis of twins

    NASA Astrophysics Data System (ADS)

    Yao, G.-D.; Dudley, M.; Hou, S.-Y.; DiSalvo, R.

    1991-05-01

    White beam synchrotron X-ray topography (WBSXRT) has been used to characterize room temperature twinning structures in lanthanum gallate and P-terphenyl single crystals. Both Laue and Bragg geometries are utilized to reveal the nature of twinning in LaGaO 3. The geometric relationships between the twin related domains and the directions of the corresponding diffracted beams are used to establish the presence of reflection twins on (11¯2) orth, (11¯2¯) orth and (11¯0) orth planes. Also described is the application of WBSXRT to reveal the twin law in the solution grown organic crystal p-terphenyl. The active twin plane was unambiguously determined to be (201) by determination of the orientation relationship between parent and twinned structures through Laue pattern analysis. Twin lamellae with the same twin plane were also observed. For both materials, no radiation damage was observed throughout the experiments. These results demonstrate the usefulness of WBSXRT for the study of twins.

  2. Determination of surface morphology of TiO2 nanostructure using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Das, Gangadhar; Kumar, Manoj; Biswas, A. K.; Khooha, Ajay; Mondal, Puspen; Tiwari, M. K.

    2017-05-01

    Nanostructures of Titanium oxide (TiO2) are being studied for many promising applications, e.g., solar photovoltaics, solar water splitting for H2 fuel generation etc., due to their excellent photo-catalytic properties. We have synthesized low-dimensional TiO2 nanoparticles by gas phase CW CO2 laser pyrolysis. The laser synthesis process has been optimized for the deposition of highly pure, nearly mono-dispersed TiO2 nanoparticles on silicon substrates. Hard x-ray standing wave-field (XSW) measurements in total reflection geometry were carried out on the BL-16 beamline of Indus-2 synchrotron radiation facility in combination with x-ray reflectivity and grazing incidence x-ray fluorescence measurements for the determination of surface morphology of the deposited TiO2 nanostructures. The average particle size of TiO2 nanostructure estimated using transmission electron microscopy (TEM) was found to closely agree with the XSW and grazing incidence x-ray diffraction (GIXRD) results.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, Mark S.; Yoon, Chun Hong; DeMirci, Hasan

    Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X-ray FELs) have enabled collection of diffraction information before the onset of radiation damage, yet the majority of structures solved at X-ray FELs have been phased using external information via molecular replacement. De novo phasing at X-ray FELs has proven challenging due in part to per-pulse variations in intensity andmore » wavelength. Here we report the solution of a selenobiotinyl-streptavidin structure using phases obtained by the anomalous diffraction of selenium measured at a single wavelength (Se-SAD) at the Linac Coherent Light Source. Finally, our results demonstrate Se-SAD, routinely employed at synchrotrons for novel structure determination, is now possible at X-ray FELs.« less

  4. Automated X-Ray Diffraction of Irradiated Materials

    DOE PAGES

    Rodman, John; Lin, Yuewei; Sprouster, David; ...

    2017-10-26

    Synchrotron-based X-ray diffraction (XRD) and small-angle Xray scattering (SAXS) characterization techniques used on unirradiated and irradiated reactor pressure vessel steels yield large amounts of data. Machine learning techniques, including PCA, offer a novel method of analyzing and visualizing these large data sets in order to determine the effects of chemistry and irradiation conditions on the formation of radiation induced precipitates. In order to run analysis on these data sets, preprocessing must be carried out to convert the data to a usable format and mask the 2-D detector images to account for experimental variations. Once the data has been preprocessed, itmore » can be organized and visualized using principal component analysis (PCA), multi-dimensional scaling, and k-means clustering. In conclusion, from these techniques, it is shown that sample chemistry has a notable effect on the formation of the radiation induced precipitates in reactor pressure vessel steels.« less

  5. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries

    PubMed Central

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-01-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions. PMID:27324109

  6. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-06-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions.

  7. Asymmetry in serial femtosecond crystallography data.

    PubMed

    Sharma, Amit; Johansson, Linda; Dunevall, Elin; Wahlgren, Weixiao Y; Neutze, Richard; Katona, Gergely

    2017-03-01

    Serial crystallography is an increasingly important approach to protein crystallography that exploits both X-ray free-electron laser (XFEL) and synchrotron radiation. Serial crystallography recovers complete X-ray diffraction data by processing and merging diffraction images from thousands of randomly oriented non-uniform microcrystals, of which all observations are partial Bragg reflections. Random fluctuations in the XFEL pulse energy spectrum, variations in the size and shape of microcrystals, integrating over millions of weak partial observations and instabilities in the XFEL beam position lead to new types of experimental errors. The quality of Bragg intensity estimates deriving from serial crystallography is therefore contingent upon assumptions made while modeling these data. Here it is observed that serial femtosecond crystallography (SFX) Bragg reflections do not follow a unimodal Gaussian distribution and it is recommended that an idealized assumption of single Gaussian peak profiles be relaxed to incorporate apparent asymmetries when processing SFX data. The phenomenon is illustrated by re-analyzing data collected from microcrystals of the Blastochloris viridis photosynthetic reaction center and comparing these intensity observations with conventional synchrotron data. The results show that skewness in the SFX observations captures the essence of the Wilson plot and an empirical treatment is suggested that can help to separate the diffraction Bragg intensity from the background.

  8. Sub-500  nm hard x ray focusing by compound long kinoform lenses.

    PubMed

    Liao, Keliang; Liu, Jing; Liang, Hao; Wu, Xuehui; Zhang, Kai; Yuan, Qingxi; Yi, Futing; Sheng, Weifan

    2016-01-01

    The focusing performance of polymethyl methacrylate compound long kinoform lenses with 70 μm aperture and 19.5 mm focal length was characterized with 8 keV x rays using the knife-edge scan method at the 4W1A transmission x-ray microscope beamline of Beijing Synchrotron Radiation Facility. The experiment result shows a best FWHM focus size of 440 nm with 31% diffraction efficiency.

  9. In Situ Synchrotron Radiation X-ray Diffraction Study on Phase and Oxide Growth during a High Temperature Cycle of a NiTi-20 at.% Zr High Temperature Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Carl, Matthew; Van Doren, Brian; Young, Marcus L.

    2018-03-01

    Ternary additions to binary NiTi shape memory alloys are known to significantly affect the characteristic martensite-to-austenite phase transformation, i.e., decrease or increase transformation temperatures. High temperature shape memory alloys can be created by adding Au, Pt, Pd, Hf, or Zr to binary NiTi in appropriate amounts; however, the majority of these ternary additions are exceedingly expensive, unfortunately making them impractical for most commercial applications. Zr is the exception of the group, but it is often disregarded because of its poor workability and thermal stability. In an effort to find a temperature range that allows for the potential workability of NiTiZr alloys in normal atmosphere environments and to gain understanding as to the cause of failure during processing, a NiTi-20 at.% Zr was subjected to a thermal cycle ranging from RT to 1000 °C with short 15 min holds at select temperatures during both heating and cooling while simultaneously collecting high-energy synchrotron radiation X-ray diffraction measurements. This study provides valuable insight into the kinetics of precipitation and oxide formation and its relationship to processing. In addition, scanning electron microscopy was performed on five samples, each isothermally held to examine precipitation and oxide structure and growth.

  10. In Situ Synchrotron Radiation X-ray Diffraction Study on Phase and Oxide Growth during a High Temperature Cycle of a NiTi-20 at.% Zr High Temperature Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Carl, Matthew; Van Doren, Brian; Young, Marcus L.

    2018-02-01

    Ternary additions to binary NiTi shape memory alloys are known to significantly affect the characteristic martensite-to-austenite phase transformation, i.e., decrease or increase transformation temperatures. High temperature shape memory alloys can be created by adding Au, Pt, Pd, Hf, or Zr to binary NiTi in appropriate amounts; however, the majority of these ternary additions are exceedingly expensive, unfortunately making them impractical for most commercial applications. Zr is the exception of the group, but it is often disregarded because of its poor workability and thermal stability. In an effort to find a temperature range that allows for the potential workability of NiTiZr alloys in normal atmosphere environments and to gain understanding as to the cause of failure during processing, a NiTi-20 at.% Zr was subjected to a thermal cycle ranging from RT to 1000 °C with short 15 min holds at select temperatures during both heating and cooling while simultaneously collecting high-energy synchrotron radiation X-ray diffraction measurements. This study provides valuable insight into the kinetics of precipitation and oxide formation and its relationship to processing. In addition, scanning electron microscopy was performed on five samples, each isothermally held to examine precipitation and oxide structure and growth.

  11. Applications of X-Ray Micro-Beam for Data Collection.

    PubMed

    Sanishvili, Ruslan; Fischetti, Robert F

    2017-01-01

    Micro-diffraction tools for macromolecular crystallography, first developed at the end of 1990s and now an integral part of many synchrotron beamlines, enable some of the experiments which were not feasible just a decade or so ago. These include data collection from very small samples, just a few micrometers in size; from larger, but severely inhomogeneous samples; and from samples which are optically invisible. Improved micro-diffraction tools led to improved signal-to-noise ratio, to mitigation of radiation damage in some cases, and to better-designed diffraction experiments. Small, micron-scale beams can be attained in different ways and knowing the details of the implementation is important in order to design the diffraction experiment properly. Similarly, precision, reproducibility and stability of the goniometry, and caveats of detection systems need to be taken into account. Lastly, to make micro-diffraction widely applicable, the sophistication, robustness, and user-friendliness of these tools are just as important as the technical capabilities.

  12. Effect of Destined High-Pressure Torsion on the Structure and Mechanical Properties of Rare Earth-Based Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Cheng, H.; Jiang, X.; Wu, M. L.; Li, G.

    2018-03-01

    Changes in the atomic structure and mechanical properties of rare earth-based metallic glasses caused by destined high-pressure torsion (HPT) were studied by X-ray diffraction synchrotron radiation and nanoindentation. Results showed that destined HPT improved nanohardness and wear resistance, which indicated the significant contributions of this technique. The diffraction patterns showed that the contents of pairs between solvent and solute atoms with a large negative mixing enthalpy increased, whereas those of pairs between solvent atoms and between solute atoms decreased after destined HPT. Thus, the process was improved by increasing the proportion of high-intensity pairs between solvent and solute atoms.

  13. High-pressure x-ray diffraction study on lithium borohydride using a synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Nakano, S.; Nakayama, A.; Kikegawa, T.

    2008-07-01

    Lithium borohydride (LiBH4) was compressed up to 10 GPa using a diamond-anvil-cell to investigate its high-pressure structure. In-situ x-ray diffraction profiles indicated a pressure-induced transformation at 1.1 GPa, which was consistent with the previous experimental observation such as Raman scattering spectroscopy. The high-pressure phase was indexed on a tetragonal symmetry of P42/mmc, which was not corresponding some structural models proposed by previous calculation studies. An unknown substance (presumably another Li-B-H compound), which was contained in the starting material, also transformed into its high-pressure phase at 0.6 GPa without any relation to the transformation of LiBH4.

  14. Determination of the occurrence of gold in an unoxidized Carlin-type ore sample using synchrotron radiation

    USGS Publications Warehouse

    Chen, J.R.; Chao, E.C.T.; Minkin, J.A.; Back, J.M.; Bagby, W.C.; Rivers, M.L.; Sutton, S.R.; Gordon, B.M.; Hanson, A.L.; Jones, K.W.

    1987-01-01

    The occurrence of the so-called invisible gold in two unoxidized Carlin-type gold samples from Nevada has been determined using synchrotron X-ray fluorescence (SXRF) analysis at the National Synchrotron Light Source, Brookhaven National Laboratory. A bedded sample from the East ore zone of the Carlin deposit and a breccia sample from Horse Canyon were analyzed. Preliminary results show that gold is found only in the Horse Canyon breccia sample. Experimental details including other X-ray line and diffraction peak interferences, standards used, and minimum detection limits (MDLs) are discussed. Gold, with a MDL range of 0.8 to 3 ppm, was not detected in euhedral pyrite crystals except in the interior porous portion of one grain. Gold was detected in some parts of the matrix. The phase which contains gold has not yet been identified. The highest content of gold so far analyzed is about 40 ppm. There are interesting implications of these new findings. ?? 1987.

  15. Chemical mapping of paleontological and archeological artifacts with synchrotron X-rays.

    PubMed

    Bergmann, Uwe; Manning, Phillip L; Wogelius, Roy A

    2012-01-01

    The application of the recently developed synchrotron rapid scanning X-ray fluorescence (SRS-XRF) technique to the mapping of large objects is the focus of this review. We discuss the advantages of SRS-XRF over traditional systems and the use of other synchrotron radiation (SR) techniques to provide corroborating spectroscopic and diffraction analyses during the same analytical session. After reviewing routine techniques used to analyze precious specimens, we present several case studies that show how SR-based methods have been successfully applied in archeology and paleontology. For example, SRS-XRF imaging of a seventh-century Qur'ān palimpsest and an overpainted original opera score from Luigi Cherubini is described. We also review the recent discovery of soft-tissue residue in fossils of Archaeopteryx and an ancient reptile, as well as work that has successfully resolved the remnants of pigment in Confuciusornis sanctus, a 120-million-year-old fossil of the oldest documented bird with a fully derived avian beak.

  16. MxCuBE: a synchrotron beamline control environment customized for macromolecular crystallography experiments

    PubMed Central

    Gabadinho, José; Beteva, Antonia; Guijarro, Matias; Rey-Bakaikoa, Vicente; Spruce, Darren; Bowler, Matthew W.; Brockhauser, Sandor; Flot, David; Gordon, Elspeth J.; Hall, David R.; Lavault, Bernard; McCarthy, Andrew A.; McCarthy, Joanne; Mitchell, Edward; Monaco, Stéphanie; Mueller-Dieckmann, Christoph; Nurizzo, Didier; Ravelli, Raimond B. G.; Thibault, Xavier; Walsh, Martin A.; Leonard, Gordon A.; McSweeney, Sean M.

    2010-01-01

    The design and features of a beamline control software system for macromolecular crystallography (MX) experiments developed at the European Synchrotron Radiation Facility (ESRF) are described. This system, MxCuBE, allows users to easily and simply interact with beamline hardware components and provides automated routines for common tasks in the operation of a synchrotron beamline dedicated to experiments in MX. Additional functionality is provided through intuitive interfaces that enable the assessment of the diffraction characteristics of samples, experiment planning, automatic data collection and the on-line collection and analysis of X-ray emission spectra. The software can be run in a tandem client-server mode that allows for remote control and relevant experimental parameters and results are automatically logged in a relational database, ISPyB. MxCuBE is modular, flexible and extensible and is currently deployed on eight macromolecular crystallography beamlines at the ESRF. Additionally, the software is installed at MAX-lab beamline I911-3 and at BESSY beamline BL14.1. PMID:20724792

  17. Development of a silicon microstrip detector with single photon sensitivity for fast dynamic diffraction experiments at a synchrotron radiation beam

    NASA Astrophysics Data System (ADS)

    Arakcheev, A.; Aulchenko, V.; Kudashkin, D.; Shekhtman, L.; Tolochko, B.; Zhulanov, V.

    2017-06-01

    Time-resolved experiments on the diffraction of synchrotron radiation (SR) from crystalline materials provide information on the evolution of a material structure after a heat, electron beam or plasma interaction with a sample under study. Changes in the material structure happen within a microsecond scale and a detector with corresponding parameters is needed. The SR channel 8 of the VEPP-4M storage ring provides radiation from the 7-pole wiggler that allows to reach several tens photons within one μs from a tungsten crystal for the most intensive diffraction peak. In order to perform experiments that allow to measure the evolution of tungsten crystalline structure under the impact of powerful laser beam, a new detector is developed, that can provide information about the distribution of a scattered SR flux in space and its evolution in time at a microsecond scale. The detector is based on the silicon p-in-n microstrip sensor with DC-coupled metal strips. The sensor contains 1024 30 mm long strips with a 50 μm pitch. 64 strips are bonded to the front-end electronics based on APC128 ASICs. The APC128 ASIC contains 128 channels that consist of a low noise integrator with 32 analogue memory cells each. The integrator equivalent noise charge is about 2000 electrons and thus the signal from individual photons with energy above 40 keV can be observed. The signal can be stored at the analogue memory with 10 MHz rate. The first measurements with the beam scattered from a tungsten crystal with energy near 60 keV demonstrated the capability of this prototype to observe the spatial distribution of the photon flux with the intensity from below one photon per channel up to 0~10 photons per channel with a frame rate from 10 kHz up to 1 MHz.

  18. The use of radiation for the study of material of cultural heritage significance

    NASA Astrophysics Data System (ADS)

    Creagh, D. C.; Otieno-Alego, V.

    2004-01-01

    For the indigenous people of Northern Australia the expression of their experience of life, their "dreaming", is in the form of painting, usually on the bark stripped from trees growing in their tribal lands. These are often works of great beauty and the major collecting institutions in Australia and elsewhere have significant holdings of Aboriginal bark paintings. A wide range of analytical techniques (optical microscopy, FTIR microscopy, Raman microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy, and synchrotron radiation X-ray diffraction) has been used in a project to determine how best to conserve Aboriginal bark paintings.

  19. In situ synchrotron tensile investigations on 14YWT, MA957, and 9-Cr ODS alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jun-Li; Mo, Kun; Yun, Di

    2016-04-01

    Advanced ODS alloys provide exceptional radiation tolerance and high-temperature mechanical properties when compared to traditional ferritic and ferritic/martensitic 9F/M) steels. Their remarkable properties result from ultrahigh density and ultrafine size of Y-Ti-O nanoclusters within the ferritic matrix. In this work, we applied a high-energy synchrotron radiation X-ray to study the deformation process of three advanced ODS materials including 14YWT, MA957, and 9-Cr ODS steel. Only the relatively large nanoparticles in the 9-Cr ODS were observed in the synchrotron X-ray diffraction. The nanoclusters in both 14YWT and MA957 were invisible in the measurement due to their non-stoichiometric nature. Due to themore » different sizes of nanoparticles and nanoclusters in the materials, the Orowan looping was considered to be the major strengthening mechanism in the 9-Cr ODS, while the dispersed-barrier-hardening is dominant strengthening mechanism in both 14YWT and MA957, This analysis was inferred from the different build-up rates of dislocation density when plastic deformation was initiated. Finally, the dislocation densities interpreted from the X-ray measurements were successfully modeled using the Bergstrom's dislocation models. (C) 2016 Elsevier B.V. All rights reserved.« less

  20. Crystallization and preliminary X-ray diffraction study of recombinant ribokinase from Thermus Species 2.9

    NASA Astrophysics Data System (ADS)

    Abramchik, Yu. A.; Timofeev, V. I.; Muravieva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2016-11-01

    Ribokinase from a thermophilic strain of Thermus species 2.9 belonging to the carbohydrate ribokinase family (EC 2.7.1.15) was isolated, purified, and crystallized. The crystallization conditions were found by the vapor-diffusion technique and were then optimized to apply the capillary counter-diffusion technique. The X-ray diffraction data set was collected from the crystals, which were grown by the counter-diffusion technique, at the SPring-8 synchrotron radiation facility to 2.87 Å resolution. The crystals belong to sp. gr. P1211 and have the following unit-cell parameters: a = 81.613 Å, b = 156.132 Å, c = 87.714 Å, α = γ = 90°, β = 103.819°. The X-ray diffraction data set is suitable for determining the three-dimensional structure of the protein by the molecular-replacement method.

  1. Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction

    PubMed Central

    Heymann, Michael; Opthalage, Achini; Wierman, Jennifer L.; Akella, Sathish; Szebenyi, Doletha M. E.; Gruner, Sol M.; Fraden, Seth

    2014-01-01

    An emulsion-based serial crystallographic technology has been developed, in which nanolitre-sized droplets of protein solution are encapsulated in oil and stabilized by surfactant. Once the first crystal in a drop is nucleated, the small volume generates a negative feedback mechanism that lowers the supersaturation. This mechanism is exploited to produce one crystal per drop. Diffraction data are measured, one crystal at a time, from a series of room-temperature crystals stored on an X-ray semi-transparent microfluidic chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different unoriented crystals. As proof of concept, the structure of glucose isomerase was solved to 2.1 Å, demonstrating the feasibility of high-throughput serial X-ray crystallography using synchrotron radiation. PMID:25295176

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Ken-ichi; Tanaka, Nobutada, E-mail: ntanaka@pharm.showa-u.ac.jp; Ishikura, Shuhei

    Pig heart carbonyl reductase has been crystallized in the presence of NADPH. Diffraction data have been collected using synchrotron radiation. Pig heart carbonyl reductase (PHCR), which belongs to the short-chain dehydrogenase/reductase (SDR) family, has been crystallized by the hanging-drop vapour-diffusion method. Two crystal forms (I and II) have been obtained in the presence of NADPH. Form I crystals belong to the tetragonal space group P4{sub 2}, with unit-cell parameters a = b = 109.61, c = 94.31 Å, and diffract to 1.5 Å resolution. Form II crystals belong to the tetragonal space group P4{sub 1}2{sub 1}2, with unit-cell parameters amore » = b = 120.10, c = 147.00 Å, and diffract to 2.2 Å resolution. Both crystal forms are suitable for X-ray structure analysis at high resolution.« less

  3. Synchrotron Radiation from Ultra-High Energy Protons and the Fermi Observations of GRB 080916C

    DTIC Science & Technology

    2010-01-01

    compared with keV – MeV radiation. Here we show that synchrotron radiation from cosmic ray protons accelerated in GRBs, delayed by the proton synchrotron... cosmic rays from sources within 100 Mpc for nano-Gauss intergalactic magnetic fields. The total energy requirements in a proton synchrotron model are...component arising from cosmic - ray proton synchrotron radiation explains the delayed onset of the LAT emission. If GRBs accelerate UHECRs, then the

  4. Anisotropic pyrochemical microetching of poly(tetrafluoroethylene) initiated by synchrotron radiation-induced scission of molecule bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, Akinobu, E-mail: yamaguti@lasti.u-hyogo.ac.jp, E-mail: utsumi@lasti.u-hyogo.ac.jp; Kido, Hideki; Utsumi, Yuichi, E-mail: yamaguti@lasti.u-hyogo.ac.jp, E-mail: utsumi@lasti.u-hyogo.ac.jp

    2016-02-01

    We developed a process for micromachining polytetrafluoroethylene (PTFE): anisotropic pyrochemical microetching induced by synchrotron X-ray irradiation. X-ray irradiation was performed at room temperature. Upon heating, the irradiated PTFE substrates exhibited high-precision features. Both the X-ray diffraction peak and Raman signal from the irradiated areas of the substrate decreased with increasing irradiation dose. The etching mechanism is speculated as follows: X-ray irradiation caused chain scission, which decreased the number-average degree of polymerization. The melting temperature of irradiated PTFE decreased as the polymer chain length decreased, enabling the treated regions to melt at a lower temperature. The anisotropic pyrochemical etching process enabledmore » the fabrication of PTFE microstructures with higher precision than simultaneously heating and irradiating the sample.« less

  5. Applications of synchrotron x-ray diffraction topography to fractography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilello, J.C.

    1983-01-01

    Fractographs have been taken using a variety of probes each of which produces different types of information. Methods which have been used to examine fracture surfaces include: (a) optical microscopy, particularly interference contrast methods, (b) scanning electron microscopy (SEM), (c) SEM with electron channelling, (d) SEM with selected-area electron channelling, (e) Berg-Barrett (B-B) topography, and now (f) synchrotron x-radiation fractography (SXRF). This review concentrated on the role that x-ray methods can play in such studies. In particular, the ability to nondestructively assess the subsurface microstructure associated with the fracture to depths of the order of 5 to 10 ..mu..m becomesmore » an important attribute for observations of a large class of semi-brittle metals, semiconductors and ceramics.« less

  6. Demonstration of a chamber for strain mapping of steel specimens under mechanical load in a hydrogen environment by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Connolly, Matthew; Park, Jun-Sang; Bradley, Peter; Lauria, Damian; Slifka, Andrew; Drexler, Elizabeth

    2018-06-01

    We demonstrate a hydrogen gas chamber suitable for lattice strain measurements and capturing radiographs of a steel specimen under a mechanical load using high energy synchrotron x-rays. The chamber is suitable for static and cyclic mechanical loading. Experiments were conducted at the 1-ID-E end station of the Advanced Photon Source, Argonne National Laboratory. Diffraction patterns show a high signal-to-noise ratio suitable for lattice strain measurements for the specimen and with minimal scattering and overlap from the gas chamber manufactured from aluminum. In situ radiographs of a specimen in the hydrogen chamber show the ability to track a growing crack and to map the lattice strain around the crack with high spatial and strain resolution.

  7. Real time observation of mouse fetal skeleton using a high resolution X-ray synchrotron

    PubMed Central

    Chang, Dong Woo; Kim, Bora; Shin, Jae Hoon; Yun, Young Min; Je, Jung Ho; Hwu, Yeu kuang; Yoon, Jung Hee

    2011-01-01

    The X-ray synchrotron is quite different from conventional radiation sources. This technique may expand the capabilities of conventional radiology and be applied in novel manners for special cases. To evaluate the usefulness of X-ray synchrotron radiation systems for real time observations, mouse fetal skeleton development was monitored with a high resolution X-ray synchrotron. A non-monochromatized X-ray synchrotron (white beam, 5C1 beamline) was employed to observe the skeleton of mice under anesthesia at embryonic day (E)12, E14, E15, and E18. At the same time, conventional radiography and mammography were used to compare with X-ray synchrotron. After synchrotron radiation, each mouse was sacrificed and stained with Alizarin red S and Alcian blue to observe bony structures. Synchrotron radiation enabled us to view the mouse fetal skeleton beginning at gestation. Synchrotron radiation systems facilitate real time observations of the fetal skeleton with greater accuracy and magnification compared to mammography and conventional radiography. Our results show that X-ray synchrotron systems can be used to observe the fine structures of internal organs at high magnification. PMID:21586868

  8. X-Ray Structure determination of the Glycine Cleavage System Protein H of Mycobacterium tuberculosis Using An Inverse Compton Synchrotron X-Ray Source

    PubMed Central

    Abendroth, Jan; McCormick, Michael S.; Edwards, Thomas E.; Staker, Bart; Loewen, Roderick; Gifford, Martin; Rifkin, Jeff; Mayer, Chad; Guo, Wenjin; Zhang, Yang; Myler, Peter; Kelley, Angela; Analau, Erwin; Hewitt, Stephen Nakazawa; Napuli, Alberto J.; Kuhn, Peter; Ruth, Ronald D.; Stewart, Lance J.

    2010-01-01

    Structural genomics discovery projects require ready access to both X-ray and NMR instrumentation which support the collection of experimental data needed to solve large numbers of novel protein structures. The most productive X-ray crystal structure determination laboratories make extensive frequent use of tunable synchrotron X-ray light to solve novel structures by anomalous diffraction methods. This requires that frozen cryo-protected crystals be shipped to large government-run synchrotron facilities for data collection. In an effort to eliminate the need to ship crystals for data collection, we have developed the first laboratory-scale synchrotron light source capable of performing many of the state-of-the-art synchrotron applications in X-ray science. This Compact Light Source is a first-in-class device that uses inverse Compton scattering to generate X-rays of sufficient flux, tunable wavelength and beam size to allow high-resolution X-ray diffraction data collection from protein crystals. We report on benchmarking tests of X-ray diffraction data collection with hen egg white lysozyme, and the successful high-resolution X-ray structure determination of the Glycine cleavage system protein H from Mycobacterium tuberculosis using diffraction data collected with the Compact Light Source X-ray beam. PMID:20364333

  9. New theoretical results in synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Bagrov, V. G.; Gitman, D. M.; Tlyachev, V. B.; Jarovoi, A. T.

    2005-11-01

    One of the remarkable features of the relativistic electron synchrotron radiation is its concentration in small angle Δ ≈ 1/γ (here γ-relativistic factor: γ = E/mc2, E energy, m electron rest mass, c light velocity) near rotation orbit plane [V.G. Bagrov, V.A. Bordovitsyn, V.G. Bulenok, V. Ya. Epp, Kinematical projection of pulsar synchrotron radiation profiles, in: Proceedings of IV ISTC Scientific Advisory Commitee Seminar on Basic Science in ISTC Aktivities, Akademgorodok, Novosibirsk, April 23 27, 2001, p. 293 300]. This theoretically predicted and experimentally confirmed feature is peculiar to total (spectrum summarized) radiating intensity. This angular distribution property has been supposed to be (at least qualitatively) conserved and for separate spectrum synchrotron radiation components. In the work of V.G. Bagrov, V.A. Bordovitsyn, V. Ch. Zhukovskii, Development of the theory of synchrotron radiation and related processes. Synchrotron source of JINR: the perspective of research, in: The Materials of the Second International Work Conference, Dubna, April 2 6, 2001, pp. 15 30 and in Angular dependence of synchrotron radiation intensity. http://lanl.arXiv.org/abs/physics/0209097, it is shown that the angular distribution of separate synchrotron radiation spectrum components demonstrates directly inverse tendency the angular distribution deconcentration relatively the orbit plane takes place with electron energy growth. The present work is devoted to detailed investigation of this situation. For exact quantitative estimation of angular concentration degree of synchrotron radiation the definition of radiation effective angle and deviation angle is proposed. For different polarization components of radiation the dependence of introduced characteristics was investigated as a functions of electron energy and number of spectrum component.

  10. Development of broadband X-ray interference lithography large area exposure system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Chaofan; Wu, Yanqing, E-mail: wuyanqing@sinap.ac.cn, E-mail: zhaojun@sinap.ac.cn, E-mail: tairenzhong@sinap.ac.cn; Zhu, Fangyuan

    2016-04-15

    The single-exposure patterned area is about several 10{sup 2} × 10{sup 2} μm{sup 2} which is mainly decided by the mask area in multi-beam X-ray interference lithography (XIL). The exposure area is difficult to stitch to a larger one because the patterned area is surrounded by 0th diffraction exposure areas. To block the 0th diffraction beams precisely and effectively, a new large area exposure technology is developed in the Shanghai Synchrotron Radiation Facility by applying an order-sorting aperture with a new in situ monitoring scheme in the XIL system. The patterned area could be stitched readily up to several squaremore » centimeters and even bigger by this technology.« less

  11. Synchrotron X-ray reciprocal-space mapping, topography and diffraction resolution studies of macromolecular crystal quality.

    PubMed

    Boggon, T J; Helliwell, J R; Judge, R A; Olczak, A; Siddons, D P; Snell, E H; Stojanoff, V

    2000-07-01

    A comprehensive study of microgravity and ground-grown chicken egg-white lysozyme crystals is presented using synchrotron X-ray reciprocal-space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed reduced intrinsic mosaicities on average, but no differences in terms of strain over their ground-grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the ground-control case only a small volume of the crystal contributed to the intensity at the diffraction peak. The techniques prove to be highly complementary, with the reciprocal-space mapping providing a quantitative measure of the crystal mosaicity and strain (or variation in lattice spacing) and the topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out at the synchrotron.

  12. Synchrotron X-Ray Reciprocal Space Mapping, Topography and Diffraction Resolution Studies of Macromolecular Crystal Quality

    NASA Technical Reports Server (NTRS)

    Boggon, T. J.; Helliwell, J. R.; Judge, Russell A.; Siddons, D. P.; Snell, Edward H.; Stojanoff, V.

    2000-01-01

    A comprehensive study of microgravity and ground grown chicken egg white lysozyme crystals is presented using synchrotron X-ray reciprocal space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed, on average, reduced intrinsic mosaicities but no differences in terms of stress over their earth grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the earth case at the diffraction peak only a small volume of the crystal contributed to the intensity. The techniques prove to be highly complementary with the reciprocal space mapping providing a quantitative measure of the crystal mosaicity and stress (or variation in lattice spacing) and topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out both at the synchrotron and in the laboratory.

  13. Proceedings of the XIII International School and Symposium on Synchrotron Radiation in Natural Science 2016, Ustroń-Jaszowiec, Poland

    NASA Astrophysics Data System (ADS)

    Kozak, Maciej; Kwiatek, Wojciech M.; Piszora, Paweł

    2017-11-01

    This special issue of Nuclear Instruments and Methods in Physics Research Section B of Nuclear Instruments and Methods in Physics Research was prepared to present recent achievements in synchrotron radiation science and mark the 25th anniversary of the Polish Synchrotron Radiation Society (PSRS) which fell in 2016. It presents selected papers submitted after the 13th International School and Symposium on Synchrotron Radiation in Natural Science (ISSRNS 2016) which was organized by PSRS in cooperation with the Adam Mickiewicz University. It is worth noting that PSRS is probably one of the earliest founded scientific societies focused on promoting the use of synchrotron radiation research (for details visit the PSRS home page: http://www.synchrotron.org.pl.

  14. An in situ X ray diffraction study of the kinetics of the Ni2SiO4 olivine-spinel transformation

    NASA Technical Reports Server (NTRS)

    Rubie, D. C.; Tsuchida, Y.; Yagi, T.; Utsumi, W.; Kikegawa, T.

    1990-01-01

    The kinetics of the olivine-spinel transformation in Ni2SiO4 were investigated in an in situ X-ray diffraction experiments in which synchrotron radiation was used as an X-ray source. The starting material was Ni2SO4 olivine which was hot-pressed in situ at 980 C and 2.5 GPa; during the transformation, X-ray diffraction patterns were collected at intervals of 30 or 120 sec. The kinetic data were analyzed using Cahn's (1956) model. The activation energy for growth at 3.6-3.7 GPa was estimated as 438 + or - 199 kJ/mol. It is shown that, in order to make significant extrapolations of the kinetic data to a geological scale, the dependence of the rates of both nucleation and growth on temperature and pressure must be evaluated separately.

  15. Hydrothermal formation of tobermorite studied by in situ X-ray diffraction under autoclave condition.

    PubMed

    Kikuma, Jun; Tsunashima, Masamichi; Ishikawa, Tetsuji; Matsuno, Shin-ya; Ogawa, Akihiro; Matsui, Kunio; Sato, Masugu

    2009-09-01

    Hydrothermal formation of tobermorite from a pre-cured cake has been investigated by transmission X-ray diffraction (XRD) using high-energy X-rays from a synchrotron radiation source in combination with a newly designed autoclave cell. The autoclave cell has a large and thin beryllium window for wide-angle X-ray diffraction; nevertheless, it withstands a steam pressure of more than 1.2 MPa, which enables in situ XRD measurements in a temperature range of 373 to 463 K under a saturated steam pressure. Formation and/or decomposition of several components has been successfully observed during 7.5 h of reaction time. From the intensity changes of the intermediate materials, namely non-crystalline C-S-H and hydroxylellestadite, two pathways for tobermorite formation have been confirmed. Thus, the newly developed autoclave cell can be used for the analyses of reaction mechanisms under specific atmospheres and temperatures.

  16. In-situ high-pressure powder X-ray diffraction study of α-zirconium phosphate.

    PubMed

    Readman, Jennifer E; Lennie, Alistair; Hriljac, Joseph A

    2014-06-01

    The high-pressure structural chemistry of α-zirconium phosphate, α-Zr(HPO4)2·H2O, was studied using in-situ high-pressure diffraction and synchrotron radiation. The layered phosphate was studied under both hydrostatic and non-hydrostatic conditions and Rietveld refinement carried out on the resulting diffraction patterns. It was found that under hydrostatic conditions no uptake of additional water molecules from the pressure-transmitting medium occurred, contrary to what had previously been observed with some zeolite materials and a layered titanium phosphate. Under hydrostatic conditions the sample remained crystalline up to 10 GPa, but under non-hydrostatic conditions the sample amorphized between 7.3 and 9.5 GPa. The calculated bulk modulus, K0 = 15.2 GPa, showed the material to be very compressible with the weak linkages in the structure of the type Zr-O-P.

  17. Purification, crystallization and preliminary X-ray diffraction studies of UDP-N-acetylglucosamine pyrophosphorylase from Candida albicans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, Daisuke; Nishitani, Yuichi; Nonaka, Tsuyoshi

    2006-12-01

    UDP-N-acetylglucosamine pyrophosphorylase was purified and crystallized and X-ray diffraction data were collected to 2.3 Å resolution. UDP-N-acetylglucosamine pyrophosphorylase (UAP) is an essential enzyme in the synthesis of UDP-N-acetylglucosamine. UAP from Candida albicans was purified and crystallized by the sitting-drop vapour-diffusion method. The crystals of the substrate and product complexes both diffract X-rays to beyond 2.3 Å resolution using synchrotron radiation. The crystals of the substrate complex belong to the triclinic space group P1, with unit-cell parameters a = 47.77, b = 62.89, c = 90.60 Å, α = 90.01, β = 97.72, γ = 92.88°, whereas those of the productmore » complex belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 61.95, b = 90.87, c = 94.88 Å.« less

  18. High resolution synchrotron X-radiation diffraction imaging of crystals grown in microgravity and closely related terrestrial crystals

    NASA Technical Reports Server (NTRS)

    Steiner, Bruce; Dobbyn, Ronald C.; Black, David; Burdette, Harold; Kuriyama, Masao; Fripp, Archibald; Simchik, Richard

    1991-01-01

    Irregularities in three crystals grown in space and in four terrestrial crystals grown under otherwise comparable conditions have been observed in high resolution diffraction imaging. The images provide important new clues to the nature and origins of irregularities in each crystal. For two of the materials, mercuric iodide and lead tin telluride, more than one phase (an array of non-diffracting inclusions) was observed in terrestrial samples; but the formation of these multiple phases appears to have been suppressed in directly comparable crystals grown in microgravity. The terrestrial seed crystal of triglycine sulfate displayed an unexpected layered structure, which propagated during directly comparable space growth. Terrestrial Bridgman regrowth of gallium arsenide revealed a mesoscopic structure substantially different from that of the original Czochralski material. A directly comparable crystal is to be grown shortly in space.

  19. Crystallization and preliminary X-ray diffraction study of recombinant ribokinase from Thermus Species 2.9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramchik, Yu. A.; Timofeev, V. I., E-mail: tostars@mail.ru; Muravieva, T. I.

    2016-11-15

    Ribokinase from a thermophilic strain of Thermus species 2.9 belonging to the carbohydrate ribokinase family (EC 2.7.1.15) was isolated, purified, and crystallized. The crystallization conditions were found by the vapor-diffusion technique and were then optimized to apply the capillary counter-diffusion technique. The X-ray diffraction data set was collected from the crystals, which were grown by the counter-diffusion technique, at the SPring-8 synchrotron radiation facility to 2.87 Å resolution. The crystals belong to sp. gr. P12{sub 1}1 and have the following unit-cell parameters: a = 81.613 Å, b = 156.132 Å, c = 87.714 Å, α = γ = 90°, βmore » = 103.819°. The X-ray diffraction data set is suitable for determining the three-dimensional structure of the protein by the molecular-replacement method.« less

  20. The new HMI beamline MAGS: an instrument for hard X-ray diffraction at BESSY.

    PubMed

    Dudzik, Esther; Feyerherm, Ralf; Diete, Wolfgang; Signorato, Riccardo; Zilkens, Christopher

    2006-11-01

    The Hahn-Meitner-Institute Berlin is operating the new hard X-ray diffraction beamline MAGS at the Berlin synchrotron radiation source BESSY. The beamline is intended to complement the existing neutron instrumentation at the Berlin Neutron Scattering Centre. The new beamline uses a 7 T multipole wiggler to produce photon fluxes in the 10(11)-10(12) photons s(-1) (100 mA)(-1) (0.1% bandwidth)(-1) range at energies from 4 to 30 keV at the experiment. It has active bendable optics to provide flexible horizontal and vertical focusing and to compensate the large heat load from the wiggler source. The experimental end-station consists of a six-circle Huber diffractometer which can be used with an additional (polarization) analyser and different sample environments. The beamline is intended for single-crystal diffraction and resonant magnetic scattering experiments for the study of ordering phenomena, phase transitions and materials science.

  1. Synchrotron powder diffraction on Aztec blue pigments

    NASA Astrophysics Data System (ADS)

    Sánchez Del Río, M.; Gutiérrez-León, A.; Castro, G. R.; Rubio-Zuazo, J.; Solís, C.; Sánchez-Hernández, R.; Robles-Camacho, J.; Rojas-Gaytán, J.

    2008-01-01

    Some samples of raw blue pigments coming from an archaeological rescue mission in downtown Mexico City have been characterized using different techniques. The samples, some recovered as a part of a ritual offering, could be assigned to the late Aztec period (XVth century). The striking characteristic of these samples is that they seem to be raw pigments prior to any use in artworks, and it was possible to collect a few μg of pigment after manual grain selection under a microscopy monitoring. All pigments are made of indigo, an organic colorant locally known as añil or xiuhquilitl. The colorant is always found in combination with an inorganic matrix, studied by powder diffraction. In one case the mineral base is palygorskite, a rare clay mineral featuring micro-channels in its structure, well known as the main ingredient of the Maya blue pigment. However, other samples present the minerals sepiolite (a clay mineral of the palygorskite family) and calcite. Another sample contains barite, a mineral never reported in prehispanic paints. We present the results of characterization using high resolution powder diffraction recorded at the European Synchrotron Radiation Facility (BM25A, SpLine beamline) complemented with other techniques. All of them gave consistent results on the composition. A chemical test on resistance to acids was done, showing a high resistance for the palygorskite and eventually sepiolite compounds, in good agreement with the excellent resistance of the Maya blue.

  2. Melting-solidification transition of Zn nanoparticles embedded in SiO2: Observation by synchrotron x-ray and ultraviolet-visible-near-infrared light

    NASA Astrophysics Data System (ADS)

    Amekura, H.; Tanaka, M.; Katsuya, Y.; Yoshikawa, H.; Ohnuma, M.; Matsushita, Y.; Kobayashi, K.; Kishimoto, N.

    2010-11-01

    Melting-solidification transition of Zn nanoparticles (NPs) with the mean diameter of 11.5 nm, embedded in silica glass, was investigated by glancing incident x-ray diffraction (GIXRD) at high temperatures using synchrotron radiation (SR). With increasing temperature, 101Zn diffraction peak gradually decreases up to ˜360 °C and then steeply decreases. This is due to the melting of Zn NPs, which completes around 420 °C. With decreasing temperature, the solidification of the NPs begins around ˜310 °C. The temperature hysteresis with a width of ˜110 °C was observed. With temperature, the diffraction angle shows a shift without hysteresis, which is ascribed to thermal expansion of Zn NP lattice. Thermal expansion coefficient of Zn NPs was determined as 24.4×10-6 K-1 along the ⟨101⟩ direction. Optical absorption spectroscopy shows a broad ultraviolet (UV) peak which was observed at even higher temperatures than the melting temperature but shifts to the low-energy side with the melting. The energy shift in the UV peak also shows the temperature hysteresis which resembles with the melting-solidification hysteresis recorded by SR-GIXRD. The melting-solidification transition is also detectable by the optical absorption spectroscopy in the UV-visible-near-infrared region.

  3. Weathering of ordinary chondrites from the Atacama Desert, Chile, by Mössbauer spectroscopy and synchrotron radiation X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Munayco, Pablo; Munayco, Jimmy; Avillez, Roberto R.; Valenzuela, Millarca; Rochette, Pierre; Gattacceca, JéRôMe; Scorzelli, Rosa B.

    2013-03-01

    Some terrestrial areas have climatic and geomorphologic features that favor the preservation, and therefore, accumulation of meteorites. The Atacama Desert in Chile is among the most important of such areas, known as DCA. This desert is the driest on Earth, one of the most arid, uninhabitable localities with semiarid, arid, and hyper-arid conditions. The meteorites studied here were collected from within the DCA of San Juan and Pampa de Mejillones, located, respectively, in the Central Depression and the Coastal Range of the Atacama Desert. 57Fe Mössbauer spectroscopy was used for quantitative analysis of the degree of weathering of the meteorites, through the determination of the proportions of the various Fe-bearing phases and in particular the amount of oxidized iron in terrestrial alteration products. The abundance of ferric ions in weathered chondrites can be related to specific precursor compositions and to the level of terrestrial weathering. The aim of the study was the identification, quantification, and differentiation of the weathering products in the ordinary chondrites found in the San Juan and the Pampa de Mejillones areas of the Atacama Desert. The 57Fe Mössbauer spectroscopy study was complemented by synchrotron radiation X-ray diffraction and magnetic susceptibility measurements. The results allow a clear differentiation of the rate of weathering in meteorite samples collected from the San Juan versus the Pampa de Mejillones areas of the Atacama Desert.

  4. Large-area soft x-ray projection lithography using multilayer mirrors structured by RIE

    NASA Astrophysics Data System (ADS)

    Rahn, Steffen; Kloidt, Andreas; Kleineberg, Ulf; Schmiedeskamp, Bernt; Kadel, Klaus; Schomburg, Werner K.; Hormes, F. J.; Heinzmann, Ulrich

    1993-01-01

    SXPL (soft X-ray projection lithography) is one of the most promising applications of X-ray reflecting optics using multilayer mirrors. Within our collaboration, such multilayer mirrors were fabricated, characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors were produced by electron beam evaporation in UHV under thermal treatment with an in-situ X-ray controlled thickness in the region of 2d equals 14 nm. The reflectivities measured at normal incidence reached up to 54%. Various surface analysis techniques have been applied in order to characterize and optimize the X-ray mirrors. The multilayers were patterned by reactive ion etching (RIE) with CF(subscript 4), using a photoresist as the etch mask, thus producing X-ray reflection masks. The masks were tested in the synchrotron radiation laboratory of the electron accelerator ELSA at the Physikalisches Institut of Bonn University. A double crystal X-ray monochromator was modified so as to allow about 0.5 cm(superscript 2) of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto the resist (Hoechst AZ PF 514), which was mounted at an average distance of about 7 mm. In the first test-experiments, structure sizes down to 8 micrometers were nicely reproduced over the whole of the exposed area. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.

  5. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources.

    PubMed

    Tang, M X; Zhang, Y Y; E, J C; Luo, S N

    2018-05-01

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic-plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.

  6. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, M. X.; Zhang, Y. Y.; E, J. C.

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of themore » diffraction patterns is discussed.« less

  7. Broadband near-field infrared spectromicroscopy using photothermal probes and synchrotron radiation.

    PubMed

    Donaldson, Paul M; Kelley, Chris S; Frogley, Mark D; Filik, Jacob; Wehbe, Katia; Cinque, Gianfelice

    2016-02-08

    In this paper, we experimentally demonstrate the use of infrared synchrotron radiation (IR-SR) as a broadband source for photothermal near-field infrared spectroscopy. We assess two methods of signal transduction; cantilever resonant thermal expansion and scanning thermal microscopy. By means of rapid mechanical chopping (50-150 kHz), we modulate the IR-SR at rates matching the contact resonance frequencies of atomic force microscope (AFM) cantilevers, allowing us to record interferograms yielding Fourier transform infrared (FT-IR) photothermal absorption spectra of polystyrene and cyanoacrylate films. Complementary offline measurements using a mechanically chopped CW IR laser confirmed that the resonant thermal expansion IR-SR measurements were below the diffraction limit, with a spatial resolution better than 500 nm achieved at a wavelength of 6 μm, i.e. λ/12 for the samples studied. Despite achieving the highest signal to noise so far for a scanning thermal microscopy measurement under conditions approaching near-field (dictated by thermal diffusion), the IR-SR resonant photothermal expansion FT-IR spectra measured were significantly higher in signal to noise in comparison with the scanning thermal data.

  8. Mechanisms of lichen resistance to metallic pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarret, C.; Manceau, A.; Eybert-Berard, L.

    1998-11-01

    Some lichens have a unique ability to grow in heavily contaminated areas due to the development of adaptative mechanisms allowing a high tolerance to metals. Here the authors report on the chemical forms of Pb and Zn in the metal hyperaccumulator Diploschistes muscorum and of Pb in the metal tolerant lichen Xanthoria parietina. The speciation of Zn and Pb has been investigated by powder X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy using the advanced third-generation synchrotron radiation source of the European synchrotron radiation facility (ESRF in Grenoble). This study reveals that in both lichens cells aremore » protected from toxicity by complexation of heavy metals, but the strategies differ: in D. muscorum, Pb and Zn are accumulated through an enhanced synthesis of oxalate, which precipitates toxic elements as insoluble salts, whereas in X. parietina, Pb is complexed to carboxylic groups of the fungal cell walls. The authors conclude that hyperaccumulation of metals results from a reactive mechanism of organic acid production, whereas metallo-tolerance is achieved by a passive complexation to existing functional groups.« less

  9. Probing polymer crystallization at processing-relevant cooling rates with synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavallo, Dario, E-mail: Dario.cavallo@unige.it; Portale, Giuseppe; Androsch, René

    2015-12-17

    Processing of polymeric materials to produce any kind of goods, from films to complex objects, involves application of flow fields on the polymer melt, accompanied or followed by its rapid cooling. Typically, polymers solidify at cooling rates which span over a wide range, from a few to hundreds of °C/s. A novel method to probe polymer crystallization at processing-relevant cooling rates is proposed. Using a custom-built quenching device, thin polymer films are ballistically cooled from the melt at rates between approximately 10 and 200 °C/s. Thanks to highly brilliant synchrotron radiation and to state-of-the-art X-ray detectors, the crystallization process ismore » followed in real-time, recording about 20 wide angle X-ray diffraction patterns per second while monitoring the instantaneous sample temperature. The method is applied to a series of industrially relevant polymers, such as isotactic polypropylene, its copolymers and virgin and nucleated polyamide-6. Their crystallization behaviour during rapid cooling is discussed, with particular attention to the occurrence of polymorphism, which deeply impact material’s properties.« less

  10. X-ray optical simulations supporting advanced commissioning of the coherent hard x-ray beamline at NSLS-II

    NASA Astrophysics Data System (ADS)

    Wiegart, L.; Rakitin, M.; Fluerasu, A.; Chubar, O.

    2017-08-01

    We present the application of fully- and partially-coherent synchrotron radiation wavefront propagation simulation functions, implemented in the "Synchrotron Radiation Workshop" computer code, to create a `virtual beamline' mimicking the Coherent Hard X-ray scattering beamline at NSLS-II. The beamline simulation includes all optical beamline components, such as the insertion device, mirror with metrology data, slits, double crystal monochromator and refractive focusing elements (compound refractive lenses and kinoform lenses). A feature of this beamline is the exploitation of X-ray beam coherence, boosted by the low-emittance NSLS-II storage-ring, for techniques such as X-ray Photon Correlation Spectroscopy or Coherent Diffraction Imaging. The key performance parameters are the degree of Xray beam coherence and photon flux, and the trade-off between them needs to guide the beamline settings for specific experimental requirements. Simulations of key performance parameters are compared to measurements obtained during beamline commissioning, and include the spectral flux of the undulator source, the degree of transverse coherence as well as focal spot sizes.

  11. Broadband X-ray edge-enhancement imaging of a boron fibre on lithium fluoride thin film detector

    NASA Astrophysics Data System (ADS)

    Nichelatti, E.; Bonfigli, F.; Vincenti, M. A.; Cecilia, A.; Vagovič, P.; Baumbach, T.; Montereali, R. M.

    2016-10-01

    The white beam (∼6-80 keV) available at the TopoTomo X-ray beamline of the ANKA synchrotron facility (KIT, Karlsruhe, Germany) was used to perform edge-enhancement imaging tests on lithium fluoride radiation detectors. The diffracted X-ray image of a microscopic boron fibre, consisting of tungsten wire wrapped by boron cladding, was projected onto lithium fluoride thin films placed at several distances, from contact to 1 m . X-ray photons cause the local formation of primary and aggregate colour centres in lithium fluoride; these latter, once illuminated under blue light, luminesce forming visible-light patterns-acquired by a confocal laser scanning microscope-that reproduce the intensity of the X-ray diffracted images. The tests demonstrated the excellent performances of lithium fluoride films as radiation detectors at the investigated photon energies. The experimental results are here discussed and compared with those calculated with a model that takes into account all the processes that concern image formation, storing and readout.

  12. In Situ X-ray Diffraction Studies of Li(sub x)Mn(sub 2)O(sub 4) Cathode Materials by Synchrotron X-ray Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X. Q.; Sun, X.; Lee, S. J.

    In Situ x-ray diffraction studies on Li{sub x}Mn{sub 2}O{sub 4} spinel cathode materials during charge-discharge cycles were carried out by using a synchrotron as x-ray source. Lithium rich (x = 1.03-1.06) spinel materials obtained from two different sources were studied. Three cubic phases with different lattice constants were observed during charge-discharge cycles in all the samples when a Sufficiently low charge-discharge rate (C/10) was used. There are two regions of two-phase coexistence between these three phases, indicating that both phase transitions are first order. The separation of the Bragg peaks representing these three phases varies from sample to sample andmore » also depends on the charge-discharge rate. These results show that the de-intercalation of lithium in lithium-rich spinel cathode materials proceeds through a series of phase transitions from a lithium-rich phase to a lithium-poor phase and finally to a {lambda}-MnO{sub 2} like cubic phase, rather than through a continuous lattice constant contraction in a single phase.« less

  13. High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography

    PubMed Central

    Boutet, Sébastien; Lomb, Lukas; Williams, Garth J.; Barends, Thomas R. M.; Aquila, Andrew; Doak, R. Bruce; Weierstall, Uwe; DePonte, Daniel P.; Steinbrener, Jan; Shoeman, Robert L.; Messerschmidt, Marc; Barty, Anton; White, Thomas A.; Kassemeyer, Stephan; Kirian, Richard A.; Seibert, M. Marvin; Montanez, Paul A.; Kenney, Chris; Herbst, Ryan; Hart, Philip; Pines, Jack; Haller, Gunther; Gruner, Sol M.; Philipp, Hugh T.; Tate, Mark W.; Hromalik, Marianne; Koerner, Lucas J.; van Bakel, Niels; Morse, John; Ghonsalves, Wilfred; Arnlund, David; Bogan, Michael J.; Caleman, Carl; Fromme, Raimund; Hampton, Christina Y.; Hunter, Mark S.; Johansson, Linda C.; Katona, Gergely; Kupitz, Christopher; Liang, Mengning; Martin, Andrew V.; Nass, Karol; Redecke, Lars; Stellato, Francesco; Timneanu, Nicusor; Wang, Dingjie; Zatsepin, Nadia A.; Schafer, Donald; Defever, James; Neutze, Richard; Fromme, Petra; Spence, John C. H.; Chapman, Henry N.; Schlichting, Ilme

    2013-01-01

    Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules. PMID:22653729

  14. Ion beam analysis in cultural heritage studies: Milestones and perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dran, Jean-Claude; Calligaro, Thomas

    2013-07-18

    For three decades, ion beam analysis (IBA) in external mode was considered as the best choice for the characterisation of cultural heritage materials, as it combines excellent analytical performance and non-invasive character. However, in recent years, other analytical techniques arose as serious competitors, such as those based on synchrotron radiation (X-ray absorption, fluorescence or diffraction) or those using portable instruments (XRF, micro-Raman). It is shown that nevertheless IBA remains unmatched thanks to two unique features, namely the analysis of light elements and the high-resolution 3D chemical imaging.

  15. Mineralogy, Three Dimensional Structure, and Oxygen Isotope Ratios of Four Crystalline Particles from Comet 81P/Wild 2

    NASA Technical Reports Server (NTRS)

    Nakamura, T.; Noguchi, T.; Tsuchiyama, A.; Ushikubo, T.; Kita, N. T.; Valley, J. W.; Zolensky, M. E.; Kakazu, Y.; Sakamoto, K.; Mashio, E.; hide

    2008-01-01

    Preliminary examinations of small dust particles from comet 82P/Wild 2 revealed many expected and unexpected features. Among them the most striking feature is the presence of abundant crystalline material in the comet. Synchrotron radiation X-ray diffraction and microtomography are the most efficient methods to detect and describe bulk mineralogical features of crystalline cometary particles. In the present study, in addition to these two non-destructive techniques, electron microscopy and ion-probe mass spectrometry were carried out on the four crystalline particles.

  16. An extended X-Ray absorption fine structure (exafs) study of copper (II) sulphate pentahydrate

    NASA Astrophysics Data System (ADS)

    Joyner, Richard W.

    1980-05-01

    The EXAFS spectrum of copper (II) sulphate pentahydrate has been measured using synchrotron radiation. Comparison with the results of ab initio calculation gives a mean copper-oxygen distance of 1.95 Å, in reasonable agreement with the known value of 1.97 Å. The relation between the EXAFS Debye-Waller factor and thermal parameters measured by neutron diffraction is discussed. Absence in the EXAFS spectrum of evidence for the second-nearest neighbour oxygen atoms, at Cu-O ≈ 2.4 Å, is discussed.

  17. Crystal structure of N-{ N-[ N-acetyl-( S)-leucyl]-( S)-leucyl}norleucinal (ALLN), an inhibitor of proteasome

    DOE PAGES

    Czerwinski, Andrzej; Basava, Channa; Dauter, Miroslawa; ...

    2015-03-01

    The title compound, C 20H 37N 3O 4, also known by the acronym ALLN, is a tripeptidic inhibitor of the proteolytic activity of the proteasomes, enzyme complexes implicated in several neurodegenerative diseases and other disorders, including cancer. Thus, the crystal structure of ALLN, solved from synchrotron radiation diffraction data, revealed the molecules in extended conformation of the backbone and engaging all peptide N and O atoms in intermolecular hydrogen bonds forming an infinite antiparallel β-sheet.

  18. Analysis of rapidly synthesized guest-filled porous complexes with synchrotron radiation: Practical guidelines for the crystalline sponge method

    DOE PAGES

    Ramadhar, Timothy R.; Zheng, Shao -Liang; Chen, Yu -Sheng; ...

    2015-01-01

    A detailed set of synthetic and crystallographic guidelines for the crystalline sponge method based upon the analysis of expediently synthesized crystal sponges using third-generation synchrotron radiation are reported. The procedure for the synthesis of the zinc-based metal–organic framework used in initial crystal sponge reports has been modified to yield competent crystals in 3 days instead of 2 weeks. These crystal sponges were tested on some small molecules, with two being unexpectedly difficult cases for analysis with in-house diffractometers in regard to data quality and proper space-group determination. These issues were easily resolved by the use of synchrotron radiation using data-collectionmore » times of less than an hour. One of these guests induced a single-crystal-to-single-crystal transformation to create a larger unit cell with over 500 non-H atoms in the asymmetric unit. This led to a non-trivial refinement scenario that afforded the best Flack x absolute stereochemical determination parameter to date for these systems. The structures did not require the use of PLATON/SQUEEZE or other solvent-masking programs, and are the highest-quality crystalline sponge systems reported to date where the results are strongly supported by the data. A set of guidelines for the entire crystallographic process were developed through these studies. In particular, the refinement guidelines include strategies to refine the host framework, locate guests and determine occupancies, discussion of the proper use of geometric and anisotropic displacement parameter restraints and constraints, and whether to perform solvent squeezing/masking. The single-crystal-to-single-crystal transformation process for the crystal sponges is also discussed. The presented general guidelines will be invaluable for researchers interested in using the crystalline sponge method at in-house diffraction or synchrotron facilities, will facilitate the collection and analysis of reliable high-quality data, and will allow construction of chemically and physically sensible models for guest structural determination.« less

  19. X-ray diffraction and X-ray K absorption near edge studies of copper (II) complexes with amino acids

    NASA Astrophysics Data System (ADS)

    Sharma, P. K.; Mishra, Ashutosh; Malviya, Varsha; Kame, Rashmi; Malviya, P. K.

    2017-05-01

    Synthesis of copper (II) complexes [CuL1L2X].nH2O, where n=1, 2,3 (X=Cl,Br,NO3) (L1is 2,2’-bipyridine and L2 is L-tyrosine) by the chemical root method. The XRD data for the samples have been recorded. EXAFS spectra have also been recorded at the K-edge of Cu using the dispersive beam line BL-8 at 2.5 Gev Indus-2 Synchrotron radiation source at RRCAT, Indore, India. XRD and EXAFS data have been analysed using the computer software. X-ray diffraction studies of all complexes indicate their crystalline nature. Lattice parameter, bond length, particle size have been determined from XRD data.

  20. Purification, crystallization and preliminary X-ray diffraction of the C-terminal bromodomain from human BRD2

    PubMed Central

    Umehara, Takashi; Wakamori, Masatoshi; Tanaka, Akiko; Padmanabhan, Balasundaram; Yokoyama, Shigeyuki

    2007-01-01

    BRD2 is a bromodomain-containing BET-family protein that associates with acetylated histones throughout the cell cycle. Although the tertiary structures of the bromodomains involved in histone acetyl transfer are already known, the structures of the BET-type bromodomains, which are required for tight association with acetylated chromatin, are poorly understood. Here, the expression, purification and crystallization of the C-terminal bromodomain of human BRD2 are reported. The protein was crystallized by the sitting-drop vapour-diffusion method in the orthorhombic space group P21212, with unit-cell parameters a = 71.78, b = 52.60, c = 32.06 Å and one molecule per asymmetric unit. The crystal diffracted beyond 1.80 Å resolution using synchrotron radiation. PMID:17620725

  1. Far-Field High-Energy Diffraction Microscopy: A Non-Destructive Tool for Characterizing the Microstructure and Micromechanical State of Polycrystalline Materials

    DOE PAGES

    Park, Jun-Sang; Zhang, Xuan; Kenesei, Peter; ...

    2017-08-31

    A suite of non-destructive, three-dimensional X-ray microscopy techniques have recently been developed and used to characterize the microstructures of polycrystalline materials. These techniques utilize high-energy synchrotron radiation and include near-field and far-field diffraction microscopy (NF- and FF-HEDM, respectively) and absorption tomography. Several compatible sample environments have also been developed, enabling a wide range of 3D studies of material evolution. In this article, the FF-HEDM technique is described in detail, including its implementation at the 1-ID beamline of the Advanced Photon Source. Examples of how the information obtained from FF-HEDM can be used to deepen our understanding of structure-property-processing relationships inmore » selected materials are presented.« less

  2. Following the electroreduction of uranium dioxide to uranium in LiCl-KCl eutectic in situ using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Brown, L. D.; Abdulaziz, R.; Jervis, R.; Bharath, V. J.; Atwood, R. C.; Reinhard, C.; Connor, L. D.; Simons, S. J. R.; Inman, D.; Brett, D. J. L.; Shearing, P. R.

    2015-09-01

    The electrochemical reduction of uranium dioxide to metallic uranium has been investigated in lithium chloride-potassium chloride eutectic molten salt. Laboratory based electrochemical studies have been coupled with in situ energy dispersive X-ray diffraction, for the first time, to deduce the reduction pathway. No intermediate phases were identified using the X-ray diffraction before, during or after electroreduction to form α-uranium. This suggests that the electrochemical reduction occurs via a single, 4-electron-step, process. The rate of formation of α-uranium is seen to decrease during electrolysis and could be a result of a build-up of oxygen anions in the molten salt. Slow transport of O2- ions away from the UO2 working electrode could impede the electrochemical reduction.

  3. Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil.

    PubMed

    Kappen, P; Arhatari, B D; Luu, M B; Balaur, E; Caradoc-Davies, T

    2013-06-01

    This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography∕diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).

  4. Observation of runaway electron beams by visible color camera in the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Shi, Yuejiang; Fu, Jia; Li, Jiahong; Yang, Yu; Wang, Fudi; Li, Yingying; Zhang, Wei; Wan, Baonian; Chen, Zhongyong

    2010-03-01

    The synchrotron radiation originated from the energetic runaway electrons has been measured by a visible complementary metal oxide semiconductor camera working in the wavelength ranges of 380-750 nm in the Experimental Advanced Superconducting Tokamak [H. Q. Liu et al., Plasma Phys. Contr. Fusion 49, 995 (2007)]. With a tangential viewing into the plasma in the direction of electron approach on the equatorial plane, the synchrotron radiation from the energetic runaway electrons was measured in full poloidal cross section. The synchrotron radiation diagnostics provides a direct pattern of the runaway beam inside the plasma. The energy and pitch angle of runaway electrons have been obtained according to the synchrotron radiation pattern. A stable shell shape of synchrotron radiation has been observed in a few runaway discharges.

  5. Limitation of the synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Zhang, Jialu; Yang, Jianming

    2001-06-01

    In recent years, owing to the great success of the synchrotron radiation in contemporary astrophysical research, the abusive use of synchrotron radiation has been emerged. In this paper, we show that the traditional idea, "electrons with a power-law energy distribution certainly yield a power-law radiation spectrum", should be changed. If the magnetic field of the radiation region is not flat and straight, the synchro-curvature radiation, instead of the synchrotron radiation, should be used to get a real description. In a curved magnetic field, the resulting spectrum of electrons could obviously distinct from a power-law one. This means that the way of only adding many other mechanisms to a pure power-law spectrum to get the expected spectrum might not be reasonable.

  6. Towards a 4{sup th} generation storage ring at the Canadian Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dallin, Les; Wurtz, Ward

    2016-07-27

    Demands from beamline scientists for more brilliant sources of synchrotron radiation have resulted in the emergence of 4{sup th} generation (diffraction-limited) storage rings. The practical development of the multi-bend achromat (MBA) concept by MAX IV lab has spurred many synchrotron light sources around the world to develop similar machines. For existing facilities two options are available: upgrading existing machines or building a new structure. The Canadian Light Source (CLS) has explored both options. For a new low emittance source in the existing CLS tunnel a decrease in electron energy would be required. A machine similar to the ALS upgrade couldmore » be contemplated. To achieve low emittance at our present energy of 2.9 GeV a new storage ring is desirable. Several options have been investigated. These designs use extremely strong focusing magnets to achieve extremely low emittances in compact lattice achromats.« less

  7. Interoperability and complementarity of simulation tools for beamline design in the OASYS environment

    NASA Astrophysics Data System (ADS)

    Rebuffi, Luca; Sanchez del Rio, Manuel

    2017-08-01

    In the next years most of the major synchrotron radiation facilities around the world will upgrade to 4th-generation Diffraction Limited Storage Rings using multi-bend-achromat technology. Moreover, several Free Electron Lasers are ready-to-go or in phase of completion. These events represent a huge challenge for the optics physicists responsible of designing and calculating optical systems capable to exploit the revolutionary characteristics of the new photon beams. Reliable and robust beamline design is nowadays based on sophisticated computer simulations only possible by lumping together different simulation tools. The OASYS (OrAnge SYnchrotron Suite) suite drives several simulation tools providing new mechanisms of interoperability and communication within the same software environment. OASYS has been successfully used during the conceptual design of many beamline and optical designs for the ESRF and Elettra- Sincrotrone Trieste upgrades. Some examples are presented showing comparisons and benchmarking of simulations against calculated and experimental data.

  8. Microstructure changes of on the extruded high-amylose bionanocomposites as affected by moisture content via synchrotron radiation studies

    NASA Astrophysics Data System (ADS)

    Liu, Huihua; Chaudhary, Deeptangshu

    2014-08-01

    The crystalline domain changes and lamellar structure observations of sorbitol-plasticized starch nanocomposite had been investigated via synchrotron. Strong interactions were found between amylose-sorbitol, resulting in reduced inter-helix spacing of the starch polymer. Achievable dspacing of nanoclay was confirmed to be correlated to the moisture content (mc) within the nanocomposites. SAXS diffraction patterns changed from circular (high mc samples) to elliptical (low mc samples), indicating the formation of long periodic structure and increased heterogeneities of the electron density within the samples. Two different domains sized at around 90 Å and 350 Å were found for the low mc samples. However, only the ~90 Å domain was observed in high mc samples. Formation of the 380 Å domain is attributed to the retrogradation behaviour in the absence of water molecules. Meanwhile, the nucleation effect of nanoclay is another factor leading to the emergence of the larger crystalline domain.

  9. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Study on the characteristics of linac based THz light source

    NASA Astrophysics Data System (ADS)

    Zhu, Xiong-Wei; Wang, Shu-Hong; Chen, Sen-Yu

    2009-10-01

    There are many methods based on linac for THz radiation production. As one of the options for the Beijing Advanced Light, an ERL test facility is proposed for THz radiation. In this test facility, there are 4 kinds of methods to produce THz radiation: coherent synchrotron radiation (CSR), synchrotron radiation (SR), low gain FEL oscillator, and high gain SASE FEL. In this paper, we study the characteristics of the 4 kinds of THz light sources.

  10. Synchrotron radiation laboratories at the Bonn electron accelerators. a status report

    NASA Astrophysics Data System (ADS)

    Hormes, J.

    1987-07-01

    At the Physikalisches Institut of the University in Bonn experiments with synchrotron radiation were carried out ever since 1962. At the moment (June 1986) all work takes place in the SR-laboratory at the 2.5 GeV synchrotron. A 3.5 GeV stretcher ring (ELSA) is under construction and will come into operation at the end of 1986. This accelerator will also run as a storage ring for synchrotron radiation experiments and a laboratory to be used at this machine is also under consideration. The SR experiments which are carried out in Bonn try to take advantage of the fact that we are still using a high energy synchrotron for our work. Besides basic research also applied work is done using synchrotron radiation even as a production tool for X-ray lithography.

  11. The Development of a Scanning Soft X-Ray Microscope.

    NASA Astrophysics Data System (ADS)

    Rarback, Harvey Miles

    We have developed a scanning soft X-ray microscope, which can be used to image natural biological specimens at high resolution and with less damage than electron microscopy. The microscope focuses a monochromatic beam of synchrotron radiation to a nearly diffraction limited spot with the aid of a high resolution Fresnel zone plate, specially fabricated for us at the IBM Watson Research Center. The specimen at one atmosphere is mechanically scanned through the spot and the transmitted radiation is efficiently detected with a flow proportional counter. A computer forms a realtime transmission image of the specimen which is displayed on a color monitor. Our first generation optics have produced images of natural wet specimens at a resolution of 300 nm.

  12. Quantitative Evaluation of Hard X-ray Damage to Biological Samples using EUV Ptychography

    NASA Astrophysics Data System (ADS)

    Baksh, Peter; Odstrcil, Michal; Parsons, Aaron; Bailey, Jo; Deinhardt, Katrin; Chad, John E.; Brocklesby, William S.; Frey, Jeremy G.

    2017-06-01

    Coherent diffractive imaging (CDI) has become a standard method on a variety of synchrotron beam lines. The high brilliance short wavelength radiation from these sources can be used to reconstruct attenuation and relative phase of a sample with nanometre resolution via CDI methods. However, the interaction between the sample and high energy ionising radiation can cause degradation to sample structure. We demonstrate, using a laboratory based high harmonic generation (HHG) based extreme ultraviolet (EUV) source, imaging a sample of hippocampal neurons using the ptychography method. The significant increase in contrast of the sample in the EUV light allows identification of damage induced from exposure to 7.3 keV photons, without causing any damage to the sample itself.

  13. Crystal Structure of 17α-Dihydroequilin, C18H22O2, from Synchrotron Powder Diffraction Data and Density Functional Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduk, James; Gindhart, Amy; Blanton, Thomas

    The crystal structure of 17α-dihydroequilin has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. 17α-dihydroequilin crystallizes in space group P212121 (#19) with a = 6.76849(1) Å, b = 8.96849(1) Å, c = 23.39031(5) Å, V = 1419.915(3) Å3, and Z = 4. Both hydroxyl groups form hydrogen bonds to each other, resulting in zig-zag chains along the b-axis. The powder diffraction pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ as the entry 00-066-1608.

  14. Industrial Use of Synchrotron Radiation:. Love at Second Sight

    NASA Astrophysics Data System (ADS)

    Hormes, Josef; Warner, Jeffrey

    2012-06-01

    Synchrotron radiation (SR) has become one of the most valuable tools for many areas of basic and applied research. In some cases, techniques have been developed that rely completely on the specific properties of synchrotron radiation; in many other cases, using synchrotron radiation has opened completely new and exciting opportunities for conventional techniques. In this chapter, the challenges, problems, and advantages of the industrial use of synchrotron radiation will be highlighted, in an admittedly subjective way, based on the experience of the authors at various synchrotron radiation facilities. "Typical" examples of industrial use of SR will be discussed for all areas of industrial activities, i.e., production, quality control and control of regulatory requirements, and research and development. Emphasis will be put on examples from R&D as this is the most intensively used area. Because this field is much too broad for a complete review here, examples will focus on applications from just three major sectors: biotechnology, pharmaceuticals and cosmetics, and automotive and mining. Environmental research is a fourth area that will be partly covered in the section on regulatory requirements.

  15. Lossy radial diffusion of relativistic Jovian electrons. [calculation of synchrotron radiation and electron radiation for Jupiter

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.; Coroniti, F. V.

    1976-01-01

    The radial diffusion equation with synchrotron losses was solved by the Laplace transform method for near-equatorially mirroring relativistic electrons. The evolution of a power law distribution function was found and the characteristics of synchrotron burn-off are stated in terms of explicit parameters for an arbitrary diffusion coefficient. Emissivity from the radiation belts of Jupiter was studied. Asymptotic forms for the distribution in the strong synchrotron loss regime are provided.

  16. Examining Returned Samples in their Collection Tubes Using Synchrotron Radiation-Based Techniques

    NASA Astrophysics Data System (ADS)

    Schoonen, M. A.; Hurowitz, J. A.; Thieme, J.; Dooryhee, E.; Fogelqvist, E.; Gregerson, J.; Farley, K. A.; Sherman, S.; Hill, J.

    2018-04-01

    Synchrotron radiation-based techniques can be leveraged for triaging and analysis of returned samples before unsealing collection tubes. Proof-of-concept measurements conducted at Brookhaven National Lab's National Synchrotron Light Source-II.

  17. Synchrotron applications in wood preservation and deterioration

    Treesearch

    Barbara L. Illman

    2003-01-01

    Several non-intrusive synchrotron techniques are being used to detect and study wood decay. The techniques use high intensity synchrotron-generated X-rays to determine the atomic structure of materials with imaging, diffraction, and absorption. Some of the techniques are X-ray absorption near edge structure (XANES), X-ray fluorescence spectroscopy (XFS), X-ray...

  18. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries Using Synchrotron Radiation Techniques

    PubMed Central

    Doeff, Marca M.; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J.; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C.; Conry, Thomas

    2013-01-01

    Intercalation compounds such as transition metal oxides or phosphates are the most commonly used electrode materials in Li-ion and Na-ion batteries. During insertion or removal of alkali metal ions, the redox states of transition metals in the compounds change and structural transformations such as phase transitions and/or lattice parameter increases or decreases occur. These behaviors in turn determine important characteristics of the batteries such as the potential profiles, rate capabilities, and cycle lives. The extremely bright and tunable x-rays produced by synchrotron radiation allow rapid acquisition of high-resolution data that provide information about these processes. Transformations in the bulk materials, such as phase transitions, can be directly observed using X-ray diffraction (XRD), while X-ray absorption spectroscopy (XAS) gives information about the local electronic and geometric structures (e.g. changes in redox states and bond lengths). In situ experiments carried out on operating cells are particularly useful because they allow direct correlation between the electrochemical and structural properties of the materials. These experiments are time-consuming and can be challenging to design due to the reactivity and air-sensitivity of the alkali metal anodes used in the half-cell configurations, and/or the possibility of signal interference from other cell components and hardware. For these reasons, it is appropriate to carry out ex situ experiments (e.g. on electrodes harvested from partially charged or cycled cells) in some cases. Here, we present detailed protocols for the preparation of both ex situ and in situ samples for experiments involving synchrotron radiation and demonstrate how these experiments are done. PMID:24300777

  19. Characterization of electrode materials for lithium ion and sodium ion batteries using synchrotron radiation techniques.

    PubMed

    Doeff, Marca M; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C; Conry, Thomas

    2013-11-11

    Intercalation compounds such as transition metal oxides or phosphates are the most commonly used electrode materials in Li-ion and Na-ion batteries. During insertion or removal of alkali metal ions, the redox states of transition metals in the compounds change and structural transformations such as phase transitions and/or lattice parameter increases or decreases occur. These behaviors in turn determine important characteristics of the batteries such as the potential profiles, rate capabilities, and cycle lives. The extremely bright and tunable x-rays produced by synchrotron radiation allow rapid acquisition of high-resolution data that provide information about these processes. Transformations in the bulk materials, such as phase transitions, can be directly observed using X-ray diffraction (XRD), while X-ray absorption spectroscopy (XAS) gives information about the local electronic and geometric structures (e.g. changes in redox states and bond lengths). In situ experiments carried out on operating cells are particularly useful because they allow direct correlation between the electrochemical and structural properties of the materials. These experiments are time-consuming and can be challenging to design due to the reactivity and air-sensitivity of the alkali metal anodes used in the half-cell configurations, and/or the possibility of signal interference from other cell components and hardware. For these reasons, it is appropriate to carry out ex situ experiments (e.g. on electrodes harvested from partially charged or cycled cells) in some cases. Here, we present detailed protocols for the preparation of both ex situ and in situ samples for experiments involving synchrotron radiation and demonstrate how these experiments are done.

  20. Machine detector interface studies: Layout and synchrotron radiation estimate in the future circular collider interaction region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boscolo, Manuela; Burkhardt, Helmut; Sullivan, Michael

    The interaction region layout for the e +e – future circular collider FCC-ee is presented together with a preliminary estimate of synchrotron radiation that affects this region. We describe in this paper the main guidelines of this design and the estimate of synchrotron radiation coming from the last bending magnets and from the final focus quadrupoles, with the software tools developed for this purpose. Here, the design follows the asymmetric optics layout as far as incoming bend radiation is concerned with the maximum foreseen beam energy of 175 GeV and we present a feasible initial layout with an indication ofmore » tolerable synchrotron radiation.« less

  1. Machine detector interface studies: Layout and synchrotron radiation estimate in the future circular collider interaction region

    DOE PAGES

    Boscolo, Manuela; Burkhardt, Helmut; Sullivan, Michael

    2017-01-27

    The interaction region layout for the e +e – future circular collider FCC-ee is presented together with a preliminary estimate of synchrotron radiation that affects this region. We describe in this paper the main guidelines of this design and the estimate of synchrotron radiation coming from the last bending magnets and from the final focus quadrupoles, with the software tools developed for this purpose. Here, the design follows the asymmetric optics layout as far as incoming bend radiation is concerned with the maximum foreseen beam energy of 175 GeV and we present a feasible initial layout with an indication ofmore » tolerable synchrotron radiation.« less

  2. Applications of a pnCCD detector coupled to columnar structure CsI(Tl) scintillator system in ultra high energy X-ray Laue diffraction

    NASA Astrophysics Data System (ADS)

    Shokr, M.; Schlosser, D.; Abboud, A.; Algashi, A.; Tosson, A.; Conka, T.; Hartmann, R.; Klaus, M.; Genzel, C.; Strüder, L.; Pietsch, U.

    2017-12-01

    Most charge coupled devices (CCDs) are made of silicon (Si) with typical active layer thicknesses of several microns. In case of a pnCCD detector the sensitive Si thickness is 450 μm. However, for silicon based detectors the quantum efficiency for hard X-rays drops significantly for photon energies above 10 keV . This drawback can be overcome by combining a pixelated silicon-based detector system with a columnar scintillator. Here we report on the characterization of a low noise, fully depleted 128×128 pixels pnCCD detector with 75×75 μm2 pixel size coupled to a 700 μm thick columnar CsI(Tl) scintillator in the photon range between 1 keV to 130 keV . The excellent performance of the detection system in the hard X-ray range is demonstrated in a Laue type X-ray diffraction experiment performed at EDDI beamline of the BESSY II synchrotron taken at a set of several GaAs single crystals irradiated by white synchrotron radiation. With the columnar structure of the scintillator, the position resolution of the whole system reaches a value of less than one pixel. Using the presented detector system and considering the functional relation between indirect and direct photon events Laue diffraction peaks with X-ray energies up to 120 keV were efficiently detected. As one of possible applications of the combined CsI-pnCCD system we demonstrate that the accuracy of X-ray structure factors extracted from Laue diffraction peaks can be significantly improved in hard X-ray range using the combined CsI(Tl)-pnCCD system compared to a bare pnCCD.

  3. Application of focused-beam flat-sample method to synchrotron powder X-ray diffraction with anomalous scattering effect

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Katsuya, Y.; Matsushita, Y.

    2013-03-01

    The focused-beam flat-sample method (FFM), which is a method for high-resolution and rapid synchrotron X-ray powder diffraction measurements by combination of beam focusing optics, a flat shape sample and an area detector, was applied for diffraction experiments with anomalous scattering effect. The advantages of FFM for anomalous diffraction were absorption correction without approximation, rapid data collection by an area detector and good signal-to-noise ratio data by focusing optics. In the X-ray diffraction experiments of CoFe2O4 and Fe3O4 (By FFM) using X-rays near the Fe K absorption edge, the anomalous scattering effect between Fe/Co or Fe2+/Fe3+ can be clearly detected, due to the change of diffraction intensity. The change of observed diffraction intensity as the incident X-ray energy was consistent with the calculation. The FFM is expected to be a method for anomalous powder diffraction.

  4. Rietveld analysis using powder diffraction data with anomalous scattering effect obtained by focused beam flat sample method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Masahiko, E-mail: masahiko@spring8.or.jp; Katsuya, Yoshio, E-mail: katsuya@spring8.or.jp; Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp

    2016-07-27

    Focused-beam flat-sample method (FFM) is a new trial for synchrotron powder diffraction method, which is a combination of beam focusing optics, flat shape powder sample and area detectors. The method has advantages for X-ray diffraction experiments applying anomalous scattering effect (anomalous diffraction), because of 1. Absorption correction without approximation, 2. High intensity X-rays of focused incident beams and high signal noise ratio of diffracted X-rays 3. Rapid data collection with area detectors. We applied the FFM to anomalous diffraction experiments and collected synchrotron X-ray powder diffraction data of CoFe{sub 2}O{sub 4} (inverse spinel structure) using X-rays near Fe K absorptionmore » edge, which can distinguish Co and Fe by anomalous scattering effect. We conducted Rietveld analyses with the obtained powder diffraction data and successfully determined the distribution of Co and Fe ions in CoFe{sub 2}O{sub 4} crystal structure.« less

  5. The uses of synchrotron radiation sources for elemental and chemical microanalysis

    USGS Publications Warehouse

    Chen, J.R.; Chao, E.C.T.; Minkin, J.A.; Back, J.M.; Jones, K.W.; Rivers, M.L.; Sutton, S.R.

    1990-01-01

    Synchrotron radiation sources offer important features for the analysis of a material. Among these features is the ability to determine both the elemental composition of the material and the chemical state of its elements. For microscopic analysis synchrotron X-ray fluorescence (SXRF) microprobes now offer spatial resolutions of 10 ??m with minimum detection limits in the 1-10 ppm range depending on the nature of the sample and the synchrotron source used. This paper describes the properties of synchrotron radiation and their importance for elemental analysis, existing synchrotron facilities and those under construction that are optimum for SXRF microanalysis, and a number of applications including the high energy excitation of the K lines of heavy elements, microtomography, and XANES and EXAFS spectroscopies. ?? 1990.

  6. X-ray induced chemical reaction revealed by in-situ X-ray diffraction and scanning X-ray microscopy in 15 nm resolution (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ge, Mingyuan; Liu, Wenjun; Bock, David; De Andrade, Vincent; Yan, Hanfei; Huang, Xiaojing; Marschilok, Amy; Takeuchi, Esther; Xin, Huolin; Chu, Yong S.

    2016-09-01

    The detection sensitivity of synchrotron-based X-ray techniques has been largely improved due to the ever increasing source brightness, which have significantly advanced ex-situ and in-situ research for energy materials, such as lithium-ion batteries. However, the strong beam-matter interaction arisen from the high beam flux can significantly modify the material structure. The parasitic beam-induced effect inevitably interferes with the intrinsic material property, which brings difficulties in interpreting experimental results, and therefore requires comprehensive evaluation. Here we present a quantitative in-situ study of the beam-effect on one electrode material Ag2VO2PO4 using four different X-ray probes with different radiation dose rate. The material system we reported exhibits interesting and reversible radiation-induced thermal and chemical reactions, which was further evaluated under electron microscopy to illustrate the underlying mechanism. The work we presented here will provide a guideline in using synchrotron X-rays to distinguish the materials' intrinsic behavior from extrinsic structure changed induced by X-rays, especially in the case of in-situ and operando study where the materials are under external field of either temperature or electric field.

  7. Efficient Computation of Coherent Synchrotron Radiation Taking into Account 6D Phase Space Distribution of Emitting Electrons

    NASA Astrophysics Data System (ADS)

    Chubar, O.; Couprie, M.-E.

    2007-01-01

    CPU-efficient method for calculation of the frequency domain electric field of Coherent Synchrotron Radiation (CSR) taking into account 6D phase space distribution of electrons in a bunch is proposed. As an application example, calculation results of the CSR emitted by an electron bunch with small longitudinal and large transverse sizes are presented. Such situation can be realized in storage rings or ERLs by transverse deflection of the electron bunches in special crab-type RF cavities, i.e. using the technique proposed for the generation of femtosecond X-ray pulses (A. Zholents et. al., 1999). The computation, performed for the parameters of the SOLEIL storage ring, shows that if the transverse size of electron bunch is larger than the diffraction limit for single-electron SR at a given wavelength — this affects the angular distribution of the CSR at this wavelength and reduces the coherent flux. Nevertheless, for transverse bunch dimensions up to several millimeters and a longitudinal bunch size smaller than hundred micrometers, the resulting CSR flux in the far infrared spectral range is still many orders of magnitude higher than the flux of incoherent SR, and therefore can be considered for practical use.

  8. Expression, purification and preliminary crystallographic analysis of oligopeptidase B from Trypanosoma brucei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rea, Dean; Hazell, Carole; Andrews, Norma W.

    2006-08-01

    Recombinant oligopeptidase B from T. brucei has been prepared and crystallized. Data were collected to 2.7 Å. Heavy-atom soaks and preparation of selenomethionine-substituted protein are in progress for structure determination by MAD or MIR. African sleeping sickness, also called trypanosomiasis, is a significant cause of morbidity and mortality in sub-Saharan Africa. Peptidases from Trypanosoma brucei, the causative agent, include the serine peptidase oligopeptidase B, a documented virulence factor and therapeutic target. Determination of the three-dimensional structure of oligopeptidase B is desirable to facilitate the development of novel inhibitors. Oligopeptidase B was overexpressed in Escherichia coli as an N-terminally hexahistidine-tagged fusionmore » protein, purified using metal-affinity chromatography and crystallized using the hanging-drop vapour-diffusion technique in 7%(w/v) polyethylene glycol 6000, 1 M LiCl, 0.1 M bis-tris propane pH 7.5. Diffraction data to 2.7 Å resolution were collected using synchrotron radiation. The crystals belong to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 124.5, c = 249.9 Å. A complete data set to 2.7 Å was collected using synchrotron radiation.« less

  9. Synchrotron radiation study on the phase relations of KAlSi3O8

    NASA Astrophysics Data System (ADS)

    Urakawa, Satoru; Ohno, Hideo; Igawa, Naoki; Kondo, Tadashi; Shimomura, Osamu

    1994-07-01

    The equilibrium phase relations of KAlSi3O8 have been determined by in situ X-ray diffraction method using synchrotron radiation at Photon Factory, Natl. Lab. for High Energy Physics. Experiments were conducted by using the cubic type high pressure apparatus, MAX90, equipped with sintered diamond anvils. The temperature region was extended to 2000 °C up to 10 GPa in this study. Sanidine, the low pressure phase of KAlSi3O8, decomposes into three phases, the wadeite-type K2Si4O9+kyanite (Al2SiO5)+coesite (SiO2), at 6.5 GPa and 1200˜1300 °C. The hollandite-type KAlSi3O8 is made up of three phases at 9.2 GPa and 1300˜1400 °C. The melting points of sanidine and the hollandite-type KAlSi3O8 are 1600 °C at 6.7 GPa and 1800 °C at 11.2 GPa, respectively. In three phases coexisting field, wadeite-type K2Si4O9 first melts at the temperature between 1400 °C and 1500 °C.

  10. Synchrotron radiation study on the high-pressure and high-temperature phase relations of KAlSi3O8

    NASA Astrophysics Data System (ADS)

    Urakawa, S.; Kondo, T.; Igawa, N.; Shimomura, O.; Ohno, H.

    1994-10-01

    In situ X-ray diffraction study on KAlSi3O8 has been performed using the cubic type high pressure apparatus, MAX90, combined with synchrotron radiation. We determined the phase relations of sanidine, the wadeite-type K2Si4O9+kyanite (Al2SiO5)+coesite (SiO2) assemblage, and hollandite-type KAlSi3O8, including melting temperatures of potassic phases, up to 11 GPa. Our data on subsolidus phase boundaries are close to the recent data of Yagi and Akaogi (1991). Melting relations of sanidine are consistent with the low pressure data of Lindsley (1966). The breakdown of sanidine into three phases reduces melting temperature, and wadeite-type K2Si4O9 melts first around 1500° C in three phase coexisting region. Melting point of hollandite-type KAlSi3O8 is between 1700° C and 1800° C at 11 GPa. If these potassic phases host potassium in the earth's mantle, the true mantle solidus temperature will be much lower than the reported dry solidus temperature of peridotite.

  11. Note: application of a pixel-array area detector to simultaneous single crystal X-ray diffraction and X-ray absorption spectroscopy measurements.

    PubMed

    Sun, Cheng-Jun; Zhang, Bangmin; Brewe, Dale L; Chen, Jing-Sheng; Chow, G M; Venkatesan, T; Heald, Steve M

    2014-04-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr0.67Sr0.33MnO3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.

  12. Single-shot full strain tensor determination with microbeam X-ray Laue diffraction and a two-dimensional energy-dispersive detector.

    PubMed

    Abboud, A; Kirchlechner, C; Keckes, J; Conka Nurdan, T; Send, S; Micha, J S; Ulrich, O; Hartmann, R; Strüder, L; Pietsch, U

    2017-06-01

    The full strain and stress tensor determination in a triaxially stressed single crystal using X-ray diffraction requires a series of lattice spacing measurements at different crystal orientations. This can be achieved using a tunable X-ray source. This article reports on a novel experimental procedure for single-shot full strain tensor determination using polychromatic synchrotron radiation with an energy range from 5 to 23 keV. Microbeam X-ray Laue diffraction patterns were collected from a copper micro-bending beam along the central axis (centroid of the cross section). Taking advantage of a two-dimensional energy-dispersive X-ray detector (pnCCD), the position and energy of the collected Laue spots were measured for multiple positions on the sample, allowing the measurement of variations in the local microstructure. At the same time, both the deviatoric and hydrostatic components of the elastic strain and stress tensors were calculated.

  13. SOFT: a synthetic synchrotron diagnostic for runaway electrons

    NASA Astrophysics Data System (ADS)

    Hoppe, M.; Embréus, O.; Tinguely, R. A.; Granetz, R. S.; Stahl, A.; Fülöp, T.

    2018-02-01

    Improved understanding of the dynamics of runaway electrons can be obtained by measurement and interpretation of their synchrotron radiation emission. Models for synchrotron radiation emitted by relativistic electrons are well established, but the question of how various geometric effects—such as magnetic field inhomogeneity and camera placement—influence the synchrotron measurements and their interpretation remains open. In this paper we address this issue by simulating synchrotron images and spectra using the new synthetic synchrotron diagnostic tool SOFT (Synchrotron-detecting Orbit Following Toolkit). We identify the key parameters influencing the synchrotron radiation spot and present scans in those parameters. Using a runaway electron distribution function obtained by Fokker-Planck simulations for parameters from an Alcator C-Mod discharge, we demonstrate that the corresponding synchrotron image is well-reproduced by SOFT simulations, and we explain how it can be understood in terms of the parameter scans. Geometric effects are shown to significantly influence the synchrotron spectrum, and we show that inherent inconsistencies in a simple emission model (i.e. not modeling detection) can lead to incorrect interpretation of the images.

  14. Study of the specific features of single-crystal boron microstructure

    NASA Astrophysics Data System (ADS)

    Blagov, A. E.; Vasil'ev, A. L.; Dmitriev, V. P.; Ivanova, A. G.; Kulikov, A. G.; Marchenkov, N. V.; Popov, P. A.; Presnyakov, M. Yu.; Prosekov, P. A.; Pisarevskii, Yu. V.; Targonskii, A. V.; Chernaya, T. S.; Chernyshov, D. Yu.

    2017-09-01

    A complex study of the structure of β-boron single crystal grown by the floating-zone method, with sizes significantly exceeding the analogs known in the literature, has been performed. The study includes X-ray diffraction analysis and X-ray diffractometry (measurement of pole figures and rocking curves), performed on both laboratory and synchrotron sources; atomic-resolution scanning transmission electron microscopy with spherical aberration correction; and energy-dispersive microanalysis. X-ray diffraction analysis using synchrotron radiation has been used to refine the β-boron structure and find impurity Si atoms. The relative variations in the unit-cell parameters a and c for the crystal bulk are found to be δ a/ a ≈ 0.4 and δ c/ c ≈ 0.1%. X-ray diffractometry has revealed that the single-crystal growth axis coincides with the [2\\bar 2013] crystallographic axis and makes an angle of 21.12° with the [0001] threefold axis. Electron microscopy data have confirmed that the sample under study is a β-boron crystal, which may contain 0.3-0.4 at % Si as an impurity. Planar defects (stacking faults and dislocations) are found. The results of additional measurements of the temperature dependence of the thermal conductivity of the crystal in the range of 50-300 K are indicative of its high structural quality.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauter, Nicholas K., E-mail: nksauter@lbl.gov; Hattne, Johan; Grosse-Kunstleve, Ralf W.

    The Computational Crystallography Toolbox (cctbx) is a flexible software platform that has been used to develop high-throughput crystal-screening tools for both synchrotron sources and X-ray free-electron lasers. Plans for data-processing and visualization applications are discussed, and the benefits and limitations of using graphics-processing units are evaluated. Current pixel-array detectors produce diffraction images at extreme data rates (of up to 2 TB h{sup −1}) that make severe demands on computational resources. New multiprocessing frameworks are required to achieve rapid data analysis, as it is important to be able to inspect the data quickly in order to guide the experiment in realmore » time. By utilizing readily available web-serving tools that interact with the Python scripting language, it was possible to implement a high-throughput Bragg-spot analyzer (cctbx.spotfinder) that is presently in use at numerous synchrotron-radiation beamlines. Similarly, Python interoperability enabled the production of a new data-reduction package (cctbx.xfel) for serial femtosecond crystallography experiments at the Linac Coherent Light Source (LCLS). Future data-reduction efforts will need to focus on specialized problems such as the treatment of diffraction spots on interleaved lattices arising from multi-crystal specimens. In these challenging cases, accurate modeling of close-lying Bragg spots could benefit from the high-performance computing capabilities of graphics-processing units.« less

  16. Medical Applications of Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Prezado, Yolanda; Martínez-Rovira, Immaculada

    This chapter describes the state-of-art of synchrotron radiation therapies in the treatment of radioresistant tumors. The tolerance of the surrounding healthy tissue severely limits the achievement of a curative treatment for some brain tumors, like gliomas. This restriction is especially important in children, due to the high risk of complications in the development of the central nervous system. In addition, the treatment of tumors close to an organ at risk, like the spinal cord, is also restrained. One possible solution is the development of new radiotherapy techniques would exploit radically different irradiation modes, as it is the case of synchrotron radiotherapies. Their distinct features allow to modify the biological equivalent doses. In this chapter the three new approaches under development at the European Synchrotron Radiation Facility (ESRF), in Grenoble (France), will be described, namely: stereotactic synchrotron radiation therapy, microbeam radiation therapy and minibeam radiation therapy. The promising results obtained in the treatment of high grade brain tumors in preclinical studies have paved the way to the forthcoming clinical trials, currently in preparation.

  17. Absence of pressure-induced amorphization in LiKSO4.

    PubMed

    Machon, D; Pinheiro, C B; Bouvier, P; Dmitriev, V P; Crichton, W A

    2010-08-11

    Angle-resolved synchrotron radiation diffraction was used to investigate lithium potassium sulfate (LiKSO(4)) crystals under high pressure. We confirm that the title compound undergoes three phase transitions, α →β, β → γ and γ →δ, observed at around 0.8 GPa, 4.0 GPa and 7.0 GPa, respectively. Two competitive structures are proposed for the β-phase after powder diffraction data Rietveld refinements: an orthorhombic (space group Cmc 2(1)) or a monoclinic (space group Cc) structure. These structures correspond to the models of the low temperature phases. The γ-phase is indexed by a monoclinic structure. Finally, the δ-phase is found to be highly disordered. No evidence of any pressure-induced amorphous phase was observed up to 24 GPa, even under imposed highly non-hydrostatic conditions, contrary to previous propositions.

  18. Cementum structure in Beluga whale teeth

    DOE PAGES

    Stock, S. R.; Finney, L. A.; Telser, A.; ...

    2016-11-09

    We report that a large fraction of the volume of Beluga whale (Delphinapterus leucas) teeth consists of cementum, a mineralized tissue which grows throughout the life of the animal and to which the periodontal ligaments attach. Annular growth bands or growth layer groups (GLGs) form within Beluga cementum, and this study investigates GLG structure using X-ray fluorescence mapping and X-ray diffraction mapping with microbeams of synchrotron radiation. The Ca and Zn fluorescent intensities and carbonated hydroxyapatite (cAp) diffracted intensities rise and fall together and match the light-dark bands visible in transmitted light micrographs. Within the bands of maximum Ca andmore » Zn intensity, the ratio of Zn to Ca is slightly higher than in the minima bands. Further, the GLG cAp, Ca and Zn modulation is preserved throughout the cementum for durations >25 year.« less

  19. The single-crystal structure of the organic superconductor betaCO-(BEDT-TTF)2I3 from a powder grain.

    PubMed

    Madsen; Burghammer; Fiedler; Müller

    1999-08-01

    Synchrotron radiation diffraction data have been collected at 200 K on a microscopic single crystal (dimensions 12 x 10 x 2 µm) of the title compound, where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene, C(10)H(8)S(8). The quality of the diffraction data allowed a full structure refinement and enabled the determination of structural details such as the conformations of the ethylene groups as well as the occupancy of the triiodide sites. The compound was found to be slightly iodine-deficient and better described as beta(CO)-(BEDT-TTF)(2)I(3-x) [x = 0.014 (3)]. One of the ethylene groups of the BEDT-TTF cation is disordered at this temperature and exists in two distinct conformations with occupancies which are identical within the standard uncertainty.

  20. Review: Serial Femtosecond Crystallography: A Revolution in Structural Biology

    PubMed Central

    Martin-Garcia, Jose M.; Conrad, Chelsie E.; Coe, Jesse; Roy-Chowdhury, Shatabdi; Fromme, Petra

    2016-01-01

    Macromolecular crystallography at synchrotron sources has proven to be the most influential method within structural biology, producing thousands of structures since its inception. While its utility has been instrumental in progressing our knowledge of structures of molecules, it suffers from limitations such as the need for large, well-diffracting crystals, and radiation damage that can hamper native structural determination. The recent advent of X-ray free electron lasers (XFELs) and their implementation in the emerging field of serial femtosecond crystallography (SFX) has given rise to a remarkable expansion upon existing crystallographic constraints, allowing structural biologists access to previously restricted scientific territory. SFX relies on exceptionally brilliant, micro-focused X-ray pulses, which are femtoseconds in duration, to probe nano/micrometer sized crystals in a serial fashion. This results in data sets comprised of individual snapshots, each capturing Bragg diffraction of single crystals in random orientations prior to their subsequent destruction. Thus structural elucidation while avoiding radiation damage, even at room temperature, can now be achieved. This emerging field has cultivated new methods for nanocrystallogenesis, sample delivery, and data processing. Opportunities and challenges within SFX are reviewed herein. PMID:27143509

  1. Serial femtosecond crystallography: A revolution in structural biology.

    PubMed

    Martin-Garcia, Jose M; Conrad, Chelsie E; Coe, Jesse; Roy-Chowdhury, Shatabdi; Fromme, Petra

    2016-07-15

    Macromolecular crystallography at synchrotron sources has proven to be the most influential method within structural biology, producing thousands of structures since its inception. While its utility has been instrumental in progressing our knowledge of structures of molecules, it suffers from limitations such as the need for large, well-diffracting crystals, and radiation damage that can hamper native structural determination. The recent advent of X-ray free electron lasers (XFELs) and their implementation in the emerging field of serial femtosecond crystallography (SFX) has given rise to a remarkable expansion upon existing crystallographic constraints, allowing structural biologists access to previously restricted scientific territory. SFX relies on exceptionally brilliant, micro-focused X-ray pulses, which are femtoseconds in duration, to probe nano/micrometer sized crystals in a serial fashion. This results in data sets comprised of individual snapshots, each capturing Bragg diffraction of single crystals in random orientations prior to their subsequent destruction. Thus structural elucidation while avoiding radiation damage, even at room temperature, can now be achieved. This emerging field has cultivated new methods for nanocrystallogenesis, sample delivery, and data processing. Opportunities and challenges within SFX are reviewed herein. Published by Elsevier Inc.

  2. Chlorination-promoted skeletal transformation of IPR C76 discovered via trifluoromethylation under the formation of non-IPR C76(CF3)nFm.

    PubMed

    Tamm, Nadezhda B; Brotsman, Victor A; Markov, Vitaliy Yu; Kemnitz, Erhard; Troyanov, Sergey I

    2018-05-22

    High-temperature chlorination of an Isolated-Pentagon Rule (IPR) D2-C76 fullerene followed by high-temperature trifluoromethylation of non-IPR C76 chlorides with CF3I unexpectedly resulted in a series of non-IPR C76(CF3)nFm compounds. X-ray diffraction study with the use of synchrotron radiation revealed the mixed CF3/F structures of non-classical, non-IPR C76(CF3)14, C76(CF3)14F2, and C76(CF3)16F6.

  3. Structure-induced microalloying effect in multicomponent alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Gu -Qing; Yang, Liang; Wu, Shi -Yang

    2016-04-28

    In this study, the microalloying effect on glass-forming ability (GFA) has been investigated from the structural aspect, by performing synchrotron radiation x-ray diffraction and absorption measurements coupled with simulations in the NiNbZr ternary system. We propose a new parameter which counts the fraction of the fivefold symmetries in all clusters and find it is strongly associated with the GFA. In particular, this structural parameter has the highest value in a composition where the best GFA is achieved. The present work provides an in-depth understanding of microalloying-induced high GFAs in multicomponent alloys.

  4. Physics of X-ray Multilayer Structures: Summaries of Papers Presented at the Physics of X-ray Multilayer Structures Topical Meeting Held in Jackson Hole, Wyoming on March 2-5, 1992. (1992 Technical Digest Series Volume 7).

    DTIC Science & Technology

    1992-03-01

    Synchrotron Radiation Facility, France. A novel method for depositing large size multilayers is de - GRAND ROOM scribed. A plasma produced by distributed...explained by the uphill diffusion of metal Univ. Paris, France. The Born approximation is applied to de - atoms. (p. 27) scribe the diffractive properties of...D. G. TuAl Roughness evolution in films and multilayer struc- Steams, Lawrence Livermore National Laboratory. The de - tuns, M. G. Lagally, Univ

  5. X-ray Fluorescence Holography: Principles, Apparatus, and Applications

    NASA Astrophysics Data System (ADS)

    Hayashi, Kouichi; Korecki, Pawel

    2018-06-01

    X-ray fluorescence holography (XFH) is an atomic structure determination technique that combines the capabilities of X-ray diffraction and X-ray fluorescence spectroscopy. It provides a unique means of gaining fully three-dimensional information about the local atomic structure and lattice site positions of selected elements inside compound samples. In this work, we discuss experimental and theoretical aspects that are essential for the efficient recording and analysis of X-ray fluorescence holograms and review the most recent advances in XFH. We describe experiments performed with brilliant synchrotron radiation as well as with tabletop setups that employ conventional X-ray tubes.

  6. X-ray absorption fine structure (XAFS) spectroscopy using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Shrivastava, B. D.

    2012-05-01

    The X-ray absorption fine structure (XAFS) spectra are best recorded when a highly intense beam of X-rays from a synchrotron is used along with a good resolution double crystal or curved crystal spectrometer and detectors like ionization chambers, scintillation counters, solid state detectors etc. Several synchrotrons around the world have X-ray beamlines dedicated specifically to XAFS spectroscopy. Fortunately, the Indian synchrotron (Indus-2) at Raja Ramanna Centre for Advanced Technology (RRCAT) at Indore has started operation. A dispersive type EXAFS beamline called BL-8 has been commissioned at this synchrotron and another beamline having double crystal monochromator (DCM) is going to be commissioned shortly. In Indian context, in order that more research workers use these beamlines, the study of XAFS spectroscopy using synchrotron radiation becomes important. In the present work some of the works done by our group on XAFS spectroscopy using synchrotron radiation have been described.

  7. Melting point suppression in new lanthanoid(III) ionic liquids by trapping of kinetic polymorphs: an in situ synchrotron powder diffraction study.

    PubMed

    Chesman, Anthony S R; Yang, Mei; Mallick, Bert; Ross, Tamsyn M; Gass, Ian A; Deacon, Glen B; Batten, Stuart R; Mudring, Anja-Verena

    2012-01-04

    The complexes (N(4444))(3)[Ln(dcnm)(6)] (Ln = La-Nd, Sm; N(4444) = tetrabutylammonium) display a decrease in the melting point upon fast cooling from a melt, which is shown by in situ synchrotron based X-ray powder diffraction to be due to the formation of a second, less thermodynamically stable, polymorph. This journal is © The Royal Society of Chemistry 2012

  8. Crystal structures of carbonates up to Mbar pressures determined by single crystal synchrotron radiation diffraction

    NASA Astrophysics Data System (ADS)

    Merlini, M.

    2013-12-01

    The recent improvements at synchrotron beamlines, currently allow single crystal diffraction experiments at extreme pressures and temperatures [1,2] on very small single crystal domains. We successfully applied such technique to determine the crystal structure adopted by carbonates at mantle pressures. The knowledge of carbon-bearing phases is in fact fundamental for any quantitative modelling of global carbon cycle. The major technical difficulty arises after first order transitions or decomposition reactions, since original crystal (apx. 10x10x5 μm3) is transformed in much smaller crystalline domains often with random orientation. The use of 3D reciprocal space visualization software and the improved resolution of new generation flat panel detectors, however, allow both identification and integration of each single crystal domain, with suitable accuracy for ab-initio structure solution, performed with direct and charge-flipping methods and successive structure refinements. The results obtained on carbonates, indicate two major crystal-chemistry trends established at high pressures. The CO32- units, planar and parallel in ambient pressure calcite and dolomite structures, becomes non parallel in calcite- and dolomite-II and III phases, allowing more flexibility in the structures with possibility to accommodate strain arising from different cation sizes (Ca and Mg in particular). Dolomite-III is therefore also observed to be thermodynamically stable at lower mantle pressures and temperatures, differently from dolomite, which undergoes decomposition into pure end-members in upper mantle. At higher pressure, towards Mbar (lowermost mantle and D'' region) in agreement with theoretical calculations [3,4] and other experimental results [5], carbon coordination transform into 4-fold CO4 units, with different polymerisation in the structure depending on carbonate composition. The second important crystal chemistry feature detected is related to Fe2+ in Fe-bearing magnesite, which spontaneously oxidises at HP/HT, forming Fe3+ carbonates, Fe3+ oxides and reduced carbon (diamonds). Single crystal diffraction approach allowed full structure determination of these phases, yielding to the discovery of few unpredicted structures, such as Mg2Fe2C4O13 and Fe13O19, which can be well reproduced in different experiments. Mg2Fe2C4O13 carbonate present truncated chain C4O13 groups, and Fe13O19 oxide, whose stoichiometry is intermediate between magnetite and hematite, is a one-layer structure, with features encountered in superconducting materials. The results fully support the ideas of unexpected complexities in the mineralogy of the lowermost mantle, and single crystal technique, once properly optimized in ad-hoc synchrotron beamlines, is fundamental for extracting accurate structural information, otherwise rarely accessible with other experimental techniques. References: [1] Merlini M., Hanfland M. (2013). Single crystal diffraction at Mbar conditions by synchrotron radiation. High Pressure Research, in press. [2] Dubrovinsky et al., (2010). High Pressure Research, 30, 620-633. [3] Arapan et al. (1997). Phys. Rev. Lett., 98, 268501. [4] Oganov et al. (2008) EPSL, 273, 38-47. [5] Boulard et al. (2011) PNAS, 108, 5184-5187.

  9. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves

    PubMed Central

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J. R.; Krenner, Hubert J.; Wixforth, Achim; Salditt, Tim

    2014-01-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length). PMID:25294979

  10. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves.

    PubMed

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J R; Krenner, Hubert J; Wixforth, Achim; Salditt, Tim

    2014-10-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length).

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazuritskiy, M. I., E-mail: mazurmik@gmail.com; Lerer, A. M.; Makhno, P. V.

    The angular distribution of the X-ray intensity at the exit of microchannel plates at grazing incidence of monochromatic radiation on the walls of microcapillaries has been investigated. The angles and energies of the primary radiation quanta at which the synchrotron beam excites X-ray fluorescence propagating inside polycapillary structures have been determined. The angular dependences of the intensity distribution of X-rays transmitted through the microcapillaries have been studied theoretically and experimentally for energies corresponding to the region of anomalous dispersion near the L{sub 2,3} absorption edges of silicon. The propagation of waves in hollow polycapillary waveguides, the excitation of X-ray fluorescence,more » and the X-ray diffraction at the exit of microchannel plates have been modeled mathematically. The mathematical model takes into account the presence of a transition layer on the microchannel surface.« less

  12. Synchrotron X-ray diffraction study of the Ba{sub 1−x}SrSnO{sub 3} solid solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodjosantoso, Anti K., E-mail: Prodjosantoso@yahoo.com; Zhou, Qingdi; Kennedy, Brendan J.

    At room temperature the sequence of phases with increasing amounts of strontium in the stannate perovskite system Ba{sub 1−x}SrSnO{sub 3} has been established from high resolution synchrotron X-ray powder diffraction. The observed sequence orthorhombic (Pbnm), orthorhombic (Ibmm), tetragonal (I4/mcm), and cubic (Pm3-bar m) is a consequence of the sequential introduction of cooperative tilting of the corner sharing SnO{sub 6} octahedra. The cell volume changes smoothly across the series with no obvious discontinuities associated with the phase transitions. - Graphical abstract: Portions of the synchrotron X-ray diffraction profiles (λ=0.82453 Å) from selected Ba{sub 1−x}Sr{sub x}SnO{sub 3} samples together with the resultsmore » of fitting by the Rietveld method. Highlights: ► Structures of the stannate perovskites Ba{sub 1−x}SrSnO{sub 3} refined from synchrotron XRD. ► The sequence Pm3-bar m→I4/mcm→Ibmm→Pbnm results from tilting of the octahedra. ► The tilting maintains optimal bonding of the cations seen from the BVS analysis.« less

  13. Operation of the Australian Store.Synchrotron for macromolecular crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Grischa R.; Aragão, David; Mudie, Nathan J.

    2014-10-01

    The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The service automatically receives and archives raw diffraction data, related metadata and preliminary results of automated data-processing workflows. Data are able to be shared with collaborators and opened to the public. In the nine months since its deployment in August 2013, the service has handled over 22.4 TB of raw data (∼1.7 million diffraction images). Severalmore » real examples from the Australian crystallographic community are described that illustrate the advantages of the approach, which include real-time online data access and fully redundant, secure storage. Discoveries in biological sciences increasingly require multidisciplinary approaches. With this in mind, Store.Synchrotron has been developed as a component within a greater service that can combine data from other instruments at the Australian Synchrotron, as well as instruments at the Australian neutron source ANSTO. It is therefore envisaged that this will serve as a model implementation of raw data archiving and dissemination within the structural biology research community.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramadhar, Timothy R.; Zheng, Shao-Liang; Chen, Yu-Sheng

    This report describes complete practical guidelines and insights for the crystalline sponge method, which have been derived through the first use of synchrotron radiation on these systems, and includes a procedure for faster synthesis of the sponges. These guidelines will be applicable to crystal sponge data collected at synchrotrons or in-house facilities, and will allow researchers to obtain reliable high-quality data and construct chemically and physically sensible models for guest structural determination. A detailed set of synthetic and crystallographic guidelines for the crystalline sponge method based upon the analysis of expediently synthesized crystal sponges using third-generation synchrotron radiation are reported.more » The procedure for the synthesis of the zinc-based metal–organic framework used in initial crystal sponge reports has been modified to yield competent crystals in 3 days instead of 2 weeks. These crystal sponges were tested on some small molecules, with two being unexpectedly difficult cases for analysis with in-house diffractometers in regard to data quality and proper space-group determination. These issues were easily resolved by the use of synchrotron radiation using data-collection times of less than an hour. One of these guests induced a single-crystal-to-single-crystal transformation to create a larger unit cell with over 500 non-H atoms in the asymmetric unit. This led to a non-trivial refinement scenario that afforded the best Flack x absolute stereochemical determination parameter to date for these systems. The structures did not require the use of PLATON/SQUEEZE or other solvent-masking programs, and are the highest-quality crystalline sponge systems reported to date where the results are strongly supported by the data. A set of guidelines for the entire crystallographic process were developed through these studies. In particular, the refinement guidelines include strategies to refine the host framework, locate guests and determine occupancies, discussion of the proper use of geometric and anisotropic displacement parameter restraints and constraints, and whether to perform solvent squeezing/masking. The single-crystal-to-single-crystal transformation process for the crystal sponges is also discussed. The presented general guidelines will be invaluable for researchers interested in using the crystalline sponge method at in-house diffraction or synchrotron facilities, will facilitate the collection and analysis of reliable high-quality data, and will allow construction of chemically and physically sensible models for guest structural determination.« less

  15. X-Ray Crystallographic Studies on Acetylcholinesterase and on Its Interaction with Anticholinesterase Agents.

    DTIC Science & Technology

    1994-11-24

    complexes with reversible ligands, including edrophonium, d-tubocurarine and huperzine A , diffracting to similar resolution. The X26c Laue beam line...The EMBL-DESY synchrotron facility at Hamburg was employed to collect a complete 2.3 A data set for a crystal of native Torpedo AChE, as well as for...at the NSLS synchrotron facility at Brookhaven National Laboratory (BNL) was used to obtain a Laue diffraction pattern for a crystal of native Torpedo

  16. Fundamentals of Coherent Synchrotron Radiation in Storage Rings

    NASA Astrophysics Data System (ADS)

    Sannibale, F.; Byrd, J. M.; Loftsdottir, A.; Martin, M. C.; Venturini, M.

    2004-05-01

    We present the fundamental concepts for producing stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The analysis includes distortion of bunch shape from the synchrotron radiation (SR), enhancing higher frequency coherent emission and limits to stable emission due to a microbunching instability excited by the SR. We use these concepts to optimize the performance of a source for CSR emission.

  17. Synchrotron X-ray diffraction investigations on strains in the oxide layer of an irradiated Zircaloy fuel cladding

    NASA Astrophysics Data System (ADS)

    Chollet, Mélanie; Valance, Stéphane; Abolhassani, Sousan; Stein, Gene; Grolimund, Daniel; Martin, Matthias; Bertsch, Johannes

    2017-05-01

    For the first time the microstructure of the oxide layer of a Zircaloy-2 cladding after 9 cycles of irradiation in a boiling water reactor has been analyzed with synchrotron micro-X-ray diffraction. Crystallographic strains of the monoclinic and to some extent of the tetragonal ZrO2 are depicted through the thick oxide layer. Thin layers of sub-oxide at the oxide-metal interface as found for autoclave-tested samples and described in the literature, have not been observed in this material maybe resulting from irradiation damage. Shifts of selected diffraction peaks of the monoclinic oxide show that the uniform strain produced during oxidation is orientated in the lattice and displays variations along the oxide layer. Diffraction peaks and their shifts from families of diffracting planes could be translated into a virtual tensor. This virtual tensor exhibits changes through the oxide layer passing by tensile or compressive components.

  18. Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading

    DOE PAGES

    Fan, D.; Huang, J. W.; Zeng, X. L.; ...

    2016-05-23

    We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantifymore » lattice deformation and fracture; diffraction peak broadening is largely caused by fracture-induced strain inhomogeneity. Finally, our results demonstrate the potential of such multiscale measurements for revealing and understanding high strain-rate phenomena at dynamic extremes.« less

  19. Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, D.; Huang, J. W.; Zeng, X. L.

    We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantifymore » lattice deformation and fracture; diffraction peak broadening is largely caused by fracture-induced strain inhomogeneity. Finally, our results demonstrate the potential of such multiscale measurements for revealing and understanding high strain-rate phenomena at dynamic extremes.« less

  20. Application of x-ray absorption fine structure (XAFS) to local-order analysis in Fe-Cr maghemite-like materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montero-Cabrera, M. E., E-mail: elena.montero@cimav.edu.mx; Fuentes-Cobas, L. E.; Macías-Ríos, E.

    2015-07-23

    The maghemite-like oxide system γ-Fe{sub 2-x}Cr{sub x}O{sub 3} (x=0.75, 1 and 1.25) was studied by X-ray absorption fine structure (XAFS) and by synchrotron radiation X-ray diffraction (XRD). Measurements were performed at the Stanford Synchrotron Radiation Lightsource at room temperature, at beamlines 2-1, 2-3 and 4-3. High-resolution XRD patterns were processed by means of the Rietveld method. In cases of atoms being neighbors in the Periodic Table, the order/disorder degree of the considered solutions is indiscernible by “normal” (absence of “anomalous scattering”) diffraction experiments. Thus, maghemite-like materials were investigated by XAFS in both Fe and Cr K-edges to clarify, via short-rangemore » structure characterization, the local ordering of the investigated system. Athena and Artemis graphic user interfaces for IFEFFIT and FEFF8.4 codes were employed for XAFS spectra interpretation. Pre-edge decomposition and theoretical modeling of X-ray absorption near edge structure (XANES) transitions were performed. By analysis of the Cr K-edge XANES, it has been confirmed that Cr is located in an octahedral environment. Fitting of the extended X-ray absorption fine structure (EXAFS) spectra was performed under the consideration that the central atom of Fe is allowed to occupy octa- and tetrahedral positions, while Cr occupies only octahedral ones. Coordination number of neighboring atoms, interatomic distances and their quadratic deviation average were determined for x=1, by fitting simultaneously the EXAFS spectra of both Fe and Cr K-edges. The results of fitting the experimental spectra with theoretical standards showed that the cation vacancies tend to follow a regular pattern within the structure of the iron-chromium maghemite (FeCrO{sub 3})« less

  1. Light in the darkening on Naica gypsum crystals

    NASA Astrophysics Data System (ADS)

    Castillo-Sandoval, I.; Fuentes-Cobas, L. E.; Fuentes-Montero, M. E.; Esparza-Ponce, H. E.; Carreno-Márquez, J.; Reyes-Cortes, M.; Montero-Cabrera, M. E.

    2015-07-01

    Naica mine is located in a semi-desertic region at the central-south of Chihuahua State. The Cave of Swords was discovered in 1910 and the Cave of Crystals 90 years later at Naica mines. It is expected that during the last century the human presence has changed the microclimatic conditions inside the cave, resulting in the deterioration of the crystals and the deposition of impurities on gypsum surfaces. As a contribution to the clarification of the mentioned issues, the present work refers to the use of synchrotron radiation for the identification of phases on these surfaces. All the experiments were performed at the Stanford Synchrotron Radiation Lightsource. Grazing incidence X-ray diffraction (GIXRD) and radiography-aided X-ray diffraction (RAXRD) experiments were performed at beamline 11-3. X-Ray micro-fluorescence (μ-SXRF) and micro-X-ray absorption (μ-XANES) were measured at beamline 2-3. Representative results obtained may be summarized as follows: a) Gypsum, galena, sphalerite, hematite and cuprite at the surface of the gypsum crystals were determined. b) The samples micro-structure is affected by impurities. c) The elemental distributions and correlations (0.6-0.9) of Cu, K, Fe, Mn, Pb, Zn, Ca and S were identified by μ-SXRF. The correlations among elemental contents confirmed the phase identification, with the exception of manganese and potassium due to the amorphous nature of some impurity compounds in these samples. The compounds hematite (Fe2O3), β-MnO2, Mn2O3, MnO and/or MnCO3, PbS, PbCO3 and/or PbSO4, ZnO4, ZnS and/or smithsonite (ZnCO3), CuS + Cu Oxide were identified by XANES. Plausibly, these latter compounds do not form crystalline phases.

  2. Atomic physics research with second and third generation synchrotron light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, B.M.

    1990-10-01

    This contribution to these proceedings is intended to provide an introduction and overview for other contributions on atomic (and related) physics research at existing and planned synchrotron light sources. The emphasis will be on research accomplishments and future opportunities, but a comparison will be given of operating characteristics for first, second, and third generation machines. First generation light sources were built to do research with the primary electron and positron beams, rather than with the synchrotron radiation itself. Second generation machines were specifically designed to be dedicated synchrotron-radiation facilities, with an emphasis on the use of bending-magnet radiation. The newmore » third generation light sources are being designed to optimize radiation from insertion devices, such as undulators and wigglers. Each generation of synchrotron light source offers useful capabilities for forefront research in atomic physics and many other disciplines. 27 refs., 1 fig., 3 tabs.« less

  3. Shielding calculations for the National Synchrotron Light Source-II experimental beamlines

    NASA Astrophysics Data System (ADS)

    Job, Panakkal K.; Casey, William R.

    2013-01-01

    Brookhaven National Laboratory is in the process of building a new Electron storage ring for scientific research using synchrotron radiation. This facility, called the "National Synchrotron Light Source II" (NSLS-II), will provide x-ray radiation of ultra-high brightness and exceptional spatial and energy resolution. It will also provide advanced insertion devices, optics, detectors, and robotics, designed to maximize the scientific output of the facility. The project scope includes the design of an electron storage ring and the experimental beamlines, which stores a maximum of 500 mA electron beam current at an energy of 3.0 GeV. When fully built there will be at least 58 beamlines using synchrotron radiation for experimental programs. It is planned to operate the facility primarily in a top-off mode, thereby maintaining the maximum variation in the synchrotron radiation flux to <1%. Because of the very demanding requirements for synchrotron radiation brilliance for the experiments, each of the 58 beamlines will be unique in terms of the source properties and experimental configuration. This makes the shielding configuration of each of the beamlines unique. The shielding calculation methodology and the results for five representative beamlines of NSLS-II, have been presented in this paper.

  4. Operation of the Australian Store.Synchrotron for macromolecular crystallography

    PubMed Central

    Meyer, Grischa R.; Aragão, David; Mudie, Nathan J.; Caradoc-Davies, Tom T.; McGowan, Sheena; Bertling, Philip J.; Groenewegen, David; Quenette, Stevan M.; Bond, Charles S.; Buckle, Ashley M.; Androulakis, Steve

    2014-01-01

    The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The service automatically receives and archives raw diffraction data, related metadata and preliminary results of automated data-processing workflows. Data are able to be shared with collaborators and opened to the public. In the nine months since its deployment in August 2013, the service has handled over 22.4 TB of raw data (∼1.7 million diffraction images). Several real examples from the Australian crystallographic community are described that illustrate the advantages of the approach, which include real-time online data access and fully redundant, secure storage. Discoveries in biological sciences increasingly require multidisciplinary approaches. With this in mind, Store.Synchrotron has been developed as a component within a greater service that can combine data from other instruments at the Australian Synchrotron, as well as instruments at the Australian neutron source ANSTO. It is therefore envisaged that this will serve as a model implementation of raw data archiving and dissemination within the structural biology research community. PMID:25286837

  5. Operation of the Australian Store.Synchrotron for macromolecular crystallography.

    PubMed

    Meyer, Grischa R; Aragão, David; Mudie, Nathan J; Caradoc-Davies, Tom T; McGowan, Sheena; Bertling, Philip J; Groenewegen, David; Quenette, Stevan M; Bond, Charles S; Buckle, Ashley M; Androulakis, Steve

    2014-10-01

    The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The service automatically receives and archives raw diffraction data, related metadata and preliminary results of automated data-processing workflows. Data are able to be shared with collaborators and opened to the public. In the nine months since its deployment in August 2013, the service has handled over 22.4 TB of raw data (∼1.7 million diffraction images). Several real examples from the Australian crystallographic community are described that illustrate the advantages of the approach, which include real-time online data access and fully redundant, secure storage. Discoveries in biological sciences increasingly require multidisciplinary approaches. With this in mind, Store.Synchrotron has been developed as a component within a greater service that can combine data from other instruments at the Australian Synchrotron, as well as instruments at the Australian neutron source ANSTO. It is therefore envisaged that this will serve as a model implementation of raw data archiving and dissemination within the structural biology research community.

  6. Macromolecular structures probed by combining single-shot free-electron laser diffraction with synchrotron coherent X-ray imaging.

    PubMed

    Gallagher-Jones, Marcus; Bessho, Yoshitaka; Kim, Sunam; Park, Jaehyun; Kim, Sangsoo; Nam, Daewoong; Kim, Chan; Kim, Yoonhee; Noh, Do Young; Miyashita, Osamu; Tama, Florence; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Tono, Kensuke; Kohmura, Yoshiki; Yabashi, Makina; Hasnain, S Samar; Ishikawa, Tetsuya; Song, Changyong

    2014-05-02

    Nanostructures formed from biological macromolecular complexes utilizing the self-assembly properties of smaller building blocks such as DNA and RNA hold promise for many applications, including sensing and drug delivery. New tools are required for their structural characterization. Intense, femtosecond X-ray pulses from X-ray free-electron lasers enable single-shot imaging allowing for instantaneous views of nanostructures at ambient temperatures. When combined judiciously with synchrotron X-rays of a complimentary nature, suitable for observing steady-state features, it is possible to perform ab initio structural investigation. Here we demonstrate a successful combination of femtosecond X-ray single-shot diffraction with an X-ray free-electron laser and coherent diffraction imaging with synchrotron X-rays to provide an insight into the nanostructure formation of a biological macromolecular complex: RNA interference microsponges. This newly introduced multimodal analysis with coherent X-rays can be applied to unveil nano-scale structural motifs from functional nanomaterials or biological nanocomplexes, without requiring a priori knowledge.

  7. Synchrotron Radiation II.

    ERIC Educational Resources Information Center

    MOSAIC, 1978

    1978-01-01

    Synchrotron radiation is a unique form of radiation that spans the electro-magnetic spectrum from X-rays through the ultraviolet and visible into the infrared. Tunable monochromators enable scientists to select a narrow band of wavelengths at any point in the spectrum. (Author/BB)

  8. Observation of Multi-bunch Interference with Coherent Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Billinghurst, B. E.; May, T.; Bergstrom, J.; DeJong, M.; Dallin, L.

    2010-02-01

    The observation of Multi-bunch interference with coherent synchrotron radiation at the Canadian Light Source is discussed along with the possibility that some of the spectral features are driven by the radiation impedance of the vacuum chamber.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Baozhuo; Young, Marcus L.

    Many technological applications of austenitic shape memory alloys (SMAs) involve cyclical mechanical loading and unloading in order to take advantage of pseudoelasticity. In this paper, we investigated the effect of mechanical bending of pseudoelastic NiTi SMA wires using high-energy synchrotron radiation X-ray diffraction (SR-XRD). Differential scanning calorimetry was performed to identify the phase transformation temperatures. Scanning electron microscopy images show that micro-cracks in compressive regions of the wire propagate with increasing bend angle, while tensile regions tend not to exhibit crack propagation. SR-XRD patterns were analyzed to study the phase transformation and investigate micromechanical properties. By observing the various diffraction peaks such as the austenite (200) and the martensite (more » $${\\bar 1}12$$), ($${\\bar 1}03$$), ($${\\bar 1}11$$), and (101) planes, intensities and residual strain values exhibit strong anisotropy, depending upon whether the sample is in compression or tension during bending.« less

  10. In situ investigations of phase transformations in Fe-sheathed MgB2 wires

    NASA Astrophysics Data System (ADS)

    Grivel, J.-C.; Pinholt, R.; Andersen, N. H.; Kovác, P.; Husek, I.; Homeyer, J.

    2006-01-01

    The phase evolution inside Fe-sheathed wires containing precursor powders consisting of a mixture of Mg and B has been studied in situ by means of x-ray diffraction with hard synchrotron radiation (90 keV). Mg was found to disappear progressively during the heating stage. At 500 °C, the intensity of the Mg diffraction lines is reduced by about 20%. This effect is partly attributable to MgO formation. The MgB2 phase was detected from 575 °C. Fe2B was forming at the interface between the sheath and the ceramic core at sintering temperatures of 780 and 700 °C, but not at 650 °C. The formation rate of this phase is strongly dependent on the heat treatment temperature. Its presence can be readily detected as soon as the average interface reaction thickness exceeds 150-200 nm.

  11. Linking structural biology with genome research: Beamlines for the Berlin ``Protein Structure Factory'' initiative

    NASA Astrophysics Data System (ADS)

    Illing, Gerd; Saenger, Wolfram; Heinemann, Udo

    2000-06-01

    The Protein Structure Factory will be established to characterize proteins encoded by human genes or cDNAs, which will be selected by criteria of potential structural novelty or medical or biotechnological usefulness. It represents an integrative approach to structure analysis combining bioinformatics techniques, automated gene expression and purification of gene products, generation of a biophysical fingerprint of the proteins and the determination of their three-dimensional structures either by NMR spectroscopy or by X-ray diffraction. The use of synchrotron radiation will be crucial to the Protein Structure Factory: high brilliance and tunable wavelengths are prerequisites for fast data collection, the use of small crystals and multiwavelength anomalous diffraction (MAD) phasing. With the opening of BESSY II, direct access to a third-generation XUV storage ring source with excellent conditions is available nearby. An insertion device with two MAD beamlines and one constant energy station will be set up until 2001.

  12. Crystallization and preliminary X-ray diffraction analysis of P30, the transmembrane domain of pertactin, an autotransporter from Bordetella pertussis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yanshi; Black, Isobel; Roszak, Aleksander W.

    2007-07-01

    P30, the transmembrane C-terminal domain of pertactin from B. pertussis has been crystallized after refolding in vitro. Preliminary X-ray crystallographic data are reported. P30, the 32 kDa transmembrane C-terminal domain of pertactin from Bordetella pertussis, is supposed to form a β-barrel inserted into the outer membrane for the translocation of the passenger domain. P30 was cloned and expressed in inclusion bodies in Escherichia coli. After refolding and purification, the protein was crystallized using the sitting-drop vapour-diffusion method at 292 K. The crystals diffract to a resolution limit of 3.5 Å using synchrotron radiation and belong to the hexagonal space groupmore » P6{sub 1}22, with unit-cell parameters a = b = 123.27, c = 134.43 Å.« less

  13. Through-silicon via-induced strain distribution in silicon interposer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vianne, B., E-mail: benjamin.vianne@st.com; STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles; Richard, M.-I.

    2015-04-06

    Strain in silicon induced by Through-Silicon Via (TSV) integration is of particular interest in the frame of the integration of active devices in silicon interposer. Nano-focused X-ray beam diffraction experiments were conducted using synchrotron radiation to investigate the thermally induced strain field in silicon around copper filled TSVs. Measurements were performed on thinned samples at room temperature and during in situ annealing at 400 °C. In order to correlate the 2D strain maps with finite elements analysis, an analytical model was developed, which takes into account beam absorption in the sample for a given diffraction geometry. The strain field along themore » [335] direction is found to be in the 10{sup −5} range at room temperature and around 10{sup −4} at 400 °C. Simulations support the expected plastification in some regions of the TSV during the annealing step.« less

  14. Dynamic Diffraction Studies on the Crystallization, Phase Transformation, and Activation Energies in Anodized Titania Nanotubes.

    PubMed

    Albetran, Hani; Vega, Victor; Prida, Victor M; Low, It-Meng

    2018-02-23

    The influence of calcination time on the phase transformation and crystallization kinetics of anodized titania nanotube arrays was studied using in-situ isothermal and non-isothermal synchrotron radiation diffraction from room temperature to 900 °C. Anatase first crystallized at 400 °C, while rutile crystallized at 550 °C. Isothermal heating of the anodized titania nanotubes by an increase in the calcination time at 400, 450, 500, 550, 600, and 650 °C resulted in a slight reduction in anatase abundance, but an increase in the abundance of rutile because of an anatase-to-rutile transformation. The Avrami equation was used to model the titania crystallization mechanism and the Arrhenius equation was used to estimate the activation energies of the titania phase transformation. Activation energies of 22 (10) kJ/mol for the titanium-to-anatase transformation, and 207 (17) kJ/mol for the anatase-to-rutile transformation were estimated.

  15. Purification, crystallization and preliminary crystallographic analysis of Est25: a ketoprofen-specific hormone-sensitive lipase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, SeungBum; Joo, Sangbum; Yoon, Hyun C.

    2007-07-01

    Est25, a ketoprofen-specific hormone-sensitive lipase from a metagenomic library, was crystallized and diffraction data were collected to 1.49 Å resolution. Ketoprofen, a nonsteroidal anti-inflammatory drug, inhibits the synthesis of prostaglandin. A novel hydrolase (Est25) with high ketoprofen specificity has previously been identified using a metagenomic library from environmental samples. Recombinant Est25 protein with a histidine tag at the N-terminus was expressed in Escherichia coli and purified in a homogenous form. Est25 was crystallized from 2.4 M sodium malonate pH 7.0 and X-ray diffraction data were collected to 1.49 Å using synchrotron radiation. The crystals belong to the monoclinic space groupmore » C2, with unit-cell parameters a = 197.8, b = 95.2, c = 99.4 Å, β = 97.1°.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Cheng-Jun, E-mail: cjsun@aps.anl.gov; Brewe, Dale L.; Heald, Steve M.

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorptionmore » near edge structure for Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.« less

  17. Crystallization and preliminary crystallographic analysis of an acridone-producing novel multifunctional type III polyketide synthase from Huperzia serrata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morita, Hiroyuki; Kondo, Shin; Kato, Ryohei

    2007-07-01

    An acridone-producing novel type III polyketide synthase from H. serrata has been overexpressed in E. coli, purified and crystallized. Diffraction data have been collected to 2.0 Å. Polyketide synthase 1 (PKS1) from Huperzia serrata is a plant-specific type III polyketide synthase that shows an unusually versatile catalytic potential, producing various aromatic tetraketides, including chalcones, benzophenones, phlorogulucinols and acridones. Recombinant H. serrata PKS1 expressed in Escherichia coli was crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group I222 or I2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 73.3, b = 85.0, c = 137.7 Å, α =more » β = γ = 90.0°. Diffraction data were collected to 2.0 Å resolution using synchrotron radiation at BL24XU of SPring-8.« less

  18. Crystallization and preliminary X-ray data analysis of β-alanine synthase from Drosophila melanogaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundgren, Stina; Andersen, Birgit; Piškur, Jure

    2007-10-01

    β-Alanine synthase catalyzes the last step in the reductive degradation pathway for uracil and thymine. Crystals of the recombinant enzyme from D. melanogaster belong to space group C2. Diffraction data to 3.3 Å resolution were collected and analyzed. β-Alanine synthase catalyzes the last step in the reductive degradation pathway for uracil and thymine, which represents the main clearance route for the widely used anticancer drug 5-fluorouracil. Crystals of the recombinant enzyme from Drosophila melanogaster, which is closely related to the human enzyme, were obtained by the hanging-drop vapour-diffusion method. They diffracted to 3.3 Å at a synchrotron-radiation source, belong tomore » space group C2 (unit-cell parameters a = 278.9, b = 95.0, c = 199.3 Å, β = 125.8°) and contain 8–10 molecules per asymmetric unit.« less

  19. Nuclear techniques in studies of condensed matter

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.

    1987-01-01

    Nuclear techniques have played an important role in the studies of materials over the past several decades. For example, X-ray diffraction, neutron diffraction, neutron activation, and particle- or photon-induced X-ray emission techniques have been used extensively for the elucidation of structural and compositional details of materials. Several new techniques have been developed recently. Four such techniques are briefly reviewed which have great potential in the study and development of new materials. Of these four, Mossbauer spectroscopy, muon spin rotation, and positron annihilation spectroscopy techniques exploit their great sensitivity to the local atomic environments in the test materials. Interest in synchrotron radiation, on the other hand, stems from its special properties, such as high intensity, high degree of polarization, and high monochromaticity. It is hoped that this brief review will stimulate interest in the exploitation of these newer techniques for the development of improved materials.

  20. Purification, crystallization and preliminary X-ray analysis of the BseCI DNA methyltransferase from Bacillus stearothermophilus in complex with its cognate DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapetaniou, Evangelia G.; Kotsifaki, Dina; Providaki, Mary

    2007-01-01

    The DNA methyltransferase M.BseCI from B. stearothermophilus was crystallized as a complex with its cognate DNA. Crystals belong to space group P6 and diffract to 2.5 Å resolution at a synchrotron source. The DNA methyltransferase M.BseCI from Bacillus stearothermophilus (EC 2.1.1.72), a 579-amino-acid enzyme, methylates the N6 atom of the 3′ adenine in the sequence 5′-ATCGAT-3′. M.BseCI was crystallized in complex with its cognate DNA. The crystals were found to belong to the hexagonal space group P6, with unit-cell parameters a = b = 87.0, c = 156.1 Å, β = 120.0° and one molecule in the asymmetric unit. Twomore » complete data sets were collected at wavelengths of 1.1 and 2.0 Å to 2.5 and 2.8 Å resolution, respectively, using synchrotron radiation at 100 K.« less

  1. Identification of phases in the interaction layer between U-Mo-Zr/Al and U-Mo-Zr/Al-Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varela, C.L. Komar; Arico, S.F.; Mirandou, M.

    Out-of-pile diffusion experiments were performed between U-7wt.% Mo-1wt.% Zr and Al or Al A356 (7,1wt.% Si) at 550 deg. C. In this work morphological characterization and phase identification on both interaction layer are presented. They were carried out by the use of different techniques: optical and scanning electron microscopy, X-Ray diffraction and WDS microanalysis. In the interaction layer U-7wt.% Mo-1wt.% Zr/Al, the phases UAl{sub 3}, UAl{sub 4}, Al{sub 20}Mo{sub 2}U and Al{sub 43}Mo{sub 4}U{sub 6} were identified. In the interaction layer U-7wt.% Mo-1wt.% Zr/Al A356, the phases U(Al, Si) with 25at.% Si and Si{sub 5}U{sub 3} were identified. This lastmore » phase, with a higher Si concentration, was identified with XRD Synchrotron radiation performed at the National Synchrotron Light Laboratory (LNLS), Campinas, Brasil. (author)« less

  2. Relativistic turbulence with strong synchrotron and synchrotron self-Compton cooling

    NASA Astrophysics Data System (ADS)

    Uzdensky, D. A.

    2018-07-01

    Many relativistic plasma environments in high-energy astrophysics, including pulsar wind nebulae (PWN), hot accretion flows on to black holes, relativistic jets in active galactic nuclei and gamma-ray bursts, and giant radio lobes, are naturally turbulent. The plasma in these environments is often so hot that synchrotron and inverse-Compton (IC) radiative cooling becomes important. In this paper, we investigate the general thermodynamic and radiative properties (and hence the observational appearance) of an optically thin relativistically hot plasma stirred by driven magnetohydrodynamic (MHD) turbulence and cooled by radiation. We find that if the system reaches a statistical equilibrium where turbulent heating is balanced by radiative cooling, the effective electron temperature tends to attain a universal value θ = kT_e/m_e c^2 ˜ 1/√{τ _T}, where τT = neσTL ≪ 1 is the system's Thomson optical depth, essentially independent of the strength of turbulent driving and hence of the magnetic field. This is because both MHD turbulent dissipation and synchrotron cooling are proportional to the magnetic energy density. We also find that synchrotron self-Compton (SSC) cooling and perhaps a few higher order IC components are automatically comparable to synchrotron in this regime. The overall broad-band radiation spectrum then consists of several distinct components (synchrotron, SSC, etc.), well separated in photon energy (by a factor ˜ τ_T^{-1}) and roughly equal in power. The number of IC peaks is checked by Klein-Nishina effects and depends logarithmically on τT and the magnetic field. We also examine the limitations due to synchrotron self-absorption, explore applications to Crab PWN and blazar jets, and discuss links to radiative magnetic reconnection.

  3. The hydrothermal decomposition of calcium monosulfoaluminate 14-hydrate to katoite hydrogarnet and β-anhydrite: An in-situ synchrotron X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Meller, Nicola; Kyritsis, Konstantinos; Hall, Christopher

    2009-10-01

    We apply in-situ synchrotron X-ray diffraction to study the transformation of calcium monosulfoaluminate 14-hydrate Ca 4Al 2O 6(SO 4)·14H 2O [monosulfate-14] to hydrogarnet Ca 3Al 2(OH) 12 on the saturated water vapor pressure curve up to 250 °C. We use an aqueous slurry of synthetic ettringite Ca 6Al 2(SO 4) 3(OH) 12·26H 2O as the starting material; on heating, this decomposes at about 115 °C to form monosulfate-14 and bassanite CaSO 4·0.5H 2O. Above 170 °C monosulfate-14 diffraction peaks slowly diminish in intensity, perhaps as a result of loss of crystallinity and the formation of an X-ray amorphous meta-monosulfate. Hydrogarnet nucleates only at temperatures above 210 °C. Bassanite transforms to β-anhydrite (insoluble anhydrite) at about 230 °C and this transformation is accompanied by a second burst of hydrogarnet growth. The transformation pathway is more complex than previously thought. The mapping of the transformation pathway shows the value of rapid in-situ time-resolved synchrotron diffraction.

  4. Combined X-ray and neutron fibre diffraction studies of biological and synthetic polymers

    NASA Astrophysics Data System (ADS)

    Parrot, I. M.; Urban, V.; Gardner, K. H.; Forsyth, V. T.

    2005-08-01

    The fibrous state is a natural one for polymer molecules which tend to assume regular helical conformations rather than the globular structures characteristic of many proteins. Fibre diffraction therefore has broad application to the study of a wide range of biological and synthetic polymers. The purpose of this paper is to illustrate the general scope of the method and in particular to demonstrate the impact of a combined approach involving both X-ray and neutron diffraction methods. While the flux of modern X-ray synchrotron radiation sources allows high quality datasets to be recorded with good resolution within a very short space of time, neutron studies can provide unique information through the ability to locate hydrogen or deuterium atoms that are often difficult or impossible to locate using X-ray methods. Furthermore, neutron fibre diffraction methods can, through the ability to selectively label specific parts of a structure, be used to highlight novel aspects of polymer structure that can not be studied using X-rays. Two examples are given. The first describes X-ray and neutron diffraction studies of conformational transitions in DNA. The second describes structural studies of the synthetic high-performance polymer poly(p-phenylene terephthalamide) (PPTA), known commercially as Kevlar® or Twaron®.

  5. Wavefront propagation simulations for a UV/soft x-ray beamline: Electron Spectro-Microscopy beamline at NSLS-II

    NASA Astrophysics Data System (ADS)

    Canestrari, N.; Bisogni, V.; Walter, A.; Zhu, Y.; Dvorak, J.; Vescovo, E.; Chubar, O.

    2014-09-01

    A "source-to-sample" wavefront propagation analysis of the Electron Spectro-Microscopy (ESM) UV / soft X-ray beamline, which is under construction at the National Synchrotron Light Source II (NSLS-II) in the Brookhaven National Laboratory, has been conducted. All elements of the beamline - insertion device, mirrors, variable-line-spacing gratings and slits - are included in the simulations. Radiation intensity distributions at the sample position are displayed for representative photon energies in the UV range (20 - 100 eV) where diffraction effects are strong. The finite acceptance of the refocusing mirrors is the dominating factor limiting the spatial resolution at the sample (by ~3 μm at 20 eV). Absolute estimates of the radiation flux and energy resolution at the sample are also obtained from the electromagnetic calculations. The analysis of the propagated UV range undulator radiation at different deflection parameter values demonstrates that within the beamline angular acceptance a slightly "red-shifted" radiation provides higher flux at the sample and better energy resolution compared to the on-axis resonant radiation of the fundamental harmonic.

  6. Structure determination of Ba5AlF13 by coupling electron, synchrotron and neutron powder diffraction, solid-state NMR and ab initio calculations.

    PubMed

    Martineau, Charlotte; Allix, Mathieu; Suchomel, Matthew R; Porcher, Florence; Vivet, François; Legein, Christophe; Body, Monique; Massiot, Dominique; Taulelle, Francis; Fayon, Franck

    2016-10-04

    The room temperature structure of Ba 5 AlF 13 has been investigated by coupling electron, synchrotron and neutron powder diffraction, solid-state high-resolution NMR ( 19 F and 27 Al) and first principles calculations. An initial structural model has been obtained from electron and synchrotron powder diffraction data, and its main features have been confirmed by one- and two-dimensional NMR measurements. However, DFT GIPAW calculations of the 19 F isotropic shieldings revealed an inaccurate location of one fluorine site (F3, site 8a), which exhibited unusual long F-Ba distances. The atomic arrangement was reinvestigated using neutron powder diffraction data. Subsequent Fourier maps showed that this fluorine atom occupies a crystallographic site of lower symmetry (32e) with partial occupancy (25%). GIPAW computations of the NMR parameters validate the refined structural model, ruling out the presence of local static disorder and indicating that the partial occupancy of this F site reflects a local motional process. Visualisation of the dynamic process was then obtained from the Rietveld refinement of neutron diffraction data using an anharmonic description of the displacement parameters to account for the thermal motion of the mobile fluorine. The whole ensemble of powder diffraction and NMR data, coupled with first principles calculations, allowed drawing an accurate structural model of Ba 5 AlF 13 , including site-specific dynamical disorder in the fluorine sub-network.

  7. Synchrotron X-ray emission from old pulsars

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Tanaka, Shuta J.

    2014-09-01

    We study the synchrotron radiation as the observed non-thermal emission by the X-ray satellites from old pulsars (≳1-10 Myr) to investigate the particle acceleration in their magnetospheres. We assume that the power-law component of the observed X-ray spectra is caused by the synchrotron radiation from electrons and positrons in the magnetosphere. We consider two pair-production mechanisms of X-ray emitting particles, the magnetic and the photon-photon pair productions. High-energy photons, which ignite the pair production, are emitted via the curvature radiation of the accelerated particles. We use the analytical description for the radiative transfer and estimate the luminosity of the synchrotron radiation. We find that for pulsars with the spin-down luminosity Lsd ≲ 1033 erg s-1, the locations of the particle acceleration and the non-thermal X-ray emission are within ≲107 cm from the centre of the neutron star, where the magnetic pair production occurs. For pulsars with the spin-down luminosity Lsd ≲ 1031 erg s-1 such as J0108-1431, the synchrotron radiation is difficult to explain the observed non-thermal component even if we consider the existence of the strong and small-scale surface magnetic field structures.

  8. Insights into metals in individual fine particles from municipal solid waste using synchrotron radiation-based micro-analytical techniques.

    PubMed

    Zhu, Yumin; Zhang, Hua; Shao, Liming; He, Pinjing

    2015-01-01

    Excessive inter-contamination with heavy metals hampers the application of biological treatment products derived from mixed or mechanically-sorted municipal solid waste (MSW). In this study, we investigated fine particles of <2mm, which are small fractions in MSW but constitute a significant component of the total heavy metal content, using bulk detection techniques. A total of 17 individual fine particles were evaluated using synchrotron radiation-based micro-X-ray fluorescence and micro-X-ray diffraction. We also discussed the association, speciation and source apportionment of heavy metals. Metals were found to exist in a diffuse distribution with heterogeneous intensities and intense hot-spots of <10 μm within the fine particles. Zn-Cu, Pb-Fe and Fe-Mn-Cr had significant correlations in terms of spatial distribution. The overlapped enrichment, spatial association, and the mineral phases of metals revealed the potential sources of fine particles from size-reduced waste fractions (such as scraps of organic wastes or ceramics) or from the importation of other particles. The diverse sources of heavy metal pollutants within the fine particles suggested that separate collection and treatment of the biodegradable waste fraction (such as food waste) is a preferable means of facilitating the beneficial utilization of the stabilized products. Copyright © 2014. Published by Elsevier B.V.

  9. Microwave-assisted synthesis and critical analysis for YBa2Cu3O6+δ nanoparticles

    NASA Astrophysics Data System (ADS)

    Chhaganlal Gandhi, Ashish; Lin, Jauyn Grace

    2018-05-01

    A new cost effective scheme of a microwave-assisted sol–gel route followed by a short annealing time is proposed to synthesize YBCO nanoparticles (NPs) of various sizes. The advanced techniques of synchrotron radiation x-ray diffraction (SRXRD) and electron spin resonance (ESR) are used to analyze the size effects on their magnetic/superconducting properties. The major interesting finding is that the size of YBCO NPs could confine the amount of oxygen content and consequently change the superconducting transition temperature (T C ) of YBCO NPs. The ESR result demonstrates a sensitive probe to characterize surface defects in the oxygen-deficient YBCO NPs.

  10. Efficiency of a Grazing-incidence Off-plane Grating in the Soft-x-ray Region

    NASA Technical Reports Server (NTRS)

    Seely, J. F.; Laming, J. M.; Goray, L. I.; Kjornrattanawanich, B.; Holland, G. E.; Flanagan, K. A.; Heilmann, R. K.; Chang, C.-H.; Schattenburg, M. L.; Rasmussen, A. P.

    2006-01-01

    Efficiency measurements of a grazing-incidence diffraction grating in the off-plane mount were performed using polarized synchrotron radiation. The grating had 5000 grooves/mm, an effective blaze angle of 14 deg., and was gold coated. The efficiencies in the two polarization orientations (TM and TE) were measured in the 1.5-5.O nm wavelength range and were compared with the efficiencies calculated using the PCGrate-SX code. The TM and TE efficiencies differ, offering the possibility of performing unique science studies of astrophysical, solar, and laboratory sources by exploiting the polarization sensitivity of the off-plane grating.

  11. Radiation reaction and pitch-angle changes for a charge undergoing synchrotron losses

    NASA Astrophysics Data System (ADS)

    Singal, Ashok K.

    2016-05-01

    In the derivation of synchrotron radiation formulae, it has been assumed that the pitch angle of a charge remains constant during the radiation process. However, from the radiation reaction formula, while the component of the velocity vector perpendicular to the magnetic field reduces in magnitude due to radiative losses, the parallel component does not undergo any change during radiation. Therefore, there is a change in the ratio of the two components, implying a change in the pitch angle. We derive the exact formula for the change in energy of radiating electrons by taking into account the change of the pitch angle due to radiative losses. From this, we derive the characteristic decay time of synchrotron electrons over which they turn from highly relativistic into mildly relativistic ones.

  12. Numerical simulation of runaway electrons: 3-D effects on synchrotron radiation and impurity-based runaway current dissipation

    NASA Astrophysics Data System (ADS)

    del-Castillo-Negrete, D.; Carbajal, L.; Spong, D.; Izzo, V.

    2018-05-01

    Numerical simulations of runaway electrons (REs) with a particular emphasis on orbit dependent effects in 3-D magnetic fields are presented. The simulations were performed using the recently developed Kinetic Orbit Runaway electron Code (KORC) that computes the full-orbit relativistic dynamics in prescribed electric and magnetic fields including radiation damping and collisions. The two main problems of interest are synchrotron radiation and impurity-based RE dissipation. Synchrotron radiation is studied in axisymmetric fields and in 3-D magnetic configurations exhibiting magnetic islands and stochasticity. For passing particles in axisymmetric fields, neglecting orbit effects might underestimate or overestimate the total radiation power depending on the direction of the radial shift of the drift orbits. For trapped particles, the spatial distribution of synchrotron radiation exhibits localized "hot" spots at the tips of the banana orbits. In general, the radiation power per particle for trapped particles is higher than the power emitted by passing particles. The spatial distribution of synchrotron radiation in stochastic magnetic fields, obtained using the MHD code NIMROD, is strongly influenced by the presence of magnetic islands. 3-D magnetic fields also introduce a toroidal dependence on the synchrotron spectra, and neglecting orbit effects underestimates the total radiation power. In the presence of magnetic islands, the radiation damping of trapped particles is larger than the radiation damping of passing particles. Results modeling synchrotron emission by RE in DIII-D quiescent plasmas are also presented. The computation uses EFIT reconstructed magnetic fields and RE energy distributions fitted to the experimental measurements. Qualitative agreement is observed between the numerical simulations and the experiments for simplified RE pitch angle distributions. However, it is noted that to achieve quantitative agreement, it is necessary to use pitch angle distributions that depart from simplified 2-D Fokker-Planck equilibria. Finally, using the guiding center orbit model (KORC-GC), a preliminary study of pellet mitigated discharges in DIII-D is presented. The dependence of RE energy decay and current dissipation on initial energy and ionization levels of neon impurities is studied. The computed decay rates are within the range of experimental observations.

  13. Crystallization and preliminary X-ray diffraction analysis of two extracytoplasmic solute receptors of the DctP family from Bordetella pertussis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rucktooa, Prakash; Huvent, Isabelle; IFR 142, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, BP 245, 59021 Lille CEDEX

    2006-10-01

    Sample preparation, crystallization and preliminary X-ray analysis are reported for two B. pertussis extracytoplasmic solute receptors. DctP6 and DctP7 are two Bordetella pertussis proteins which belong to the extracytoplasmic solute receptors (ESR) superfamily. ESRs are involved in the transport of substrates from the periplasm to the cytosol of Gram-negative bacteria. DctP6 and DctP7 have been crystallized and diffraction data were collected using a synchrotron-radiation source. DctP6 crystallized in space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = 108.39, b = 108.39, c = 63.09 Å, while selenomethionyl-derivatized DctP7 crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parametersmore » a = 64.87, b = 149.83, c = 170.65 Å. The three-dimensional structure of DctP7 will be determined by single-wavelength anomalous diffraction, while the DctP6 structure will be solved by molecular-replacement methods.« less

  14. Crystallization and preliminary X-ray diffraction study of phosphoribosyl pyrophosphate synthetase from E. Coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timofeev, V. I., E-mail: inna@ns.crys.ras.ru; Abramchik, Yu. A., E-mail: tostars@mail.ru; Zhukhlistova, N. E., E-mail: ugama@yandex.ru

    2015-09-15

    Enzymes of the phosphoribosyl pyrophosphate synthetase family (PRPPS, EC 2.7.6.1) catalyze the formation of 5-phosphoribosyl pyrophosphate (5-PRPP) from adenosine triphosphate and ribose 5-phosphate. 5-Phosphoribosyl pyrophosphate is an important intermediate in the synthesis of purine, pyrimidine, and pyridine nucleotides, as well as of the amino acids histidine and tryptophan. The crystallization conditions for E. coli PRPPS were found by the vapor-diffusion technique and were optimized to apply the capillary counter-diffusion technique. The X-ray diffraction data set was collected from the crystals grown by the counter-diffusion technique using a synchrotron radiation source to 3.1-Å resolution. The crystals of PRPPS belong to sp.more » gr. P6{sub 3}22 and have the following unit-cell parameters: a = b = 104.44 Å, c = 124.98 Å, α = β = 90°, γ = 120°. The collected X-ray diffraction data set is suitable for the solution of the three-dimensional structure of PRPPS at 3.1-Å resolution.« less

  15. Resolution extension by image summing in serial femtosecond crystallography of two-dimensional membrane-protein crystals

    DOE PAGES

    Casadei, Cecilia M.; Tsai, Ching-Ju; Barty, Anton; ...

    2018-01-01

    Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction images from two-dimensional crystals of a bacteriorhodopsin mutant are reported in detail. The high redundancy in the measurements boosts the intensity signal-to-noise ratio, so that the values of the diffracted intensities can be reliably determined down to the detector-edge resolution of 4 Å. The results show that two-dimensional serial crystallography atmore » X-ray FELs is a suitable method to study membrane proteins to near-atomic length scales at ambient temperature. The method presented here can be extended to pump–probe studies of optically triggered structural changes on submillisecond timescales in two-dimensional crystals, which allow functionally relevant large-scale motions that may be quenched in three-dimensional crystals.« less

  16. Resolution extension by image summing in serial femtosecond crystallography of two-dimensional membrane-protein crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casadei, Cecilia M.; Tsai, Ching-Ju; Barty, Anton

    Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction images from two-dimensional crystals of a bacteriorhodopsin mutant are reported in detail. The high redundancy in the measurements boosts the intensity signal-to-noise ratio, so that the values of the diffracted intensities can be reliably determined down to the detector-edge resolution of 4 Å. The results show that two-dimensional serial crystallography atmore » X-ray FELs is a suitable method to study membrane proteins to near-atomic length scales at ambient temperature. The method presented here can be extended to pump–probe studies of optically triggered structural changes on submillisecond timescales in two-dimensional crystals, which allow functionally relevant large-scale motions that may be quenched in three-dimensional crystals.« less

  17. Crystallization and preliminary X-ray analysis of a low density lipoprotein from human plasma.

    PubMed

    Prassl, R; Chapman, J M; Nigon, F; Sara, M; Eschenburg, S; Betzel, C; Saxena, A; Laggner, P

    1996-11-15

    Single crystals of human plasma low density lipoprotein (LDL), the major transport vehicle for cholesterol in blood, have been produced with a view to analysis of the three-dimensional structure by x-ray crystallography. Crystals with dimensions of approximately 200 x 100 x 50 microm have been reproducibly obtained from highly homogeneous LDL particle subspecies, isolated in the density ranges d = 1.0271-1. 0297 g/ml and d = 1.0297-1.0327 g/ml. Electron microscopic imaging of ultrathin-sectioned preparations of the crystals confirmed the existence of a regular, quasihexagonal arrangement of spherical particles of approximately 18 nm in diameter, thereby resembling the dimensions characteristic of LDL after dehydration and fixation. X-ray diffraction with synchrotron radiation under cryogenic conditions revealed the presence of well resolved diffraction spots, to a resolution of about 29 A. The diffraction patterns are indexed in terms of a triclinic lattice with unit cell dimensions of a = 16. 1 nm, b = 39.0 nm, c = 43.9 nm; alpha = 96.2 degrees, beta = 92.1 degrees, gamma = 102 degrees, and with space group P1.

  18. Simulating synchrotron radiation in accelerators including diffuse and specular reflections

    DOE PAGES

    Dugan, G.; Sagan, D.

    2017-02-24

    An accurate calculation of the synchrotron radiation flux within the vacuum chamber of an accelerator is needed for a number of applications. These include simulations of electron cloud effects and the design of radiation masking systems. To properly simulate the synchrotron radiation, it is important to include the scattering of the radiation at the vacuum chamber walls. To this end, a program called synrad3d has been developed which simulates the production and propagation of synchrotron radiation using a collection of photons. Photons generated by a charged particle beam are tracked from birth until they strike the vacuum chamber wall wheremore » the photon is either absorbed or scattered. Both specular and diffuse scattering is simulated. If a photon is scattered, it is further tracked through multiple encounters with the wall until it is finally absorbed. This paper describes the synrad3d program, with a focus on the details of its scattering model, and presents some examples of the program’s use.« less

  19. Thickness determination of thin solid films by angle-resolved X-ray fluorescence spectrometry using monochromatized synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Schmitt, W.; Drotbohm, P.; Rothe, J.; Hormes, J.; Ottermann, C. R.; Bange, K.

    1995-05-01

    Thickness measurements by the method of angle-resolved, self-ratio X-ray fluorescence spectrometry (AR/SR/XFS) have been carried out on thin solid films using monochromatized synchrotron radiation at the Bonn storage ring ELSA. Synchrotron radiation was monochromatized by means of a double-crystal monochromator and fluorescence radiation was detected by a Si(Li) semiconductor detector. The results for sample systems consisting of Au on Si, Cr on SiO2 and TiO2 on alkali-free glass are very satisfactory and agree well with results obtained by other methods.

  20. Amorphous and liquid samples structure and density measurements at high pressure - high temperature using diffraction and imaging techniques

    NASA Astrophysics Data System (ADS)

    Guignot, N.; King, A.; Clark, A. N.; Perrillat, J. P.; Boulard, E.; Morard, G.; Deslandes, J. P.; Itié, J. P.; Ritter, X.; Sanchez-Valle, C.

    2016-12-01

    Determination of the density and structure of liquids such as iron alloys, silicates and carbonates is a key to understand deep Earth structure and dynamics. X-ray diffraction provided by large synchrotron facilities gives excellent results as long as the signal scattered from the sample can be isolated from its environment. Different techniques already exist; we present here the implementation and the first results given by the combined angle- and energy-dispersive structural analysis and refinement (CAESAR) technique introduced by Wang et al. in 2004, that has never been used in this context. It has several advantages in the study of liquids: 1/ the standard energy-dispersive technique (EDX), fast and compatible with large multi-anvil presses frames, is used for fast analysis free of signal pollution from the sample environment 2/ some limitations of the EDX technique (homogeneity of the sample, low resolution) are irrelevant in the case of liquid signals, others (wrong intensities, escape peaks artifacts, background subtraction) are solved by the CAESAR technique 3/ high Q data (up to 15 A-1 and more) can be obtained in a few hours (usually less than 2). We present here the facilities available on the PSICHE beamline (SOLEIL synchrotron, France) and a few results obtained using a Paris-Edinburgh (PE) press and a 1200 tons load capacity multi-anvil press with a (100) DIA compression module. X-ray microtomography, used in conjunction with a PE press featuring rotating anvils (RotoPEc, Philippe et al., 2013) is also very effective, by simply measuring the 3D volume of glass or liquid spheres at HPHT, thus providing density. This can be done in conjunction with the CAESAR technique and we illustrate this point. Finally, absorption profiles can be obtained via imaging techniques, providing another independent way to measure the density of these materials. References Y. Wang et al., A new technique for angle-dispersive powder diffraction using an energy-dispersive setup and synchrotron radiation (2004), J. Appl. Cryst. (2004). 37, 947-956 J. Philippe, Y. Le Godec, F. Bergame et M. Morand, Patent INPI 11 62335 (2013)

  1. The power of in situ pulsed laser deposition synchrotron characterization for the detection of domain formation during growth of Ba0.5Sr0.5TiO3 on MgO.

    PubMed

    Bauer, Sondes; Lazarev, Sergey; Molinari, Alan; Breitenstein, Andreas; Leufke, Philipp; Kruk, Robert; Hahn, Horst; Baumbach, Tilo

    2014-03-01

    A highly sophisticated pulsed laser deposition (PLD) chamber has recently been installed at the NANO beamline at the synchrotron facility ANKA (Karlsruhe, Germany), which allows for comprehensive studies on the PLD growth process of dielectric, ferroelectric and ferromagnetic thin films in epitaxial oxide heterostructures or even multilayer systems by combining in situ reflective high-energy diffraction with the in situ synchrotron high-resolution X-ray diffraction and surface diffraction methods. The modularity of the in situ PLD chamber offers the opportunity to explore the microstructure of the grown thin films as a function of the substrate temperature, gas pressure, laser fluence and target-substrate separation distance. Ba0.5Sr0.5TiO3 grown on MgO represents the first system that is grown in this in situ PLD chamber and studied by in situ X-ray reflectivity, in situ two-dimensional reciprocal space mapping of symmetric X-ray diffraction and acquisition of time-resolved diffraction profiles during the ablation process. In situ PLD synchrotron investigation has revealed the occurrence of structural distortion as well as domain formation and misfit dislocation which all depend strongly on the film thickness. The microstructure transformation has been accurately detected with a time resolution of 1 s. The acquisition of two-dimensional reciprocal space maps during the PLD growth has the advantage of simultaneously monitoring the changes of the crystalline structure as well as the formation of defects. The stability of the morphology during the PLD growth is demonstrated to be remarkably affected by the film thickness. A critical thickness for the domain formation in Ba0.5Sr0.5TiO3 grown on MgO could be determined from the acquisition of time-resolved diffraction profiles during the PLD growth. A splitting of the diffraction peak into two distinguishable peaks has revealed a morphology change due to modification of the internal strain during growth.

  2. Glycoscience@Synchrotron: Synchrotron radiation applied to structural glycoscience

    PubMed Central

    de Sanctis, Daniele

    2017-01-01

    Synchrotron radiation is the most versatile way to explore biological materials in different states: monocrystalline, polycrystalline, solution, colloids and multiscale architectures. Steady improvements in instrumentation have made synchrotrons the most flexible intense X-ray source. The wide range of applications of synchrotron radiation is commensurate with the structural diversity and complexity of the molecules and macromolecules that form the collection of substrates investigated by glycoscience. The present review illustrates how synchrotron-based experiments have contributed to our understanding in the field of structural glycobiology. Structural characterization of protein–carbohydrate interactions of the families of most glycan-interacting proteins (including glycosyl transferases and hydrolases, lectins, antibodies and GAG-binding proteins) are presented. Examples concerned with glycolipids and colloids are also covered as well as some dealing with the structures and multiscale architectures of polysaccharides. Insights into the kinetics of catalytic events observed in the crystalline state are also presented as well as some aspects of structure determination of protein in solution. PMID:28684994

  3. Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, D.; Luo, S. N., E-mail: sluo@pims.ac.cn; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031

    We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantifymore » lattice deformation and fracture; fracture is dominated by splitting cracks followed by wing cracks, and diffraction peaks are broadened likely due to mosaic spread. Our results demonstrate the potential of such multiscale measurements for studying high strain-rate phenomena at dynamic extremes.« less

  4. Relativistic MHD Turbulence with Synchrotron and Inverse-Compton Radiation Cooling

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri

    2017-10-01

    This work investigates the energetic aspects and observational appearance of driven relativistic MHD turbulence in an optically thin, relativistically hot plasma subject to strong synchrotron and synchrotron-self-Compton (SSC) radiative cooling. Steady-state balance between turbulent heating and radiative cooling is shown to lead, essentially independent of turbulent driving's strength, to a characteristic electron temperature of Te /mec2 τT- 1 / 2 , where τT << 1 is the system's Thomson optical depth. Furthermore, the SSC cooling power becomes automatically comparable to the synchrotron power. Under certain conditions, a few higher-order inverse-Compton components also become comparable to the synchrotron and SSC losses, and so the broad-band radiation spectrum of the system consists of several distinct peaks with gradually decreasing luminosity, separated by a factor of τT- 1 >> 1 from each other. The number of these spectral components is governed by synchrotron self-absorption and Klein-Nishina effects. These findings have important implications for several classes of high-energy astrophysical systems including pulsar wind nebulae and black-hole-driven accretion flows, jets, and radio-lobes. Work supported by NSF, DOE, NASA, IAS, and the Ambrose Monell Foundation.

  5. Structure and transport in organic semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Vos, Sandra Elizabeth Fritz

    Organic Semiconductors represent an exciting area of research due to their potential application in cheap and flexible electronics. In spite of the abundant interest in organic electronics the electronic transport mechanism remains poorly understood. Understanding the connection between molecular structure, crystal packing, intermolecular interactions and electronic delocalization is an important aspect of improving the transport properties of organics in thin film transistors (TFTs). In an organic thin film transistor, charge carrier transport is believed to occur within the first few monolayers of the organic material adjacent to the dielectric. It is therefore critical to understand the initial stages of film growth and molecular structure in these first few layers and relate this structure to electronic transport properties. The structure of organic films at the interface with an amorphous silicon dioxide ( a-SiO2) dielectric and how structure relates to transport in a TFT is the focus of this thesis. Pentacene films on a-SiO2 were extensively characterized with specular and in-plane X-ray diffraction, and CuKalpha1, and synchrotron radiation. The first layer of pentacene molecules adjacent to the a-SiO2 crystallized in a rectangular unit cell with the long axis of the molecules perpendicular to the substrate surface. Subsequent layers of pentacene crystallized in a slightly oblique in-plane unit cell that evolved as thickness was increased. The rectangular monolayer phase of pentacene did not persist when subsequent layers were deposited. Specular diffraction with Synchrotron radiation of a 160 A pentacene film (˜ 10 layers) revealed growth initiation of a bulk-like phase and persistence of the thin-film phase. Pentacene molecules were more tilted in the bulk-like phase and the in-plane unit cell was slightly more oblique. Pentacene grains began to grow randomly oriented with respect to the substrate surface (out-of-plane) in films near 650 A in thickness. The single crystal bulk phase of pentacene was observed from specular diffraction (CuKalpha1) of a 2.5 mum film. These results suggest that the thickness of pentacene films on a-SiO2 is an important aspect in the comparison of crystal structure and electronic transport.

  6. Anisotropic deformation of extruded magnesium alloy AZ31 under uniaxial compression: A study with simultaneous in situ synchrotron x-ray imaging and diffraction

    DOE PAGES

    Lu, L.; Huang, J. W.; Fan, D.; ...

    2016-08-29

    In situ synchrotron x-ray imaging and diffraction are used to investigate anisotropic deformation of an extruded magnesium alloy AZ31 under uniaxial compression along two different directions, with the loading axis (LA) either parallel or perpendicular to the extrusion direction (ED), referred to as LA∥ED and LAED, respectively. Multiscale measurements including stress–strain curves (macroscale), x-ray digital image correlation (mesoscale), and diffraction (microscale) are obtained simultaneously. Electron backscatter diffraction is performed on samples collected at various strains to characterize deformation twins. The rapid increase in strain hardening rate for the LA∥ED loading is attributed to marked {101¯2} extension twinning and subsequent homogenizationmore » of deformation, while dislocation motion leads to inhomogeneous deformation and a decrease in strain hardening rate.« less

  7. PREFACE Preface

    NASA Astrophysics Data System (ADS)

    Sakurai, Kazuo; Takahara, Atsushi

    2011-01-01

    This special issue contains peer-reviewed invited and contributed papers that were presented at The International Symposium on 'Future Trend in Soft Material Research with Advanced Light Source: Interdisciplinary of Bio- & Synthetic- Materials and Industrial Transferring', which was held in SPring-8, Japan, on September 1-3, 2010. Advanced light sources including neutron and synchrotron are becoming increasingly critical to the study of soft materials. This cutting-edge analytical tool is expected to lead to the creation of new materials with revolutionary properties and functions. At SPring-8, a new beam line dedicated to soft materials has now been launched as one of the most powerful X-rays for scattering and diffraction. Additionally, the next-generation light source, XFEL (X-ray Free Electron Laser), facilities are currently being developed in several locations. In the near future, femto-second and coherent X-ray sources will be available in soft material research and should reveal the various new aspects of advanced soft material research and technology. On the occasion of the third fiscal year of the CREST (project leader: Kazuo Sakurai) and ERATO (project leader: Atsushi Takahara) projects, we organized this international symposium in order to accelerate the discussion among global-level researchers working on next-generation synchrotron radiation science, biophysics and supramolecular science, modern surface science in soft materials, and industrial applications of neutron and synchrotron radiation sources. In this symposium 21 oral presentations, including 8 invited speakers from abroad, and 40 poster presentations from USA, France, Korea, Taiwan, and Japan were presented during the three day symposium. The symposium chairs reviewed the poster presentations by young scientists, and eight young researchers received the Award for Best Poster Presentation. We sincerely hope that these proceedings will be beneficial in future applications of advanced light sources to soft materials science and technology, not only to our ERATO and CREST projects, but also to the research of all the participants, broadening our scientific horizons. Kazuo Sakurai & Atsushi TakaharaSymposium Chairs Symposium Organization and Committee Supported by: Japan Science and Technology Agency (JST) Japan Synchrotron Radiation Research Institute (JASRI) Co-sponsored by: Society of Japan Polymer Science Japanese Society of Synchrotron Radiation Research Advanced Softmaterial Beamline Consortium Symposium Chairs: Atsushi Takahara (Kyushu University, JST, ERATO) Kazuo Sakurai (Univ. Kitakyushu, JST, CREST) Organizing Committee: Yoshiyuki Amemiya (The Univ. of Tokyo, JST, CREST) Naoto Yagi (JASRI, JST, CREST) Masaki Takata (JASRI) Isamu Akiba (Univ. Kitakyushu, JST, CREST) Yuya Shinohara (The Univ. of Tokyo, JST, CREST) Taiki Hoshino (Kyushu University, JST, ERATO) Jun-ichi Imuta (Kyushu University, JST, ERATO) Moriya Kikuchi (Kyushu University, JST, ERATO) Motoyasu Kobayashi (Kyushu University, JST, ERATO) Group photograph Group photograph Lecture meeting Lecture meeting

  8. Multilayer diffraction at 104 keV

    NASA Technical Reports Server (NTRS)

    Krieger, Allen S.; Blake, Richard L.; Siddons, D. P.

    1993-01-01

    We have measured the diffraction peak of a W:Si synthetic multilayer reflector at 104 keV using the High Energy Bonse-Hart Camera at the X-17B hard X-ray wiggler beam line of the National Synchrotron Light Source at Brookhaven National Laboratory. The characteristics of the diffraction peak are described and compared to theory.

  9. Symmetry and light stuffing of H o 2 T i 2 O 7 ,   E r 2 T i 2 O 7 , and Y b 2 T i 2 O 7 characterized by synchrotron x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baroudi, Kristen; Gaulin, Bruce D.; Lapidus, Saul H.

    2015-07-01

    The Ho2Ti2O7, Er2Ti2O7 and Yb2Ti2O7 pyrochlores were studied by synchrotron X-ray diffraction to determine whether the (002) peak, forbidden in the pyrochlore space group Fd-3m but observed in single crystal neutron scattering measurements, is present due to a deviation of their pyrochlore structure from Fd-3m symmetry. Synchrotron diffraction measurements on precisely synthesized stoichiometric and non-stoichiometric powders and a crushed floating zone crystal of Ho2Ti2O7 revealed that the (002) reflection is absent in all cases to a sensitivity of approximately one part in 30,000 of the strongest X-ray diffraction peak. This indicates to high sensitivity that the structural space group ofmore » these rare earth titanate pyrochlores is Fd-3m, and that thus the (002) peak observed in the neutron scattering experiments has a non-structural origin. The cell parameters and internal strain for lightly stuffed Ho2+xTi2-xO7 are also presented.« less

  10. Fabrication and testing of a newly designed slit system for depth-resolved X-ray diffraction measurements

    DOE PAGES

    Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit; ...

    2016-10-06

    A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials and in situ and operando diffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, overmore » a continuous range of diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. In addition, the design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.« less

  11. Design of a synchrotron radiation detector for the test beam lines at the Superconducting Super Collider Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutton, R.D.

    1994-01-01

    As part of the particle- and momentum-tagging instrumentation required for the test beam lines of the Superconducting Super Collider (SSC), the synchrotron radiation detector (SRD) was designed to provide electron tagging at momentum above 75 GeV. In a parallel effort to the three test beam lines at the SSC, schedule demands required testing and calibration operations to be initiated at Fermilab. Synchrotron radiation detectors also were to be installed in the NM and MW beam lines at Femilab before the test beam lines at the SSC would become operational. The SRD is the last instrument in a series of threemore » used in the SSC test beam fines. It follows a 20-m drift section of beam tube downstream of the last silicon strip detector. A bending dipole just in of the last silicon strip detector produces the synchrotron radiation that is detected in a 50-mm-square cross section NaI crystal. A secondary scintillator made of Bicron BC-400 plastic is used to discriminate whether it is synchrotron radiation or a stray particle that causes the triggering of the NaI crystal`s photo multiplier tube (PMT).« less

  12. Cosmic rays, gamma rays and synchrotron radiation from the Galaxy

    DOE PAGES

    Orlando, Elena

    2012-07-30

    Galactic cosmic rays (CR), interstellar gamma-ray emission and synchrotron radiation are related topics. CR electrons propagate in the Galaxy and interact with the interstellar medium, producing inverse-Compton emission measured in gamma rays and synchrotron emission measured in radio. I present an overview of the latest results with Fermi/LAT on the gamma-ray diffuse emission induced by CR nuclei and electrons. Then I focus on the recent complementary studies of the synchrotron emission in the light of the latest gamma-ray results. Relevant observables include spectral indices and their variations, using surveys over a wide range of radio frequencies. As a result, thismore » paper emphasizes the importance of using the parallel study of gamma rays and synchrotron radiation in order to constrain the low-energy interstellar CR electron spectrum, models of propagation of CRs, and magnetic fields.« less

  13. A Model Describing Stable Coherent Synchrotron Radiation in Storage Rings

    NASA Astrophysics Data System (ADS)

    Sannibale, F.; Byrd, J. M.; Loftsdóttir, Á.; Venturini, M.; Abo-Bakr, M.; Feikes, J.; Holldack, K.; Kuske, P.; Wüstefeld, G.; Hübers, H.-W.; Warnock, R.

    2004-08-01

    We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSYII storage ring. We also use this model to optimize the performance of a source for stable CSR emission.

  14. Focusing of white synchrotron radiation using large-acceptance cylindrical refractive lenses made of single – crystal diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polikarpov, M., E-mail: polikarpov.maxim@mail.ru; Snigireva, I.; Snigirev, A.

    2016-07-27

    Large-aperture cylindrical refractive lenses were manufactured by laser cutting of single-crystal diamond. Five linear single lenses with apertures of 1 mm and the depth of the structure of 1.2 mm were fabricated and tested at the ESRF ID06 beamline performing the focusing of white-beam synchrotron radiation. Uniform linear focus was stable during hours of exposure, representing such lenses as pre-focusing and collimating devices suitable for the front-end sections of today synchrotron radiation sources.

  15. Updating the Synchrotron Radiation Monitor at TLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, C. H.; Hsu, S. Y.; Wang, C. J.

    2007-01-19

    The synchrotron radiation monitor provides useful information to support routine operation and physics experiments using the beam. Precisely knowing the profile of the beam helps to improve machine performance. The synchrotron radiation monitor at the Taiwan Light Source (TLS) was recently upgraded. The optics and modeling were improved to increase the accuracy of measurement in the small beam size. A high-performance IEEE-1394 digital CCD camera was used to improve the quality of images and extend the dynamic range of measurement. The image analysis is also improved. This report summarizes status and results.

  16. Phase contrast portal imaging using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Umetani, K.; Kondoh, T.

    2014-07-01

    Microbeam radiation therapy is an experimental form of radiation treatment with great potential to improve the treatment of many types of cancer. We applied a synchrotron radiation phase contrast technique to portal imaging to improve targeting accuracy for microbeam radiation therapy in experiments using small animals. An X-ray imaging detector was installed 6.0 m downstream from an object to produce a high-contrast edge enhancement effect in propagation-based phase contrast imaging. Images of a mouse head sample were obtained using therapeutic white synchrotron radiation with a mean beam energy of 130 keV. Compared to conventional portal images, remarkably clear images of bones surrounding the cerebrum were acquired in an air environment for positioning brain lesions with respect to the skull structure without confusion with overlapping surface structures.

  17. Analysis of cortical bone porosity using synchrotron radiation microtomography to evaluate the effects of chemotherapy

    NASA Astrophysics Data System (ADS)

    Alessio, R.; Nogueira, L. P.; Salata, C.; Mantuano, A.; Almeida, A. P.; Braz, D.; de Almeida, C. E.; Tromba, G.; Barroso, R. C.

    2015-11-01

    Microporosities play important biologic and mechanical roles on health. One of the side effects caused by some chemotherapy drugs is the induction of amenorrhea, temporary or not, in premenopausal women, with a consequent decrease in estrogen production, which can lead to cortical bone changes. In the present work, the femur diaphysis of rats treated with chemotherapy drugs were evaluated by 3D morphometric parameters using synchrotron radiation microtomography. Control animals were also evaluated for comparison. The 3D tomographic images were obtained at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at the ELETTRA Synchrotron Laboratory in Trieste, Italy. Results showed significant differences in morphometric parameters measured from the 3D images of femur diaphysis of rats.

  18. Combination of acoustic levitation with small angle scattering techniques and synchrotron radiation circular dichroism. Application to the study of protein solutions.

    PubMed

    Cristiglio, Viviana; Grillo, Isabelle; Fomina, Margarita; Wien, Frank; Shalaev, Evgenyi; Novikov, Alexey; Brassamin, Séverine; Réfrégiers, Matthieu; Pérez, Javier; Hennet, Louis

    2017-01-01

    The acoustic levitation technique is a useful sample handling method for small solid and liquids samples, suspended in air by means of an ultrasonic field. This method was previously used at synchrotron sources for studying pharmaceutical liquids and protein solutions using x-ray diffraction and small angle x-ray scattering (SAXS). In this work we combined for the first time this containerless method with small angle neutron scattering (SANS) and synchrotron radiation circular dichroism (SRCD) to study the structural behavior of proteins in solutions during the water evaporation. SANS results are also compared with SAXS experiments. The aggregation behavior of 45μl droplets of lysozyme protein diluted in water was followed during the continuous increase of the sample concentration by evaporating the solvent. The evaporation kinetics was followed at different drying stage by SANS and SAXS with a good data quality. In a prospective work using SRCD, we also studied the evolution of the secondary structure of the myoglobin protein in water solution in the same evaporation conditions. Acoustic levitation was applied for the first time with SANS and the high performances of the used neutron instruments made it possible to monitor fast container-less reactions in situ. A preliminary work using SRCD shows the potentiality of its combination with acoustic levitation for studying the evolution of the protein structure with time. This multi-techniques approach could give novel insights into crystallization and self-assembly phenomena of biological compound with promising potential applications in pharmaceutical, food and cosmetics industry. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Synchrotron Radiation Workshop (SRW)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubar, O.; Elleaume, P.

    2013-03-01

    "Synchrotron Radiation Workshop" (SRW) is a physical optics computer code for calculation of detailed characteristics of Synchrotron Radiation (SR) generated by relativistic electrons in magnetic fields of arbitrary configuration and for simulation of the radiation wavefront propagation through optical systems of beamlines. Frequency-domain near-field methods are used for the SR calculation, and the Fourier-optics based approach is generally used for the wavefront propagation simulation. The code enables both fully- and partially-coherent radiation propagation simulations in steady-state and in frequency-/time-dependent regimes. With these features, the code has already proven its utility for a large number of applications in infrared, UV, softmore » and hard X-ray spectral range, in such important areas as analysis of spectral performances of new synchrotron radiation sources, optimization of user beamlines, development of new optical elements, source and beamline diagnostics, and even complete simulation of SR based experiments. Besides the SR applications, the code can be efficiently used for various simulations involving conventional lasers and other sources. SRW versions interfaced to Python and to IGOR Pro (WaveMetrics), as well as cross-platform library with C API, are available.« less

  20. Simultaneous multiscale measurements on dynamic deformation of a magnesium alloy with synchrotron x-ray imaging and diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, L.; Sun, T.; Fezzaa, K.

    Dynamic split Hopkinson pressure bar experiments with in situ synchrotron x-ray imaging and diffraction are conducted on a rolled magnesium alloy at high strain rates of ~5500 s-1. High speed multiscale measurements including stress–strain curves (macroscale), strain fields (mesoscale), and diffraction patterns (microscale) are obtained simultaneously, revealing strong anisotropy in deformation across different length scales. {1012} extension twinning induces homogenized strain fields and gives rise to rapid increase in strain hardening rate, while dislocation motion leads to inhomogeneous deformation and a decrease in strain hardening rate. During the early stage of plastic deformation, twinning is dominant in dynamic compression, whilemore » dislocation motion prevails in quasi-static loading, manifesting a strain-rate dependence of deformation.« less

  1. On high-resolution reciprocal-space mapping with a triple-crystal diffractometer for high-energy X-rays.

    PubMed

    Liss, K D; Royer, A; Tschentscher, T; Suortti, P; Williams, A P

    1998-03-01

    High-energy X-rav diffraction by means of triple-crystal techniques is a powerful tool for investigating dislocations and strain in bulk materials. Radiation with an energy typically higher than 80 keV combines the advantage of low attenuation with high resolution at large momentum transfers. The triple-crystal diffractometer at the High Energy Beamline of the European Synchrotron Radiation Facility is described. It is shown how the transverse and longitudinal resolution depend on the choice of the crystal reflection, and how the orientation of a reciprocal-lattice distortion in an investigated sample towards the resolution element of the instrument can play an important role. This effect is demonstrated on a single crystal of silicon where a layer of macro pores reveals satellites around the Bragg reflection. The resulting longitudinal distortion can be investigated using the high transverse resolution of the instrument when choosing an appropriate reflection.

  2. Double Compton and Cyclo-Synchrotron in Super-Eddington Discs, Magnetized Coronae, and Jets

    NASA Astrophysics Data System (ADS)

    McKinney, Jonathan C.; Chluba, Jens; Wielgus, Maciek; Narayan, Ramesh; Sadowski, Aleksander

    2017-05-01

    Black hole accretion discs accreting near the Eddington rate are dominated by bremsstrahlung cooling, but above the Eddington rate, the double Compton process can dominate in radiation-dominated regions, while the cyclo-synchrotron can dominate in strongly magnetized regions like a corona or a jet. We present an extension to the general relativistic radiation magnetohydrodynamic code harmrad to account for emission and absorption by thermal cyclo-synchrotron, double Compton, bremsstrahlung, low-temperature opal opacities, as well as Thomson and Compton scattering. The harmrad code and associated analysis and visualization codes have been made open-source and are publicly available at the github repository website. We approximate the radiation field as a Bose-Einstein distribution and evolve it using the radiation number-energy-momentum conservation equations in order to track photon hardening. We perform various simulations to study how these extensions affect the radiative properties of magnetically arrested discs accreting at Eddington to super-Eddington rates. We find that double Compton dominates bremsstrahlung in the disc within a radius of r ˜ 15rg (gravitational radii) at hundred times the Eddington accretion rate, and within smaller radii at lower accretion rates. Double Compton and cyclo-synchrotron regulate radiation and gas temperatures in the corona, while cyclo-synchrotron regulates temperatures in the jet. Interestingly, as the accretion rate drops to Eddington, an optically thin corona develops whose gas temperature of T ˜ 109K is ˜100 times higher than the disc's blackbody temperature. Our results show the importance of double Compton and synchrotron in super-Eddington discs, magnetized coronae and jets.

  3. Fabrication and testing of a newly designed slit system for depth-resolved X-ray diffraction measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit

    2016-10-06

    A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials andin situandoperandodiffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, over a continuous range ofmore » diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. The design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.« less

  4. Lithographically fabricated silicon microreactor for in situ characterization of heterogeneous catalysts—Enabling correlative characterization techniques

    NASA Astrophysics Data System (ADS)

    Baier, S.; Rochet, A.; Hofmann, G.; Kraut, M.; Grunwaldt, J.-D.

    2015-06-01

    We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor for in situ studies.

  5. Lithographically fabricated silicon microreactor for in situ characterization of heterogeneous catalysts—Enabling correlative characterization techniques.

    PubMed

    Baier, S; Rochet, A; Hofmann, G; Kraut, M; Grunwaldt, J-D

    2015-06-01

    We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor for in situ studies.

  6. Monoclinic deformation of calcite crystals at ambient conditions

    NASA Astrophysics Data System (ADS)

    Przeniosło, R.; Fabrykiewicz, P.; Sosnowska, I.

    2016-09-01

    High resolution synchrotron radiation powder diffraction shows that the average crystal structure of calcite at ambient conditions is described with the trigonal space group R 3 bar c but there is a systematic hkl-dependent Bragg peak broadening. A modelling of this anisotropic peak broadening with the microstrain model from Stephens (1999) [15] is presented. The observed lattice parameters' correlations can be described by assuming a monoclinic-type deformation of calcite crystallites. A quantitative model of this monoclinic deformation observed at ambient conditions is described with the space group C 2 / c . The monoclinic unit cell suggested at ambient conditions is related with the monoclinic unit cell reported in calcite at high pressure (Merrill and Bassett (1975) [10]).

  7. Experiments with phase transitions at very high pressure. [compressed solidifed gases, semiconductors, superconductors, and molecular crystals

    NASA Technical Reports Server (NTRS)

    Spain, I. L.

    1983-01-01

    Diamond cells were constructed for use to 1 Mbar. A refrigerator for cooling diamond cells was adapted for studies between 15 and 300 K. A cryostat for superconductivity studies between 1.5 to 300 K was constructed. Optical equipment was constructed for fluorescence, transmission, and reflectance studies. X-ray equipment was adapted for use with diamond cells. Experimental techniques were developed for X-ray diffraction studies using synchrotron radiation. AC susceptibility techniques were developed for detecting superconducting transitions. The following materials were studied: compressed solidified gases (Xe, Ar), semiconductors (Ge, Si, GaAs), superconductors (Nb3Ge, Nb3Si, Nb3As, CuCl), molecular crystals (I).

  8. Thermotropic phase transitions in model membranes of the outer skin layer based on ceramide 6

    NASA Astrophysics Data System (ADS)

    Gruzinov, A. Yu.; Kiselev, M. A.; Ermakova, E. V.; Zabelin, A. V.

    2014-01-01

    The lipid intercellular matrix stratum corneum of the outer skin layer is a multilayer membrane consisting of a complex mixture of different lipids: ceramides, fatty acids, cholesterol, and its derivatives. The basis of the multilayer membrane is the lipid bilayer, i.e., a two-dimensional liquid crystal. Currently, it is known that the main way of substance penetration through the skin is the lipid matrix. The complexity of the actual biological system does not allow reliable direct study of its properties; therefore, system modeling is often used. Phase transitions in the lipid system whose composition simulates the native lipid matrix are studied by the X-ray synchrotron radiation diffraction method.

  9. Fabrication of high-resolution x-ray diffractive optics at King's College London

    NASA Astrophysics Data System (ADS)

    Charalambous, Pambos S.; Anastasi, Peter A. F.; Burge, Ronald E.; Popova, Katia

    1995-09-01

    The fabrication of high resolution x-ray diffractive optics, and Fresnel zone plates (ZPs) in particular, is a very demanding multifaceted technological task. The commissioning of more (and brighter) synchrotron radiation sources, has increased the number of x-ray imaging beam lines world wide. The availability of cheaper and more effective laboratory x-ray sources, has further increased the number of laboratories involved in x-ray imaging. The result is an ever increasing demand for x-ray optics with a very wide range of specifications, reflecting the particular type of x-ray imaging performed at different laboratories. We have been involved in all aspects of high resolution nanofabrication for a number of years, and we have explored many different methods of lithography, which, although unorthodox, open up possibilities, and increase our flexibility for the fabrication of different diffractive optical elements, as well as other types of nanostructures. The availability of brighter x-ray sources, means that the diffraction efficiency of the ZPs is becoming of secondary importance, a trend which will continue in the future. Resolution, however, is important and will always remain so. Resolution is directly related to the accuracy af pattern generation, as well as the ability to draw fine lines. This is the area towards which we have directed most of our efforts so far.

  10. Near Edge X-Ray Absorption and X-Ray Photoelectron Diffraction Studies of the Structural Environment of Ge-Si Systems

    NASA Astrophysics Data System (ADS)

    Castrucci, P.; Gunnella, R.; Pinto, N.; Bernardini, R.; de Crescenzi, M.; Sacchi, M.

    Near edge X-ray absorption spectroscopy (XAS), X-ray photoelectron diffraction (XPD) and Auger electron diffraction (AED) are powerful techniques for the qualitative study of the structural and electronic properties of several systems. The recent development of a multiple scattering approach to simulating experimental spectra opened a friendly way to the study of structural environments of solids and surfaces. This article reviews recent X-ray absorption experiments using synchrotron radiation which were performed at Ge L edges and core level electron diffraction measurements obtained using a traditional X-ray source from Ge core levels for ultrathin Ge films deposited on silicon substrates. Thermodynamics and surface reconstruction have been found to play a crucial role in the first stages of Ge growth on Si(001) and Si(111) surfaces. Both techniques show the occurrence of intermixing processes even for room-temperature-grown Ge/Si(001) samples and give a straightforward measurement of the overlayer tetragonal distortion. The effects of Sb as a surfactant on the Ge/Si(001) interface have also been investigated. In this case, evidence of layer-by-layer growth of the fully strained Ge overlayer with a reduced intermixing is obtained when one monolayer of Sb is predeposited on the surface.

  11. Properties of an ultrarelativistic charged particle radiation in a constant homogeneous crossed electromagnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdanov, O.V., E-mail: bov@tpu.ru; Department of Higher Mathematics and Mathematical Physics, Tomsk Polytechnic University, Tomsk, 634050; Kazinski, P.O., E-mail: kpo@phys.tsu.ru

    The properties of radiation created by a classical ultrarelativistic scalar charged particle in a constant homogeneous crossed electromagnetic field are described both analytically and numerically with radiation reaction taken into account in the form of the Landau–Lifshitz equation. The total radiation naturally falls into two parts: the radiation formed at the entrance point of a particle into the crossed field (the synchrotron entrance radiation), and the radiation coming from the late-time asymptotics of a particle motion (the de-excited radiation). The synchrotron entrance radiation resembles, although does not coincide with, the ultrarelativistic limit of the synchrotron radiation: its distribution over energiesmore » and angles possesses almost the same properties. The de-excited radiation is soft, not concentrated in the plane of motion of a charged particle, and almost completely circularly polarized. The photon energy delivering the maximum to its spectral angular distribution decreases with increasing the initial energy of a charged particle, while the maximum value of this distribution remains the same at the fixed photon observation angle and entrance angle of a charged particle. The ultraviolet and infrared asymptotics of the total radiation are also described. - Highlights: • Properties of an electron radiation in a crossed electromagnetic field are studied. • Spectral angular distribution of the synchrotron entrance radiation is described. • Spectral angular distribution of the de-excited radiation is described. • De-excited radiation is almost completely circularly polarized. • Photon energy at the maximum of the de-excited radiation decreases with increasing the initial energy of an electron.« less

  12. The Jovian electron spectrum and synchrotron radiation at 375 cm

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.

    1975-01-01

    The synchrotron radiation expected at Earth from the region L=2.9-5 R sub J of Jupiter's magnetosphere is calculated using the Pioneer 10 electron model. The result is approximately 21 flux units (f.u.). This value is to be compared with 6.0 + or - 0.7 f.u., the flux density of synchrotron radiation measured from Jupiter's entire magnetosphere in ground-based radio observations. Most of the radiation at 375 cm is emitted by electrons in the 1 to 10 MeV range. If the electron model used for calculations is cut off below 10 MeV, the calculated flux is reduced to approximately 4 f.u., a level compatible with the radio observations.

  13. Signatures of Synchrotron: Low-cutoff X-ray emission and the hard X-ray spectrum of Cas A

    NASA Astrophysics Data System (ADS)

    Stage, Michael D.; Fedor, Emily Elizabeth; Martina-Hood, Hyourin

    2018-06-01

    In soft X-rays, bright, young Galactic remnants (Cas A, Kepler, Tycho, etc.) present thermal line emission and bremsstrahlung from ejecta, and synchrotron radiation from the shocks. Their hard X-ray spectra tend to be dominated by power-law sources. However, it can be non-trivial to discriminate between contributions from processes such as synchrotron and bremsstrahlung from nonthermally accelerated electrons, even though the energies of the electrons producing this radiation may be very different. Spatially-resolved spectroscopic analysis of 0.5-10 keV observations with, e.g., Chandracan provide leverage in identifying the processes and their locations. Previously, Stage & Allen (2006), Allen & Stage (2007) and Stage & Allen (2011) identified regions characterized by high-cutoff synchrotron radiation. Extrapolating synchrotron model fits to the emission in the Chandra band, they estimated the synchrotron contribution to the hard X-ray spectrum at about one-third the observed flux, fitting the balance with nonthermal bremsstrahlung emission produced by nonthermal electrons in the ejecta. Although it is unlikely this analysis missed regions of the highest-cutoff synchrotron emission, which supplies the bulk of the synchrotron above 15 keV, it may have missed regions of lower-cutoff emission, especially if they are near bright ejecta and the reverse shock. These regions cannot explain the emission at the highest energies (~50 keV), but may make significant contributions to the hard spectrum at lower energies (~10 keV). Using the technique described in Fedor, Martina-Hood & Stage (this meeting), we revisit the analysis to include regions that may be dominated by low-cutoff synchrotron, located in the interior of the remnant, and/or correlated with the reverse shock. Identifying X-ray emission from accelerated electrons associated with the reverse-shock would have important implications for synchrotron and non-thermal bremsstrahlung radiation above the 10 keV.

  14. Properties of Blazar Jets Defined by an Economy of Power

    NASA Astrophysics Data System (ADS)

    Petropoulou, Maria; Dermer, Charles D.

    2016-07-01

    The absolute power of a relativistic black hole jet includes the power in the magnetic field, the leptons, the hadrons, and the radiated photons. A power analysis of a relativistic radio/γ-ray blazar jet leads to bifurcated leptonic synchrotron-Compton (LSC) and leptohadronic synchrotron (LHS) solutions that minimize the total jet power. Higher Doppler factors with increasing peak synchrotron frequency are implied in the LSC model. Strong magnetic fields {B}\\prime ≳ 100 {{G}} are found for the LHS model with variability times ≲ {10}3 {{s}}, in accord with highly magnetized, reconnection-driven jet models. Proton synchrotron models of ≳ 100 {GeV} blazar radiation can have sub-Eddington absolute jet powers, but models of dominant GeV radiation in flat spectrum radio quasars require excessive power.

  15. A new diamond anvil cell for hydrothermal studies to 2.5 GPa and from -190 to 1200 °C

    USGS Publications Warehouse

    Bassett, William A.; Shen, A.H.; Bucknum, M.; Chou, I.-Ming

    1993-01-01

    A new style of diamond anvil cell(DAC) has been designed and built for conducting research in fluids at pressures to 2.5 GPa and temperatures from −190 to 1200 °C. The new DAC has been used for optical microscope observations and synchrotron x‐ray diffraction studies. Fringes produced by interference of laser light reflected from top and bottom anvil faces and from top and bottom sample faces provide a very sensitive means of monitoring the volume of sample chamber and for observing volume and refractive index changes in samples that have resulted from transitions and reactions. X‐ray diffraction patterns of samples under hydrothermal conditions have been made by the energy dispersive method using synchrotron radiation. The new DAC has individual heaters and individual thermocouples for the upper and lower anvils that can be controlled and can maintain temperatures with an accuracy of ±0.5 °C. Low temperatures are achieved by introducing liquid nitrogen directly into the DAC. The equation of state of H2O and the α‐β quartz transition are used to determine pressure with an accuracy of ±1% in the aqueous samples. The new DAC has been used to redetermine five isochores of H2O as well as the dehydration curves of brucite, Mg(OH)2, and muscovite, KAl2(Si3Al)O10(OH)2.

  16. Crystallization and preliminary X-ray analysis of a novel thermoalkalophilic poly(3-hydroxybutyrate) depolymerase (PhaZ7) from Paucimonas lemoignei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapetaniou, Evangelia G.; Braaz, Reinhard; Jendrossek, Dieter

    2005-05-01

    A novel thermoalkalophilic depolymerase, PhaZ7, from P. lemoignei was crystallized by the microdialysis technique. Crystals belong to space group C2 and diffract to 2.75 Å resolution at a synchrotron source. Polyhydroxyalkanoates (PHA) are biodegradable polyesters that have attracted commercial and academic interest as environmentally friendly materials. A number of enzymes are able to degrade polyhydroxyalkanoates to water-soluble products. PhaZ7 poly(3-hydroxybutyrate) (PHB) depolymerase (EC 3.1.1.75), a 342-amino-acid hydrolase from the PHA-degrading bacterium Paucimonas lemoignei, has been found to possess substrate specificity for amorphous PHA. PhaZ7 was crystallized by the microdialysis method. Thin rod-like crystals were grown in low ionic strength solutionmore » and found to belong to the monoclinic space group C2, with unit-cell parameters a = 225.8, b = 46.5, c = 171.3, β = 128.9°. A complete data set was collected to 2.75 Å resolution at 100 K using synchrotron radiation.« less

  17. X-ray monochromators for high-power synchrotron radiation sources

    NASA Astrophysics Data System (ADS)

    Hart, Michael

    1990-11-01

    Exact solutions to the problems of power flow from a line source of heat into a semicylinder and of uniform heat flow normal to a flat surface are discussed. These lead to bounds on feasible designs and the boundary layer problem can be placed in proper perspective. While finite element calculations are useful if the sample boundaries are predefined, they are much less help in establishing design principles. Previous work on hot beam X-ray crystal optics has emphasised the importance of coolant hydraulics and boundary layer heat transfer. Instead this paper emphasises the importance of the elastic response of crystals to thermal strainfields and the importance of maintaining the Darwin reflectivity. The conclusions of this design study are that the diffracting crystal region should be thin, but not very thin, similar in area to the hot beam footprint, part of a thin-walked buckling crystal box and remote from the support to which the crystal is rigidly clamped. Prototype 111 and 220 cooled silicon crystals tested at the National Synchrotron Light Source at Brookhaven have almost perfect rocking curves under a beam heat load of {1}/{3}kW.

  18. Nanophase cobalt, nickel and zinc ferrites: synchrotron XAS study on the crystallite size dependence of metal distribution.

    PubMed

    Nordhei, Camilla; Ramstad, Astrid Lund; Nicholson, David G

    2008-02-21

    Nanophase cobalt, nickel and zinc ferrites, in which the crystallites are in the size range 4-25 nm, were synthesised by coprecipitation and subsequent annealing. X-Ray absorption spectroscopy using synchrotron radiation (supported by X-ray powder diffraction) was used to study the effects of particle size on the distributions of the metal atoms over the tetrahedral and octahedral sites of the spinel structure. Deviations from the bulk structure were found which are attributed to the significant influence of the surface on very small particles. Like the bulk material, nickel ferrite is an inverse spinel in the nanoregime, although the population of metals on the octahedral sites increases with decreasing particle size. Cobalt ferrite and zinc ferrite take the inverse and normal forms of the spinel structure respectively, but within the nanoregime both systems show similar trends in being partially inverted. Further, in zinc ferrite, unlike the normal bulk structure, the nanophase system involves mixed coordinations of zinc(ii) and iron(iii) consistent with increasing partial inversion with size.

  19. In situ investigation of working battery electrodes using synchrotron x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jisrawi, N.M.; Thurston, T.R.; Yang, X.Q.

    The results of an in situ investigation of the structural changes that occur during the operation of working battery electrodes using synchrotron radiation are presented. Two types of electrodes were investigated: an AB{sub 2}-type Laves phase alloy anode with the composition Zr{sub x}Ti{sub 1-x}M{sub 2} and a proprietary cell based on a Li{sub x}Mn{sub 2}O{sub 4} spinel compound cathode made by Gould electronics. For the Laves phase alloy compositions with x=0.25 and 0.5 and M=V{sub 0.5}N{sub 1.1}Mn{sub 0.2}Fe{sub 0.2} were examined. Cells made from two different batches of Li{sub x}Mn{sub 2}O{sub 4} material were investigated. The relationships between battery performancemore » and structural changes will be discussed. In the later case, we also discuss the role of over-discharging on the Li{sub x}Mn{sub 2}O{sub 4} structure and on battery operation.« less

  20. Temperature effect of elastic anisotropy and internal strain development in advanced nanostructured alloys: An in-situ synchrotron X-ray investigation

    DOE PAGES

    Gan, Yingye; Mo, Kun; Yun, Di; ...

    2017-03-19

    Nanostructured ferritic alloys (NFAs) are promising structural materials for advanced nuclear systems due to their exceptional radiation tolerance and high-temperature mechanical properties. Their remarkable properties result from the ultrafine ultrahigh density Y-Ti-O nanoclusters dispersed within the ferritic matrix. In this work, we performed in-situ synchrotron X-ray diffraction tests to study the tensile deformation process of the three types of NFAs: 9YWTV, 14YWT-sm13, and 14YWT-sm170 at both room temperature and elevated temperatures. A technique was developed, combining Kroner's model and X-ray measurement, to determine the intrinsic monocrystal elastic-stiffness constants, and polycrystal Young's modulus and Poisson's ratio of the NFAs. Temperature dependencemore » of elastic anisotropy was observed in the NFAs. Lastly, an analysis of intergranular strain and strengthening factors determined that 14YWT-sm13 had a higher resistance to temperature softening compared to 9YWTV, attributed to the more effective nanoparticle strengthening during high-temperature mechanical loading.« less

  1. Condensation of collective charge ordering in chromium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, A.; Marsh, M. J.; Dietze, S. H.

    2015-03-01

    We report on the dynamics of the structural order parameter in a chromium film using synchrotron radiation in response to photoinduced ultrafast excitations. Following transient optical excitations the effective lattice temperature of the film rises close to the Neel temperature and the charge-density wave (CDW) amplitude is reduced but does not appear to ever be fully destroyed. The persistence of the CDW diffraction signal demonstrates that the CDW, if destroyed by the laser pulse, must be reestablished within the 100-ps time resolution of the synchrotron x-ray pulses. Furthermore, at all times after photoexcitation, the CDW retains its low-temperature periodicity, rathermore » than regenerating with its high-temperature period shortly after photoexcitation. The long-term evolution shows that the CDW reverts to its ground state on a time scale of 370 +/- 40 ps. We attribute the apparent persistence of the CDW to the long-lived periodic lattice displacement in chromium. This study highlights the fundamental role of the lattice distortion and its impact on the recondensation dynamics of the charge ordered state in strongly correlated materials.« less

  2. Compensation of X-ray mirror shape-errors using refractive optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawhney, Kawal, E-mail: Kawal.sawhney@diamond.ac.uk; Laundy, David; Pape, Ian

    2016-08-01

    Focusing of X-rays to nanometre scale focal spots requires high precision X-ray optics. For nano-focusing mirrors, height errors in the mirror surface retard or advance the X-ray wavefront and after propagation to the focal plane, this distortion of the wavefront causes blurring of the focus resulting in a limit on the spatial resolution. We describe here the implementation of a method for correcting the wavefront that is applied before a focusing mirror using custom-designed refracting structures which locally cancel out the wavefront distortion from the mirror. We demonstrate in measurements on a synchrotron radiation beamline a reduction in the sizemore » of the focal spot of a characterized test mirror by a factor of greater than 10 times. This technique could be used to correct existing synchrotron beamline focusing and nanofocusing optics providing a highly stable wavefront with low distortion for obtaining smaller focus sizes. This method could also correct multilayer or focusing crystal optics allowing larger numerical apertures to be used in order to reduce the diffraction limited focal spot size.« less

  3. Temperature effect of elastic anisotropy and internal strain development in advanced nanostructured alloys: An in-situ synchrotron X-ray investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Yingye; Mo, Kun; Yun, Di

    2017-04-01

    Nanostructured ferritic alloys (NFAs) are a promising structural material for advanced nuclear systems due to their exceptional radiation tolerance and high-temperature mechanical properties. Their remarkable properties result from the ultrafine ultrahigh density Y-Ti-O nanoclusters dispersed within the ferritic matrix. In this work, we performed in-situ synchrotron X-ray diffraction tests to study the tensile deformation process of the three types of NFAs: 9YWTV, 14YWT-sm13, and 14YWT-sm170 at both room temperature and elevated temperatures. A technique was developed, combining Kroner’s model and X-ray measurement, to determine the intrinsic monocrystal elastic-stiffness constants, and polycrystal Young’s modulus and Poisson’s ratio of the NFAs. Temperaturemore » dependence of elastic anisotropy was observed in the NFAs. An analysis of intergranular strain and strengthening factors determined that 14YWT-sm13 had a higher resistance to temperature softening compared to 9YWTV, attributed to the more effective nanoparticle strengthening during high-temperature mechanical loading.« less

  4. High resolution microdiffraction studies using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Spolenak, R.; Tamura, N.; Valek, B. C.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Brown, W. L.; Marieb, T.; Batterman, B. W.; Patel, J. R.

    2002-04-01

    The advent of third generation synchrotron light sources in combination with x-ray focusing devices such as Kirkpatrick-Baez mirrors make Laue diffraction on a submicron length scale possible. Analysis of Laue images enables us to determine the deviatoric part of the 3D strain tensor to an accuracy of 2×10-4 in strain with a spatial resolution comparable to the grain size in our thin films. In this paper the application of x-ray microdiffraction to the temperature dependence of the mechanical behavior of a sputtered blanket Cu film and of electroplated damascene Cu lines will be presented. Microdiffraction reveals very large variations in the strain of a film or line from grain to grain. When the strain is averaged over a macroscopic region the results are in good agreement with direct macroscopic stress measurements. However, the strain variations are so large that in some cases in which the average stress is tensile there are some grains actually under compression. The full implications of these observations are still being considered, but it is clear that the mechanical properties of thin film materials are now accessible with new visibility.

  5. Experimental studies on coherent synchrotron radiation at an emittance exchange beam line

    NASA Astrophysics Data System (ADS)

    Thangaraj, J. C. T.; Thurman-Keup, R.; Ruan, J.; Johnson, A. S.; Lumpkin, A. H.; Santucci, J.

    2012-11-01

    One of the goals of the Fermilab A0 photoinjector is to investigate experimentally the transverse to longitudinal emittance exchange (EEX) principle. Coherent synchrotron radiation in the emittance exchange line could limit the performance of the emittance exchanger at short bunch lengths. In this paper, we present experimental and simulation studies of the coherent synchrotron radiation (CSR) in the emittance exchange line at the A0 photoinjector. We report on time-resolved CSR studies using a skew-quadrupole technique. We also demonstrate the advantages of running the EEX with an energy-chirped beam.

  6. Status of the Siberian synchrotron radiation center

    NASA Astrophysics Data System (ADS)

    Ancharov, A. I.; Baryshev, V. B.; Chernov, V. A.; Gentselev, A. N.; Goldenberg, B. G.; Kochubei, D. I.; Korchuganov, V. N.; Kulipanov, G. N.; Kuzin, M. V.; Levichev, E. B.; Mezentsev, N. A.; Mishnev, S. I.; Nikolenko, A. D.; Pindyurin, V. F.; Sheromov, M. A.; Tolochko, B. P.; Sharafutdinov, M. R.; Shmakov, A. N.; Vinokurov, N. A.; Vobly, P. D.; Zolotarev, K. V.

    2005-05-01

    Synchrotron radiation (SR) experiments at the Budker Institute of Nuclear Physics had been started in 1973, and from 1981 the Siberian Synchrotron Radiation Center (SSRC) had an official status as Research Center of the Russian Academy of Sciences. SSRC is the research center, which is open and free of tax for the research teams from Russia and abroad. In this report some technical information about the storage rings—SR sources of the Budker INP, the main directions of activity of SSRC, experimental stations, experimental works and users—is given. Development of the free electron lasers, new SR sources and insertion devices is described.

  7. Evolution of synchrotron-radiation-based Mössbauer absorption spectroscopy for various isotopes

    NASA Astrophysics Data System (ADS)

    Seto, Makoto; Masuda, Ryo; Kobayashi, Yasuhiro; Kitao, Shinji; Kurokuzu, Masayuki; Saito, Makina; Hosokawa, Shuuich; Ishibashi, Hiroki; Mitsui, Takaya; Yoda, Yoshitaka; Mibu, Ko

    2017-11-01

    Synchrotron-radiation-based Mössbauer spectroscopy that yields absorption type Mössbauer spectra has been applied to various isotopes. This method enables the advanced measurement by using the excellent features of synchrotron radiation, such as Mössbauer spectroscopic measurement under high-pressures. Furthermore, energy selectivity of synchrotron radiation allows us to measure 40K Mössbauer spectra, of which observation is impossible by using ordinary radioactive sources because the first excited state of 40K is not populated by any radioactive parent nuclides. Moreover, this method has flexibility of the experimental setup that the measured sample can be used as a transmitter or a scatterer, depending on the sample conditions. To enhance the measurement efficiency of the spectroscopy, we developed a detection system in which a windowless avalanche photodiode (APD) detector is combined with a vacuum cryostat to detect internal conversion electrons adding to X-rays accompanied by nuclear de-excitation. In particular, by selecting the emission from the scatterer sample, depth selective synchrotron-radiation-based Mössbauer spectroscopy is possible. Furthermore, limitation of the time window in the delayed components enables us to obtain narrow linewidth in Mössbauer spectra. Measurement system that records velocity dependent time spectra and energy information simultaneously realizes the depth selective and narrow linewidth measurement.

  8. Non-destructive testing of satellite nozzles made of carbon fibre ceramic matrix composite, C/SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebelo Kornmeier, J.; Hofmann, M.; Schmidt, S.

    Carbon fibre ceramic matrix composite materials, C/SiC, are excellent candidates as lightweight structural materials for high performance hot structures such as in aerospace applications. Satellite nozzles are manufactured from C/SiC, using, for instance, the Liquid Polymer Infiltration (LPI) process. In this article the applicability of different non-destructive analysis methods for the characterisation of C/SiC components will be discussed. By using synchrotron and neutron tomography it is possible to characterise the C/SiC material in each desired location or orientation. Synchrotron radiation using tomography on small samples with a resolution of 1.4 {mu}m, i.e. the fibre scale, was used to characterise threemore » dimensionally fibre orientation and integrity, matrix homogeneity and dimensions and distributions of micro pores. Neutron radiation tomography with a resolution of about 300 {mu}m was used to analyse the over-all C/SiC satellite nozzle component with respect to the fibre content. The special solder connection of a C/SiC satellite nozzle to a metallic ring was also successfully analysed by neutron tomography. In addition, the residual stress state of a temperature tested satellite nozzle was analysed non-destructively in depth by neutron diffraction. The results revealed almost zero stress for the principal directions, radial, axial and tangential, which can be considered to be the principal directions.« less

  9. In situ high-energy synchrotron radiation study of boehmite formation, growth, and phase transformation to alumina in sub- and supercritical water.

    PubMed

    Lock, Nina; Bremholm, Martin; Christensen, Mogens; Almer, Jonathan; Chen, Yu-Sheng; Iversen, Bo B

    2009-12-14

    Boehmite (AlOOH) nanoparticles have been synthesized in subcritical (300 bar, 350 degrees C) and supercritical (300 bar, 400 degrees C) water. The formation and growth of AlOOH nanoparticles were studied in situ by small- and wide-angle X-ray scattering (SAXS and WAXS) using 80 keV synchrotron radiation. The SAXS/WAXS data were measured simultaneously with a time resolution greater than 10 s and revealed the initial nucleation of amorphous particles takes place within 10 s with subsequent crystallization after 30 s. No diffraction signals were observed from Al(OH)(3) within the time resolution of the experiment, which shows that the dehydration step of the reaction is fast and the hydrolysis step rate-determining. The sizes of the crystalline particles were determined as a function of time. The overall size evolution patterns are similar in sub- and supercritical water, but the growth is faster and the final particle size larger under supercritical conditions. After approximately 5 min, the rate of particle growth decreases in both sub- and supercritical water. Heating of the boehmite nanoparticle suspension allowed an in situ X-ray investigation of the phase transformation of boehmite to aluminium oxide. Under the wet conditions used in this work, the transition starts at 530 degrees C and gives a two-phase product of hydrated and non-hydrated aluminium oxide.

  10. CCD sensors in synchrotron X-ray detectors

    NASA Astrophysics Data System (ADS)

    Strauss, M. G.; Naday, I.; Sherman, I. S.; Kraimer, M. R.; Westbrook, E. M.; Zaluzec, N. J.

    1988-04-01

    The intense photon flux from advanced synchrotron light sources, such as the 7-GeV synchrotron being designed at Argonne, require integrating-type detectors. Charge-coupled devices (CCDs) are well suited as synchrotron X-ray detectors. When irradiated indirectly via a phosphor followed by reducing optics, diffraction patterns of 100 cm 2 can be imaged on a 2 cm 2 CCD. With a conversion efficiency of ˜ 1 CCD electron/X-ray photon, a peak saturation capacity of > 10 6 X-rays can be obtained. A programmable CCD controller operating at a clock frequency of 20 MHz has been developed. The readout rate is 5 × 10 6 pixels/s and the shift rate in the parallel registers is 10 6 lines/s. The test detector was evaluated in two experiments. In protein crystallography diffraction patterns have been obtained from a lysozyme crystal using a conventional rotating anode X-ray generator. Based on these results we expect to obtain at a synchrotron diffraction images at a rate of ˜ 1 frame/s or a complete 3-dimensional data set from a single crystal in ˜ 2 min. In electron energy-loss spectroscopy (EELS), the CCD was used in a parallel detection mode which is similar to the mode array detectors are used in dispersive EXAFS. With a beam current corresponding to 3 × 10 9 electron/s on the detector, a series of 64 spectra were recorded on the CCD in a continuous sequence without interruption due to readout. The frame-to-frame pixel signal fluctuations had σ = 0.4% from which DQE = 0.4 was obtained, where the detector conversion efficiency was 2.6 CCD electrons/X-ray photon. These multiple frame series also showed the time-resolved modulation of the electron microscope optics by stray magnetic fields.

  11. Purification, crystallization and preliminary X-ray diffraction analysis of a novel keto-deoxy-d-galactarate (KDG) dehydratase from Agrobacterium tumefaciens

    PubMed Central

    Taberman, Helena; Andberg, Martina; Parkkinen, Tarja; Richard, Peter; Hakulinen, Nina; Koivula, Anu; Rouvinen, Juha

    2014-01-01

    d-Galacturonic acid is the main component of pectin. It could be used to produce affordable renewable fuels, chemicals and materials through biotechnical conversion. Keto-deoxy-d-galactarate (KDG) dehydratase is an enzyme in the oxidative pathway of d-galacturonic acid in Agrobacterium tumefaciens (At). It converts 3-deoxy-2-keto-l-threo-hexarate to α-ketoglutaric semialdehyde. At KDG dehydratase was crystallized by the hanging-drop vapour-diffusion method. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 169.1, b = 117.8, c = 74.3 Å, β = 112.4° and an asymmetric unit of four monomers. X-ray diffraction data were collected to 1.9 Å resolution using synchrotron radiation. The three-dimensional structure of At KDG dehydratase will provide valuable information on the function of the enzyme and will allow it to be engineered for biorefinery-based applications. PMID:24419616

  12. A structural diagnostics diagram for metallofullerenes encapsulating metal carbides and nitrides.

    PubMed

    Maki, Sachiko; Nishibori, Eiji; Terauchi, Ikuya; Ishihara, Masayuki; Aoyagi, Shinobu; Sakata, Makoto; Takata, Masaki; Umemoto, Hisashi; Inoue, Takashi; Shinohara, Hisanori

    2013-01-16

    Systematic structural studies of 24 different kinds of endohedral metallofullerenes, M(x)C(2n) (M = La, Y, Sc, Lu, Ti, Eu, Er, Hf, Sc(3)N; 34 ≤ n ≤ 43), as 1:1 cocrystals with solvent toluene molecules have been carried out using synchrotron radiation powder diffraction. Thirteen of the 24 molecular structures, including five metal carbides, one metal nitride endohedral fullerene, and one hollow fullerene, have been determined by a combination of the maximum entropy method and Rietveld refinement of the X-ray diffraction data obtained. We have found that the volume for one fullerene and one toluene molecule depends linearly on the number of carbon atoms in the fullerene cage. Fifteen different kinds of metal carbide endohedral fullerenes have been identified, which can be structurally characterized from the obtained lattice constants using only this linear dependence. The linear dependence found in the present study provides a metallofullerene diagnostics diagram that may have universal importance for structural characterization of the so-called cluster endohedral fullerenes.

  13. Dynamic Diffraction Studies on the Crystallization, Phase Transformation, and Activation Energies in Anodized Titania Nanotubes

    PubMed Central

    Albetran, Hani; Vega, Victor

    2018-01-01

    The influence of calcination time on the phase transformation and crystallization kinetics of anodized titania nanotube arrays was studied using in-situ isothermal and non-isothermal synchrotron radiation diffraction from room temperature to 900 °C. Anatase first crystallized at 400 °C, while rutile crystallized at 550 °C. Isothermal heating of the anodized titania nanotubes by an increase in the calcination time at 400, 450, 500, 550, 600, and 650 °C resulted in a slight reduction in anatase abundance, but an increase in the abundance of rutile because of an anatase-to-rutile transformation. The Avrami equation was used to model the titania crystallization mechanism and the Arrhenius equation was used to estimate the activation energies of the titania phase transformation. Activation energies of 22 (10) kJ/mol for the titanium-to-anatase transformation, and 207 (17) kJ/mol for the anatase-to-rutile transformation were estimated. PMID:29473854

  14. Design of a multilayer-based collimated plane-grating monochromator for tender X-ray range.

    PubMed

    Yang, Xiaowei; Wang, Hongchang; Hand, Matthew; Sawhney, Kawal; Kaulich, Burkhard; Kozhevnikov, Igor V; Huang, Qiushi; Wang, Zhanshan

    2017-01-01

    Collimated plane-grating monochromators (cPGMs), consisting of a plane mirror and plane diffraction grating, are essential optics in synchrotron radiation sources for their remarkable flexibility and good optical characteristics in the soft X-ray region. However, the poor energy transport efficiency of a conventional cPGM (single-layer-coated) degrades the source intensity and leaves reduced flux at the sample, especially for the tender X-ray range (1-4 keV) that covers a large number of K- and L-edges of medium-Z elements, and M-edges of high-Z elements. To overcome this limitation, the use of a multilayer-based cPGM is proposed, combining a multilayer-coated plane mirror with blazed multilayer gratings. With this combination, the effective efficiency of cPGMs can be increased by an order of magnitude compared with the conventional single-layer cPGMs. In addition, higher resolving power can be achieved with improved efficiency by increasing the blaze angle and working at higher diffraction order.

  15. Design of a multilayer-based collimated plane-grating monochromator for tender X-ray range

    PubMed Central

    Yang, Xiaowei; Wang, Hongchang; Hand, Matthew; Sawhney, Kawal; Kaulich, Burkhard; Kozhevnikov, Igor V.; Huang, Qiushi; Wang, Zhanshan

    2017-01-01

    Collimated plane-grating monochromators (cPGMs), consisting of a plane mirror and plane diffraction grating, are essential optics in synchrotron radiation sources for their remarkable flexibility and good optical characteristics in the soft X-ray region. However, the poor energy transport efficiency of a conventional cPGM (single-layer-coated) degrades the source intensity and leaves reduced flux at the sample, especially for the tender X-ray range (1–4 keV) that covers a large number of K- and L-edges of medium-Z elements, and M-edges of high-Z elements. To overcome this limitation, the use of a multilayer-based cPGM is proposed, combining a multilayer-coated plane mirror with blazed multilayer gratings. With this combination, the effective efficiency of cPGMs can be increased by an order of magnitude compared with the conventional single-layer cPGMs. In addition, higher resolving power can be achieved with improved efficiency by increasing the blaze angle and working at higher diffraction order. PMID:28009556

  16. A Test of Macromolecular Crystallization in Microgravity: Large, Well-Ordered Insulin Crystals

    NASA Technical Reports Server (NTRS)

    Borgstahl, Gloria E. O.; Vahedi-Faridi, Ardeschir; Lovelace, Jeff; Bellamy, Henry D.; Snell, Edward H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Crystals of insulin grown in microgravity on space shuttle mission STS-95 were extremely well-ordered and unusually large (many > 2 mm). The physical characteristics of six microgravity and six earth-grown crystals were examined by X-ray analysis employing superfine f slicing and unfocused synchrotron radiation. This experimental setup allowed hundreds of reflections to be precisely examined for each crystal in a short period of time. The microgravity crystals were on average 34 times larger, had 7 times lower mosaicity, had 54 times higher reflection peak heights and diffracted to significantly higher resolution than their earth grown counterparts. A single mosaic domain model could account for reflections in microgravity crystals whereas reflections from earth crystals required a model with multiple mosaic domains. This statistically significant and unbiased characterization indicates that the microgravity environment was useful for the improvement of crystal growth and resultant diffraction quality in insulin crystals and may be similarly useful for macromolecular crystals in general.

  17. New Python-based methods for data processing

    PubMed Central

    Sauter, Nicholas K.; Hattne, Johan; Grosse-Kunstleve, Ralf W.; Echols, Nathaniel

    2013-01-01

    Current pixel-array detectors produce diffraction images at extreme data rates (of up to 2 TB h−1) that make severe demands on computational resources. New multiprocessing frameworks are required to achieve rapid data analysis, as it is important to be able to inspect the data quickly in order to guide the experiment in real time. By utilizing readily available web-serving tools that interact with the Python scripting language, it was possible to implement a high-throughput Bragg-spot analyzer (cctbx.spotfinder) that is presently in use at numerous synchrotron-radiation beamlines. Similarly, Python interoperability enabled the production of a new data-reduction package (cctbx.xfel) for serial femto­second crystallography experiments at the Linac Coherent Light Source (LCLS). Future data-reduction efforts will need to focus on specialized problems such as the treatment of diffraction spots on interleaved lattices arising from multi-crystal specimens. In these challenging cases, accurate modeling of close-lying Bragg spots could benefit from the high-performance computing capabilities of graphics-processing units. PMID:23793153

  18. Electronic and geometric structure of thin CoO(100) films studied by angle-resolved photoemission spectroscopy and Auger electron diffraction

    NASA Astrophysics Data System (ADS)

    Heiler, M.; Chassé, A.; Schindler, K.-M.; Hollering, M.; Neddermeyer, H.

    2000-05-01

    We have prepared ordered thin films of CoO by evaporating cobalt in an O 2 atmosphere on to a heated (500 K) Ag(100) substrate. The geometric and electronic structure of the films was characterized by means of Auger electron diffraction (AED) and angle-resolved photoemission spectroscopy (ARUPS), respectively. The experimental AED results were compared with simulated data, which showed that the film grows in (100) orientation on the Ag(100) substrate. Synchrotron-radiation-induced photoemission investigations were performed in the photon energy range from 25 eV to 67 eV. The dispersion of the transitions was found to be similar to that of previous results on a single-crystal CoO(100) surface. The resonance behaviour of the photoemission lines in the valence-band region was investigated by constant-initial-state (CIS) spectroscopy. The implications of this behaviour for assignment of the photoemission lines to specific electronic transitions is discussed and compared with published theoretical models of the electronic structure.

  19. Diffracting aperture based differential phase contrast for scanning X-ray microscopy.

    PubMed

    Kaulich, Burkhard; Polack, Francois; Neuhaeusler, Ulrich; Susini, Jean; di Fabrizio, Enzo; Wilhein, Thomas

    2002-10-07

    It is demonstrated that in a zone plate based scanning X-ray microscope, used to image low absorbing, heterogeneous matter at a mesoscopic scale, differential phase contrast (DPC) can be implemented without adding any additional optical component to the normal scheme of the microscope. The DPC mode is simply generated by an appropriate positioning and alignment of microscope apertures. Diffraction from the apertures produces a wave front with a non-uniform intensity. The signal recorded by a pinhole photo diode located in the intensity gradient is highly sensitive to phase changes introduced by the specimen to be recorded. The feasibility of this novel DPC technique was proven with the scanning X-ray microscope at the ID21 beamline of the European Synchrotron Radiation facility (ESRF) operated at 6 keV photon energy. We observe a differential phase contrast, similar to Nomarski's differential interference contrast for the light microscope, which results in a tremendous increase in image contrast of up to 20 % when imaging low absorbing specimen.

  20. Crystallization and preliminary X-ray crystallographic analysis of the tRNA-specific adenosine deaminase from Streptococcus pyogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, Min-Je; Lee, Won-Ho; Biotechnology and Genetic Engineering, Korea University, Seoul 136-701

    2005-04-01

    The tRNA-specific adenosine deaminase from the pathogenic bacteria S. pyogenes has been overexpressed and crystallized. The tRNA-specific adenosine deaminase from the pathogenic bacteria Streptococcus pyogenes (spTAD) has been overexpressed in Escherichia coli and crystallized in the presence of Zn{sup 2+} ion at 295 K using ammonium sulfate as a precipitant. Flash-cooled crystals of spTAD diffracted to 2.0 Å using 30%(v/v) glycerol as a cryoprotectant. X-ray diffraction data have been collected to 2.0 Å using synchrotron radiation. The crystal belongs to the tetragonal space group P4{sub 2}2{sub 1}2, with unit-cell parameters a = b = 81.042, c = 81.270 Å. Themore » asymmetric unit contains one subunit of spTAD, with a corresponding crystal volume per protein weight (V{sub M}) of 3.3 Å{sup 3} Da{sup −1} and a solvent content of 62.7%.« less

  1. Crystallization and preliminary X-ray crystallographic analysis of the GluR0 ligand-binding core from Nostoc punctiforme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jun Hyuck; Park, Soo Jeong; Rho, Seong-Hwan

    2005-11-01

    The GluR0 ligand-binding core from N. punctiforme was expressed, purified and crystallized in the presence of l-glutamate. A diffraction data set was collected to a resolution of 2.1 Å. GluR0 from Nostoc punctiforme (NpGluR0) is a bacterial homologue of the ionotropic glutamate receptor. The ligand-binding core of NpGluR0 was crystallized at 294 K using the hanging-drop vapour-diffusion method. The l-glutamate-complexed crystal belongs to space group C222{sub 1}, with unit-cell parameters a = 78.0, b = 145.1, c = 132.1 Å. The crystals contain three subunits in the asymmetric unit, with a V{sub M} value of 2.49 Å{sup 3} Da{sup −1}.more » The diffraction limit of the l-glutamate complex data set was 2.1 Å using synchrotron X-ray radiation at beamline BL-4A of the Pohang Accelerator Laboratory (Pohang, Korea)« less

  2. Phase imaging using highly coherent X-rays: radiography, tomography, diffraction topography.

    PubMed

    Baruchel, J; Cloetens, P; Härtwig, J; Ludwig, W; Mancini, L; Pernot, P; Schlenker, M

    2000-05-01

    Several hard X-rays imaging techniques greatly benefit from the coherence of the beams delivered by the modern synchrotron radiation sources. This is illustrated with examples recorded on the 'long' (145 m) ID19 'imaging' beamline of the ESRF. Phase imaging is directly related to the small angular size of the source as seen from one point of the sample ('effective divergence' approximately microradians). When using the ;propagation' technique, phase radiography and tomography are instrumentally very simple. They are often used in the 'edge detection' regime, where the jumps of density are clearly observed. The in situ damage assessment of micro-heterogeneous materials is one example of the many applications. Recently a more quantitative approach has been developed, which provides a three-dimensional density mapping of the sample ('holotomography'). The combination of diffraction topography and phase-contrast imaging constitutes a powerful tool. The observation of holes of discrete sizes in quasicrystals, and the investigation of poled ferroelectric materials, result from this combination.

  3. Purification, crystallization and preliminary X-ray diffraction analysis of the glyoxalase II from Leishmania infantum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trincão, José; Sousa Silva, Marta; Barata, Lídia

    2006-08-01

    A glyoxalase II from L. infantum was cloned, purified and crystallized and its structure was solved by X-ray crystallography. In trypanosomatids, trypanothione replaces glutathione in all glutathione-dependent processes. Of the two enzymes involved in the glyoxalase pathway, glyoxalase I and glyoxalase II, the latter shows absolute specificity towards trypanothione thioester, making this enzyme an excellent model to understand the molecular basis of trypanothione binding. Cloned glyoxalase II from Leishmania infantum was overexpressed in Escherichia coli, purified and crystallized. Crystals belong to space group C222{sub 1} (unit-cell parameters a = 65.6, b = 88.3, c = 85.2 Å) and diffract beyondmore » 2.15 Å using synchrotron radiation. The structure was solved by molecular replacement using the human glyoxalase II structure as a search model. These results, together with future detailed kinetic characterization using lactoyltrypanothione, should shed light on the evolutionary selection of trypanothione instead of glutathione by trypano-somatids.« less

  4. Synchrotron Radiation Sheds Fresh Light on Plant Research: The Use of Powerful Techniques to Probe Structure and Composition of Plants.

    PubMed

    Vijayan, Permual; Willick, Ian R; Lahlali, Rachid; Karunakaran, Chithra; Tanino, Karen K

    2015-07-01

    While synchrotron radiation is a powerful tool in material and biomedical sciences, it is still underutilized in plant research. This mini review attempts to introduce the potential of synchrotron-based spectroscopic and imaging methods and their applications to plant sciences. Synchrotron-based Fourier transform infrared spectroscopy, X-ray absorption and fluorescence techniques, and two- and three-dimensional imaging techniques are examined. We also discuss the limitations of synchrotron-based research in plant sciences, specifically the types of plant samples that can be used. Despite limitations, the unique features of synchrotron radiation such as high brightness, polarization and pulse properties offer great advantages over conventional spectroscopic and imaging tools and enable the correlation of the structure and chemical composition of plants with biochemical function. Modern detector technologies and experimental methodologies are thus enabling plant scientists to investigate aspects of plant sciences such as ultrafast kinetics of biochemical reactions, mineral uptake, transport and accumulation, and dynamics of cell wall structure and composition during environmental stress in unprecedented ways using synchrotron beamlines. The potential for the automation of some of these synchrotron technologies and their application to plant phenotyping is also discussed. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Charged and Neutral Particles Channeling Phenomena Channeling 2008

    NASA Astrophysics Data System (ADS)

    Dabagov, Sultan B.; Palumbo, Luigi

    2010-04-01

    On the discovery of coherent Bremsstrahlung in a single crystal at the Frascati National Laboratories / C. Barbiellini, G. P. Murtas and S. B. Dabagov -- Advances in coherent Bremsstrahlung and LPM-effect studies (to the lOOth anniversary from the birth of L. D. Landau) / N. F. Shul'ga -- Spectra of radiation and created particles at intermediate energy in oriented crystal taking into account energy loss / V. N. Baier and V. M. Katkov -- The coherent Bremsstrahlung beam at MAX-lab facility / K. Fissum ... [et al.] -- Radiation from thin, structured targets (CERN NA63) / A. Dizdar -- Hard incoherent radiation in thick crystals / N. F. Shul'ga, V. V. Syshchenko and A. I. Tarnovsky -- Coherent Bremsstrahlung in periodically deformed crystals with a complex base / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Induction of coherent x-ray Bremsstrahlung in crystals under the influence of acoustic waves / A. R. Mkrtchyan and V. V. Parazian -- Coherent processes in bent single crystals / V. A. Maisheev -- Experimental and theoretical investigation of complete transfer phenomenon for media with various heat exchange coefficients / A. R. Mkrtchyan, A. E. Movsisyan and V. R. Kocharyan -- Coherent pair production in crystals / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Negative particle planar and axial channeling and channeling collimation / R. A. Carrigan, Jr. -- CERN crystal-based collimation in modern hadron colliders / W. Scandale -- Studies and application of bent crystals for beam steering at 70 GeV IHEP accelerator / A. G. Afonin ... [et al.] -- Crystal collimation studies at the Tevatron (T-980) / N. V. Mokhov ... [et al.] -- Fabrication of crystals for channeling of particles in accellerators / A. Mazzolari ... [et al.] -- New possibilities to facilitate collimation of both positively and negatively charged particle beams by crystals / V. Guidi, A. Mazzolari and V. V. Tikhomirov -- Increase of probability of particle capture into the channeling regime by a buried oxide layer / V. Guidi, A. Mazzolari and V. V. Tikhomirov -- A positron source using channeling in crystals for linear colliders / X. Artru ... [et al.] -- Parametric channeling and collapse of charged particles beams in crystals / M. Vysotskyy and V. Vysotskii.The formation and usage of coherent correlated charged particles states in the physics of channeling in crystals / S. V. Adamenko, V. I. Vysotskii and M. V. Vysotskyy -- Surface channeling of magnetic-charged particles on multilayer surface / S. V. Adamenko and V. I. Vysotskii -- Coherent creation of anti-hydrogen atoms in a crystal by relativistic antiproton / Yu. P. Kunashenko -- Thermal equilibrium of light ions in heavy crystals / E. Tsyganov -- Photon emission of electrons in a crystalline undulator / H. Backe ... [et al.] -- Channeling radiation from relativistic electrons in a crystal target as complementary x-ray and gamma ray source at synchrotron light facilities / K. B. Korotchenko, Yu. L. Pivovarov and T. A. Tukhfatullin -- Diffracted channeling radiation and other compound radiation processes / H. Nitta -- Collective scattering on the atom planes under the condition of full transition / A. R. Mkrtchyan ... [et al.] -- The proposal of the experiment on the research of the diffracted channeling radiation / D. A. Baklanov ... [et al.] -- Positron channeling at the DaOne BTF Facility: the cup experiment / L. Quintieri ... [et al.] -- Radiation spectra of 200 MeV electrons in diamond and silicon crystals at axial and planar orientations / K. Fissum ... [et al.] -- Channeling experiments with electrons at the Mainz Microtron Mami / W. Lauth ... [et al.] -- Dechanneling of positrons by dislocations: effects of anharmonic interactions / J. George and A. P. Pathak -- Diffracted channeling radiation from axially channeled relativistic electrons / K. B. Korotchenko ... [et al.] -- Intensive quasi-monochromatic, directed x-ray radiation of planar channeled positron bunch / L. Gevorgian -- Probing channeling radiation influenced by ultrasound / W. Wagner ... [et al.] -- Radiation characteristics under electrons planar channeling and quasichanneling in complex crystals / L. Gevorgian -- Formation of relativistic positron atoms by axially channeled positrons and their decay on [symbol]-rays / A. Gevorkyan, A. R. Mkrtchyan and K. Oganesyan -- New features of diffracted channeling radiation from electrons in Si and LiF Crystals / K. B. Korotchenko, Yu. L. Pivovarov and T. A. Tukhfatullin -- Modulated particle beam in a crystal channel / A. Kostyuk ... [et al.] -- Computer simulations of resonant coherent excitation of heavy hydrogenlike ions under planar channeling / A. A. Babaev and Yu. L. Pivovarov -- Parametric x-ray and diffracted transition radiation of 4.5 GeV electrons in diamond / R. O. Avakian ... [et al.] -- Possible use of small accelerators in student laboratory for engineering education / I. Endo, M. Tanaka and T. Yoshimura.The Status of the SPARC Project / A. Cianchi -- Laser-plasma acceleration: first experimental results from the Plasmon-X Project / L. A. Gizzi ... [et al.] -- The powerful nanosecond duration electron beam effect on the crystalline tungsten target / Y. N. Adischev ... [et al.] -- "Shadowing" of the electromagnetic field of a relativistic electron / G. Naumenko ... [et al.] -- The acceleration of the charged particles in a low temperature acoustoplasma / A. S. Abrahamyan, A. R. Mkrtchyan and R. B. Kostanyan -- The experimental study of the surface current excitation by a relativistic electron electromagnetic field / G. A. Naumenko ... [et al.] -- Synchrotron radiation from a charge moving along helical orbit around a dielectric cylinder / A. A. Saharian and A. S. Kotanjyan -- Particle acceleration in a helical wave guide / X. Artru and C. Ray -- Effect of heavy ion charge fluctuations on Cherenkov radiation / V. S. Malyshevsky -- Hard photons powerful radiation of electron bunch interacting with plasma beat waves / A. Shamamian and L. Gevorgian -- Diffraction radiation as a diagnostics tool at flash / M. Castellano, E. Chiadroni and A. Cianchi -- Methods of charged particle beam cooling / E. G. Bessonov -- Ray tracing calculation of PXR produced in curved and flat crystals by electron beams with large emittance / K. A. Ispirian ... [et al.] -- On dynamic effects in coherent x-radiation of relativistic electron in Bragg scattering geometry / S. V. Blazhevich and A. V. Noskov -- Optimization of relativistic electron diffracted transition radiation yield / S. V. Blazhevich and A. V. Noskov -- Geometrical effect of target crystal on PXR generation as a coherent x-ray source / Y. Hayakawa ... [et al.] -- Observation of dynamical maxima of parametric x-ray radiation for 20 Me V electron energy beam / A. R. Mkrtchyan ... [et al.] -- The comparison of monochromatic x-ray sources based on compact electron accelerators and x-ray tube / Yu. N. Adischev ... [et al.] -- Labsync: a project to develop a European facility based on a table-top synchrotron light source / G. Di Domenico ... [et al.] -- New experimental results with optical diffraction radiation diagnostics / E. Chiadroni ... [et al.] -- The radiation yield in different spectral ranges from low density structured laser plasma with different high Z-admixture / V. Rozanov and G. Vergunova -- Time and angular distributions of ions transmitted through insulating capillaries / F. F. Komarov and A. S. Kamyshan -- X-ray propagation in multiwall carbon nanotubes / P. A. Childs ... [et al.] -- Tunable x-ray source based on mosaic crystals using for medicine applications / D. A. Baklanov ... [et al.] -- Capillary optics based x-ray micro-imaging elemental analysis / D. Hampai ... [et al.] -- Neutron number enhancement in uranium thin film waveguides / S. P. Pogossian -- Schwinger scattering of fast neutrons in aligned crystal / Yu. P. Kunashenko and Yu. L. Pivovarov -- Experimental investigation of Smith-Purcell radiation focusing by using the parabolic gratings / G. A. Naumenko ... [et al.] -- Plasma channels in air produced by UV laser beam: mechanisms of photoionization and possible applications/ V. D. Zvorykin ... [et al.].

  6. Distributions of Gamma-Ray Bursts and Blazars in the L p-E p-Plane and Possible Implications for their Radiation Physics

    NASA Astrophysics Data System (ADS)

    Lyu, Fen; Liang, En-Wei; Liang, Yun-Feng; Wu, Xue-Feng; Zhang, Jin; Sun, Xiao-Na; Lu, Rui-Jing; Zhang, Bing

    2014-09-01

    We present a spectral analysis for a sample of redshift-known gamma-ray bursts (GRBs) observed with Fermi/GBM. Together with the results derived from our systematical spectral energy distribution modeling with the leptonic models for a Fermi/LAT blazar sample, we compare the distributions of the GRBs and the blazars by plotting the synchrotron peak luminosity (L s) and the corresponding peak photon energy E s of blazars in the L p-E p-plane of GRBs, where L p and E p are the peak luminosity and peak photon energy of the GRB time-integrated νf ν spectrum, respectively. The GRBs are in the high-L p, high-E p corner of the plane and a tight L p-E p relation is found, i.e., L_p\\propto E_p2.13^{+0.54-0.46}. Both flat spectrum radio quasars (FSRQs) and low-synchrotron peaking BL Lac objects (LBLs) are clustered in the low-E p, low-L p corner. Intermediate- and high-synchrotron peaking BL Lac objects (IBLs and HBLs) have E s ~ 2 × 10-3-102 keV and L s ~ 1044-1047 erg s-1, but no dependence of L s on E s is found. We show that the tight Lp -Ep relation of GRBs is potentially explained with the synchrotron radiation of fast-cooling electrons in a highly magnetized ejecta, and the weak anti-correlation of L s-E s for FSRQs and LBLs may be attributed to synchrotron radiation of slow-cooling electrons in a moderately magnetized ejecta. The distributions of IBLs and HBLs in the L p-E p-plane may be interpreted with synchrotron radiation of fast-cooling electrons in a matter-dominated ejecta. These results may present a unified picture for the radiation physics of relativistic jets in GRBs and blazars within the framework of the leptonic synchrotron radiation models.

  7. Crystal structure of pentasodium hydrogen dicitrate from synchrotron X-ray powder diffraction data and DFT comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rammohan, Alagappa; Kaduk, James A.

    2017-01-27

    The crystal structure of pentasodium hydrogen dicitrate, Na 5H(C 6H 5O 7) 2, has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Each of the two independent citrate anions is joined into a dimer by very strong centrosymmetric O—H...O hydrogen bonds, with O...O distances of 2.419 and 2.409 Å. Four octahedrally coordinated Na +ions share edges to form open layers parallel to theabplane. A fifth Na +ion in trigonal–bipyramidal coordination shares faces with NaO 6octahedra on both sides of these layers.

  8. Ferroelectrics under the Synchrotron Light: A Review.

    PubMed

    Fuentes-Cobas, Luis E; Montero-Cabrera, María E; Pardo, Lorena; Fuentes-Montero, Luis

    2015-12-30

    Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO₃ perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure-function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described.

  9. Specific chemical and structural damage to proteins produced by synchrotron radiation.

    PubMed

    Weik, M; Ravelli, R B; Kryger, G; McSweeney, S; Raves, M L; Harel, M; Gros, P; Silman, I; Kroon, J; Sussman, J L

    2000-01-18

    Radiation damage is an inherent problem in x-ray crystallography. It usually is presumed to be nonspecific and manifested as a gradual decay in the overall quality of data obtained for a given crystal as data collection proceeds. Based on third-generation synchrotron x-ray data, collected at cryogenic temperatures, we show for the enzymes Torpedo californica acetylcholinesterase and hen egg white lysozyme that synchrotron radiation also can cause highly specific damage. Disulfide bridges break, and carboxyl groups of acidic residues lose their definition. Highly exposed carboxyls, and those in the active site of both enzymes, appear particularly susceptible. The catalytic triad residue, His-440, in acetylcholinesterase, also appears to be much more sensitive to radiation damage than other histidine residues. Our findings have direct practical implications for routine x-ray data collection at high-energy synchrotron sources. Furthermore, they provide a direct approach for studying the radiation chemistry of proteins and nucleic acids at a detailed, structural level and also may yield information concerning putative "weak links" in a given biological macromolecule, which may be of structural and functional significance.

  10. An angle-resolved, wavelength-dispersive x-ray fluorescence spectrometer for depth profile analysis of ion-implanted semiconductors using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Schmitt, W.; Hormes, J.; Kuetgens, U.; Gries, W. H.

    1992-01-01

    An apparatus for angle-resolved, wavelength-dispersive x-ray fluorescence spectroscopy with synchrotron radiation has been built and tested at the beam line BN2 of the Bonn electron stretcher and accelerator (ELSA). The apparatus is to be used for nondestructive depth profile analysis of ion-implanted semiconductors as part of the multinational Versailles Project of Advanced Materials and Standards (VAMAS) project on ion-implanted reference materials. In particular, the centroid depths of depth profiles of various implants is to be determined by use of the angle-resolved signal ratio technique. First results of measurements on implants of phosphorus (100 keV, 1016 cm-2) and sulfur (200 keV, 1014 cm-2) in silicon wafers using ``white'' synchrotron radiation are presented and suggest that it should be generally possible to measure the centroid depth of an implant at dose densities as low as 1014 cm-2. Some of the apparative and technical requirements are discussed which are peculiar to the use of synchrotron radiation in general and to the use of nonmonochromatized radiation in particular.

  11. Crystal-Site-Selective Spectrum of Fe3BO6 by Synchrotron Mössbauer Diffraction with Pure Nuclear Bragg Scattering

    NASA Astrophysics Data System (ADS)

    Nakamura, Shin; Mitsui, Takaya; Fujiwara, Kosuke; Ikeda, Naoshi; Kurokuzu, Masayuki; Shimomura, Susumu

    2017-08-01

    We have succeeded in obtaining the crystal-site-selective spectra of the collinear antiferromagnet Fe3BO6 using a synchrotron Mössbauer diffractometer with pure nuclear Bragg scattering at SPring-8 BL11XU. Well-resolved 300, 500, and 700 reflection spectra, having asymmetric line shapes owing to the higher-order interference effect between the nuclear energy levels, were quantitatively analyzed using a formula based on the dynamical theory of diffraction. Reasonable hyperfine parameters were obtained. The intensity ratio of Fe1 to Fe2 subspectra is in accordance with the nuclear structure factor. However, when the spectrum is measured at the peak position of the rocking curve (very near the Bragg position), the value of the center shift deviates from its intrinsic value. This is also due to the dynamical effect of γ-ray diffraction. To avoid this problem, it is necessary to use diffraction angles near the foot of the rocking curve, approximately 0.02° apart from the peak position.

  12. A NOVEL EMISSION SPECTRUM FROM A RELATIVISTIC ELECTRON MOVING IN A RANDOM MAGNETIC FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teraki, Yuto; Takahara, Fumio, E-mail: teraki@vega.ess.sci.osaka-u.ac.jp

    2011-07-10

    We numerically calculate the radiation spectrum from relativistic electrons moving in small-scale turbulent magnetic fields expected in high-energy astrophysical sources. Such a radiation spectrum is characterized by the strength parameter a = {lambda}{sub B} e|B|/mc {sup 2}, where {lambda}{sub B} is the length scale of the turbulent field. When a is much larger than the Lorentz factor of a radiating electron {gamma}, synchrotron radiation is realized, while a << 1 corresponds to the so-called jitter radiation regime. Because for 1 < a < {gamma} we cannot use either approximations, we should have recourse to the Lienard-Wiechert potential to evaluate themore » radiation spectrum, which is performed in this Letter. We generate random magnetic fields assuming Kolmogorov turbulence, inject monoenergetic electrons, solve the equation of motion, and calculate the radiation spectrum. We perform numerical calculations for several values of a with {gamma} = 10. We obtain various types of spectra ranging between jitter radiation and synchrotron radiation. For a {approx} 7, the spectrum takes a novel shape which had not been noticed up to now. It is like a synchrotron spectrum in the middle energy region, but in the low frequency region it is a broken power law and in the high frequency region an extra power-law component appears beyond the synchrotron cutoff. We give a physical explanation of these features.« less

  13. Development of synchrotron X-ray micro-tomography under extreme conditions of pressure and temperature.

    PubMed

    Álvarez-Murga, M; Perrillat, J P; Le Godec, Y; Bergame, F; Philippe, J; King, A; Guignot, N; Mezouar, M; Hodeau, J L

    2017-01-01

    X-ray tomography is a non-destructive three-dimensional imaging/microanalysis technique selective to a wide range of properties such as density, chemical composition, chemical states and crystallographic structure with extremely high sensitivity and spatial resolution. Here the development of in situ high-pressure high-temperature micro-tomography using a rotating module for the Paris-Edinburgh cell combined with synchrotron radiation is described. By rotating the sample chamber by 360°, the limited angular aperture of ordinary high-pressure cells is surmounted. Such a non-destructive high-resolution probe provides three-dimensional insight on the morphological and structural evolution of crystalline as well as amorphous phases during high pressure and temperature treatment. To demonstrate the potentials of this new experimental technique the compression behavior of a basalt glass is investigated by X-ray absorption tomography, and diffraction/scattering tomography imaging of the structural changes during the polymerization of C 60 molecules under pressure is performed. Small size and weight of the loading frame and rotating module means that this apparatus is portable, and can be readily installed on most synchrotron facilities to take advantage of the diversity of three-dimensional imaging techniques available at beamlines. This experimental breakthrough should open new ways for in situ imaging of materials under extreme pressure-temperature-stress conditions, impacting diverse areas in physics, chemistry, geology or materials sciences.

  14. Synchrotron WAXS and XANES studies of silica (SiO2) powders synthesized from Indonesian natural sands

    NASA Astrophysics Data System (ADS)

    Muchlis, Khairanissa; Aini Fauziyah, Nur; Soontaranon, Siriwat; Limpirat, Wanwisa; Pratapa, Suminar

    2017-01-01

    In this study, we have investigated polymorphic silica (SiO2) powders using, Wide Angle X-ray Scattering (WAXS) and X-Ray Absorption Near Edge Spectroscopy (XANES), laboratory X-Ray Diffraction (XRD) instruments. The WAXS and XANES spectra were collected using synchrotron radiation at Synchrotron Light Research Institute (SLRI), Nakhon Ratchasima, Thailand. The silica powders were obtained by processing silica sand from Tanah Laut, South Kalimantan, Indonesia. Purification process of silica sand was done by magnetic separation and immersion with HCl. The purification step was needed to reduce impurity or undesirable non Si elements. Three polymorphs of silica were produced, i.e. amorphous phase (A), quartz (B), and cristobalite (C). WAXS profile for each phase was presented in terms of intensity vs. 2θ prior to analyses. Both XRD (λCuKα=1.54056 Å) and WAXS (λ=1.09 Å) patttern show that (1) A sample contains no crystallites, (2) B sample is monophasic, contains only quartz, and (3) C sample contains cristobalite and trydimite. XRD quantitative analysis using Rietica gave 98,8 wt% cristobalite, while the associated WAXS data provided 98.7 wt% cristobalite. Si K-edge XANES spectra were measured at energy range 1840 to 1920 eV. Qualitatively, the pre-edge and edge features for all phases are similar, but their main peaks in the post-edge region are different.

  15. Assessing noise sources at synchrotron infrared ports

    PubMed Central

    Lerch, Ph.; Dumas, P.; Schilcher, T.; Nadji, A.; Luedeke, A.; Hubert, N.; Cassinari, L.; Boege, M.; Denard, J.-C.; Stingelin, L.; Nadolski, L.; Garvey, T.; Albert, S.; Gough, Ch.; Quack, M.; Wambach, J.; Dehler, M.; Filhol, J.-M.

    2012-01-01

    Today, the vast majority of electron storage rings delivering synchrotron radiation for general user operation offer a dedicated infrared port. There is growing interest expressed by various scientific communities to exploit the mid-IR emission in microspectroscopy, as well as the far infrared (also called THz) range for spectroscopy. Compared with a thermal (laboratory-based source), IR synchrotron radiation sources offer enhanced brilliance of about two to three orders of magnitude in the mid-IR energy range, and enhanced flux and brilliance in the far-IR energy range. Synchrotron radiation also has a unique combination of a broad wavelength band together with a well defined time structure. Thermal sources (globar, mercury filament) have excellent stability. Because the sampling rate of a typical IR Fourier-transform spectroscopy experiment is in the kHz range (depending on the bandwidth of the detector), instabilities of various origins present in synchrotron radiation sources play a crucial role. Noise recordings at two different IR ports located at the Swiss Light Source and SOLEIL (France), under conditions relevant to real experiments, are discussed. The lowest electron beam fluctuations detectable in IR spectra have been quantified and are shown to be much smaller than what is routinely recorded by beam-position monitors. PMID:22186638

  16. Is the GeV-TeV emission of PKS 0447-439 from the proton synchrotron radiation?

    NASA Astrophysics Data System (ADS)

    Gao, Quan-Gui; Lu, Fang-Wu; Ma, Ju; Ren, Ji-Yang; Li, Huai-Zhen

    2018-06-01

    We study the multi-wavelength emission features of PKS 0447-439 in the frame of the one-zone homogeneous lepto-hadronic model. In this model, we assumed that the steady power-laws with exponential cut-offs distributions of protons and electrons are injected into the source. The non-linear time-dependent kinematic equations, describing the evolution of protons, electrons and photons, are defined; these equations self-consistently involve synchrotron radiation of protons, photon-photon interaction, synchrotron radiation of electron/positron pairs, inverse Compton scattering and synchrotron self-absorption. The model is applied to reproduce the multi-wavelength spectrum of PKS 0447-439. Our results indicate that the spectral energy distribution (SED) of PKS 0447-439 can be reproduced well by the model. In particular, the GeV-TeV emission is produced by the synchrotron radiation of relativistic protons. The physically plausible solutions require the magnetic strength 10 G≲ B ≲ 100 G. We found that the observed spectrum of PKS 0447-439 can be reproduced well by the model whether z = 0.16 or z = 0.2, and the acceptable upper limit of redshift is z=0.343.

  17. Preparation and Delivery of Protein Microcrystals in Lipidic Cubic Phase for Serial Femtosecond Crystallography.

    PubMed

    Ishchenko, Andrii; Cherezov, Vadim; Liu, Wei

    2016-09-20

    Membrane proteins (MPs) are essential components of cellular membranes and primary drug targets. Rational drug design relies on precise structural information, typically obtained by crystallography; however MPs are difficult to crystallize. Recent progress in MP structural determination has benefited greatly from the development of lipidic cubic phase (LCP) crystallization methods, which typically yield well-diffracting, but often small crystals that suffer from radiation damage during traditional crystallographic data collection at synchrotron sources. The development of new-generation X-ray free-electron laser (XFEL) sources that produce extremely bright femtosecond pulses has enabled room temperature data collection from microcrystals with no or negligible radiation damage. Our recent efforts in combining LCP technology with serial femtosecond crystallography (LCP-SFX) have resulted in high-resolution structures of several human G protein-coupled receptors, which represent a notoriously difficult target for structure determination. In the LCP-SFX technique, LCP is recruited as a matrix for both growth and delivery of MP microcrystals to the intersection of the injector stream with an XFEL beam for crystallographic data collection. It has been demonstrated that LCP-SFX can substantially improve the diffraction resolution when only sub-10 µm crystals are available, or when the use of smaller crystals at room temperature can overcome various problems associated with larger cryocooled crystals, such as accumulation of defects, high mosaicity and cryocooling artifacts. Future advancements in X-ray sources and detector technologies should make serial crystallography highly attractive and practicable for implementation not only at XFELs, but also at more accessible synchrotron beamlines. Here we present detailed visual protocols for the preparation, characterization and delivery of microcrystals in LCP for serial crystallography experiments. These protocols include methods for conducting crystallization experiments in syringes, detecting and characterizing the crystal samples, optimizing crystal density, loading microcrystal laden LCP into the injector device and delivering the sample to the beam for data collection.

  18. Light in the darkening on Naica gypsum crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castillo-Sandoval, I.; Fuentes-Cobas, L. E.; Esparza-Ponce, H. E.

    2015-07-23

    Naica mine is located in a semi-desertic region at the central-south of Chihuahua State. The Cave of Swords was discovered in 1910 and the Cave of Crystals 90 years later at Naica mines. It is expected that during the last century the human presence has changed the microclimatic conditions inside the cave, resulting in the deterioration of the crystals and the deposition of impurities on gypsum surfaces. As a contribution to the clarification of the mentioned issues, the present work refers to the use of synchrotron radiation for the identification of phases on these surfaces. All the experiments were performedmore » at the Stanford Synchrotron Radiation Lightsource. Grazing incidence X-ray diffraction (GIXRD) and radiography-aided X-ray diffraction (RAXRD) experiments were performed at beamline 11-3. X-Ray micro-fluorescence (μ-SXRF) and micro-X-ray absorption (μ-XANES) were measured at beamline 2-3. Representative results obtained may be summarized as follows: a) Gypsum, galena, sphalerite, hematite and cuprite at the surface of the gypsum crystals were determined. b) The samples micro-structure is affected by impurities. c) The elemental distributions and correlations (0.6-0.9) of Cu, K, Fe, Mn, Pb, Zn, Ca and S were identified by μ-SXRF. The correlations among elemental contents confirmed the phase identification, with the exception of manganese and potassium due to the amorphous nature of some impurity compounds in these samples. The compounds hematite (Fe{sub 2}O{sub 3}), β-MnO{sub 2}, Mn{sub 2}O{sub 3}, MnO and/or MnCO{sub 3}, PbS, PbCO{sub 3} and/or PbSO4, ZnO{sub 4}, ZnS and/or smithsonite (ZnCO{sub 3}), CuS + Cu Oxide were identified by XANES. Plausibly, these latter compounds do not form crystalline phases.« less

  19. New Findings on the Phase Transitions in Li(sub 1-x)CoO(sub 2) and Li(sub 1-x)NiO(sub 2) Cathode Materials During Cycling: In Situ Synchrotron X-Ray Diffraction Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X. Q.; Sun, X.; McBreen, J.

    The authors have utilized synchrotron x-ray radiation to perform ''in situ'' x-ray diffraction studies on Li{sub 1-x}CoO{sub 2} and Li{sub 1-x}NiO{sub 2} cathodes. A C/10 charging rate was used for a Li/Li{sub 1-x}CoO{sub 2} cell. For the Li/Li{sub 1-x}NiO{sub 2} cells, C/13 and C/84 rates were applied. The in situ XRD data were collected during the first charge from 3.5 to 5.2 V. For the Li{sub 1-x}CoO{sub 2} cathode, in the composition range of x = 0 to x = 0.5, a new intermediate phase H2a was observed in addition to the two expected hexagonal phases H1 and H2. Inmore » the region very close to x = 0.5, some spectral signatures for the formation of a monoclinic phase M1 were also observed. Further, in the x = 0.8 to x = 1 region, the formation of a CdI{sub 2} type hexagonal phase has been confirmed. However, this new phase is transformed from a CdCl{sub 2} type hexagonal phase, rather than from a monoclinic phase M2 as previously reported in the literature. For the Li{sub 1-x}NiO{sub 2} system, by taking the advantage of the high resolution in 2{theta} angles through the synchrotron based XRD technique, they were able to identify a two-phase coexistence region of hexagonal phase H1 and H2, which has been mistakenly indexed as a single phase region for monoclinic phase M1. Interesting similarities and differences between these two systems are also discussed.« less

  20. Mask fabrication and its applications to extreme ultra-violet diffractive optics

    NASA Astrophysics Data System (ADS)

    Cheng, Yang-Chun

    Short-wavelength radiation around 13nm of wavelength (Extreme Ultra-Violet, EUV) is being considered for patterning microcircuits, and other electronic chips with dimensions in the nanometer range. Interferometric Lithography (IL) uses two beams of radiation to form high-resolution interference fringes, as small as half the wavelength of the radiation used. As a preliminary step toward manufacturing technology, IL can be used to study the imaging properties of materials in a wide spectral range and at nanoscale dimensions. A simple implementation of IL uses two transmission diffraction gratings to form the interference pattern. More complex interference patterns can be created by using different types of transmission gratings. In this thesis, I describe the development of a EUV lithography system that uses diffractive optical elements (DOEs), from simple gratings to holographic structures. The exposure system is setup on a EUV undulator beamline at the Synchrotron Radiation Center, in the Center for NanoTechnology clean room. The setup of the EUV exposure system is relatively simple, while the design and fabrication of the DOE "mask" is complex, and relies on advanced nanofabrication techniques. The EUV interferometric lithography provides reliable EUV exposures of line/space patterns and is ideal for the development of EUV resist technology. In this thesis I explore the fabrication of these DOE for the EUV range, and discuss the processes I have developed for the fabrication of ultra-thin membranes. In addition, I discuss EUV holographic lithography and generalized Talbot imaging techniques to extend the capability of our EUV-IL system to pattern arbitrary shapes, using more coherent sources than the undulator. In a series of experiments, we have demonstrated the use of a soft X-ray (EUV) laser as effective source for EUV lithography. EUV-IL, as implemented at CNTech, is being used by several companies and research organizations to characterize photoresist materials.

  1. An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy

    DOE PAGES

    Howells, M. R.; Beetz, T.; Chapman, H. N.; ...

    2008-11-17

    X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is being practiced at several third-generation synchrotron-radiation x-ray facilities. Nine years have elapsed since the technique was first introduced and it has made rapid progress in demonstrating high-resolution three-dimensional imaging and promises few-nm resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available x-ray sources for material science. In this paper wemore » address the question of the role of radiation damage. We use a statistical analysis based on the so-called "dose fractionation theorem" of Hegerl and Hoppe to calculate the dose needed to make an image of a single life-science sample by XDM with a given resolution. We find that for simply-shaped objects the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered otherwise. The conclusion of this study is that, based on the natural contrast between protein and water and "Rose-criterion" image quality, one should be able to image a frozen-hydrated biological sample using XDM at a resolution of about 10 nm.« less

  2. Synchrotron radiation X-ray microtomography and histomorphometry for evaluation of chemotherapy effects in trabecular bone structure

    NASA Astrophysics Data System (ADS)

    Alessio, R.; Nogueira, L. P.; Almeida, A. P.; Colaço, M. V.; Braz, D.; Andrade, C. B. V.; Salata, C.; Ferreira-Machado, S. C.; de Almeida, C. E.; Tromba, G.; Barroso, R. C.

    2014-04-01

    Three-dimensional microtomography has the potential to examine complete bones of small laboratory animals with very high resolution in a non-invasive way. One of the side effects caused by some chemotherapy drugs is the induction of amenorrhea, temporary or not, in premenopausal women, with a consequent decrease in estrogen production, which can lead to bone changes. In the present work, the femur heads of rats treated with chemotherapy drugs were evaluated by 3D histomorphometry using synchrotron radiation microcomputed tomography. Control animals were also evaluated for comparison. The 3D tomographic images were obtained at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at the Elettra Synchrotron Laboratory in Trieste, Italy. Results showed significant differences in morphometric parameters measured from the 3D images of femur heads of rats in both analyzed groups.

  3. Synchrotron Radiation Therapy from a Medical Physics point of view

    NASA Astrophysics Data System (ADS)

    Prezado, Y.; Adam, J. F.; Berkvens, P.; Martinez-Rovira, I.; Fois, G.; Thengumpallil, S.; Edouard, M.; Vautrin, M.; Deman, P.; Bräuer-Krisch, E.; Renier, M.; Elleaume, H.; Estève, F.; Bravin, A.

    2010-07-01

    Synchrotron radiation (SR) therapy is a promising alternative to treat brain tumors, whose management is limited due to the high morbidity of the surrounding healthy tissues. Several approaches are being explored by using SR at the European Synchrotron Radiation Facility (ESRF), where three techniques are under development Synchrotron Stereotactic Radiation Therapy (SSRT), Microbeam Radiation Therapy (MRT) and Minibeam Radiation Therapy (MBRT). The sucess of the preclinical studies on SSRT and MRT has paved the way to clinical trials currently in preparation at the ESRF. With this aim, different dosimetric aspects from both theoretical and experimental points of view have been assessed. In particular, the definition of safe irradiation protocols, the beam energy providing the best balance between tumor treatment and healthy tissue sparing in MRT and MBRT, the special dosimetric considerations for small field dosimetry, etc will be described. In addition, for the clinical trials, the definition of appropiate dosimetry protocols for patients according to the well established European Medical Physics recommendations will be discussed. Finally, the state of the art of the MBRT technical developments at the ESRF will be presented. In 2006 A. Dilmanian and collaborators proposed the use of thicker microbeams (0.36-0.68 mm). This new type of radiotherapy is the most recently implemented technique at the ESRF and it has been called MBRT. The main advantage of MBRT with respect to MRT is that it does not require high dose rates. Therefore it can be more easily applied and extended outside synchrotron sources in the future.

  4. Examination for optimization of synchrotron radiation spectrum for the x ray depth lithography

    NASA Astrophysics Data System (ADS)

    Dany, Raimund

    1992-06-01

    The effect of reducing the vertical distribution of synchrotron radiation on its spectral distribution is examined through resin irradiation. The resulting filter effect is compared to that of absorption filters. Transmission coefficients of titanium, gold, and polyamide were calculated from linear absorption coefficients with the Beer law. The use of a diaphragm in X-ray depth lithography, which is the first step of the LIGA (Lithography Galvanoforming Molding) process, is discussed. A calorimetric device for determining the synchrotron radiation power and distribution was developed and tested. Measurements at the ELSA storage ring show a strong dependence of the vertical emittance on the electron current.

  5. Observation of superradiant synchrotron radiation in the terahertz region

    NASA Astrophysics Data System (ADS)

    Billinghurst, B. E.; Bergstrom, J. C.; Dallin, L.; de Jong, M.; May, T. E.; Vogt, J. M.; Wurtz, W. A.

    2013-06-01

    We report the first high-resolution measurement of superradiance, using coherent synchrotron radiation in the terahertz region from the Canadian Light Source synchrotron and a Michelson interferometer with a nominal frequency resolution of 0.00096cm-1. Superradiance arises when a high degree of phase coherence exists between the radiation fields of the individual electron bunches, and manifests itself as a series of narrow spectral peaks at harmonics of the bunch frequency. We observe an enhancement factor of 16 at the spectral peaks, limited by the interferometer resolution. The spectral distribution and relative amplitudes of the superradiant peaks are modified by altering the pattern of bunches along the bunch train.

  6. Plastique: A synchrotron radiation beamline for time resolved fluorescence in the frequency domain

    NASA Astrophysics Data System (ADS)

    De Stasio, Gelsomina; Zema, N.; Antonangeli, F.; Savoia, A.; Parasassi, T.; Rosato, N.

    1991-06-01

    PLASTIQUE is the only synchrotron radiation beamline in the world that performs time resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and dynamics of molecules. We describe the beamline and some initial data.

  7. Coherent synchrotron radiation for laminar flows

    NASA Astrophysics Data System (ADS)

    Schmekel, Bjoern S.; Lovelace, Richard V. E.

    2006-11-01

    We investigate the effect of shear in the flow of charged particle equilibria that are unstable to the coherent synchrotron radiation (CSR) instability. Shear may act to quench this instability because it acts to limit the size of the region with a fixed phase relation between emitters. The results are important for the understanding of astrophysical sources of coherent radiation where shear in the flow is likely.

  8. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation

    PubMed Central

    Conrad, Chelsie E.; Nelson, Garrett; Stander, Natasha; Zatsepin, Nadia A.; Zook, James; Zhu, Lan; Geiger, James; Chun, Eugene; Kissick, David; Hilgart, Mark C.; Ogata, Craig; Ishchenko, Andrii; Nagaratnam, Nirupa; Roy-Chowdhury, Shatabdi; Coe, Jesse; Subramanian, Ganesh; Schaffer, Alexander; Ketwala, Gihan; Venugopalan, Nagarajan; Xu, Shenglan; Corcoran, Stephen; Ferguson, Dale; Weierstall, Uwe; Spence, John C. H.; Cherezov, Vadim; Fromme, Petra; Fischetti, Robert F.; Liu, Wei

    2017-01-01

    Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported. Microcrystals (5–20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A2A adenosine receptor (A2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. These developments will enable structure determination from smaller and/or weakly diffracting microcrystals. PMID:28875031

  9. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation.

    PubMed

    Martin-Garcia, Jose M; Conrad, Chelsie E; Nelson, Garrett; Stander, Natasha; Zatsepin, Nadia A; Zook, James; Zhu, Lan; Geiger, James; Chun, Eugene; Kissick, David; Hilgart, Mark C; Ogata, Craig; Ishchenko, Andrii; Nagaratnam, Nirupa; Roy-Chowdhury, Shatabdi; Coe, Jesse; Subramanian, Ganesh; Schaffer, Alexander; James, Daniel; Ketwala, Gihan; Venugopalan, Nagarajan; Xu, Shenglan; Corcoran, Stephen; Ferguson, Dale; Weierstall, Uwe; Spence, John C H; Cherezov, Vadim; Fromme, Petra; Fischetti, Robert F; Liu, Wei

    2017-07-01

    Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported. Microcrystals (5-20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A 2A adenosine receptor (A 2A AR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A 2A AR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A 2A AR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5-20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. These developments will enable structure determination from smaller and/or weakly diffracting microcrystals.

  10. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation

    DOE PAGES

    Martin-Garcia, Jose M.; Conrad, Chelsie E.; Nelson, Garrett; ...

    2017-05-24

    Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advancedmore » Photon Source (APS), are reported. Microcrystals (5–20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A 2A adenosine receptor (A 2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A 2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A 2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. Furthermore, these developments will enable structure determination from smaller and/or weakly diffracting microcrystals.« less

  11. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin-Garcia, Jose M.; Conrad, Chelsie E.; Nelson, Garrett

    Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advancedmore » Photon Source (APS), are reported. Microcrystals (5–20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A 2A adenosine receptor (A 2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A 2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A 2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. Furthermore, these developments will enable structure determination from smaller and/or weakly diffracting microcrystals.« less

  12. X-ray and synchrotron methods in studies of cultural heritage sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koval’chuk, M. V.; Yatsishina, E. B.; Blagov, A. E.

    2016-09-15

    X-ray and synchrotron methods that are most widely used in studies of cultural heritage objects (including archaeological sites)—X-ray diffraction analysis, X-ray spectroscopy, and visualization techniques— have been considered. The reported examples show high efficiency and informativeness of natural science studies when solving most diverse problems of archaeology, history, the study of art, museology, etc.

  13. In-situ synchrotron micro-diffraction study of surface, interface, grain structure, and strain/stress evolution during Sn whisker/hillock formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Fei; Jadhav, Nitin; Buchovecky, Eric

    2016-03-14

    We have performed X-ray synchrotron micro-diffraction measurements to study the processes controlling the formation of hillocks and whiskers in Sn layers on Cu. The studies were done in real-time on Sn layers that were electro-deposited immediately before the X-ray measurements were started. This enabled a region of the sample to be monitored from the as-deposited state until after a hillock feature formed. In addition to measuring the grain orientation and deviatoric strain (via Laue diffraction), the X-ray fluorescence was monitored to quantify the evolution of the Sn surface morphology and the formation of intermetallic compound (IMC) at the Sn-Cu interface.more » The results capture the simultaneous growth of the feature and the corresponding film stress, grain orientation, and IMC formation. The observations are compared with proposed mechanisms for whisker/hillock growth and nucleation.« less

  14. Pressure-induced Lifshitz transition in NbP: Raman, x-ray diffraction, electrical transport, and density functional theory

    NASA Astrophysics Data System (ADS)

    Gupta, Satyendra Nath; Singh, Anjali; Pal, Koushik; Muthu, D. V. S.; Shekhar, C.; Qi, Yanpeng; Naumov, Pavel G.; Medvedev, Sergey A.; Felser, C.; Waghmare, U. V.; Sood, A. K.

    2018-02-01

    We report high-pressure Raman, synchrotron x-ray diffraction, and electrical transport studies on Weyl semimetals NbP and TaP along with first-principles density functional theoretical (DFT) analysis. The frequencies of first-order Raman modes of NbP harden with increasing pressure and exhibit a slope change at Pc˜9 GPa. The pressure-dependent resistivity exhibits a minimum at Pc. The temperature coefficient of resistivity below Pc is positive as expected for semimetals but changes significantly in the high-pressure phase. Using DFT calculations, we show that these anomalies are associated with a pressure-induced Lifshitz transition, which involves the appearance of electron and hole pockets in its electronic structure. In contrast, the results of Raman and synchrotron x-ray diffraction experiments on TaP and DFT calculations show that TaP is quite robust under pressure and does not undergo any phase transition.

  15. Time domain analysis of coherent terahertz synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Hübers, H.-W.; Semenov, A.; Holldack, K.; Schade, U.; Wüstefeld, G.; Gol'tsman, G.

    2005-10-01

    The time structure of coherent terahertz synchrotron radiation at the electron storage ring of the Berliner Elektronensynchrotron und Speicherring Gesellschaft has been analyzed with a fast superconducting hot-electron bolometer. The emission from a single bunch of electrons was found to last ˜1500ps at frequencies around 0.4THz, which is much longer than the length of an electron bunch in the time domain (˜5ps). It is suggested that this is caused by multiple reflections at the walls of the beam line. The quadratic increase of the power with the number of electrons in the bunch as predicted for coherent synchrotron radiation and the transition from stable to bursting radiation were determined from a single storage ring fill pattern of bunches with different populations.

  16. Fluorescence dynamics of biological systems using synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gratton, E.; Mantulin, W.W.; Weber, G.

    1996-09-01

    A beamline for time-resolved fluorescence spectroscopy of biological systems is under construction at the Synchrotron Radiation Center. The fluorometer, operating in the frequency domain, will take advantage of the time structure of the synchrotron radiation light pulses to determine fluorescence lifetimes. Using frequency-domain techniques, the instrument can achieve an ultimate time resolution on the order of picoseconds. Preliminary experiments have shown that reducing the intensity of one of the fifteen electron bunches in the storage ring allows measurement of harmonic frequencies equivalent to the single-bunch mode. This mode of operation of the synchrotron significantly extends the range of lifetimes thatmore » can be measured. The wavelength range (encompassing the visible and ultraviolet), the range of measurable lifetimes, and the stability and reproducibility of the storage ring pulses should make this beamline a versatile tool for the investigation of the complex fluorescence decay of biological systems. {copyright} {ital 1996 American Institute of Physics.}« less

  17. Synchrotron radiation from a runaway electron distribution in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stahl, A.; Fülöp, T.; Landreman, M.

    2013-09-15

    The synchrotron radiation emitted by runaway electrons in a fusion plasma provides information regarding the particle momenta and pitch-angles of the runaway electron population through the strong dependence of the synchrotron spectrum on these parameters. Information about the runaway density and its spatial distribution, as well as the time evolution of the above quantities, can also be deduced. In this paper, we present the synchrotron radiation spectra for typical avalanching runaway electron distributions. Spectra obtained for a distribution of electrons are compared with the emission of mono-energetic electrons with a prescribed pitch-angle. We also examine the effects of magnetic fieldmore » curvature and analyse the sensitivity of the resulting spectrum to perturbations to the runaway distribution. The implications for the deduced runaway electron parameters are discussed. We compare our calculations to experimental data from DIII-D and estimate the maximum observed runaway energy.« less

  18. Geometrical layout and optics modelling of the surface science beamline station at the SESAME synchrotron radiation facility.

    PubMed

    Salah, Wa'el; Sanchez del Rio, Manuel

    2011-05-01

    The layout and the optical performance of the SGM branch of the D09 bending-magnet beamline, under construction at SESAME, are presented. The beamline is based on the Dragon-type design and delivers photons over the spectral range 15-250 eV. One fixed entrance slit and a movable exit slit are used. The performance of the beamline has been characterized by calculating the mirror reflectivities and the grating efficiencies. The flux and resolution were calculated by ray-tracing using SHADOW. The grating diffraction efficiencies were calculated using the GRADIF code. The results and the overall shapes of the predicted curves are in reasonable agreement with those obtained using an analytical formula.

  19. Overexpression, crystallization and preliminary X-­ray crystallographic analysis of the RNA polymerase domain of primase from Streptococcus mutans strain UA159

    PubMed Central

    Im, Dong-Won; Kim, Tae-O; Jung, Ha Yun; Oh, Ji Eun; Lee, Se Jin; Heo, Yong-Seok

    2012-01-01

    Primase is the enzyme that synthesizes RNA primers on single-stranded DNA during normal DNA replication. In this study, the catalytic core domain of primase from Streptococcus mutans UA159 was overexpressed in Escherichia coli, purified and crystallized. Diffraction data were collected to 1.60 Å resolution using a synchrotron-radiation source. The crystal belonged to space group P41 or P43, with unit-cell parameters a = b = 52.63, c = 110.31 Å. The asymmetric unit is likely to contain one molecule, with a corresponding V M of 1.77 Å3 Da−1 and a solvent content of 30.7%. PMID:22232183

  20. Perfect X-ray focusing via fitting corrective glasses to aberrated optics.

    PubMed

    Seiboth, Frank; Schropp, Andreas; Scholz, Maria; Wittwer, Felix; Rödel, Christian; Wünsche, Martin; Ullsperger, Tobias; Nolte, Stefan; Rahomäki, Jussi; Parfeniukas, Karolis; Giakoumidis, Stylianos; Vogt, Ulrich; Wagner, Ulrich; Rau, Christoph; Boesenberg, Ulrike; Garrevoet, Jan; Falkenberg, Gerald; Galtier, Eric C; Ja Lee, Hae; Nagler, Bob; Schroer, Christian G

    2017-03-01

    Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today's technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. This scheme can be applied to any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers.

  1. Lithographically fabricated silicon microreactor for in situ characterization of heterogeneous catalysts—Enabling correlative characterization techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baier, S.; Rochet, A.; Hofmann, G.

    2015-06-15

    We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor formore » in situ studies.« less

  2. Internal stresses in pre-stressed micron-scale aluminum core-shell particles and their improved reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitas, Valery I., E-mail: vlevitas@iastate.edu; McCollum, Jena; Pantoya, Michelle L.

    2015-09-07

    Dilatation of aluminum (Al) core for micron-scale particles covered by alumina (Al{sub 2}O{sub 3}) shell was measured utilizing x-ray diffraction with synchrotron radiation for untreated particles and particles after annealing at 573 K and fast quenching at 0.46 K/s. Such a treatment led to the increase in flame rate for Al + CuO composite by 32% and is consistent with theoretical predictions based on the melt-dispersion mechanism of reaction for Al particles. Experimental results confirmed theoretical estimates and proved that the improvement of Al reactivity is due to internal stresses. This opens new ways of controlling particle reactivity through creating and monitoringmore » internal stresses.« less

  3. Structural investigations in helium charged titanium films using grazing incidence XRD and EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Wan, Chubin; Zhou, Xiaosong; Wang, Yuting; Li, Shina; Ju, Xin; Peng, Shuming

    2014-01-01

    The crystal structure and local atomic arrangements surrounding Ti atoms were determined for He-charged hexagonal close-packed (hcp) Ti films and measured at glancing angles by synchrotron radiation X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, respectively. The charged specimens were prepared by direct current magnetron sputtering with a He/Ar mixture. He atoms with a relatively medium concentration (He/Ti atomic ratio as high as 17 at.%) were incorporated evenly in the deposited films. XRD results showed the changes in the peak intensities in Ti films with different He contents. EXAFS Fourier Transform analysis indicated that the average Ti-Ti distance decreased significantly, and proved the existence of phase transition.

  4. Expression, purification, crystallization and preliminary X-ray diffraction analysis of Bifidobacterium adolescentis xylose isomerase

    PubMed Central

    dos Reis, Caio Vinicius; Bernardes, Amanda; Polikarpov, Igor

    2013-01-01

    Xylose isomerase (EC 5.3.1.5) is a key enzyme in xylose metabolism which is industrially important for the transformation of glucose and xylose into fructose and xylulose, respectively. The Bifidobacterium adolescentis xylA gene (NC_008618.1) encoding xylose isomerase (XI) was cloned and the enzyme was overexpressed in Escherichia coli. Purified recombinant XI was crystallized using the sitting-drop vapour-diffusion method with polyethylene glycol 3350 as the precipitating agent. A complete native data set was collected to 1.7 Å resolution using a synchrotron-radiation source. The crystals belonged to the orthorhombic space group P21212, with unit-cell parameters a = 88.78, b = 123.98, c = 78.63 Å. PMID:23695585

  5. Crystallization and preliminary X-ray analysis of PH1566, a putative ribosomal RNA-processing factor from the hyperthermophilic archaeon Pyrococcus horikoshii OT3

    PubMed Central

    Jia, Min Ze; Ohtsuka, Jun; Lee, Woo Cheol; Nagata, Koji; Tanokura, Masaru

    2006-01-01

    A putative ribosomal RNA-processing factor consisting of two KH domains from Pyrococcus horikoshii OT3 (PH1566; 25 kDa) was crystallized by the sitting-drop vapour-diffusion method using PEG 3000 as the precipitant. The crystals diffracted X-rays to beyond 2.0 Å resolution using a synchrotron-radiation source. The space group of the crystals was determined as primitive orthorhombic P212121, with unit-cell parameters a = 45.9, b = 47.4, c = 95.7 Å. The crystals contain one molecule in the asymmetric unit (V M = 2.5 Å3 Da−1) and have a solvent content of 50%. PMID:16511260

  6. Medical Applications of Synchrotron Radiation

    DOE R&D Accomplishments Database

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  7. Surface-treated self-standing curved crystals as high-efficiency elements for X- and γ-ray optics: theory and experiment.

    PubMed

    Bonnini, Elisa; Buffagni, Elisa; Zappettini, Andrea; Doyle, Stephen; Ferrari, Claudio

    2015-06-01

    The efficiency of a Laue lens for X- and γ-ray focusing in the energy range 60-600 keV is closely linked to the diffraction efficiency of the single crystals composing the lens. A powerful focusing system is crucial for applications like medical imaging and X-ray astronomy where wide beams must be focused. Mosaic crystals with a high density, such as Cu or Au, and bent crystals with curved diffracting planes (CDPs) are considered for the realization of a focusing system for γ-rays, owing to their high diffraction efficiency in a predetermined angular range. In this work, a comparison of the efficiency of CDP crystals and Cu and Au mosaic crystals was performed on the basis of the theory of X-ray diffraction. Si, GaAs and Ge CDP crystals with optimized thicknesses and moderate radii of curvature of several tens of metres demonstrate comparable or superior performance with respect to the higher atomic number mosaic crystals generally used. In order to increase the efficiency of the lens further, a stack of several CDP crystals is proposed as an optical element. CDP crystals were obtained by a surface-damage method, and a stack of two surface-damaged bent Si crystals was prepared and tested. Rocking curves of the stack were performed with synchrotron radiation at 19 keV to check the lattice alignment: they exhibited only one diffraction peak.

  8. Beam dynamics and expected performance of Sweden's new storage-ring light source: MAX IV

    NASA Astrophysics Data System (ADS)

    Leemann, S. C.; Andersson, Å.; Eriksson, M.; Lindgren, L.-J.; Wallén, E.; Bengtsson, J.; Streun, A.

    2009-12-01

    MAX IV will be Sweden’s next-generation high-performance synchrotron radiation source. The project has recently been granted funding and construction is scheduled to begin in 2010. User operation for a broad and international user community should commence in 2015. The facility is comprised of two storage rings optimized for different wavelength ranges, a linac-based short-pulse facility and a free-electron laser for the production of coherent radiation. The main radiation source of MAX IV will be a 528 m ultralow emittance storage ring operated at 3 GeV for the generation of high-brightness hard x rays. This storage ring was designed to meet the requirements of state-of-the-art insertion devices which will be installed in nineteen 5 m long dispersion-free straight sections. The storage ring is based on a novel multibend achromat design delivering an unprecedented horizontal bare lattice emittance of 0.33 nm rad and a vertical emittance below the 8 pm rad diffraction limit for 1 Å radiation. In this paper we present the beam dynamics considerations behind this storage-ring design and detail its expected unique performance.

  9. Toward in situ x-ray diffraction imaging at the nanometer scale

    NASA Astrophysics Data System (ADS)

    Zatsepin, Nadia A.; Dilanian, Ruben A.; Nikulin, Andrei Y.; Gable, Brian M.; Muddle, Barry C.; Sakata, Osami

    2008-08-01

    We present the results of preliminary investigations determining the sensitivity and applicability of a novel x-ray diffraction based nanoscale imaging technique, including simulations and experiments. The ultimate aim of this nascent technique is non-destructive, bulk-material characterization on the nanometer scale, involving three dimensional image reconstructions of embedded nanoparticles and in situ sample characterization. The approach is insensitive to x-ray coherence, making it applicable to synchrotron and laboratory hard x-ray sources, opening the possibility of unprecedented nanometer resolution with the latter. The technique is being developed with a focus on analyzing a technologically important light metal alloy, Al-xCu (where x is 2.0-5.0 %wt). The mono- and polycrystalline samples contain crystallographically oriented, weakly diffracting Al2Cu nanoprecipitates in a sparse, spatially random dispersion within the Al matrix. By employing a triple-axis diffractometer in the non-dispersive setup we collected two-dimensional reciprocal space maps of synchrotron x-rays diffracted from the Al2Cu nanoparticles. The intensity profiles of the diffraction peaks confirmed the sensitivity of the technique to the presence and orientation of the nanoparticles. This is a fundamental step towards in situ observation of such extremely sparse, weakly diffracting nanoprecipitates embedded in light metal alloys at early stages of their growth.

  10. The relativistic foundations of synchrotron radiation.

    PubMed

    Margaritondo, Giorgio; Rafelski, Johann

    2017-07-01

    Special relativity (SR) determines the properties of synchrotron radiation, but the corresponding mechanisms are frequently misunderstood. Time dilation is often invoked among the causes, whereas its role would violate the principles of SR. Here it is shown that the correct explanation of the synchrotron radiation properties is provided by a combination of the Doppler shift, not dependent on time dilation effects, contrary to a common belief, and of the Lorentz transformation into the particle reference frame of the electromagnetic field of the emission-inducing device, also with no contribution from time dilation. Concluding, the reader is reminded that much, if not all, of our argument has been available since the inception of SR, a research discipline of its own standing.

  11. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    PubMed Central

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; Tan, Li Huey

    2014-01-01

    In this review, we summarize recent progresses in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed. PMID:25205057

  12. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    DOE PAGES

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; ...

    2014-09-10

    In this paper, we summarize recent progress in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insightsmore » gained from these studies are described and future directions of this field are also discussed.« less

  13. Investigation of phase evolution of CaCu3Ti4O12 (CCTO) by in situ synchrotron high-temperature powder diffraction

    NASA Astrophysics Data System (ADS)

    Ouyang, Xin; Huang, Saifang; Zhang, Weijun; Cao, Peng; Huang, Zhaohui; Gao, Wei

    2014-03-01

    In situ synchrotron X-ray powder diffraction was used to study the high-temperature phase evolution of CaCu3Ti4O12 (CCTO) precursors prepared via solid-state and sol-gel methods. After the precursors are heated to 1225 °C, the CCTO phase is the main phase observed in the calcined powder, with the presence of some minor impurities. Comparing the two precursors, we found that the onset temperature for the CCTO phase formation is 800 °C in the sol-gel precursor, lower than that in the solid-state precursor (875 °C). Intermediate phases were only observed in the sol-gel precursor. Both precursors are able to be calcined to sub-micrometric sized powders. Based on the synchrotron data along with differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), the phase formation sequence and mechanism during calcination are proposed in this study.

  14. Step-by-step fabrication of a highly oriented crystalline three-dimensional pillared-layer-type metal-organic framework thin film confirmed by synchrotron X-ray diffraction.

    PubMed

    Otsubo, Kazuya; Haraguchi, Tomoyuki; Sakata, Osami; Fujiwara, Akihiko; Kitagawa, Hiroshi

    2012-06-13

    Fabrication of a crystalline ordered thin film based on the porous metal-organic frameworks (MOFs) is one of the practical applications of the future functional nanomaterials. Here, we report the creation of a highly oriented three-dimensional (3-D) porous pillared-layer-type MOF thin film on a metal substrate using a step-by-step approach based on liquid-phase epitaxy. Synchrotron X-ray diffraction (XRD) study clearly indicates that the thin film is crystalline and its orientation is highly controlled in both horizontal and vertical directions relative to the substrate. This report provides the first confirmation of details of not only the crystallinity but also the orientation of 3-D MOF thin film using synchrotron XRD. Moreover, we also demonstrate its guest adsorption/desorption behavior by using in situ XRD measurements. The results presented here would promise useful insights for fabrication of MOF-based nanodevices in the future.

  15. Polaron hopping in olivine phosphates studied by nuclear resonant scattering

    NASA Astrophysics Data System (ADS)

    Tracy, Sally June

    Valence fluctuations of Fe2+ and Fe3+ were studied in a solid solution of LixFePO4 by nuclear resonant forward scattering of synchrotron x rays while the sample was heated in a diamond-anvil pressure cell. The spectra acquired at different temperatures and pressures were analyzed for the frequencies of valence changes using the Blume-Tjon model of a system with a fluctuating Hamiltonian. These frequencies were analyzed to obtain activation energies and an activation volume for polaron hopping. There was a large suppression of hopping frequency with pressure, giving an anomalously large activation volume. This large, positive value is typical of ion diffusion, which indicates correlated motions of polarons, and Li+ ions that alter the dynamics of both. In a parallel study of NaxFePO4, the interplay between sodium ordering and electron mobility was investigated using a combination of synchrotron x-ray diffraction and nuclear resonant scattering. Conventional Mossbauer spectra were collected while the sample was heated in a resistive furnace. An analysis of the temperature evolution of the spectral shapes was used to identify the onset of fast electron hopping and determine the polaron hopping rate. Synchrotron x-ray diffraction measurements were carried out in the same temperature range. Reitveld analysis of the diffraction patterns was used to determine the temperature of sodium redistribution on the lattice. The diffraction analysis also provides new information about the phase stability of the system. The temperature evolution of the iron site occupancies from the Mossbauer measurements, combined with the synchrotron diffraction results give strong evidence for a relationship between the onset of fast electron dynamics and the redistribution of sodium in the lattice. Measurements of activation barriers for polaron hopping gave fundamental insights about the correlation between electronic carriers and mobile ions. This work established that polaron-ion interactions can alter the local dynamics of electron and ion transport. These types of coupled processes may be common in many materials used for battery electrodes, and new details concerning the influence of polaron-ion interactions on the charge dynamics are relevant to optimizing their electrochemical performance.

  16. NONCOHERENT RADIATION DUE TO ELECTRONS IN A SYNCHROTRON AND SOME OF ITS APPLICATION (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ado, Yu.M.

    1963-01-01

    Experiments are described in which the properties ot noncoherent radiation due to electrons accelerated in a synchrotron are investigated. The experiments were performed at the 280-Mev electron synchrotron of the Lebedeff Institute for Physics. An apparatus was constructed for the determination of optical radiation spectra arising from monoenergetic electrons during the complete acceleration cycle. The energy distribution of the radiation was determined for three electron energies, 150, 225, and 250 Mev. The intensity of various wvavelength radiation was measured as a function of the electron energy from 70 to 280 Mev. The effect of the intensity on the number ofmore » electrons was found to be linear for 250-Mev electrons. Three applications are described for the electron optical radiation: the determination of the number of accelerated electrons, the measurement of the amount of electrons hitting a target during the acceleration process, and the determination of the azimuthal extent of the clots of accelerated electrons. (TTT)« less

  17. Dislocation density evolution of AA 7020-T6 investigated by in-situ synchrotron diffraction under tensile load

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Z.Y., E-mail: zhengye.zhong@hzg.de; Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht; Brokmeier, H.-G.

    2015-10-15

    The dislocation density evolution along the loading axis of a textured AA 7020-T6 aluminum alloy during uniaxial tension was investigated by in-situ synchrotron diffraction. The highly parallel synchrotron beam at the High Energy Materials Science beamline P07 in PETRA III, DESY, offers excellent conditions to separate different influences for line broadening from which micro-strains are obtained using the modified Williamson–Hall method which is also for defect density investigations. During tensile loading the dislocation density evolution was documented from the as-received material (initial micro-strain state) to the relaxation of the strains during elastic deformation. After yield, the increasing rate of dislocationmore » density growth was relatively fast till half-way between yield and UTS. After that, the rate started to decrease and the dislocation density fluctuated as the elongation increased due to the generation and annihilation of dislocations. When dislocation generation is dominant, the correlation between the flow stress and dislocation density satisfies the Taylor equation. Besides, a method to correct the thickness effect on peak broadening is developed in the present study. - Highlights: • In-situ synchrotron diffraction was applied to characterize peak broadening. • Dislocation evolution along the loading axis during uniaxial tension was investigated. • A method to correct the sample thickness effect on peak broadening was developed. • Dislocation density and flow stress satisfy the Taylor equation at a certain range. • The texture before load and after sample fracture was analyzed.« less

  18. Synchroton and Simulations Techniques Applied to Problems in Materials Science: Catalysts and Azul Maya Pigments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chianelli, R.

    2005-01-12

    Development of synchrotron techniques for the determination of the structure of disordered, amorphous and surface materials has exploded over the past twenty years due to the increasing availability of high flux synchrotron radiation and the continuing development of increasingly powerful synchrotron techniques. These techniques are available to materials scientists who are not necessarily synchrotron scientists through interaction with effective user communities that exist at synchrotrons such as the Stanford Synchrotron Radiation Laboratory (SSRL). In this article we review the application of multiple synchrotron characterization techniques to two classes of materials defined as ''surface compounds.'' One class of surface compounds aremore » materials like MoS{sub 2-x}C{sub x} that are widely used petroleum catalysts used to improve the environmental properties of transportation fuels. These compounds may be viewed as ''sulfide supported carbides'' in their catalytically active states. The second class of ''surface compounds'' is the ''Maya Blue'' pigments that are based on technology created by the ancient Maya. These compounds are organic/inorganic ''surface complexes'' consisting of the dye indigo and palygorskite, a common clay. The identification of both surface compounds relies on the application of synchrotron techniques as described in this report.« less

  19. In- Situ Synchrotron Diffraction Studies on Transformation Strain Development in a High-Strength Quenched and Tempered Structural Steel—Part II. Martensitic Transformation

    NASA Astrophysics Data System (ADS)

    Dutta, R. K.; Huizenga, R. M.; Petrov, R. H.; Amirthalingam, M.; King, A.; Gao, H.; Hermans, M. J. M.; Richardson, I. M.

    2014-01-01

    In-situ synchrotron diffraction studies on the kinetics of phase transformation and transformation strain development during bainitic transformation were presented in part I of the current article. In the current article, in-situ phase transformation behavior of a high-strength (830 MPa yield stress) quenched and tempered S690QL1 [Fe-0.16C-0.2Si-0.87Mn-0.33Cr-0.21Mo (wt. pct)] structural steel, during continuous cooling and under different mechanical loading conditions to promote martensitic transformation, has been studied. Time-temperature-load resolved 2D synchrotron diffraction patterns were recorded and used to calculate the phase fractions and lattice parameters of the phases during heating and cooling cycles under different loading conditions. In addition to the thermal expansion behavior, the effects of the applied stress on the elastic strains during the martensitic transformation were calculated. The results show that small tensile stresses applied at the transformation temperature do not change the kinetics of the phase transformation. The start temperature for the martensitic transformation increases with the increasing applied tensile stress. The elastic strains are not affected significantly with the increasing tensile stress. The variant selection during martensitic transformation under small applied loads (in the elastic region) is weak.

  20. Ferroelectrics under the Synchrotron Light: A Review

    PubMed Central

    Fuentes-Cobas, Luis E.; Montero-Cabrera, María E.; Pardo, Lorena; Fuentes-Montero, Luis

    2015-01-01

    Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO3 perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure–function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described. PMID:28787814

  1. Synchrotron Powder X-ray Diffraction Study of the Structure and Dehydration Behavior of Sepiolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post,J.; Bish, D.; Heaney, P.

    2007-01-01

    Rietveld refinements using synchrotron powder X-ray diffraction data were used to study the crystal structure and dehydration behavior of sepiolite from Durango, Mexico. The room-temperature (RT) sepiolite structure in air compares well with previous models but reveals an additional zeolitic H{sub 2}O site. The RT structure under vacuum retained only {approx}1/8 of the zeolitic H{sub 2}O and the volume decreased by 1.3%. Real-time, temperature-resolved synchrotron powder X-ray diffraction data and Rietveld refinements were used to investigate the behavior of the sepiolite structure from 300 to 925 K. Rietveld refinements revealed that most of the zeolitic H{sub 2}O is lost bymore » {approx}390 K, accompanied by a decrease in the a and c unit-cell parameters. Above {approx}600 K the sepiolite structure folds as one-half of the crystallographically bound H{sub 2}O is lost. Rietveld refinements of the 'anhydrous' sepiolite structure reveal that, in general, unit-cell parameters a and b and volume steadily decrease with increasing temperature; there is an obvious change in slope at {approx}820 K suggesting a phase transformation coinciding with the loss of the remaining bound H{sub 2}O molecule.« less

  2. Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Luo, S. N.; Jensen, B. J.; Hooks, D. E.; Fezzaa, K.; Ramos, K. J.; Yeager, J. D.; Kwiatkowski, K.; Shimada, T.

    2012-07-01

    The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for in situ, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (<100 ps) and spatial (˜2 μm) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading.

  3. THz near-field imaging of biological tissues employing synchrotronradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schade, Ulrich; Holldack, Karsten; Martin, Michael C.

    2004-12-23

    Terahertz scanning near-field infrared microscopy (SNIM) below 1 THz is demonstrated. The near-field technique benefits from the broadband and highly brilliant coherent synchrotron radiation (CSR) from an electron storage ring and from a detection method based on locking onto the intrinsic time structure of the synchrotron radiation. The scanning microscope utilizes conical wave guides as near-field probes with apertures smaller than the wavelength. Different cone approaches have been investigated to obtain maximum transmittance. Together with a Martin-Puplett spectrometer the set-up enables spectroscopic mapping of the transmittance of samples well below the diffraction limit. Spatial resolution down to about lambda/40 atmore » 2 wavenumbers (0.06 THz) is derived from the transmittance spectra of the near-field probes. The potential of the technique is exemplified by imaging biological samples. Strongly absorbing living leaves have been imaged in transmittance with a spatial resolution of 130 mu-m at about 12 wave numbers (0.36 THz). The THz near-field images reveal distinct structural differences of leaves from different plants investigated. The technique presented also allows spectral imaging of bulky organic tissues. Human teeth samples of various thicknesses have been imaged between 2 and 20 wavenumbers (between 0.06and 0.6 THz). Regions of enamel and dentin within tooth samples are spatially and spectrally resolved, and buried caries lesions are imaged through both the outer enamel and into the underlying dentin.« less

  4. Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers.

    PubMed

    Neutze, Richard

    2014-07-17

    X-ray free-electron lasers (XFELs) are revolutionary X-ray sources. Their time structure, providing X-ray pulses of a few tens of femtoseconds in duration; and their extreme peak brilliance, delivering approximately 10(12) X-ray photons per pulse and facilitating sub-micrometre focusing, distinguish XFEL sources from synchrotron radiation. In this opinion piece, I argue that these properties of XFEL radiation will facilitate new discoveries in life science. I reason that time-resolved serial femtosecond crystallography and time-resolved wide angle X-ray scattering are promising areas of scientific investigation that will be advanced by XFEL capabilities, allowing new scientific questions to be addressed that are not accessible using established methods at storage ring facilities. These questions include visualizing ultrafast protein structural dynamics on the femtosecond to picosecond time-scale, as well as time-resolved diffraction studies of non-cyclic reactions. I argue that these emerging opportunities will stimulate a renaissance of interest in time-resolved structural biochemistry.

  5. XOP: a multiplatform graphical user interface for synchrotron radiation spectral and optics calculations

    NASA Astrophysics Data System (ADS)

    Sanchez del Rio, Manuel; Dejus, Roger J.

    1997-11-01

    XOP (X-ray OPtics utilities) is a graphical user interface (GUI) created to execute several computer programs that calculate the basic information needed by a synchrotron beamline scientist (designer or experimentalist). Typical examples of such calculations are: insertion device (undulator or wiggler) spectral and angular distributions, mirror and multilayer reflectivities, and crystal diffraction profiles. All programs are provided to the user under a unified GUI, which greatly simplifies their execution. The XOP optics applications (especially mirror calculations) take their basic input (optical constants, compound and mixture tables) from a flexible file-oriented database, which allows the user to select data from a large number of choices and also to customize their own data sets. XOP includes many mathematical and visualization capabilities. It also permits the combination of reflectivities from several mirrors and filters, and their effect, onto a source spectrum. This feature is very useful when calculating thermal load on a series of optical elements. The XOP interface is written in the IDL (Interactive Data Language). An embedded version of XOP, which freely runs under most Unix platforms (HP, Sun, Dec, Linux, etc) and under Windows95 and NT, is available upon request.

  6. Refractive optics to compensate x-ray mirror shape-errors

    NASA Astrophysics Data System (ADS)

    Laundy, David; Sawhney, Kawal; Dhamgaye, Vishal; Pape, Ian

    2017-08-01

    Elliptically profiled mirrors operating at glancing angle are frequently used at X-ray synchrotron sources to focus X-rays into sub-micrometer sized spots. Mirror figure error, defined as the height difference function between the actual mirror surface and the ideal elliptical profile, causes a perturbation of the X-ray wavefront for X- rays reflecting from the mirror. This perturbation, when propagated to the focal plane results in an increase in the size of the focused beam. At Diamond Light Source we are developing refractive optics that can be used to locally cancel out the wavefront distortion caused by figure error from nano-focusing elliptical mirrors. These optics could be used to correct existing optical components on synchrotron radiation beamlines in order to give focused X-ray beam sizes approaching the theoretical diffraction limit. We present our latest results showing measurement of the X-ray wavefront error after reflection from X-ray mirrors and the translation of the measured wavefront into a design for refractive optical elements for correction of the X-ray wavefront. We show measurement of the focused beam with and without the corrective optics inserted showing reduction in the size of the focus resulting from the correction to the wavefront.

  7. Time-resolved experiments in the frequency domain using synchrotron radiation (invited)

    NASA Astrophysics Data System (ADS)

    De Stasio, Gelsomina; Giusti, A. M.; Parasassi, T.; Ravagnan, G.; Sapora, O.

    1992-01-01

    PLASTIQUE is the only synchrotron radiation beam line in the world that performs time-resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and the dynamics of molecules. This technique measures fluorescence lifetimes with picosecond resolution in the near UV spectral range. Such accurate measurements are rendered possible by taking phase and modulation data, and by the advantages of the cross-correlation technique. A successful experiment demonstrated the radiation damage induced by low doses of radiation on rabbit blood cell membranes.

  8. 6th international conference on biophysics and synchrotron radiation. Program/Abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pittroff, Connie; Strasser, Susan Barr

    1999-08-03

    This STI product consists of the Program/Abstracts book that was prepared for the participants in the Sixth International Conference on Biophysics and Synchrotron Radiation that was held August 4-8, 1998, at the Advanced Photon Source, Argonne National Laboratory. This book contains the full conference program and abstracts of the scientific presentations.

  9. Major Facilities for Materials Research and Related Disciplines.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    This report presents priorities for new facilities and new capabilities at existing facilities with initial costs of at least $5 million. The new facilities in order of priority are: (1) a 6 GeV synchrotron radiation facility; (2) an advanced steady state neutron facility; (3) a 1 to 2 GeV synchrotron radiation facility; and (4) a high intensity…

  10. Pure-type superconducting permanent-magnet undulator.

    PubMed

    Tanaka, Takashi; Tsuru, Rieko; Kitamura, Hideo

    2005-07-01

    A novel synchrotron radiation source is proposed that utilizes bulk-type high-temperature superconductors (HTSCs) as permanent magnets (PMs) by in situ magnetization. Arrays of HTSC blocks magnetized by external magnetic fields are placed below and above the electron path instead of conventional PMs, generating a periodic magnetic field with an offset. Two methods are presented to magnetize the HTSCs and eliminate the field offset, enabling the HTSC arrays to work as a synchrotron radiation source. An analytical formula to calculate the peak field achieved in a device based on this scheme is derived in a two-dimensional form for comparison with synchrotron radiation sources using conventional PMs. Experiments were performed to demonstrate the principle of the proposed scheme and the results have been found to be very promising.

  11. Angular behavior of synchrotron radiation harmonics.

    PubMed

    Bagrov, V G; Bulenok, V G; Gitman, D M; Jara, Jose Acosta; Tlyachev, V B; Jarovoi, A T

    2004-04-01

    The detailed analysis of angular dependence of the synchrotron radiation (SR) is presented. Angular distributions of linear and circular polarization integrated over all harmonics, well known for relativistic electron energies, are extended to include radiation from electrons that are not fully relativistic. In particular, we analyze the angular dependence of the integral SR intensity and peculiarities of the angular dependence of the first harmonics SR. Studying spectral SR intensities, we have discovered their unexpected angular behavior, completely different from that of the integral SR intensity; namely, for any given synchrotron frequency, maxima of the spectral SR intensities recede from the orbit plane with increasing particle energy. Thus, in contrast with the integral SR intensity, the spectral ones have the tendency to deconcentrate themselves on the orbit plane.

  12. Three-dimensional monochromatic x-ray computed tomography using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Saito, Tsuneo; Kudo, Hiroyuki; Takeda, Tohoru; Itai, Yuji; Tokumori, Kenji; Toyofuku, Fukai; Hyodo, Kazuyuki; Ando, Masami; Nishimura, Katsuyuki; Uyama, Chikao

    1998-08-01

    We describe a technique of 3D computed tomography (3D CT) using monochromatic x rays generated by synchrotron radiation, which performs a direct reconstruction of a 3D volume image of an object from its cone-beam projections. For the development, we propose a practical scanning orbit of the x-ray source to obtain complete 3D information on an object, and its corresponding 3D image reconstruction algorithm. The validity and usefulness of the proposed scanning orbit and reconstruction algorithm were confirmed by computer simulation studies. Based on these investigations, we have developed a prototype 3D monochromatic x-ray CT using synchrotron radiation, which provides exact 3D reconstruction and material-selective imaging by using the K-edge energy subtraction technique.

  13. Contrast agent choice for intravenous coronary angiography

    NASA Astrophysics Data System (ADS)

    Zeman, H. D.; Siddons, D. P.

    1990-05-01

    The screening of the general population for coronary artery disease would be practical if a method existed for visualizing the extent of occlusion after an intravenous injection of contrast agent. Measurements performed with monochromatic synchrotron radiation X-rays and an iodine-containing contrast agent at the Stanford Synchrotron Radiation Laboratory have shown that such an intravenous angiography procedure would be possible with an adequately intense monochromatic X-ray source. Because of the size and cost of synchrotron radiation facilities it would be desirable to make the most efficient use of the intensity available, while reducing as much as possible the radiation dose experienced by the patient. By choosing contrast agents containing elements with a higher atomic number than iodine, it is possible to both improve the image quality and reduce the patient radiation dose, while using the same synchrotron radiation source. By using Si monochromator crystals with a small mosaic spread, it is possible to increase the X-ray flux available for imaging by over an order of magnitude, without any changes in the storage ring or wiggler magnet. The most critical imaging task for intravenous coronary angiography utilizing synchrotron radiation X-rays is visualizing a coronary artery through the left ventricle or aorta which also contain contrast agent. Calculations have been made of the signal to noise ratio expected for this imaging task for various contrast agents with atomic numbers between that of iodine and bismuth. The X-ray energy spectrum of the X-17 superconduction wiggler beam line at the National Synchrotron Light Source at Brookhaven National Laboratory has been used for these calculations. Both perfect Si crystals and Si crystals with a small mosaic spread are considered as monochromators. Contrast agents containing Gd or Yb seem to have about the optimal calculated signal to noise ratio. Gd-DTPA is already approved for use as a contrast agent for magnetic resonance imaging. Experiments have already been performed with Yb-DTPA in animals, and it appears to have a lower toxicity than that of Gd-DTPA. Reported animal experiments with Gd-DOTA contrast agent show no toxicity at all.

  14. Cation ordering/disordering kinetics in Ba3CoNb2O9: An in situ study using synchrotron x-ray powder diffraction

    NASA Astrophysics Data System (ADS)

    Mallinson, P. M.; Claridge, J. B.; Rosseinsky, M. J.; Ibberson, R. M.; Wright, J. P.; Fitch, A. N.; Price, T.; Iddles, D. M.

    2007-11-01

    In situ synchrotron x-ray powder diffraction has been used to study the kinetics of cation ordering and disordering in the microwave dielectric electroceramic Ba3CoNb2O9 with a time resolution of 15s. The method enables the order/disorder temperature (To /d) in this material of 1430°C to be directly observed. The changes in the rate and degree of cation ordering and in the growth of ordered domains between samples ordered from standard precursor material and then subsequently reordered following an annealing period above To /d show that small changes in precursor order state and phase assemblage strongly influence the final domain size.

  15. In situ Raman and synchrotron X-ray diffraction study on crystallization of Choline chloride/Urea deep eutectic solvent under high pressure

    NASA Astrophysics Data System (ADS)

    Yuan, Chaosheng; Chu, Kunkun; Li, Haining; Su, Lei; Yang, Kun; Wang, Yongqiang; Li, Xiaodong

    2016-09-01

    Pressure-induced crystallization of Choline chloride/Urea (ChCl/Urea) deep eutectic solvent (DES) has been investigated by in-situ Raman spectroscopy and synchrotron X-ray diffraction. The results indicated that high pressure crystals appeared at around 2.6 GPa, and the crystalline structure was different from that formed at ambient pressure. Upon increasing the pressure, the Nsbnd H stretching modes of Urea underwent dramatic change after liquid-solid transition. It appears that high pressures may enhance the hydrogen bonds formed between ChCl and Urea. P versus T phase diagram of ChCl/Urea DES was constructed, and the crystallization mechanism of ChCl/Urea DES was discussed in view of hydrogen bonds.

  16. Observation of Threading Dislocations in Ammonothermal Gallium Nitride Single Crystal Using Synchrotron X-ray Topography

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Ishikawa, Y.; Sugawara, Y.; Takahashi, Y.; Hirano, K.

    2018-04-01

    Synchrotron monochromatic-beam x-ray topography observation has been performed on high-quality ammonothermal gallium nitride single crystal to evaluate threading dislocations (TD) in a nondestructive manner. Asymmetric diffractions with six equivalent g-vectors of 11-26, in addition to a symmetric diffraction with g = 0008, were applied to determine the Burgers vectors (b) of dislocations. It was found that pure edge-type TDs with \\varvec b = < {11 - 20} > /3 did not exist in the sample. A dominant proportion of TDs were of mixed type with \\varvec b = < {11 - 20} > /3 + < {0001} > , i.e., so-called c + a dislocations. Pure 1c screw dislocations with \\varvec b = < {0001} > and TDs with c-component larger than 1c were also observed.

  17. Development of a synchrotron biaxial tensile device for in situ characterization of thin films mechanical response.

    PubMed

    Geandier, G; Thiaudière, D; Randriamazaoro, R N; Chiron, R; Djaziri, S; Lamongie, B; Diot, Y; Le Bourhis, E; Renault, P O; Goudeau, P; Bouaffad, A; Castelnau, O; Faurie, D; Hild, F

    2010-10-01

    We have developed on the DIFFABS-SOLEIL beamline a biaxial tensile machine working in the synchrotron environment for in situ diffraction characterization of thin polycrystalline films mechanical response. The machine has been designed to test compliant substrates coated by the studied films under controlled, applied strain field. Technological challenges comprise the sample design including fixation of the substrate ends, the related generation of a uniform strain field in the studied (central) volume, and the operations from the beamline pilot. Preliminary tests on 150 nm thick W films deposited onto polyimide cruciform substrates are presented. The obtained results for applied strains using x-ray diffraction and digital image correlation methods clearly show the full potentialities of this new setup.

  18. Multifit / Polydefix : a framework for the analysis of polycrystal deformation using X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkel, Sébastien; Hilairet, Nadège

    2015-06-27

    Multifit/Polydefixis an open source IDL software package for the efficient processing of diffraction data obtained in deformation apparatuses at synchrotron beamlines.Multifitallows users to decompose two-dimensional diffraction images into azimuthal slices, fit peak positions, shapes and intensities, and propagate the results to other azimuths and images.Polydefixis for analysis of deformation experiments. Starting from output files created inMultifitor other packages, it will extract elastic lattice strains, evaluate sample pressure and differential stress, and prepare input files for further texture analysis. TheMultifit/Polydefixpackage is designed to make the tedious data analysis of synchrotron-based plasticity, rheology or other time-dependent experiments very straightforward and accessible tomore » a wider community.« less

  19. Method and devices for performing stereotactic microbeam radiation therapy

    DOEpatents

    Dilmanian, F. Avraham

    2010-01-05

    A radiation delivery system generally includes either a synchrotron source or a support frame and a plurality of microbeam delivery devices supported on the support frame, both to deliver a beam in a hemispherical arrangement. Each of the microbeam delivery devices or synchrotron irradiation ports is adapted to deliver at least one microbeam of radiation along a microbeam delivery axis, wherein the microbeam delivery axes of the plurality of microbeam delivery devices cross within a common target volume.

  20. Author Contribution to the Pu Handbook II: Chapter 37 LLNL Integrated Sample Preparation Glovebox (TEM) Section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Mark A.

    The development of our Integrated Actinide Sample Preparation Laboratory (IASPL) commenced in 1998 driven by the need to perform transmission electron microscopy studies on naturally aged plutonium and its alloys looking for the microstructural effects of the radiological decay process (1). Remodeling and construction of a laboratory within the Chemistry and Materials Science Directorate facilities at LLNL was required to turn a standard radiological laboratory into a Radiological Materials Area (RMA) and Radiological Buffer Area (RBA) containing type I, II and III workplaces. Two inert atmosphere dry-train glove boxes with antechambers and entry/exit fumehoods (Figure 1), having a baseline atmospheremore » of 1 ppm oxygen and 1 ppm water vapor, a utility fumehood and a portable, and a third double-walled enclosure have been installed and commissioned. These capabilities, along with highly trained technical staff, facilitate the safe operation of sample preparation processes and instrumentation, and sample handling while minimizing oxidation or corrosion of the plutonium. In addition, we are currently developing the capability to safely transfer small metallographically prepared samples to a mini-SEM for microstructural imaging and chemical analysis. The gloveboxes continue to be the most crucial element of the laboratory allowing nearly oxide-free sample preparation for a wide variety of LLNL-based characterization experiments, which includes transmission electron microscopy, electron energy loss spectroscopy, optical microscopy, electrical resistivity, ion implantation, X-ray diffraction and absorption, magnetometry, metrological surface measurements, high-pressure diamond anvil cell equation-of-state, phonon dispersion measurements, X-ray absorption and emission spectroscopy, and differential scanning calorimetry. The sample preparation and materials processing capabilities in the IASPL have also facilitated experimentation at world-class facilities such as the Advanced Photon Source at Argonne National Laboratory, the European Synchrotron Radiation Facility in Grenoble, France, the Stanford Synchrotron Radiation Facility, the National Synchrotron Light Source at Brookhaven National Laboratory, the Advanced Light Source at Lawrence Berkeley National Laboratory, and the Triumph Accelerator in Canada.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramadhar, Timothy R.; Zheng, Shao -Liang; Chen, Yu -Sheng

    A detailed set of synthetic and crystallographic guidelines for the crystalline sponge method based upon the analysis of expediently synthesized crystal sponges using third-generation synchrotron radiation are reported. The procedure for the synthesis of the zinc-based metal–organic framework used in initial crystal sponge reports has been modified to yield competent crystals in 3 days instead of 2 weeks. These crystal sponges were tested on some small molecules, with two being unexpectedly difficult cases for analysis with in-house diffractometers in regard to data quality and proper space-group determination. These issues were easily resolved by the use of synchrotron radiation using data-collectionmore » times of less than an hour. One of these guests induced a single-crystal-to-single-crystal transformation to create a larger unit cell with over 500 non-H atoms in the asymmetric unit. This led to a non-trivial refinement scenario that afforded the best Flack x absolute stereochemical determination parameter to date for these systems. The structures did not require the use of PLATON/SQUEEZE or other solvent-masking programs, and are the highest-quality crystalline sponge systems reported to date where the results are strongly supported by the data. A set of guidelines for the entire crystallographic process were developed through these studies. In particular, the refinement guidelines include strategies to refine the host framework, locate guests and determine occupancies, discussion of the proper use of geometric and anisotropic displacement parameter restraints and constraints, and whether to perform solvent squeezing/masking. The single-crystal-to-single-crystal transformation process for the crystal sponges is also discussed. The presented general guidelines will be invaluable for researchers interested in using the crystalline sponge method at in-house diffraction or synchrotron facilities, will facilitate the collection and analysis of reliable high-quality data, and will allow construction of chemically and physically sensible models for guest structural determination.« less

  2. Hyperspectral Analyses of Wild 2 Grains Using Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Simionovici, A. S.; Lemelle, L.; Ferroir, T.; Gillet, P.; Borg, J.; Grossemy, F.; Djouadi, Z.; Bleuet, P.; Susini, J.

    2006-12-01

    This work is part of the Preliminary Examination Team (PET) on Bulk Chemistry investigation of Wild 2 cometary grains brought back to Earth by the NASA Stardust mission [1]. X-rays are among the least destructive yet sensitive micro-probes, capable of analysing minute samples embedded in low density collectors, so methods based on Synchrotron Radiation had access to Stardust samples in priority. The main goal of the PET was to produce a preliminary characterization of the abundance and nature of the elements present in the returned samples [2]. In this phase it was paramount to analyze the grains in-situ, in the aerogel foam of the collectors to record the total mass fragments and avoid extraction risks. We have performed measurements on beamlines ID22/ID21 of the ESRF synchrotron in Grenoble, France, devoted to high/low energy microspectroscopy and recorded results on a collection of 6 keystones. Terminal particles as well as fragmentation tracks in the aerogel were mapped out with micron resolution, recording total mass composition for elements of Z>15 by means of X-ray fluorescence [3], as well as structural information by X-ray diffraction. This allowed the direct identification of the mineralogy of some of the grains. Finally, we recorded the evolution of the charge states of S and Fe as a function of the position in the track by means of micro-Xanes measurements. All these analyses were combined to produce a description of the Wild 2 cometary grains [4], as well as a history of their formation and of the thermal interactions during their slowing down in the aerogel collectors. [1] Brownlee, D. E. et al., LPSC XXXVII, abstract nr. 2286, 2006. [2] G. J. Flynn et al., LPSC XXXVII, abstract nr. 1217, 2006. [3] A. Simionovici, P. Chevallier, Chap. 7, Handbook of Practical X-Ray Fluorescence Analysis, 66-83, Springer, 2006. [4] G. J. Flynn et al., Science, (submitted), 2006.

  3. Panchromatic Observations of GRB 110205A and Other GRB Optical Prompt Observations Obtained by ROTSE

    NASA Astrophysics Data System (ADS)

    Zheng, Weikang; with a larger Collaboration

    2011-09-01

    The leading radiation mechanisms for gamma-ray bursts (GRBs), as predicted by the standard GRB fireball model, include synchrotron radiation, synchrotron self-Compton (SSC), and inverse Compton scattering from thermal photons. Panchromatic observations during GRB prompt emission are important to distinguish the mechanisms. GRB 110205A, triggered by Swift, is also detected by Suzaku, ROTSE-IIIb and BOOTES telescopes when the GRB is still radiating gamma-rays. These panchromatic observations, covering 6 orders of energy range from 1 eV to 5 MeV, will be presented. We clearly discover an interesting two-break energy spectrum for the first time, roughly consistent with the synchrotron spectrum predicted by the standard GRB fireball model. The two break energies can be explained as νc, the synchrotron cooling frequency, and νm, the synchrotron typical frequency. With a sample of GRBs with optical prompt detections from ROTSE observations, one can also constrain the self-absorption frequency, νa. These detailed prompt observations are important to discriminate different mechanisms and thus lead us to a better and deeper understanding of the GRB fireball model. This research is supported by the NASA grant NNX08AV63G and the NSF grant PHY-0801007.

  4. Modeling challenges and approaches in simulating the Jovian synchrotron radiation belts from an in-situ perspective

    NASA Astrophysics Data System (ADS)

    Adumitroaie, V.; Oyafuso, F. A.; Levin, S.; Gulkis, S.; Janssen, M. A.; Santos-Costa, D.; Bolton, S. J.

    2017-12-01

    In order to obtain credible atmospheric composition retrieval values from Jupiter's observed radiative signature via Juno's MWR instrument, it is necessary to separate as robustly as possible the contributions from three emission sources: CMB, planet and synchrotron radiation belts. The numerical separation requires a refinement, based on the in-situ data, of a higher fidelity model for the synchrotron emission, namely the multi-parameter, multi-zonal model of Levin at al. (2001). This model employs an empirical electron energy distribution, which prior to the Juno mission, has been adjusted exclusively from VLA observations. At minimum 8 sets of perijove observations (i.e. by PJ9) have to be delivered to an inverse model for retrieval of the electron distribution parameters with the goal of matching the synchrotron emission observed along MWR's lines of sight. The challenges and approaches taken to perform this task are discussed here. The model will be continuously improved with the availability of additional information, both from the MWR and magnetometer instruments.

  5. The use of workflows in the design and implementation of complex experiments in macromolecular crystallography.

    PubMed

    Brockhauser, Sandor; Svensson, Olof; Bowler, Matthew W; Nanao, Max; Gordon, Elspeth; Leal, Ricardo M F; Popov, Alexander; Gerring, Matthew; McCarthy, Andrew A; Gotz, Andy

    2012-08-01

    The automation of beam delivery, sample handling and data analysis, together with increasing photon flux, diminishing focal spot size and the appearance of fast-readout detectors on synchrotron beamlines, have changed the way that many macromolecular crystallography experiments are planned and executed. Screening for the best diffracting crystal, or even the best diffracting part of a selected crystal, has been enabled by the development of microfocus beams, precise goniometers and fast-readout detectors that all require rapid feedback from the initial processing of images in order to be effective. All of these advances require the coupling of data feedback to the experimental control system and depend on immediate online data-analysis results during the experiment. To facilitate this, a Data Analysis WorkBench (DAWB) for the flexible creation of complex automated protocols has been developed. Here, example workflows designed and implemented using DAWB are presented for enhanced multi-step crystal characterizations, experiments involving crystal reorientation with kappa goniometers, crystal-burning experiments for empirically determining the radiation sensitivity of a crystal system and the application of mesh scans to find the best location of a crystal to obtain the highest diffraction quality. Beamline users interact with the prepared workflows through a specific brick within the beamline-control GUI MXCuBE.

  6. Ecological and agricultural applications of synchrotron IR microscopy

    NASA Astrophysics Data System (ADS)

    Raab, T. K.; Vogel, J. P.

    2004-10-01

    The diffraction-limited spot size of synchrotron-based IR microscopes provides cell-specific, spectrochemical imaging of cleared leaf, stem and root tissues of the model genetic organism Arabidopsis thaliana, and mutant plants created either by T-DNA insertional inactivation or chemical mutagenesis. Spectra in the wavelength region from 6 to 12 μm provide chemical and physical information on the cell wall polysaccharides of mutants lacking particular biosynthetic enzymes ("Cellulose synthase-like" genes). In parallel experiments, synchrotron IR microscopy delineates the role of Arabidopsis cell wall enzymes as susceptibility factors to the fungus Erysiphe cichoracearum, a causative agent of powdery mildew disease. Three genes, pmr4, pmr5, and pmr6 have been characterized by these methods, and biochemical relations between two of the genes suggested by IR spectroscopy and multivariate statistical techniques could not have been inferred through classical molecular biology. In ecological experiments, live plants can also be imaged in small microcosms with mid-IR transmitting ZnSe windows. Small exudate molecules may be spatially mapped in relation to root architecture at diffraction-limited resolution, and the effect of microbial symbioses on the quantity and quality of exudates inferred. Synchrotron IR microscopy provides a useful adjunct to molecular biological methods and underground observatories in the ongoing assessment of the role of root-soil-microbe communication.

  7. Crystallization and preliminary X-ray analysis of ginkbilobin-2 from Ginkgo biloba seeds: a novel antifungal protein with homology to the extracellular domain of plant cysteine-rich receptor-like kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyakawa, Takuya; Sawano, Yoriko; Miyazono, Ken-ichi

    Purification and crystallization of ginkbilobin-2 and its selenomethionine derivative allowed the collection of complete data to 2.38 Å resolution and multiwavelength anomalous diffraction data sets, respectively. The antifungal protein ginkbilobin-2 (Gnk2) from Ginkgo biloba seeds does not show homology to other pathogenesis-related proteins, but does show homology to the extracellular domain of plant cysteine-rich receptor-like kinases. Native Gnk2 purified from ginkgo nuts and the selenomethionine derivative of recombinant Gnk2 (SeMet-rGnk2) were crystallized by the sitting-drop vapour-diffusion method using different precipitants. X-ray diffraction data were collected from Gnk2 at 2.38 Å resolution and from SeMet-rGnk2 at 2.79 Å resolution using amore » synchrotron-radiation source. The crystals of both proteins belonged to the primitive cubic space group P2{sub 1}3, with unit-cell parameters a = b = c = 143.2 Å.« less

  8. Direct Visualization of Orbital Flipping in Volborthite by Charge Density Analysis Using Detwinned Data

    NASA Astrophysics Data System (ADS)

    Sugawara, Kento; Sugimoto, Kunihisa; Fujii, Tatsuya; Higuchi, Takafumi; Katayama, Naoyuki; Okamoto, Yoshihiko; Sawa, Hiroshi

    2018-02-01

    The distribution of d-orbital valence electrons in volborthite [Cu3V2O7(OH)2 • 2H2O] was investigated by charge density analysis of the multipole model refinement. Diffraction data were obtained by synchrotron radiation single-crystal X-ray diffraction experiments. Data reduction by detwinning of the multiple structural domains was performed using our developed software. In this study, using high-quality data, we demonstrated that the water molecules in volborthite can be located by the hydrogen bonding in cavities that consist of Kagome lattice layers of CuO4(OH)2 and pillars of V2O7. Final multipole refinements before and after the structural phase transition directly visualized the deformation electron density of the valence electrons. We successfully directly visualized the orbital flipping of the d-orbital dx2-y2, which is the highest level of 3d orbitals occupied by d9 electrons in volborthite. The developed techniques and software can be employed for investigations of structural properties of systems with multiple structural domains.

  9. Crystallization and preliminary X-ray diffraction studies of choline-binding protein F from Streptococcus pneumoniae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molina, Rafael; González, Ana; Moscoso, Miriam

    2007-09-01

    The modular choline-binding protein F (CbpF) from S. pneumoniae has been crystallized by the hanging-drop vapour-diffusion method. A SAD data set from a gadolinium-complex derivative has been collected to 2.1 Å resolution. Choline-binding protein F (CbpF) is a modular protein that is bound to the pneumococcal cell wall through noncovalent interactions with choline moieties of the bacterial teichoic and lipoteichoic acids. Despite being one of the more abundant proteins on the surface, along with the murein hydrolases LytA, LytB, LytC and Pce, its function is still unknown. CbpF has been crystallized using the hanging-drop vapour-diffusion method at 291 K. Diffraction-qualitymore » orthorhombic crystals belong to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 49.13, b = 114.94, c = 75.69 Å. A SAD data set from a Gd-HPDO3A-derivatized CbpF crystal was collected to 2.1 Å resolution at the gadolinium L{sub III} absorption edge using synchrotron radiation.« less

  10. Crystallization dynamics and interface stability of strontium titanate thin films on silicon.

    PubMed

    Hanzig, Florian; Hanzig, Juliane; Mehner, Erik; Richter, Carsten; Veselý, Jozef; Stöcker, Hartmut; Abendroth, Barbara; Motylenko, Mykhaylo; Klemm, Volker; Novikov, Dmitri; Meyer, Dirk C

    2015-04-01

    Different physical vapor deposition methods have been used to fabricate strontium titanate thin films. Within the binary phase diagram of SrO and TiO 2 the stoichiometry ranges from Ti rich to Sr rich, respectively. The crystallization of these amorphous SrTiO 3 layers is investigated by in situ grazing-incidence X-ray diffraction using synchrotron radiation. The crystallization dynamics and evolution of the lattice constants as well as crystallite sizes of the SrTiO 3 layers were determined for temperatures up to 1223 K under atmospheric conditions applying different heating rates. At approximately 473 K, crystallization of perovskite-type SrTiO 3 is initiated for Sr-rich electron beam evaporated layers, whereas Sr-depleted sputter-deposited thin films crystallize at 739 K. During annealing, a significant diffusion of Si from the substrate into the SrTiO 3 layers occurs in the case of Sr-rich composition. This leads to the formation of secondary silicate phases which are observed by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy.

  11. Stress relaxation in pre-stressed aluminum core–shell particles: X-ray diffraction study, modeling, and improved reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitas, Valery I.; McCollum, Jena; Pantoya, Michelle L.

    Stress relaxation in aluminum micron-scale particles covered by alumina shell after pre-stressing by thermal treatment and storage was measured using X-ray diffraction with synchrotron radiation. Pre-stressing was produced by annealing Al particles at 573K followed by fast cooling. While averaged dilatational strain in Al core was negligible for untreated particles, it was measured at 4.40×10 -5 and 2.85×10 -5 after 2 and 48 days of storage. Consistently, such a treatment leads to increase in flame propagation speed for Al+CuO mixture by 37% and 25%, respectively. Analytical model for creep in alumna shell and stress relaxation in Al core-alumina shellmore » structure is developed and activation energy and pre-exponential multiplier are estimated. The effect of storage temperature and annealing temperature on the kinetics of stress relaxation was evaluated theoretically. These results provide estimates for optimizing Al reactivity with the holding time at annealing temperature and allowable time for storage of Al particles for various environmental temperatures.« less

  12. Stress relaxation in pre-stressed aluminum core–shell particles: X-ray diffraction study, modeling, and improved reactivity

    DOE PAGES

    Levitas, Valery I.; McCollum, Jena; Pantoya, Michelle L.; ...

    2016-05-30

    Stress relaxation in aluminum micron-scale particles covered by alumina shell after pre-stressing by thermal treatment and storage was measured using X-ray diffraction with synchrotron radiation. Pre-stressing was produced by annealing Al particles at 573K followed by fast cooling. While averaged dilatational strain in Al core was negligible for untreated particles, it was measured at 4.40×10 -5 and 2.85×10 -5 after 2 and 48 days of storage. Consistently, such a treatment leads to increase in flame propagation speed for Al+CuO mixture by 37% and 25%, respectively. Analytical model for creep in alumna shell and stress relaxation in Al core-alumina shellmore » structure is developed and activation energy and pre-exponential multiplier are estimated. The effect of storage temperature and annealing temperature on the kinetics of stress relaxation was evaluated theoretically. These results provide estimates for optimizing Al reactivity with the holding time at annealing temperature and allowable time for storage of Al particles for various environmental temperatures.« less

  13. Magnetic properties of transition metal fluorides MF2 (M=Mn, Fe, Co, Ni) via high-energy photon diffraction

    NASA Astrophysics Data System (ADS)

    Strempfer, J.; Rütt, U.; Bayrakci, S.; Brückel, Th.; Jauch, W.

    2004-01-01

    We present an overview of recent results from nonresonant magnetic diffraction experiments on the antiferromagnetic compounds MnF2, FeF2, CoF2, and NiF2 using high-energy synchrotron radiation of photon energies above 100 keV. New results are presented on the determination of the spin and of the L/S ratio for CoF2 and NiF2. For CoF2, the saturation value of the long-range-ordered pure spin Sz component Sz=1.11(1) is considerably lower than the value Sz=3/2 for the free Co2+ ion. This is in contrast to our results for NiF2, where the full spin of the free transition-metal ion was found, Sz=0.98(1). The temperature dependence of the magnetization in the critical region as well as in the low-temperature region is also presented. For all compounds, Ising behavior is found in the critical regime, whereas the crossover to the low-temperature spin-wave behavior varies. We attribute this to different anisotropies in this series of compounds.

  14. ANKA, a customer-oriented synchrotron radiation facility for microfabrication and analytical services

    NASA Astrophysics Data System (ADS)

    Pea Anka Project Group; Buth, G.; Doyle, S.; Einfeld, D.; Hagelstein, M.; Hermle, S.; Huttel, E.; Krüssel, A.; Lange, M.; Mathis, Y.-L.; Mexner, W.; Moser, H. O.; Pellegrin, E.; Ristau, U.; Rossmanith, R.; Schaper, J.; Schieler, H.; Simon, R.; Steininger, R.; Voigt, S.; Walther, R.; Perez, F.; Pont, M.; Plesko, M.

    1998-03-01

    ANKA (Angströmquelle Karlsruhe) is a state-of-the-art synchrotron radiation facility under construction at the Forschungszentrum Karlsruhe. Based on a 2.5 GeV electron storage ring it will deliver photons predominantly in the hard X-ray range but it will also feature both XUV and infrared beamlines. In its first operational phase the radiation will be taken out of normal-conducting dipole bending magnets, while five free long straight sections are foreseen to accommodate insertion devices later on. ANKA has a novel mission, namely to provide synchrotron-radiation based services to industrial and other customers, in the fields of microfabrication and materials analysis. A limited liability company, ANKA GmbH, is being founded to operate the facility. Although commercial services to customers will represent more than half of the overall activity, these services will be complemented by providing beam time for research users.

  15. Characterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy.

    PubMed

    Hermann, Peter; Hoehl, Arne; Ulrich, Georg; Fleischmann, Claudia; Hermelink, Antje; Kästner, Bernd; Patoka, Piotr; Hornemann, Andrea; Beckhoff, Burkhard; Rühl, Eckart; Ulm, Gerhard

    2014-07-28

    We describe the application of scattering-type near-field optical microscopy to characterize various semiconducting materials using the electron storage ring Metrology Light Source (MLS) as a broadband synchrotron radiation source. For verifying high-resolution imaging and nano-FTIR spectroscopy we performed scans across nanoscale Si-based surface structures. The obtained results demonstrate that a spatial resolution below 40 nm can be achieved, despite the use of a radiation source with an extremely broad emission spectrum. This approach allows not only for the collection of optical information but also enables the acquisition of near-field spectral data in the mid-infrared range. The high sensitivity for spectroscopic material discrimination using synchrotron radiation is presented by recording near-field spectra from thin films composed of different materials used in semiconductor technology, such as SiO2, SiC, SixNy, and TiO2.

  16. Observing microscopic structures of a relativistic object using a time-stretch strategy.

    PubMed

    Roussel, E; Evain, C; Le Parquier, M; Szwaj, C; Bielawski, S; Manceron, L; Brubach, J-B; Tordeux, M-A; Ricaud, J-P; Cassinari, L; Labat, M; Couprie, M-E; Roy, P

    2015-05-28

    Emission of light by a single electron moving on a curved trajectory (synchrotron radiation) is one of the most well-known fundamental radiation phenomena. However experimental situations are more complex as they involve many electrons, each being exposed to the radiation of its neighbors. This interaction has dramatic consequences, one of the most spectacular being the spontaneous formation of spatial structures inside electrons bunches. This fundamental effect is actively studied as it represents one of the most fundamental limitations in electron accelerators, and at the same time a source of intense terahertz radiation (Coherent Synchrotron Radiation, or CSR). Here we demonstrate the possibility to directly observe the electron bunch microstructures with subpicosecond resolution, in a storage ring accelerator. The principle is to monitor the terahertz pulses emitted by the structures, using a strategy from photonics, time-stretch, consisting in slowing-down the phenomena before recording. This opens the way to unpreceeded possibilities for analyzing and mastering new generation high power coherent synchrotron sources.

  17. Observing microscopic structures of a relativistic object using a time-stretch strategy

    NASA Astrophysics Data System (ADS)

    Roussel, E.; Evain, C.; Le Parquier, M.; Szwaj, C.; Bielawski, S.; Manceron, L.; Brubach, J.-B.; Tordeux, M.-A.; Ricaud, J.-P.; Cassinari, L.; Labat, M.; Couprie, M.-E.; Roy, P.

    2015-05-01

    Emission of light by a single electron moving on a curved trajectory (synchrotron radiation) is one of the most well-known fundamental radiation phenomena. However experimental situations are more complex as they involve many electrons, each being exposed to the radiation of its neighbors. This interaction has dramatic consequences, one of the most spectacular being the spontaneous formation of spatial structures inside electrons bunches. This fundamental effect is actively studied as it represents one of the most fundamental limitations in electron accelerators, and at the same time a source of intense terahertz radiation (Coherent Synchrotron Radiation, or CSR). Here we demonstrate the possibility to directly observe the electron bunch microstructures with subpicosecond resolution, in a storage ring accelerator. The principle is to monitor the terahertz pulses emitted by the structures, using a strategy from photonics, time-stretch, consisting in slowing-down the phenomena before recording. This opens the way to unpreceeded possibilities for analyzing and mastering new generation high power coherent synchrotron sources.

  18. Millimeter wave coherent synchrotron radiation in a compact electron storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, J.B.; Blum, E.; Heese, R.

    1998-01-01

    Installation of a 2,856 MHz RF system into the XLS compact electron storage ring would allow the generation of millimeter wave coherent synchrotron radiation. Operating at 150 MeV, one could produce bunches containing on the order of 2 {times} 10{sup 7} electrons with a bunch length {sigma}{sub L0} = 0.3 mm, resulting in coherent emission at wavelengths above 0.8 mm. The characteristics of the source and the emitted radiation are discussed. In the case of 100 mrad horizontal collection angle, the average power radiated in the wavelength band 1 mm {le} {lambda} {le} 2 mm is 0.3 mW for singlemore » bunch operation and 24 mW for 80 bunch operation. The peak power in a single pulse of a few picosecond duration is on the order of one watt. By reducing the momentum compaction, the bunch length could be reduced to {sigma}{sub L0} = 0.15 mm, resulting in coherent synchrotron radiation down to 500 {micro}m.« less

  19. Plant-based Food and Feed Protein Structure Changes Induced by Gene-transformation heating and bio-ethanol processing: A Synchrotron-based Molecular Structure and Nutrition Research Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P Yu

    Unlike traditional 'wet' analytical methods which during processing for analysis often result in destruction or alteration of the intrinsic protein structures, advanced synchrotron radiation-based Fourier transform infrared microspectroscopy has been developed as a rapid and nondestructive and bioanalytical technique. This cutting-edge synchrotron-based bioanalytical technology, taking advantages of synchrotron light brightness (million times brighter than sun), is capable of exploring the molecular chemistry or structure of a biological tissue without destruction inherent structures at ultra-spatial resolutions. In this article, a novel approach is introduced to show the potential of the advanced synchrotron-based analytical technology, which can be used to study plant-basedmore » food or feed protein molecular structure in relation to nutrient utilization and availability. Recent progress was reported on using synchrotron-based bioanalytical technique synchrotron radiation-based Fourier transform infrared microspectroscopy and diffused reflectance infrared Fourier transform spectroscopy to detect the effects of gene-transformation (Application 1), autoclaving (Application 2), and bio-ethanol processing (Application 3) on plant-based food and feed protein structure changes on a molecular basis. The synchrotron-based technology provides a new approach for plant-based protein structure research at ultra-spatial resolutions at cellular and molecular levels.« less

  20. Radiological considerations for bulk shielding calculations of national synchrotron light source-II

    NASA Astrophysics Data System (ADS)

    Job, Panakkal K.; Casey, William R.

    2011-12-01

    Brookhaven National Laboratory is designing a new electron synchrotron for scientific research using synchrotron radiation. This facility, called the “National Synchrotron Light Source II” (NSLS-II), will provide x-ray radiation of ultra-high brightness and exceptional spatial and energy resolution. It will also provide advanced insertion devices, optics, detectors and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. The project scope includes the design, construction, installation, and commissioning of the following accelerators: a 200 MeV linac, a booster synchrotron operating from 200 MeV to 3.0 GeV, and the storage ring which stores a maximum of 500 mA current of electrons at an energy of 3.0 GeV. It is planned to operate the facility primarily in a top-off mode, thereby maintaining the maximum variation in stored beam current to <1%. Because of the very demanding requirements for beam emittance and synchrotron radiation brilliance, the beam life-time is expected to be quite low, on the order of 2 h. Analysis of the bulk shielding for operating this facility and the input parameters used for this analysis have been discussed in this paper. The characteristics of each of the accelerators and their operating modes have been summarized with the input assumptions for the bulk shielding analysis.

Top